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Abstract

Analytical and empirical studies of a finite difference method for the solution of the transonic
flow about harmonically oscillating wings and airfoils are presented. The procedure is based on
separating the velocity potential into steady and unsteady parts and linearizing the resulting
unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady
equation is independent of time.

Three finite difference investigations are discussed including a new operator for mesh points
with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term
to the original differential equation, and an alternate and relatively simple downstream bound-
ary condition.

A method is developed which uses a finite difference procedure over a limited inner region and
an approximate analytical procedure for the remaining outer region.

Two investigations concerned with three-dimensional flow are presented. The first is the de-
velopment of an oblique coordinate system for swept and tapered wings. The second derives the
additional terms required to make row relaxation solutions converge when mixed flow is present.

Finally, a finite span flutter analysis procedure is described using the two-dimensional unsteady
transonic program with a full three-dimensional steady velocity potential.

The addition of the viscous term and the revised downstream boundary conditions are the only
analyses to have been tested on the computer.
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1.0 SUMMARY

Several aspects of a finite difference method for solving the unsteady transonic flow about
harmonically oscillating wings are analyzed. The procedure is based on separating the
velocity potential into steady and unsteady parts and linearizing the resulting unsteady
differential equation for small disturbances. The differential equation for the unsteady
velocity potential is linear with spatially varying coefficients.

The analyses decribed herein concern methods of improving the accuracy and efficiency of
the finite difference solution. The overstability of the current upwind differencing for
supersonic flow is studied for the Klein-Gordon differential equation, which is the equation
for the flat plate oscillating in supersonic flow. The operator is shown to be overly stable in
that the finite difference solution is attenuated in the downstream direction exponentially
in terms of the frequency and the grid size. A stable differencing is derived which has
greater accuracy.

The addition of a viscous term has little effect on extending the range of convergence of the
relaxation procedure beyond the critical frequency. A simple downstream boundary con-
dition is derived on the assumption that the vortex sheet dominates the flow on the down-
stream boundary. The results obtained with this boundary condition are indistinguishable
from those with the plane wave boundary condition. '

Difference equations are derived using an oblique coordinate system which aligns the
coordinate lines with the leading and trailing edges of tapered swept wings.

The additional terms required for convergence of row relaxation of three-dimensional mixed
flow are also derived.

An approximate method of aeroelastic analysis for high aspect ratio wings using a two-
dimensional direct solution with a full three-dimensional steady-state potential is also
described.

Except for the addition of the viscous term and the revised downstream boundary conditions,
the analyses presented here are yet to be implemented in the program for computing tran-
sonic unsteady harmonic flow around airfoils.



2.0 INTRODUCTION

The purpose of the work described in this report is to continue the development of a means
for calculating air forces for use in flutter analyses of three-dimensional lifting surfaces in
the transonic flight regime. The work concentrates on a particular procedure which assumes
small perturbations, the existence of a velocity potential, and simple harmonic motion, and
uses finite difference theory to solve the resulting set of partial differential equations. The
velocity potential is divided into steady and unsteady parts. The steady potential is calcu-
lated using the classic nonlinear small perturbation differential equation. The unsteady
potential is then calculated using a linear equation with spatially varying coefficients which
depend on the steady flow. This study represents a direct extension of the research des-
cribed in references 1 through 3. Reference 4 contains the latest results achieved in the in-
vestigation while this report covers analyses which for the most part are yet to be imple-
mented. The purpose of these analyses is to improve the efficiency and accuracy of the
solution.

Several different finite difference procedures are discussed in section 5.0. Subjects include a
new operator for mesh points with supersonic flow which is stable but does not attenuate
the initial data, the effects of adding a viscous term to the original differential equation on
the convergence of the relaxation solution, and an alternative and relative simple down-
stream boundary condition. '

Section 6.0 presents a method which uses a finite difference procedure over a limited inner
region which is matched on the mesh boundary with an approximate linearized solution for
the outer region. This has the two-fold purpose of reducing the number of points in the
finite difference region and improving the exterior boundary conditions on the mesh. The
derivation and a detailed set of equations are included in appendix D.

Section 7.0 discusses two subjects related directly to three-dimensional flow. The first is
an oblique coordinate system for swept and tapered wings. The second part discusses
additional terms required to make row relaxation solutions converge when mixed flow is
present.

Section 8.0 discusses a finite span flutter analysis using the two-dimensional unsteady
transonic program with a full three-dimensional steady velocity potential distribution.
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3.0 ABBREVIATIONS AND SYMBOLS

Streamwise dimension of mesh region: also coordinate of downstream
boundary

Root semichord of wing or semichord of airfoil; also vertical dimension of
mesh region

. 2 .
Pressure coefficient, (p - p,) / (1/2 p,Uy“) where p is the local pressure,
P the freestream static pressure, and p, the freestream air density

Instantaneous wing shape defined by z, = 6f(x,y,t)
Undisturbed wing or airfoil shape

Unsteady contribution to wing or airfoil shape
Vertical mesh point spacing

X,y,Z subscripts and indices for points in the mesh

V-1
Horizontal mesh point spacing

. 2 2
Transonic parameter, (1 - M*) / (M“¢)
Leading edge
Freestream Mach number
Mesh point indices
W | € -iw(y-1)

Y ¢0xx

Time in units of b / U, ; also psuedo time defined by iterations in the complex

differential equation for the unsteady potential
Trailing edge
Freestream velocity

Physical coordinates, made dimensionless with the root semichord



X.Y.Z

t !
X,y .,z

XpeXte

<

Scaled coordinates (xo,uyo,uzo) for the three-dimensional problem; the

scaled coordinates for the two-dimensional problem are x and y, with x being
the direction of fluid flow

Variables of integration

Coordinates of leading and trailing edges
VKy

V1 -M2

Ratio of specific heats for air

Jump in pressure coefficient

Jump in ¢ at plane of wing or vortex wake

Jump in ¢1, at wing trailing edge

Thickness ratio or measure of camber and angle of attack
(6 / My2/3
WM /(1 -M2)

Critical value of 7\1

5
1/3M._/3

Scale factor on Yo and zg, U= 8
Coordinates for swept and tapered wing

Source distribution over mesh boundary for exterior panel method
Complete, scaled perturbation velocity potential; also used for the unsteady

potential in finite difference equations. With multiple subscripts, is used as un-
steady grid point values of unsteady perturbation potential.

Steady scaled perturbation velocity potential

Unsteady scaled perturbation velocity potential

Potential satisfying Klein-Gordon equation. With appropriate subscripts,
represents boundary potential for matching inner and outer solution in appendix D.

Angular reduced frequency (semichord times frequency in radians per second
divided by the freestream velocity, wb / U)



4.0 FORMULATION AND SOLUTION

A detailed mathematical derivation of the method for the solution of the unsteady velocity
potential for the flow about a harmonically oscillating wing is presented in reference 1. The
discussion here will be limited to a brief outline of the procedure for the two-dimensional
flow.

The complete nonlincar differential equation was simplified by assuming the flow to be a
small perturbation from a uniform stream near the speed of sound. The resulting equation
for unsteady flow is

[K-(r= Doy - (v + Doy Joyy +0yy - oy +0ye) /€= 0 %

2 2 )
where K = ( 1-M )/ (M e), M is the freestream Mach number of velocity U in the

x-direction, x and y are made dimensionless to the semichord b of the airfoil and the time t
to the ratio b/Uo. With the airfoil shape as a function of time defined by the relation

yg = 8f(x,t)
the linearized boundary condition becomes

‘py = fx(xat) + ft(x,t) (2)

The quantity & is associated with properties of the airfoil (such as maximum thickness ratio,

camber, or maximum angle of attack) and is assumed to be small.- The coordinate y is
scaled to the dimensionless physical coordinate y , according to

y= 61/3M2/3y0
and € is given in terms of § by
2/3
e=(8/M) /
The pressure coefficient is found from the relation
Cp = - 26(50)( + Sot)

The preceding differential equation is simplified by assuming harmonic motion and by
assuming the velocity potential to be separable into a steady-state potential and a potential
representing the unsteady effects. We write for a perturbation velocity potential

iwt
Y= ‘pO(X3Y) + ‘pl(st)e (3)
and for the body shape
iwt
yO = 6f(X,t) = 8 [fo(x) + fl(x)elw ]

Since the steady-state terms must satisfy the boundary conditions and the differential
equation in the absence of oscillations, we obtain



K-{(y+ + =0
[ (r ”“"Ox] 90,y * P04y 4)

with

<p0y=f0(x) , y=0 -1<x<1 (5)

On the assumption that the oscillations are small and products of ¢ may be neglected,
equations (1) and (2) with the aid of equations (4) and (5) yield

{[K -(r+ l)soox]«plx}x + Plyy” (2iw / €)1, *agy =0 (6)

where ’
- € - 1w Y-
SU.bjeCt to the wing boundaly COHditiOl’lS

o1, =fl tief0) , y=0 -1<x<I (7)

A computer program for solving the steady-state transonic flow about lifting airfoils based
on equations (4) and (5) was developed by Krupp and Murman (refs. 5 and 6). The output
of this program or a similar program can be used in computing the coefficients for the
differential equation of the unsteady potential. The similarity of the unsteady differential
equation to the steady-state equation suggests that the method of column relaxation used by
Murman and Krupp for the nonlinear steady-state problem should be an effective way to
solve equation (6) for the unsteady potential p;. Note that equation (6) is of mixed type,

being elliptic or hyperbolic whenever equation (4) is elliptic or hyperbolic. Central differ-
encing was used at all points for the y derivative and all subsonic or elliptic points for the x
derivatives. Backward (or upstream) differences were used for the x derivatives at all hyper-
bolic points.

The boundary condition that the pressure be continuous across the wake from the trailing
edge was found in terms of the jump in potential Ay, to be

Ay = Apy o @ te) ®)
17 e

where A¢1t is the jump in the potential at x = X, just downstream of the trailing edge and
e

is determined to satisfy the Kutta condition that the jump in pressure vanish at the trailing

edge. The quantity Ay is also used in the difference formulation for the derivative @1
Yy
to satisfy continuity of normal flow across the trailing-edge wake.

For the set of difference equations to be determinate, the boundary conditions on the outer
edges of the mesh must be specified. In the original unsteady formulation, these boundary
conditions were derived from asymptotic integral relations in a manner parallel to that used



by Klunker (ref. 7) for steady flow. A later formulation in reference 3 applies an outgoing
plane wave boundary condition to the outer edges of the mesh. This boundary condition is
numerically simpler to apply and, on the basis of limited experience, appears to provide
cqually good correlation, :

The preferred numerical approach to solving the resulting large order set of difference
equations is a relaxation procedure, which permits the calculation to be made as a sequence
of relatively small problems. However, as discussed in preceding NASA reports by the
authors (rcfs. 2 and 3), a significant problem of convergence with the relaxation pro-
cedure was encountered which severely limits the range of Mach number and reduced fre-
quency for which solutions may be obtained. The authors currently feel the only practical
technique for circumventing these instabilities is a full direct solution where the difference
equations are solved “all at once” rather than by line relaxation.



5.0 ALTERNATE FINITE DIFFERENCE PROCEDURES

Three different aspects of the finite difference formulation for two-dimensional unsteady
transonic flow are examined in this section. The first concerns an analysis of the finite diff-
erence operator currently applied to supersonic mesh points, the second examines the effect
on relaxation solution convergence of adding a viscous term to the transonic equation, and
the third investigates the application of an alternate downstream boundary condition.

5.1 NINE-POINT OPERATOR FOR SUPERSONIC FLOW

In solutions of difference equations it is important for the operators to lead to stable solu-
tions. Zajac (ref. 8) has shown, however, that the usual upwind differencing for the wave
equation leads to an overstable solution in which the solutions decay exponentially with x,
the time-like variable. We have extended his results to apply to the Klein-Gordon equation.
The details are given in appendix A. For the flat plate in unsteady supersonic flow, the
differential equation takes the form of a Klein-Gordon equation

1 2,
wxx'i"‘”yy‘”‘l y=0 9
2 2 2 2/3
whereK=(M -1)/(M e),>\1=wM/(M -1),ande=(8/M)/.
ingM
The function ¢ is related to ¢ by ¢ = eﬂ\l Xxp

Equation (9) is the equivalent to the Helmholtz equation for subsonic flow and is seen to be
hyperbolic.

We assume that the region over which the solution is to be found is discretized by a uniform
mesh in which the x spacing is k and the y spacing h, with the expression ‘Iln,m denoting
evaluated at x = nk and v = mh. Backward differencing on the second derivative with respect
to x with central differencing of the y derivative yields for equation (9)

2

2 2
Yam~ 2Vn-1m T ¥n2m =P (\bn,m—l “2Wnmt ‘l’n,m+1) -k Ay Yy (10)

where p = k /(h VK). In appendix A, an exact solution of the difference equation (10) is
found in the form

imé{ +i
wnm=e (e mTcosnT) (11)

T2 2. 2712
where 7 = tan [4p sin(() / 2)»l~ k A ] . Similarly an exact solution of equation (9) is
given by
2
. . v 2
Y = exp wym) * exp\tix, 3 + 2 (12)

Note that this solution is oscillatory without damping.

We compare equation (11) with equation (12) by setting 6 = hv in equation (11), expanding



in powers of h and k, and retaining only the first-order terms in h and k. This yields

) 2
. v 2 k(Y 2 (13)
Yim = Xp ivym> * explEixy ﬁ— +\ * eXp ) —K_+ A/ *n

We see that the difference equation solution has damping in the x direction and because of

the terms V2 and )\12 the damping is greater for the higher frequency components in the

solution and higher reduced frequency in the equation.

A stable difference operator utilizing nine points instead of the usual five will eliminate this
excessive damping. We shall use central differencing for the x derivative and for y we use

| v
2 l:a(‘]/n+1,m+1 - 2¢n+1,m t ll’n+1,m—1) ta- 23)(¢n’m+1 “2Wnmt wn,m—l)

h

ta (‘l’n—l m+l ” 2¥n-1,m * ¥n-1 ,m—l)}

where a > 0 is the parameter to be determined to make the operator stable. Equation (14)
leads to the following difference equation in place of (10):

(14)

2
Yam = 2¥n-1,m t ¥n-2,m =P [a(Wn+1,m+1 2Wntim* Yo+l m-1) (15)

+ (1 - 2a) (lpn,m.}.l - 2l;bn,m * ‘/’n,m—l)

2.2
t a(‘pn—l,m+1 2 im*t ‘I/n—l,m-l) -k A Ynm
We assume a solution to equation (15) in the form

Ynm = exp(inf) « exp(ima) (16)
In appendix B this is found to be stable for

a=1/4 (1mn
and kA <2 (18)

Choosing a convenient value of the parameter a subject to equation (17) and k sufficiently
small for a given reduced frequency and Mach number will thus ensure a stable operator.
Expanding the equation resulting from equation (16) and retaining terms up to first order in
h and k yields the solution

————= ,
Yo = exp(ivym) . exp<ixn'vV2 [k + )\12>+ 0 <k13’ h3> (19)

We see that this is in exact agreement with equation (12). Note also that a influences the
solution in the third-order terms in h and k and higher. A simple form of the difference
equation results when a = 1/2, for then the middle terms in equation (14) vanish. The
additional points will not affect the basic diagonal system either for the relaxation solution
or the direct solution although computing the matrix is slightly more costly.
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5.2 ADDITION OF A VISCOUS TERM

It was suggested that the addition of a viscous term to the differential equation might
improve convergence of the relaxation process and extend the frequency limit for which
solutions could be obtained. In subsonic regions the viscosity resulting from the first-order
truncation terms in the difference equation does play a role in the convergence. Reinforcing
this viscosity with an additional term seems like a logical approach to improving conver-
gence. Accordingly, the following differential equation was investigated:

2, -
Mbxxx T ¥xx + l1’yy AT =0
On the upstream boundary the conditions
Yy =0 ¢ =sin(my/b)

were prescribed with Y = 0 on the other boundaries. The equation was differenced and the
program coded along with the amplification factors obtained from a Von Neumann stability
analysis. For the coefficient of viscosity u set to zero, the relaxation converged for values of

N less than the critical values of
X 1 N 1
= 7"' —— ——
e Y 2 ko2

where a and b are the horizontal and vertical dimensions of the mesh region, and diverged
for Ay greater than )\lc as predicted by the Von Neumann analysis. The additional viscosity

had very little effect on the convergence even when fairly large values of u were tried.
5.3 AN ALTERNATE DOWNSTREAM BOUNDARY CONDITION

In the search for simple mesh boundary conditions which would improve the accuracy of the
finite difference method for the unsteady subsonic flow over a two-dimensional flat plate,
it was reasoned that, far downstream, the flow field is dominated by the vortex wake shed
from the wing trailing edge. This boundary condition is easy to formulate since it depends
upon the jump in potential at the trailing edge required to satisfy the Kutta condition. Thus
each difference equation for the column of grid points next to the downstream boundary
would contain four additional terms involving the four values of the potential in the neigh-
borhood of the trailing edge upon which the jump in potential depends. The potential
resulting from the wake is an infinite integral of a Hankel function and for two-dimensional
flow is given by equation (109) in reference 1 in the form
o0
Ay
e1(xy1) = —4—:—9/- expl- ico(x’ -1 x]/yrl l dx’

t "=0

o <

| =
where = exp|iN{M(x - X')] : Ho(z) [M\/(X - X’)z + (yl - yll) ] ,v1=VKy

2
and Ho( ) is the Hankel function of the second kind. If instead of 91 the pressure function
1, Tiwe)



is prescribed on the downstream boundary, then the resulting integral in the equation

obtained from applying the operator ai + iw can be integrated in closed form. From
X

cquation (C-4) in appendix C this is seen to be

— 2
¢1X+iw<p1 = - exp i>\1M(x ’Xte)] . )\IVK yHl( )()\lr)/r

2 2
where r = \/(x - Xte) + Ky and xy, is the x coordinate of the trailing edge.

The coefficients in the difference equations on the column adjacent to the downstream
boundary for the potentials
8011—1 1> ‘pll-l ‘pil’jm'l ’ ‘pll,jm

sjm- >jm ’

where j,, is the y grid index in the row adjacent to the wing and wake and iy is the x grid

index for the point at the trailing edge, are developed in appendix C. The equations were
derived assuming that ¢; is antisymmetric about the line y = 0, corresponding to the wing

and wake, for the purpose of testing the concept as economically as possible. The resulting
pressures on the wing differed insignificantly from the results obtained by assuming an out-
going plane wave boundary condition on the downstream boundary. Furthermore, the
pressures are not sensitive to the location of the downstream boundary. It therefore appears
that the outgoing plane wave boundary conditions produce little reflection back to the
airfoil although the distance from the wing to the downstream boundary is not so great that
one should expect the disturbance to resemble very closely a true plane wave.

11
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6.0 A FAR-FIELD MATCHING METHOD FOR TRANSONIC
UNSTEADY FLOW USING THE DIRECT SOLUTION

Chen, Dickson, and Rubbert (ref. 9) developed a method for matching the far-field
boundary of the transonic steady finite difference mesh with an analytic outer solution.
Their method has the advantage of imposing analytic boundary conditions at infinity while
permitting a considerable reduction in the size of the mesh region. The mesh need extend
outward only to where the flow is subsonic and linearized theory is valid, rather than to a
distance at which the approximate evaluations of the outgoing wave boundary conditions,
or alternatively the Klunker-type boundary conditions, are valid. The solution in reference
9 was obtained using relaxation procedures. However, it is possible to obtain the far-field
matching solution and the inner finite difference solution in a single step.

Reducing the size of the solution will facilitate refining the mesh size and this is necessary
for obtaining suitable accuracy with the finite difference method at higher frequencies.
Also, the reduction in mesh points may be enough to make the direct solutions practical
for three-dimensional problems. Alternatively, this matching procedure may provide better
boundary conditions at the higher reduced frequencies, although the need for this is some-
what reduced by the improved results presented in reference 4,

The procedure is applicable to both two- and three-dimensional flow although the following
derivation is for the two-dimensional problem only. In this section the basic ideas are
sketched briefly but a detailed derivation is presented in appendix D. In section D.1, the
basic integrals are discussed. In section D.2, the basic functions for the panel source distri-
bution are presented and the form of the influence coefficient integrals defined. Far- and
near-field approximations of the integrals are analyzed in sections D.3 and D.4. Subsequent
sections formulate the boundary conditions, the wake, and the matrix coefficients in suffi-
cient detail for coding into the direct two-dimensional solution.

The derivation of the matrix elements are for a doubly symmetric grid distribution and
symmetric steady flow so that the method may be evaluated as economically as possible.
The basic integrals are simplified to the extent of requiring a single coded subroutine. In
section D.11, the formulas for those matrix coefficients required by the outer solution are
defined in a simple form suitable for coding.

Following reference 9, an acoustic source distribution is prescribed on the outer edge of the
mesh and a single vortex line imposed on the wake. The source strength is determined to
satisfy continuity between inner and outer solutions of the normal component of the velo-
city and the velocity potential at the outer mesh boundary. The vortex line accounts for
the jump in potential of the wake. We assume that the velocity potential of the outer
solution satisfies the linearized differential equation for the harmonic unsteady flow of a
gas given by

2
Knplxx - 2i(w / e)«plx +«p1yy + (w /e)gpl =0

From equation (109) of Ehlers (ref. 1), the solution to this equation given by a source



distribution on the boundary of the mesh and a doublet sheet from the wing trailing edge
takes the form

nMx NMx [P
€ €
12 B / I:Uullju ) Od‘fbd] dx’ - : [OQl//Q - Orllf,-] dy' + Apq, * xX(Xy)
4 4 b te
(20)

2) \/ ,2 2 @) 2 2
where ¢, = Hy A V(x-x) +K(y-b) Yyo=Hg N (x-al) +K(y -vy")
with similar expressions for ¢ y and ¢ .. Here x is the potential induced by the trailing

vortex sheet
o0

1 -i -
- L . 1o(X l)l//de'

with ¢ = HO(2)<)\1 Vix - X')2 + Ky2 >

The quantity o is the source strength, a and b are the width and height of the mesh shown
by the heavy line in figure 1, u and d denote upper and lower, and £ and r, left and right

boundaries, respectively. Foreach 1 <i< i designating the column for the upper and

lower boundaries, and each 1 <j < Imax On the side boundaries, we match boundary condi-

tions on the normal derivative and on the potential at each boundary point with the finite
difference solution. The number of values for the potential 91 from the finite difference
equations is iy 4 day - 4.
At each outer boundary point we assign a value of the source and construct a piecewise
linear distribution of the source strength on the mesh boundary, utilizing for each boundary
point the elementary singularity distribution in figure 2. The velocity potential in equation
(20) after the integration takes the form

iax! Imax~1

p= 22 [Oun®un ~ %dn¥dn ] + 22 [9n¥%n ~ %P ] * A‘plte x(xy) (2D

n 1 n _—

where the ¢, terms are the functions of x and y resulting from integrating the basis function

of figure 2 over the range Xp-1 0 Xppp 01y g toy g The jump in the potential A‘pte

is given by a linear combination of values of the potential ¢ at points in the neighborhood
of the trailing edge.

We now match the solution of equation (20) with the inner finite difference solution. On
the upper boundary we write for the velocity potential

- ) . .
Q= (gpijmax + ‘pj’jmax'l) /2= Fi (O,Acplte), i=2,3.., imax-1
u
where Fi( )(o,Axpte) is a linear function of the o’s and the ¢’s by equation (21) evaluated at

the boundary point x = X;y =bon the upper boundary. In the same manner, for the lower
boundary, we obtain

13
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(gpil + gpiz) / 2= Fi(d)(O,Atplte) , 1= 2,3,..., imax‘l

For the left boundary
D . .
(¢1j+ Qp2j> /2= Fj (O,Agoltc), 172,30 0pax]

For the right boundary

(r) . .
(SO mde max'l’J) [2=F (O’A‘plte)’ 3= 235 dmax]

Similarly, we evaluate the normal derivative on each of the mesh boundaries and obtain:

For the upper boundary

bij " -1
max »Jmax (u) . .
vy = 1 =G; (G’Awlte) s 1=2,3,0 eyt

yjmax ) yjmax
For the lower boundary
Y2 " ¥il (d)
= ——— =G; 0,Ap , 1=2,3,...,1 -1
Py I i ( lte) max
For the left side
¥2j~1j ¢4

=2 e a0 Y, =230
Px Xq - X1 i (¢ ‘plte) J Imax
For the right side
Piasd ™ Pinax-lod
max: max™*> (r)
_ =G (0,801 Yy =230 i
¥x X; =X ] Wlte) ! Imax

max max

It is easily seen that the preceding systems of equations, along with the finite difference
equations, yields

imaximax * 2(i

max +jmax) - 12
equations for the same number of variables to be determined. The increase in the number
of variables required by the matching procedure is

2(imax +jmax) -12

and is offset by the considerable reduction in the size of the mesh region. Because of the
wavelike nature of the solution for the unsteady flow, using large mesh sizes near the outer
boundaries of the finite difference mesh has been found to lead to poor representation of
the flow field, resulting in inaccurate pressures on the wing. By decreasing the size of the
mesh region, finer grids are possible with the same number of mesh points. The coefficients

of the additional terms in the system of equations are derived in considerable detail in appen-
dix D.
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It seems worthwhile to make some assessment of the computer resources required to apply
the inner and outer matching. In appendix D, the number of integrals was reduced by
assuming a grid which has two lines of symmetry. For a grid with i, x points and j .4 Y

points, the number of integrals Ny to be evaluated for the symmetrical problem is

. 2

Ny = [imax * 2(im 1) - 2]
Many of these integrals need not be calculated by actually performing the integration using
the Bessel function routines. In regions where the grid is fine in the far field, the integrals
for every second or third grid point need be computed with the intermediate points evaluated
by interpolation. The integrals are more complicated than the coefficients in the potential
solution and hence must be calculated more efficiently. Chen et al. (ref. 9) obtained a con-
siderable reduction in computing cost as well as improvement in accuracy. Much of the
reduction in cost will come from the smaller mesh region made possible by the better mesh
boundary conditions. For the higher frequencies where the grid spacing must be fine even
in the outer field, this smaller mesh region should result in a considerably smaller matrix
equation to be solved. Unfortunately, the equations involving the values of the source at
the boundary grid points contain nonzero coefficients for most of the source values. Hence,
the use of the inner and outer matching procedure introduces to the matrix of coefficients
a vertical strip of nonzero elements which nearly eliminates the banded property of the
original finite difference matrix.



7.0 INVESTIGATIONS FOR THE THREE-DIMENSIONAL PROBLEM

Three-dimensional investigations for this report were limited to two problems. The first
concerned developing a coordinate transformation for swept wings that concentrated grid
points in regions of large gradients of ¢. The results of this study, which are based on
transformations used for steady state, are presented in section 7.1, and detailed derivations
are presented in appendix E. Previous studies have resulted in a derivation of a coordinate
transformation for swept but untapered wings (ref. 1) and development of a three-dimen-
sional program using a cartesian coordinate grid (ref. 2). In reference 2 it was also shown
that for the two-dimensional problem, row relaxation converged more rapidly than column
relaxation but that additional terms were required for points at which the equation was
hyperbolic in order for the relaxation to converge. These terms for the three-dimensional
problem are discussed in section 7.2, with a detailed derivation presented in appendix F.

7.1 AN OBLIQUE COORDINATE SYSTEM FOR SWEPT AND TAPERED WINGS

The three-dimensional unsteady transonic flow program described in reference 2 utilizes a
rectangular grid. Better accuracy with fewer grid points can be achieved by using an oblique
coordinate system chosen to align the leading and trailing edges with coordinate lines and
hence provide the capability of finer grid spacing along these edges. The transformation will
also make the unsteady program more compatible with the steady program.

In the same manner as Bailey and Ballhaus (ref. 10) we consider a transformation of the
form

X = Xge(¥)
€ v goy) (22)
n=y
¢=1z

where c(y) is the chord of the wing at the station y and xQe(y) is the leading edge of the

wing planform. Thus £ = 0 is the coordinate representing the wing leading edge while £ =1
is the trailing edge.

The coordinates ¢£,m7 must be defined beyond the wing tip. To achieve this, the wing leading
edge is extended all the way to the mesh boundary by a straight line having the same slope
as the wing leading edge at the tip. To ensure that £,7 is single valued in the region beyond
the wing tip, the trailing edge is continued analytically beyond the tip by a quadratic whose
slope varies continuously from the trailing edge value at the tip to a straight line parallel to
the leading edge extension, as shown in figure 3. Thus the functions Xge(¥) and c(y) and

their derivatives are defined over the entire i range of the mesh region.

Under the transformation of equation (22), the transonic unsteady differential equation was
obtained in appendix E, and in conservation form can be expressed as

17
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Leading edge

x &

Trailing edge

Line EF is parallel to AB

DE is quadratic curve constructed to be
tangent to CD and EF

Point E determined by end conditions of parabola

Figure 3.—0blique Coordinate System for Swept and Tapered Wings

Outer mesh boundary



a[(zf) F - 2iw | ey + }a[m'/) ¥ }
—_— u 124 V-] € v —_ c/ C 14
ot |- 1y LRI PN P Pl e | 23y

+gp1 +[q+c’/c—(c'/c)’j]¢l=0
114
where u=1/c(n)and v=-¢c’' [ c-x'(n) [ c(n) . A simpler nonconservation form is given by

0 2i [e]+ 0 + +a + v + +qp; =0 (24)
— | uu - 2iw el+v—(p %) —( 0 ") =
B [P HeR L ] (01, L) T g (1 T 1) eI T
The conditions that the equation be hyperbolic for both forms is

2 2
nwutey <0 (25)

This is the condition that Bailey and Ballhaus used at first to determine when to employ
upstream differencing in the derivatives. They found that upwind differencing for all super-
sonic points was required to capture the shock.

On the wing root plane we must apply the boundary condition of symmetry 9| =0. In
y

terms of the oblique coordinates this condition becomes

+rpy;. =0
Soln lg (26)

This boundary condition is applied to the difference equation for points along the wing root
and leads to some simplification. The boundary conditions on the wing and on the wake are
unchanged under the transformation.

Equations (23) and (24) may be differenced in the same way as described in reference 1 and
formulas are presented in the appendix E. Because of the cross-derivative terms, the grid
point pattern used to represent the difference operator contains the eleven points shown in
figure 4 instead of the seven points for the operator in cartesian coordinates in figure 5.

7.2 ROW RELAXATION FOR THREE-DIMENSIONAL FLOW

In reference 2 it was found that row relaxation for the two-dimensional solution of the un-
steady velocity potential converges more rapidly than column relaxation. When the flow is
completely subsonic the same difference equations may be used for either row or column
relaxation. However, for mixed flows, the row relaxation will diverge unless add itional time-
like terms are added at supersonic grid points.

Following Jameson in references 11 and 12, we introduce the time-like variable associated
with the iteration process in the form of

(n)  (n-1) (n)
vijk ek - At (‘Pijk >t 270
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Figure 4.—Eleven-Point Difference Operator for Swept Wings

Figure 5. —Seven-Point Difference Operator for Cartesian Coordinates



and obtain the following differential equation by taking the limit as At, Ax, Ay, Az go to
zero in the difference equation about the point ijk (see eq. (F-8) in app. F).

At Ay;
- 2i + + -2 — + — + -+ =
[mplx i(e / 6)(01] X (plyy ‘plzz Ay: <‘p1yt Azy ‘plzt 63801t i (28)

By a transformation of t in the form
r=ox+fytyz+t (29)

equation (28) can be converted to

(o1, -2 @er] +or +er - ajer + bikey +apy =0 (30)

where Ak > 0. Since u > 0 at supersonic points, the resulting differential equation is not

strictly hyperbolic in 7 as it is for subsonic point.

The terms aplT and <plTT are truncation terms resulting from differencing the x, y, z deriva-
tives in the conventional manner. To render the ‘plxx‘term time-like we must add ¢ “t
differences to change the sign of cplTT and a uplt difference to cancel the Sol'r term in equation
(30). The derivation is presented in detail in appendix F and the equation to be differenced

is (eq. (F-19) of app. F)

At
[um -2i(w/e)ap1] tor  to -2—[61«p1 +62¢>1]+qw1=0 (31)
X X vy xt t

77 ij

where
By =Cﬁ\/r:gzj—k> c> 1 (32)
62 = [B1(ux-2iw/e)/2u] -3
B3 =- Avj[bj* by - (3 +ax) G- D]/
AY{ = Vj+1 Vi1
Bk = Avj | (71 - %k-1)

r = the relaxation factor

The factors in equation (32) for two-dimensional flow are obtained from equation (32) by
dropping all terms with subscript k.

Row relaxation has the same frequency limitation as column relaxation but its greater
efficiency may make it worthwhile for frequency ranges in which it converges, while going
to some form of direct solution for the higher frequencies.
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8.0 FORMULATION OF AEROELASTIC ANALYSIS

References 1 to 4 describe a practical procedure for calculating transonic air forces for
harmonically oscillating airfoils. The frequency limitation problem discussed in references 2
and 3 appears to have been overcome to the point where combinations of Mach number and
reduced frequency of practical interest in flutter can be handled. The size capability of the
pilot two-dimensional program has been increased to work with a practical number of mesh
points for these analyses. Also, the solution program has been modified to treat multiple
right-hand sides efficiently. However, due to the large size of the matrix inverse which is
required, this procedure does not, as yet, appear to be practical for full three-dimensional

configurations. The full three-dimensional problem involves an inverse of a 50 000th o

100 000th order complex matrix. This may eventually be practical through the use of the
new vector machines, or through use of sparse matrix concepts. The following paragraphs
discuss one use of the harmonic finite difference procedure in flutter analyses.

It should be emphasized that the problem formulation provides superposable pressure distri-
butions which can be used directly in conventional (e.g., V-g) flutter analyses. The flutter
equations in matrix form and applicable to both two- and three-dimensional flows are pre-
sented in detail in section 10.0 of reference 3.

Use of the direct solution program of this report for practical two-dimensional flutter
problems appears to be feasible. It is, of course, highly desirable to extend the harmonic
analysis to full three-dimensional flow. However, a reasonable alternative may be to use the
two-dimensional program to calculate the unsteady pressures at several spanwise stations
with the equation coefficients being determined from the three-dimensional steady-

state velocity potential. This would make use of the current capability and include the
major three-dimensional effects of the shock and boundary layer through the steady-state
potential, and could prove in the long run to be a valid economical alternative to the full
three-dimensional calculation which would be much more expensive in terms of computer
resources. The procedure may be summarized in the following steps:

1. Calculate the steady three-dimensional velocity potential distribution using a standard
small perturbation program such as that of Ballhaus and Bailey.

2. Use the two-dimensional unsteady program with the three-dimensional steady-state
potential to calculate sectional harmonic pressure distributions at a set of spanwise
stations. Using the steady potential ensures that the three-dimensional shock effects
are incorporated in the results.

3. Form a three-dimensional pressure distribution from the two-dimensional section dis-
tributions. Additional finite span corrections could be introduced at this time. These
corrections could be based, for example, on empirical data or steady-state analytical
data.

4, Calculate generalized air forces and perform flutter analysis.



APPENDIX A

OVERSTABILITY OF THE CANONICAL UPWIND SUPERSONIC
OPERATOR APPLIED TO THE KLEIN-GORDON EQUATION

A.1 INTRODUCTION

When partial differential equations are solved by numerical methods, an area of particular
concern is the stability of the numerical operators employed. In the case of hyperbolic
equations, in particular, it is required that the operators be stepwise stable, i.e., that errors
at one stage are not magnified as the solution is stepped along in time (or in a time-like
direction). Such stability may ordinarily be established by a Von Neumann analysis.

It has been observed by Zajac in reference 8 that some operators may be so stable that the
correct numerical solution is distorted by being attenuated in stepping along. He has called
this plienomenon overstability. The situation here is that while the numerical solution will
converge to the true solution as the step size is refined, for a given step size the error may
compare poorly with that obtained using a less strongly stable operator.

A.2 ANALYSIS OF THE NUMERICAL SOLUTION OF THE KLEIN-GORDON
EQUATION USING THE SUPERSONIC OPERATOR

A.2.1 DEFINITION

The Klein-Gordon equation

1 2
‘pxx'—lzwyy+>\l y=0 (A-1)
where
2 2 2
k= (M -1)/(M e), K1=wM/(M 1)
and
2
e=(6/M) 3

bears the same relation to the flat plate equation for supersonic flow as the Helmholtz
equation does for subsonic flow. Observe that when )\1 = (, the K-G equation becomes the
wave equation as, analogously, the Helmholtz equation becomes Laplace’s equation. In the
supersonic case, however, x and y are not treated identically in the discretization, but rather
the time-like character of x is considered and a backward difference operator is used.

A.2.2 DISCRETIZATION
We suppose the region over which equation (A-1) is to be solved to be discretized by a mesh

such that k is the spacing in the x direction and h is the spacing in the y direction. With the
mesh point which is the n in the x direction and mt™h in the y direction, there is associated

a value ‘pnm which is an approximation to y(nk,mh), i.e., to the solution at this mesh point.
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Using the backward and central difference operators in the x and y directions, respectively,
cquation (A-1) becomes

2 1 2 2
(‘pnm - zkb,]_] .m + ‘}/11-2,111)/ k = E(‘pn,m—] - 2‘1’nm + l'Un,m+l) /h - ‘}’nm
or,
2 2
‘l’nm - z‘j’n—l Jm + lpn—2,m =P (\bn,m—l - 2lIJnm + \bn,m+] ) -k >‘I ‘an (A-2)

where

p=k/ (Iﬂ/f)
A.2.3 STABILITY ANALYSIS

The exact solution for the difference equation (A-2) is

_ aneimO (A-3)

‘I’nm -
Substitution of (A-3) into (A-2) yiclds

imé -1 n-2 2 n[ i(m-1)0 imd i(m+1)0 2 i
e1m (an_?an ta )=p o [e( ) —2el +e]( )]—k Alanelma

From which on division by

n-2 imé
a e
we have
2 22 2 2.2
(oz -2oz+1)=p o [—4sin 0/2) -k Ay ]
or

2 02 221 2
[1+4p sin (8/2)+k )\1 a -2a+1=90 (A-4)

2 .
which is a quadratic equation in «. Since the coefficient of « is always = 1, we can define

-
2 2 2. 27177 -
cos 7= {1 +4p” sin“(0/2) + k2, ) (A-5)
for 0 <7<w/2. Then(A-4) may be written as
2 ( 2 ) 2

a -2\cos 7/aa+cos 7=0 (A-6)

Solving for o we have that
4
oa=e 1Tcos T (A-7)

Thus since 1« | <1 for all 7, the operator given in equation (A-2) is unconditionally step-
wise stable.

A.2.4 OVERSTABILITY ANALYSIS

In this section we show that the difference scheme used in obtaining equation (A-2) from



equation (A-1) yields an overstable operator.

First, from equations (A-3), (A-5), and (A-7) we observe that exact solutions of the difference
equation (A-1) are given at mesh point (n,m) by

n imé
‘l’nm = e

or im0 ( +i (A-8)

lenm _ elm (e int cosn'r>

for any real 8, where
)

-1 2 2/6 2.2

T = tan [4p sin <—2->+k A :l (A-9)

Second, we observe that exact solutions of the differential equation (A-1) are given by

2
T , q [ 2 -
Yom = exp(wym) * exp <i1xn < +N ) (A-10)

for any real ». Observe that the solutions in equation (A-10) oscillate without damping.

Let us try to compare equations (A-8) and (A-10). This is facilitated by letting = hv in
(A-8). For the first factor we have then
im@  imhv .
e =¢ =exp (wym)

with y,, = mh. This is the same as the first factor of (A-10).

+int
Next consider the second factor of equation (A-8), ¢ . Letting 6 = hy in equation (A-9),
we have

2

gl k2w 2. 2%
T=tan (4 —— sin —+k?\1
2 9
h K

'

which for hv small yields

22 "
S .S k27\12 which for
K

k small gives 3

4 2
TR Kk - +)\1
3 K

_ v 2
~ exp \tix, E+>\1

tint

Thus e ) , since nk = Xy This is the same as the second factor

of equation (A-10).

. . n . .
Finally, let us consider the factor cos 7 in equation (A-8). We have
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n
cos 7 = exp(n log cos 1)

2 2(1
= cxp{- %log [l +4p sin <5“-)-)+ Kz)\lz]}
2
f n 2{v 2 ‘
A expl' —2—log 1+k E_ N for small hy

) |
~ K l—‘-("— A 2) f 1k
A expy- n S \% 1 or sma

. 2
or, n_ k{v 2
CcOS 7 = exp —5 -i-<—+)\1 Xp

Thus the solutions in equation (A-8) have damped oscillations. Note that the damping is
greater for higher values of frequency » in the solution and higher values of reduced frequen-

cy Ay in the differential equation.



APPENDIX B

A STABLE DIFFERENCING SCHEME FOR THE KLEIN-GORDON
FORM OF THE FLAT PLATE EQUATION IN SUPERSONIC FLOW

We now establish a difference scheme for equation (A-1) and show that it is stable without
introducing attenuation. As before, we suppose a uniform discretization in x and y such
that x, =nkandy, = mh and denote the value of ¥ at (xn, ym) by ¥Yim

The form of the difference equations to advance the solution from x,, to x,,, ; are obtained
by the following substitutions:

2
Yxx (Xn>Ym) _>(‘Pn+1,m - 2Ynm * ¥p-1 ,m)/k (B-1)

1
Yyy (%n¥Ym)™ 2 [a (‘bn+1,m+1 “2Vn+1,mt Vit ,m-l) (B-2)
h

+(1 - 2a) (lpn,mﬂ “2Unmt xpn,m_l) + a(kbn_l’m+1 “2¥pam” sbn_1,m-1)]

where a is a parameter, a > 0, to be determined. Making these substitutions into equation
(B-1) and multiplying by k2, we have the implicit difference equation:

2
p [a(‘pnﬂ m+1 " 2¥n+1,m T ¥nt ,m—l)]+ 1- 2a)(‘bn,mﬂ “2ym t d’n,m—l)

2 _ (B-3)
ta (‘I/n—é,mﬂ - 2lpn—l,m + ll’n—l ,m-l) s kl’nm - l//n+1 Jn ~ 2\Dmm + lPm—l,m

2 2 .22
where p = —— and ¢; =k Ay
The parameter a is to be determined from a Von Neumann stability analysis, which we now

inf ima
perform. On substitution into equation (B-3) of ¢, ,=e ¢ and subsequent division

inf im« .
by e e we obtain

2T ias i6 S0 o _i0 ol i0 -0 2 y
p [ae1 (el -2+el)+(1—2a)(e1 —2+e1)+ae1 (e1 -2+e1)]—c1 =ela—2+ela
After using the identity

ix -ix L2
e -~2+e =-4sin (x/2)

the preceding equation simplifies to
2 2 : 2 2 2
p [—4sin ¢l 2)] [1 - 4a sin (a/2):| -cy =-4sin (a/2)
2
Solving this equation for sin («/2) , we have

p2 'n2(0/2)+ 2/4
si c
sin2 (o] 2)= ! (B-4)

2
1+4p asin (6 /2)
A necessary condition for stability is that equation (B-4) can be solved for real « for every
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real . This will be true if and only if

2 2 2
p sin (6/2)+cl /4
0<

5 > <1 (B-5)
1+4p asin (6 /2)

The left-hand side inequality is automatically satisfied. The right-hand side inequality is
equivalent to

2 2 2
p [sin (6/2)][1-4a]<1-cl /4 foralld.

If a is chosen such that a = (1 / 4), then the left-hand side is < 0 for all § (and p). Since
the left-hand side is O for @ = 0 we must have

2
1-¢c; /4=0 (B-6)

2
Using the definition of c; we have that equation (B-6) is equivalent to

K <2 (B-7)
k
Thus the difference equation (B-3) is stable forall p=—— provided that
() a=% hVK

(ii) k)\l <2
Choosing a according to (i) for convenience, we can satisfy (ii) by selecting k sufficiently
small for the given reduced frequency and Mach number.

With these restrictions on k and a, we now find the solution kbnm as h and k go to zero.
Then, as before, we let
6 =hv

and
exp(imf) = exp(iuym)

and equation (B-4) becomes

2 22 2. 2

3 +
L2 Kh 4 4
sin ([ 2)= 5
1+ ———k h2 2
5 ah v
Kh

Since h and k are small we have



akvy

1/2 2
12
k\/—+ A 2
K I v 2 3
a~ —————=Kk|[—+1; +0lk
) K
1

+

The solution y,,, to the difference equation then becomes

[2
3 1 . . V 2 3
wnm = elmgelna = CXp(lVym) . exp<lxn ‘IZ“F )\1 >+ O(k )

We see that this is the exact solution to the difference equation in equation (A-10) and
shows no attenuation of the initial value problem as the solution progresses through the
mesh. Since a is the order of unity, its value affects only the third-order terms in the grid
spacing.

Before choosing a, it is convenient to write equation (B-3) in another form to maintain the
generality.

Tridiagonal Form

Here we consider as known all terms whose { superscripts are <X n, and as unknown those
terms with ¢ superscript equal to n + 1. Thus equation (B-3) becomes

2 2
-p a (wn+1,m+1‘ ‘»l’n+1,m—l)Jr (1 +2p a) Yn+l,m
2 2
=p (1- 2a)(¢n+1’m+1 + ‘*Dn,m—l) tp a(wn—l,mﬂ + l'l’n—l,m—]) (B-8)

+[2 (1 - p2(1 - 23)) - Clz]wnm - (1 + 2ap2>‘1’n-l,m

which represents a tridiagonal system for each fixed n.

a=1/2

For this choice of a, equation (B-8) becomes
2

) g—(wnﬂ,mﬂ + ¢n+1,n-1) +<1 * p2)¢n+1’m

2
_p 2 2)
= ?(wn-l,mﬂ + wn—l,m—1)+<2 ! ) Yam '(1 P J¥n-l,m
For point relaxation this may be written

p 2-Cl

Yitlm = 20 +p) [\[’n—l,m-l T¥n-1m+1 t¥nttm-1t ‘l’n+1,m+]]+ 3 J¥nm " VYn-1,m

I+p
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APPENDIX C

EVALUATING THE WAKE INTEGRAL FOR THE
DOWNSTREAM BOUNDARY CONDITION

In the quest for a better formulation of the downstream boundary conditions we assumed the
unsteady perturbation potential on the downstream boundary plane to be dominated by the
flow induced by the doublet sheet shed from the wing trailing edge. Hence, for two-dimen-
sional flow, the velocity potential at a point (x,y) on the vertical downstream boundary is

given by
Apte

_ _3 13 _ . ; " t _ ¥’ )
P1(x¥]) = py / exp[: icw(x Xte)] [d/y (x-x"y; yl)]y,l o dx

Xte
(see, for example, the second term of equation (109) in reference 1). The notation is that
used in reference 1.

Since i has the form
y=yx-x,y;-v))
then

Sy _ 3
ay| 3y
and we obtain -
_ IA‘pt . ' '
1= T‘Qf exp[-iw(x' - xge)] * by, dX] (C-1)

X
te
where, from equation (113) of reference 1

Y= exp [i)\lM (x - x')] . Ho(z) [)\1 V(x - x')2 + y12 ] (C2)

2
and HO( ) is the Hankel function. From (C-2)

/ 2 12 2 '2 2
lpy1=%-—exp D\IM(X'X)]'?‘IYIHI( )[7\1\/()('7() ty ]g/\/(X—X) +tYy
Since y1=VIZy. we have

2
vy ={—exp i M (x-x) - 7\1V—KY1H1( )(}\lr)}/r (C-3)

_ 1
2 2
where r =-\/(x -x") "+ Ky

In reference 1 on page 61, it was shown that the integral in equation (C-1) resulting from the
combination aplx +iwyp; can be integrated in closed form. From equation (78) of reference

(1) this is seen to be



-i Apyo ' (2)
¢ Cxp[m]M(x_xte) NV HP g0 e

vy, Tiwey =

D 8]

where = \/(x - Xte) T+ Ky .

The jump in potential ¢y at the trailing edge can be found in terms of values of the perturba-

tion potential at grid points in the neighborhood of the trailing edge. From equation (104)

ol reference 1, we have for points on the wing
APL =01t Py ™ O (P2 i)

Lm Jm

( F(U) d F(U)
~ 052 (i, " Pidg-l) T \dstFi *ds

where the constants are given in equation (105) and Fi(U) and Fi(L) are the boundary con-
ditions on the upper and lower side, respectively. Since for the sake of economy in comput-
ing resources for the test we restricted our analysis to steady-state flows without lift, ?1 is
antisymmetric and

Pijm +1 =9

g o Pt T

sj]n 7jm_1 (C'S)

Then on the airfoil

i 7Py, s Pl T L, s2\%i,i " Plig ] s1ti

+d F~(L)>
s2h1i (C-6)
. V) (L)

a == (o1 + e+ 2)on, * (o1 ey +(aaR +aor )

where the constants are given in equation (105) of reference 1. At the trailing edge the
Kutta condition requires

A +iwAp; =0 B
‘PIX #1 (C-N
at x =x;_, from equation (37) of reference 1, we have

(A A +d; (Ap; -A +iwAp| =
°1il< L+ ‘p111> 111< 1) "’111-1> O 0

where ¢y, and dp, are given on page 40 of reference 1. Solving for A‘Pilﬂ yields
i i
Agpy, = A1 = Ay <1 “dyy feyy miel 0111> ¥ <d111 / 01i1>A‘P11-1 (C-8)

Using equation (C-6) to define A‘pil and A‘pil—l yields
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Apte = [1 ‘<d1i1 * iw) / Clil] [— (cs1+ e+ 2)viy g

(U) (L)
+(°sl+°32)‘pi,jm—1‘<dlei Ty >] (C-8)

' (9] (L)
’ (dlil /Clil>l}<csl es® 2)‘pil'l’jm +<CSI * CS2)‘pi1-1’jm-l —<dSIFi1—1 +ds2Fil-1>]

Hence we write

A‘plte = hltpil,jm + hzwil,jm—l + h3<pil_1,jm + h4gpi1_1 K +R (C-9)
where

hl =~ (CSI +cgo +2)<1 -dlil /Clil -iw / Cli1>
(C-10)

hy = (Csl +Cs2)(1 —dli /clil -iw |/ Cli])

1

h3 = - (CSI + CS2 + 2)<d111 / C1i1>
h4 = (CSI + Csz)(dlil /C111>

_ . 48)) L)
R —-(1 - dlil /clil -iw |/ C1i1)<dSIFil +ds2Fi1 >

(U) (L)
(dlil / C1i1)<dlei1'1 *dgoFy -1 )

We now apply equations (C-4), (C-9), and (C-10) as the boundary conditions on the down-
stream boundary. Thus in difference form we write '

) . . . .+ 0 .
Pimaxod ‘plmax'l’J N "Dlmax’J Solmax'l’J
iw
X: - X 2
imax  Timax!
- 1A«p1t A -V—K—yj

) - e ;exp[ﬁ\lM(aZ 'xte)]g : Hl(z)()\lrj)



2 2
where a, = <Ximax + Ximax‘l> /2 and r). = \/(Xte - a2) + KYJ .

This has the same form as equations (119) of reference 1 with a simpler function replacing

P . Solving the previous equation for Ay yields
Imax) te
{1 +iwds [ 2) - (1 -iwdy [ 21, =85A F. (C-1D
SOlimax’J( 2 ) ( 2 )-"OIImax'l’J 2o
where &4 = Ximax - Ximax°1 and
. ) (2) X
Fj = -i {exp[l}\lM(az - Xte)] . )\ﬂ/k_yjHl ()\lrj)} / (4rj) (C-12)
Then
(pimax’j - Ck3('oimax'1 gt Ck4A‘plteFj_ (C-13)
where
ck3=(l -iw62/2)/(1 +iw62/2) (C-14)
cq =8y [ (1 +iwdy | 2) (C-15)
Substituting for A‘plt yields
e
Pinax- - “k3%inax- 1 (C-16)

* op4F; [hl‘pil,jm Thowy -1y thae gt R]
In the difference equation for general 1,j, the potential ¢1i -1 is replaced by the right-
max
hand side of equation (C-16) when i=i,,,-1 , the x index of the downstream boundary
plane.
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APPENDIX D

A PANEL METHOD FOR MATCHING THE OUTER SOLUTION
v WITH THE INNER FINITE DIFFERENCE SOLUTION
FOR TWO-DIMENSIONAL TRANSONIC UNSTEADY FLOW

D.1 INTRODUCTION

The velocity potential for the unsteady linearized harmonic flow produced by a source
distribution on a line segment s is given by

S

‘p1=-

2 2
where {=N\jr, r= V(;— x') +K(y-y') . The derivatives take the form

2

Ap K 2 Ny M

o1 = —4 [ o(x) [Hl( )(sf)/f](y—y') dspe 10 (D-2)
y 4i S ,

X 4

For convenience, we shall introduce the cylinder functions

2
A 2 i\ M
o1 = _fg’[o(x')[Hl( )(f)/ﬁ‘](x-x') ds sel)\l X+i)\1M<p1

n
2 2 D-3
£n(w) =<'§‘> Hn( )(§ ) ®-3)

2
2 M 2 , o _
where u=(¢/2) = T [(x -x) +K(y-y'){ . The derivatives of the functions take

the simple form
() = - 841 (W) (D-4)

and higher order derivatives are obtained by simple recursion formula derived from the
differential equation.

an+2(u) = -[(n +k+ l)an+1(u) + an(u)] /u k=0 (D-5)

To match the outer mesh boundary with the proper outgoing wave solution for the rectangu-
lar mesh in figure 6, we prescribe the following source and doublet distribution.
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'l)\IMX ] ,
p|e =Z UQ()( u)ds
| HIBY

= T ) [()“( X (u;‘) - oq(x" )¢ (uz()]dx'

R » (D-6)

Jb

- ll;/ [uv(y')\’()(ui') :;'(V'W(,(l',')]"yl

-b

A VK yAsoil”/.,. iw(«*"xi,u)

¢ g ub)dx'

where 0, 04, 0g, 0 denote the source strength on the upper, lower, left, and right edges of
the mesh region, respectively. The subscript i]+1 denotes the point just downstream of the
trailing edge. Accordingly, the u variables are defined by

2
N 2 2
U{f‘;[(X-x’) +K(y-b)]
(D-7)
2
A 2 2
U'd=—4-[(x—><') +K(y +b) ]
2

== -ap) ke -7

2
A 2 2
u'1 ='—4——‘[(X—a2) +K(y—y') ]

2
S

= —4—[(x - x')2 + Kyz]

"0

To simplify the derivation we assume a symmetric configuration without lift in the steady
flow. Then the perturbation potential ¢ for the unsteady flow is antisymmetric and



og(y") = - ap(-y")

(D-8)
0. (y)=-0.(-y)

Since we consider only the lower half plane we have

b 0
4 ag(y)8g(ug)dy’ = [;) aQ(y')[szO(uQ')_szo(u;)]dy' (D-9)

where 2
+ M
Yo = —[(x al) +K(y £y’ ]
Similar relations hold for the right boundary with a5 replacing a. Finally, for¢;:
—1)\1MX
e =5 Ud(x )[20(va) - 2o (v} 4

(D-10)

4_1{ o0 2(ug ") - 29 (ag )] ay

0
fb 0,2l ) - 8oy Yoy’ }
-D\IMX
+ P
where we have changed the sign on o, for convenience and Ow is the contribution from the

doublet wake: o . ,
-\ Mx MVKY Agj 4 o)
e Oy = - Py e 21 (uo)dx

(D-11)
Xil+1
where
.M 2 2]
u0=-4—(x-x) + Ky

Note that equation (D-10) satisfies the requirement ¢;(y) =~ (-y)

D.2 BASIS FUNCTION FOR THE FINITE ELEMENT METHOD

For each station x; on the upper and lower boundaries we use a linear distribution of

doublet strength with the source strength defined at these grid points. For the basis func-

tion centered at x = Xp, We follow Chen, Dickson, and Rubbert (ref. 9) and use
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]

2(x' -x
-1
o/on‘—-(—-——-r-l-—l— forx, | <x'<y

) (5n+1 + ‘Sn)sn n n

) 2o - <) (D-12)

for x, <x'<y_,
(5n+1 +6r1)6n+1 ! ot

where 8y =Xy -X_; . This form was chosen so that

Xn+1
[ [a(x') / on] dx' =1

A similar relation holds for sourcelsl-alt stationy,, onthe x =a; and x =a, boundaries.
Instead of x; and x; we replace these values by
max
X1+ x) *imax ¥ Ximax-1
a) = 3 and ay= 5

‘respectively in the end basis functions. We treat the end points on the other boundaries

the same way.

We now consider the perturbation velocity potential without the factor e . Then
with
i\ Mx
py=e v/ (D-13)
we consider the contribution from the source distributions
Y=g tdetyy (D-14)

where Y, is the contribution from the integral over the lower boundary and ¢ and Y are
the contribution from the left and right boundaries, respectively. Substituting the basis
function into the integrals and performing the integrations yield

imax'1

Vq4= 22 9dn¥dn
n=2 (D-15)
Im

Vo= 2 %nYen

n=2
Jm
Yr = 2 oY
n=2
where



1 2 *n , : , :
Yan = YT / (X' - Xp-1) I:QO (ug) - % (uu)] dx'/ 8,

4i (6n+1+6n) X
n-1 (D-16)

Xn+1 ! ! ! ! .
+ / (a1 - X') [520 @y) - % (uu)] dX' /8 b = 2 iy ]

Xn
bon= - 6~n+12+’6”n /y‘yln(y’—yn_l) (208 ) -5 (si o' 15,
n-
+/Yn+1(yn+1 'y,)[QO(uD —Qo(u;2>]dy’/5~nﬂ
Vi

where 5~k =Yk~ Y2 s k=12,3,.., jm , and a similar relation holds for ‘pm from the

source distribution on the boundary x = a9. We note that, from equation (D-10), the
potentials all have the form

Y= v - Y y) (D-17)
The integrals in equation (D-16) may be calculated by Simpson’s rule, requiring the evalua-
tion of the £4(u) functions at five points for each integral. With efficient coding this re-
quired evaluation of the cylinder functions at the mesh boundary points and at midpoints
between them for each point the induced flow is to be calculated. Far-field and near-field
expansions of the integrals also may be used to reduce computing costs.

D.3 FORMULAE FOR A FAR-FIELD EXPANSION OF THE INTEGRALS

When the distance from the center of the panel inducing the flow to the point x,y is large
compared with the range of integration Xp-1 to X1 (or Vp-1 to yn+1) , then the functions
£,(u) may be approximated by an expansion of the form

o [e o]
2, (u+Au) = 25 Qn(k)(u) VNI ankAuk (D-18)
k=0 k=0
where u depends only upon x,y and points (xn,b), (al ,yn) or (az,yn). We see immediate-
ly that

ap = L (W) (D-19)

a1 = Qh(u) =- Qn+1(u)
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From equations (D-5) and (D-18) we see that the a,) satisfy the recursion relation
a

nk
A k+2 =" [(n tk+ Dap ey + ETI] /1(k + 2)u]
or more conveniently

_ 4p,k-2
apg = - [0+ k- Dag g g+ = [/ (kw) (D-20)
We need to evaluate the integration along x’. Thus we write
2n(u") = Ln(u + Au)
0t =% (D-21)
> k
= Z aOkAu
k=0

where
aOO = QO(U)

a01 =—Q1(u)

agy = - [(k - Dagy_y +agy_ / k- 1)] / (iw) (D-22)

Substituting equation (D-21) into equation (D-16) yields

1 > *n k.,
Van =" 5 (g 6,) anOk{f | (¢ ) B/ 8y

Xn

Xn+1 K
+ (Xn+1 "X)Au dX /8n+1

Xn

(D-23)

where, as we shall see, Au=p(wq-x")(wy-x") . For convenience we shall introduce
the functions

k
Unk(xl) =/x'nAu dx' (D-24)

Note that equation (D-23) contains only one of the functions in equation (D-16) for the
sake of simplicity.

We require the functions UOk and Uy, and for later considerations, U2k' For the lower
boundary we choose

udr=ud+Au
where
2
ro_ Z\__l__[ 12 +b]
uq = 4 (x-x") +K(y+b) (D-25)
2

>

ugq = —:r[(x - Xn)2+ K(y + b)]



then 2
! [ 2 2]
Au———-4 (x-x) -(X'Xn)‘

Au =y l:(wl - x')(w2 - x'):l

where 5
W =X, Wy=2Xx-Xy,,andu=7; /4

Similarly, for the left-hand boundary we have

up =ug+ Au
where 2
R 2 2
Up= (k-2 +KG-Y)
2
M 2 2]
uQ———4 (x-al) +K(y-yn)
from which A 2K
Au= _1_'[(“’1 'Y')(Wz‘y')] 2
4 Ak
where w; =y, and wy =2y -y, . Ilfwe define pu= i then

Au=p [ wi-y)(wa- y)]
Au=p [(wl - x')(w2 - x')]
and the integrals along the boundaries take the same form.
We now evaluate the functions Ujk(x') . Thus with equation (D-29)
! k 1 k ! k !
UOk(x)=fu (Wl -X) (wz—x) dx
Let wy -x"=§;then
k/k k
Upk(x) = - fE ‘(Wz -wpt E) dg
Expanding the kth power of the term in parenthesis and integrating yields
, k K /k k-] K+ _
UOk(X)::'“ 2 <J>(W2—Wl> (WI‘X) /(k+_]+1)

=0
where < >are Newton’s binomial coefficients.
]

Writing

(D-206)

(D-27)

(D-28)

(D-29)

(D-30)

(D-31)

(D-32)
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p(w-x)(wz-wp) =e

(wy-x') 1 (wy-wp) =t (D-33)
yields .
.k NS
Ugk(x) =-a (wy-x) E S e (D-34)
=0
Now
k t k ! k ’ !
Ulk(x’)=/# (Wl'x) (wz—x) x'dx D35)
k-j k2
I S A A (R VI A D)
j=0
k N2 K o/k\
=1 Ui (v ) Z<j>k+j+2
=0
Similarly
k k k 2
Ugiexd == f g (wy - wy +8) (wy -8
(D-36)

k+j+2

k-j
k>(‘”2 -wp) C(wy-x)

2 k X
=Wq U0k+2W1[J. Z i K+i+2

=0

k+j+3

ki ,
K 2‘5 <k>(W2'W1) (W -x)
=0 J k+j+3

Note that wy - x' = 0 for x’ = x; and w; = wy for x = x,. For this special case the Uk take

a simpler form K ok
U0k=f“ (wl —x') dx’

(D-37)
k N 2k+1
= -M (WI‘X) /(2k+1)
_ k n 2k+2
Uy =wiUpy ta (wl —x) | 2k +2) (D-38)
2 k £ 2k+3
Uy = -wy Ug+2wiUpg-p (wy=x)" [ (2k+3) (D-39)



Denoting

n
Umk®n) = Uk (D-40)
and substituting for Unk into the right-hand side of equation (D-23) yields
ago 1 § 3 [ n-1 n-1
Ml 7 s *n-1Y0k -V J/
4i 2i(6,41 T 6,) el (D41)

n+1 n+1
Hxe1Uok - Uik |/ 0n+1 (20K

Since the agy are functions of u, which we shall define for convenience in the form

2 2
u=pu (x—xn) +z (D-42)
and since the U, are functions of u, W1{ =Xy, Wp = 2X - Xy, We can define a general func-

tion
Go (K> X: % Xpo1> Xpo Xnt 1)

a 1 oy n-1 n-1 (D-43)
=- 00 " 576 T3 Zg[xn—lUOk - Uk ]/5n

4i ‘( n+1 n) k=1

[ n+l n+l]

%n+1Y0k - Uik |/ %n+1( 20k
Then we have finally o)
1

d/dn = GO(T s X, -V_K (y + b)’ Xn_l) xn) xn+1>

(D-44)

2
A K

Yon = Go(T Vs (x-a)) | Ky v Yn+1>

2
A K
lprn = GO ——4—_ s Y (X_az)/VKa yn_layn, yn+1

D.4 FORMULAE FOR THE NEAR-FIELD EXPANSION OF THE INTEGRALS

For the near field, the argument of u in the £,(u) functions is assumed sufficiently small
that the power series of the functions may be integrated term by term. Now

n o 2k k
§> §/2) D

Ta(©)= <§ 2 Tamn!
k=0
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n 2k
12\ M m-k-nf 2 (g
Y ()=~ - < §> 0 <5> *= log <§>Jn(§ )

k=0
n-1
where Y(1)=7 and Y,=-7+ Y &/m Since u= (§/2) then

m=1
oo kk

]
Ww=l=y Lo 5 o
k=0 &)° k=0

Similarly oo 1) k k oo ‘
u
ylw=2@ /= Y i DRI
k=0 k=0

k 2
where cqy = (- 1) [ (kY and ¢y = ok J&k+1)

We also have

1 2 k
0 W=Yy®) = — loquO - = 2 Yk + Degu

k=0

Y 1 122
o W =Yo®) =~ loguly (w) - — 3 wlk+ Degyu
k=0

Y 1 1 J
1 (U)=2Y1(§)/§='E+ ;IOgUQl (w)

| = K
- ; }: W+ 1)+ v+ Dfeqyu
J

Since SZO(u)=HO( )(§) 520 (u) - 1520 (u), then

> icok K
Qo(u) = Z 3b0k ~ T log u 2 u
k=0

where

i

£y & SNIER
—2—> Z{\[/(k+l)+l[/(k+n+l)}m

(D-45)

(D-46)

(D-47)

(D-48)

(D-49)

(D-50)

(D-51)

(D-52)

(D-53)



Similarly

- i1k ki
gw =2 by - — logufu +— (D-54)
k=0 ™ mu
where
i
b1k=clk31+;["b(k+l)+‘p(k+2)]g (D-55)

We need to evaluate integrals of the form

Fo N ,Ilk '
Vnk(x)—— x u dx

n k
Wo(xD= [ x"u logudx' (D-56)

and

For integration along x', we have )
A

u= —%—[(x - x’)2 + K(y + b)2:|

We now factor the quadratic in a form Similar to equation (D-29). This leads to

A
1 N '
u=— (wo - x")(wg -x")
where wg =X +i(y - b)VK and w( is the complex conjugate. Similarly for integration

with respect to y' we have 5

A K

u= ——[(w;-¥)(%-v)]

w1=y+i(x—a1) VK .

where

As before we define
u=pul(w-x)W -x"] (D-57)

and obtain a general formula that holds, with appropriate arguments, for each of the three

boundaries. Thus Kk
V0k=fu Xm

k Wk ko (D-58)
=u f(w—x) (w-x) dx

Comparing with equations (D-34) and (D-36) we obtain

k- k+j+
v =-uk21§ Q@ )T (D-59
Ok purd j k+j+1 )
Similarly from equation (D-35) and (D-36), we have
- k-j k+j+2
k X K\(W-w) “(w-x)
vV = wV -+ u D"60
1k = WVok 2 () T (D-60)

j=0 ¥
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— k-j k+j+3
2 k & K\(W -w) “(w-x')
Vo, =2WwV i, -w Vyyp -
2k Ik ™ # 1§0<> k+j+3 (D-61)

J

Now
log u = log u + log(w ~ x") + log(w - x)

then we have

k
Wik (x") =fu log u dx'

by ’

w-X

Vo(xHdy' Vor(xdy'
, Ok - — 0k(x))dy
=V0klogu+V0klog(w—x)+f—vI—x—,—- +V0klog(w—x)+f-—~——-—

Substituting for VOk yields

Wi = Voi log u+ 2 Real{V K log(w - x")
Ok 0 0 (D-62)

A - w) Sw=x)

+Mkz,<

2
=0 J/ (k+j+1)

Now , , k
wlk(x)=fxu log u dx’

V(x)dy’

= Vlklogu+V1klog(w~x’)+f —

- _ Vig(xHdx’
+V1klog(w -x") +f-—v_v:(,—'

Substituting for Vy; vields

wlk(x') =V log u+2 Real { Vyy log(w - x) (D-63)

k+j+1

_ k-j
k X /K\@-w) “(w-x)
+u Z(

pr A
k

-j k+j+2
J(w - x') ]

k K K\ -
u 2<.>W ) .
= (k+j+2)



Similarly

w2k(x') =V, log i1+ 2 Real V2k log(w - x")
(D-64)

2 kX < )(w W) j(w-x')k+j+1
j

+WHZ

2
=0 (k+j+1)

k+j+2

+2wu E<>(w w) (W_X)z

=0 (k+j+2)

Ty Z( )(W W) (w X)

j=0 (k+j+3)

k+j+3

With the functions V; ik and w Wik defined and with
Vik(*n) = Vi

Substituting equation (D-64) into (D-23) leads to
iC
Ok k
bt - ! ;
Van = 21(6n+1 Ay ) {/ ( |:Ok logu:|u dx'/8n  (D-65)

ot iCox k
+ 4 (xn+1—x') bOk'T logu|u dX’/5n+1

n

500 1 Z n-1 n
= . - b k [X . <V -V >
Ydn 0 71(5n+1 o ) Z, 0 n-1\"0k Ok

n-1 n n+1 n ntl _n
'(Vlk 'V1k>:|/5n+l:xn+1<VOk 'V0k>'<V1k V1k>:|/5n+1}
Z C ( n-1 n)
+————-——-—- Xa_t\W - W
1 +03) 1 0k ¢ [ *n-1\Wok Yok
n-1 n) n+l n
Wik “Wik/ [/ 8at Xt <W0k 'W0k>
n+1
'(Wlk 'Wlkﬂ/‘snﬂ}
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Writing for the variable w

w=Xx+iz
and defining the function
Py (“’ X, Z, Xp-1> Xpo Xn+1) (D-66)
as the left-hand side of equation (D-65), we obtain
2
Al
Yan =P\ "> % VK(y +b), X115 Xp» X (D-67)
2
1 K
Yon=Po\ ™", > (x-a1)/ VK, V-1 Yo Vit

and similar relations for y,,, and ¢ ..

D.5 CALCULATION OF NORMAL DERIVATIVE TO MESH BOUNDARIES

The calculation of the contribution to ¢ ony =-b from the source distribution on the
y

line y = -b is very simple. We consider

a
x,[/( x,y) = - ::1-./' o(x")2p(w)dx’
a1

M 2 2 M 2 2
where u= —4—(x—x') + K(y +b) . Let 'Vk(y+b)=n then u=T(x-x’) +n
d =
an lfly ‘kaln
7\11’] 32 , ,
x[/n = E— o(x)2 (u)dx
a
1

Near u=0, Ql(u) =i/ mu+0(1) ;thusnear n =0 the integral takes the form

Since the integral does not exist at = 0, we introduce the variable

x'-x)/n=§
and obtain ( )/
ay-X) / n
1 2 2
\Iln = 5; o(x + né)dg / (E + 1)
(a17%) /n .

If y goes to -b through values of y > -b, then 7 is positive and for a1 <x <ay, the limit as
goes to 0 becomes



Yp=0(x)/2 (D-68)

and

¥y = VKo(x) / 2
If y goes to -b through values of y <-b, then the limit becomes

vy =-VKo(x) /2 (D-69)
Similarly for sources on the y' axis we write
P2
V= / oy Wg(wdy’
2 1
b
M 2 2] 1 , ,
where u = —4—- (x—a1> +Ky-y) |, let YK (' -y)=n', then
1 V_I—(_(b2_y)
= L ———— ’ Q d 1
Y ‘“Wv— o(n)Rp(w)dn
K (b1-y)
Since this has the same form as the o(x') contribution, we see that
vy = o(y) /QVK) (D-70)

for -b <y <b and x going to aj through values of x >a;. Forx going to a; through values
of x <aj, we obtain

Uy = - o(y) /QVK) (D-71)

D.6 THE BOUNDARY CONDITIONS ON THE MESH BOUNDARIES

To match the interior finite difference solution with the outer finite element solution, we
make the values of the potential from the two solutions and the values of the normal deriva-
tives from the two solutions equal on the mesh boundary. Thusony =-b = (yl + y2) /2,
we match the values of ¢ and 01y

from the two solutions while on x=a; = (xl + x2> [2 andonx =a,= (Xi + X, _1> /2,
max  !max
we match the values of

p1and gjy
from the two solutions.

We could actually evaluate ¢, and Py for the outer solution by differentiating ¢ from the
wake and source distributions; but to simplify the programming, we will approximate 01
at x =x; by (goil + ‘»"12) / 2 on the lower boundary both for the finite difference solution

and for the finite element solution. For the derivative with respect to y, we take

o1y = (viz-vi1) 1 (v2-v1)
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for the finite difference solution and from the exterior solutions for the source distributions
on the sides x = a; and x = a5; but we will use 3

limit ~ %9d

y—>-b oy
from the source distribution terms for the lower boundary y = -b.

Let pg, ;. Pg, Py be the contributions to the exterior solution from the left, right, lower

boundary source distributions, and the wake. Then the boundary conditions on y = -b at

X = Xi are

+ +
Yi1 Fein  epin T egi2 T il Yz T edin T ediz

> 5 (D-72)
~¢di1 tedi2 , Pwil towin
2 2
+
Pi1T %12 PRIl T Ri2 T Pril T Pri2 - Oyy
Yi1-Vo (yl-yz) y—>-b 0¥

Pdil - Pdi2 N Pwil ~ Pwi2
Y1-Y2 Y1-¥2
where the + and - denote the lower source distribution and its image at y = b, and

or = tp:- «p; and ¢g = «p; - go;z . Since we are interested in the outer solution at y = -b
through values of y < -b, then from the preceding equation we obtain
9i1 ~%i2 _ Peil T Ri2 T il - ari2
2 2 o (D-73)
N Mx;

¥dil ~ ¥di2
-VKogie (1-y) /45

Adding and subtracting equations (D-72) and (D-73) yields

_ - + + My (v -v2) VK4 + g4
Pi1 = PRl t o1 - Pdi1 t\vdi1 *wdi2 [2- 04i€ (D-74)
_ - (+ + ) MM (V] -v) VK4 +oy0
Y12 = Pein T rip - Pdiz T\¥ail tedin) /2t ogje (D-75)
A Mx
Because of the factor e , the normal boundary conditions on x = aj and x = a take a

different form. For the derivative with respect to x we have

— =¢

+
&pg
0x

1)\1MX + . +
[wQX + llepo]



Since we must approach x = a; fro_lr_n values x < aq, we obtain from equation (D-71)

: 0 iA{Ma
lim R + 1
——=i\Mypy -op(y)e 2VK
x> ar x 1Mpg - og(y) /
Thus the boundary conditions on x = a; become
+ + - -
Pijteai PRy T2 TeR1j T R2i T i T el
= (D-76)
2 2
, Pl Ted2i L Pwilj T Pw
2 2
A I TV P I IV V) . Pwlj ™ Pw2j
XI-XZ Xl —X2 xl -)(2 (D-77)
i\ M ’ + .
Pd1j = Pd2j 1A pMay PR1j T PR2j
s —1— . 0Q<Yj)e /QVR)+ in M ST
Xl - X2 2

Adding and subtracting equations (D-76) and (xl - x2) / 2 times equation (D-77) yield

+ + - iA{Ma
. . . o _ 1Ma; |
21 o (g1 Wszz;) - 901j +‘Pr11+‘pd1j+‘pw11-<ogje /(4VK)>(X1 —x2> (D-78)

_/ + + - iA{Ma;
¥2j = ¥ (@1 it ‘Pszzj) -0 00y T Pa; T Pwoj +<0Qje /(4‘@) (X1 - Xz) (D-79)

where ag =1 /2 +iM}\1(x1 - x2> / 4.
On the right-hand boundary we apply the boundary conditions

. . . . .~ Vo- Q- . .
(SolmaxJ wlmax'1’1> Plimaxd " Plmax-1d " Pdipayd T Pdippax-ls

Xi =X B X =X (D-80)
( Imax 1max'l) ( lmax  lmax 1)
‘p—.a . —(p\-. ¢ . . _‘p . . +
Hpaxd " YHmax-1,0 T Wipayd Wlmax'l’J_l_ lim 9
X - X: X; - X _ X—>ay 0X
imax  imax~] imax imax~l 2
, .+ 0 . .+ Ons T o
| Plaxd imax1,1 _ SOQ‘lmaxJ Rimax-1s] sDdlmaxj spdlmax'l’J
2 2 (D-81)
+ + - -
Crii o it 1,5 P 3T <1, Pwinao] T PWi -1, ]
max max_ 1> max max~1>J . max’ max" 1)
2 2 2
Now + . +
im %+ im AMap dpp
x>ay gy MM Txoay © ar

51



52

Since we approach ay from the outside, or x > ap, we have from equation (D-70)

lim a‘pr . + 1>\1M3‘2 D-82
x> ay '—a')'(‘=1>\1M<pr +e Oy ,/(21/12)_ ( )
Thus equation (D-80) with the aid of equation (D-82) becomes
. Y . . . - Dns D .~ Oa: .
Yimaxd " Pimax1>J _ Piinaxd " Pimax-153 " Pigayd " Pdigax-1,
. - X . - X
Minax  imax~1 Yimax " imax~! (D-83)
- - + W
Primaxd ~ Primax15 ] i Pripaxi * Primax-1, J
- " + 1)\1M 5
x- - -
imax “imax~!
i Ma Pwi i Pwi -1,
a2 s
te Orj /(2VK)+ max . max

and the other boundary condition is

. .+ o . . .+ Vo s D .
Yimaxd " Pimax 1] _ Pimaxd " Mimax1,] " Pdipayd " Pdipay-1,
2 2 (D-84)
+ - + +
O R . o .
Pripaxd " Primax1d " Pripayd Priax-1s ]
2

PWi v t owi
2
Adding (Xi - X; _1> / 2 times equation (D-83) to equation (D-84) yields

max max

rnax'l’j

41 15 = 9% 1,j T Pdi towi

_ - - . -¢ . - . - .
max max max~1>3 " Yripax-1,1] max~1>1

(D-85)

va (ot v SR V)
1tpmmaxj Pripax-1,3)7° 71 \Mimax ximax'1

Subtracting leads to
+ . + + o
. .= . . . .- . . . . o . . . .
Pinaxd SlemaxJ Pdip oy Prinaxd Wi axd 1<‘p“maxJ Prinax-1s J>

(D-86)
+e Oxj <X1

1) a0

-~ xi _
max max
where

a=1/2+M(x  -x:
172y (leax xlmax‘1>/4



D.7 EVALUATION OF THE WAKE INTEGRAL FOR THE OUTER SOLUTION

We must also include the contributions from the doublet wake integral in the outer solution.
From equation (110), page 68, of NASA CR-2257, we have

iAp, e <X"Xi o+ 1)
Pw = e Yy

4 J, 19%1 (D-87)
11+1
1Ay e (X’_Xi“])w dx’
= € X
4VK J,. y
11+1
From the bottom of page 68 this takes the form
N WKy v 'i‘*’(x"xilﬂ) AMA X’ N Mx
Pw = " -T‘— Ap, e Hy (>\1r>dx' /rre (D-88)

Xi1+1

1/ 2 2
where r = Y(x - x') + Ky , Since the infinite integral is very slowly convergent, we divide

it into two parts and change the contour of integration of the infinite integral. Thus

iIMA 1 x [ o X . ' . '
nVRye e (g 1) M ,
Py = - Ay + e H1(>\1r)dx [t »(D-89)
X

4
Xil+1

oo
‘ : . 1=X 2
_li-v_i_y A elw(X11+l )/ e—iw(X,_X)/ﬁ H (7\ r)dX, I
4 Pt A

X

iwxilﬂ +iMAx X —iwx'/62 ,
+e e H1<?\1r)dx /r
it
Now by translating the range of integration of the first integral we obtain

o0 o0

2
_)\1Ky'/x' gl /8 H1<)\1r>dx’/r'=—ay / &% g(nyr)ag (090

—\/ 2 2
where r= ¢ + Ky . Inreference 1, this integral was made more convergent by changing
the contour of integration so that we obtain real negative exponentials. The integral then
takes the form
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[e%) m / 2
] -iwk

2
_ e HO(?\lr)d£=?\1Wy if e-oﬂfﬁycose/ﬁ J1<
0 0

A WKy sin 0>d0

w2 -w VK osf)/ﬁ2
+-/O. e ye YI(VIZW\I sin 0)

2\ -w¥Ky cosh 6/ 62 '
+ <—> e K (xlwlﬁy sinh e) do

s
00 2
2 [ -w¥Ky cosh 6
+—'/‘eCLJ ycosh 0/ Kl(?\l'ﬁ(-ysinh6>d0
™
/2

which is computed numerically for each value of y.

The remaining integral is over a finite range and becomes
X L, /[32 }\1 X . /32
iwx iwx
/ e Hl(?\lr)dx/r=——f e 24 (w)dx’
X +1 2 .
11 X11+1

where 2
A

u= -71;— [(x - x')2 + Ky2]

This integral must also be evaluated numerically.

Finally, combining equations (D-91) and (D-92) into equation (D-89) yields

(D-91)

(D-92)

(D-93)



i)\lyAcpt T

/2 2
-wVKy cos 0
o= i4 g WYy cosb/F 11 (3 ¥y sin 0)do

w/?2 2
+ _l; [e_wﬁy cos O /6 Y1<>\11/'I€y sin 9)

2
+ (2.) e-w'\/iy cos 0 /8 K, (AI'V-IZy sinh 0)] dé

o0

2
+<3> f YKy cosh 0/ K, (X VRy sinh 0)do
‘ 4 /2

2
) , - 5 -iwx' /B ,
i Ky 1wxil+1+1M>\1xf e £1(wydx
" Tg Aee Xi+1

or

o = Ay G(x,y)
where

(D-94)

. 2 2
Ny m/ -wVKy cos 0 /B
e

G(x,y) = - —4L' {i ./(-) J](?\IVKy sin 0 d@

(D-95)
2
m/2 -w¥Ky cos 8 /B )
+ -A) [e | Yl(M'Ey sin 0)

2
2 -wVKy cosh 0 /8
[$]

K (x VKy sinh 9) a9
- 1M

) .

+ 2 /oo e—oﬂ’ﬁy cosf /B K1<?\1VIZy sinh 0)(16}
n/2

. 2 X ; ; -in'/ﬁ2

iy VI_(y 1wxll+1+1M)\1xf e

" e xilﬂ 21(wydx

2
and A

u= —Alr-[(x - x')2 + Kyz] (D-96)
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Since we have assumed steady symmetric flow, the unsteady perturbation potential satisfies
Yij,+tl T " i, Pii 72 T P,

(D-97)

then on the airfoil

A= - 25 * Csl(‘pijm-l - ‘Pijm)

(D-98)
U L
=052 (i, ~ i) - (ds1Fi * dgaFy
B U L

Agi= - (Csl Togpt 2>‘pijm * (Csl * °s2>‘pijm—1 -\ds1Fi FdgoF;

At the trailing edge the Kutta condition requires

Apyx tiwlAp) =0
at x = Xil , from equation (37) of reference 1, we have

o1i(Agi+1 - Agy ) Ty (A‘Pil ~Agy, ) +iwAp =0 (D-99)
Solving for Agoilﬂ yields
Doy = Bpj 41 = Agy (1= Jegj -ie ] o1, * (41 e1i,)Ap -1 (D-100)

Using equation (D-98) to define Agpil and A‘pil—l yields

Agpt= [1 - (dlll +1w>/ Chl:l [— (Csl + Cer t 2>g011,]m

U L
* (Csl+cs2)‘pi1,jm—l‘<dlei1 *dgoFy, )

* (dnl / Cli1> [ <Csl Tegt 2)<pil-1,jm

U L
* (o1 + 02)9ip-1,5,,-17 (ds1Fip-1 *dFi

Hence we write

Apy=hyey 5 thowy 5 1 thae oy Thee oy 1 PR (D-101)



where
hy == (eg1 +esp+ 2) (1-dyy, ogj ~ieo) 1i )

_ . (D-102)
hy = <Csl * Cs2> (‘ -dyj /ey -iw/ 0111)

hy == (cs1 * ep * 2) (A1, ey

hy = (51 + e2) (13 / o1y )
. 8] L
R =- (1—(1“1/0“1‘10)/0“1) <dle11 +d82Fi1 >

U L
"<d1i/cli>(dlei-l +dgFi )

Substituting equation (D-101) into equation (D-94) yields the following expressions for the
induced flow from the wake at the point Xjs Vi

ow = Hyggep o+ Hogey oo T Hsen 5 o1t Hagep -1

Jml (D-103)

where
Hyi=hG (%)) (D-104)
and similarly for the other quantities.

D.8 DERIVATION OF THE COEFFICIENTS FOR
A MESH WITH TWO AXES OF SYMMETRY

To reduce the number of integrals to be evaluated, we consider two lines of symmetry for
the rectangular mesh region. We define

Va(*n - %) = Yan (%)) = Yanij

) (Xi’yn - Yj) = lPQn(Xi,Yj) = Yonij
with similar relations for ¢ ,, and .. Fori,, . even, we see from figure 7 that the follow-

ing relations hold for points on the left and right boundaries:

Vanij = Ydig, 0+, i 0l

Yentj = Ymi i

Vinlj = Yeni_, .j

Similarly,
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Figure 7.—lllustration of Equal Values of the Integral for Points Associated
With the Upstream and Downstream Boundaries for a Grid
With Two Axes of Symmetry
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Van2j = Ydi o bl i o1

Ven2j = Yini -1

Yn2i = Yeni 1

On the lower boundary we have from figure 8

Vanil = Ydip ], i -itl,]

Yoni1 = Vi, -i+1,1

Yinil = Veni, -i+1,1

Ydni2 = SDdi o tl i .- it1,2

Veni2 = Yrni, i +1,2

Ymi2 = Yeni, -i+1,2

Because of these equalities we need to compute only the left boundary integrals and the
lower boundary integrals. For the left boundary, we have

i=1,2andj=2,3 and n = 2,3,.. -1

o= ; . it yeees ] yeees
lPdmj ‘l’dlmax n+1,1maX i+1,j m max

\Panj = wmimax'iﬂ’j fori=12andj=23,.,j, andn=23,.,j,

Yinij = ¥eni , ~i+1,j fori=1,2andjn=23,.,jm
On the lower boundary we have

Vdnij = ¥di_, n+1, i, -i+1,§  forj=1,2andi=23

> Imax /[2andn=2,3

eees Epax
Vonij = Yrni, o, it 1,

o= : o1 forj=12andi=2,3,.., 2 and forn=2,3,...,]
Yrnij WQmmaX—lH,J 1= imax / rn Jm
The total number of  integrals to be evaluated are:

1. On left boundary

pees i
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Van 2(J'm- 1)(imax i 2)
b0+ 2(im = 1) (im - 1)
Ven Wi - 1><jm -1)

Total = 2(j,, - 1) [imax +2(ipy - 1) - 2]
2. On lower boundary

Vdn © 2 (max /2- )( Imax ~ 2)= (imax - 2)2
Yon 2(jm - ])(imax [2- 1) = (jm - 1) (imax~ 2)
Yin - <jm - 1) (imax ' 2)

Total on lower boundary = (imax - 2) [2 <jm - 1) tiay 2]

Combining the two totals yields the following total number Nj of integrals to be evaluated:
2
N; = [max+ 2(im - 1) - 2]

D.9 DERIVATION OF THE MATRIX ELEMENTS OF THE
SYSTEM OF EQUATIONS TO BE SOLVED

For the sake of completeness we write down the difference equations whose coefficients of
the p;; form the elements of part of the matrix. The present program with simpler far-field
bounddry conditions can be coded to compute these coefficients with small modification.
At elliptic points we have, in the notation of reference 1,

4955-1 - (a byt By +Ey - Qlj)‘p1]+b3‘p13+1 +Ejgipp T Eowiq ;70

forj=2,3 andi=2,3 -1

- S T

At hyperbolic points,
4955-1 ~ <‘1 +b;-E3- QU)‘pu + bi0541 - (E3 + E4) 0i-1,j T Eqvin =0

forj=223 andi= 2,3 -1

T
we have Pij+1 = Pij and the two equations become

aj6ij-1 = (3 205+ Ey + ) - Q)i + By j ¥ Epopy j =0

i1 - (3 * 207 - E3 - Q) -(Es+ E4) ?i-1,j T Pagi,j= 0

Forj= Jy»> We also have boundary conditions for i <i<Ci{ and jump conditions for i > i if.

seers Jm

Forj=j.,»
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The coding is already written for the difference equations and we need only consider the
boundary conditions on the mesh edges. Thus we add to the difference equations the
boundary conditions

im + i Mx, + iAMxy
015= 2. % Wenij e + Yonoj ©

n=2
- i)\lMXI i)\lMal
—d/inje —Snje (X—Xz) /(4VK) UQn
imax'1 i)\lMxl im i)lexl
t 22 Yanije Odn* 2, ¥mlje om * Ywij
n=2 n=2
i=23,50n
Im + i7\1Mxl + i Mx,
02i= 20 | Ty \Wenlj® T Yonoj
n=2
- 1)\1MX2 17\1M&1
~Ven2j @ *8pje (x1 - x2) 16VK)| og,
imax~1 N Mx)
X Vdni© Odn
n=2
Jm i\ Mx
+ 2 Yrn2j € Orn * Pw2j
n=2
for j = 2,3,y

Here the function y without the plus or minus subscripts designate the combination
+ -
v o-y.
N Mx; Jm Im
Yir—¢ {Z Yonil%gn * Z Y1nil%m
n=2 n=2

lmax'l

+ + -
* n{:z [(‘l’dnil + deiz)”"l’dnn
-VK8,(v1 - v2) /4]0dn } * ewil

for i=2,3,..,i 1

max_



1
2 Yonizon t 2 Y1ni2%m

n=2 n=2

i?lex- jm jm
Yip = ¢

imax™]

+ :L:'z l:(‘l’;ﬁl + ‘lj-ld-ni2>/ 2= Vi

+VK8pi (v -v2) /4]Udn} + Owia

for i=3,4,.., 2

Imax™
i Im lmax'1

e 2 VYeni %t 2 Vdni, i%n
n=2 n=2

j iNy Mx, N Mx:
im [ <+ MM A leax'1>
o
1

&p, . =
llﬂleJ

t E 1’l’rni ¥ i €

. e .
max iax~1s]
n=2

- max VK
- . . € X: - X / 4VK o + . .
kbmimaxj ¢ O ( Imax 1max'l) ¢ )] " Wi

for j=2,3,..,ip
i>\lMxi jm imax“1
Piax-1d " C \ > Yo i L%t X Yani, -1,i%n
n=2 n=2
Jm r_ + i>\lMximax + i>\lMximax' >
+ ) \Yrni t l'[/rni

-1,j
max™ >
n=2

e
maxJ

i\ Mx. )
1A Minax-] ixyMay
.e -5..¢e X

- . - X _
lljrmmax L} nj Imax Imax 1)

=23, 0

Here .
Qg = 1 /2+1M)\1 (Xl -Xz)/4

=1/2+iM\, (x; - X; 4
*1 / ! 1<X1max leax' 1) /
also.

We notice that there are two expressions for @7 and ¢; -1 2- The two equations must be
max

equal; hence we obtain for %)
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CINZIS VX +(8g- 1D Yoo e

2

n=2

Jm[ b My I Mxy

+8.5¢ (Xl - x2) /@VK) Oon

iANMx, imax! + +
te z (\anzz' de21> /2

n=2

- VK649 (v - Yz)] Odn =0
and for (pimax'l 9
Im . iN Xi ax ~ N 1?\1Mxlmax_1
2 @1 ¥, i, 2¢ *(“1‘1>¢mi -1,2¢

max,

-8._~¢€ X: - X
n2 imax imax~}

= max

/ (4@)} O

l)\llle1 -1

imax'1

max +

te 2z [(‘Pdnimax-l, 2 Vdni o -1, 1> /2
n=2

-8pi ~1VK(Y1-¥2)/ 4] Ogn =0

D.10 THE DEFINITION OF THE BASIC VARIABLES AND
THE FORMULATION OF THE MATRIX

We write for the equations N
Y a X, Ry m=12,..,N
n=1

Let x, = ¢ forn=(i- 1)y, -1+]fori<iy,, and n=(imax- l)jm—2+j fori=ig,.
Let Np be the total number of potential variables. Then

Np = imaxjm -2
The total number of oy, variables is im - 1 (see fig. 8)

The total number of ¢, variables is j, - 1

The total number of Odn variables is imax - 2

Hence the total number of variables (N is

2<jm - 1) *imax ~ 2
Combining this total with the total number of potential variables, we obtain for the total
number of variables N



N= imaxjm t 2(jm - 1) + imax -4

To summarize the previous discussion, we identify the variables x, as
an‘pij forn=(@- l)jm+j- 1 fori<imaX and

n = (imax = )i +3-2 fori =iy,
Xn = 09k forn=Np+k—1, k=2,3,., jm
X, = 0pk forn=(Np+jm-1)+k-l, k=230,

Xp=ogy forn=(Np+ 2y -2)+k-1, k=23,.jp

We now consider the numbering of the equations which make up the matrix system. The
number of difference equations for the inner solution is

Ng = (imax h 2)<jm - 1)

The number of ¢ boundary conditions is

Npo = 4(jm - 1)+ 2(imax -2)-2
The total number of equations is then

Ne = imax)m ¥ 2(Jm - 1) *imax = ©
We therefore require two more equations to complete the system. These equations are
provided by making the relations for 955 and ®; -1 2 equal.

max

We now define the equation numbers and the corresponding matrix elements.

1. Equations numbered m = 1,2,..., N4 are the difference equations of the inner solution
and
Ng = (Jm - 1)(lmax - 2)
2. Equations numbered m=Ng +1,..., Nd +jm - 1 are the boundary conditions on

kplj, j:2a3>--'>jm

Ny =Ny +i, - 1 is the number of difference equations + the number of 01 boundary

conditions.

3. Equations Ny +1to Ny +jp, - 1 are the boundary conditions on 02i » i=23,.,0y

sz = Nbl + jm - 1 is the number of difference equations + number of @15 + number of

P2 boundary conditions

4. Equations m = Ny + 1 to sz +Jjmy - 1 are the boundary conditions on ®; 1]
max
boundary conditions.
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Np3=Npo +jp -11is the number of difference equations + the number of 01 + the

number of ®j + the number of @5 1 boundary conditions.
m

ax

5. Equations m = Nb3 +1to Nb3 +jm - 1 are boundary conditions on ‘pimaxj’ i=23,.. jm
Nb4 =Np3 tiy - 1 is the number of difference equations + the number of 01 + the

number of P2 + the number of ¢; - 1 t the number of ‘pimaxj boundary conditions.

max
6. Equations m = Npg4 + 1 to Nb4 tigax - 2 are boundary conditions on

kpil, i= 2,3,..., imax -1

Nps = Npg +ipy - 1 is the number of difference equations + the number of ¢;; + the

number of Pt the number of ; 157 the number of ¢; : + the number of

max max

;1 boundary conditions

7. Equations m = NbS +1 to NbS +1i - 4 are boundary conditions on

max

0i0s 07 3y iy - 2

max -

The total number of equations is
N'=Nps +imax 4= Npg + 2y - 6

N=Ng+4(py-1) + 2y, -6
= imaxdm * 2(jm N 1) *imax =6
We require two more equations, since the total number of variables is

imaxjm + Q(jm - 1) +imax = 4. These equations are obtained from equating the two

relations which give 55 and also give Wimax'l 9.

Since the wake integral is involved in all equations greater than m = Ng, we need to identify
the ¢ variables associated with it; we have

Pwij = '<H1ij90iljm T i 5,-1 T 133911, 5, Haigei 1,51 Rij)
Let nl = (11 - l)jm+]m- 1 =i1jm- 1
and ny = (g = 2)jp, +ip - 1= (i~ )iy - 1

then
Pwij = - (Hlijxnl T HojiXp -1 T H3jXp, * H3inn2-1>



D.11 FORMULAS FOR MATRIX COEFFICIENTS
REQUIRED BY OUTER SOLUTION

We shall now write the equations for the various coefficients of the matrix a,,. For the
equations m = 1 to Ny, the coefficients are for the inner finite difference solutions and are
described in reference (1). We now formulate the boundary condition coefficients ahm
resulting from the source distribution of the outer solution.

1. Equationsm=Ng+1toNg+j,-1; o1j boundary condition

m = Ny tj-1, forj=23,.Jy

a. Coefficients of 01 3
8.1, Ng+-1 = 1

ah,m = Hiyj an,-1,m =~ Hayj

any,m = ~H3y; Any-1,m =~ Hayj
when nj = (jl - 2)(jm - 1) +jm and ny =(i1 - 1) (jm - 1) are the variables associated with
the potentials about the trailing edge.

b. Coefficients of og) variables, k = 2,3,..., im
( + iNMxy 4 i Mx,
Ny +k-1,m = *0\Vek1j © T Yekoj € >
- N Mx iNMa,
- Ygk1j @ -8y e (Xl'x2) 1@VK)
c. Coefficients of o variables, k=2,3,...,j

aN+k-1,m = ¥Yrk1j ©

d. Coefticients of gy variables, k = 2,3,..., j;, i\ Mx|

aN +k-1,m = ¥dk1j ©
e. Right-hand side R, = le

+
Here the functions y are defined in equations (D-16) and (D-17) and ¢ without the
* signs in this section is understood to be the combination g[/+ -y,

2. Equations m = Nbl +1ito Nbl +jm - 1;gp2j boundary conditions
m=Nb1 +j-1 s j=2,3
a. Coefficients of i variables

EARAS ] jm
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4 +-1,m =1
an,j =~ Higj 4nj-1,m = - Hpgj
an,,j =~ H32; an,-1,m = - Haj
b. Coefficients of gy variable—s~ + D‘IMXI + i)‘lMX2
N +k-1,m = %0\ VK1 © * ¥eK2j ©
. iNMx, i\;Ma;

fork=2,3,..,ip

c¢. Coefficient of 0tk variables
INgtk-1,m = Yk2j

fork+23,.,ip

d. Coefficients of 04| Variables
N, +k-1,m = Ydk2j
fork = 2,3,...,jm

o

. Right-hand side Rm = R2j

3. Equations m = Npy +1to Nb2 tim - 1 ) 05 -1j boundary condition
max
m=Nygtj-1forj=23,.,jy,

a. Coefficients of Pij variables

a2 joti-lm =]
anym=-Hyj o1 np-1,m = Hyj 1
a,. m=-Hy; 14 a_ =-Hy,. e
ny, Lax1s] ny-1,m 41max 1,
b. Coefficients of 0Og variables
1)\1MX1 _l
-y . max
a = . .
Np+k—1 ,m ki -1,i

fork =2,3,..., i,

c. Coefficients of 0,k variables



N Mx; iN{Mx.
M Mhax + "1 leax'1>
-1¢

WNgtk-1,m = & <¢’rkimaxj e

NMx; -1 i\[Ma,

) lprkimax'1J

fork=23,.,]

d. Coefficients of 04k variables .
1)\1MX1 _1
max

j © fork=23,..,i

AN +k-1,m = Vdki -1, R o

e. Right-hand side R, = Rimax'l’j

. Equations m = Nyy3 + 1 to Ny3 tim- Ly j boundary conditions
max

m=Np3+j-1forj=23
a. Coefficients of i variables

senesy Jm

q ) . . = l
imax~1 Jp*i-2,m

4nym =T

b. Coefficients of o9k variables

N, +k-1,m = € Yoki

fork=2.3,..,Jjy

¢. Coefficients of 0k variables
1)\11\’IXl i)\lMXimax_l
INgtk-1,m = ¥ \Viki o i ki -1,5€
) i?\lMximaX
- Yok e +8;¢ X; - X:
TKipaxd kj < Imax 1max"l>

fork=2.3,.,iy

d. Coefficients of 04 variables mlMxi
B max
AN +k-1,m = Vdki

for k =2,3,.., iy - |

maxJ

j + 8y e (Ximax ) Ximax'l)/ K

1
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¢. Right-hand side R, = R; :
m - lpgxd

5. Equations m = Npg + 1 to Npg +igax - 2=
m= Nb4 +i-1,
a. Coefficients of i variable
a i) jm =1
Mypm T T Hyjy

an2,m == H3i1

Nps
i=23

yoers ‘max']

anl—l,m =-Hy;;

an2-1 m- " H4i1

b. Coeffici f ariable
oefticients o ogy variables 17\1Mxi
INpytk-1,m = © Yekil
fork =2,3,..., jm
c. Coefficients of o variables
aNg+k-1,m = © Yikil
k=23,
d. Coefficients of 04k variables
ON +k-1,m = © [(‘pdkil * lPdkiz) /2 - Wqki1 - VR8xi(vy - v2) /4]
fork=23,..,ipax ~ |

e. Right-hand side R, = Ryy

6. Equationsm =Ny + 1 to Nps tipax - 4
m= NbS +i-2,

a. Coefficients of i variable
2 j+lm™ 1

ay,,m =~ Hijp

an2,m == H3i2

b. Coefficients of 0K variables
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N Mx;
Ny+k-1,m = © Yoki2

fork=23,..iy,

c. Coefficients of o,y variables
i)\lMxi
INg+k-1,m = © Viki2
k=23, 0p

d. Coefficients of 04k variables

MK 4 4 ]
aN +k-1,m = © [ Vakil* wdkiz>/ 2 - Vaxin + VK8 (v1 - v2) / 4]
fork =2.3,...,iqax - 1

e. Right-hand side Rm = RiZ

. Equation m =Ny + i, -3
Matching of two relations giving 22
a. Coefficients of @i variables are zero.

b. Coefficients of g, k=12,3,.., im

o iAMx + iNMx,y
AN tk-1,m = %0 Yek12 © T Ugk2,2€ (@%-1)
i)\lMal
+8py e (Xl - x2) /(4V—I€)

c. Coefficients of Ork variables are all zero.

d. Coefficients of o4}, k=23,..., 1 1

max -~

AN +k-1,m = © [(wdkzz - ‘l’dk21>/ 2- VKo (vi-vo) / 4]
. Right-hand side R, =0

[¢]

. Equation m = Nys +i 2

max

Matching of two relations giving ¥; -12
max

a. Coefficients of i variables are all zero.

b. Coefficients of ogk variables are all zero.
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]k’ [ 11 .

ANg+k-1,m = %1 ¥rki 2 €

max

MY
tog ) -1,2¢

+ 81,9 € . - X: 4VK
k2 <leax lmax'l) /
d. Coefficients of 04k k=12,3,.., 'max -1
1)\1MX _1
p=— e - - .
AN +k-1,m {(wdklmax-l 2~ Vdkip, -1 ,1)

- 1VK(v1-v2) 4}
e. Right-hand side R, = 0.

The integrals ¥ 3,,, ¥, and Y, can be expressed in the form of a single function of

several variables resulting in considerable saving in coding. These integrals are represented by

+ 1 2 xn [ [ I3
\I/dn (x,y) ='Z} '8‘-—‘_;“‘6_ (X - Xn—l) QO (ud)dx /611
n+l n Xp-1 (D-105)
Xn+1 ' t !
+[ (Xn+1 'X)Qo(ud)dx /6n+1}
Xn
1 2 Yn e
ll/Qn(X,Y)—'- Y (v' - Yn-1) 2o (ug)dy’ /6,
4 bnp 00 (Jvpa (D-106)
Yn+1 -
t )y Onrr oY) Ay /04
n
1
sD Xy)=-— —= V' - ¥n-1) Lo (u)dy’ /8
m 40 n+1+6 { ( nl) 0( r)
(D-107)

Y+l -
+ _/; (Yn+1 =) % (u)dy' / 814y

n



where 0= Xp~Xp1r O =¥Yn-Yp-1» (D-108)

. o2, =2 2
ug=Ap |X'-x) +K(y+b) |/4

, , , (D-109)
ug =Xy [(x—al) +K(y -y J /4
=>\12K [(y—y')2+ (x-al)z/K] /4 (D-110)
up. =?\12 [(x-a2)2+K(y-Y')2} /4
(D-111)

2 2 2
=N K[(y-y) +(x-27) /K]/4
: -, ith ¢=2Va . The functions ¥g,,, Yo, and ¥, be wri
and £q(u) =Hgy "(§) wit =2V . e functions ¥ 3,,, Yop > and Y, can be written
down by replacing y by -y.

Let s 9
u=u[(x’-n) +£J (D-112)

and define the function

i 2 Xn
3G lls == X"X_ L u)dx'/8
W(M«fnxn) 4 8.4+ 8, {]}; 1( n 1) ol n
n—

Xl’l+1 f '
+ f (xn+1 - x') Lp(w)dx /6n+1} (D-113)

where ‘Sn =xX,-X as before.

n~ “n-1

By comparing u in equation (D-112) with uy, u;z, and uy. in equations (D-109), (D-110), and

(D-111) and comparing equations (D-105), (D-106), and (D-109) with equation (D-113), we
see that

+ 2

Ydn = w(M /4, VK(b + y),x,xn) (D-114)
+ 2

Yon = w(M K /4, (x-ay) /VKy,yn) (D-115)
+ 2

Yig = d/(M K /4, (X-ap) /Vf,y,yn) (D-116)

Hence the subscripted quantities become
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‘p:i-m'j =y 7‘12 /4, VK(b + yj)’xi’xn>

2

‘I’Znij - ll’()‘l K /4, (Xi -a) / VK’yj’yn)

2

lp:nu = \U(?\l K / 4, (Xi‘ 32) /VK,Yj’yn>
. 2

Vdnij =¢<7\1 /4, VK(b‘yj)’Xi’Xn>
. 2

bonig =¥ O K14, (g-ay) 1 V- i)
. 2

lprnij = lb<>\1 K /4, (Xi' ) / K, 'yj’yn>

(D-117)

(D-118)

(D-119)

(D-120)

(D-121)

(D-122)



APPENDIX E

AN OBLIQUE COORDINATE SYSTEM FOR
SWEPT AND TAPERED WINGS

Consider a vector function F with X,y,z, components F ,F2,F3 ; then the divergence of F
under the transformation of equation (G.1) becomes
~ oF
V-F= E.vg+F272+F3TI (E-1)
where g= (gx,gy), and Fy ,F2,F3 are the x,y,z components of F. Expressing the opera-
tor in conservation form yields

e — J
VeF=— (F-Vg)+F,_+F, -F +— (Vg E-2
Now
Ve= (1/c(y), '/ c=x'ge(y) [ ¢) (E-3)
Here ¢ may be written as c¢(n) and we find that
0
% veg=(0,-¢"/¢) (E-4)
We also have
F= <u‘plx‘21w‘p1 /6 >‘p1y 550]Z> (E-5)

or substituting the transformation yields

F= (ugplggx - 21(0801 [e, ‘plggy + ‘p]n’ KP1§> (E-6)

Since the linear transonic small perturbation equation for unsteady flow can be written in
the form V-§+q<p1=0

we obtain from equations (E-3) through (E-6)

a5 (o1, wr ) vy (o1, reyen)| o (1,7 821 ED)

+gp1§§+ '/ c)(gpln + gygp1£> +qp; =0

The first derivative terms must be changed to reduce the equation to conservation form.

Thus ' N
c' 3 [c c
Loy i) e
0 ¢’
Bye1, = 3¢ (8ye1) * <:>ap1
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The conservation form of the differential equation then becomes

0 [( 2 + 2) +< + 2iw / ) + ]
- u 1w | €
of gx gy <.01E By | 1 gysoln (E8)

0
+— [ (1+c + +
o [( ¢ /c) g gywlg] Plee

tlg+c' /ec-(c'"/e) g =0

For the coefficient of ¢} we see that the second derivative of the chord in the spanwise
variable must be continuous for the conservation form to be valid. If the nonconservation
form is used, there is not this restriction on the planform and we obtain

g, (9 /9% [gxwplé - 2iwpy / 6] + gy (3 / 0%) <<p1n + gywlg)

0 (E-9)
+(0/0 +g.0 )+gp +qpy =
o1, eye1g) F P19
The condition that the equation be hyperbolic for both forms is
2 2
gy utgy <0 (E-10)

The root chord of the wing must be a plane of symmetry and we must impose the conditions
that 01 = 0 aty =n=0. In terms of the §,n variables this becomes
y

gp1n+gygplg=0 fory=n=0 (E-11)

Since this term is zero we must also have, for small N7,

Pl tew ~. (P1. teye
< In ™%y 1§>n=-n2/2 ~ - ( In "%y 12)n=n2/2

and the difference form of the n derivative becomes, at n = 0,

v tTeyy =
'a‘"(@ tg,01) = (1" e9010)0 =1 (E-12)
m\'ly %Y lf) - om
If we introduce the quantities
p=gy=1/cln), v=g,=-£'(n)/c(n) -xgem) / c(n)

then the differenential equation (eq. E-9) becomes

u(d / 0g) [wa] g~ 2wer ] e] +v(@/38) [*017, ¥ ng] (E-13)

+ @/ am(py Trep ) ter tap =0



Using the equations (E-11), (E-12), and (E13) yields the following differential equation for
points along the root chord n = 0 of the wing

(0 / 9§) [uuwlg - 2wy / e] + l:(«pln + V“”z)n = n2/2:| [ny* Pleg a0 =0 (B.14)

Equations (E-13) and (E-14) may be differenced in the same way as the differential equa-
tions in reference 2. Thus for the first derivative in £, we have

21, = o1 (91, jk i) * 413 (%ijk - 011, k) (E-15)
where from equation (H-20) on page 40 of reference 2
ci= (- 1) | [(Bi1 - Eo1) (i1 - &) (E-16)

dpi= (541 - &)/ [(Ei+1 - %) (& - 51—1)]
Similarly
o1, = o1 (Pii1, k~ijk) + d1(iik 21, k) (B-17)
where ¢y j and d i have the same form as equation (E-16) but with n replacing &.

Since u is a function of y and v is a function of x and y, we may write
M(’flj) = 1 and V(fi,nj) =Vj at the point (i,j,k)

From equations (19) and (20) of reference 1 we see that

0
- - %
{“ 0 I:IJUSOIE g /e]}ijk »

5 (E-18)
T [2Ciui+1/2, jk(‘Pi+1jk - ‘ijk)
2434172, jk (Vijk - #i-1k)
- 205G/ ©) [ei (P 1, i~ Pik) 1 (i 901, 1)
also
(E-19)

d
Vo= 01 ... =¥ilerife % +dyi(e -
[ 0% 177Lk ”[1‘( 1771+1,jk lnijk) 1‘( lnijk lni—l,jk)]
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Applying the formula in equation (E-15) to each term of equation (E-19) we have, finally,
d
[V 3% W],Jijk = {011 [Clj (01, 541, k7 Pirt, k) A15(90k1, kT O oL k)] (E-20)
+ (dri- o) [enj (B, k- k) * 41k - 21, k)]

- dyjey; (9i-1, +1, k= i1, k) * 915 (91, jk 91, -1, k):l}

Similarly, from equations (19) and (20) of page 40 of reference 1 we obtain
0

v G ewien /o, i (901, ik - 9iik) - 20172, § (%igk - i1, )] E2D)
The remaining second derivative terms take the form

mnn = 2aj (*Pij+l ,k~™ ‘pijk) - 2bj (‘Pijk - ¥3-1, k) (E-22)

Pleg = 2ay (#ijic+1 - @ik ) - 2bk (Vijk - Pijk-1) (E-23)
The boundary conditions on the wing take the same form as for the cartesian coordinate,

since the ¢1§ is essentially unchanged from the unswept case derived in reference 1.

Consider the term in equation (E-14)

ot ] ™

We need to express it in terms of the quantities at the grid points. Now

<P1n|n=n2/2=(‘Pizk“/’ilk)/’?z (E-25)

Remembering that n = Oforj=1andn= nj forj =2, we see that

= . . + - - - -
laln=nya ~ U1, 2,k F A1 1 k702, kL k) oo
- (_ 6

+dyi(ein, kL kY-, 2, k91, 1, k) /2
Substituting equations (E-25) and (E-26) into equation (E-24) leads to

2
[(woln + chls>n _ ”Z/Zjl [y = (kpiz, k ~¥il, k) /1

+9i32 [ (i1, 2, k7 %k, 1 k- 9i2, k- 9L k)| [ 2m2

The assumption of plane wave boundary conditions on upstream, downstream, upper and
lower boundaries in the cartesian coordinate system yields



g tiwMe; [(1+M)=0 atx=x;
X lmax

01 +iwMe /(1-M)=0 at x =X
X

?1 —i)\l'VIZ<P1=O aty=yj
y max

] +1>\1VK¢1=0 aty=y1
y

In the new variables, these relations become

¢1£+in¢1 J(1+M)=0
(plg—le‘pl /(1 -M)=0
npln"'l)tplé'l’i}\l VK‘PI =0

gpln + 1)«,01‘E -in VK¢1 =0

From the form of the second derivative terms and particularly the cross-derivative terms we
see that the difference equations associated with an interior point involve the 11 points in
figure 4 in place of the usual 7 points in figure 5. For the x = constant line relaxation solu-
tion, the matrix is still tridiagonal. For a direct solution, the matrix is still sparse and
somewhat banded.

Along the wake, the condition that the vortex sheet not support a load is

and is thus unchanged from the cartesian form.
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APPENDIX F

ROW RELAXATION FOR THREE-DIMENSIONAL FLOW

For hyperbolic points, additional fictitious time-dependent terms must be added to make the
row relaxation procedure converge. Under the assumption that the calculations are swept in
the direction of increasing j and k, the difference equation (A-2) from reference 2 becomes

() (s) (s) (s)
2E3 (‘pijk T ¥i-1, jk) +2Ey4 (‘Pi-z, ik~ Pi-, jk)

(n) (s) ) (n-1)
+ 2ayj<¢ij-1, k- S"ijk) - 2by; (@ijk - Giit1, k)

(F-1)

(n) (S)) ( (s) (n-1)>
+ 2azk<‘»"ijk—l - Pijk /- 252k \Pijk - Yijk+1
(s)
* djjkeijk = 0
where E3 = ci—lui-1/2jk -iw €95 | €, E4 = di_lui_3/2jk - lwdzl /€,

and the superscripts n and n - 1 denote the results of the current relaxation sweep and the
previous one, respectively. The superscript s denotes the quantities for which equations
(F-1) for all i and for fixed j and k are solved. The subscripted variables a, b and c are
defined in reference 2 on page 68.

We now introduce a fictitious time derivative related to the iteration by the relation:
(n-1)  (n) (n)
Yijk T Yijk T At(wijk )t (F-2)
Introducing underrelaxation by a factor r yields

(n) ((S) (n-l)) (n-1)

S (n-1) Pijk = \¥ijk ~ ¥ijk Pijk
Eliminating Pijk leads to

(s)_ () (r-1 (n)
Yijk = ik - (‘T)At (‘Pijk )t (F-3)

by means of eq}lllations (F-2) and (F-3), the difference equation can be expressed entirely in
terms of the n'!! iteration for the potential. After dropping the superscript n, we obtain

N



r-1
2B ¢ _ At (o O;_ :'
3° ijk ~%i-1, jk < > ( ik " ¥i-1, Jk) (F-4)

+2Ey 9i-2, jk i1, jk < >At(8012 jk " i-1, Jk):\

r-1
+ 2ayi v, k- ik L) Ak )
i r-1
- 2byj |ijk - < >At Yijk ikt At(‘pijﬂ,k)t]
" r-1
* 2a45| Yijk-1 ~ ik T\ A%k ),

i -1
- 20z | Piic - (r >At (¥ijk) , = Pijk+1 At (Pijke1) J +quk[‘puk ( )At (%k)]

Replacing the difference terms by their appropriate derivatives in preparation for taking the
limit as the grid size goes to zero yields

- 2byiAt (w1, k 9k, = - 2oy (Ve - ¥j) At ey

Substituting for byj from equation (A-3) of reference 2 leads to

28t

ay; vt (F-5)
where Ay = Vi+1 = Yj-1- A similar g, term results from the by term. The ¢t terms result-
ing from the first two terms of equation (F-4) cancel on taking the limit as Ax, Ay, Az go
to zero. We now proceed to the limit. Neglecting terms of order one and higher in the
small increments we obtain the following differential equation from the difference equation

- 2byiAt( 41, k - Pk ), =

F-4
= de L JAf Ay ij
Ugyx - e Y1) 4 ‘plyy “1,, " Ay, Pyt Az, Pzt
(F-6)
- 2At SOIt[byj/r'ayj(r' 1)/r+bzk/r—azk(r— 1)/1':| +qy; = 0
Let
6y = [byj + by - (ayj * ag) (r- 1)] Ay /1 (F-7)
then
2i(w [ €) + + 2 At + ij + + (F-8)
u - 2i -2 — -— = -
[ wlx @re m]x myy WI AyJ wlyt Azk Solzt B3¢1t a1 =0

The differential equation finally becomes
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ugplxx +¢1yy + ‘plzz + (ux - 2iw / e)«plx
At
I Yl + B + + =0 (F-9)
Ay, (P15 " Bik #1,, B3v1,) * a¢y
h -y
wnere _ yj+1 y_]-l
o=
SR

To obtain a convergent operator we add terms 8 Wlxt + 62gp1t to the terms in parentheses

and determine 8 and 3, to yield a differential equation with the correct time-like behavior

for the x coordinate. Let 7=oyx+oyy + a3z +t then

- = 2
(plx_al‘pl'rhplx "Dlxx—a1 wlTT+2a1¢1xr+¢1xx
+ o 2 + 2w + (F-10)
= ) {17 = P $4 ¥
‘ply 2‘p17. 1y lyy 2 17'1' 2 lyT 1yy
wlz—a3¢17 wlz ‘plzz—a?’ ¢177+2a3¢127+¢lzz
(plxtzal‘plrrhplxr
= +
wlyt 2”011’1’ ‘plyr
80127': aSSolTT—*-‘plZT
Substituting equations (F-10) into the differential equation yields
2 2
+ 20 + )+a + 2o +
ulogor,, * 2oy ey Y renTer t2oe b .

2 .
+0[3 kplTT'I‘ 20(3&,0121_ +¢IZZ+(UX—2I(A)/€)<§01X+0(1(p17_>
- Ay: + + + +
2(at/ ay;) [agcplTT 1y, B1(°‘1¢’1TT ‘P1XT) Baer,
*Fik (0‘3‘/’177 * ‘P1ZZ) * 639017] Tdp =0

It is necessary to eliminate the cross derivative terms in time 7 to reduce the differential
equation to canonical form. This requires



UOZI -61At/AYJ=0
az—At/ij=0

Ol3 - Bjk (At / ij) =0
from which
(F-12)
oy = (At / ij)
o3 = B_]k (At / AYj)
The elimination of the ¢, terms yields
oy (uy - 2iw [ €) - 2p5At [ Ay; - 234t/ Ay;=0
The quantity B, is given in terms of 1 and B3 by substituting B (At / ij) {u for oy.
Thus
B2=Bl(ux—2iw/e)/2u-ﬁ3 (F-13)

In order for the x variable to be time-like the coefficient of must be positive. This yields
the following relation
2 + 2 + 2 2 At + + >0
oy -2 — | o 1 O
@ utey to3 =20 o2 * 10 + B3] (F-14)

Substituting for the o terms yields

at VT 2 2
'Z}'j' Bi Jutl+By |>0 (F-15)

2 2
Since u <0, we have 81 > (-u) (1 + ﬁjk ) or

61=C‘\/-_l; "1+Bjk2’ c>1 (F-16)

By =81 (uy-2iw/€)/2u-p3 (F-17)

B3= - (¥i+1 - Yi-1) [0+ P @ +a) - D] /r (F-18)

We have now determined the values of 81 and [32 required to establish a convergent operator.

The differential equation which now must be differenced is
At

Ay:

-2
z j

[uoy -2iw ] o] ter, e,

[“‘olxt + 62¢1t]+ ap;=0 (F-19)
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Now

(n-1) _ (n) o ( (n)
vik = Pk T Aty (‘pijk)

(s) () (r-1 0 ( (n)
Pijk =‘Pijk'<_r—>m Y <¢’ijk> |

(sy (@_1 3 ((n)
ik “eijk T Ao (‘pijk>

(F-20)

o (n)
Eliminating Piik yields

(F-21)

Wik (5) (n—l))

At 5 =T\¥jjk - ¥ijk

The resulting difference equation then becomes (see equation (F-1))

(s) (s) (s) (s)
2E3 <‘pijk “¥i-1, jk> +2Ey (‘P'-z, ik~ %i-1 jk)

m () ) (n-1) (F-22)
+ 23 <¢ij—1, k- S%’k) - 2b; (‘Pijk - ij+1, k)

(n) (s) (s) (n-1)
+ 2ay (‘pijk-l - ‘pijk) - 2bk<‘pijk - ‘Pijk+1>

((S) (n-1)  (s) (n-l))

2
" Ay [rﬁlczi Pijk - Piik " i1, jk -1, jk
J

(s) (n-1) (s) (n-1)
-181dy4 <‘Pi—l,jk“»"i—l,jk"Pi—2,jk+‘pi—2,jk)

(s) (n-1) (s)
+ 52r<‘Pijk - Piik ) / 2] +ap;j =0

We now consider the case in which the z or k variable is swept in the direction of decreasing
k. The only terms that change in equation (F-1) are

(n-1)  (s) (s) (n)
2ay (‘pijk-l "Pijk)'zbk<‘pijk"ﬁijk+l> (F-23)



n S
Eliminating ¢ by equation (F-2) and np( ) by equation (F-3) yields

r-1
2ay '}"ijk-l 'At(‘pijk—l) -kt ( )At(‘f’uk) ]

(F-24)
r-1
- 20 [eijk ~ | )AL (k) , ~ ik
Now
22 At [k = Pijie-1] = 22k (% ~ 2k 1) Aoy
From equation (A-3) of reference (2) we have At
2a. 1. At [0 - s =— " At = —
azk [‘puk ‘pljk-l]t et - Pt Yzt~ A, ) Pzt
Taking the limit as Ax, Ay, At yields for equation (F-24)
1 At
. 2bZk< >At P4 - 2a kAt Yt Jr+ —— Az o - (F-2%5)

In place of equation (F-9) we obtain
+ &plyy + Y1, + (ux -2iw / e)mx - 2(At/ AYj) («plyt - ﬁjkgolzt +B3<plt) +qp; =0
(F-26)

U(plXX

where 53 is now given by
B3 = [ * byj - (ay, + bax) - 1] Ay /¢ (F-27)
instead of equation (F-7). Equation (F-26) differs from equation (F-9) in form only in the
sign of the P, term. Thus the third line in equation (F-12) becomes
At

Equation (F-13) remains unchanged but the sign of a33jk in equation (F-14) is changed.
Substitution of equation (F-28) for a3, however, yields equation (F-15) unchanged. Thus
the only change in 8] and §, is the definition of B3 by equation (F-27).

The correction terms for three-dimensional flow do not differ in form from the terms
derived in reference 2 for two dimensions. The quantity 8, differs only by the factor

2
\/1 +(8yj/ Azy)
from the two-dimensional value. The coefficient of the 8, term contains the additional
term contains the additional term from the z derivative (increasing)

[byk -2 -1D]/r
analogous to the two-dimensional relation

[byj - ay(r- 1)] [t

(This term is given in error in reference 2 as - ayj(r -D/r )
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