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1. INTRODUCTION

In the practical applications of pattern recognition (such as in the process-
ing of remotely sensed imagery data), obtaining labels is a difficult problem.
Acquiring labels is expensive, and very often these labels are imperfect.

Several scientists have investigated the problem of pattern recognition with
imperfectly labeled patterns (refs. 1-7). Duda and Singleton (ref. 1) showed
that, for orthogonal pattern vectors, the average weight vector of a threshold
logic unit converges to a solution weight vector for the correctly Tabeled
pattern set. Kashyap (ref. 2) proposed an iterative training procedure for a
two-class case. Shanmugam and Breiphol (ref. 3) developed an error-correcting
procedure for &isjoint densities using Parzen estimators. Chittineni

(refs. 4-7) investigated the problem of learning with imperfectly labeled pat-
terns and studied the applicability of probabilistic distance measures for
feature selection with imperfectly labeled patterns. Most of these proposed
schemes require the knowledge of probabilities of label imperfections, which
usually are not available.

Several authors considered the problem of estimating recognition system per-
formance {refs. 8-13). Highleyman (ref. 8) investigated the problem of estimat-
ing the probability of error of é given classifier both for known and unknown’

a priori probabilities. Fukunaga and Kessell (ref. 9) examined the problem

of estimating the probability error from unclassified samples. Havens et al.
(ref. 10) reported the experimental results of estimating the probability of
error from unclassified sampies using remotely sensed agricultural data.

Chow (ref. 11) established a relationship between error and rejection rates
which: is useful in estimating the probability of error from unclassified
samples. ‘

In practice, the situation often arises in which a set of imperfectly labeled
test patterns and a set of unlabeled patterns are available. (For example,
in remote sensing, a set of labeled patterns called type 2 dots and a set of
unlabeled patterns are usually available). This paper presents the problem of
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estimating recognition system performance and label imperfections as maximum
1ikelihood estimates from the classifier decisions of Tabeled and unlabeled
patterns. The probabilities of the estimated label imperfections are then
used in ‘developing schemes for the identification of mislabeled patterns.
The paper is organized in the following manner,

Assuming no imperfections in the Tabels, expressions are derived for the maxi-
mum 1ikelihood estimates of probability of error, probability of correct clas-
sification, and a priori probabilities (section 2); also, in this section,
axpréssions are derived for the asymptotic variances of probability of correct
classification and a priori probabilities. In section 3, imperfections in the
Tabels are introduced, models for the label imperfections and probabilities

of errors are developed, and the simulation results from the processing of
remotely sensed data are presented. Methods of identifying mislabeled pat-
terns for both two-class and muTtic]asé cases are reported in section 4, and
the results of their applications in processing remotely sensed data are
described. Conclusions are presented in section 5.

1-2



2, MAXIMUM LIKELIHOOD ESTIMATION OF PROBABILITY OF ERROR,
PROBABILITY OF CORRECT CLASSIFICATION, AND
A PRIORI PROBABILITIES

In this section, expressions are derived for the maximum 1ikelihood estimates
of probability of error, probabiltity of correct classification, and propor-
tions. Also, expressions for the asymptotic variance of probability of cor-
rect classification and proportion estimates are derived. It is assumed that
the classifier is designed and the classifier classifications of a set of
labeled and unlabeled patterns are obtained. [In a situation involving remote
sensing, the labeled patterns are the test set or type 2 dots and the unlabeled
patierns are the spectral values of the picture elements (pixels} for which no
labels are available.] In this section, the labels of the test patterns are
assumed perfect; in section 3, the labels are assumed to be imperfect. The
classifier classifications of the labeled and unlabeled sets are illustrated
in table 2-1.

Let w be the given Tabel and W be the classifier label. Let Aij =

| P(w = i[mc = j) be the probability that the true Tabel is i, given thdt the
classifier label is j. Let pij = Plw = i;mc = j)} be the probability that

the true Tabel of the pattern is i and the classifier.label is j. Let

Pc(i) = P(wC = 1) be the probability that the classifier classifies a pattern
into class i and Pi = P(w = i) be the a priori probability of class i. Then
we obtain
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TABLE 2-1,— CLASSIFICATIONS OF LABELED AND UNLABELED SETS

{a)} Confusion matrix of labeled test set

Classifier label .
X Number belonging
True label to each class
] 2 L N ) M

1 M ™Me |ttt | My y

2 Mpy | Map | oon | Moy M.

M Tt | Tz [ttt 1 T T,
Number classified { m 1| m > e Moy m=m
into each class * - - - o

(b} Matrix of classifications of unlabeled set

Classifier label

1 2 see 1 M

X et [ Xy
where
W 4 = number of Tabeled patterns for which the true or given label is i
J and the classifier label is j
M = number of classes
>
m . = s =
d = Y
M
m=mn = 2: TP the total number of labeled patterns
i=1 J=1
Xj. = number of unlabeled patterns for which the classifier label is 3



Since each classification is independent, the 1ikelihood function of the
observed m's and X's can be written as

i M
m,. 71 X,
T 6™ T P ()] 3
i=1 3=1 9 3=

M

M M
=Cﬂﬂu Rt T e, 173 (2-2)

i=1 j=1 3=1

where C is a constant. The constraints on lij and Pc(j) are

M
Z)\--:‘I 3 3= 12,50 ,M

T

‘\

; (2-3)

/
The objective is to find the values for Aij and Pc(j) which maximize L, sub-

Ject to the constraints of equation (2-3). Since the logarithm is a monotonic
function of its argument, taking the logarithm of L and introducing Lagrangian
multipliers yields

MM
L' = Tog (:+Z:Zm Tog{a, )+Z(X +m Nog[P (3}]

i=1 j=1
M M M
"DIEN DIEWINE] FIN b S I (2-8)
=1 J\is1 M =1 ¢

where rj (3 = T,2,+«+,M} and s are Lagrangian multiptiers. Differentiating
L' with respect to P.(i) and s, equating the resulting expressions to zero,
and solving for Pc(j) results in

m_ P x-
i J (2_‘5)

F
2, (g * %)
2=1

P.(3) =

2-3



Similarly, the maximum likelihood estimate of lij can be obtained as

A= -
\Ni T ; (2-6)

From the invariance property of the maximum 1ikelihood estimators, the maxi-
mum likelihood estimate ﬁcc for the probability of correct classification

Pcc can be obtained from the expression

€ 4=
M
- 17:1: Plug = 1)P(w = ilu_ = 1)
M
= 2 Py (2-7)

Using equations (2-5) and (2-6) in equation (2-7) yields

M M.
2-’—1—(m‘-

+ X.)
s -i=tMi bt (2-8)
cc M
g (m g+ X,)

An intuitive justification for‘ﬁcc may be given as follows. The ratio
(mii!m.i) gives the proportion of the patterns truly belonging to class 1 to
the patterns classified into class 11 Multiplying this ratio by (m.i + Xi)
and summing it from 1 to M gives an estimate for the number of correctly clas-
sified patterns from all patterns in the classified classes. The estimate of
Pcc-iS‘then divided by the total number of patterns. An estimate 31 for

the proportion Pi may be obtained as follows.
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M
= ;‘P(mc = J)P(w = lo. = J)
J:

e

M
« D P (i)hss (2-9)

1 ¢ ij
From equations (2-5), (2-6), and (2-9), the following is obtained.

M
E[J(m--!-}{:])]
5 _ 3= LM

P, M (2-10)
% (m o+ Xp)
Different probabilities of error can be written as
) ‘ P(wc= MECE 'I|u)c= j)
P(wc = jlw = 1) = o= 1) (2-11)

Using equations (2-5), {2-6), and (2-10} in equation (2-11) obtains the maxi-
mum 1ikelihood estimates [ﬁ(wc = jlw = i)] for different probabilities of
-error.

;f, g = T2 (2-12)

The estimate of equation (2-12) can be interpreted as foilows. It is the
vatio of the number of patterns that truly belong to class i but were classi-
fied into class j to the total number of patterns that truly belong to class i
from the patterns classified into all classes.
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In the following example, expressions are derived for the asymptotic variance
of the estimates of the probability of correct classification and proportions.
From equation (2-7), the estimated ﬁcc can be written as

M
- 22 B (DA, (2-13)

i=1 ©

The delta method {ref. 14} is used to compute the asymptotic variance of ﬁcc
This 1nv01ves expanding P in a.Taylor series around the true value

2: P.(i)r;;. The result of this expansion is

) M )IE o o~y 3P P
Var(Pcc) = Z . COV(?\.}i}\jj) ﬁ;%

1
"M M
. A op oP
22 o] oty
n s aAii BPC J

. o BPCC BPCC
v 2 22 Cov[P (114;5] 5y
c

i=1 j=1 e T ij
MM o . o 9P o
£ 303 cov[P (108 ()] TRORG) (2-18)

i1 =11 IS N A
The number of independent parameters is 2M - 1; namely, A1]’l22""’AMM and
P (1) P (2),--- p (M - 1). If these parameters are labeled by 6.,
i=1, 2 eee 2M-1, the (2M - 1) by (2M - 1) information matrix, the general

2 log L
36 36

Carrying out these ca]cu]at1ons and 1nvert1ng the resuiting matrix yields the
variance-covariance matrix of x i i=1,2,++,M, and PC(J) J= 1,2,000,M-1.
From this, the following are obta1ned.

term of which is given by E{- , can be evaluated from equation (2-2).
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P(D)1 = P (1)]

Var[ﬁc(i)] - - (2-15)
. P a P < 1.
Cov[ﬁc(i)ﬁc(j)}= - —C%—C-(ﬂ (2-16)
‘ (- A
var(i;;) = ‘1mpc(i)“ (2:17)
COV[A]TPC(J)] - Cov[ﬁc(i)ijj] Cov(R;33 ) = 0 (2-18)

for a1l 1 and j, i # k, where

M .
- ;g; X, (2-19)

Substituting equations {2-5) through (2-19) into equation (2-14) yields an
expression for the Var(ﬁcc) as follows.

M ) M M . .
,\ Ao (T - Ass) [-P.()P_(3)]
= ii ii’ ,2,. c c
Var(Pcc) ;é% mPc(i) Pc(1) * i ég; N Aiikjj
J#
PNT - P (1)] 2
¥ =1 N A
Mo (1 - i) p (1)A N X PP ()0 A
_ :E: ii _ ij (i) + :E: :E: :E: i1%i]
=y i i=1 5= L
ﬁ% b (1)2. - P2
s AT =20 (1) T & Tt T e
- & - ~ : d (2-20)

Following a similar analysis, an expression may be obtained for the asymptotic
variance of the a priori probability estimator (ref. 15).



M iy 2 2.,
~ . (1 = AP (3) [j:} J
1')= 2, Fo N

(2-21)

In general, one can.obtain expressions for sample sizes m and N, either by
minimizing the Var(?cc) or by minimizing the Var(ﬁi), subject to some cost
constraints.



3. MAXIMUM LIKELTHQOD ESTIMATION WITH LABEL IMPERFECTIONS

In practical situations, obtaining labels is expensive, and very often these
Tabels are imperfect. In this section, we formulate the problem of estimat-
ing, with imperfections in the labels, the various quantities considered in
section 2.

It is assumed that the classifier is trained on representative data, and a
set of Tabeled patterns (possibly with imperfect labels) and a set of
unlabeied patterns are presented to the classifier. The classifier classi-
fies these patterns, and the results are matrices similar to table 2-1.
Now the various quantities are defined as follows.

Let w' be the imperfect label, P% = P{w' = i) be the a priori probability that
the imperfect label is i, p%j = Plw' = o, = j) be the probabiiity that the
imperfect Tabel is i, and j be the classifier label. Consider

p'ij = P(w' = T, = J)

%=1 ¢
M
= :é% Plo' = ilo = L., = jYP{w = Lau, = i)
M
- E] Plo' = ilo = 2)P(u, = 3o = £)P(w = 2) (3-1)
where it is assumed that.
Plo' = ijw=2) = Plw' = 1o = 2,u = J) (3-2)

This assumption states that, given the true label and the classifier label,
the imperfect label depends only on the true label. This is a reasonable
assumption. In acquiring the label for a pattern, the labeler depends
heavily on the true label of the pattern and virtually does not know the

3-1



classifier label. {In labeling a pixel in imagery data, the assigned Tabel
depends on the true label of the pixel and its neighbors and on some other
data such as ancillary information.) Now consider

P(3) = Plu, = 3)

M
E P(mc
1

%

1}
1

Jow = 2)

P{w

i
[}

2)P(w = £) (3-3)

M
Jlw
=1

9. c

Substituting equations {3-1) and (3-3) into the likelihood function and
taking the logarithm results in

MM M . i
L=og €+ 27 2am. Tog| 2y Pla’ = ilw = £)P(u, = jlo = 2)P(w = 2)
i=1 j=1 U g=1 ;
M M
£ 20 X Tog| 2 Plo. = jlw= 8)P(w = &) (3-4)
j=1 9 =1 °

Finding closed-form solutions for the parameters by maximizing L seems to be
difficult, since the resulting equations become coupled in terms of param-
eters. However, optimization techniques, such as the Davidon-Fletcher-Powell
procedure, can be used to maximize L (refs. 16-18). Now, the problem can be
formulated as -

Find: Plo' = ijw = !L),P(wc = jlw = 2),Plw=2) 3 1,30 = 1,2, ,M

such that L is maximized subject to the Fb]Iowinglconstraints.\
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M=
o
8—
n
—r
£
i
i
—
w
ey
]
__/

‘Q') = 1923"'JM’
i=1 H
M E
Zp(wc=\]lw=2’) =1 3 &= 1329"'9M£
5=
M '(3-5)
Do Pw=2)=1 ' ‘
=1
i
Plw' = ilw=2) 20 3 i,0=1,2,00+,M
P(wc = jlw = 'Q) 2 0 jsg = 1929"'3M

Plw=12) 20 5 &=1,2,°0,M

The numbers of parameters and constraints for différent values of M are listed
in table 3-1.

TABLE 3-1.— PARAMETERS AND CONSTRAINTS FOR A GENERAL CASE

Number of Number of constraints
Number of
parameters, -

classes, . Inequality,

M IMZHM Equality, 5

2M+] 2M+M

2 10 5 10

3 21 7 21

: 36 9 36

5 55 1 55

As indicated in table 3-1, the numbers of parameters and constraints increase
with the square of the number of classes, resulting in a large number of
degrees of freedom for .the optimization problem. However, the numbers of
constraints and parameters can be reduced by modeling the label imperfections
and the probabilities of misclassification.
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3.7 MAXIMUM LIKELIHOOD ESTIMATION WITH SIMPLIFIED MODELS

This section provides (1) models for label imperfections and probabilities of
misciassification and (2) a formuiation of the problem of maximum 1ikelihood

estimation. To develop a model for describing the probabilities of imperfec-
tions in the labels, consider the following.

a. If there are no imperfections in the Tabels, for different i and j,

i) =1
(3-6)
i)=0 }

1

Plw' = i|w

and Plw' = jlw

b. If the imperfect label for a pattern is assigned purely at random, irre-
spective of its true label, for different i and j,

1]

Plo' = ilu=1) = %

(3-7)

and Plw' = jlw= 1) =-%

Since, in a practical situation, the assignment of a label lies somewhere
between the above two extremes, the imperfections in the labels can be modeted
through a parameter e],_yhich 1ies between 0 and 1 as

(] = 9])

Plo' = ilo = 1) = —5——+ 8§

('i - B'I)
Plo' = jlw=1) S

(3-8)

where 0 < 0, < 1.

From equations (3-6) through (3-8), it is easily seen that 8y = 1 denotes no
imperfections in the labels and 6y = 0 denotes random labeling. The follow-
ing shows that this definition satisfies the postulates of probability.
Consider the following.

3-4



M M
2P’ = dlo=1) = Plu= ifo=1) + 20 Plu' = jla= 1)
5:} ja]
J#i
M
(1 -8} (1 - 8,) —
= i 1 Iz - L -
=t 6yt ;z% =01 -0y =1 ' (3-9)
J#i

thus satisfying the probability rule. However, it is noted that the imperfec-
tions in the labe}s can be modelad throagh some other parameter; for example,
making & = causes the imperfections to be dependent on o, 0 < o < ooy

-8
1+
*© <B £ = In this section, it is assumed that the imperfections are modeled
through equation (3-8).

]+

or, making 8 = causes the imperfections to be dependent on 8,

Similarly, c?assification errors can be modeled as follows

a, If there are no classification errors, for different iand j,

i) =

"

Plu, = 1o
(3-10)
and Plw, = jlu

"
ks
Tt

i
=)

b. If the classifier is making random decisions, for different i and Js

c

Plw -='¥im=“¥)m%
1 (3-11)-
M

"

1
f
et

it

and P(wc jlw =

Since, in general, the truth lies somewhere between the above two extremes,
the c?assif1catzen errors can be’ madeied thraugh a parameter 85, which Ties
between 0 and 1 as

“'82)
P(wc='f|&)= i) =gt 5‘2
(3-12)
| Gy -8
and P(mc = jlo=1) = —

3-5



where 0 £ 8y < 1. As before, it can be seen that this model satisfies the
postulates of probability.

it

Let & (1 - 81} and ho = 843 then Moty = 1. Similarly, Tet Ay = (1 - 82)
and Ay = 6,3 then Xy ¥ Xy = 1. The following expresses the T1ke11hood func-
tion in terms of the above models. Consider

Po(3) = Plu, = 3)

M
= Z'P(w = L)P(w,. = jlw = 2)
g=1 c
M
= Plu, = Jlo = §)Pw = 3) + Z;, Plo = 2)P(w, = jlu = 2)
‘Q‘m
L#]
M
.'r\ A A
- I, -3 .
‘(“‘ﬁ”+3‘)P +_Z_M—.P£-M+}‘4!%j {3-13)
2#3
?ii = P(Eﬁ’ = ];{ﬁc - 3)
Z Plw' = i|w = 2)P(w_ = ilw = £)P(w = 2)
= z Plw' = ilw = 2)Plu. = ilw = 2)P{w = 2)
=1
AT
+ Plw' = ilw= i)Plu. = ilo=1)P{w= 1)
M
A A A
Ak, L, )
Z]: R pz*(m*’*a)(m t h )Py
241 )
A A3
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Similarly, for i # J,

p‘ij = Plo' = 'i’wc = j)

M
= :Z: Pw
=1

=1[w=2)P(wc=J[m=£)P(w=2)
M
=D Pl = ilw= 2Plw, = jlo= 1)P(w=2)
2=1 ¢
o
2]
+ P(w' = ilw = 1')P(wc = jlu = 9)P(w = 1)
* Plu' = ifu = §)P(u, = Jlu=3)Plw=1])
M
A A \ A A A
_ 173 1 3 a3
‘E;:JM i Pz"‘(m**z) m Pi*M(M”&L)PJ
o
2#]
A Ay ASA A
M M 14 N
"Rt w it B (3-18)

Substituting equations (3-13) through (3-15) into the likelihood function
resuits in

M M
MAa Ay 1 MA
174
L=1ogC+ZZm..1og(——~—]3+—-2M3P1.+————M PJ.)

M . .
Aha  fAA, Ao
s Mg, 2Ms

2 m; Tog 2 +(M W “‘2"4)"1]

+

M
A
3
+ Z X1. 1og(ﬁ + A4P1.) (3-16)
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Now, the problem can be stated as follows.

Find: A (i =1,2,3,4) and Pj (3= 1,2,00%,M)

50 that L is maximized subject to the following constraints.

M

PP

A ¥ Ay =l

Ayt A =1 (3-17)

A 20 3 4= T,e00,4

P, 2 0 5 1i=1,2,++,M

Optimization techniques, such as the Davidon-Fletcher-Powell procedure, can
be used to maximize L (refs. 16-18). The numbers of parameters and constraints
for different values of M are Tisted in table 3-2.

TABLE 3-2.— PARAMETERS AND CONSTRAINTS FOR A
SIMPLIFIED PROBLEM

Number of Number of Number of constraints
classes aramet : :
v s p agimers, Equa;1ty, Ineqz$;1ty,
2 6 3 6
5 a 3 9

Table 3-2 indicates that the optimization problem is considerably simplified.




3.2 A PRACTICAL APPLICATIdN

The maximum 1ikelihood estimation with the simplified models presented in
section 3.1 is applied to processing remotely sensed Landsat multispectral
scanner (MSS) data. Several segments’ are processed in the following manner.
A linear classifier is trained for two classes. Class 1 is wheat (W) and
class 2 is other {N). This classifier is used to classify a test set of data
(104 patterns) for which labels are available and a set of data (209 patterns)
for which labels are not available. Thus, the classifications corresponding
to table 2-1 are computed. The labels for the test data are assumed to

be imperfect. The maximum 1ikelihood estimates of li (i =1,2,3,4) and

Pj (i = 1,2), subject to the constraints of equation (3-17), are obtained
using the Davidon-Fletcher-Powell optimization procedure (refs. 16,17).

The Davidon-Fletcher-Powell procedure, in conjunction with an exterior penalty
function, very efficiently carries out the optimization of the performance
function, subject to various constraints. In general,.these constraints must
he continuous differentiable functions of the parameters. The original 1ike-
1ihood function is augmented with the functions of the constraints. The
augmented 1ikelihood function is penalized whenever the constraints are vio-
lated. For sufficiently large penalties, the. unconstrained optimization of
the augmented likelihood function can be shown to be equivalent to the orig--
inal constrained optimization. '

The results obtained from the optimization of the 1ikelihood function are
shown in table 3-3. The last column in table 3-3 Tists the P(w = 1) values
computed from the ground-truth information over the entire. segment for each
segment.. The following conclusions can be made from table 3-3. The mean and
variance of errors of éstimated P with respect to the ground-truth P] are
smaller with the modeling of imperfections in the labels than with the

Ta segment is a 9- by'IT:E?Tbme%er.(S- by 6-nautical mile) area for which the
MSS image is divided into a rectangular array of pixels, 117 rows by
196 columns. '
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TABLE 3-3.— ESTIMATES OF A PRIORI PROBABILITY AND Pog WITH AND WITHOUT

MODELING OF IMPERFECTIONS IN THE .LABELS

HWithout modeling . s s .
Site description imperfections in With mo?ﬁiégg ;2§2¥§ect7°ns Ground-
Segment the Tabels truth
g proportion,
! ' Plw'=1]w=1} p P}mP(wPi) Plw=1}
County State 1 Pcc_ (a) ce (b)
1060 ¢ Sherman Tex. ‘0.3421 0.8284 0.8377 0.9905 0.2492 0.229
1512 Clay Minn, L4295 .7653 .7678 1.0000 .3594 .337
1520 Big Stone | Mimn. L2647 >, 7763 1.0000 7790 .2759 .299
1604 Renville N. Dak. .5506 .6378 .7100 .8363 .6030 .526
1648 Spink S. Bak. . 2868 .8160 1.0000 .8182 . 2894 .37¢
1677 Spink S. Dak. .3838 . 7501 .7847 . 9445 3034 341
- 1734 HiN Mont. L4663 8857 .8865 1.0000 . 4486 440
1929 Blaine Mont. L4445 .9422 1.0000 L9472 4672 426
Mean of errors 0.02391 0.002388
Variance of errors 0.00374 - 0.002318
3pprobability of label imperfections.
Pestimated proportion of class 1.




estimates obtained assuming the labels are perfect. When there are no imper-
fections in the lahels (i.e., for segments 1520, 1648, and 1929), the esti-
mates of Pcc's obtained with and without modeiing of imperfections in the
labels are identical. Furthermore, when the estimated P . is 1 (with model-
ing ofAlabe1 imperfections), the estimated Pec (assuming labels are perfect)
is identical with the probability of label imperfections. The PT and P1 are
related as follows

M
- P] = P(w' = ]) = Z P(m' = ]lu) = Q,)P(LU = 2:) (3']8)

If it is ?ssumed that the labels are perfect, the estimate of P] is an esti~
mate of:P1. Table 3-4 Tists the estimate of Pi obtained from equation (3-18)
and that obtained as a maximum likelihood estimate from equation (2-10),
assuming the labels are perfect.

TABLE 3-4.— COMPARISON OF ESTIMATES OF P]'NITH AND WITHOUT
"MODELING OF LABEL IMPERFECTIONS

Estimate of P;, Maximum like]ihood
: M estimate of P, obtained

Seqnent P1=;§%P(w'=]lw=j)P(w=j) from equatiol (2-10)
1060 0.3322 0.3421

1512 L4246 .4295

1520 .2759 .2647

1604 L5432 .5506

1648 .2894 .2868

1677 .3880 .3838

1734 L4602 .4663

1929 L4672 4445

l Columns 2 and 3 of table 3-4 are almost identical, thus verifying the validity

' of the models used in defining the label imperfections.
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3.3 MAXIMUM LIKELIHOOD ESTIMATION WITH CLASS-DEPENDENT MODELING OF LABEL
IMPERFECTIONS AND ERROR PROBABILITIES

When modeling label imperfections and error probabilities, the 6's and hence
A's can be made class dependent, which increases the complexity of the prob-
lem. - For different i and j, the imperfections in the labels can be modeled-as

. L - ()] )
Plw' = i|lw = 1) = —w * 91(1')
[T 8y (1) 3-19
Plo’ = §lu = 1) = ———" ( (3-19)
0< 61(1) < 1 | )

Simitarly, for different i and j, the error probabﬁlities can be mode1ed as

1-8,(i )
P(wt_? P|lw=1) = !L———Tf;—lll +_92(i)
o D-enl! (3-20)
P(wc = jlw=1) = — ’
058;2(1)51 )'

. It can be shown that these models satisfy the postulates of probability.
Let Al(i) =01 - 81(1)]s A5(1) = 8](1), Ay(1) = [1 - 65(i)], and A4(i) = 8,(1).
Then,

A]Ki) + lz(i) =1 3 1=1,2,00,M

3-21
Ag(1) + Ay(1) = 1 320

An analysis simlar to equations (3-13) through (3-15) yields the following
equations.

P.(3)

= Plo, = J)
M .
A(2)
. g B, ;\4(3')93.: (3-22)
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+

ip

M
i A (2) A (8)
- 2 : 1 3
= —— =¥

i=

P.. = Plw' = i,0_ = i)

c

1
12(1)l4(1)] P,

! LS ] =4
ij P{w LR i}

M A (g) A (z)
2 -
2=

A
[ ) 3(1)

A7 (J)
+ 51_”‘1_ 14(J)PJ;|

i, (4) A3(i)
P, * M 4(1) A (i)

(3-23)

(3-24)

Equations (3-22) through (3-24) can be used to express the likelihood func-

tion as follows.

L=

L. A (2)25(2)
109C+22m 109{2-——-—-"-——] 7 PE
J:
Jj#i

i=
M(j)fg”

r M ‘
A (2) Aa(2)
1(8) 23
*‘Z:mﬁ mg{g; R T

A; (1 Ap(1)2a5(1)
; Hﬁ‘_’ (1) + ;\2(1);\4(1)}%}

M M-
A (n)
+E X; Tog M Py + Ag(1)P,

M Py +—1

. [azmxsm A ()

3-13
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The problem of maximizing L may be stated as follows:

Find:  2;(3) (3 = 1,2,-2+,M5 1 = 1,2,3,4) and P; (3 = 1,2,005M)

so that L is maximized subject to the following constraints.
:?:

P.

i=1 !

M) + 2y(1)

il
amd

1
il

T 3 1= 1,2,°0+,M

(3-26)

A3(i) + l4(1) T s 1= 1,2,00,M

Ai(j) >0 & i=1,2,3,4and j=1,2,°+,M

P-iZO 5

j = 1,2,000,M

The optimization technique of Davidon, Fletcher, and Powell (refs. 16,17) can
be used to maximize L in equation (3-25), subject to the constraints of
equation (3-26). The numbers of parameters and constraints for different
values of M are Tisted in table 3-5.

TABLE 3-5.— PARAMETERS AND CONSTRAINTS FOR
CLASS-DEPENDENT MODELS

Number of Number of Number of constraints
classes, pavameters . .
? Equality, Inequality,

M 4NN 2M+] AN

2 10 5 10

3 15 7 15

4 20 9 20

5 25 11 25

Table 3-5 shows that the numbers of parameters and constraints grow linearly
with M.



4. IDENTIFICATION OF MISLABELED PATTERNS

This section considers the problem of identifying mislabeled patterns, if the
probability of label imperfections is either known or estimated using the
methods developed in section 3. Some relationships are develdped between the
a priori probabilities and the probability densities with and without imper-
fections in the labels. The imperfections in the labels are described by the
probabilities

BJ'[ = P(w‘ = ilw = J) I P 1,250+ ,M (4‘1)

where i and j indicate class. We have the constraint,

M
i=1

It is assumed that

pX]w = 3) = piX]a' = 1,0 = ), (4-3)

That is, given the ;rué label of a pattern, the density of the pattern does -
not depend on its imperfect label. To obtain the relationship between
p(Xjw = 1) and p(X]jw' = i), consider

M
p(Xo' = 1) = Wﬁ; p(X,w' = i, = J)
M
P JZ‘; p(Xe' = 1.0 = J)P(u' = ilu = §)P(w = J)
M
= 3)p(Xw = J) (4-4)

- 1
= "T—r-'———)-P o= _i jwz-[ Bjip(m
Similarly, the a priori probabilities are related as

M
Plot = 1) = 2o B,:Pw = §) (4-5)
=1
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Inverting equation {4-4) yields the following result for the two-class case.

Plo = Dp(Klw = 1) = g [BapPlo’ = 1p(X[u’ = 1)

- (By1Bgp - B2y

- ByyPl’ = 2)p(X]w' = 2)]
(4-6)

-5

——
e
[}

= = - 1 - (-
2)p(X|w =2) = (3”822 = 3-1232-]) [B”P(m = Z)P(xlw 2)

- BypPlw’ = Np(Xw' = 1)]

Let
Bi1 By

821 Bao
B = (4-7)

L] L] L]
. L] L]
Ld L] L

B Bwe
Assuming 8'1 exists, the foﬁowing can be obtained from equation (4-4) in the
multiclass case.

M
Plw = )p(X|w = 1) = z% §;cP(w' = s)p(X]o' =s) 5 i =71,2,000.M (4-8)
§=

4.1 IDENTIFICATION OF MISLABELED PATTERNS IN THE TWO-CLASS CASE

The following expressions are developed for the identification of mislabeled
patterns using a linear classifier. The linear classifier implements a
decision criterion

Decide X € w'

14f g{X) =WTX+w0>0
(4-9)

Decide X € o' 2 otherwise
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It is assumed that p(X]w' = i) is multivariate normal; i.e., p(X[uw' = i)
~ N(Mi,zi), i=1,2. Since g(X) is a linear combination of the components of
pattern vector X, if X is normally distributed, g(X) is also normally dis-

tributed. That is,

: .
PLat0 X € ut = 11 ~M[nis(0})?] 5 1=1.2. (4-10)
where
| T,,
m_i =W Mi + WO
- (4-11)
1 2 — T 1 ,
.g(O'_i) = W E_iw.
To identify and change the labels of mislabeled patterns, the following
scheme is proposed.
Change the label of X to w =1 if g{X) > t]
Change the label of X to w = 2 if g(X) < -t (4-12)

Do not change the label of X if -t, < g(X) < t

The thresholds t] and -t2 are used to identify the incorrect labels and are
determined by specifying the probability «, that mislabeiing will occur in
the label correction process. An expression for the probability that the
label correction scheme will give an incorrect label is derived in the fol-
1owiﬁg equation.

Poy = P(bad label)
= P{w = 1)P(bad Tabel|X € w = 1) + P(w = 2)P(bad label|X € w = 2)
= Plo = 1)P[g(X) < -t X € w= 1]+ P(w = 2)P[g(X) > t;|X € w = 2]

(4-13)
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Using equations (4-6! and (4-13) obtains the following result.
. _tz
Plo = 1)P[g(X) < -t,[X€w=1]= Plw = 1)[ pLg(X) {X € w = 11d[g(X)]

(=]

‘ -t
2
. 1 . o
" ®11Pa2 - ProPar) {322"(‘” = ”j:m plg(X)|w' = 11d[g(X)]

-t
2
- ByPlw' = 2)[ pla(X) |u' = 2]d[g(x)]1

=<}

1
-t

1 9
= B.oP(w' = 'l)/ P(y)dy
B11822 - Bifar) | 22 -

“ty-my
%
- BZ]P(U-‘I = 2)[ UJ(Y)dy (4"]4)
] -y
where Yly) = —— exp 5 (4-15)
Yem

Similarly,

1
Plw = 2)P[g{X) > ;[ X €w = 2] = B, P(w' = 2)
1! (B11Bap = BygBpp) [T
_t'i+mé -t_l-l-m;
oy B
91
j:m W)y - BypPe = 1) / wly)dy (4-16)
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From equations (4-13) through (4-16), the probability of a bad 1abe1‘PBL can
be obtained as

-tz-m1
1 0"|
oL TRy - B ) [F227 ”,/:m . iy
Grl ——GZI—-
- BZ]P(wl = 2)] 2 pyldy | + B”P(w' = 2)/ P(y)dy
“tymy )

, o1

- BioPlw’ = 1) P(y)dy (4-17)

For a given o, t] and -tz can be computed using an optimization technique such
as the Davidon-Fletcher-Powell procedure, so that the square of the error
between o and PBL is minimized and can be used in the incorrect label identi-
fication scheme.

4.2 AN EXAMPLE OF APPLICATION OF THE INCORRECT LABEL IDENTIFICATION SCHEME

The two-class imperfect Tabel correction scheme presented in section 4.1 is
applied to a practical problem in remote sensing. In particular, it is
applied to Landsat imagery of segment 1060. Data from two acquisitions are
processed, and each acquisition has four spectral bands. The image is over-
laid with a rectangular grid of 209 grid intersections, and the labels of
pixels corresponding to each grid intersection are acquired. A linear clas-
sifier is trained on one-half of the data. The remaining one-half of the

data is used as a test data set. Test data set and total data set classifi-
‘cations are obtained using the linear classifier. This results in matrices
corresponding to table 2-1(a) and (b). The maximum 1ikelihood estimates of
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Tabel inperfections are obtained using the simplified models presented in
section 3.1. The B-mairix and the a priori probabilities obtained are

ﬁt=

[0.8378 0.1622}
0.1622 0.8378

{4-18)

[

Plw
P{w

1) = 0.24921
2) = 0.75079

If a = 0.001 is chosen, upper and lower thresholds t1 and -t, that minimize
the square of the difference between o and Py, are computed using the Davidon-
Fletcher-Powell procedure. The patterns of class o' = 2, the discriminant
function values of which exceeded tys and the patterns of class w' = 1, the
discriminant function values of which are less than ~t2, are identified and
marked with circles in figures 4-1 and 4-2. These figures 1ist the labels of
the pixels of 209 grid intersections and their relative positions.

Films of the two acquisitions of séémeht 1060 used in the procassing were’
examined by an analyst-interpreter (AI}, and the results are given in’
figures 4-3 and 4-4,

From an analysis of figures 4-3 and 4-4, it can be concluded that the
decisions of the label correction scheme are in close agreement with the
Al interpretations of the imagery films.

4.3 IDENTIFICATION OF MISLABELED PATTERNS IN THE MULTICLASS CASE

Let g.(X) be the discriminant function of the i¢h class w' =:i, where

- T * i = - " i
g; (X} = WX +wyg 3 §=1,2,000.0 (4-19)

The usual decision criterion in a multiclass case is to decide X € ' = 2,
if
g,(X) = max g,(X) (4-20)

3
j’.—.-] ,zsoo.’M
k)
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1121314 15{6f7{89|10j11]12113|14115(16]17|18]19
TINJEI NN NN NN N|N]N N NEN| NN
2| N|NININ N|N]NJN{N NINJ|N|[N]N
SIN|ININ]IN|IN]N|N]N|{NINININ N (:% N
4 | N|N|N|N]N N[N N|IN{N|N[N ®
5IN|N|N]N]N NN NN NN N |
6 | NI NN} NJN]|N NjfN]|N N|{NJN
71NN N|NJINJ|N NITNIN|N|[N]NIN NN
8 | N N[N|N N Np NN N N{N|N
91N N NIN|N|N|[N]N N
10 N N[N N[N ) N[N N|N-
| ® NIN|IN|N|N NfN|N]N|[N]N]N

Computed upper threshold t] = 0.1507
Legend
Blank Wheat pixels
N Other pixels _
(:) Pixels identified by label correction scheme as wheat
B AL decision as wheat but bordering class other
* ‘AL decision as other

Figure 4-1.— Diagram of 209 grid intersections showing pixels labeled other
and other pixels reidentified as wheat using imperfect label identification

scheme.
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3 W 'R0
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6 @ W Wwlwlw W

7 ® i@ ®
8 ) WiW|u W W W

9 Wl w W Wlw | w @ wlw
10 |W Wiw Wl W Wlwiwu W
IRERERIOIR W W

Computed Tower threshold -t2 = -0.01628
Legend

Blank Other pixels

W Wheat pixels

(:) Pixels identified by 1abel correction scheme as other

B Al decision as other but bordering wheat

* Al decision as wheat

Figure 4-2.— Diagram of 209 grid intersections showing pixels labeled wheat
‘and wheat pixels identified as other using imperfect label identification
scheme.
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AI label

Machine-

ted i
$g;2$c e N N {bordering W) W

N 18 3 2

Figure 4-3,— Al Tabels for patterns where labels were changed
from wheat to other.

Al Tabel

Machine-~

corrected .

label W W (bordering N) N
W 4 . 1 1

Figure 4-4.— Al labels for patterns where labels were changed
from other to wheat.
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To identify and chapge the labels of mislabeled patterns, the following
scheme is proposed:

Change the Tabel of X fromw' = i to w = & if
g, (X) = max gj(x) > g;(X) + ¢, (4-21)

=120 0 M
J#i
where t; is a positive number.'

Otherwise, do not change the label of X.:

The threshold 1:_i for identifying the incorrect labels is determined by speci-
fying the probability o, that mislabeling will occur in the label correction
process of equation {4-21). An upper bound on the probability that such a
scheme gives an incorrect label is derived as follows. _

ipm.=PGs=1wﬁ£&)=7%¥gﬁk)>gﬁxf+tﬂw=1]

j:]’z,coo’M
j#l

n
1
n

+ Pl max g;(X) > g,{X) + t,lu

J )
j:] ,2,...,”
j#2
mgx gj(x) > gM(x) + tM|w

321,200 ,M
J#M

2)P[3y(0)

214-
!

+ Pw

M)P[gz(x)

=

;g% Plw = i)P[gR(X) = T?x.gj(X) > gi(X) + Filw = i]

J=1,2,000,M

J#i
MM
s :E; 2 Plu = 1)PLg;(X) > g;(X) + t;lw = 1] (4-22)
i=1 j=1
J#i



fIt is assumed that the densities p{X{w' = i) are multivariate normal. That
His, p(X[w' = 1) ~ N(M;,z;),"i = 1,2,000 M.

Let 1g.:(X) = g.(X) - g5 (X)

J1

n
o
><
+
£

(4-23)

Since gji(x) is @ linear combination of the components of pattern vector X,
if X is normally distributed, gji(x) is also normally distributed. That is,

' = ~ ! ! 2 -
p[gj.i(x)lw s] N[mj'is"(cjis) :| (4-24)
where '
! _ Tl
mjis - waqu wjiO
. N (4-25)
12 T
(9jis) _ wJ1Esw31

From equations (4-8), (4-22), and (4-25), -the following- is obtained.

M
[VJ

sIPIg;(X) > g;(X) + t;u’ = 5]

It
M=
M= =
M=
(=]
-~
——
e—
]
w
o
—
L
>
=
L}
|
<
~
Gt
-l
n
el
%]
=
&

-t -HTI

jshlw' = S)[ s ply)dy (4-26)

H
—ly
.—I[ )3
M=
M=
o
o
sl
8—
I

where Y(y) is given by equation (4-15). The thresholds t; (i =1,2,++,M) can
be determined using an optimization technique such as the Davidon-Fletcher-
Powell procedure. However, it is to be noted that when M = 2, equations (4-17)
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and (4-26) are identical. The thresholds are pictorially illustrated in
figure 4-5.

Figure 4-5 shows that the imperfect label identification scheme in the multi-
class case amounts to establishing a region around each decision surface.



P 3

Figure 4-5.— ITlustration of decision surfaces and thresholds.
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5. CONCLUSIONS

In the practical applications of pattern recognition, obtaining labels for
the patterns is expensive and very often these labels are imperfect. This
paper has presented the problem of estimating imperfections in the labels
and the use of these estimates in the identification of mislabeled patterns.

It is assumed that a set of labeled patterns, the labels of which might be
imperfect, and a set of unlabeled patterns are available. The classifier
classifies these patterns, and the resulis are a confusiop matrix for the .
labeled pattern set and classification counts for the un1abe1ed'set.

Expressions are presented for the maximum 1ikelihood estimates of classifica-
tion errors, for percentages of correct classification and proportions, and
for the asymptotic variances of probability of correct classification énd
proportions.

Assuming imperfections in the labels, simple models are presented for. model-
ing imperfections in the Tabels and classification errors. The probiem of
maximum Tikelihood estimation of various quantities is formuiated for a general
case, in terms of simplified models and class-dependent models, and their rela-
tive complexities are discussed. Results of practical applications of maximum
1ikelihood estimation of various quantities are presented.

Assuming the densities are Gaussian and the probabilities of label imperfec-
tions are known, thresholding schemes are proposed for the identification of

. mislabeled patterns both for the two-class and the multiclass cases. The prob-
ability that such an identification scheme results in a wréng decision for a
pattern is expressed as a function of the ‘thresholds, and the thresholds can

be computed by specifying the probability of a wrong decision by the imperfect
label identification scheme.

Furthermore, the results of applying, these techniques to the processing of
remotely sensed multispectral data are presented.
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