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ABSTRACT.
 

U% A time dependent numerical solution of the linearized continuity
 

and momentum equation is developed for sound propagation in a two­

dimensional straight hard or soft wall duct with a sheared mean flow.
 

The time dependent governing acoustic-difference equations and boundary
 

conditions are developed along with a numerical determination of the
 

maximum stable time increments. The analysis begins with a harmonic
 

noise source radiating into a quiescent duct. This explicit iteration
 

method then calculates stepwise in real time to obtain the transient
 

as well as the "steady" state solution of the acoustic field. Example
 

calculations are presented for sound propagation in hard and soft wall
 

ducts, with no flow and with plug flow. Although the problem with
 

sheared flow has been formulated and programmed, sample calculations
 

have not yet been examined. So far, the time dependent finite dif­

ference analysis has been found to be superior to the steady state
 

finite difference and finite element techniques because of shorter
 

solution times and the elimination of large matrix storage require­

ments.
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List of Symbols
 

c* ambient speed of sound, m/s

0 

f frequency, Hz
 

H duct height, m
 

I number of axial grid points
 

J number of transverse grid points
 

k number of time steps
 

L length of duct, m
 

M Mach number M(y), U!/c

0 

n transverse mode number
 

P time dependent acoustic pressure, P /p 
c0
 
p spatially dependent acoustic pressure
 

Ps spatially dependent solution of Wave Equation
 

T period, l/f", sac
 

4.-A 

t dimensionless time, t /T
 

At time step
 

U' mean flow velocity U' (Y), m/sec
 

u axial acoustic velocity, u /c

0 

4.- 4 

v transverse acoustic velocity, v /c"

0 

x axial coordinate, x /H
 

&axial grid spacing
 

y dimensionless transverse coordinate, y IAHI
 

Ay transverse grid spacing
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astability 


TI 
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impedance, kg/m2sec
 

factor, eq. (29)
 

specific acoustic impedance
 

dimensionless frequency, H~f /c0
 

dimensionless resistance
 

ambient air density, kg/m 
3
 

dimensionless reactance
 

angular frequency
 

Subscripts
 

calculation, time
 

exit condition
 

axial index (Fig. 1)
 

transverse index (Fig. 1)
 

ambient condit-ion
 

spatial value
 

transient
 

Superscripts
 

dimensional quantity
 

time step index
 

real part
 

imaginary part
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INTRODUCTION
 

Both finite difference and finite element numerical techniques
 

(refs. I to 27) have been developed to study sound propagation with
 

axial variations in Mach number, wall impedance, and duct geometry as
 

might be encountered in a typical turbojet engine. Generally, the
 

numerical solutions have been limited to low frequency sound and short
 

ducts, because many grid points or elements were required to resolve
 

the axial wavelength of the sound. As shown in reference 1 (eq. (77))
 

for plane wave propagation, the number of axial grid points or ele­

ments is directly proportional to the sound frequency and duct Vength,
 

and inversely proportional to the difference of unity minus the Mach
 

number (ref. 2). This later dependence also severely limits the ap­

plication of numerical techniques for high Mach number inlets.
 

Customarily, the pressure and acoustic velocities are assumed to
 

be simple harmonic functions of time; thus," the governing linearized
 

gas-dynamic equations (ref. 28- pg. 5) become independent of time.
 

The matrices associated with the numerical solution to the time inde­

pendent equations must be solved exactly using such methods as Gauss
 

elimination. As a result, large arrays of matrix elements must be
 

stored which tax the storage capacity of even the largest computer.
 

In an unpublished work at NASA Lewis Research Center by the author
 

using reference 29, as well as in the work of Quinn (ref. 23, pg. 3),
 

the matrix has been modified to allow iteration techniques; unfortu­

nately, the convergence is too slow to be of any practical value.
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Other approaches, such as in reference 30, might still offer iterative
 

possibilities.
 

Some special techniques have been developed to overcome the dif­

ficulties of low frequency, short ducts, and low Mach numbers.. As
 

shown in references 3 and 10, the wave envelope numerical technique
 

can reduce the required number of grid points by an order of magnitude.
 

In reference 20, this technique was used to optimize multi-element
 

liners of long lengths at high frequencies. At the present time, this
 

technique has been applied only to the simple cases of no flow and plug
 

flow. A numerical spatial marching technique was also developed in
 

references 15 and 18. Compared to the standard finite difference or
 

finite element boundary value approaches, the numerical marching tech­

nique is orders of magnitude shorter in computational time and required
 

computer storage. The marching technique is limited to high frequencies
 

and to cases where reflections are small.
 

As an alternative to the previously developed steady state theories,
 

a time dependent numerical solution is developed herein for noise propa­

gation in a two-dimensional soft wall duct with parallel sheared mean
 

flow. Advantageously, matrix storage requirements are significantly
 

reduced in the time dependent analysis. The analysis begins with a
 

noise source radiating into an initially quiescent duct. This explicit
 

method calculates stepwise in real time to obtain the transient as well
 

as the "steady" state solution of the acoustic field. The total time
 

required for the analysis to calculate the "steady" state acoustic field
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will determine the usefulness of the time dependent technique.
 

Time dependent numerical techniques have been applied extensively
 

to one-dimensional sound propagation (ref. 31, pg. 258 andref. 32),
 

two-dimensional vibration problems (ref. 33, pg.. 452) and the more
 

general problem of compressible fluid flow (ref. 34). References 35
 

and 36 discuss in detail the stability of time dependent numerical solu­

.t'ins.
 

In a companion paper to this work (ref. 37), the explicit time
 

iteration techniques of references 31 to 36 are extended to include
 

soft-wail impedance boundary conditions which would be encountered
 

in inlets and exhaust ducts of turbo-fan jet engines. The analysis
 

applies to two-dimensional straight hard and soft wall ducts without
 

flow. In the absence of mean flow, the governing acoustic equation
 

was the classic second order wave equation. The time dependent solu­

tion to the wave equation was found to be superior to the conventional
 

steady numerical analysis because of much shorter solution times and
 

the elimination of large matrix storage requirements.
 

When parallel shear flow occurs in a duct, the second order formu­

lation of reference 37 cannot' be used' since the governing differential.
 

wave equation is third order (ref. 28, pg. 9). Rather than attempt to
 

solve a third order wave equation, in the present paper the first
 

order equations of continuity and momentum will be solved simultane­

ously. First, the governing acoustic equations and boundary conditions
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are presented for time dependent propagation in a parallel sheared mean
 

flow. Next, the governing acoustic-difference equations and boundary
 

conditions are derived. The two-dimensional stability theory is then
 

used as a guide to estimate the maximum stable t-ime increment. Immedi­

ately following the mathematical development, numerical solutions are
 

presented for one-and-two-dimensional hard and soft-wall ducts. The
 

results are compared with the corresponding steady state analytical
 

results. Finally, the times required to perform both the time dependent
 

and steady state analyses are compared for increasing number of grid
 

points.
 



I. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
 

The propagation of sound in,a two-dimensional rectangular duct,,
 

shown in Figure 1, is described by the linearized continulty and mo­

mentum equations and the appropriate impedance boundary conditions.
 

A. Continuity and Momentum
 

The linearized equations for mass and momentum conservatibh (ref.
 

28, pg. 5) can be written for a Cartesian:coordinate system in the
 

following dimensionless form:
 

continuity 
BP 1 I yv M TuBP (1)0t n1 rxnly na 

x-momentum 
auP -- T W -TM au I TV@M (2) 

- Tx ? ByTI n 

y-momentum
 
Dv- 1 3P M v (3) 
at By Ti x 

These and other symbols are defined in the Nomenclature. The dimension­

less frequency rl is defined as:
 

H w Hf (4) 
co 
 c0
 

The asterisks define dimensional quantities.
 

The foregoing dimensionless equations apply to the scaled Cartesian
 

coordinate system in which the dimensionless height (y /H ) ranges be­

tween 0 and I and the dimensionless length ranges between 0 and L /H..
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B. Wall Boundary Conditions
 

The boundary condition on the transverse acoustic velocity v at
 

the surface of a sound absorbent soft-wall duct canbe expressed in terms
 

of a specific acoustic impedance
 

v(x,l,t) = P(x,i,t) (5)
 

where the complex specific wall impedance is defined as
 

z - + ix (6) 

At the lower wall, the sign on is changed to account for the vector
 

nature of v.
 

In addition to equation (5), another form of the wall impedance con­

dition will be considered. Substituting equation (5) into equation (3),
 

noting that the Mach number is zero at the wall, and assuming is
 

a constant independent of time, then
 

DP = -n3P (7) 

This form of the impedance boundary condition cannot be used for plug
 

flow when a soft wall Ls present.
 

C. Entrance Condition
 

The boundary condi-tion at the source plane P(o,y,t) can be of any
 

general form with both transverse variations in pressure and multiple
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frequency content. However, the numerical technique will be compared later
 

to previous solut-lons in which the pressure and acoustic velocities were as­

sumed to be plane waves at the entrance and to vary as e or in dimen­

i2Trt
sionless form as e Therefore, the source boundary condition used here
 

is
 

I27t
P(o,y,t) = e (8)
 

D. Exit Impedance
 

In a manner similar to the wall impedance, the axial acoustic velocity
 

at the duct exit can be expressed in terms of a specific acoustic exit-im­

pedance Ce as
 

**P(L* /H*,y,t)()
 
u(L /H ,y,t) Ce
 

For the plane wave propagation to be considered herein, Ce is taken to be
 

equal to unity, which is exact for plane wave propagation in an infinite
 

hard-wall duct. Also, choosing e to be equal to unity has lead to close
 

agreement between numerical and analytical results for plane wave propaga­

tion into a soft-wall duct (refs. I and 3). More general values for the
 

exit impedance can be found in references 7, 15 (eq. B-4), 16, or 18 (fig.
 

7).
 

E. Initial Conditions
 

For times equal to or less than zero, the duct is assumed quiescent;
 

that is, the acoustic pressure and velocities are taken to be zero. For
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times greater than zero, the application of the noise,source, equation
 

(8), will drive the pressures in the duct.
 

F. Complex Notation
 

Because of the introduction of complex notation for the noise
 

source and wall impedance, all the dependent variables are complex.
 

The superscript (1)will represent the real term while (2)will repre­

sent the imaginary term
 

p = p(1) + ip(2) (10)
 

A similar notation applies to- the acoustic velocities.
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II. DIFFERENCE EQUATIONS
 

Instead of a continuous solution for pressure in space and time,
 

the finite difference approximations will determine the pressure at
 

isolated grid points in space as shown in Figure I and at discrete time
 

steps At. Starting from the known initial conditions at t=O and the
 

boundary conditions, the finite difference algorithm will march-out the
 

solution to later times.
 

A. Central Region
 

Away from the duct boundaries of Figure 1, the derivatives in the
 

governing equations can be represented by the following differences in
 

time and space:
 

k+I k (k k l- k (ll)
 

At = -2Ax s/ 2Ay
 

kk 

ij -- lP 
-n 2Ax 

k+l k k+l k+lI-kk 
y i-i u i-li) (12)I+LJ- y'u +l~j 

At 2Ax 2Ax2A 


k
 
V. .a 
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k+l k k+l k+lk 
- vj',j _! P I l - rj+ - v1+1 - vHi-l ((3) 

At T1 2AY T 2Ax 

where i and j denote the space indices, k the time index and Ax, Ay, At
 

are the space and time mesh spacing respectively. All spacings are as­

sumed constant. 
The time is defined as 

k+l k 
t = t + At = (k+ ])At (14) 

Solving equations (11), (12), and (13) 
for the acoustic pressures and
 

velocities yields
 

continuity
 

k+l k At k k 
 I At k k
Pi,j 2

k+1 kj 

Ax It+ Uj - 2%A" i,j+l vi'j- (15)2IATx +I) i.U - '. \ 15
 

k
M At (k
27 Zx (Pi+l,j -1-I
 

x-momentum
 

k+l k I At kIli }M At
Ulij = i~j 2n Ax Pi+],j (16)
- Pi-IO 2T Ax U l ,jjui (16)
 

At aM k
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y-momentum
 

k+lv-	 k At (k+l k+l M~- k - k (17) 
i'j 2y Pi,jij -P i,j-i) 2q Ax i+l,j Vi-l,j 

Equations (15), (16), and (17) are algorithms which permit marching
 

out solutions from known values of pressure and velocities at times assoc­

iated with k and k-i. First, equation (15) is solved for Pk+ at all grid
 

points prior to solving equations (16) and (17). In this manner, new values
 

of Pk+ are available for use in equations (16) and (17). The procedure is
 

explicit since all the past values of Pk are known as the new values of
 

pk+ are 	computed. For the special case at t=O, the values of the pres­

sure and velocities associated with the k-I value are zero from the assumed
 

initial conditions.
 

B. Wall Condition
 

Recall that at the wall, the transverse velocity is governed by the
 

wall impedance as given by equation (5). Therefore, at the wall, the
 

y-momentum equation (17) was initially replaced by the difference form of
 

equation (5)which in this case is
 

k+l k+l
 
v i,i (18)
 

Thus, equations (15), (16), and (18) are the governing equations at the
 

wall.
 

The numerical solutions remained stable in the example problems in­

volving hard-wall ducts CC= ), Unfortunately, in the soft-wall example
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problems considered, the numerical procedure went unstable. Introduc'ing
 

equation (18) appears to lead to an instability for finite values of . .
 

An explanation of why this went unstable will be presented later ih the
 

section which discusses the stability of the difference equations. In
 

the meantime, the following new wall boundary condition is developed to
 

replace equation (.18).
 

Associated with the neviwall boundary condition, the grid structure
 

shown in Figure 2 is used to establish the pressure gtadient at the wall
 

boundary which satisfies the impedance condition.. Equation (7) can be
 

written in difference form as
 

k+l k _ k+I k+I

ki~i
Pij - Pk~j P - PIli-I 
 (9
 

Notice that the values of pressure gradient are expressed in the new
 

values of pressure. This-can be extremely important in stability consid­

erations, as will be discussed later., The value of P+! are first found
I J
 

in the central points away from the boundary; consequently, Pkj-Iis
 

a known value in equation (19). Solving for the acoustic pressure at
 

the wall yields (j= J)
 

le+1 kk+l Ay P~
P.i_ ++ k
 

p. i-I T t ji4 (20)
 
(I+nAy
 

At
 

A similar equation applies at the lower wall.
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Equations (20) and (18) now determine the pressure and velocity in
 

the wall. The pressures and transverse velocities at the wall would be
 

the average of their values at the grid points which straddle the wall.
 

The calculation of the axial velocities at the wall grid point is not
 

yet required. The axial velocity at the wall will be the value associ­

ated with the point J-1.
 

C. Entrance Condition
 

At the entrance conditions, the continuity equation is replaced by
 

equation (8)and the difference form'of the momentum equations must be
 

expressed in terms of forward differences. In this case, the governing
 

difference equations become
 

k+l ei27(k+)At t > 0 (21)
 
I ,j 

k+l k At (k+i k+l) MAt 7k DMAt k (22)
u Ii 1u,j - iAX \4~j - Il 2 'lxuI IvI 

kl k A k+I kl M~t v,, (23)

l,j ij 2pAy (Pj+l IvAx R- 2,ij
 

D. Exit Condition
 

Similarly to the entrance condition, the governing equations must be 

expressed in terms of the backward differences. In this case, the governing 

difference equations become ( = I) 

A k Atk jA,(k k (24) 
-
Il Pij A (Ui - uii1 ,j 21- y i,j+l ilj

HAt/kx , - Pk_P I 
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k+l k+l
 
ui' j = Pi,j/ e (25)
 

2
k+l k Aty k+l k+l MAt 

1
vi'j vi12 j 2 (- i,j+- Pi1j - x j (2I)j 

E. Spatibl Mesh Size
 

The mesh spacing Ax and Ay must be restricted to smal) values to re­

duce the truncation error.- To resolve the oscillatory nature of the pres­

sure, the required number of grid points in the axial direction suggested
 

is (see ref. 1)
 

> 1 A (27) 

while the number of points in the transverse direction suggested in reference
 

37 is
 

J > 12TI (28) 
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Ill. STABILITY
 

In the explicit time marching approach used here, round-off errors
 

can grow in an unbounded fashion and destroy the solution if the differ­

ence equation is improperly formulated or the time increment At is taken
 

too large. Although at least six methods (ref. 34, pg. 48) of stability
 

analysis exist, none are entirely adequate when obtaining actual solutions
 

to differential equations (ref. 34, pg. 51). Consequently, numerical ex­

perimentation will be used to determine the actual stability. The simpler
 

stability analyses will be used to guide the development of the differ­

ence form of the governing equations and the choice of the time increments.
 

Using the two-dimensional (space and time) no flow stability analysis
 

of Courant, Friedrichs and Lewy (ref. 31, pg. 262) as a guide, p k+ values
 

were used in equations (12) and (13) instead of Pk. If the values of P
 

at Pk instead of at Pk+ had been used in equations (12) and (13), the
 

iteration scheme would be unstable. To avoid instabilities, as a general
 

rule, the new values of the dependent variables will be used whenever pos­

sible'(see equation (19), for example).
 

The stability requirement for the no flow situation suggested in
 

reference 37 is
 

=22 I + Ay 
 (29)
 
n2Ay2 AX
 

which limits the time increment to
 

At < "-mAy. (30) 

;1+ (Ay/Ax)2 
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To account for Mach number, equation (30) is empirically modified to
 

At nAy(l - IMI) (31)
 
I + (Ay/AX) 2 

where the largest value of the local Mach number is used. Equation (31)
 

is used to set the initial time increment. If an instability should occur,­

the time increment will be reduced until stability occurs.
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IV. STEADY STATE PRESSURES
 

In the sample problems to be presented in the next section, the time
 

dependent results will be compared to the results,of the steady harmonic
 

solutions of reference 10. The purpose of this section is to show the
 

rationale for constructing a steady state sol'utton from the time dependent
 

results.
 

A. Steady Harmonic Solution
 

The steady harmonic pressure ps(x,y) isdefined as a solution to
 

equations (l) to (3)when the pressure is assumed to be a simple harmonic
 

function of time:
 

P(x,y t) = ps(X,y)e t (32)
 

In this case where the source is a' simple harmonic function of time, ps
 

represents the Fourier transform of p(x,y,t) (ref0 28, pg. 11).
 

For a semi-infinite duct (or an equivalent finite duct with a-p c
 

exit impedance) with plane wave propagation, uniform Mach number, and hard
 

walls,, the solution for ps is (ref. 10, eq. (18))
 

- i2Tmx 

Ps = eT(+M) (33) 

In the next section, a transient solution to this problem will be compared
 

to equation (33).
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B. Transient Times
 

Recall, at the start of the numerical calculations, the aioustic
 

pressures and velocities were assumed zero throughout the duct. Then,
 

a pressure source begins a harmonic oscillation at x=0 fort greater
 

than zero. For the special case of a plane wave propagation without
 

flow in a hard wall semi-infintte duct, the analytical solution to the
 

wave equation indicates that the transient solution ends and the steady
 

solution ps begins when (ref. 38, pg. 305)
 

tt > nx (34)
 

or in terms of real variable when
 

> x-/c o (35)
t 0 

The transient time in equations (34) and (35) represents the time for 

the wave to travel down to the end of the duct, x = L 

The transient time can be shortened or expanded depending on the
 

direction-of the flow and the transverse velocity distribution. In
 

genera-, the length of time for the transient-to occur will be found by
 

a trial numerical procedure. For the simple case of plug flow, equation
 

(34) is now modified to include a uniform Mach number,
 

tt I + M
 > ox (36) 

Therefore, for the special case of one-dimensional plane wave propagation,
 

the initial transient is assumed to pass when equation (36) holds. As a
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factor of-safety in the present calculationsi the transient calculation 

will be continued into. the steady domain for one period of oscillation 

before the Fourier pressure p is calculated. Therefore, in this paper 

tc ij-H 
TI + 

+ 1 
+M 

(37) 

and 

p(xy),= P(x,y,t) 

ei
27rtc 

(38) 

For more complicated problems, such as with higher order modes, 

where reflections are important, or where complicated flow gradients 

exist, t should be increased in successive steps to check for conver­c 

gence. 
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V. SAMPLE CALCULATIONS
 

In the sample problems to follow, the time dependent results will
 

be compared to the analytical results of equation (33) and the steady
 

harmonic numerical solutions of reference (10).
 

A. Hard-Wall Duct
 

Numerical and analytical values of the pressure p(x,y) are computed
 

=
for the case of a hard-wall duct for plane wave propagation with 


exit impedance (equivalent to a semi-infinite duct) for no flow and plug
 

flow with Mach numbers of -0.5 and +0.5. The calculations are made with
 

a length to height ratio (L"/H") of I and a dimensionless frequency T1
 

of 1. The analytical and numerical values of the acoustic pressure pro­

files along the duct are shown in Figures 3, 4, and 5. As seen in these
 

figures, the agreement between the analytical-and numerical, theory is
 

reasonably good.
 

Some inaccuracy exists in the pressure at the entrance (x = 0). As 

seen in Figures 3 and 4, the pressure at the second grid location takes 

a slight jump. This is believed to result because the approximations 

for the spatial derivatives are only first order at the corners. Future 

work should be concerned with developing higher order difference approxi­

mations which are more accurate and stable. Higher order difference
 

would also be desirable in order to increase the mesh spacing used in
 

these calculations, and thereby reduce the number of grid points.
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B. Soft-Wall Ducts
 

As another example of the time dependent analysis, the pressure
 

distribution was computed for the case of plane wave propagation with­

out steady flow and with a e = I exit impedance and a wall with
 

impedance value of 0.16 - 1 0.34. The calculation was made with a
 

length to height ratio of 0,5 and a dimensionless frequency of 0.6.
 

The results of the time dependent analysis along with the results of
 

the solution of the equivalent steady state Helmholtz equation are dis­

played in Figure 6. The numerical results for the steady spatial solu­

tion ps(x,y) are tabulated in Appendix F of reference 100
 

Again, as seen in Figure 6, the steady state and time dependent
 

solutions are in reasonable agreement. Hopefully, the difference be­

tween both theories-can be resolved by using higher order difference
 

approximations.
 

C. Grid Point Variations
 

Figure 7 shows the effect of increasing the number of grid points
 

on the computational time of the time dependent approach for the hard
 

wall duct associated with Figure 3. Roughly, as seen in Figure 4, the
 

computational time is proportional to the number of grid points used.
 

This is considerable advantage over the steady state technique inwhich
 

the computational time more nearly increases with the square of the
 

total grid points.
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Figure 8 shows a comparison of the computational times for the
 

steady state and time dependent problems associated with the hard,wail.
 

duct shown in Figure 2. For this no-flow example, the continuity and
 

momentum equations, (1) to (3), can be combined into a single wave
 

equation
 

--2 = a--2 + 32 2 (39) 

at Dx Dy 

The time dependent solution to equation (39) was presented in reference,
 

37 and is represented by the lowest line in Figure 8.-


As seen in Figure 8 for J = 20, the time dependent analysts pre­

sented herein is roughly equal to the steady state analysis. The value
 

of J (grid points in y-direction) was restricted to 20 because of prac­

tical limitations on the size of the matrix which could be effectively
 

handled in the steady state analyst-s. When J was increased to 50 wi.th
 

50 axial grid points, the steady state analysis required 5500 seconds as
 

compared to less than 150 seconds for the time dependent analysis. This
 

large increase-in the steady state solution time results because of the
 

manner in which the general matrix was partitioned (ref. 10, pg. 14).
 

In this case, the storage and computational times are proportional to the
 

total number of transverse grid points squared.
 

As seen in Figure 8, the time dependent solutions for the-continuity
 

and momentum formulation in this paper require computational times a fac­

tor of 10 greater than the transient solution times to the wave equation
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for the same degree of accuracy. This results- because much smaller time
 

increments At must be taken with the cont-inuity and momentum solutions
 

to obtain the same accuracy or truncation error. In the numerical formu­

lation of the wave equation (eq. (39)), the second derivative of time is
 

expressed in terms of the usual central difference approximation:
 

pk+] - 2Pk . + Pk-. 
- '' 'J + O(At 2 ) (40­

2
 
where the truncation error is of order At2. On the other hand, in the
 

continuity equation (eq. (11)), the first derivative of time is expressed
 

as a forward di-fference
 

.k+l pk
9 P "- r. - P
 
Il I + O(At)
1,J (41)
 

at At
 

where the truncation error is of order At. Consequently, a numerical
 

solution based on equation (41) will require smaller time steps for the
 

same degree of accuracy.
 

D. Shear Flow
 

Although the shear flow difference equations have been programmed,
 

at the present time shear flow example problems have not been examined,
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CONCLUSIONS
 

A time dependent two-dimensional .explicit numerical procedure was­

developed for the parallel sheared mean flow form of the separate con­

tinuity and momentum equations. This time marching technique was found
 

to be stable for both no flow and plug flow. At the present time, shear
 

flow examples have not been attempted. A special wall boundary condi­

tion was developed to insure stability for the soft wall case.
 

With the possible exception of the wave envelope technique (ref.
 

10) or the spatial marching technique (ref. 18), the numerical time de­

pendent method of analysis represents-a significant advance over previous
 

steady numerical theories. By eliminating large matr-ix storage require­

ments, numerical calculations of high sound frequencies are now possible.
 

Because manipulation of matrices is omitted, the time dependent approach
 

is much easier to program and debug0
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