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CHARACTERIZATION OF THE Q-SWITCHED MOBLAS LASER
TRANSMITTER AND ITS RANGING PERFORMANCE RELATIVE
TO A PTM Q-SWITCHED SYSTEM

John J. Degnan
Thomas W. Zagwodzki
ABSTRACT

This report documents the results of various tests performed on a prototype Q-switched Nd:YAG
laser transmitter intended for use in the NASA mobile laser (MOBLAS) ranging stations and various
modifications of the basic laser. The tests were designed to determine temporal pulseshape and stabil-
ity, output erergy and stability, beam divergence, and most importantly, the range bias errors intro-
duced by the transmitter. Based on the results of each phase of testing, the system was modified and
reevaluated with regard to its ranging performar.ce over a fixed horizontal range. The basic system
consisted of a simple Q-switched oscillator followed by a double-pass amplifier and KD*P Type II
frequency doubling crystal. The pulse width of the Phase I oscillator was six nanoseconds (FWHM),
but the laser introduced large biases which varied both in time and with the location of the target in
the transmitter far field pattern. Peak-to-peak variations in the mean range (for sets of 100 individual
range measurements) were as large as 30 cms (15 cm). The Phase II oscillator pulsewidth was re-
duced to 4 nsec (FWHM), but the peak-to-peak variation in the mean range was still on the order of
18 cms. A typical drift rate of the system bias with time was 6 mm per minute of operation. A fast
electro-optic cavity dump with a subnanosecond risetime was incorporated into the final Phase III
oscillator. The resulting pulsewidth was 1.5 nanoseconds (FWHM), and the peak-to-peak variation
in the mean rarnige was reduced to the two to three centimeter level. A qualitative physical explana-

tion for the superior performance of cavity dumped (also called PTM Q-switched) lasers is given.
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CHARACTERIZATION OF THE Q-SWITCHED MOBLAS LASER
TRANSMITTER AND ITS RANGING PERFORMANCE RELATIVE
TO A PTM Q-SWITCHED SYSTEM

b e s o

I. Introduction

Since the first successful satellite laser ranging system was demonstrated at the Goddard Space
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-

Flight Center in 1964, the error in the range measurement has decreased dramatically from several

AN

meters in 1964 to less than 10 cm by 1975.1 In 1975, the Goddard Laser Tracking Network con-
sisted of one fixed station and three mobile units and at the present time is being expanded to include
five additional mobile units with ranging capability on the order of 5 to 10 cms. Several of the key

components in these new systems are different from those used in the earlier successful prototype
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ranging systems. One such component is the laser transmitter itself.

The prototype mobile systems used Q-switched and cavity-dumped ruby laser oscillators built
by the Korad Corporation, which produced quarter-joule pulses with a full-width, half maximum
pulsewidth (FWHM) of four nanoseconds. Since ruby is a three-level laser system it requires large
' ; pump energies to achieve threshold. The material Nd:YAG, on the other hand, is a four-level system
which achieves threshold at significantly lower pump energies and was therefore selected as the laser
medium for the new ranging systems. The new transmitters, built by General Photonics, consist of a
Q-switched Nd:YAG laser oscillator, followed by a double-pass Nd: YAG laser amplifier, and a KD*P-
Type II doubling crystal. The latter component converts the 1.064 micrometer infrared wavelength
of Nd:YAG to the 0.532 micrometer green wavelength used by the ranging receiver. The pulsewidth
of this new laser was about six nanoseconds (FWHM)-only slightly longer than the Q-switched, cavity-

dumped ruby output in the successful prototype systems.

Historically, it is important to note that highly unsatisfactory ranging performance had been
observed in early ruby systems when the laser oscillator was C-switched but not cavity-dumped.

+ These early systems were characterized by poor repeatability in the range measurement to a fixed

target retroreflector and by biases determined by the angular position of the target in the far field
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illumination pattern of the transmitter., Admittedly, the pulsewidths of these early Q-switched sys-
tems were significantly longer (20 nanoseconds), but this in itself would not be sufficient to explain
the angular dependence of the range measuremient. It was postulated that the angular dependence

of the range measurement was due to the fact that, since different transverse modes have different
buildup times in the resonator (due to different losses) and different radiation patterns in the far
field (higher order modes diffract over a wider far field angle), the temporal profile seen at the target
will vary with its position in the far field patterti. The ranging difficulties associated with this phe-
nomencn were first alleviated by the use of an external electro-optic switch to slice a 5 nanosecond
segment out of the 20 nanosecond Q-switched ruby pulse and latsr by the incorporation of a cavity
dump internal to the laser oscillator. This concept will be explored in more depth later in this report.

In any event, it seemed prudent to test the new General Photonics laser as part of a ranging sys-
tem under controlled laboratory conditions prior to its installation in the new mobile systems, which
were intended for immediate field use.

The system was shipped to Goddard in May, 1978, for testing and evaluation. These tests, here-
after called Phase I, were designed to fully characterize the laser and verified that, in the laboratory
ranging system, the new laser exhibited many of the detrimental characteristics of the earlier Q-switched
ruby lasers. In addition, there was strong evidence of mode-locking or longitudinal mode-beating
effects which resulted in non-stationary temporal profiles and poor repeatability in the range meas-
urement. Our principal recommendations at the completion of the Phase I tests was the incorpora-
tion of a cavity-dump in the laser oscillator.

A slightly modified version of the system was returned for testing in September, 1978, The
principal innovation was a shorter cavity length which produced a 4 nanosecond pulse width (FWHM).
While some small improvement in ranging performance was observed, the ranging error introduced by
this Phase II laser was still unacceptably large.

In December, 1978, a cavity-dump was incorporated into the General Photonics Laser and the
system was returned for a third testing sequence hereafter referred to as.Phase III. Preliminary re-

sults indicated a marked improvement in the repeatability of the range measurement but the ranging
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data still exhibited a strong angular dependence. Subsequent experiments indicated that the rise
time of the cavity-dump switch supplied by the contractor was too slow. The switching circuitry
was replaced by an in-house design with a very fast rise time (<1 nanosecond). The resulting puise-
width was 1.5 nanoseconds between the half-maximum points and about three nanoseconds at the
base. The range results were highly repeatable and did not exhibit the angular biases observed dur-
ing the earlier test sequences.

The present report documents testing procedures and results obtained during Phases I through
III in the hope that it will be 11‘seful to present and future contractors and to other parties with an

interest in precise laser ranging.

II. Temporal Pulseshape and Stability

A temporal pulseshape which varies significantly from shot to shot can cause large random errors
in a laser ranging system. For this reason, the stability of the General Photonics laser temporal profile
was investigated. For the sake of redundancy, a variety of subnanosecond detectors including (1) a
Sylvania Model 502 Photomultiplier (2) a Varian Model VPM-154 A/1.6L Static Crossed Field Photo-
multiplier, (3) a Monéanto MD?2 Photodiode, and (4) an ITL (Instrument Technology Limited) S-20
photodiode were used. The bandwidth of the detection system was limited to 500 MHz by the Tek-
tronix R7912 waveform digitizer which was used to display the pulseshape. The waveform digitizer
was interfaced with a DEC PDP-11/40 minicomputer. Software developed previously allowed tﬂe
display of one or more stored waveforms on a CRT display. The software also permits the display of
an average waveform obtained by storing a preselected number of individual waveforms within the
computer, summing them, and dividing by the total number of waveforms. Selected hard copies of
the CRTvdisplay could be obtained via keyboard commands to an on-line printer.

The full power from the laser was first attenuated by means of neutral density filters. The latter
were placed at skewed angles in the beam in order to avoid multiple reflections which might distort
the measured pulseshape. The green radiation was then isolated from the infrared radiation via an
infrared blocking filter. Sufficient additional attenuation was provided to avoid saturation of the
detector. A block diagram of the experimental apparatus is illustrated in Fig. 1.
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The results obtained were indepehdent of the choice of photodetector. In each and every case,
the pulseshape was observed to vary between a rather smooth 6 to 7 nanosecond (FWHM) pi'ofile
and a strongly modulated shape having several peaks but still following thq basic six to seven nano-
second envelope. Examples of a smooth, moderately modulated, and strongly modulated waveform
are illustrated in Figs. 2(a) through 2(c) respectively. Most pulses were moderately modulated although
smooth and strongly modulated pulses appeared quite frequently in the pulse traii. In these measure-
ments, virtually all of the beam cross-section was sampled. In some‘ cases, ‘he beam was focused onto
the detecto., and, in other cases, it was not. The same results were obtained with either method of
detection. The variation in pulsé shape was usually dramatic from shot to shot as evidenced by Fig,
3(a) through 3(c) which shows several superimposed waveforms taken, not successively, but within
several seconds of each other.

Adjacent peaks in the modulated pulses were separated by & time interval of slightly ;»ore than
two nanoseconds which corresponds to the approximate round-trip resonator transit time. The latter
observation indicates that random self-modelocking or longitudinal mode-beating is taking place in
the cuavity. Very rarely, a modulated pulse with peaks separated by only one nanosecond, correspond-
ing to the one-way cavity transit time, was observed as in Fig. 4. Such behavior has been known to
occur in passively modelocked lasers when two oppositely-traveling modelocked pulses are circulating
in the cavity. |

In spite of the strong modulation, the average waveform is quite stable and corresponds to a
rather smooth Q-switch waveform with a six to seven nanosecond (FWHM) pulsewidth as in Fig. 5.
At no time during these near field measurements, in which the total beam cross-section was sampled,
did we observe pulsewidths longer than six or seven nanoseconds. In Section VI, however, we will
present evidence that it is possible to receive much longer pulses from a small retroreflector target

in the far field when certain pointing errors are introduced into the range link.
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Figure 2(a). A Smooth Q-switched Pulse from
the General Photonics Laser Observed with an
ITL Photodiode and Tektronix R7912
Waveform Digitizer
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Figure 2(b). A Moderately Modulated Pulse from
the General Photonics Laser Observed with an
ITL Photodiode and Tektronix R7912
Waveform Digitizer
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the General Photonics Laser Observed with an
ITL Photodiode and Tektronix R7912 Waveform
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Figure 4. Waveform Exhibiting One Nanosecond Time
Intervals between Adjacent Peaks and Indicating the
Presence of Two Gppositely Directed Modelocked Pulses
Circulating in the Oscillator Cavity.
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II1. Output Energy and Stability

Measurements were made of the total output energy and of the green energy from the laser. As
with the pulse profile measurements, the energy measurements were normally made after completion
of the field aligizment p~ edure as outlined in the General Photonics Technical Manual for the Model
Two-80 YAG system. The total energy was measured directly with a Quantronix Model 504 Energy-
Power Meter in conjunction with a Quantronix Model 501 Energy Receiver. Ten shots were selected
from the 1 pps pulse train by an electronically controlled mechanical shutter, and the average pulse
energy was computed. For the measurement of the green energy, a 1.06u blocking filter (<<1%
transmission) was inserted in the beam path. The filter transmission at 0.53u vas measured to be
65%. A block diagram of the absolute energy measurement apparatus is shown in Fig. 6.

Following the standard field alignment procedures as outlined in the technical manual, a total
output energy of about 500 mJ could usually be achieved. A history of the day-to-day output energy
is shown in Fig. 7. The peak output energy of 530 to 560 mJ was observed early in the test period
shortly after a General Photonics technician had completed a refurbishing and complete alignment
of the system. One month later, a total output energy of 495 mJ was obtained. The minimum out-
put energy on any given test day was 430 mJ.

The day-to-day variation in green energy was somewhat more severe, and we believe that this
was due to the degree of longitudinal mode-beating in the system. For total pulse energies of 500 mJ,
one could usually achieve between 210 and 270 mJ of green energy following the alignment procedure
outlined in the General Photonics Technical Manual.

Pulse-to-pulse energy stability of the green radiation was monitored using the experimental ap-
paratus in Fig. 8. The beam was attenuated using neutral density filters and passed through the 1.06u
blocking filter into a Laser Precision Model RKP-335 (Option RF) Pyroelectric Cnergy Probe which
was read by a Laser Precision Model RF3232 Energy Ratiometer. The latter instrument, which was
equipped with a BCD output piug, was interfiuced with the PDP-11 minicomputer. The pyroelectric
probe is capable of measuring individual pulse energies at repetition rates up to 30 pps. Software
provides a CRT display of the pulse-to-pulse energy stability and/or an energy histogram. Hard copies

can be obtained using the on-line printer.
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TEKTRONIX R7912

WAVEFORM DIGITIZER

PULSESHAPE MONITOR

LASER

31 CRT

MD2
DIODE
\ SCATTER
\

e LASER PRECISION
/ RKP-335 /L/ \\ //

ENERGY PROBE
" 1.06u NEUTRAL

BLOCKING DENSITY

. FILTER FILTERS
LASER PRECISION |
. ‘ RK3232 ENERGY . DIGITAL ELECTRONICS CORP
. RATIOMETER PDP 11/40 MINICOMPUTER
b
E
\ ON-LINE
E PRINTER KEYBOARD
- Figure 8. Experimental Apparatus for Measuring Stability of Green Output Energy
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In less than a(\minute after turn-on, the General Photonics Model Two-80 System reaches its
steady state energy as demonstrated in Figure 9(a). The latter ﬁguré, which is characteristic of a
large number of data sets on energy stability taken during the test period, indicates a pulse-to-pulse
energy stability of about 4% in the steady state. This particular data set was taken on the morning
of April 26, 1978, following the standard field alignment procedure. The system was turned off
during the lunch hour, and, upon being turned on again, the pulse energy exhibited the erratic be-
havior in Figure 9(b). In the latter state, the green energy oscillated between two levels. By simul-
taneously monitoring the output with a fast detector, it was determined that the high green energy
state was associated with pronounced self-modelocking effects in the oscillator as illustrated in Fig-
ure 2(c), while the low green energy state was associated with smoother profiles as in Figure 2(a).
Generation of the second harmonic is more efficient for the mode-locked pulses because of their
significantly higher peak intensities relative to the smoother, Q-switched profiles. While Figure 9(b)
represents a possible operating state, Figure 9(a) is much more typical of the pulse energy stability
data.

As a result of the data in Figure 9, it was felt that the field alignment procedure, in which one
peaks the green output by alternately adjusting the oscillator and doubling crystal alignment, might
tend to force the oscillator into a self-modelocked state since the latter condition favors high green
output. An alternate alignment technique was therefore implemented in which the oscillator was
aligned for maximum total output energy and the doubling crystal was then aligned for maximum
green energy. Contrary to the normal procedufe, the oscillator alignment was not adjusted further.
The energy obtained on May 23, 1978, using this alternate alignment technique, is included in the
data of Figure 7. The total output energy of 495 mJ is comparable to earlier data, but the green
energy per pulse is significantly less than that obtained using the conventional alignment procedure
(182 mJ vs. 260 mJ). It was observed that, although the second harmonic pulse profiles were
smoother on the average, the presence of self-modelocking was still quite evident even at these lower
green energies. Furthermore, the choice of alignment procedure seemed to have little or no effect

on the quality of the ranging data to be described in Section VI
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GENERAL PHOTONICS LASER TEST

TURN -~ ON LASER STAPILITY
parr  “/2¢/78 250 LASER PULSES

Figure 9(a). Pulse-to-Pulse Green Energy Stability
Following Normal Field Alignment Procedure

GENERAL PHOTONICS LASLE TEST

TURN - ON LASER STABILITY

bATE 26 -AFPR-78 250 LASER PULSES

Figure 9(b). Pulse-to-Pulse Green Energy Stability after
Two Hour Shutdown, Oscillator is switching between
Strongly Mode locked Profile and Smooth
O-switched Waveform
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IV. Beam Divergence

The experimental configuration for the measurement of beam divergence is illustrated in Fig. 10.
The output beam was reflected from two high surface quality dichroic mirrors which reduced the 1.06
micrometer content (via transmission) to about 1% of its initial value. Approximately 97% of the
0.53 micrometer radiation was reflected off the second dichroic and focused onto a variable aperture
pinhole by a lens having a focal length of 309.7 + 1.0 cm. In order to avoid damage to the pinhole,
the beam intensity had to be attenuated. Surface coating damage of metallic reflective attenuators
ruled out their use, while absorbing attenuators were questionable due to unknown divergence effects
from beam-induced thermal lensing. The beam was attenuated, therefore, by reflecting the light off
two prism faces. Prisms were chosen over flat plates to avoid multiple parallel beam effects which
would invalidate the divergence measurements.

The final low level beam was passed through a 1.06 micrometer blocking filter to eliminate any
residual infrared energy. The focused spot was then centered on the variable pinhole, and measure-
ments were made of the transmitted energy as a function of pinhole diameter. The pinhole diameters
were accurately measured with calipers. The energy reading was taken using the pulse averaging
circuitry on the Laser Precision Model RK3232 Pyroelectric Energy Ratiometer which allows an
average of 10 shots at 1 pps. The diameter of the pin hole is related to the far-field angle = by the
relationship

« = D/f
where f is the focal length of the lens. The results of the measurements are plotted in Fig. 11 where
it should be noted that 90% of the far field energy is contained in a cone of revolution with a full
apex angle of 0.68 mrad. Thus, with the final 4.2 power collimator properly focused, 90% of the

energy will be contained within a 0.16 mrad cone.
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Figure 10. Experimental Apparatus for the Measurement of Laser Beam Divergence
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V. Phase I Range Receiver Description and Calibration
The careful characterization of the receiver independent of the laser transmitter is required to
determine the level of timing error it contributes to the range measurements. Only then can the
ranging errors attributable to laser effects be isolated from those contributed by the receiver. The
receiver used in all range measurements was designed specifically for the General Photonics Laser.
Recently developed laboratory test techniques have allowed for individual receiver component test-
ing as well as whole receiver system evaluation.?2 Final range receiver configuration was decided upon
after extensive testing and optimization for a 6 to 8 nanosecond (FWHM) laser pulse. This receiver
evaluation work was required to minimize the effect of receiver uncertainty in range measurements.
Shown in Figure 12 is the best range receiver configuration that was available at the time of

testing. Individual receiver components used in the system had been tested and characterized prior
to the General Photonics tests. The start channel is triggered by a .5 nanosecond rise time (10%-90%)
Monsanto MD?2 silicon photodiode. The diode was physically positioned to trigger on a back reflec-
tion off a neutral density filter in the outgoing transmitted laser pulse. Since the timing electronics
cannot trigger reliably when the triggering pulses have differing or random structure as was observed
in the General Photonics laser, a 300 MHz low pass filter was inserted to eliminate any structure within
the outgoing laser pulse. Later tests showed a ranging residual improvement when the low pass filter
was included while laser pulse structure was present. A similar low pass filter (200 MHz) was used in
vthe stop channel. The positive-going diode start output was inverted using an EG&G inverting trans-
former prior to triggering the timing discriminator. An ORTEC model #473A constant fraction dis-
criminator was used to minimize timing errors due to laser amplitude fluctuations. With electrical
attenuation (3 db) and precise positioning of the diode, the discriminator pulse input level was set at
500 mv. This level is the logarithmic mid-point of the discriminators 40 db operating range, and the
best operating point from the standpoint of discriminator time walk. Two to one amplitude variations
(as observed in modelocking) map into less than 50 picoseconds timing error. Laser ampiitude sta-
bility as shown in Figure 9(a) maps into approximately 10 picoseconds. Discriminator output is a

-800 mV, 10 nanosecond width pulse which triggers the start channel of the Hewlett Packard HP5360

17
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Figure 12. Phase I Receiver Configuration
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or HP5370 Time Interval Unit (TIU). The HP5360 TIU and Tektronix R7912 waveform digitizer
are interfaced to a Digital Electronics Corp. PDP 11/40 minicomputer for data taking and storage as
well as statistical analysis.

The stop channel timing components will now be discussed. The transmitted laser pulse, after
being returned by the cube corner reflector and laboratory periscope/telescope system (to be de-
scribed in Section VI), is collimated and brought to a focus on a Sylvania Model 502 static cross
field photomultiplier tube (PMT). The Sylvania PMT has a rise time (10%-90%) of less than 150
picoseconds and low time jitter (less than 30 picoseconds). The PMT output was filtered, as men-
tioned earlier, with a 200 MHz low pass filter to eliminate subnanosecond structure within the return
pulse. Average electrical signal levels were maintained in the optimum range using an adjustable at-
tenuator and fixed amplifier. A fixed 3 dB Weinschel attenuator along with a variable 0-60 db Wein-
schel step attenuator Model #AE177A-69-34 was used. The amplifier was an Avantek Model #AV-8B
with 33 dB gain and 400 MHz bandwidth. The negative going signal is split to provide a voltage moni-
toring point for the discriminator input. A Tektronix R7912 waveform digitizer was used here to
monitor and record return signal waveforms. Two timing discriminators were found necessary for
the receiver to perform adequately. The first timing discriminator in the stop channel was a Lawrence
Berkeley Laboratory (LBL) constant fraction discriminator which was designed for operation on a §
nanosecond FWHM pulse. This discriminator was found to work acceptably well with a 6-8 nano-
second FWHM pulse. Although the full 100-1 dynamic operating range showed considerable time
walk (approximately =1 nanosecond) a 45 to 1 dynamic range produced only *130 picoseconds
time walk and a 7 to 1 range (which applied to most data) translated into only £30 picoseconds
time walk. A slight dependence of LBL discriminator output width on the input pulse amplitude
was found. This varying width trigger pulse introduced time biases within the HP5360 TIU. To
eliminate this time dependence, a second discriminator, an ORTEC Model 473 A, was used. In this
configuration, the superior time walk characteristics of the LBL discriminator could be used without
introducing the timing error in the HP5360. The second discriminator contributes virtually no time

walk (due to the constant input amplitude) and negligible time jitter (measured in the 5 to 10
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picosecond range). To assure the best possible receiver performance the average stop pulse amplitude
was continuously monitored and maintained at the 500 mV level using the variable optical attenuator
wheel (0 to 4 ND) shown in Figure 12. As we will soon demonstrate, operation in this range utilized
the flattest portion of the discriminator characteristic time walk curve. Data on receiver performance
will be presented after receiver calibration has been discussed. All of these optimizations were made
to assure ourselves that receiver effects in observed range data anomalies were minimized. The extent
of receiver error will now be quantified.

Since time walk due to signal amplitude fluctuations and receiver system time drift may be the
dominant error sources in this ranging receiver, a careful measurement of these effects is required.
Conducting these tests under controlled laboratory conditions without atmospheric effects permitted
precise calibration to the picosecond level.

Several calibration techniques were used to characterize the ranging system performance. All
techniques involve time interval averaging of system delay of the receiver using the HP5360 or
HP5370 TIU. The first of these was an electrically generated (E&H Model 129 Pulse Generator)
pair of start and stop pulses similar in rise time and pulse width to ranging pulses. Using a Weinschell
step attenuator on the stop side, system delay was accurately measured at each 1 db step change in
receiver pulse amplitude. The resulting time walk curve shown in Fig. 13 represents an average over
50 time delay measurements for each 1 db attenuation step. The vertically dashed lines are the oper-
ating limits of the discriminator (50 mV to 5 volts). All data is referenced to the system time delay
at 500 mV, the logarithmic mid-point of the discriminator operating range. As can be seen on the
curve over the range tested (approximately 70 to 1 dynamic range) the change in system delay is
bounded by 225 picoseconds. Since electrically generated start and stop pulses are used, the effects
of the optical start and stop detectors are not included in this calibration technique.

A second calibration used an optical pulse source. This has the advantage of testing the whole
system by exercising the optical detectors as well as the other electronic components in the receiver.
The pulse source used in this test was a Power Technology Inc. diode laser pulser Model #I114C10.

Averaging 1000 or 10000 time interval measurement: at each pulse amplitude gives the curves shown
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Figure 13. Dependence of the Phase I Receiver Time Walk on the Amplitude
of an Electrically Generated Stop Pulse
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in Fig. 14, The pre-calibration curve was taken after the receiver configuration was finalized and be-
fore any range data was taken, The post-calibration curve was taken after all Phase I range data tests
had been completed. The two curves show excellent agreement over the entire amplitude range im-
plying negligible (<50 picoseconds) long term drift in the receiver time walk characteristics. The
RMS timing jitter is piotted as a function of pulse amplitude in Figure 14(b). The Hewlett Packard
HP35370 time interval unit was used in this calibration run. Repeated calibration curves showed short
term repeatability (over several minutes) in the § to 10 picosecond range.

This technique was taken one step further when a final laboratory calibration was attempted
using the General Photonics laser as the optical pulse source, Poor mean repeatability and large histo-
gram standard deviations on consecutive runs showed that the General Photonics laser could not be
used as the pulse source. Repeatability of the mean in identical time interval measurements was
typically no better than 200 to 300 picoseconds and as much as 600 picosezonds while standard de-
viations were in the 500 to 1000 picosecond range.

Pre- and post-absolute time calibration test techniques have not yet been developed for labora-
tory use, This calibration would require dedicated instrumentation to assure repeatability of system
delay measurements days, weeks, or months apart. This absolute timing measurement is in the plan-
ning stage. The time walk curves shown in Fig. 14 are relative time measurements only, referenced
to the system time delay with a 500 mV pulse amplitude, System time delay at fixed pulse amplitude

has been measured over a period of several hours on 2 separate occasions. An afternoon data run of
2 hours 15 minutes shown in Fig. 15(a) reveals approximately a 55 picosecond limit on time drift
over that time period. The following morning a 3 hour repeatability run was again made with the

results shown in Fig. 15(b). System time drift here was bounded by 40 picoseconds.

Most data taking with the General Photonics laser was no longer than 3 hours in duration and
was generally fit into the work day in morning and afternoon sessions. Receiver time drift is apparently
responsible for no more than 40 to 55 picoseconds of time drift over a single data taking session.

The effect of received pulse amplitude variation off the water tower may be the major error

source degrading overall system accuracy. To test the effect of the receiver under worst case conditions,
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the stop pulse amplitude from the diode laser pulse simulator was varied in the lab to give us from

50 mV to 2 volts into the discriminator. Soft saturation of the Sylvania PMT began beyond 2 volts.
The time intervai measurements were made while the pulse amplitude was varied over the 40 to 1
range using the variable ND attenuator wheel. With a uniform distribution of pulse amplitudes within
the 40 to 1 dynamic range, 5000 time interval measurements produced the timing histogram shown
in Fig. 16. This worst case situation puts an upper limit ori what can be expected from the receiver
with a wide variation (40 to 1 range) of signal amplitude. In this worst case condition (uniform
amplitude distribution, 40 to 1 dynamic range), the receiver can be responsible for no more than

174 picoseconds of timing jitter. All range data taken off the water tower with the General Photonics
laser had pulse amplitude variations of less than 10 to 1 or much less than this worst case (40 to 1).
From Fig. 14(b), it can be seen that receiver time jitter is in the range 60 to 100 picoseconds using the
HP5370 Time Interval Unit. Time jitter contributed by the HP5360 TIU (used in all water tower
range data) has been measured at approximately 109 picoseconds.? Considering a dynamic amplitude
range of 7 to 1 about the 500 mV level at the stop discriminator input, the ranging system (excluding
the laser transmitter) is responsible for no more than 125 to 130 picoseconds RMS time jitter corre-
sponding to about 2 centimeters range jitter. Residual time jitter above this level can be attributed
directly to the laser transmitter. To determine the laser’s contribution to time jitter in range meas-

uremensis, an RSS (residual sum of the squares) is computed.
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VL. Range Results — Phase I

l Using the calibrated receiver described in Section V, range measurements were made to a small
i' one-inch diameter retroreflector placed on a water tower approximately 500 meters from the laser

- laboratory. The laser beam was directed through the ceiling.of the laboratory to a pointing mirror
. located on the roof of the building. The direction of the pointing mirror can be remotely controlled

from the laboratory. Small changes in the azimuthal and elevation axes of the pointing mirror were

o TR T

monitored by pressure-induced voltages on two piezoelectric transducers with a sensitivity of about
: 0.5 arcseconds/millivolt, In this way, different portions of the laser farfield pattern could be utilized

in the range measurement to determine whether or not the multiple transverse mode operation of the

LA

General Photonics laser introduces an angularly dependent range error. Using the beam divergence
data of Sgction IV, we compute a beam diameter of about 34 cm at the tower. Thus, the fraction of

the total beam cross section intercepted by the retroreflector is

2.54\?
F=(—] =6X1073
[(55) =ox

implying that the retroreflector samples only about 0.6% of the total beam cross-section. As we
shall see shortly, the estimate of beam diameter was further verified by the range measurements

| themselves. The experiment configuration is described in Fig. 12.

;‘ _ When the pointing mirror was aligned for maximum return (on-axis), we observed an approxi-
2 mate 3 to 1 dynamic range in the amplitude of the return signal due to atmospheric fading and/or
beam steering effects. Near the outer fringes of the farfield pattern, the amplitude dynamic range
was about 8 to 1 and, of course, the absolute returns were much weaker. To eliminate amplitude-
dependent time walk characteristics of the receiver as a significant error source, the optical signal

into the stop photodetector was attenuated via a variable neutral density filter wheel so that, inde-

SR e o a SELL AR

pendent of the particular beam pointing angle, the average input voltage to the stop discriminator was
about 500 millivolts. As discussed in Section V, this level is near the center of the low time walk re-

. gime of the receiver. This procedure, together with the small dynamic range of the return amplitude,

3
ensures that one nanosecond level differences in the range measurement in the short term will.not be
S 27
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due to the amplitude-dependent receiver time walk. Furthermore, long term thermal drifts in the
receiver system delay (or time bias) were shown in the previous section to be less than 60 picoseconds
over a three to four hour period.

The effects of atmospheric clianges (temperature, pressure, humidity) are insignificant for a
roundtrip range of approximately one kilometer as can be seen from the following calculation. The
round trip transit time of the pulse is given by

= S
2nR

b where c is the velocity of light, n is the atmospheric index of refraction, and R is the one-way range

to the target. Differentiating the latter expression with respect to n yields

t
n

dt=—<—c-1—ll>t
n

Over our range, t =~ 3145 nsec. Even with the most extreme atmospheric variation, dn/n will be less

dt ¢ 1
dn 20 2

or

than 3 X 1073 yielding dt <100 psec.* This result was verified experimentally by placing an AGA
Model 76 He-Ne Laser Geodometer on the roof of the building near the pointing mirror and ranging
to the water tower retroreflector. The geodometer data taken over a 24 hour period, is summarized
fi. in Table I, and shows a peak-to-peak swing of 8 mm. This eliminates not only atmospheric effects
: but also long term tower “‘sway’’ as a potentially large‘ error source for the laser range measurements
| to be discussed.

The ranging experiments, using the General Photonics Laser Transmitter as a source, were of
: two types. The first experiment, a “‘stability test”1 was designed to examine the repeatability of
| the range data mean over a period of several hours. In these tests, the beare pointing angle was fixed

such that the retroreflector was always illuminated by the approximate center of the laser far field

; distribution. The purpose was to study the long term effects of the temporal pulseshape instability

! on the range measurement. The bandpass filters at the output of the start and stop detectors described

28

SR oA i . o ..
W iRt e T




A R p

R N bk

SRER Setaba B L SRR AR T

T,

L

e
¥

Table I

Results of Geodometer Range Measurements to Water Tower Retroreflector
over 22 Hour Period. The Mean Range was 455.811 = 070027 Meters.

Locai Range, X X-X
Date Time (meters) (mm)
' May 11, 1978 4:30 PM 455.808 -3
May 11, 1978 5:30 PM 455.811 0
May 12,1978 9:30 AM 455.815 +4
May 12, 1978 10:30 AM 455.810 -1
May 12,1978 11:30 AM 455.807 -4
May 12, 1978 12:30 PM 455.810 -1
May 12, 1978 1:30 PM 455.811 0
May 12,1978 2:10 PM 455.814 +3

X = 455.811 meters
1
02 =—— I (x; - %) = 7.43 mm?
n-11i 1!
o =27 mm

in Section V masked the rapid modulation of the temporal pulse profiles so that smooth waveforms
were input to the discriminators during the repeatability tests. The second experiment type is a range
map! intended to uncover angularly dependent range errors due to multiple transverse mode effects.
Since the various transverse modes have different optical losses® and effective gains and compete with
each other within the Q-switched laser resonator, their pulse buildup times can vary relative to one
another. Different transverse modes also have different antenna lobe patterns in the far field> of the
transmitter. The combination of these two effects can lead to range biases which depend on the posi-
tion of the retroreflector in the far field antenna pattern of the' transmitter laser.
Based on the poor temporal pulseshape stability described in Section II of this report, one
, would not expect good results from the “stability tests.” The expectation is borne out by the experi-

mental data in Figs. 17(a) and 17(b) which were obtaired on May 10, 1978, and May 19, 1978
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Figure 17(a). Range Stability Test of May 10, 1978. General Photonics Laser
(Phase I) and Receiver in Figure 12.
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Figure 17(b). Range Stability Test of May 19, 1978. General Photonic Laser
(Phase I) and Receiver in Figure 12.
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respectively. The individual data points correspond to the means computed from 100 successive
ranges to the water tower retroreflector and the error bars indicate the RM$ standard deviation (one
sigma) of the 100 point data set. For the data of May 10, 1978, an. RMS standard deviation in the
mean range of 8.33 cms was observed with a peak-to-peak mean range deviation of 30.5 cms. A
software generated gate rejected ranges outside a +2 nanosecond window. On May 19, 1978, the
gate was widened to £8 nanoseconds and an RMS standard deviation in the mean of 3.8 cm was

measured with a peak-to-peak deviation of 13,5 cms over a time interval of approximately four hours.

On the basis of the receiver calibration tests (time walk, long-term thermal drift) and the geodometer

méasurements, we are forced to conclude that these large range errors are due to the non-stationary
temporal profile of the laser.

The nonstationary characteristics of the laser cloud the interpretation of the far field range map
measurements but we present them here for the sake of completeness and to illustrate certain inter-
esting effects. We first outline the procedure which was followed in generating the range map. The
pointing mirror was first aligned for maximum signal return. With the mirror fixed at this on-axis
position, the average signal level to the discriminator was adjusted to the 500 mV operating point
and a large number of ranges (1000) were taken as a precalibration point. Software in the PDP-11
computer then calculated the data mean and standard deviation and plotted the range histogram on
the CRT display. The histogram for the 1000 point calibration run taken on May 23, 1978 is shown
in Fig. 18 where a mean roundtrip transit time of 3144.69 nsec (includes fixed system bias) and a
standard deviation of 541 picoseconds was observed. The latter value corresponds to a £8.1 cm
(one sigma) RMS range error. For this particular run, the 1.06u energy was 495 mJ. The green
energy, however, was only 181 mJ as a result of the modified alignment procedure, deécribed in
Section III, which tended to suppress self-modelocking somewhat but did not eliminate it entirely.
An earlier map, taken with almost 250 mJ of green energy, gave results similar to those that will be

described in detail here.
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GEMERAL PHOTONICS RANGING TEST
; DATE TIME TIME DELAY - B8 HSEC
1208 DATA POINTS DISC. USED
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Figure 18. Pre-Calibration Run for Range Map Taken May 23-24, 1978.
; Beam Direction: “On-axis.” Total number of range measurements: 1000
E- Bin Resolution: 100 picoseconds
:
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- After the initial calibration run; the following procedure was used in generating the range map:

1. Change beam direction by a 25 to 30 arcsecond step in one axis
2. Adjust receiver signal level for the center of the low time walk regime (=500 mV).

3. Take two sets of range measurements of 100 data points each.

4. Subtract the on-axis calibration run mean range from the two local means and express the

differences in centimeters of range bias error.
5. Plot the results on graph paper and repeat steps 1 through 4.

In all of our range measurements, the pulse repetition rate was held at 1 pps as in the field oper-

ations. In addition, the temporal shape of the return signal was monitored on the Tektronix Model

R7912 waveform digitizer.

The range map illustrated in Fig. 19 was taken over a two day period beginning the afternoon

!
of May 23, 1978 and ending the morning of May 24, 1978. The first day was sunny while the second
- was characterized by moderate fog, The numbered circies and arrows indicate the order in which the

~data was taken. The twenty grid points marked by “X’’ were taken on May 23 beginning with the

'1 000 point precalibration as displayed in Fig. 18. The remaining thirteen Lvints marked by “+” were
obtained the following day ending with the 1000 point “on-axis” post-calibration run shown in Fig.
20. The two numbers associated with each grid point correspond to the deviation of the mean range
of two successive 100 point data sets from that of the calibration run of the same day. In other words,
the mean range for the “on-axis™ precalibration run was subtracted from the local “‘off-axis” means
obtained on May 23 while the mean range f¢. the “on-axis” post calibration run was subtracted from
the local “off-axis’ means obtained on May 24. It should be noted that the mean of the post calibra-
tion run differs from that of the precalibration run by 910 picoseconds (or a one-way range difference
of 13.6 cm) even though the standard deviation of the post calibration data was only 278 picoseconds

(4.2 cm RMS, one sigma). This is attributed to the nonstationary character of the temporal profile

described previously.
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(Phase I) and Receiver in Figure 12.
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Beam Direction: “On-axis.” Total Number of Range Measurements: 1000.

Bin Resolution: 100 Picoseconds.
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The maximum RMS standard deviation for any 100 point data set taken during the range map
was 705 picoseconds (£10.6 cm) while the minimum was 257 picoseconds (£3.9 cm). The data histo-
grams for these extreme cases are shown in Figs, 21(a) and (b) respectively. Typical RMS standard
deviations for a single far field point were in the range 400 to 600 picoseconds (6.0 to 9.0 cms). It
should be stressed, however, that the peak-to-peak variation in the mean range as a function of far
field angle was about 25 to 30 cms in each of the two test days and about 35 cms over the full map
as can be computed from Fig. 19.

It is also interesting to note that the pulse waveform returning to the receiver from the retro-
reflector takes on noticeably different shapes as a function of far field angle even when the 200 MHz
low pass filter is present between the Sylvania stop detector and the Tektronix R7912 waveform
digitizer used to monitor the return waveform. This is indicated by the crude negative-going pro-
files drawn in Fig. 19 near grid points #21, 24, 26, and 31. For most of the grid points, the filtered
return waveform had a steep forward slope and more slowly falling back slope similar to the average
output pulse profile in Fig. 5. However, in the region near grid points #24 and #26, a repeatable
secondary peak appeared on the back slope of the pulse envelope. For example, at grid point #11

in the upper left-hand quadrant of Fig. 19, the return waveform showed the same strong modulation
described previously and a secondary envelope peak as well, Figure 22(a) shows a sample return wave-
form at grid point #11 as displayed on the Tektronix R7912 with the 200 MHz low pass filter re-
moved. An average waveform over twenty shots, displayed in Fig. 22(b) and taken without the low-
pass filter, also suggests a secondary peak in the temporal envelope wiich broadens the apparent
pulse width of the envelope to about 13 nanoseconds (FWHM) in spite af the fact that the width of
the outgoing pulse envelope was never observed to be more than about 7 nanosecpnds. This is further
evidence that the non-uniform summing of different transverse mode ccxzitriéi?uti@ras in the far-field is
contributing to the system ranging error. Finally, near grid point #31 in Fig. 19, the secondary peak
was observed to move to the forward slope of the primary peak with the result thut the stop pulse

appeared to have a slower rise time than the start pulse.
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VII. Range Results — Phase I1

In the period from June 1978 through September 1978, ongoing laboratory activities required
the dismantling of the Phase I ranging system shown in Fig. 12, With the return of the General
Photonics laser in late September, an improved ranging system configuration was operational. Using
many of the key components of the previous ranging system, the new configuration had several oper-
ational advantages and simplified data taking and display. |

The new ranging configuration was designed to separate transmit from receive optics. This
enabled the receiver optics to be fixed to the target, while transmit optics could steer the beam off
axis, Far-field maps taken with the Phase I ranging system required the continual adjusting of a
spatial filter in the receiver optical path to correct for walk off. In the Phase II receiver, the periscope/
telescope system now remains fixed, while pointing adjustments on the transmitted beam are accom-
plished with a calibrated pointing mirror in the laboratory.

A simplification in receiver was made possible by combining the separate start/stop channels
into a common channel using one detector and one amplifier/attenuator/discriminator chain to the
common input on the time interval unit. The single channel system is advantageous since start/stop
thermal and amplitude errors track each other. The start chain from the Phase I ranging system was
totally eliminated, with the stop chain becoming the start/stop common input. All range data in
Phase II was obtained with the receiver configuration shown in Fig. 23. Both start and stop pulse
amplitudes were monitored and individually controlled, allowing for amplitude adjustments to mini-
mize receiver time walk effects.

New software was developed on the PDP 11/40 which facilitated data taking, storage and dis-
play. BASIC programs ioaded from disk into the computer displayed real time range information
during beam mappings and repeatability runs. Hard copies of displayed data were available at the
end of each data taking set for permanent records.

Optical calibration of the receiver used in the Phase II effort was no longer possible using the

common mode input and our laboratory optical pulse simulator. Results of a system calibration,
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Figure 23. Phase II Receiver Configuration
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using an electricall,y generated start/stop pulse described in Section V, are shown in Fig. 24 using a
fixed time delay. Repeatability of measurements on that fixed time interval appears to be at the
centimeter levei, while RMS jitter is at the 2 centimeter level. The dominant error source in the re-
ceiver is discriminator time walk. Figure 25 is a plot of the characteristic time walk curve of the
Lawrence Berkeley Lab constant fraction discriminator taken on September 29, 1978. The curve
reveals no more than 150 picoseconds time walk over a dynamic range of 20 to 1. We must con-
clude, therefore, that the receiver used in Phase II (shown in Fig. 23) was as good as and in many
respects better than the dual channel receiver used in Phase 1.

Phase II testing of the General Photonics laser began after the laser was returned tc Goddard
and made operational on September 21, 1978. The only significant difference between the Phase I
and Phase II transmitter lasers was a shorter cavity length which resulted in a somewhat shorter Q-
switched pulse (4 nanoseconds FWHM in Phase II vs 6 nanoseconds FWHM in Phase I). The shorter
cavity length was achieved by removing the highly reflecting mirror in the oscillator cavity and coat-
ing one end of the laser rod for maximum reflectivity at 1.06 micrometers. Total energy measure-
ments made on the first day with the Quantronix 506 meter ranged from 300 millijoules to 440
millijoules while the green energy measurement never exceeded 40 millijoules. Because of the poor
doubiing efficiency, the doubler was removed for inspection. Crystal damage was found on both
entry and exit surfaces on the doubler as well as thread damage on the adjusting screws for the
doubler itself. Replacements were made the following day and energy measurements were repeated.
The total energy was measured at 420 millijoules and the green energy at 150 millijoules. This was
typical of the periodic energy measurements made throughout the Phase II testing and was somewhat
lower than the Phase I values.

Incoming and outgoing temporal pulse profiles were continuously monitored throughout (ke
testing. Typical returns from the 1 inch retroreflector on the tower are shown in Fig. 26(a) through
26(e). Pulse widths as narrovw as 2 nanoseconds were observed but more commonly the values were

in the 3 to 5 nanosecond range (FWHM). Full mode locking was still apparent in many pulses with
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modulation depths approaching 100%. Several returning waveforms show either long leading or trail-
ing edges and sometimes both while others show multiple peaks separated by approximately 2 nano-
seconds. These pulse waveforms are representative of typical on and off axis returns from a retrore-
flector in the far field. The output of the Sylvania 502 photomultiplier was displayed directly on the
Tektronics R7912 waveform digitizer to capture these return waveforms. In short, the temporal pro-
files observed during Phase II were similar to those observed during Phase I except for the pulse
envelope width (FWHM) which was shorter by about two nanoseconds.

Repeatability data taken on-axis on October 11, 1978 with the General Photonics laser is shown
in Fig. 27. Both mean range error and RMS range jitter are displayed as a function of the time of day.
The mean range error is measured with respect to a mean established by the first (or precalibration)
run. The RMS range jitter is the one sigma standard deviation of each 100 time interval measurement
set. Bach data point displayed in Fig. 27 is spaced approximately to the time of day the data was
taken. The vertical scale for mean range error is 10 cm/div. while, for RMS range jitter, it is 5 cm/div.
All repeatability data was taken with a £8 'nsgc software generated gate. This ‘test, spanning 6 hours,
typifies turning the laser on for 15 minutes every half hour throughout the day and recording the on-
axis mean range error and RMS jitter. The ranging residuals remained good throughout the test (3-5
centimeters) but the mean range bias error drifted continuously while the laser was operating. Even
though the first data point in each 15 minute ranging session is repeatable within about 3 centimeters,
the total drift in the system bias ”over ﬂ;e following 15 minutes of continuous laser operation (10 data
sets of 100 points each at 1 pps) has been observed to be as large as 8 cms. Drift in the system bias
in Fig. 27 was always in the same direction, with drift rates varying up to .6 cm/minute.

Repeatability data taken with a 5 pps repetition rate is shown in Figs. 28(a) and (b). Again the

RMS range jitter for each 100 point data set is on the order of 3 to 6 cms. The system bias, however,

was observed to drift in opposite directions on two consecutive days of testing (October 2 and 3, 1978).

At 5 pps, the on-axis drift rate was often considerable with the system bias changing by about 25 cms
during a 40 minute period on October 2. The rather long time scale of the drift suggests that thermal

effects within the laser resonator may be responsible for poor repeatability in the mean range.

45




T FYTN R RS PR T

“uh

L]
L
w ¢
E .
A 30 L.
N
2e |
v R ’
A
N 10 L
H e e R o
e i + G
e L T i
E
19 |
R
R
0 2o |
R
30 |
c
M
48 |
~ ~ ~ ~ ~ ~ A ) "~ ~ A L)
- 18:50  11:40 12:35 13:38 14735 16:15
R (e:25 11:15 12:18 12:59 13:58 15:50
j M
‘. s
r,
: R 15 L
‘ A
N
N G
r E ye |
1 |
: 1
¢ T.
b T s L *
: : x « Wf A 7 S SR g S S £ Bk
; A M ot R RRORET e Gel Sl w5
H C
. M g
; GENERAL PHOTOMICS RANGING REFEATARILITY TEST
‘ 11-0CT-78 186 FTS AV MEAN TIME REF. 3877.33 N&EC
Ev ON AXIS, JPRS
'g
;{j‘
’ Figure 27. Phase II Repeatability Test with the General Photonics Laser
Turned on for 15 Minutes within Each Half-Hour Interval. .
L
: 46

e e wA e L




JEPRODUCIBILITY OF THE

4
w 4°
E
A 30
N
20
R
A
W 1®
6 e
| i £ e A
SR 18 + .
" R "’“""”"«"‘w”'«"a o, ¥
: R L TR T OV oot "
» o zeo LAt A o A NCTVRIW
4 ' R ey
‘ 10
¢
.
" e
5 N -
! ze
R ht2s
[
: . $
= R IS
3 A
x N
i 6
'7/: | £ 10
1 3
4 s
x L]
K B T N . w Ay
SR s x WAt Wi T, s .
By » +
L3 8 g 7 A gt e o a0l 1,0 N, 8 2
[
\ LI}
. GENERAL FHOTONICS RAHGING REPEATABILLTY TEST
L 02-0CT-78 108 PTS AV MEAN TIHME REF, 3077.,21 NSEC
¢ . ON AX1S, CONT OP, & PPS. 1:25 TO 2:15,8YL/LBL/ORTEC RE
(a)
- 40
3 H
E
;. A 30
N
20
R
A 10 CRRR PR
‘ N PP A R A R R SRS
£ e A XU T
‘ P ote
R
o =2
v R
- 30
g ¢
F’ " s
d .
T 2e
S R 0146
3 N
| 5
b
" R 15
] A
. W
&
-
: LT
i N
i 1
? : . ‘
L Y ®
T bt PN PN e A0t a xR X
3 e ® By sl it 3on o B B by el B
R
;
- <
L]
GENERAL PHOTONICS RANGING REPEATABILITY TEST
83-0CT-78 100 PTS AV MEAN TIME REF, 3076.35 NSEC
. ON AXIS,SPPS,10¢45 TO 11:30 CONT OF

{b)

. Figure 28. Phase II Repeatability Tests of the General
Photonics Laser for Continuous Operation at 5 pps over:
(a) a 50 Minute Interval on October 2, 1978 and
(b) a 45 Minute Interval on October 3, 1978.

47

RIGINAL PAGE IS POOR

By




R e Al LA

j
o

F:-v .“wwﬁwﬁ»*wpqw—wuv ot ks T . ST T S T s AN T TR e e e TR T T T R e

g - o ) Jomanases
. .n%ﬂ%? i e T AT e T . .
. A, il e i ; . .

Repeatability tests performed with off-axis illumination of the retroreflector at 5 pps often showed
a cyclic behavior of the mean range with time,

Using the procedures outlined in Section VI, a range map was generated on October 6, 1978
and is shown in Fig. 29. The X and Y axes are in seconds of arc, measured from on-axis (0,0). Two
consecutive 100 data point runs were made at each map location, given by the “+’. The first number
displayed is the mean value in centimeters referenced to the on-axis value, while the second number
is the RMS jitter (also in centimeters) at that map location for the 100 data point set. On-axis
(reference) calibration and post calibration are recorded at the top of the page. This d-ta, taken at
1 pps, shows a mean range deviation (peak-to-peak) of 18.2 centimeters, and RMS jitters from 2.4
centimeters to 6.1 centimeters. The energy density at the outer perimeter of the range map is ap-
proximately 10% of the peak energy density at the center of the transmitter far field profile with
the 4.2 power collimator removed. As stated previously, the stop pulse amplitude was maintained
at a constant average level throughout the map through the use of a variable optical attenuator wheel.

Maps taken at laser repetition rates of 5 pps have shown a much greater peak-to-peak mean range
deviation than 1 pps maps. One 5 pps map is shown in Fig. 30. The peak-to-peak variation in the
mean range of this map is 76 centimeters, while the RMS standard deviations for individual 100 point
data sets range from 3 to 12 centimeters. The energy density at the outer perimeter of this map is
about 0.1% of the peak energy density on-axis.

The 5 pps data presented here is not intended to represent the performance of the General
Photonics Laser in the field where it is operated at 1 pps. Howev.er,' the 5 pps repetition rate allowed
range data to be taken at a correspondingly higher rate during the limited period that the General
Photonics was available for testing. The 5 pps data is included in this report only to show that the
ranging performance of the General Photonics laser degrades considerably at the higher repetition
rate.

Upon completion of the Phase II testing an attempt was made to limit operaﬁon of the oscillator
to the TEM,,, transverse mode. To accomplish this, the mode volume in the rod was reduced by

limiting the aperture size within the oscillator. The 3.5 millimeter diameter stop built into the
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Figure 29. Range Map of the Phase II General Photonics Laser Operated Continuously
at a Repetition Rate of 1 pps on Oct. 6, 1978. Peak-to-peak Variation in the Mean Range
was 18.2 cms with a One Sigma RMS Standard Deviation 'in the Mean of 4.5 cms Assum- -

ing Uniform Weighting of All Field Angles.
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v Figure 30. Range map of the Phase IT General Photonics Laser Operated Continuously

?; at a Repetition Rate of 5 pps on Oct. 3, 1978. Peak-to-peak Variation in the Mean Range

' was 75 cms with a One-sigma RMS Standard Dewatlon in the Mean of 13.5 cms Assum-
ing Uniform Weighting of All Field Angles.
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General Photonics laser oscillator was removed and replaced with a mode-limiting aperture having a

0.6 millimeter diameter. While th~ small aperture produced a clean circular spot, it also appeared to

{ force the laser into a modelobked condition on virtually every pulse. The mode locked pulse train

E is evident in Fig. 31(a) (an outgoing start pulse) and Fig. 31(b) (a return from a retro-reflector in the
far field). The pulse width of the envelope is 8 to 9 nanoseconds (FWHM) with a 6 nanosecond rise
time (10% - 90%). The symmetry and slower risetime of the pulse envelope, as recorded on the R7912
Waveform Digitizer, was a result of the low oscillator output energy which no longer saturated the

double pass amplifier. With a 300 MHz filter following the photodetector, a smooth profile was ob-

; served as in Fig. 31(c) Range residuals, however, were 10 cms on axis at best ir spite of the low band-
- pass filter. RMS range jitter off axis increased to 15 to 27 centimeters with mean range variations of
l almost 43 centimeters peak-to-peak as in the range map of Figure 32. Based on these results, it is
- clear that TEM,, mode operation will not improve the ranging performance unless longitudinal mode
competition is also suppressed.
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Figure 31. Pulse Profiles from the General Photonics Laser after a 0.6 mm Diameter Mode-limiting
Aperiure was Installed in the Oscillator to Suppress High-order Transverse Modes: (a) a typical
start pulse; (b) a typical stop pulse from the tower; and (c) a typical stop pulse as seen through

the low bandpass filter in the Phase II receiver.




L R !.v:.v,ﬁ

BRadi s SAL L . oL Al

ey

S 2 e

GENERAL PHOTONICS LASER FAR FIELD RANGE MAP
' {3-0CT-78 PRE/POST-CAL 3875.23,3973.78 NSEC 1@ PTS AV
‘; | 30
\
. IO VE LT TruT e
REPROSCIRGITY OF THR
S 4 . =21 ke IIIL‘J
' OUIGIVAL PAGS 19 PO
| 20 £330y 30 ; ('()R
-.%8.,22., -%£.3,20. -34.,83.
19 + + +
.z@.,22. -11.,23. =-34..23.
g -4.2,19. @8,21. -.72.,85.
i -9 + + +
-4.8,17. 2.57,22.
-i9..22. -19.,27. -3.3.24.
L-10 + + +
-p2.,22. ~-15..,26. -5.6.,23.
3
x | -29
| -30
ki Feo rie p ie pe_ 3o
Figure 32. Far Field Range Map Obtained when a 0.4 mm Diameter Aperture was Inserted
into the Phase II General Photonics Oscillator to Limit Operation to the TEM,, Mode. The
Laser Modelocked Strongly on Each and Every Pulse and the RMS Standard Deviations,
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VIII. Phase III Range Results with a Cavity-Dumped Oscillator

The cavity-dumped version of the General Photonics laser was delivered to Goddard and testing
began on Nov. 29, 1978. ‘\\Tnitial measurements of the temporal profile indicated a rather slow rise-
time on the pulse and a pulsewidth corresponding to several roundtrip transit times of the cavity. This
suggested that the electro-optic cavity dump switch was not operating properly. Measurement of the
voltage waveform with a high speed (3 nsec rise), high voltage oscilloscope probe indicated a switch
risetime in excess of 10 nanoseconds, Furtherrore, optical damage on the oscillator rod was dis-
covered. A new oscillator was installed and testing was reinitiated on December 6, 1978.

The average pulse waveform (40 shots) of the new oscillator is displayed in Fig. 33{a). The
pulse-width was about 3.6 nsec between the half-maximum points and about 10 nsec between the
10% intensity points. Individual pulses still displayed a fair amount of modulation as can be seen
from Fig. 33(b). The latter waveforms were obtained after a General Photonics technician completed
his adjustment of the optical alignment and cavity dump timing. The rather long pulses again indicated
a rather slow cavity dump switch, but it was decided to obtain some range measurements before fur-
ther modifications were made.

It should be mentioned that the Phase II receiver was not available for these initial tests. A
somewhat different 5 nanosecond receiver, built for the Spaceborne Geodynamic Ranging System
(SGRS), was available, however. The receiver, illustrated in block diagram form in Fig. 34, utilizes
a matched filter (tapped delay line) and peak detector instead of constant fraction discriminators.
The SGRS receiver, to be described in detail elsewhere,? is an implementation of a maximum likeli-
hood receiver which attempts to take into account, in a near optimum way, the Poisson statistics
associated with photoelectron generation in the detector. Previous calibrations of the receiver® have
indicated a performance which is within 3 dB of the theoretical limit. Thus, the SGRS receiver time

walk characteristics are as good or better than that of the Phase II receiver.
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: Figure 33(b). Several Individual Pulse Profiles from the

General Photonics Laser using the Contractor-supplied
Switch. Significant Modulation is Still Evident.
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Figure 34, SGRS Receiver

The quality of the ranging results were mixed. Figure 35 displays the results of a repeatability
test obtained with the Phase II cavi,y-dumped General Photonics Laser and SGRS receiver. The data
shows a 1.5 cm peak-to-peak variation in the mean range over a 90 minute interval. Each data point
in Figure 35 represents the mean of 100 single range measurements at a repetition rate of 1 pps. This
data represents a significant improvement over the repeatability data obtained during the Phase I and
Phase II tests. The RMS range jitter recorded during this test was stable at about 3 cms (one sigma).

The results of a far-field map taken the same day are shown in Figure 36. The peak-to-peak
variation in the mean range was 17.9 cms and the RMS standard deviation in the mean was 5.4 cms
with all pointing angles weighted equally. When operated in the field, the laser output is transmitted
through a 4.2 power collimator. Therefore, the data in Figure 34 is representative of the expected
performance over a 36 arcsecond radius cone in the final field system.

Clearly the results of the Phase III stability test were quite good compared to the Phase I and
Phase II tests. The range map, on the other hand, was not much better than before. It was therefore
decided to replace the contractor-supplied switch with an inhouse design® which utilized high speed
(<1 nsec) krytron switches. The resulting waveforms, illustrated in Fig. 37(a), indicate a subnano-
second (10% to 90%) risetime, a FWHM pulsewidth of 1.5 nsec, and a baseline pulsewidth (between
10% points) of only 3 nsec. Return waveforms from the tower possessed similar properties both on
and 100 arcseconds off axis as in Figures 37(b)and 37(c).It was found that triggering the cavity dump
switch well beyond the peak of the internal Q-switch buildup gave the steepest forward slope and the
best range results. To insure that we encountered no optical damage problems with the short pulse
width, the lamp voltage to the oscillator was set at its lowest value. The combined effects of reduced

pump energy and switching beyond the Q-switch peak resulted in a greatly reduced oscillator output.
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The total output energy from the double-pass amplifier was only about 60 mJ during the range meas-

urements to be discussed. The frequency-doubled output at 5320A was measured to be 15 millijoules.

During the time required to make the switch modifications, the Phase II receiver was reassembled
and tested so that a direct comparison of the modified cavity-dumped transmitter with the earlier
Q-switched versions would be possible. The electrically generated receiver time walk curves obtained
before and after the cavity-dumped transmitter ranging tests are shown in Figures 38(a) and 38(b)
respectively.

Stability measurements, using the cavity dumped transriitter and Phase II receiver on two con-
secutive days, are shown in Figures 39(a) and 39(b). On March 1, 1979, the peak-to-peak variation in
the mean range was 0.5 cms over a 90 minute time interval. The next morning, the peak-to-peak
variation was less than 1.5 cms over a two hour period. The RMS standard deviation in zach 100
point data set was stable at about 2.5 cms. The shot-to-shot variation in a set of 250 consecutive
range measurements is displayed in Fig, 40. This particularly good data set was taken on the same
day as the repeatability data in Fig 39(a)and has a RMS standard deviaticn of only 1.1 cms.

Range maps were also made on the same days as the repeatability tests. Figs. 41(a) and 41(b)
display the range map results obtained on March 1 and March 2 respectively. The maps show a peak-
to-peak variation in the mean range of 3.55 cms (+1.78 cm) and 2.98 cms (+1.49 cms) on March 1
and 2 respectively. Assuming that all pointing angles are weighted equally, the RMS standard devia-
tion in the mean range was only 0.73 cm and 0.72 cm on March 1 and 2 respectively. Clearly, the
cavity-dumped laser significantly reduced the bias errors relative to the simple Q-switched system.

A qualitative physical explanation for this improved performance is given in the next section.
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Figure 41. Results of a Range Map Taken with the Ranging System Consisting of the
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1, 1979 and (b) March 2, 1979.
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IX. Discussion

There are two processes taking place within the simple Q-switched version of the General Pho-
tonics Laser which degrade the ranging performance. The first of thesc is a tendency of the oscilla’tor
to modelock in a non-stationary manner, The effect can be represented as a comb of subnanosecond
pulses with a relative spacing of approximately two nanoseconds (corresponding to the cavity round
trip time) sliding back and forth in a random fashion within a four to six nanosecond (FWHM) pulse
envelope. This behavior is the result of an interaction between different longitudinal modes of the
laser. The second process is a random and uncontrolled buildup of different transverse modes which
are allowed to leak out of the cavity at arbitrary times by the partially reflecting mirror. Because of

their different antenna patterns,® the individual temporal profiles of the modes do not sum uniformly

in the far field. As a result, the step waveform returning from the retroreflector may vary significantly

from the start waveform leading to angularly dependent range biases. I% is important to point out that

longitudinal modelocking effects are not unique to the General Photonics Laser and, in fact, have been

observed previously by us in Q-switched lasers provided by other manufacturers including International

Lasers Systems and, to a lesser extent, a militarized Westinghouse unit. Higher order transverse m--le
operation is typical of most commercial Q-switched lasers which use “stable”5 optical resonators.
From the previous discussion, one might conclude that the ideal Q-switched system for ranging
applications would be a laser which operated in a single longitudinal mode and the lowest order trans-
verse mode (TEM o gaussian mode). Operation in a single longitudinal mode would require the intro-
duction of frequency-dispersive elements in the cavity capable of discriminating between the different
longitudinal modes which, in the General Photonics laser, are separdted by only 500 MHz or .02A.
Multiple dispersive elements would be required to attain such a high spetirai resolution, would greatly
reduce the output energy of the oscillator, and would represent a major redesign effort. High power
nperation in a single transverse mode would require the use of internal beam expanders to increase
the TEM,, mode volume. Such a modification would also increase the cavity length thereby leading
to output pulses of longer duration. In addition, the differences in loss between the various longi-

tudinal and transverse modes are small, and it requires many passes through the resonator at low gain
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to make a single mode dominant. As a result, longitudinal and transverse mode selection has often
been accomplished using prelase techniques.’:7 For example, by applying a small voltage to the Q-
switch, the laser is allowed to oscillate just above threshold for a relatively long peribd of time. At
the end of this prelase period, the system is fully Q-switched for maximum energy extraction. Similar
behavior can be obtained by the use of a slow saturable absorber, such as a Q-switching dye, in place
of the electro-optic switch.

The experimental results at the end of Section VII indicate that single transverse mode operation
without single longitudinal mode operation will not improve the ranging performance of a simple Q-
switched transmitter. In light of the practical difficulties in achieving simultaneous single transverse
and single longitudinal mode operation in a Q-switched laser and the major redesign effort involved,
this course is not recommended. Furthermore, the Phase III tests confirmed that cavity-dumping
the oscillator can reduce the transmitter bias errors to the centimeter level. The latter is a relatively
simple modification to implement and minimizes the redesign effort.

It was mentioned in the Introduction that similar poor results had been obtained with the earlier
Q-switched ruby systems and that the incorporation of a cavity-dump greatly improved the ranging
performance of these lasers. Q-switched and cavity dumped lasers, sometimes referred to as Pulse
Transmission Mode (PTM) Q-switched lasers, are physically similar to the simpler Q-switched systems
but their operation is somewhat different as outlined in Fig. 42. In both types of systems, a quarter-
wave voltage applied to the Pockels celi will prevent the cavity from oscillating during the “hold-off”
period during which the population inversion is building to a maximum near the end of the flashlamp
emission.

Upon reaching maximum gain, the Q-switch command is given and the Pockels cell transmission
goes to unity. At this point, the cavity sees a net gain and the radiation intensity builds up within the
cavity.

The radiation envelope is the sum of the intensities in each individual laser mode. When mode

beating effects are present, the internal radiation is modulated with a period corresponding to the
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roundtrip cavity transit time. In actual fact, the pulse train in Fig. 42 is really a single pulse circulat-
ing in the cavity. In the simple Q-switched system, a constant fraction of the circulating pulse energy
is coupled out by the partially reflecting mirror and hence the laser output is also modulated. When
the laser gain equals the residual loss threshold of the high Q-oscillator, the circulating pulse is no
longer amplified and the pulse amplitude decays with time.

Iﬁ the cavity dump system, no radiation is permitted to leave the resonator due to the presence
of two maximum reflectivity mirrors. When the Q-switched radiation reaches a maximum inside the
cavity (as determined by monitoring low-level radiation leakage through the end mirrors), the Pockels
cell transmission is again returned to zero by application of a quarter-wave voltage across the cell. The
polarization of the circulating radiation is then rotated by 90° by a two-way transit through the cell,
and the circulating energy is ejected from the cell by the polarizer. For the ideal case of an infinitely
fast switch, all of the internal radiation is dumped from the cavity within a single roundtrip cavity
transit time, T . In practical systems, finite switching speeds on the order of a nanosecond result in
somewhat longer output pulses. While cavity-dumped oscillators do not prevent the simultaneous
buildup of different longitudinal and transverse modes, they do minimize their effects on ranging by
ejecting all of the modes from the cavity during a very narrow time interval corresponding roughly
to the roundtrip cavity time. Thus, in principle at least, the circulating pulse is totally ejected from
the cavity and a single unmodulated output pulse is observed. In practice, however, finite switching
speeds and imperfect polarization extinction ratios can allow some temporal modulation of the ejected
pulse. The steep leading edge, short pulsewidth, and relatively unmodulated character of the pulse
waveforms in Fig, 37 is a good indication that subnanosecond switching speeds are being obtained
with the inhouse krytron switch.

In conclusion, we strongly recommend that the present MOBLAS systems be modified to in-
corporate a fast cavity dump switch in the oscillator. Krytron and avalanche transistor chains are
both capable of achieving the necessary switching speeds. It is anticipated that, in order to obtain

maximum reliability and ranging performance from the oscillator, some reduction in the final output
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energy may be necessary. This can be compensated for, if necessary, by the inclusion of a second

amplifier. The shorter pulsewidth will also result in improved doubling efficiencies.
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