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TIME-DEPENDENT DIFFERENCE THEORY FOR NOISE PROPAGATION IN A TWO-DIMENSIONAL DUCT

Kenneth J. Baumeister®
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

Abstract

A time-dependent numerical formilation is de-
tived for sound propagation im a two-dimensional
straight sofi-walled duct in the absence of mean
flow. The time-dependent governing acoustic-dif-
ference equations and boundary conditions are de-
veloped along with the maximum stable time incre-
ment. Example calculations are presented for sound
attenuation in hard- and soft-wall ducts. The time-
dependent analysis has been found to be superior to
the conventional steady numerical analysis because
of much shorter solution times and the alimination
of matrix storage requirements.

Nomenclature
8 cell coefficient
bm cell coefficient
e, cell coefficient
c: ambient speed of sound, m/s
dm cell coefficient
e cell coefficient
f* frequency, Hz
fm cell coefficient
g cell coefficient
H  height of duct, m
I number of axial grid points
e
nunber of transverse grid points
L* length of duct, m
n transverse mode number
P time-dependent acoustic pressure, P*/p:czz
P spatially dependent acoustic pressure
P spatial}y dependent solution of Helmholtz
equation
T* period, lff*, sec
t dimensionless time, t*/T*

Ot time step

. . . %, %
u axial acoustic velocity, u /co
. . w, %
v transverse acoustic velocity, v /co
s N *
% axial coordinate, x"/H™

Lx axial grid spacing
. . . w K
¥ dimensionless transverse coordinate, y /H

Ay  transverse grid spacing

=
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z impedance, kglmz sec

o stability factor

4 specific acoustic impedanei . s
1 dimensionless frequency, H £ /co
o dimensionless resistance

py ambient air demsity, kg/m3
X dimensionless reactance

] angular frequency
Subsecripts:

c calculational time

exit condition

(1]

[y

axial index (fig. 1)

j transverse index (fig. 1)
m cell index

o ambient condition
Superscripts:

* dimensional quantity

k time step
¢{1) real part
(2) imaginary part

L. Introduction

Both finite-difference and finite-element nu-
merical techniques (refs. 1 to 27) have been devel-
oped to study sound propagation with axial variations
in Mach number, wall impedance, and duct geometry as
might be encountered in a typical turbojet engine.
Generally, the numerical solutions have been limited
to low-frequency sound and short ducts, because many
grid points or elements were required to resolve the
axial wavelength of the sound. As shown in refer-
ence 1 (eq. 77) for plane wave propagation, the num-
ber of grid points or elements is proportional to
the sound frequency and duct length, and inversely
proportional to one minus the Mach number (ref. 2,
fig. 6). This later dependence severely limits the
application of numerical techniques for high Mach
numbey inlets.

Customarily, the pressure and acoustic veloci-
ties are assumed to be simple harmonic functions of
time; thus, the governing linearized gas-dynamic
equations (ref. 28, p. 5) become independent of time.
The matrices associated with the numerical solution
to the time independent equations must be solved ex-
actly using such methods as Gauss elimination. TE-
eration techniques are unstable. As a result, large
arrays of matrix elements must be stored which tax
the storage capacity of even the largest computer.
In unpublished work at Lewis using reference 29 as
well as the work of Quinm (ref. 23, p. 3) the matrix
has been modified to allow iteration techniques; un-
fortunately the convergence is too slow to be of any
practical value. Other approaches, such as in ref-
erence 30, might still offer iterative possibilities.



Some special techmniques have been developed to
overcome the above mentioned difficulties. As shown
in references 3 and 10, the wave envelope numerical
technique can reduce the required number of grid
points by an order of magnitude. 1In reference 20,
this technique was used to optimize multielement
liners of long lengths at high frequencies. At the
present time, this techmique has been applied only
to the simple cases of no flow and plug flow. A
numerical spatial marching technique was also de-
veloped in references 15 and 18. Compared to the
standard finite-difference or finite-element bound-
ary value approaches, the numerical marching tech-
nique is orders of magnitude shorter in computa-
tional time and required computer storage. The
marching techuique is limited to high frequencies
and when reflections are small.

As an alternative to the previously developed
steady state theories, a time~dependent numerical
technique is developed herein for noise propagation
in a two-dimensional soft-wall duct in the absence
of mean flow. Advantageously, matrix storage re-
quirements are significantly reduced in the time-
dependent analysis. The analysis begins with a
noise source radiating into an initially quiescent
duct. This explicit method calculates stepwise in
real time to obtain the transient as well as the
"steady'™ state solution of the acoustic field. The
total time required for the analysis to calculate
the "steady" state acoustic field will determine the
usefulness of the time-dependent technique.

Time-dependent numerical techniques have been
applied extensiwvely to both one-dimensional sound
propagation (ref. 31, p. 258), two-dimensional vi-
bration problems (ref. 32, p. 452), and the more
general problem of compressible fluid flow (ref. 33).
References 31, 34, and 35 discuss in detail the sta-
bility of numerical solutions to the wave equation.
Herein, these techniques will be extended to include
soft-wall impedance boundary conditions which would
be encountexed in inlets and exhaust ducts of turbo-
fan engines.

In the present paper, the governing acoustic-
difference equation and the appropriate boundary
conditions associated with time-dependent propaga-
tion are presented. Next, the von Neumann method
is used to develop the relationship between sound
frequency and grid spacing to determine the maxirmm
stable time increment., Tmmediately following the
mathematical development, numerical solutioms are
presepted for one- and two-dimensional hard- and
soft-wall ducts. The results are compared with the
corresponding steady analytical results, Finally,
the time required to perform both the time-dependent
and steady analyses are compared for increasing num-
ber of grid poimts.

Governing Equakions and Boundary Conditioms

The prepagation of scund in a two-dimemnsional
rectangular duct, as shown in figurel, is described
by the linearized continuity and momentum equations
and the appropriate impedance boundary conditions.

Gontinuity and Momentum

The linearized equations for mass and momentum
conservation can be written (ref, 28§, p. 5) for a
Cartesian coordinate system in the following dimen-
sionless form:

% __13a_1ldv

3t " m3dx gy )
du _ _lop
3 T nox @)
ot 1 oy

These and other symhois are defined in the nomen-

clature. The dimensionless frequency 1 is de-
fined as
H* % H*f*
oW
n= 0% = @)
27, c* c*
o

The asterisks denote dimensional quantities.

The foregoing dimensionless eguations apply to
the scaled Cartesian coordinate system in which the
height ranges between 0 and I_and the dimensionless
length ranges between O and TL/H.

Wave Equation

Equations (1 to 3) mow are combined to yield
the dimensionless wave equation
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Equation (5) in difference form will be solved to
determine the pressure in the duct.

Wall Boundary Condition

The boundary condition at the surface of a
sound absorbent soft-wall duct can be expressed in
terms of a specific acoustic impedance defined as

Z* P
E=5%°3 ®)
a] Co

Substituting equation (6) into equation (3) yields

O _ _MoR ML
3y T gooe % Jt @
In the example problems to be considered, the impe-
dance will be assumed comstant with time. There-
fore, equation (7} reduces to
OF _ 1 9P
3 - " tat 2

At the lower wall, the sign on ¢ is changed to ae
count for the vector nature of w. It is also con-
venient to express the specific acoustic impedance

in terms of resistance O and reactance ¥ as

£ =0+ iX 9)

Entrance Condition

The boundary conditiom at the source plane
P(o,¥,t) can be of any general form with both trans-
verse variations in pressure and multiple frequency
content. However, the numerical techmique will be
compared later to previous solutions in which the
pressure and acoustic velocities were assumed to be



—
plane waves at the entrance and to vary as e

. c - iZ2yt
or in dimensionaless form as e " . Therefore,
the source boundary condition used here in

P(o,y,t) = e* 2Tt (10)

Exit Impedamnce

In a manner similar to the wall impedance, the
axial impedance at the duct exit can be defined as

*oprE
= P(L/H v, t) 1)

€ u(L*fH"'",y, t)

For the plane wave propagation to be considered
herein, ¢ is takem as 1, which is exact for plane
wave propagaticn in an infinite hard-wall duct. Al-
s0 choosing { to be 1 has lead to close agree-
went between ntmerical and analytical results forxr
plane wave propagation into a soft-wall duct (refs.
1 and 3). More general values for the exit impe~
dance can be found in references 7, 15 (eq. (BL)),
16, or 18 (fig. 7).

Initial Condition

"For times equal to or less than zero, the duct is
assumed quiescent, that is, the acoustie pressure and
velocities are taken to be zero. For times great-
er than zero, the application of the noise source
{eq. (10)) will drive the pressures in the duct.

Complex Notation

Because of the introduction of complex nota-
tion for the noise source and wall impedanceg, all
the dependent variables are complex. The super-
seript (1) will represemt the real term while 2)
will represent the imaginary term;

p=p) 4 5@ (12)

A similar notation applies to the acoustic velocities.

Difference Equations

Instead of a continucus solution for pressure
in space and time, the finite-difference approxi-~
wations will determine the pressure at iselated grid
points in space as shown in figure 1 and at discrete
time steps At. Starting from the known initial
conditions at t = ¢ and the boundary conditions,
the finite-difference algorithm will march-out the
solution to later times.

Central Region (Cell #1)

Away from the duct boundaries, in cell #1 of
figure 1, the second derivatives in the wave equa=-
tion (eq. (5)) can be represented by the usual cen-
tral differences in time and space (ref. 34, p. 99)

Wl o,k k-1 K ko k
.2 -
o2 P15 % i P (Parn s %Ry P
ac? o
K k | k
P, . . -2 _4P"
+ | Leitl 151 i,]-1 (13)

by’

where i and j denote the space indices, k the
time index, and Ax, Ay, and At are the space and
time mesh spacing, respectively. All spacings are
assumed censtant. The time is defined as

£l - K 5 A =k + Dyar 14y

Solving equation .(13) for the pressure PF+1

1,3 yields

b
k Y|k
TR - 2,:1 + (: )]Pi,j

2
k Ay k
TP st (Ax) Pirl,; (15)

where o is defined as

2 2
cE @ w
n ay

Equation (15} is an algorithm which permits
marching out solutions from known values of pres-
sures at times associated with k and k - 1. The
procedure is explicit since all the past values of
P*  are known as the new values of k <+ 1 are com-
puted. For the special case at t = 0, the wvalues
of the pressure associated with the k - 1 wvalue
are zero from the assumed initial condition. The
parameter o« was introduced into equation (15) be-
cause it will play an important role in determining
the stability (error growth) of equation (15) in
this explicit iteration scheme.

Boundary Gondition (Cells #2 to #6)

The expressions for the difference equations at
the wall boundary are complicated by the impedance
condition and the change in geometry of cells #2
through #6 in figure 1. The governing difference
equations can be developed by an integration process
in which the wave equation (eq. (5)) is integrated
over the area of the cells and time:

AL/ 2
2 2 2
qz é—% - §—§ - é—% dx dy dt = 0
ot Ox oy

t-Arf2 Cell
area

(17)

The spatial integration over the cell area is fully
documented in reference 10, appendix D. In equa-~
tion (17} of this paper, the spatial integration
method of reference 10 has been extended o include
time. An illustration of the application of equa-
tion (17) to cell #2 is given in the appendix of
this paper,



The finite-difference approximation for the
various cells shown in figure 1 are expressed in
terms of the cell coefficients a_ through Byt

Pk+l = o a k k
1,3 Ay 2 m i-1,]j mi,j-1
1+ (Ax - mfm
2
21+ (XX
A k k
+4c + P P
m [ i,j mi,j-1
2
oy}
. 1+(Ax) og,
k-1
ep, . '
m i+l,j By 2 i,]
o+ -
1 (Ax) af
(18)
The subscript m denotes the cell number. These

coefficients are listed in table T.

Spatial Mesh Size

The mesh spacings Ax and Ay must be re-
stricted to small values to reduce the truncation
error. To resclve the oscillatory nature of the
pressure the required number of grid points in the
axial direction suggested in reference 1 was

*

Izl 33 (19)

No requirement for the size of transverse spacing

&y was given in reference 1 other than the number
of transverse grid points be increased until con-

vergence is achieved.

In the rectangular duct shown in figure 1,
propagating transverse acoustic pressure modes (cos
mry) can exist in the duct (ref. 15, eq. (B2)) when

(20)

To resolve all the propagating modes, the number of
grid points in the transverse direction, J, sugges-
ted here is

n s 2n

J = 124 (21
Equation (19) in conjunction with equation (21)
would lead to equal axial and tramsverse mesh spac-
ing which generally minimizes the truncation error
(xef. 33, p. 288).

Stabilicy

In the explicit time marching approach used
here, round-off errors can grow in an unbounded
fashion and destroy the solution if the time incre-
ment At is taken too large. The von Neuman

method is often used to study the stability of the
difference approximations to the wave equation. Ap-
plication of the von Neuman method (ref. 34, p. 104)
te equation (13) requires that @ in equation (18)
be less than 1; which limits the time increment

At = __TI_ALZ (22)
&y

The derivation in reference 34 was for only one space
dimension; however, the extension of the von Neuman
method to two space dimension is relatively easy.
When the time step satisfies equation (22), a condi-
tion of linear instability exists (ref. 34, p. 106),
which guarantees that a propagating acoustic mode

can travel undiminished in a hard-wall duct (see
discussion, rxef. 18, p. 302).

Steady State Pressures

In the sample problems to be presented in the
next section, the time-dependent results will be
compared to the results of the steady harmonic solu-
tions of reference 10. The purpose of the section
is to show the rationale for constructing a steady
state selution from the time-dependent results.

Steady Harmonic $olution

The steady harmonic pressure p_(x,y) is de-
fined as a solution to equation (5) when the pres-
sure is assumed to be a2 simple harmonic function of
time:

iyt
P6,y,t) = p_(x,7)e 23)
Substituting equation (23) into equation (5), the
wave equation takes the form of the classic Helm-
holtz equation

2 2
d Ps 0 Ps 2
7t + Zm)~“p =20 (24
s
ox oy

In this case, where the source is a simple harmonic
function of time, p_ represents the Fourier trans-
form of P(x,y,t) (fef. 28, p. 11). The boundary
conditions cam also be modified by equation (23) as
shown in reference 10.

For a semiinfinite duct (or an equivalent fi-
nite duct with p e’ exit impedance) with plane
wave propagation, and hard walls, the solution for
p, 1is

p = e—lZnnx

o (25}

In the next section, a transient solution to this
problem will be compared to equation (25).

Transient Solution

Recall, at the start of the numerical calecula-
tion, the acoustic pressures and velocities were
assumed zero throughout the duct and a pressure
source begins 2 harmonic oscillation at x = 0 for
t = 0. For the special case of plane wave propaga-
tion in a hard-wall, semiinfinite duct, the analyti-
cal solution to the wave equation (eq. (5)) is
(ref. 36, p. 305)



0 0<t<1x (26)

P(x,t} =
e-12wnx elZnt

> qx 27)

The pressure p{x,y) is now defined by divid-

ding the instantaneous pressure P(x,¥,E) by elzﬁt
to obtain

p(x,y) = ECYLt)

- 28)
elZnt

Using this definition, equations (26) and (27) be-
come

0 0<t<ngx 29)

p(x) =

e-iznnx L>»1x (30)

Consequently, the tramsient solutionr (eq. (30)) for
the steady harmonic pressure equals the Fourier
transform solution (eq. (25)) when

£ > nx (31)

In terms of real variables, equaticen (31) can
be written as

(32)

]
v
o® sl

The transient time e represents the time for the
wave to travel down to the end of the duct,x? =1.
Therefore, for the special case of one-dimemsional
plane wave propagation, the initial transient will
pass when equation (31) holds.

Since it may be desirable to integrate the wave
with time to obtain a rms (root mean squared) pres-
sure, the transient caleculations will be continued
into the steady domain for ene period of oscilla-
tion before the Fourier pressure p is calculated.
Therefore, in this paper,

*
g =D 43 (33)
c H*
and
_ Pssz:t!
p{x,y) = izt {34)
e

For more complicated problems, such as with higher-
order acoustic pressure modes or where reflections
are important, t_  should be increased in succes-
sive steps to check for convergence.

Sample Calculations

In two sample problems to follew, the Lime-
dependent results will be compared to the results
of the steady harmonic solutions of reference 10.

Hard-Wall Duct

Numerical and analytical values of the pres-
sure p{xX,y) are computed for the case of a hard-

wall duct for plane wave propagation with Ee =1
exit impedance (equivalent to semiinfinite duct}.
The calculation was wade with a length to height ra-
tio (L*/H*) of 1 and a dimensionless frequency 1

of 1. The analytical and numerical values of the
acoustic pressure profiles along the duct are shown
in figure 2. As seen in figure 2, agreement between
analytical and the numerical theory is good.

Soft-Wall Duct

As another example of the time-dependent analy-
sis, the pressure distributions are computed for the
case of plane wave propagation with a £ =1 exit
impedance and a wall with impedance valuls of 0.16-
10.3%4. The calculation was made with a length-to-
height ratio of 0.5 and a dimensionless fregquency of
0.6. The results of the time-dependent anmalysis
along with the results of the solution of the equi-
valent steady state Helchomtz equation are displayed
in figure 3. The numerical results for the steady
spatial solution p_(x,y) are tabulated in appendixF
of reference 10. AE seen in figure 3, again the
steady and time-dependent analyses are in good
agreement.

Grid Point Variations

Figure 4 shows the effeet of increasing the
number of grid points on the computational time of
the time-dependent approach for the hard-wall duct
associated with figure 2. Roughly, as seen in fig-
ure 4, the computational time is proportional to the
number of grid points used. This is a considerable
advantage over the steady technique in which the
computational time more nearly increases with the
square of the total grid points.

Figure 5 shows a comparison of the computational
times for the steady and time-dependent problems
associated with the hard-wall duct shown in figure?2.
As seen in this figure, the time-dependent analysis
is considerably faster than the steady analysis.

The value of J (grid points in y-divection) was re-
stricted to 20 because of practical limitations on
the size of the matrix which could be effectively
handled in the steady analysis. When J was in-
creased to 50 with 50 axial grid points, the steady
analysis required 5500 seconds as compared to less
than 20 seconds for the time-dependent analysis.
This large increase in the steady state solution
time results because of the maoner in which the gen-
eral matrix was partitioned (ref. 10, p. 14). Imn
this case, the storage and computational times are
proportional to the total number of transverse grid
points squared (J)z.

Finally, these calculations were performed on
the Univac 1100 computer. Faster computers can be
expected to significantly reduce these calculational
times.

Conclusions

With the possible exception of the wave enve-
lope technique (ref. 10) or the spatial marching
technique (ref. 18), the numerical time-dependent
method of analysis represents a significant advance
over previous steady numerical theories, By elimi-
nating large matrix storage requirements, numerical
calculations of high sound frequencies are now pos-
sible. Also, because matrix manipulation is not re-
quired, the time-dependent approach is simpler to



program and debug. Although flow has not been con-
sidered herein, the extemsion to the more general
flow situation appears to be straightforward.

APPENDIX

Finite-Difference Equations and Coefficients

The derivation of the difference egquation for
the various cells starts with equation (17), which
is rewritten here as

At/ 2
2 2 2
[f Za——~a—1;---a—§dxdydt=o
t-At/2 ax” Ay

(a1)

where the plus sign (+) in the upper limit of inte-
gration means to evaluate the parameters along
either the upper or right-hand boundary of the in-
tegration cell, showm in figure 1 by -the dashed
lines, while the negative sign (-) applies to either
the lower or left-hand boundary of the integration
cell, depending on whether x or y is consid-
ered. The (+) and (-) notation was used since the
spatial integration limrts will vary from cell to
cell. For cell #2 for example, in the x inte-
tral, (+) is represented by x + x/2 and (-) by
x - &xf2, while in the y integral, (+) is repre-
sented by 1 and (-) by L - Ay/2.

The pressure P can be assumed constant over
the cell area and likewise the second derivative in
time can also be assumed constant over the entire
cell area. Therefore, moving the spatial deriva-
tives to the right side of equation (4l) gives

t+AE/2 62 AL/ 2
P, .
+ £
'qz --—12’-1 dt (,’: f_ dx dy) =
at
t-AtS2 t-At/2
2
f f -a-— A P dy dt (42)
2 2
x" dy
but
erALf2 tHAL/2 Pl _ pk |
3P dt = ap 1,7 i,d
2 3t At
E-At/2 t-AE/2
P - PRIy PRl L gpl | gkl
=% i) i, i,] i,] (A3)
Ot At
Therefore, equation (A2) can be written as
k -
ML apt  _pkl =3 ¥ (A4

i,j i,j i,j A 8 m
4
14 (Ax)

" The parameter ¥

where
thOES 2 +
9 -+
y = &y ol _ 22 d
m At ox dx y
t=Atf2 - K
-4 [ +
or| _ ok
+ = dx |dt (AS5)

¢an now be evaluated for each
cell (labeled m) in figure 1. The procedure for
each cell is given in detail in reference 10, appen-
dizx D. To illustrate how the time integration is
coupled to the space integration, the derivation for
cell #2 will now be presented.

For cell #2,

+ ot
ff ay ax = BL 0%

>

(a6)
+ k - pk o ok
OB] _3p| _{ i+1,§ i,j i,i i-1,j
ax ox A Ax
k k k
P, . = 2P0 P
R i, i-1,7 a7
£
+ ke k
;s A
dpf _ge| __n e NSRRI (48)
oy 3y t ot by
+

The expression for g

3y
wall boundary condition as given by equation (8) in
the body of this report, Substituting equations
(46}, (A7), and (48) into equation (AS) yields

in equation (A8) is the

I k k

- .+
¢ o 20y Fin1,s 2Py 3T B f”"\‘t”z
2 ocox A t-arf2
t+At/2 2, -
¥ dt dy - —=l g¢
t-At/2 -

t+AE/2 +
X dx - Pl_c_—Pk. f dtfdx (a%)
1,] i,i-1 ) m

Equation (A%) can be further simplified by
noting



+ A
f dy = —22 (ALD)
+
f: dx = Ax (411)
tHAL/2
f dt = At (A12)
t-ALf2
T oerArf2 ErAE/2 Pl.&% - Pl.c i
OB 4. p Y b 5, I % |
ot i,]j 2
t-At/Z t—At/2
o) o
- L] 3 )] 2
> (A13)

Substitubing equations (A10) to (al3) into equa-

tion (A9) yields
2
Ay k
Zl}. + (: ):lPisj

_HQsz+l+Béx k-1
t Ar [ S

2
Ja) k k
Yy = (X 4 -
2 (Ax) Pi-l,j 2]',i.,j-l

(&

which contain the coefficients that appear in
table I for cell #2. The coefficients for the other
cells are found in a similar manner.

k
Pi-i-l,j (a14)
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Figure 1. - Grid-point representation of two-dimensional flow duct.
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Figure 2. - Analytical and numerical pressure profiles for
one-dimensional plane wave sound propagation in a hard
wall duct for m =1 and LH* =1,
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calculational time of transient solution for plane wave
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