NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

PYCTOPOLAR!METRY OF SCATTERING SURFACES

ANN THEIR INTERPRETATION BY COMPITER MODEL

FINAL. REPORT

NASA CONTRACT NASW-3201

Principal Investigator: Milo Wolff
(NASA-CB-162514) PHOTOPOLARIMETRY OF N80-14002 SCattering surfaces and their Interpretation BY COMPUTER MODEL Final Report (International Technology Associates, Inc.) Unclas 123 P HC A06/MF A01 CSCL 03B G3/91 15437
SLBMITTED BY
INTERNATIONAL TECHNOLOGY ASSOCIATES, INC.
7303 North Marina Pacifica Irive
Long Beach, California 90803
November 1979

PHOTOPOLARIMETRY OF SCATTERING SURFACES AND THEIR INTERFRETATION BY COMPUTER MODEL

Final Report
TABLE OF CONTENTS
Page
SUMMARY i
I. An Improved Theor tical Model of Light Scattering from Rough Planetary Surface 1
II. A New Function to Compute Diffuse Light 16
III. Computer Plots of the New Modei 23
Real Refractive Index (MR) 24
MI in the S-range 30
MI in the C-range 36
MI in the CM range 42
MI in the ME range 48
Very large M-range 54
Flat surface (EXT) 60
Wavelength (XTL) 66
Pit Width/depth (WID) 72
Fine Dust (DUS) 78
Longitude 84
IV. The Theory of the Polarmetric Negative Branch 90
V. The Computer Model Compared to the CSM Taxonomy 94
VI. The Wavelength Dependence of Light from Dark, Rough Planetary Surface 106
VII. The Rings of Saturn 110
VIII.Acknowledgements 112
IX. References 113
X. The Fortran Program 115

International Technology Associates, Inc.

7303 N. MARINA PACIFICA DRIVE • LONG BEACH, CALIFORNIA 90803
PHOTOPOLARIMETRY OF SCATTERING SURFACES AND
THEIR INTERPRETATION BY COMPUTER MODEL

SUMMARY

The comptwir model of Wolff (1975) of a rough planetary surface is simplified and revised. Close adherence to the actual geometry of a pitted surface and the inclusion of a new function for diffuse light has resulted in a quantitative model comparable to observations by plenetary satellites and asteroids.

A new function is derived to describe diffuse light emitted from a particulate surface. The function is in terms of the indices of refraction of the surface material, particle size, and viewing angles.

Computer-generated plots are made that describe the observable and theoretical light components for the Moon, Mercury, Mars and a spectrum of asteroids. Other plots describe the effects of changing surface material properties.

Mathematical results are generated to relate the parameters of the negative polarization branch to the properties of surface pitting.

The range of validity and accuracy of the various Albedo-polarization rules is discussed in terms of the computer surface model, and the CSM taxonomy is matched with the predictions of the Model.

An explanation is offered for the polarization of the rings of Saturn, and the average diameter of ring objects is found to be 30 to 40 centimeters.
light, 2) dowly-reflected light, 3) diffusely reflected light, 4) effects of shadow that creates the opposition effect, and 5) effects of snade on double-reflections that arsate the negative branch.

Despite the model's success in dealing with polarization, it suffered in demanding long computer routines to examine even minor parameter changes, and was not subject to mathematical analysis to provide further insights.

In this article, an improved model is created in which the detailed mechanisms of reflection in a surface are examined so as to provide the model with a closer rellationship to the physical structure of the surface. Also, the long computer routines are replaced by a simpler model of the double-reflection process using four representative light paths to represent the doubles processes in each of four quadrants. The "esult is a simpler, more tractable model which can be calculated easily and which provides additional insight to the reflection processes taking place in a rough surface. The model provides both polarimetric and photometric equations as a function of the phase angle and physical surface properties. The Model

It is assumed that the solar-system environment contains a meteroid flux which more or less uniformly impacts the surface of airless planets. The resulting surfaces are not assumed identical but the impaction process produces similar pits and jagged particles ranging from micron-sized dust to larger particles which are in turn covered with pits and particles. All variations of this type of surface are sufficiently similar to justify a model of light reflection in which the dominant processes are:

1) single reflection
2) double reflection in pits and between particles
3) diffuse, non-polarizing reflection, and,
4) the production of shade and shadow

The identification of variations from the model in measurenents of solar system bodies is an objective of the analysis.

Diffuse reflection is defined as the sum of all processes except single and double reflection, and includes refraction, higher-order reflection, and particle scattering. It is assumed that the diffuse light is unpolarized because processes requiring three or more events in a randan jagged surface will aimost certainly produce randomized light.

The Unique Properties of Pits

Despite the apparent disorder of a rough particulate surface, it turns out that there exist mathematically describeable properties of such surfaces, which are important to the photopolarimetric measurements of the reflected light. Unfortumately, perhaps because scientists are disciplined orderly thinkers, we have acquired an antipathy to the apparent disorder of a dirt surface. Reflecting this attitude, it has been commonplace to substitute for a surface, an array of spheres or a cloud of randon particles which can be attacked by neat, known mathematical methods. It is argued here that this has led to some erroneous conclusions, and, if one wants to have a reliable model and a descriptive mathematical formalisn, then it is necessary to directly examine the geometric properties of the real surface itself.

The randon pits, holes and interstices of an impacted surface have the geometric property of partically trapping light rays in a manner that suppresses the probability of single-reflection while enhancing the probability of double-reflection. Consider the fate of a ray which enters a pit but has not yet headed outwards. The probability of getting out with
only a single reflection decreases the farther in the ray goes. The probability of a single-reflected ray getting out is equal to the solid angle occupied by "clear sky" (as the ray sees things from down in the hole) divided by 4π. That is

Singles probability $=P_{1}=($ angular apeture) $/ 4 \pi$
Note that we are not talleing about the probability of optical reflection which is given by the Fresnel equations and must also be a factor, but about the geometric probability of "getting out" or happening as a single reflection, as if the rays were billard balls. In that follows this will always be called the geometric probability (of the surface structure). Note that if $P_{1}=$ singles geometric probability and P_{2} is for doubles, etc. then

$$
P_{1}+P_{2}+P_{3} \ldots=1
$$

We can approximate the singles geometric probability by assuming that the diameter of pits is about equal to the depth of pits. Then, we have that $P_{1}=\pi d^{2} / 4 \pi d 2 \cdot 4=1 / 16$ which is very much smaller than that obtained from cloud models.

It is the character of a pit to return a ray back into its sourc̣e hemisphere with two or more reflections. Accordingly, the geometric probability of double reflection and higher order reflections are enhanced over cloud models or flat surfaces. Although pits come in all shapes, the concept is illustrated at opposition in Figure 1 using hemispherical pits. Two reflections will always occur in Figure iA if a ray enters inside of the center circle, so the geometric probability is proportional to the circle area. If a ray enters the annulus outside, tiree or more reflections will occur with a probability proportional to the annulus area.

The relative probabilities are approximated knowing that the circle

FIGURE 1. This illustrates an optical rroperty of pits. At opposition a hemispherical pit creates about four times as many double reflections as singles. . 121 higher muitiples are about equal to the amount of doubles.

A more realistic surface behaves cimilarly to tho homispherical surface, but depends on the extent of the surface ruggedness.

FIGURE 2. The angular distribution of the reflected light depends on the average width to dopth ratio of the surface pits. The angular distribution also depends on the type and direction of the reflection. rorward-going doubls reflections are most constricted in entrance and exit from a pit. Backward-going doubles are ieast constricted, with sieeways doubles and singles being internediate. WID is 2 computer parameter proportionai to the width to depth ratio.
radil are the sides of a $45^{\circ}-90^{\circ}$ triangle. So, using the fact that the sum of all probabilities equal unity, we obtain

$$
\begin{aligned}
& P_{1} \simeq 1 / 8 \\
& P_{2} \simeq 4 / 8 \\
& P_{3}+P_{4} \ldots \simeq 3 / 8
\end{aligned}
$$

we have arrived at the important result that the geometric probability of dowble reflection is about 4 times larger than single reflection. This is quite opposite to the impression gained from using random cloud models that ignore the special character of a pitted surface. Of course, we have not yet counted the single reflections that strike the external surface without entering a pit. If such external areas were assumed equal to the space between touching round pits, then the P_{1} geometric probability becomes about $1 / 4$ instead of $1 / 8 . P_{2}, P_{3}$ etc. are decreased proportionately.

Relatively simple observations of the rough airless planets allows one to deduce that the proportion of singly-reflected rays is very swall in the light emitted from them. Indeed, a convincing experiment can be done with two sheets of paper - one of them glossy and one of them rough. Look at the reflection of an electric lamp from the glossy paper, at all possible phase angles. One can easily see the large increase of reflectivity predicted by Fresnel's equations at phase angles of 160-180 degrees. Note that this phenomenon identifies single reflection. Now, repeat the experiment using the rough paper; there is no increase seen at large phase angles. It is concluded that single-reflections from the rough paper, and the rough planets, are highly attenuated - contrary to conclusions based on random cloud models.

On the Effects of Fine Dust

Electron microscope photographs of lunar surface particles by Bowell, Dollfus, and Geake (1972) showed the particles to be heavily coated with tiny particles of wavelength-sized dimensions (1 micron). This dust has a major effect on the optical properties of the surface.

Because of the small size of the dust particles and this top-layer location, the dust is able to reflect much more light than its proportion of mass in the total surface layer would indicate, especially at opposition. The opposition effect is a phenomenon due primarily to shadowing by the large particles on a surface (particles which are opaque to the light being observed). When not in shadow, the dust particles adkering to the bottoms of pits enhance the reflectivity. If the dust particles are not opaque, which is to be expected if they are small, then a large fraction of the light refracted into them is reversed by internal reflections and emitted to the observer. The bottoms of pits and other areas are then much brighter than if the dust were not there.

The presence of fine dust might be detected by measurement of the amplitude of the opposition peak. Knowledge of fine dust presence may be.a useful clue to the history and camposition of the body observed.

Calculations of the computer model for the Moon and conparison with measured properties of Inar rocks lead to the deduction that the Moon must have considerable fine dust. Otherwise, the reported average size (about 20 microns) of particles is incompatible with the lack of specular reflection from the Moon.

Because dust, if present, is the first reflecting layer, it is of prime interest. Especially so since the attention of research activities has tended to overlook the tiny volume of dust in favor of the more
interesting large particles and rocks. It has become very easy to assume that the optical surface consists of the particles and rocks rather than the inconspicwus dust.

The computer surface model can accommodate one surface layer which can be particles of any size (an average size is assumed). In the model, the uppermost layer gives rise to the diffuse component of light which is a function of particle size, indices of refraction, wavelength, and the angles of observation. If there is no dust, the diffuse component is due to a layer of large particles and a comparison of observations with the model will yield relatively small values of absorptivity (because the particles are large). If dust exists, the comparison will yield large values of absorptivity (because the particles are small). The product of absorptivity and particle size can be closely estimated from measurements of the amount of diffuse light. Accordingly, computations of absorptivity and size using measured data is one means of identifying dust presence. Another means may be in matching the shapes of photometric and polarimetric curves.

It is interesting that the Moon possesses a two component (in size) optical surface. The reasons why this has occurred are not at, all clear. It would probably be a mistake to assume that two-size optical layers have occurred elsewhere, since all size combinations appear possible. In the case of small asteroids, there is reason to believe that dust created by meteoritic impact might not be retained by the low gravity.

Calculating Fine Dust Effects

The presence of fine dust particles adhering to large particles not only has interesting consequences concerned with the capture of light rays. It also brings to mind a concept put forth in a poem by Johnathan Swift
(1865), later paraphrased by Fielder (1920).
"Big fleas have little zletes to Plague, perplex and bite 'um, Little Ileas have lesser fleas and so on.... ad infinitum."

The application of this concept to airless planets greatly reduces the area available for specular reflection. For, if one takes the area of outjutting particles as r 25\%, and this area in turn is covered with smaller particles, and so on, then the net area of specular reflection is $.25 \times .25 \times .25$. . . ad infinitum. In the model here, the effect is to increase diffuse light at the expense of singles, while double reflections remain about the same.

It is probable that the lunar surface refleces relatively small amounts of singles. This would ber reflected in polarimetric data as a dacrease of P (Max) and increase in P (Min.). Bowell, Dollfus and Geake (1972) have compared the optical properties of Iunar samples with adherent dist against the polarization found for laboratory materials and noted the decrease of amplitude of maximum polarization $P(m a x)$ accompanied by an increase of $P(m i n)$ amplitude in the lunar samples, as would be expected from this concept.

In this model, fine dust is accounted for by a factor DUS winich has a value 1.0 for total dust coverage, and 0 for none. Note that FORTRAN-style notation, such as "DUS" will be used for some mathematical variables in this article, especially those that actually appear as such in the FORTRAN program given in the appendix.

The Single Reflections of the Model
Assume that the incident sumlight is unpolarized. After each
reflection from a surface, Fresnel's laws state there will be a component of light, E_{\perp}, polarized perpendicular to the plane of incidence, and a component, $\dot{U} / /$, polarized parallel to the plane of incidence. The reflection coefficients for the two components are taken as

$$
\begin{align*}
& X=2\left|E_{\perp}\right|^{2} / I_{i}=|a-b|^{2} /|a+b|^{2} \text { and } \tag{1}\\
& Y=2\left|E /\left.\right|^{2} / I_{s}=|a-b|^{2}\right| a+\left.b\right|^{2} \tag{2}
\end{align*}
$$

$$
\text { where } \begin{align*}
a & =\cos 1 \\
b & =\left(m^{2}-\sin ^{2} i\right)^{1 / 2} \tag{3}\\
c & =m^{2} \cos i=m^{2} a \tag{4}
\end{align*}
$$

and i is the angle of incidence, equal to half the phase angle G, and m is the complex index of refraction defined by $m=n(1-i X)$, and I_{s} is the intensity of incident sunlight.

The polarization fraction P is given by

$$
\begin{equation*}
P=(X-Y) /(X+Y) \tag{5}
\end{equation*}
$$

The singles intensity function is composed of two terms. An opposition term depending upon reflections from pits and affected by shadows, and a term due to reflections, external to pits, unaffected by shadows. Both terms can be diminished by the effects of fine adhering dust.

For the opposition term, it will be assumed there exists an average vidth/depth ratio, WID, which characterizes the pits of the surface, as in Figure 2. At phase angles G<WID, most of the surface is in shadow and the value of the term falls to near zero. Using an exponential to represent the function, the term is,

$$
\begin{equation*}
\text { opposition intensity } \alpha \frac{W I D}{8}(1-D U S) \exp (-G / W I D)^{2} \tag{6}
\end{equation*}
$$

The opposition term becanes zero for singles if the insides of the pits are covered with dust that absorbs or converts all the incident light into diffuse light.

The externally reflected term requires choosing that fraction of the surface which is exposed and available for specular reflection. This fraction, EXT, is expected, as discussed, to be in the range $0.1 \leqslant$ EXT <0.3 for meteorite-impacted surfaces, but conceivably could be different for exotic surface materials.

Sumarizing, the singly-reflected light intensity is given by

$$
\begin{equation*}
I_{1}=I_{S}\left[E X T(1-D U S) S H A D+W I D(1-D U S)\left(\exp (G / W I D)^{2}\right]\left[\frac{X+Y}{2}\right]\right. \tag{7}
\end{equation*}
$$

A Commerit on Reflection of Singles

The absence of intense rellection of light from the Moon and Mercury, at near grazing angles of observation is Prima Facia evidence that single reflection is .small because Fresnel's equations predict reflectivity (for singles) of 40% to 100% at phase angles of 160° to 180°. This strongly suggests that the factor EXT (external specular area) must be small in the computer model, or that DUS (fraction of fine dust coating) is large or a combination of both.

On the other hand, Mars, the Asteroids, and other outer planets and moons have never been observed at large phase angles, so the possibility of significant specular reflection of singles exists. The asteroids, especially, may be strong candidates to show some specular reflection, since some of them may be still young since formation by molecular condensation, and their small gravity may not retain fine dust ureated by
meteroritic impact. The variation of the factor EXT and DUS in the computer model can show predictions of photopolarimetric curves for comparison with observations, and so it may be possible to detect such bodies even though observation at large phase angles is prohibited.

A second conclusion is that models and theories of light reflection from rough surfaces which are based upon an assumed damination by single reflection, are fundamentally unsound. The results of such models should be used with great caution.

The Doubly-reflected Light Function

The computer model of wolff (1975) which made a many-rayed simulation of double reflections at all possible angles was convincing and yieided auch information on the processes of light reflection, but the extreme complication of the computer routine made it cumbersome and not amenable to analysis. Using the experience of that model, a simpler analytic expression has been devised in which four rays, one in each of four quadrants, are used to calculate the properties of doubly-reflected light.

The new expression must still preserve the important properties of double reflection which are:

1) the net reflectivity depends on the product of two reflection coeffients;
2) intermediate light paths into left-right quadrants are calculated separately from paths going into forward or backward quadrants;
3) shadow attenuation can be applied to the forward quadrant paths, in accordance with the shadow geometry of a rough surface;
4) the net polarization calculates to zero at opposition; and,
5) the dependence on phase angle is closely preserved.

The four representative intermediate-path rays can be chosen in many ways,
but one apparent choice is that ray which points directly through the center of each quadrant; i.e. exactly forward, exactl; backward, left and right. These have the required properties, but the net reflectivity is about 20\% less than the whole quadrant integration, so an adjustment factor of about 1.20 is in order.

In the left and right quandrants, the average intermed.ate path is always at right angles to the incoming and outgoing rays, so there is very little change of the average angles of incidence which are about 45°. It is therefore sufficient to use a fixed representative ray path to calculate reflectivity.

Although the angles of incicence can be fixed at 45°, the change of phase angle causes rotation and requires the use of the matrix calculation of Wolff (1975):

$$
\binom{X_{2} L}{Y_{2} L^{L}}=|M 20| \cdot\binom{X\left(45^{\circ}\right)}{Y\left(45^{\circ}\right)} \cdot|M 12| \cdot\binom{X\left(45^{\circ}\right)}{Y\left(45^{\circ}\right)} \cdot\binom{I_{1}}{I_{2}}
$$

These are greatly simplified because of the constant angle 45°, so

$$
|M 20|=|M 12|=\left|\begin{array}{ll}
\cos _{2}^{2}(G / 2) & \sin _{2}^{2}(G / 2) \\
\operatorname{Sin}^{(G / 2)} & \operatorname{Cos}_{(G / 2)}
\end{array}\right|
$$

where $X\left(45^{\circ}\right)$ and $Y\left(45^{\circ}\right)$ are reflection coefficients at $45^{\circ}, I_{1}$ and I_{2} are the initial light components (we have chosen unity), and $X_{2 L}$ and $Y_{2 L}$ are the final double-reflected light components in the lateral (left and right) directions.

Only one such calculation is needed for each phase angle instead of hundreds as before.

The matrices containing sines and cosines of $G / 2$ account for the
interchange of Fresnel components as the phase angle changes from 0° to 1800.

In the forward and backward quadrants, the angles of incidence of the average rays at the two surfaces change in direct proportion to the phase angle, so the representative reflectivities become,

Forward quadrant: $\left\{\begin{array}{l}X_{2 F}=1.2\left[X\left(45^{\circ}+G / 4, M R, M I\right)\right\}^{2} \\ Y_{2 Y}=1.2\left[Y\left(45^{\circ}+G / 4, M R, M I\right)\right\}^{2}\end{array}\right.$
Backward quadrant: $\left\{\begin{array}{l}X_{2 B}=1.2\left[X\left(45^{\circ}-G / 4, M R, M I\right)\right]^{2} \\ Y_{2 B}=1.2\left[X\left(45^{\circ}-G / 4, M R, M I\right)\right]^{2}\end{array}\right.$

Probability Functions for Doubles

In addition to computing the reflectivity of the two surfaces, it is necessary to compute the geometric probability that two reflections will oceur in the surface. An assumption is used here that the probability not used by refraction or by singles reflection, will be evenly divided betwern doubles and higher order reflections - as was found for the case of hemispherical pits. Maximum doubles probability occurs at oppesition.

There are two terms of the maximum doubles probability; one term is due to reflections from inside of the pits, and a second term is due to dust-covered area outside of the pits. If there were no dust, the outside area results totally in singles. These two terms are:
$G P 2=\underset{\text { geometric probability }}{\operatorname{maximum}}=1 / 2(1-$ EXI $)+(E X T)(D U S)$

Equal number of incident light rays must go into each quadrant at
opposition because of symmeicry. It will be assumed that this is approximately true at all phase angles. To support this, one observes that polarization of the Moon and Mars are almost independent of the angle of incidence. Note that phase angle independence is not assumed - quite the contrary.

The probability of doubles escape from a pit depends on the phase angle in different ways for the different quadrants. This is because of the different angular paths taken by the rays as illustrated in Figure 2A, B, C. The forward rays are cramped for space to make two r eflections and therefore a narrow exponential function with half the angular pit width is used as in Figure 2B. The backward, left and right quadrant rays are not constricted as the singles, so the exponential expression to express the phase angle dependence has four times the width.

Summing up, we can now write the intensity of the doubly-reflected light as the product of the reflectivity and the geometric probability, as follows:

> Left/right: $I_{2 L}=I_{2 R}=I_{S}(G P 2) \exp (-G / 4 W I D)\left(X_{2 L}+Y_{2 L}\right) / 2$
> Foward: $I_{2 F}=I_{S}(G P 2) \exp (-2 G / W I D)\left(X_{2 F}+Y_{2 F}\right) / 2$
> Backward: $I_{2 B}=I_{S}(G P 2) \exp (-G / 4 W I D)\left(X_{2 B}+Y_{2 B}\right) / 2$
where the left and right quadrant contributions are identical.
The total contribution of doubles is

$$
\begin{equation*}
I_{2}=I_{2 L}+I_{2 R}+I_{2 B}+I_{2 F} \tag{15}
\end{equation*}
$$

II. A NEW FUNCTION TO COMPUTE DIFFL'SE LIGHT

We seek a particular mathematical description of a well-known property of light diffusely reflected from particles. It is commonly observed that colored crystals appear winite if they are finely ground. This is because light paths through the crystals are shorter when finely ground, and the total surface area is larger. Accordingly, the reflection opportunities, which appear white, are increased and the absorption opportunities, which produce color, are decreased. This phenomenon is an example of the calculation sought. Specifically, we want to find an expression for the emitted diffuse light as a function of particle size and the optical indices of the particles.

The advantage to be gained from this approach is that by using the measured albedo and an estimation of the real index, a calculation can be made of the product:
(particle size) x imainery index)
Then, two measurenents at different wavelengths, displaying different absorption, will yield an unambiguous particle size. Further measurements conrirm the result.

This approach consists of four steps. First, the amount of light which enters the particulate surface is calculated. Second, the distances travelled inside the particles are calculated. Third, the amount of light emitted into the source semisphere is obtained, and finelly, a normalized angular distribution function must be added to provide isotropic (assumed random) angular emission.

Step 1: Light Entering the Surface.

The amount of light refracted into the surface particles can be computed by assuming that all angles of incidence are equally likely, which is reasonable for a random jagged surface.

The weighted average coefficient of refraction, designated REF, is the integral overall angles of incidence, a:

$$
\begin{equation*}
R E F=1-\frac{2}{\pi} \int_{0}^{\frac{1}{2}} \frac{\pi / 2}{X(a, M I, M R)+Y(A, M I, m r)] d a} \tag{16}
\end{equation*}
$$

Which can be numercially integrated easily in a computer program. For purposes of analysis, a simple approximation can be used,

$$
\begin{equation*}
R E F \simeq 1-1 / 2\left\{X\left(45^{\circ}, M I, M R\right)+\left(Y\left(45^{\circ}, M R, M I\right)\right\}\right. \tag{17}
\end{equation*}
$$

Where the integral has been approximated by the value of the integral at the center $\left(45^{\circ}\right)$ of the integration range. This is perhaps no more than 5-15\% in error.

Step 2:and 3: Light Paths Inside and Escape from the Particles.
After a photon enters a particle, it will bounce around inside by internal reflection, until it either escapes by striking a wall at an incident angle which is less than the critical angle, or, it will be absorbed. It follows that the length of the path traveled inside depends on the real index of refraction through the critical angle, on the size of the particle, and on the imaginary index which governs absorption.

The probability of escape depends on the size of the "Cone of escape" whose apex angle is the critical angle and which is formed around a perpendicular to the wall. If all angels of striking the wall are equally probable, then the escape probability is the ratio of the escape-cone
solid-angle to the solid-angle of a hemisphere (2π radians). . However, since an escaping ray can be emitted into either the outside hemisphere (really escapes), or into the planetside hemisphere (gets trapped again), the true probability of escape is $1 / 2$ of that ratio. The escape cone solid angle will be dnoted $\operatorname{CONE}(n)$. For an index $n=1.6, \operatorname{CONE} / 4 \pi \simeq 12 \%$.

The emitted ray intensity at the Nth reflection is

$$
\begin{equation*}
\Delta I_{N}=-I_{N} C O N E / 4 \pi \Delta N \tag{18}
\end{equation*}
$$

By regarding N as a functional variable, with little error, the above expression integrates immediately to

$$
\begin{equation*}
I_{N}=I_{N-1} \exp (-N \operatorname{CONE} / 4 \pi) \tag{19}
\end{equation*}
$$

If the subustance of the particle is absorbing, then the ray will ala be diminished between reflections by absorption while travelling the paths of length $N \times D$, where D is the average distance between reflections about the same size as the particle diameter. This can be written :

$$
\begin{equation*}
I_{\mathrm{N}-1}=I_{0} \exp (-\mathrm{KDN}) \tag{20}
\end{equation*}
$$

where I_{0} is the intensity of a ray when it first enters the particle and K is the absorption coefficient; $K=4 \pi(M I) / \lambda$

Combining Eqns (18, 19, 20) yields the light emitted at each reflection

$$
\Delta I_{N}=I_{0} \exp (-N(K D+C O N E / 4 \pi)) \times(C O N E / 4 \pi) \Delta N
$$

The total emitted light is obtained by summing this expression over all reflections from 0 to ∞. Again, to avoid a cumbersome procedure and result, an integral can replace the sum with little error.

$$
\begin{equation*}
\sum_{0}^{\infty} \Delta I_{N} \cong-\int_{0}^{\infty} I_{0} \exp (-N(K D+\operatorname{CONE} / 4 \pi)) \times(\operatorname{CONE} / 4 \pi) d N \tag{21}
\end{equation*}
$$

Integrating and replacing I_{0} with $I_{s} R E$, yields

$$
\begin{align*}
I_{3}=\text { Diffuse emitted light } & =I_{s} R E F /(1+4 \pi \mathrm{KD} / \mathrm{CONE}) \\
& =I_{s} \mathrm{REF} /\left[1+(4 \pi)^{2} D^{\mathrm{MI} / \mathrm{CONE}]}\right. \tag{22}
\end{align*}
$$

where I_{s} is the illuminance of the sun at the surface of the planet, D_{λ} is particle diameter in wavelengths, and REF is Eqn. (16 or 17), already obtained.

Equation (22) is the expression sought. It provides the intensity of diffuse emitted light as a function of the particle size D, and the indices of refraction, MR and MI which are contained in CONE, REF, and K. This result is somewhat surprising. One might expect an exponential attenuation of light to yield a sharp darkening as absorption is increased rather than the simple inverse relation obtained. But the summing of many paths results in a less severe attenuation.

Step 4: Angular Distribution of Diffuse Light from a Planet.
It is evident that diffuse light from a planet travels the least distance through the planet's surface in reaching an observer, when it comes from the sub-earth point and is at zero phase angle. At larger phase angles, the path through the surface assumes greater and greater values. The derivation of a function which describes the attenuation due absorption along the path is given by holff (1975, p. 1402). The result is classical
and termed the Lommel=Seeliger function (L-S). In terms of the phase angle, G, and the longitude, L, it is:

ATTENUATION $=2 \cos (G-L) /(\cos (G-L)+\cos L)$
In order to approximate the opposition effect, one can arbitrarily divide the light of Eqn. (24) into halves, one half of which is subject to opposition shadowing, thus Eqn. (24) is multiplied by

Opposition factor $=\frac{1}{2}+\frac{1}{2} \exp$ (G/WID)
We can now reach our final conclusion by combining the above with the new result shown in Eqn. (22), and thus obtain a complete expression for diffuse light from a rough, particulate planetary surface:

PLANET"S DIFFUSE LIGHT $=\frac{\mathrm{I}_{\mathrm{S}} 2 \text { REF } \cos (G-L)\left(\frac{1}{2}+\frac{1}{2} \exp (G / W I D)\right)}{(1+4 \pi K D / C O N E)(\cos (G-L)+\cos L)}$

The physical interpretation of Eqn. (24) is that light enters a particulate surface and along its path successively enters various particles, bouncing around inside of them, exits, enters, etc. and eventually a part of the light reaches the surface and goes to the observer. Two photon capture probabilities are involved, one is capture by a particle and this probability increases with phase angle, G, and depends on L; the second is capture by the crystalline lattice inside the crystal and this depends on particle size, its length, and the indices of refraction.

Eqn. (24) is a new result. Its ultimate usefulness and accuracy in describing the emission of diffuse light remains to be tested by observation.

Case of An Entire Planet

If the entire planet is in the field of view of the measuring instrument, as must be the case when observing small objects, such as the unresolvable asteroids, the total signal is the integral over the visible, illuminated portion of the planet. A spherical body will be assumed.

The differential element of area in the integral must be a projection of the planet's surface onto a plane perpendicular to the line to the observer. Reference to Figure 3 provides an element $d A=(R \cos L \cos 1 d L)$ ($R \mathrm{dl}(1-\cos L(1-\cos 1))) . R$ is the planet radius, L is the longitude and 1 is the latitude. The illuminated part of the planet lies between longitude - $\pi / 2$ and longitude $\pi / 2-G$.

The integrand must sum over the three components of light I_{1}, I_{2} and I_{3} :

$$
I \text { (planet })=E\left(\text { sun } \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\pi / 2}^{\pi / 2-G}\left[I_{1}+I_{2}+I_{3}\right] d A\right.
$$

where the three components are given by Eqns, (7), (15) and (24).
The integration over latitude 1 is straight-forward and results

$$
\begin{equation*}
I(\text { planet })=R^{2} \int_{-\frac{\pi}{2}}^{\pi / 2-G} d L\left[2(\cos L)+\cos ^{2} L(\pi / 2-2)\right]\left[I_{1}+I_{2}+I_{3}\right] \tag{25}
\end{equation*}
$$

There appears to be no ready integral for Eqn. (25). If $I=f(L)$, so in the computer model, this integration is carried out numerically.

Terminator of the Planet

At the location of the terminator, a function of G and L, the intensity of I_{1}, I_{2} and I_{3} must go to zero. En. (23) accomplishes this for I_{3}. For I_{1} and I_{3}, an approximation for the visible, illuminated area of a particle is useful:

$$
S H A D=1+\frac{G}{L-\pi T^{2}}
$$

This is used as a multiplier of I_{1} and I_{2}.
$\operatorname{R.d} l(1-\cos L(1-\cos l))$
$R d L \cos L \cos l$

FIGURE 3. Integration over the visible illuminated surface of a planet uses an area element projected onto a surface perpendicular to the observer.

Diffusely-emitted light has a different angular dependence than singles or doubles and has a greater dependence upon longitude.
III. COMPUTER PLOTS OF THE NEW MODEL

The following sets of figures use the new surface model to plot quantities which are observable, as well as the separate components of polarization and light intensity which are not observable but of interest.

At first, the main goal of the plotting program was to produce a model which matched the Moon, since we know mest about that surface. This was done by choosing suitable values of the parameters DUS, EXT, real index (MR), imaginary index (MI), pit width/depth (WID) and longitude. After those values were once determined, they were not altered during the production of this entire group of figure sets, except for the variation, one-by-one, to illustrate the effects of each parameter, shown in the figure sets.

The unusual discovery was made that by changing only MI, it was possible to reproduce the characteristics of much of the CSM taxonomy of asteroids. This is discussed at length in what follows. The quantitative matching of computer results with observations over a broad range of parateters and measurements is quite remarkable in view of the diverse properties concerned and the complex nature of the furctions involved. It is concluded that the model can be regarded as quantitative for many purposes.

The curves which best fit the Moon use a real indipx of 1.6 ± 0.5. This a_{i} rees well with everazes of Luner sarmies;

Note that the ranges of indices for real minerals implies a significant range of yolarization
amplitudes.

Reddening, like polarization, also shows dramatic changes when $\mathbb{M R}$ is che jed. This might be used to detect violation of albedo determining rules.

 REAL REFRACTIVE INDEX VARIED
WAVELENGTH SHIFT $=33$ PCT REAL REFRACTIVE [NDEX VARIED
WRVEIENGTH SHIFT $=33$ PCT

REAL REFRACTIVE LNDEX VARIED

The observed reflectivity of the Moon, .085, agrees
with the real index of 1.6 , if the parameters listed on Fig A of this set are assumed (or thus deduced).
 because the changes are opposite and offset each other.
 Figure 4 G . The total of all light components point on a planet.

REAL REFRACT]VE L'iDEX VARIED

$$
\text { 日z'0 } 02^{\prime} 0 \text { 02'0 }
$$

PHHSE RNGLE - DEGREES
Figure 5A. Polarization at a point on a planet.
impginary index varied, s-RQnge
havelengit shift $=33$ PCI

Figure 5 C. The reflectivity shift, in magnitudes, of a point on the planet, for a wave-

IMAGI NARY INDEX VARIED, 5 -RANGE
WAVEIENGIH SHIFT $=3$ PPC.
$00 \sqrt{2} 00 \cdot 51$

$$
\begin{aligned}
& \text { LMAGINARY INDEX VARIED; S-RANGE } \\
& \text { WRVELENGTH SHIFT }=33^{\circ} \mathrm{CI}
\end{aligned}
$$

 the integrated planet, for a wavelength shift of 33 percent.

$$
\begin{aligned}
& .006 \\
& .005
\end{aligned}
$$

$$
5<\cdot \sqrt{0} 0<\cdot 5
$$

$$
03 \mathrm{~N}^{\circ} \mathrm{S}
$$

30.00 PHRSE ANGLE 90.00 DEGREES 120.003 Figure 5 D. The reflectivity shift, in magnitudes, of Note that the coserved rule that darker bodies show greatest reddening, is reproduced by this

$5 \varepsilon \cdot \sqrt{0} \quad 0 \cdot{ }_{0}^{r}$

$\stackrel{n}{2}$

The total light is dominated by the diffuse
component.

39NHY-S
'03Iy日
IMAGINARY INDEX VARIED,

$$
s e \cdot \bar{o} \text { oc }
$$

$$
\ldots .
$$

[MAGINARY INDEX VARIED, 5-RANGE

 Figure 5 GHASE ANGLE - The total of all light components

Figure 5. The total of all light components point on the planet.
The total light is dominated by the diffuse

号
component.
LMAGINARY INDEX VARIED，S－RANGE．
 －component of light，alone．

Figure 5 J . The intensity of the singly-reflected
IMRGINARY INDEX VARIEC, S-RANGE.

IMAGINARY INDEX VARIED, G-FANGE
Figure 6 A to Figure 6 K
 The lower reflectivity of the C objects compared
 from within the particles. Accordingly the expected intensity of absorbtion spectra is less. In this range, MI affects mairily only the diffuse component of light. Just as for the S-range, MI is too small compared to the real index to appreciably light components.
Although scatter diagrams of the S and C asteroids show a marked discontinuity between the groups, as a theoretical surface model does not. If a theoretical basis cannot be found, then an explanation must be sought in either origin or material of the two asteroid groups.
IMAGINPRY INDEX VARIED, C-RANGF

IMAGINARY INDEX VARIFD, C-RANGE

IMAGINARY INDEX VARIED, C-RANGE

The ima inary index causes the abs
The imaginary index causes the absorbtion of light
while it is traveling inside of the particles, so
the diffuse light component is reduced. The reflected
components are not affected however, because the
index is still too small.

00

Figure 6 I. The polarization due to the doubly-
IMAGINARY INDEX VARIED, c-RANGE.
IMAGINARY INDEX UARIED, c-RANGE
IMAGINARY INDEX VARIED, C - RANGE

Figure 6K. The intensity of the doubly-reflected $\begin{aligned} & \text { Compony index of refraction }=.008 \text { to } 028 \\ & \text { component of light. }\end{aligned}$
 IMAGINARY INDEX VARIED, C - RANGE
IMAGINARY INDEX VARIED, C - RANGE.

- 5
IMAGINARY INDFX (MI) VARIFD, CM RANGE These figures describe a group of very dark
objects with a wide range of MI, 02 to $0.32^{\text {g This }}$
range deliberately crosses from the C-range into the
M-range in order to illustrate the unusual reflectivity
minimum which occurs at li eaual to about 0.1 and
accompanied by an inversion of several other measureables.
This might be regarded as 2 natural boundary between
the C and M groups, however there appearg to be no
reason to expect a discontinuity in the occurence of
objects on scatter diagrams. Indeed, no such discontinuity
is observed.
Near the value of 0.l, the imaginary index affects
the diffuse light and the Fresnel reflectivity about
equally; at this point the former is increasing and the
latter is decreasing. This point will be termed the
"CM bouncary index", as it marks the change fmom very dark mineral to metallic substances.
At the CM boundary, dominance of reflectivity passes from diffuse light, which will drop to zero as incex towards 100%, as a pure metallis condition is approached. In a wholly pitted surface of a motaliic body, probability for singles, and, as the reflectivity approaches one, the handicap of double attenuation approaches one, the handicap of double attenuation at expect a very large negative branch - as large as positive - if any asteroids were wholly metallic.
Such large negative branches have not been observed. It must be concluded that they do not exist, or if they do, their surfaces are not heavily pitted.
Obviously, near the CM Boundary Index, the Slopealbedo Rule (her large side of 0.1 , these rules have an entirely different proportion. The mistaken use of the Albedo-polarization Rules near and higher than the CM Boundary Index would result in mistkenly placing M and E objects into the C group. It might be that reddening measurements could identify these cases, if theyexist.

(

[^0]
IMRGINARY INDEX VARIED, CM-RANGE

Figure 7 G . PHASE ANGLE - DEGA of all light compon
a point on the planet.
Figure - (sincles + doubles + diffuse) at
Note the inversion of order when MI becomes
larger than 0.10 ; singie and double reflected light has exceeded the diffuse light.
[MAGINARY INDEX VARIED, CM-RANGE

The absorbtion becomes so large insioe the particles for large MI (imaginary index) that the diffuse light is practically zero.
IMAGINPRY INDEX VARIED, CM-RRNGE
$$
00 .
$$

\because
IMRGINRRY INDEX VARIED; CM-RANGE In these two figures, it is evident that the imaginary index
a critical value of about 0.1 . This value appears to mark the
boundary between the C and A domains of surfaces. It will be termed
dusts become essentially opaque at this value of index.

IMAGINARY INDEX (MI) VARIED, M/E RANGE
These figures produce a description of objects which may correpond to the M and E objects of the CSM taxonomy. The range of MI, 0.2 to 0.6 , represents approaching
metallic condition of the material. the M or E asteroids, for the parameters of reflectivity (high) and the R / B color index (low), as well as the The calculated values of P-min are much too large compared to the observed M and E asteroids. One can conclude that the correspndence is incorrect, or, that the asteroids are mixtures, or, that the surfaces of metailic asteroids are not as heavily pitted and dusty as this computer model which closely matches the Moon
The third choice above is attractive because it is well known that minerals become more malleable and less liable to fracture as they approach the metallic condition. Merefore, if the M and E asteroids are metallic, one expects them to have less pitted and
 of 3 for the M asteroids, and a factor of 3 for the E asteroids, a similar decresse of dust and pits is required, in the computer model.
Another uncertainty is the possible variation of the real refractive index, which has a very large effect on the polarization properties of a surface (see the of the real index are much wider than for crystalline minerals.

> G9NE
> MAGINARY INDEX VARIED-M
WAVEIENGTH SHIFT $:=33$ PCI

IMAGINARY INDEX VARIED-M RANGE

[^1]
havelength shift $=33$ PCT

SE

 SE DE'0 havelengin shat - 33FeiIMAGINARY INDEX VARIED-M RANGE

Figure \& D. The reflectivity shift, in magnitudes, of shift of 33 percent.

Note that, despite the reversal in Fig E (right), "reddening is still following the rule that the dark-
[MRGINARY INDEX VARIED-M RANGE

IMPGINARY INDEX VARIED-M RANGE

> IMAGINARY INDEX VARIED-M RANGE
Figure 8 K . The intensity of the doubly-reflected component of light.
 DEGREES PHASE RNGLE
 Figure 8 K.

In the M-range of index, the total reflectivity is
dominated by the large increase of Fresnel reflectivity
due to the imaginary component of the index. Singlo and
double reflections become the largest components.

IMAGINARY INDEX VARIEU - VERY LARGE M-RANGE These curves illustrate the extremely large values of the imaginary index which correspond to metals are crytals such as sular observed at It is not clear that there exist any objects with these properties, or if they do exist, that their sufaces posses the pitted, particulate properties assumed in this computer surfice nodel. If this range of imaginary indices does exist
in solar-system bodies, it is possible that the surface is smooth and only lightly pitted, for example like iron-nickel meteors. If this is true, then the polarization calculated for the positive branch would not be much changed, but the negative branch would be several times smaller.

havel ength shift

$$
\begin{aligned}
& \text { Figure_ P. Polarization shift for a wavelength } \\
& \text { shift of } 33 \text { percent. }
\end{aligned}
$$

Figure 9 E . The integrated reflectivity of the entire plenet.

Because of the lar ge values of the imaginary index,
well into the metallic range, the specular reflectivit makes aimost the entire contribution to the planet's reflectivity.
LMHRINARY LNDEX VARIED-M RANGE

> IMHGINHRY INDEX VARIED-M RANGE.

 Figure 10 A. Polarization at a point on a planet.
Increasing the flat surface increases single
reflection which produces + polarization. This
competes with the - polarization due to double
reflections, raising $P(m i n)$ and pushing the
inversion point to the left.
The low values of flat surface have not been
observed for solar system bodies.

FLAT SURFACE (EXT) VARIED

Figure 10 A to Figure INK
These figures illustrate the effects of changing the . These figures illustrate the effects of changing the specular reflection. This "flat" surface is varied between zero and 40 percent.

In the model, external flat area is also changed by covering part of it with dust. Then the dust-covered part becomes a double-reflections source.

The eauations for single-reflections use FXT in two ways. One equation computes singles reflecting from outside of pits,
outside singles $=$ EXT $x(1-$ Dust) x and the other equation computes singles reflecting from inside of pits,

outside doubles

pit singles $=(1-E X T) \times(1-$ DUST $) x$

EXT x DUST x

$$
\text { pit doubles }=(1-E X T) \times \ldots
$$

When trying to unravel meaning of polarization measurements, there is a simple geometric fact which becomes a powerful tool of analysis, "The sum of the pitted area plus the non-pitted area is a constant". The sum of the two is, of course, the negative polarization branch, and , the non-pitted area is associated with the positive polarization branch.

For example, in the figure at right, as EXT is increased the positive branch grows, and the negative branch
diminishes. This is immediately understood by applying the above principle ; if singles polarization is increased by geometric change, then the doubles polarization mast decrease. Note, also, that the inversion point moves to the left.

FLAT SURFACE VARIED
WAVELENGTH SHIFT $=33$ PCI

FLAT SURFACE VARIED
FLAT SURFACE VARIEO 33 PCT
FLAT
WAVELENGTH SHIFT $=3$ SPT
flat(specular) surface $=00 \%$

> FLAT SURFACE VARIED
sero oc ro sero on. PHASE ANGLE - DEGREE
Figure 10 G. The total of all light components
(singles + doubles + diEfuse) at a point on the planet.

Figure 10 I. The polerization due to the doubly-reflected
component of light, alone.

FLAT SURFACE VARIED
FLAT SURFACE VARIED

These two figures illustrete clearly that increasing the specular surface increases the singles reflections, but robs the doubles of offortunity for reflection hecruse there is less area (non-specilar) remaining.
FLAT SURFACE VARIEO

> WHVELENG 1 HIXTL J VARIED PEPL INDEX $=1.6$ IMAG INDEX = COT PIT WIDTH/DEPTH $=0.80$
GUSI $=40$ PERCENT FLAT SURFRCE $=30$ PERCENT LENGIIUOE $=-74$ DEGREES wavelength, because the unit of size is wavelength. Smeller particles means longer wavelengths. As wavelength is incressed, the travel distance for diffuse light inside the particles becomes smaller resulting in less attenuation. This produces more diffuse light to dilute and decrease polarization.

WhVELE.NGTH(XTL) VARIED

Whvelengthixtlu varieo

 (aticle diameter $=\begin{aligned} & 10,12,14,16,18 \\ & \text { wavelengths }\end{aligned}$
Figure II K. The intensity of the doubly-reflected

PIT WIDTII/DEPTH RATIO (WID) VARIED
This set shows the variation of the computer peramber WID which is closly related to the average ratio of width to depth of the pits and interstices of the reflecting constant to compute light components which decrease with phase angle such as the opposition effect and double reflections which come out of pits. For example, The various uses of WID in the computer model imply geometric properties of the pitted, particulate surface, some of whichare evident from the following list of constantswhich have been chosen :
exponential constant
The actual width/depth of the average pits on the surface is approximately $4 \times$ WID.

$$
\begin{aligned}
& 4 \text { WID } \\
& 8 \text { WID } \\
& \text { WID } \\
& \frac{1}{2} \text { WID }
\end{aligned}
$$

In a later section of this report, some relations
are derived between WID, the inversion angle, and the
angular position of $\mathrm{P} \rightarrow$ min.

> PIT WIDTH/DEPTH VARIED
WAVELENGTH SHIFT $=33 P C T$
$54.0 \quad 0<{ }^{\circ} \mathrm{O}$
$599^{\circ} 00$ 09. 0
\$0.00 $\quad 30.00 \quad 60.00 \quad 90.00 \quad 120.00 \quad 150.00 \quad 15$ PHFSE ANGLE - DEGREES Figure 12C. The reflectivity shift, in magnitudes, of a point on a planet, for a wavelength shift of 33 percent.
SE.
 planet.

Figure 12D. The reflectivity shift, in magnitudes, of
$5<\longdiv { 0 } \quad 0 < r _ { 0 } ^ { 0 }$
$59 \cdot{ }^{\circ} 0$
PIT WAVELENGIH SHIFT $=33$ PEI
PIT WIDTH/DEPTH VARIED
WAVEIENGIH SHIFT $=33$ PCI

PIT WIDTH/DEPTH VARIED

FIT Width/depth varied
 PHASE ANGLE - DEGREES component of light.

 33 percent.

Figure 13F. The diffuse component of light at a point on the planet. Diffuse light emerges from particles distance before emerging, thus under-going less absorbtion.

> FINE DUST VARJED

Figure 13K. The intensity of the doubly-reflected
component of light.
Dust shape irregularities convert specular area on
which it falls, into opportunities for double reflection.
 reported.
LONGITUDE OF FOINT VARIED

Figure 1.7 A to Figure 19 K

 Lyot(1929) and Dollfus(195た) have measured polarizationat different locations on the Moon, Mars, and Mercury to at different locatione on the Moon, Mars, and Mercury to report polarization is almost indepencient of location, but lyot reports a noticeable polarization increase at the
terminator. computed here show some small variations, but these are probably less than the errors of measurement. Errors are a vexing problem because the surface texture variations are generally larger than the expected variations due to lat tho
In the computer model, longitu
factors called SHAD and COLGF :

$$
\text { SHAD }=1+0 /(L-\pi / 2)
$$

 corffit coefficient of all the singly and doubly-reflected light
COLGF takes account of the attenuation of diffuse light which emerges from the surface through varying it creates a terminiator at the right longitude. It is a coefficient of the diffuse light component.

> IONGIIUDE OF POINT YARIED

WAVEIENGTH SHIFT $=33 \mathrm{FCI}$
$5<30<{ }^{\circ} \mathrm{O}$

Iongituce $=$

- 80 degrees

O
 Figure 14-C. The reflectivity shift, in magnitudes, of Figure 14-C. A point on the planet, for a wavelength shift of 33 percent.

$20 \sqrt{3} 200$

Obviously, these two figures are not longitude
dependent.

1 ONGITUDE OF PUINT VARJED

LONGITUDE OF POINT VARJED

Figure 1. KK. The intensity of the doubly-reflected
component of light.

Besides indicating the presence of a pitted regolith, the negative branch has the potential of providing useful information, especially for the outer planets which are only visible at smell phase angles. It follows that there is a need to understand the formation of the negative branch in quantitative detail so as to make use of the numerical information available. This section describes in detail the light components which contribute to the negative branch, and, formulae are derived for the approximate position of the inversion angle and the polarization minimum.

Figure $!E$ is a plot of the four components of light which contribute to the negative branch:

FIGURE 1E. The light components which make up the negative branch.
The polarization minimum depends on functions of the pitwidths only. But the polarization inversion angle depends on the pit functions in competition with the specular polarization from external surfaces.

There is a common misconception that the angle of minimum is half of the inversion angle and therefore measure of either provides the same information. It is evident from the above figure that neither of these is true. The two angles are related to separate factors.

The components in the figure are those which contribute to polarization, and are defined with respect to the plane of vision (Sunwobject-Earth) which is the plane of symmetry. Double-reflecting rays which go either side of the plane and then forward are termed sideways doubles. They are the source of negative polarization. Rays which reflect twice and stay in the forward quadrant are termed forwarddoubles. They contribute little to the positive polarization because of rapid attenuation in getting out of the pits. Backward doubles are big contributors to positive polarization because their path makes it easy to get in and out of pits. The Location of P-min -

In the figure near the location of P-min, the two most rapidly changing components are the sideways doubles (-) and the forward doubles (+) . When the rate of change of their sum is zero, a minimum occurs. The other two smaller components can be ignored, because they are both + , but since one is decreasing and the other increasing, even their small contribution is nullified. accordingly, the minimum occurs when

$$
\frac{d}{d G}[2 \exp (-G / s)] \cong \frac{d}{d G}[\exp (-G / F)]
$$

where G is the phase angle, S and F are constants derived from pit width/depth. After carrying out the differentiation, taking logs of both sides, and solving for G, the result is

$$
G(\min) \simeq \frac{\ln (2 F / S)}{(1 / 5-1 / F)} \times \text { wilD }
$$

Thus the phase angle of $p-m i n$ depends mainly on the geometry of the pits through the angular attenuation constants F for forward doubles, and S for sideways doubles. For example, if we use the values used in the computer program, $S=4, F=\frac{1}{2}$, and $W I D=.20$, then $G(\min) \approx .8 \times W I D=9^{\circ}$.

This approximation is gord if $C(m i n)$ is small, say less then about 14° L.t iarger angles, the approximation breaks down because of the presence of single (*) polarization which will make the observed angle small then the celculated approximetion. This can be deduced from the figure.

With this understanding of $\mathrm{P}-\mathrm{min}$, one is immediately led to ask, Why do the asteroids have smaller pit width/depth ratios then the Moon, Mars or Mercury ? and what is the character of asteroid Ceres 1 which has an unusually low $G(m i n)=7^{\circ}$?

The Inversion Point

The point of inversion occurs when the sum of all components is zero. From the figure this condition is
singles polarization (EXT, DUST..) $+e^{-G / B}=2 e^{-G / S}$
It is not convienient to go further with this relation because of the complex dependence of the singles polarization on dust, external surface, Mi, \mathbb{M}, as well as the pit geometry. However it is possible to establish a useful qualitative principle. First, establish that backwaras coubles and sideways doubles have a fairly fixed ratio regardless of the type of surface. This is true, exactly,at opposition because both kinds of rays follow the same kinds of paths with everage reflection angles at 45° for both. As phese angles become larger, the sideways-doubles average angles still remein near $L 5^{\circ}$, while the average angles for backwards doubles is $45^{\circ}-G / 2$. If G is not too big, both types of double rays are affected almost the same.

It follows from the above that the most significant effects on polarization near the inversion point are due to the intensity of singles relative to doubles. Now, combine this idea with the geometric principle (discussed elsewhere) that the sum of pitted area (produces doubles) plus non-pitted area (produces singles) is a constant, and we arrive at the general qualitative principle that : The Inversion Point is An Indicator of the Relative Amounts of Fitted and Non-pitted Area . If pits are relatively larger, the inversion
point moves to the right. If pits are smaller * to the left. This principie is good enough to merit quentitative calibration using laboratory objects.

Prooi from Observation and Anelysis
Ample evidence is available to substantiate these conclusions. Moon measurements always show an unchanging $G(m i n)$ if wavelength is varied, but $G(C)$ chenges. This is because $G(m i n)$ depends on pit ratios which don't change. In the figures of this report where EXT or DUST are varied, $G(O)$ always moves right if these two iactors are increased. This is because they increase the pitted area. Laboratory samples show the same eifect. When looking at wavelength dependent data, recall that the measure of size should be the wavelength itself, so that increasing wavelength tends to decrease non-pitted area.

v. THE COMPUTER MODEL COMPARED TO CSM TAXONOMY

This surface model has provided results which may be closely compared to the CSM Taxonomy of Eovell et al (197E). Fxamination of the mathemtics involved show that this has occured because the new nodel provides quantitative expressions for both diffuse light and specular light. The older model had no computation for diffuse light; it merely lumped in the reatired amount to obtair the desired reflectivity.

Especially, the diffuse light equation, which is a new result, is dependent on particle size, wavelength and both the real and imaginery indices, oi refraction. This res lits in a proper relation between those factors when computing diffuse light and when computing specular lighta This importent addition to the mocel and the resulting quantitative agreements $w i t h$ observetion provide confidence thet, the roael cescribes a pitted, perticuiate surface characteristic of airless planets, in an accurate fashion. 2wo kinds of Reflected Light

The behavior of the new model hecones ciear if one keeps in mind how the

Liffuse light is mainiv due to light which enters rerticies, travels through the: while uncergoing severai internal reflections, and eventually energes efter some absorbtion. is the absorbtion constant (imeginary index) is increased, this ciffuse ingh steadily decreases in amplitude eventually reaching almost zero. Then the imaginary inciex is smell, diffuse light dominates over the specular (singles and coubles) light. However, there arrives $:$ transtion vaiue when diffuse and specular light are about equai. Ther., further \quad rease of the index allows specular light to dominete.

The specular liéht basiceliy depends on computations of Fresnel's equations the resilts of which are moduisted to account for the effects of the pitted

RFFRODUCIBILIT OF TIL ORIGINAI PAG: is PiNR

Figure 16. This figure was prepared for comparision with figures 1 and 2 of
Ecwell ϵt al (1978) which show color indices aganst alkedo in a Ecatter-Eitagram of a fev hundred asteroicis. Those figures form the basis for the Cot exchaty of esteretis.

The ceresert 0 this computer model with the G, C, and M groups of asteroics is exceijent. In the zigure, as you move along the heavy line beginring at the s-range, the imaginary index of refraction (absorbtion constant) steadily increases.

The quantita"ive agreement with asteroid measurement is all the more remarkable in view of the fact thet no adjustable parameters heve been used for fitting. The ertire computer model was created, and then matched at orly one point: the Noon, at the point $F-\min =1 \%$ and reflectivity $=9 \%$.

From that time onward, all calculations have been made with the same mociel. In view of the non-linear, complex functions for the two variables flotted above, agreenent by coincidence scems impossible.

Then making muericei comprisons, keep in mimethet the computer mociel contains no rariation of color due to molecular phenomena. If visible, the nociel material would appear as neutral shades of Elay.

Figure 1. T. This figure was prepared for comparison with figure 3 of Bowell et al (1978), which is a scatter-diagram of asteroids using similar coordinates. Their diagram displays the grouping of the CSM texonomy.

The egreement on the iucation of the S and C asteroids when comparing the computer model with measurements is very good, however the model's values of F-min are far too large in the M-range, or what ought to be the M-range. They run off scale above.

The puzzle is complicated by the lack of knowledge of the real observed $!$: asteroids. It is not known whether, in fact, they possess suriaces, materiais, or any characteristics compareable with the assumed comr:ter model.

Hovever, the computer model itself may be unrealistic for values of the imaginary index in the metallic specular range. The large computed values of $\mathrm{F}-\mathrm{min}, 3$ to $\hat{0}$ percent, are a result of the assumed presence of pits and particles made of glittering metaliic material. Is this a correct description ? It might also be that the metallic material of the N asteroids is a malleabie sort and does not form the pits and particles assumed.
surface. ;hen the imaginary index is small, Fresnel's equations are practically unaffected by chenges in the index. As it is increased, reflectivity slowly increases, and there arrives a value, about $N I=0.1$, when the specular light is about equal to the decreasing diffuse light. At larger values of the index, the speci2lar light increases rapidiy. However, it should be noted that both the parallel and perpendicular components of the Fresnel calculation increase, but unequally, so that the weaker asymptotically approaches the other's value. close Thus, polarizetion gra:ally comes/to zero for very large values of the imagirary inciex.

These ceiculations are strengly besed upon the physical laws of optics. Even though one micht querrel with the details of dinfuse refiection or the formation of the regetive brarch, the general trend of reflectivity ard polarization are inevitably in accorciance with the model. Eccordingly, the eviaence for the model's interpretation of the CSM taxonony is equaily strong. Figures 15 and 17 have been prepared using the same kind of coordinates and showing the same ranges of C, S and M asteroids as displeyed by the authors of the CSM taxonomy (Eowell, etal, 1978). The coincicience of these diagrams, and other numerical agreements, can hardly be accidental especially in view of the complex variation of the diffuse and specular light, and the fact that there are no adjustable peraneters to create "fits" .

The Albedo Ruies

Rules have been variously proposed and used to obtain the albedo of unresolveable planets using the slope of polarization, maximum polarization, and minimum polarization as a function a_{2} the phase angle. Figures 18 and 19 have been prepared to show how these rules appear from the calculations of the computer model. In ali three cases, the computer model produces a quantitative agreement with the empirical rules in a linear range which corresponds to the S asteroids and part of the C asteroids.

These diagrams can be used to deduce reflectivity in the usual way, or

POLARIZATION SLOPE, $\%$ per Degree, at Inversion Angle
Figure 1 E. The Comprted Polarametric Slope versus the Computed Albedo, and some Comperisons with Asteroid measurements.
The computer model agrees well nith the measurements of asteroids, and supports the contcntion of Zeliner thet the Slopemalbedo rule is linear ; in the S-range and part of the C-range. There is a saturation of the polarimetric slope in the M-range, due to the transition of reflectivity dominance from the diffuse mechanism to specular reflection.

The small diagrams in the lower left and the upper right show the magnitude and direction of cormections for conditions of diffuse light and real index other then hat assumed for this figure.

The fact that the correction vector for point-particle diffuse light is parallel to the linear portion of the SIopewalbedo Rule means that calibration error due to thiscause will not occur, but subsequent use-error will be concealed; i.e. C-objects with extremely fine ($d<\lambda$) dust will be misinterpreted too far towards the Sarange.

There is a thenretical minimum aibedo of 2.5% for pitted, particulate bodies.

Figure ! ! C ieximum and linimum Polarization From the Computer Model.
These two curves show a theoretical version of the corresponding rules to obtein albedo from $F-m a x$ and Pamin. These rules are not as reliable, it is thought, as the Slope-albecio rule. The reason, discussed elsewhere, is that errors in the F-min and F-mex rules are opposite and tend to cancel in the Slope Rule.

The computed P-max Pule computed here acrees well with observations, however the $F-m i n$ Rule here is drastically violated in the metalic Mrange by asteroids presumed to be of this type.

Reasons for the N-range failure could be : the pitted, particuiate model does not describe objecus in the M-renge; or, there do not exist any N-type objects, i.e. metaliics vith large absorotion and pitted surfaces.
conversely, if the reflectivity canbe measured by an independent means such as rediometry, then the variation fron the computed curve cante used to deduce variations from the assumptions of the computer model. Potentially compitable variations inciude the real index of refraction and the existence of very fine dust which causes difiuse light by point-particie diffraction. The Vaximum ard Kinimum Folarization Rules

Figure 19 shov:s the compited rules. These rules have been found empiracaily to be less accurate than a Slope-albedo rule and the model offers a logical reason for tris. Neximum polarization of the the positive branch depends on the amount of singly-reflented light compared to the diffuse light. The singiyreflected light, in turn, depends on the amount of specular area visible on the planet. Any veriations of thet area frection must produce errors in the rule.

Similerly, the minimum polerizetion rule derends on the amount of doubjyreilecteu light comperec tothe dinfuse light. The doublyr-reflected light, in turn, derends on the amount of pitted, particulate area visible on the planet. Any variations oi that area fraction prouces errors in the minimum rule. Th Polerizatior Complementarity Principle

1. veru useiv principie for interpreting polerimetry cen be derived from a simple geometric concept concerring airless plenets. It cer be stated, "f. zecmetry-cieperdert Incerese of Fositive Folerization is liways focomparied by a Decrease of Vegative Folarizetion" . It follows from these three assumptions :
I) On a plenet, the area of pits plus the area of non-pits is a constent (ecual to the total anea).
2) Pits produce double reflections and negatively-polarized light.
3) Yon-pits produce single reilections and positively-polarized light. Thus, if the surface structure of a planet should vary from some norm which, say, characterizes an albedo rule, then the singly and doubly reflected light vill vary inversely. An albecic rule depencent on the positive branch will
rave an exror, but the albedo rule which depends on the negative branch will have the opposite error. Another example : If a geometry-dependent variation should occur in the study of polarization inversion angles, then a change which increases the positive branch will decreasethe negative branch and the inversion point will move totine leit. Oppositely, a variation ciecreasing positive pelarization will cause tie inversion a gie to move to the right.

The Slope-albedo Rule

In a review of albedo rules, Bowell and Zellner (1974) clearly show that the empirical scatter of data is least for the Polarization-slope Albedo Rule. The computer model provides a logical reason why this should be true. It results from the Polarization Complimentarity Frinciple and the fortuitous choice of the inversion point to measure the slope. This point lies midway between the domains of the positive and negative polarization branches. If geometry-dependent variations Irom the Eule norm shouid occur, tien by the irinciple, opposite changes occur in the negative ard positive polariastion rapsches winich terd to cancel each other in the slope. If the reader is not convinced, a little pencil and paper work creving the slowes is suichaz convincing. You will also notice, in pencil ciacrams, trat although tine slope remains constert, the inversion angle moves to the left or right, depending on the type of variation chosen, as required by the Frinciple.

Despite these adventaees of the slope-albedo Rule, examinetion of Figure 18 shows that the Iinear rule may feil completely for some derk 0 objects and metellic objects. The double branch of the computed rule suggests that some M or C objecis could be confused with each other, if independent means is not used to cetermine on wich portion of the curve an object lies. f Nev Redcering-AIbedo Fiuie

Figure 20 shows a plot of reddening vs reflectivity as computed using the surface model. Like other rules, it has a linear portion and a second branch.

Figure 20. Reddening is defined as the increase of color ratio with increasing phase angle. The data for this figure was obtained by measuring the slope of the computed color ratio curves. Reflectivity is taken at zero phase angle. All data refers to curves for the integrated whole planet.

It is interesting that in both the dirfuse reflection region and the specular region, the rule of thumb, "The Darkest Planets Show The Greatest Reddening" , is observed. However, there has never been any recognition of two branches to the rule, nor a failure of the rule in the M-range of asteroids. Reddening measurements have very large errors which is why it has been only a qualitative rule. Recent improvments in the sensi.tivity of photometry might change this situation.

It also probably is relatively free from geometry-caused error, like the Slope Rule, because reddening depends on the relative slopes of the diffuse light compared to the slope of the sum of singly and doublyoreflected light . If the rediening measurements are made at angles where the anplitudes of singly and doubly reflected light are about equal, then geometric variations in the surface will not procuce errors. Such equality oniy occurs for the very-large values of the imaginary inciex and at phase angies near zero, thus it might be useful for outer soler-system objects which are metallic. However, this is some error cancellation for all values.

Unfortunately, the rededening rules requires Ereat sensitivity and accuracy im the photometry, so that it would be useful only for bright objects. kn Improved Folarization-minimum rule

The P-min thile for finding albedo is very useful for objects in the outer solar-system where phase angles are always small, but it lacks the error-canceiling feature of the Slope-elbedo Eule. However, an improved P-min tule can have the c error cenelling feature by using the inversion ancle es a negating parameter. For example, an adjusted F-min is calculated using

$$
\text { ADUUSTED } \mathrm{P}-I M=\left[I+\frac{G(0)-G_{2}}{k G_{2}}\right] \times[\mathrm{P}-\mathrm{mia}]
$$

where G_{a} is an everage (calibrated) inversion angle and k is a calibration constant. This makes a correction for the geometry-induced erross in the same nar as occurs naturally in the slope-aibedo rule. The shift of the inversion angle $C(C)$ detects the change of geometry and is used for correction.

COLOR RATIO (difference in magnitudes), computer model,
For a wavelength shift of 33 percent.
Figure 21. This figure shows the color ratios taken from the computer plots displayed in figures elsewhere. This color ratio is similar to color indices such as the U-V or the R / B index of Bowell et al (1978). The color ratios and reflectivity numbers are taken from the computer-generated figures at zero phase angle.

The small diagrams at the top of the page provide corrections to the curves for values of parameters different than those assumed in the computer model. Note that the corrections are vectors.

Obtaining Added Information From fllbedo Kule Variations

If indeperdent means is available for measuring albedo, then the variations from the the values expected from polerization or reddening mes surements, car be used to calculate other parameters of the surface. Two important such parameters are the real index of reiraction and the amount of very-fine dust which causes

Each of these two parameters causes variation of the computed reflectivity with a unique vector on the appropriate diagram. All portions of the diagrams can be calibrajed with these vectors. Two examples are shown on the figures. The P and E Type Asteroids

The R and E asteroids do not appear to fit impedictely intot he series of objects corresponding to an ordered variation of the imaginary index. nowever, thic conclusion is very tentetive because there are oniy 2 or 3 of these objects icientified. Nevertheless, such objects probably fit into the computer suriace model because the only deviations of the objects are with respect to color, and color due to molecular/atomic absorbtions is not modelled. Furthermore, the position of these objects in the high aibedo range means thet there is considerable diffise light ard therefore color variations are strongly present.

Another Model Correspondence

the computer mocel agrees with the CSM taxonomy in yet another way. in the
 no wa. for the dark 0 trpes. And, indeed, there is only one observed C object, among the hundreds which shows color. Asteroid 85 Io has a small pyroxene bend assorbtion. This cbservation seens wsterious.

VI. THE WAVELENGTH DEPENDENCE OF LIGHT
 FROM DARK, ROUGH PLANETARY SURFACE

Introduction

An obvious means of deducing some properties of the surface of airless planets is measurement of reflectance variation with varying wavelength. Such a measurement at one viewing angle will provide enfor information but cannot distinguish a flat sheet from a rocky landscape. To obtain information about the surface geometric structure, it is intuizively clear that the surface must be viewed at different angles seeking some variation as a consequence of the surface geometry. In practice, this means obtaining color data at different phase angles.

For this discussion, two sources of color variztion are considered : Cne, where the absorbtion of light inside the surface material is due to wavelengthdepencent interactions oi lisht with the atomic and molecular energy levels. Two, where the otserved color variations are to size and g eometric factors of a pitted, particulate surface such as that of the airless solar-system bodies.

The former variations are often seen as absorbtion bands in the peflectance spectra. Such measurements and their analysis have been extensively carried out by Mike Ceffy and Tom McCord (1978), and Clark Chapman, to name a few investicators in an active field. The results cen lead to identification of some of the mineral types meking up the suríce. This computer model does not model this effect; instead it is "neatral gray".

The second source is not so obvious because the color variations are mainly due to the relative sizes of particles compared to wevelengths. Observeable color changes are only significant when particle sizes are of the same order as the vavelength, say, $\lambda<d<1 \stackrel{1}{c}$. Several phenomena can occur. In particles which'trap' light temorarily by internal reflection, short wavelengths are absorbed more then long wavelengths, because the short wavelength path is a greater number of wevelengths and that is the factor upon which absorbtion depends. The result is increasing diffuse light reflectance with increasing wavelength.

Another phenomenon of the seconc type is the change of the ratio. of dijfusely-reflected light to speculer light as the viewing angle changes. This happens because itifuse light tends to emerge evenly at almost ell angles, whereas single and double reflected light lends to emerge at angles close to the incident rays, if the surface is a pitted one. Since the disfuse reflectivity is wavelength cependent and the specular light is much less so, the result is a wavelength ciependence on the phase anrie.

These latter two geometric effects are imilicitiy inciuded in this computer mocel of a pitted particulate surface.

Expianction of The Reddening Eifect

A. unexplained phenomeron of the airless planets is the redering of their reflected light with increasing phase angle. His has been observed by Gehrels, Coffeer and Cwirgs (196L) End Gehrels and Owings (1962) on the Moon; on Nars by Irvine et al (1968) and on the asteroics by Wocley et al (1955). these observers measured reflected light usirg photometers and band-pass filters in the $I R$, visible, and UV wevelengths. Reddening was reported as an increase of the ratio of long wavelength intensity comparea to the shorter wevelength intensity, as a difference of magnitudes.

Various explemetions of reddening heve been suggested including a) Mie scattering from transperent particles of a dominating critical size, b) surface roughness concentrated in wavelength-sized dimensions that produce suitable diE゙raction, and c) eiectrostatically suspended dust. No quantitative analysis has resiz.ted.

This computer surface model has been used to calculate redaening as a result of eeometric effects (but not due to molecular colors). Each of the figure sets elsewhere in this report has a computer plot of color ratio as a function of phase angle. These plots agree perfectiy with the observations to the extend that observミticnal errors permit (errors are large). It can be
conclucied that the geometric reacenirg computed is suificient to explain the observations of the Moon and esteroids. There is a possibility that molecular reddenirg may also increase the effect on Mars.

Redcening to Investigate Surface Structure

As mentioned above, reddening measurements which take place at sucessive view argles contain informatjon about the three-dimensions ${ }^{2}$ surface strucume, In principle, the same is true for polarization, and polarization difference measurements. for that reason, all of these plots have been provided in this report. Aamittedy, I don't have any good scheme yet to use the polarization. cinferences.

There is a converse iciea. If the surface sti"acture cen te assured, and of course this assumption is implicit in all the elbedo rules which reiy on the existerce of a pittec porticiante suriace, then it is possible to deduce the reïiectivity of the surface. The polerization-aibedo ruies are ail well know, but recidening has never been used in a quantitative way. However, there is a qualitative rule of thumb, "The Darkest Objects Always show The Greatest Readening" . I believe thet the improvements in sensitivity of photometry nov Take ìpossitle to obtzin sufficiently accurate deta.

1. Recienirg-ileao Rule has been plotted in Figure 20 using the slope of the color ratio, versus reflectivity. Slope is taken at 30 degrees phase angle and reflectivity is taken at zero phase. There are not enough accurate measurements existing to make a comparison with this theory meaningiul, but it may be hoped that certein geometric sources of error vill be belarced out, just as occurs in the polarization slope albedo rule. computer Calculetions

To objair rigures (\bar{E}) (C), (ij) of each figure set, the following formulas
wero used to calculate the ordinates :
REDDE:ED POIYT $=2.5 \times \operatorname{In}\left(\mathrm{E}_{2} / \mathrm{B}_{2}\right)$

REDDEYED ETAMET $=2.5 \times \ln \left(\right.$ integrate $\mathrm{E}_{1} /$ integrated $\left.\mathrm{B}_{2}\right)$
POIARIZATION DIFEERENCE $=P_{2}-P_{1}$
where the subscript 1 refers to a calculation with particle size(XTL) = 15
wavelergths, and subscript 2 for particle size(XIL) = 20 wavelengths. E 1 and
B_{2} are the total reflectivities.
The corresponding wavelength shift is $(20-15) / 15=33 \%$ or
$\therefore 20-15) / 20=25 \%$, depending on your point of view.

This computer model combined with folarimetry by lyot (19"c9), Dollfus(1979), and P.inhnson et 21 (1979) provides confirmation of some of the models of the rings which are reviewed by Morrison (chapter 12, Planetary Satellites, J. Burns Ed, 1977) and by Cook and Franklin (ibid, Uhapter 19) and, yields a calculation of the diameter of the bodies composing the rings.

Optical, infra-red, and microwave measurements of radiation plus radar returns have led to the identification of water-ice as a constituent of the ring bodies together with methane or ammonia compounds in the form of dirty rough snow balls. Size estimetes are between 3 and $3 C$ centimeters (Morrison) or 6 to 100 centimeters (Cook and Franklin). Alternatively, the balls could be much larger with smailer, imbedded, dense nodules of those dimensions, in order to account for the radar results.

The polerimetry, measured at phase angles of 6 degrees or less, shows a negative branch amplituce of 0.5 to 0.8%. The angle of minimum is 1 Iy defined at about $1 \pm \frac{1}{2}$ degrees (Iyrot) and $1.2 \pm \frac{1}{4}$ degrees(Johnson). The polarization vere caused by a pitted suriace, then the nits appear impossibly deep. Nevertheless the opposition effect has been observed with the same narrow width. The conclusion seems inescapable that the shadowing of opposition is resporisible for the negative branch. (The suppression of forward-going double reflections by the shadowing is the cause of the negative branch.)

However, it is not necessary to invoke shadowing by surface pits only. Inter-ball thadowing is possible and likely, and creates no paradoxical geometries, so that negative polarization from it follows logically. The eouivalent of pit/depth ratio, but for inter-ball shadowing, is the cimaeter/separation ratio'. Let us estimate, using the polarization deta, that the computer verieble $\because 1 \sim 1 \pm \frac{1}{4}$ degrees, or thet seperation/diameter $=I L \pm 3$.

It now becomes poosible to calculate the size of the dirty snowballs. The
reported optical depth of the rings is slightly less than 1 . The thickness of the rirgs has been measured at about 1 kilometer. Thus a little geometry yields the average diameter of the balls as a little less than
average call diam $=\frac{\pi}{4} \times \frac{\text { RIMG THICKNESS }}{(S E P A R A I O N / D I A M)^{9}}=28 \pm 10$ centimeters
This value agrees with the limitation imposed by the reported radiation ard radar measurements mentioned above. It does exclude the very large snowalls with imbedded dense nodules.

It is possible that there is some negative polarization due to the pitted surface of the balls themselves, but it is not likely. The dimensions of the particles and pit walls are tiny - obviously much smaller than the balls themselves. In viev of the reported high albedo, it is unikely that these pits and particles produce much shaciowing fecause they are translucent. Shadows are the sin qua non of the negative branch. If there is no siacowing, there is no negative polarization. On the other hand, large balls are quite opaque, even though composed of particles which are transiucent on a micro-scale, and produce first-class shaciows.

The following figure shows an estimated inter-ball polarization together with a small possible surface polarization which sum to the observed data.

VIII. ACKNOWLEEGEMENTS

During the course of this work, it became increasingly apparent that extensive studies and meticulous observations of asteroids by the community of astronomers was a necessary bese for the results which have been achieved here. Although it is not possible to mention every valuable research work, I have been especially grateful for the following admirable work :
I. Taxonomy of Asteroids by Eiward Eowell, Clark Chapman, Johnathan Gradie, Devid Morrison and Een Zellner.
2. Polarizetion measurements of esteroias by Ben Zellner and Colleagues at the University of Arizona.
3. Radiometric measurements of asteroios by David Morrison and Olav Hanser and Coileages at the University of Hawail.

IX REFERENCES

E. Bowell, C. Chapman, J. Gradie, D. Morrison, and B. Zellner, "Taxonomy of Asteroids", Icarus 35, 313-335, 1978
A. Cook and F. Franklin, Chapter 19, Planetary Satellites, J. Burns Ed. 1977
E. Bowell and B. Zellner, "Polarizations of Asteroids and Satellites", Planets, Stars and Nebulae Studied with Photopolarimetry, T. Gehrels, Ed. 1974
A. Dollfus and E. Bowell, "Polarimetric Properties of the Lunar Surface and Its Interpretation" Astron \& Astrophys; 10, 29-53, 1971
A. Dollfus, Thesis, U of Paris, 1955, or NASA TTF-188 Translation, 1964
M. Gaffy and T. McCord, Space Science Rev. 21 555-628, "Asteroid Surface Materials: Mineralogical Characterizations from Reflection Spectra", 1978
T. Gehrels, T. Coffeen, and D. Owings, Astron. J. 69, 826, 1964
T. Gehrels and D. Owings, Astron. J. 135, 906, 1962
P. Johnson, J. Kemp, R. King, T. Parker, and M. Barbour, "Saturns Rings: New Results from Optical Polarimetry"... submitted Nature, 1979
O. Hansen, Astron. J. 81, 74-84, 1976
J. Hopfield, Science 151, 1380, 1966
W. Irvine, T. Simon, D. Menze, C. Pikoos, and A. Young, Astron. J. 73, 807, 1962
B. Lyot, Ann. de Ob. de Paris, Meudon 8, No. 1, 1929 or NASA TTF-187 translation, 1964
D. Morrison, Astrophys. J. 194, 203-212, 1974
D. Morrison, Chapter 12, Planetary Satellites, J. Burns, Ed. 1977
M. Wolff, "Polarization of Light Reflected from Rough, Planetary Surface", Applied Optics 14, 1395-1505, 1975
R. Woolley, K. Gottlieb, W. Heintz, and A. DeVaucouleurs, Monthly Not. Roy, Astron. Soc. 115, 57, 1955
B. Zellner and J. Gradie, "Polarimetric Evidence of the Albedos and Compositions of 94 Asteroids"; Astron. J. 81, 262-280, 1976
B. Zellner, M. Leake, T. Lebertre, and A. Dollfus, "Polarimetry of Meteorites and the Asteroid Albedo Scale", Lunar Science Conf. NASA VIII, 1977

X ．THE FORTRAN PROGRAM （Used for Figs．8A to 8K）

=SYN FUNCHS, ISDPCH
OFOR,IS POLAR1
REAL L. MR,MI
COMPLEX CA,CE,CC,CM
CIMEASION AE11(92,6), AE12(92,6), AE21(92,6), AB22(92,6),AE1(92,6),
* $A E 2(92,6), A E 3(52,6), A B(92,5), A P O L(92,6), A P B 1(92,6), A P B 2(92,6)$,

3 FORMAT(1^,F6.3.15C7.2)
4 FOFMAT(1X.IE,1X.16G7.2)
- INITIAL CONSTANTS + START CO LOOPS
WIL=.20
DUS=.
L=-1.
$N E=1 . E$
EXT=.
$M I=.007$
DC1C1 NコY=1,5
$M I=.2+(N D X-1) * \bullet 1$
$\mathrm{N}=\mathrm{NDO}+1$
$G E 2=((1 .-E X T) *(1 .+E L S)+E X T * D U S) * 0.5$
$C:=C M D L X\left(N F_{q}-M I\right)$
SUY=0.0
CC $5 N R=1.50$
$C G=(N R-0.5) / 57 \cdot 3$
CA=CMFLX(COS(こE), O.0)
CE=CSGRT(CN** C-(SIN(DG))**2)
$C C=C A *(C: * * 2)$
FRESY=CAQS $(C C-C B) * * 2 / C A B S(C C+C B) * * 2$
FFESX=CAES $(C A-C B) * * 2 / C A E S(C A+C B) * * 2$
$\equiv \quad$ SUM $=$ SUM $+(F R E S X+F R E S Y) * C . E$
「こF=1.0-SUM/Eこ.0
CONE $=3.14 / C A E S(C M) * * 2$
CO $100 \quad \operatorname{VG}=1,90$
$G A=2 . *(N G-1.0)$
$G=G A / E 7.3$
© PUT G VALUES INTO THE ARRAYS
AREC($: G, G)=0.4$
ARELF (NG, M$)=0.4$
\therefore E11(NG.1) $=E A$
LE12($1 . G, 1)=G A$
- Eこ1 (NGG1) $=G A$
- E22(NG,1)=Eん
$A E 1(N G, 1)=G A$
$A E 2(N G, 1)=G L$
$A \Xi Z(N G, 1)=G A$
$\dot{A} E(N G, i)=G A$
二EE1(NG•1)=EL
AFE2(NiG,1)=GA
$A F O L(N E, I)=G A$
$2 F L R E(N G, 1)=G A$
-FEOP(NG,1)=GA
FFEJ(NG,1)=GA
二PCL \because O (NG, 1) =CA
$I F(E+L-1.54) G$


```
    BY2=(EY2L + %Y2F + BY2B)*0.38
    E2=(EX2+BY2)*.5
C EED CLLCuLATION
    E=.1
    DLANE=.1
    POL=.1
    20 56 IFEF=1.2
    ATL=(15.+5.*(IPED-1))*(1.-DUS)+1.
    E3=COLGF*PEFF*(.5+.5*EXP(-(G/WIE)))/(1.+XTL*MI*158./CONE)
    ~EC=2.E*ALOG(E/(B1+B2+B3))
    E=R1+\overline{2 2+E3}
    C flanetary integration
        SU:=C.
    RLI=-1.57
    E7TE=53*(2./(1.+COS(RLI)/COS(RLI+G)))/COLGF+F2+E1*(1.+G/(RLI-1.57))
        /fEHAD
            GRE=TE*((2.13.14)*\operatorname{cos(RLI)+(0.5-2./3.14)*COS(RLI)**2)}
            SUN=SUM +ORL
            RLI=FLI+.04
            IF(RLI+G-1.57)57.97.98
OE SU"=SUM*.04
            REDP=2.E*ALCG(FLANB/SUM)
            PLANE-SUM
            =E1=(EY1-EY1)/(2.*E)
            FEこ=(EX2-3YZ)/(2.* *)
            POLNE=FE1+FE2-DOL
            PCL=F:1+PE2
sg co:itiNuE
```

- confute final results and put into arrays
$\Delta E 11(1, G, M)=E x 1$
AE12(NOM) M EV1
LE21(NGON) =EX.
AE22(:G,M)=EYZ
LE1 (NG,M) $=E 1$
-E2 (NG,N) $=$ E2
LEZ $(N G, M)=E 3$
LE(NG,M)=E REPRODUCFIT TMV THE
APE1 (NE,M) $=F E 1 * 100.0$
$\angle D E 2(N G, N)=F=2 * 100.0$
AFOL(NE,N) $=P O L * 100.0$
AFLNE (NG,N) $=P L$ ANB
AFEEP (NGOM) =FEDP
LRED(NGOR)=FEC
AFGLED(NE,N)=FOLVD*107.

*EYスL, XX2F,EY2F•BX2S,BY2E
100 CONTINUE
161 CONTINE
= PLCT FFOGRAMS
CALL PLCTS(0., 0., 7)
CFLL FACTCF(0.4)
C:LL FLOT(2.0.2.0,-3)
LEOL(:191) $=0$.
$\mathrm{AFOL}(5 ミ, 1)=ミ \mathrm{C}$ 。
CLLL AXIS O., C.,21FPHASE ANGLE - DEGEEES,-21,5.0,0.,0.00.30.)
CALL AYISiO.0.0.0.21HPCLARIZATION PER CENT,21,7.0,90.,-10.,10.)
CLLL SY'CCL(1.,G.,.14,3GHIMAGINARY INEEX VARIED-M RANGE ,0,30)

509
CALL LINE（APLNB（1，1），AFLNB（I，MLINE），50．1，4，MLINE）
CONTINLE
CALL FLGT（12．0．0．0．03）
ムミ3（こ1，1）＝0．
AE（9く，1）＝30．
CLLL $4 X I S(0.00 .21 H P H A S E$ ANGLE－CEGREES，－21．6．0．0．0．00．00．30．）
CALL AXIS（O．0，0．0．21HRF．FLECTIVITY，DIFFUSE，21，7．0，90．，0．0，0．05）

CO 511 NLINE＝e．6
AEZ（51，MLINE）$=0.0$
AE3（92，MLINE）＝．05
CHLL LINE（AE3（1，1），AE3（2，MLINE），90，1，4，MLINE）
E： 1
CONTINLE
CALL PLOT（12．C．O．C．O．
$A E(-1,1)=0$ 。
$\therefore \mathrm{A}(92,1)=30$ ．
CALL AXIS（O．，C．， 21 HPHASE ANGLE－DEGREES．－21．6．0．0．．0．00．30．）
CALL AXIS（C．0．0．0．21HREFLECTIVITY，TCTAL ，21．7．0．90．0．0．0．0．05）

CC E1？MLINE＝2・ロ
mE（E1，MLINE）$=0.0$
2E（S2•MLITE）＝．OE
CALL LINE（AE（1，1），AE（1，NLINE），90．1，4，MLINE）
CONTINUE
CALL FLOT（i2•0，0．0．－3）
A FB1（ $=1,2)=0$ 。
$A=\mathrm{E} 1(\mathrm{c}(\mathrm{c} 1)=\mathrm{B} 0$ 。

CALL $A X I S(0.0,0.0,21$ HPCLARIZATICN，SINGLES ，21，7．0．90．0．0．0．10．）
CALL SYMEOL（1－．E．，14，3OHIMAGINARY INDEX VARIEL－M RANGE，0，30）
CO 513 MLINE＝ごE
APE1（ $51, M L I N E)=0.0$
APE1（c， $2, M L I N E)=10$ ．
CHLL LIUE（AFEI（1，I），AFE1（1，MLIPE），90；1，4，NLINE）
CCNTINUE
CALL FLOT（12．C．O．C．－3）
A＝E2 $(\because 1,1)=0$ 。
AFE2（52，1）＝50．
CALL AXIS（O．，C．，EIHFHASE ANGLE－GEGREES，－21，6．0，0．，0．00．30．1）
CALL AXISIO．0．0．0．21HPOLARIZATION，LOUBLES ，21．7．0．00．9－4．94．0）
C：LL SYMECL（1•，E．，－14，3CHIMACINARY INDEX VARIED－N．RANGE ，O，3C）
20 5：4 MINE＝2，6

ADE2（C2，NLINE）＝\＆。
CALL LIN：（AFE2（1，1），AFBと（19MLINE），90，1，4，MLINE）
coritinue
C：LL FLCT（12．0，0．0．03）
AE1 $(=1,1)=0$ ．
－Е1（ミ2，1）＝3C．
CALL $4 X I S(C ., C ., 21 H P H A S E$ ANGLE－DEGPEES，－21，6．0，0．00．00，30．）
CLLL AXIS（0．0．U．C．21HREFLECTIVITY，SINGLES ，21，7．0，90．00．0．．004）

－0 E15 MLINE＝ 2,6
$\dot{H} 1(5: \cdot P I N E)=こ 0$
$\therefore E 1$ アニ・NLINE）＝．CO4

CONTINUE

[^0]: Figure 7 E. The integrated reflectivity of the entire Note that there is a reversal for MI larger than .016 ; the added reflectivity due to increased specular reflection has become larger than the loss of diffuse light.

[^1]: Note that although the absorbtion (imaginary index) is increasing, the reflectivity is also increasing; just opposite to the case for low values of absorbtion.

