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1.0 SUMMARY

Several aspects of a finite difference method for solving the unsteady transonic flow about
harmonically oscillating wings are analyzed. The procedure is based on separating the
velocity potential into steady and unsteady parts and linearizing the resulting unsteady
differential equation for small disturbances. The differential equation for the unsteady
velocity potential is linear with spatially varying coefficients.

The analyses decribed herein concern methods of improving the accuracy and efficiency of
the finite difference solution. The overstability of the current upwind differencing for
supersonic flow is studied for the Klein-Gordon differential equation, which is the equation
for the flat plate oscillating in supersonic flow. The operator is shown to be overly stable in
that the finite difference solution is attenuated in the downstream direction exponentially
in terms of the frequency and the grid size. A stable differencing is derived which has
greater accuracy.

The addition of a viscous term has little effect on extending the range of convergence of the
relaxation procedure beyond the critical frequency. A simple downstream boundary con­
dition is derived on the assumption that the vortex sheet dominates the flow on the down­
stream boundary. The results obtained with this boundary condition are indistinguishable
from those with the plane wave boundary condition.

Difference equations are derived using an oblique coordinate system which aligns the
coordinate lines with the leading and trailing edges of tapered swept wings;

The additional terms required for convergence of row relaxation of three-dimensional mixed
flow are also derived.

An approximate method of aeroelastic analysis for high aspect ratio wings using a two­
dimensional direct solution with a full three-dimensional steady-state potential is also
described.

Except for the addition of the viscous term and the revised downstream boundary conditions,
the analyses presented here are yet to be implemented in the program for computing tran­
sonic unsteady harmonic flow around airfoils.
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2.0 INTRODUCTION

The purpose of the work described in this report is to continue the development of a means
for calculating air forces for use in flutter analyses of three-dimensional lifting surfaces in
the transonic flight regime. The work concentrates on a particular procedure which assumes
small perturbations, the existence of a velocity potential, and simple harmonic motion, and
uses finite difference theory to solve the resulting set of partial differential equations. The
velocity potential is divided into steady and unsteady parts. The steady potential is calcu­
lated using the classic nonlinear small perturbation differential equation. The unsteady
potential is then calculated using a linear equation with spatially varying coefficients which
depend on the steady flow. This study represents a direct extension of the research des­
cribed in references I through 3. Reference 4 contains the latest results achieved in the in­
vestigation while this report covers analyses which for the most part are yet to be imple­
mented. The purpose of these analyses is to improve the efficiency and accuracy of the
solution.

Several different finite difference procedures are discussed in section 5.0. Subjects include a
new operator for mesh points with supersonic flow which is stable but does not attenuate
the initial data, the effects of adding a viscous term to the original differential equation on
the convergence of the relaxation solution, and an alternative and relative simple down­
stream boundary condition.

Section 6.0 presents a method which uses a finite difference procedure over a limited inner
region which is matched on the mesh boundary with an approximate linearized solution for
the outer region. This has the two-fold purpose of reducing the number of points in the
finite difference region and improving the exterior boundary conditions on the mesh. The
derivation and a detailed set of equations are included in appendix D.

Section 7.0 discusses two subjects related directly to three-dimensional flow. The first is
an oblique coordinate system for swept and tapered wings. The second part discusses
additional terms required to make row relaxation solutions converge when mixed flow is
present.

Section 8.0 discusses a finite span flutter analysis using the two-dimensional unsteady
transonic program with a full three-dimensional steady velocity potential distribution.
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3.0 ABBREVIATIONS AND SYMBOLS

Streamwise dimension of mesh region; also coordinate of downstream
boundary

Root semichord of wing or semichord of airfoil; also vertical dimension of
mesh region

Pressure coefficient, (p - po) / (l /2 poU0
2) where p is the local pressure,

Po the freestream static pressure, and Po the freestream air density

Instantaneous wing shape defined by Zo =8f(x,y,t)

Undisturbed wing or airfoil shape

Unsteady contribution to wing or airfoil shape

Vertical mesh point spacing

x ,y ,z subscripts and indices for points in the mesh

Horizontal mesh point spacing

Transonic parameter, (l - M2) / (M2€)

Leading edge

Freestream Mach number

Mesh point indices

w 2 / € - iw(y - 1)lPo
xx

Time in units of b / Uo ; also psuedo time defined by iterations in the complex

differential equation for the unsteady potential

Trailing edge

Freestream velocity

Physical coordinates, made dimensionless with the root semichord

3
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x,y,z

, , ,
x ,y ,z

y

{3

e

a (x,y)

w

Scaled coordinates (xo,J.Lyo,J.LZo ) for the three-dimensional problem; the

scaled coordinates for the two-dimensional problem are x and y, with x being
the direction of fluid flow

Variables of integration

Coordinates of leading and trailing edges

Ratio of specific heats for air

Jump in pressure coefficient

Jump in 1P1 at plane of wing or vortex wake

Jump in 1P1' at wing trailing edge

Thickness ratio or measure of camber and angle of attack

(lj / M)2/3

Critical value of AI

1/3 2/3
Scale factor on Yo and zo' IJ. = 8 M

Coordinates for swept and tapered wing

Source distribution over mesh boundary for exterior panel method

Complete, scaled perturbation velocity potential; also used for the unsteady
potential in finite difference equations. With multiple subscripts, is used as un­
steady grid point values of unsteady perturbation potential.

Steady scaled perturbation velocity potential

Unsteady scaled perturbation velocity potential

Potential satisfying Klein-Gordon equation. With appropriate subscripts,
represents boundary potential for matching inner and outer solution in appendix D.

Angular reduced frequency (semichord times frequency in radians per second
divided by the freestream velocity, wb / U)



4.0 FORMULATION AND SOLUTION

A detailed mathematical derivation of the method for the solution of the unsteady velocity
potential for the flow about a harmonically oscillating wing is presented in reference 1. The
discussion here will be limited to a brief outline of the procedure for the two-dimensional
flow.

The complete nonlinear differential equation was simplified by assuming the flow to be a
small perturbation from a uniform stream near the speed of sound. The resulting equation
Cor unsteady flow is

[K - ('Y - 1)l,Ot - ('Y + 1)l,Ox] I,Oxx + l,Oyy - (2l,Oxt + I,Ott) I € = 0 (1 )

where K = ( 1 - M
2

) I (M
2E)' M is the freestream Mach number of velocity Vo in the

x-direction, x and yare made dimensionless to the semichord b of the airfoil and the time t
to the ratio blVo' With the airfoil shape as a function of time defined by the relation

Yo = M(x,t)

the linearized boundary condition becomes

(2)

The quantity 8 is associated with properties of the airfoil (such as maximum thickness ratio,

camber, or maximum angle of attack) and is assumed to be small. The coordinate y is
scaled to the dimensionless physical coordinate Yo according to

and € is given in terms of 8 by

2/3
€=(8IM)

The pressure coefficient is found from the relation

Cp = - 2€(l,Ox + I,Ot)

The preceding differential equation is simplified by assuming harmonic motion and by
assuming the velocity potential to be separable into a steady-state potential and a potential
representing the unsteady effects. We write for a perturbation velocity potential

iwt
1,0 = I,OO(x,y) + 1,01 (x,y)e

and for the body shape

Since the steady-state terms must satisfy the boundary conditions and the differential
equation in the absence of oscillations, we obtain

(3)

5



with

rK - ('Y + 1)1110 J1110 + 1110 == 0L x xx yy
(4)

(6)

1110 = fO(x) , y = 0 - 1 < x< 1 (5)
y

On the assumption that the oscillations are small and products of 1111 may be neglected,

equations (1) and (2) with the aid of equations (4) and (5) yield

{[K - ('Y + 1)1110 Jlll1 } + 1111 - (2iw / €)1111 + qlll1 = 0
x x x yy x

where
2

q =w / € - iw('Y - 1)1110
xx

subject to the wing boundary conditions

1111 =f1 +iwf1(x) , y=O -1 <x< 1
y x

(7)

6

A computer program for solving the steady-state transonic flow about lifting airfoils based
on equations (4) and (5) was developed by Krupp and Murman (refs. 5 and 6). The output
of this program or a similar program can be used in computing the coefficients for the
differential equation of the unsteady potential. The similarity of the unsteady differential
equation to the steady-state equation suggests that the method of column relaxation used by
Murman and Krupp for the nonlinear steady-state problem should be an effective way to
solve equation (6) for the unsteady potential 1111' Note that equation (6) is of mixed type,

being elliptic or hyperbolic whenever equation (4) is elliptic or hyperbolic. Central differ­
encing was used at all points for the y derivative and all subsonic or elliptic points for the x
derivatives. Backward (or upstream) differences were used for the x derivatives at all hyper­
bolic points.

The boundary condition that the pressure be continuous across the wake from the trailing
edge was found in terms of the jump in potential ~1111 to be

-iw (x-Xte) (8)
~III = Alii elIte

where ~1111 is the jump in the potential at x = Xte just downstream of the trailing edge and
te

is determined to satisfy the Kutta condition that the jump in pressure vanish at the trailing
edge. The quantity ~IIII is also used in the difference formulation for the derivative 1111

yy
to satisfy continuity of normal flow across the trailing-edge wake.

For the set of difference equations to be determinate, the boundary conditions on the outer
edges of the mesh must be specified. In the original unsteady formulation, these boundary
conditions were derived from asymptotic integral relations in a manner parallel to that used



by Klunker (ref. 7) for steady flow. A later formulation in reference 3 applies an outgoing
plane wave boundary condition to the outer edges of the mesh. This boundary condition is
numerically simpler to apply and, on the basis of limited experience, appears to provide
equally good correlation.

The preferred numerical approach to solving the resulting large order set of difference
equations is a relaxation procedure, which permits the calculation to be made as a sequence
of relatively small problems. However, as discussed in preceding NASA reports by the
authors (refs. 2 and 3), a significant problem of convergence with the relaxation pro­
cedure was encountered which severely limits the range of Mach number and reduced fre­
quency for which solutions may be obtained. The authors currently feel the only practical
technique for circumventing these instabilities is a full direct solution where the difference
equations are solved "all at once" rather than by line relaxation.

7
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5.0 ALTERNATE FINITE DIFFERENCE PROCEDURES

Three different aspects of the finite difference formulation for two-dimensional unsteady
transonic flow are examined in this section. The first concerns an analysis of the finite diff­
erence operator currently applied to supersonic mesh points, the second examines the effect
on relaxation solution convergence of adding a viscous term to the transonic equation, and
the third investigates the application of an alternate downstream boundary condition.

5.1 NINE-POINT OPERATOR FOR SUPERSONIC FLOW

In solutions of difference equations it is important for the operators to lead to stable solu­
tions. Zajac (ref. 8) has shown, however, that the usual upwind differencing for the wave
equation leads to an overstable solution in which the solutions decay exponentially with x,
the time-like variable. We have extended his results to apply to the Klein-Gordon equation.
The details are given in appendix A. For the flat plate in unsteady supersonic flow, the
differential equation takes the form of a Klein-Gordon equation

1 2
\]Ixx-JZ\]Iyy+AI \]1=0 (9)

where K =(M
2

-1) / (M
2e), Al =wM / (M

2
-I), and € = (l> / M)2/

3
.

. . iAI Mx
The functIOn \]I IS related to <PI by <PI =e \]I •

Equation (9) is the equivalent to the Helmholtz equation for subsonic flow and is seen to be
hyperbolic.

We assume that the region over which the solution is to be found is discretized by a uniform
mesh in which the x spacing is k and the y spacing h, with the expression \]In m denoting \]I
evaluated at x =nk and y =mho Backward differencing on the second derivative with respect
to x with central differencing of the y derivative yields for equation (9)

2 2 2
\]In,m - 2\]1n_1 ,m + \]In-2,m == p (\]In,m-l - 2\]1n,m + \]In,m+l) - k Al \]In,m (10)

where p = k I(h 1/K). In appendix A, an exact solution of the difference equation (10) is
found in the form

imt'J( ±inT n)
\]Inm =e e cos r ( II )

-l[ 2 2 2JI/2
where 7 = tan 4p sin(O / 2)+ k AI' Similarly an exact solution of equation (9) is

given by

(12)

Note that this solution is oscillatory without damping.

We compare equation (11) with equation (12) by setting t'J =hv in equation (11), expanding



in powers of hand k, and retaining only the first-order terms in hand k. This yields

WO1n =exp(ivy01) • eXP~ixnNH )2 ) • exp [ ~ (( HI 2) xnJ
(13)

We see that the difference equation solution has damping in the x direction and because of

the terms v
2

and AI
2

the damping is greater for the higher frequency components in the

solution and higher reduced frequency in the equation.

A stable difference operator utilizing nine points instead of the usual five will eliminate this
excessive damping. We shall use central differencing for the x derivative and for y we use

~ [a(Wn+l,m+1 - 2W n+l,m + Wn+l ,m-I) + (1 - 2a)(W n ,m+1 - 2W nm + Wn,m-l) (14)

h

+ a (Wn-l,m+1 - 2W n-l,m + Wn-I,m-I)]

where a> 0 is the parameter to be determined to make the operator stable. Equation (14)
leads to the following difference equation in place of( I 0):

Wnm - 2W n-l,m + Wn-2,m = p2 [a(Wn+l,m+1 -2W n+l,m + Wn+l,m-l) (15)

+ (I - 2a)(W n ,m+l - 2W n,m + Wn,m-l)

+ a ( Wn-I,m+ I - 2wn-I,m + Wn-I,m-I) - k
2

Al 2 WnmJ

We assume a solution to equation (15) in the form

Wnm = exp(in8)· exp(imcx)

In appendix B this is found to be stable for

(16)

a~ 1/4 (17)

and kAI < 2 (18)

Choosing a convenient value of the parameter a subject to equation (17) and k sufficiently
small for a given reduced frequency and Mach number will thus ensure a stable operator.
Expanding the equation resulting from equation (16) and retaining terms up to first order in
hand k yields the solution

Wnm = exp(iVYm). eXP(iXn~} / k + AI
2

)+ 0(k I
3

, h
3

) (19)

We see that this is in exact agreement with equation (12). Note also that a influences the
solution in the third-order terms in hand k and higher. A simple form of the difference
equation results when a = 1/2, for then the middle terms in equation (14) vanish. The
additional points will not affect the basic diagonal system either for the relaxation solution
or the direct solution although computing the matrix is slightly more costly.

9
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5.2 ADDITION OF A VISCOUS TERM

It was suggested that the addition of a viscous term to the differential equation might
improve convergence of the relaxation process and extend the frequency limit for which
solutions could be obtained. In subsonic regions the viscosity resulting from the first-order
truncation terms in the difference equation does playa role in the convergence. Reinforcing
this viscosity with an additional term seems like a logical approach to improving conver­
gence. Accordingly, the following differential equation was investigated:

/ll/J xxx + l/J xx + l/J yy + A1
2

l/J = 0

On the upstream boundary the conditions

l/Jx=O l/J=sin(1fy/b)

were prescribed with l/J = 0 on the other boundaries. The equation was differenced and the
program coded along with the amplification factors obtained from a Von Neumann stability
analysis. For the coefficient of viscosity /l set to zero, the relaxation converged for values of
AI less than the critical values of

A) = wi 1 + 1
c 2 Kb2

a

where a and b are the horizontal and vertical dimensions of the mesh region, and diverged
for Al greater than Al as predicted by the Von Neumann analysis. The additional viscosity

c
had very little effect on the convergence even when fairly large values of /l were tried.

5.3 AN ALTERNATE DOWNSTREAM BOUNDARY CONDITION

In the search for simple mesh boundary conditions which would improve the accuracy of the
finite difference method for the unsteady subsonic flow over a two-dimensional flat plate,
it was reasoned that, far downstream, the flow field is dominated by the vortex wake shed
from the wing trailing edge. This boundary condition is easy to formulate since it depends
upon the jump in potential at the trailing edge required to satisfy the Kutta condition. Thus
each difference equation for the column of grid points next to the downstream boundary
would contain four additional terms involving the four values of the potential in the neigh­
borhood of the trailing edge upon which the jump in potential depends. The potential
resulting from the wake is an infinite integral of a Hankel function and for two-dimensional
flow is given by equation (109) in reference 1 in the form

00

'PI (x'YI) = A~tef expt iw(x' -l)} l/Jy' I dx'
41 I I I - 0

Yl-

where l/J = exp CiA 1M(x - x')] . H
O

(2) [AI I/c'--x---x--:')2"'---+-(-y-l-_-y-'l)--:::2] ,y 1 =-yKy

and Ho (2) is the Hankel function of the second kind. If instead of 'PI the pressure function

'PI + iW'P1x



is prescribed on the downstream boundary, then the resulting integral in the equation

obtained from applying the operator ~ + iw can be integrated in closed form. Fromax
equation (C-4) in appendix C this is seen to be

. - iLllPte. _ (2)
IPlx +lWlPl = 4 eXP[lAlM(x-xte)] • Al-VK yH l (Alr)!r

where I' = V(x - Xte)
2

+ Ky
2

and Xte is the x coordinate of the trailing edge.

The coefficients in the difference equations on the column adjacent to the downstream
boundary for the potentials

where jm is the y grid index in the row adjacent to the wing and wake and i1 is the x grid

index for the point at the trailing edge, are developed in appendix C. The equations were
derived assuming that 1P1 is antisymmetric about the line y =0, corresponding to the wing

and wake, for the purpose of testing the concept as economically as possible. The resulting
pressures on the wing differed insignificantly from the results obtained by assuming an out­
going plane wave boundary condition on the downstream boundary. Furthermore, the·
pressures are not sensitive to the location of the downstream boundary. It therefore appears
that the outgoing plane wave boundary conditions produce little reflection back to the
airfoil although the distance from the wing to the downstream boundary is not so great that
one should 'expect the disturbance to resemble very closely a true plane wave.

11
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6.0 AFAR-FIELD MATCHING METHOD FOR TRANSONIC
UNSTEADY FLOW USING THE DIRECT SOLUTION

Chen, Dickson, and Rubbert (ref. 9) developed a method for matching the far-field
boundary of the transonic steady finite difference mesh with an analytic outer solution.
Their method has the advantage of imposing analytic boundary conditions at infinity while
permitting a considerable reduction in the size of the mesh region. The mesh need extend
outward only to where the flow is subsonic and linearized theory is valid, rather than to a
distance at which the approximate evaluations of the outgoing wave boundary conditions,
or alternatively the Klunker-type boundary conditions, are valid. The solution in reference
9 was obtained using relaxation procedures. However, it is possible to obtain the far-field
matching solution and the inner finite difference solution in a single step.

Reducing the size of the solution will facilitate refining the mesh size and this is necessary
for obtaining suitable accuracy with the finite difference method at higher frequencies.
Also, the reduction in mesh points may be enough to make the direct solutions practical
for three-dimensional problems. Alternatively, this matching procedure may provide better
boundary conditions at the higher reduced frequencies, although the need for this is some­
what reduced by the improved results presented in reference 4.

The procedure is applicable to both two- and three-dimensional flow although the following
derivation is for the two-dimensional problem only. In this section the basic ideas are
sketched briefly but a detailed derivation is presented in appendix D. In section 0.1, the
basic integrals are discussed. In section 0.2, the basic functions for the panel source distri­
bution are presented and the form of the influence coefficient integrals defined. Far- and
near-field approximations of the integrals are analyzed in sections 0.3 and 0.4. Subsequent
sections formulate the boundary conditions, the wake, and the matrix coefficients in suffi­
cient detail for coding into the direct two-dimensional solution.

The derivation of the matrix elements are for a doubly symmetric grid distribution and
symmetric steady flow so that the method may be evaluated as economically as possible.
The basic integrals are simplified to the extent of requiring a single coded subroutine. In
section 0.11, the formulas for those matrix coefficients required by the outer solution are
defined in a simple form suitable for coding.

Following reference 9, an acoustic source distribution is prescribed on the outer edge of the
mesh and a single vortex line imposed on the wake. The source strength is determined to
satisfy continuity between inner and outer solutions of the normal component of the velo­
city and the velocity potential at the outer mesh boundary. The vortex line accounts for
the jump in potential of the wake. We assume that the velocity potential of the outer
solution satisfies the linearized differential equation for the harmonic unsteady flow of a
gas given by

From equation (l09) of Ehlers (ref. 1), the solution to this equation given by ~ source



distribution on the boundary of the mesh and a doublet sheet from the wing trailing edge
takes the form

iA} Mxfa iA} Mx f b
'PI = - e . [Oul/Ju - 0dl/Jd]dx' - e . [oQl/JQ - orl/J,] dy' + A'PI • X(x,y)

41 -a 41 -b te
(20)

(2)[ ,/ ,2 2] (2)[ 11 2 , 2]wherel/Ju=HO A} vex-x) +K(y-b) l/JQ=HO A} V(x-a1) +K(y-y)

with similar expressions for l/Jd and l/J r Here X is the potential induced by the trailing

vortex sheet

1 £00 -iw(x'-l) ,
X=-- e l/Jydx

4i 1

with l/J = HO(2)(Al V(X _x')
2

+ Ky
2

)

The quantity ° is the source strength, a and b are the width and height of the mesh shown
by the heavy line in figure 1, u and d denote upper and lower, and .Q and r, left and right
boundaries, respectively. For each 1 < i < imax designating the column for the upper and

lower boundaries, and each 1 < j < jmax on the side boundaries, we match boundary condi­

tions on the normal derivative and on the potential at each boundary point with the finite
difference solution. The number of values for the potential 'P} from the finite difference
equations is imaxjmax - 4.

At each outer boundary point we assign a value of the source and construct a piecewise
linear distribution of the source strength on the mesh boundary, utilizing for each boundary
point the elementary singularity distribution in figure 2. The velocity potential in equation
(20) after the integration takes the form

imax-l jmax- l

'P = L [oun'Pun - 0dn'Pdn] + E [oQn'P.Qn - 0rn'Prn ] + A'Pl
t

• X(x,y) (21)
n=2 n=2 e

where the 'Pn terms are the functions of x and y resulting from integrating the basis function

of figure 2 over the range xn-l to xn+} or yn-l to yn+ l' The jump in the potentia} A'Pte

is given by a linear combination of values of the potential 'PI at points in the neighborhood
of the trailing edge.

We now match the solution of equation (20) with the inner finite difference solution. On
the upper boundary we write for the velocity potential

(u)
'P=('Pijmax +'Pi,jmax-I)/2=Fi (O,A'Pl te), i=2,3 ... ,imax -1

where Fi(u) (0 ,A'Pte) is a linear function of the o's and the 'P's by equation (21) evaluated at

the boundary point x = xiY = b on the upper boundary. In the same manner, for the lower
boundary, we obtain

13
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(d)
('Pil + 'Pi2) /2= Fi (a,A'Pl te)' i = 2,3, ... , imax-l

For the left boundary
(Q)

(\fllj+\fl2j)/2=Fj (a,A\flltJ, j=2,3,···,jmax- l

For the right boundary
(r)

(
\fl. . + \fl. -1 J.) / 2 = FJ. (a,A\fll ), j = 2,3, ..., jmax- l

ImaxJ Imax' te

Similarly, we evaluate the normal derivative on each of the mesh boundaries and obtain:

For the upper boundary
\flo' - \fl' . 1Umax 1,Jmax-

'P =Y y. - y. 1Jmax Jmax-

For the lower boundary

i = 2,3,... , imax-l

For the left side

For the right side

It is easily seen that the preceding systems of equations, along with the finite difference
equations, yields

equations for the same number of variables to be determined. The increase in the number
of variables required by the matching procedure is

and is offset by the considerable reduction in the size of the mesh region. Because of the
wavelike nature of the solution for the unsteady flow, using large mesh sizes near the outer
boundaries of the finite difference mesh has been found to lead to poor representation of
the flow field, resulting in inaccurate pressures on the wing. By decreasing the size of the
mesh region, finer grids are possible with the same number of mesh points. The coefficients
of the additional terms in the system of equations are derived in considerable detail in appen­
dix D.

15
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It seems worthwhile to make some assessment of the computer resources required to apply
the inner and outer matching. In appendix D, the number of integrals was reduced by
assuming a grid which has two lines of symmetry. For a grid with imax x points and jmax y

points, the number of integrals NI to be evaluated for the symmetrical problem is
2

NI =[imax + 2(jm- 1) - 2]

Many of these integrals need not be calculated by actually performing the integration using
the Bessel function routines. In regions where the grid is fine in the far field, the integrals
for every second or third grid point need be computed with the intermediate points evaluated
by interpolation. The integrals are more complicated than the coefficients in the potential
solution and hence must be calculated more efficiently. Chen et al. (ref. 9) obtained a con­
siderable reduction in computing cost as well as improvement in accuracy. Much of the
reduction in cost will come from the smaller mesh region made possible by the better mesh
boundary conditions. For the higher frequencies where the grid spacing must be fine even
in the outer field, this smaller mesh region should result in a considerably smaller matrix
equation to be solved. Unfortunately, the equations involving the values of the source at
the boundary grid points contain nonzero coefficients for most of the source values. Hence,
the use of the inner and outer matching procedure introduces to the matrix of coefficients
a vertical strip of nonzero elements which nearly eliminates the banded property of the
original finite difference matrix.
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7.0 INVESTIGATIONS FOR THE THREE-DIMENSIONAL PROBLEM

Three-dimensional investigations for this report were limited to two problems. The first
concerned developing a coordinate transformation for swept wings that concentrated grid
points in regions of large gradients of 'Pl' The results of this study, which are based on
transformations used for steady state, are presented in section 7.1, and detailed derivations
are presented in appendix E. Previous studies have resulted in a derivation of a coordinate
transformation for swept but untapered wings (ref. 1) and development of a three-dimen­
sional program using a cartesian coordinate grid (ref. 2). In reference 2 it was also shown
that for the two-dimensional problem, row relaxation converged more rapidly than column
relaxation but that additional terms were required for points at which the equation was
hyperbolic in order for the relaxation to converge. These terms for the three-dimensional
problem are discussed in section 7.2, with a detailed derivation presented in appendix F.

7.1 AN OBLIQUE COORDINATE SYSTEM FOR SWEPT AND TAPERED WINGS

The three-dimensional unsteady transonic flow program described in reference 2 utilizes a
rectangular grid. Better accuracy with fewer grid points can be achieved by using an oblique
coordinate system chosen to align the leading and trailing edges with coordinate lines and
hence provide the capability of finer grid spacing along these edges. The transformation will
also make the unsteady program more compatible with the steady program.

In the same manner as Bailey and BaUhaus (ref. 10) we consider a transformation of the
form

~=

x - xQe(y)

c(y)
= g(x,y)

(22)

TI=y

t=z
where c(y) is the chord of the wing at the station y and xQe(y) is the leading edge of the

wing planform. Thus ~ = 0 is the coordinate representing the wing leading edge while ~ = 1
is the trailing edge.

The coordinates tTl must be defined beyond the wing tip. To achieve this, the wing leading
edge is extended all the way to the mesh boundary by a straight line having the same slope
as the wing leading edge at the tip. To ensure that ~,TI is single valued in the region beyond
the wing tip, the trailing edge is continued analytically beyond the tip by a quadratic whose
slope varies continuously from the trailing edge value at the tip to a straight line parallel to
the leading edge extension, as shown in figure 3. Thus the functions xQe(y) and c(y) and

their derivatives are defined over the entire TI range of the mesh region.

Under the transformation of equation (22), the transonic unsteady differential equation was
obtained in appendix E, and in conservation form can be expressed as

17
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(25)

o [( 2 2) ] 0 [' ]- jJ. l\ + v <PI + (v - 2iw / e)<Pl + v<Pl + - (I + c / c)<Pl + v<PI
o~ ~ 77 077 77 ~ (23)

+ <PI ~~ + [q + c' / c - (c' / C)'] <PI = 0

where jJ. = 1 / C(77) and v =- ~c' / c - X'(77) / c(77) . A simpler nonconservation form is given by

o 0 a
jJ. aT [jJ.U<PI~ - 2iw<Pl / eJ + v 0~(<P177 + v<Pl~) + 077 (<PI 77 + V<Pl~) + <Pl~~ + q<Pl = 0 (24)

The conditions that the equation be hyperbolic for both forms is

2 2
jJ. U+V <0

This is the condition that Bailey and Ballhaus used at first to determine when to employ
upstream differencing in the derivatives. They found that upwind differencing for all super­
sonic points was required to capture the shock.

On the wing root plane we must apply the boundary condition of symmetry 'PI = O. In
y

terms of the oblique coordinates this condition becomes

'PJ +v<PJ =0
77 t (26)

This boundary condition is applied to the difference equation for points along the wing root
and leads to some simplification. The boundary conditions on the wing and on the wake are
unchanged under the transformation.

Eq uations (23) and (24) may be differenced in the same way as described in reference 1 and
formulas are presented in the appendix E. Because of the cross-derivative terms, the grid
point pattern used to represent the difference operator contains the eleven points shown in
figure 4 instead of the seven points for the operator in cartesian coordinates in figure 5.

7.2 ROW RELAXATION FOR THREE-DIMENSIONAL FLOW

In reference 2 it was found that row relaxation for the two-dimensional solution of the un­
steady velocity potential converges more rapidly than column relaxation. When the flow is
completely subsonic the same difference equations may be used for either row or column
relaxation. However, for mixed flows, the row relaxation will diverge unless additional time­
like tenus are added at supersonic grid points.

Following Jameson in references 11 and 12, we introduce the time-like variable associated
with the iteration process in the form of

(n) (n-l) ( (n))
<Pijk - <Pijk = L\t· <Pijk t (27)
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and obtain the following differential equation by taking the limit as Lit, Lix, Liy, Liz go to
zero in the difference equation about the point ijk (see eq. (F-8) in app. F).

By a transformation of t in the form
7 = (XX + ~y + 'Yz + t

equation (28) can be converted to

(29)

(32)

[UIPI
X

- 2i(w / €)IPI] + IPlyy + 1P1zz - ajklPrr + bjkIP17 + qlPl = 0 (30)

where ajk > O. Since U > 0 at supersonic points, the resulting differential equation is not

strictly hyperbolic in 7 as it is for subsonic point.

The terms IPI and IPI are truncation terms resulting from differencing the x, y, z deriva-
T 77

lives in the conventional manner. To render the IPI term time-like we must add IPI
xx xt

differences to change the sign of IPI and a IPI difference to cancel the IPI term in equation
77 t 7

(30). The derivation is presented in detail in appendix F and the equation to be differenced
is (eq. (F-19) of app. F)

Lit
[UIPI -2i(W/€)1P1] +IPI +IPI -2- r~IIPI +~2IPI ]+qIPI =0 (31)

x x yy zz LiYj L xt t

where

{31 = c~~l + {32jk , c> I

{32 = [{31 (ux - 2i w / € ) / 2uJ- {33

{33 =- LiYj [bj + bk - (aj + ak) (r - 1)J /r

LiYj = Yj+ I - yj-l

~jk = LiYj / (zk+l - zk-l)

r = the relaxation factor

The factors in equation (32) for two-dimensional flow are obtained from equation (32) by
dropping all terms with subscript k.

Row relaxation has the same frequency limitation as column relaxation but its greater
efficiency may make it worthwhile for frequency ranges in which it converges, while going
to some form of direct solution for the higher frequencies.

21
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8.0 FORMULATION OF AEROELASTIC ANALYSIS

References 1 to 4 describe a practical procedure for calculating transonic air forces for
hannonically oscillating airfoils. The frequency limitation problem discussed in references 2
and 3 appears to have been overcome to the point where combinations of Mach number and
reduced frequency of practical interest in flutter can be handled. The size capability of the
pilot two-dimensional program has been increased to work with a practical number of mesh
points for these analyses. Also, the solution program has been modified to treat multiple
right-hand sides efficiently. However, due to the large size of the matrix inverse which is
required, this procedure does not, as yet, appear to be practical for full three-dimensional

configurations. The full three-dimensional problem involves an inverse of a 50 oooth to

100 oooth order complex matrix. This may eventually be practical through the use of the
new vector machines, or through use of sparse matrix concepts. The following paragraphs
discuss one use of the hannonic finite difference procedure in flutter analyses.

It should be emphasized that the problem formulation provides superposable pressure distri­
butions which can be used directly in conventional (e.g., V-g) flutter analyses. The flutter
equations in matrix form and applicable to both two- and three-dimensional flows are pre­
sented in detail in section 10.0 of reference 3.

Use of the direct solution program of this report for practical two-dimensional flutter
problems appears to be feasible. It is, of course, highly desirable to extend the harmonic
analysis to full three-dimensional flow. However, a reasonable alternative may be to use the
two-dimensional program to calculate the unsteady pressures at several spanwise stations
with the equation coefficients being detennined from the three-dimensional steady-
state velocity potential. This would make use of the current capability and include the
major three-dimensional effects of the shock and boundary layer through the steady-state
potential, and could prove in the long run to be a valid economical alternative to the full
three-dimensional calculation which would be much more expensive in terms of computer
resources. The procedure may be summarized in the following steps:

1. Calculate the steady three-dimensional velocity potential distribution using a standard
small perturbation program such as that of Ballhaus and Bailey.

2. Use the two-dimensional unsteady program with the three-dimensional steady-state
potential to calculate sectional hannonic pressure distributions at a set of spanwise
stations. Using the steady potential ensures that the three-dimensional shock effects
are incorporated in the results.

3. Form a three-dimensional pressure distribution from the two-dimensional section dis­
tributions. Additional finite span corrections could be introduced at this time. These
corrections could be based, for example, on empirical data or steady-state analytical
data.

4. Calculate generalized air forces and perform flutter analysis.



APPENDIX A

OVERSTABILITY OF THE CANONICAL UPWIND SUPERSONIC
OPERATOR APPLIED TO THE KLEIN-GORDON EQUATION

A.I INTRODUCTION

When partial differential equations are solved by numerical methods, an area of particular
concern is the stability of the numerical operators employed. In the case of hyperbolic
equations, in particular, it is required that the operators be stepwise stable, i.e., that errors
at one stage are not magnified as the solution is stepped along in time (or in a time-like
direction). Such stability may ordinarily be established by a Von Neumann analysis.

It has been observed by Zajac in reference 8 that some operators may be so stable that the
correct numerical solution is distorted by being attenuated in stepping along. He has called
this phenomenon ovcrstability. The situation here is that while the numerical solution will
converge to the true solution as the step size is refined, for a given step size the error may
compare poorly with that obtained using a less strongly stable operator.

A.2 ANALYSIS OF THE NUMERICAL SOLUTION OF THE KLEIN-GORDON
EQUATION USING THE SUPERSONIC OPERATOR

A.2. t DEFINITION

The Klein-Gordon equation

where

and

I 2
I/; xx - K I/; yy + AI I/; = 0

K=(M
2

_1)/(M
2
E), AI=wM/(M

2
-1)

E=(o/M)2/3

(A-I)

bears the same relation to the flat plate equation for supersonic flow as the Helmholtz
equation does for subsonic flow. Observe that when Al = 0, the K-G equation becomes the
wave equation as, analogously, the Helmholtz equation becomes Laplace's equation. In the
supersonic case, however, x and yare not treated identically in the discretization, but rather
the time-like character of x is considered and a backward difference operator is used.

A.2.2 DISCRETIZATION

We suppose the region over which eq uation (A-I) is to be solved to be discretized by a mesh
such that k is the spacing in the x direction and h is the spacing in the y direction. With the
mesh point which is the nth in the x direction and mth in the y direction, there is associated
a value I/;nm which is an approximation to I/;(nk,rnh), i.e., to the solution at this mesh point.
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2
-AI 1/Jnm

Using t hc backward and ccntral d i rfcrcnce opcrators in thc x and y directions, rcspcctively,
equation (A-I) bccomcs

2 I 1.
(1/J nm - 21/Jn_1 ,m + 1/Jn-2,m)/ k = i«(1/Jn,m-1 - 21/Jnm + 1/Jn,m+l) / h

or,
J J

1/Jnm - 21/Jn-I,m + 1/Jn-2,m =p-( 1/Jn,m-1 - 21/J nm + 1/Jn,m+l) - k -1\11/Jnm (A-2)

where

A.2.3 STABILITY ANALYSIS

The cxact solution for the differcnce equation (A-2) is

n imO
1/Jnm = a e

Substitution of (A-3) into (A-1.) yields

imO( n n-I n-2\ 2 n[ i(m-I)O imO i(m+I)OJ 2 n imO
e a - 2a + a J= p a e - 2e + e - k 1\ 1a e

From which on division by
n-2 imO

a e

we have

( 2 ) 2 2 [ 2 2 2Ja -2a+I =p a -4sin (0/2)-1:.. 1\1

or

(A-3)

[
2 2 2 2J 2

I +4p sin (O!1)+k 1\1 a -2a+ 1 =0 (A-4)

2
which is a quadratic equation in a. Since the coefficient of a is always;;' 1, we can define

[
2 2 2 2J-Y2

cos 7" = 1 + 4p sin (0/2) + k 1\1

for 0 ~ T < IT /2. Then (A-4) may be written as

2 ( ,..,) 2
a - 2 cos L T a + cos T = 0

Solving for a we have that

±iT
a = e cos T

(A-5)

(A-6)

(A-7)

24

Thus since I a I ~ 1 for all T, the operator given in equation (A-2) is unconditionally step­
wise stable.

A.2.4 OVERSTABILITY ANALYSIS

In this section we show that the difference scheme used in obtaining equation (A-2) from



equation (A-I) yields an overstable operator.

First, from equations (A-3), (A-5), and (A-7) we observe that exact solutions of the difference
equation (A-I) are given at mesh point (n,m) by

n im8
l/J nm = ex e

or

for any real 8, where

im8( ±inT n)
l/J nm = e e cos T

-If 2 2(8) 22J1/2
T = tan L4p sin "2 + k At

(A-8)

(A-9)

Second, we observe that exact solutions of the differential equation (A-I) are given by

"'~rn =cXp(iVYm)' eXP(±ixnV~H}2 ) (A-IO)

for any real v. Observe that the solutions in equation (A-I 0) oscillate without damping.

Let us try to compare equations (A-8) and (A-IO). This is facilitated by letting 8 = hv in
(A-8). For the first factor we have then

im8 imhv
e = e = eXP(ivym)

with ym = mho This is the same as the first factor of (A-I 0).

±inr
Next consider the second factor of equation (A-8), e . Letting e= hv in equation (A-9),
we have

-1 rk2 2(hV) 2 2J Y2
T = tan Lh2

K
sin 2 + k Al

which for hv small yields

-1 [k
2

V

2 2 2] 12 which for
T~tan K+ k Al

, since nk = xn . This is the same as the second factor

k small gives

. ({N)±lI1T V 2
Thus e ~ exp ±ixn K + Al

of equation (A-I 0).

T~ k vr::!2~+A
K 1

n
Finally, let us consider the factor cos T in equation (A-8). We have
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n
cos T =exp(n log cos T)

{
n [ 2 2(hV) 2 2]}=exp - "2log I + 4p sin "2 + K A1

~ ex{ %Iag [1 +k2e+A1
2)]}

~ exp {- nk • ~ (v~ +AI 2) } farsmall k

for small hv

or,

26

casn, ~ exp [- i(~ +A1
2
) xn ]

Thus the solutions in equation (A-8) have damped oscillations. Note that the damping is
greater for higher values of frequency v in the solution and higher values of reduced frequen­
cy AI in the differential equation.



APPENDIX B

A STABLE DIFFERENCING SCHEME FOR THE KLEIN-GORDON
FORM OF THE FLAT PLATE EQUATION IN SUPERSONIC FLOW

We now establish a difference scheme for equation (A-I) and show that it is stable without
introducing attenuation. As before, we suppose a uniform discretization in x and y such
that xn = nk and Ym = mh and denote the value of if; at (xn , Ym) by if;nm

(B-2)

(B-1 )

and subsequent divisionperform. On substitution into equation (B-3) of

in8 imex
by e e we obtain

2 [ iex( i8 -i8) ( -i8 -W) -iex( W -W)] 2 iex -iex
p ae e -2+e +(l-2a) e -2+e +ae e -2+e -cl =e -2+e

After using the identity

The form of the difference equations to advance the solution from xn to xn+ I are obtained
by the following substitutions:

2
if; xx (Xn,Ym) -+(if;n+ I,m - 2if;nm + if;n-I ,m)/k

l/J yy (xn'Ym)-+ ~ [a (if;n+l ,m+1 - 2if;n+l,m + if;n+l ,m-l)
h

+ (l - 2a) (if;n,m+1 - 2l/Jn,m + if;n,m-l) + a(if;n-l,m+l - 2if;n-l,m + if;n-I,m-I)]

where a is a parameter, a> 0, to be determined. Making these substitutions into equation
(B-1) and multiplying by k2 , we have the implicit difference equation:

p
2 [a(if;n+ 1,m+l - 2if;n+l,m + if;n+l ,m-I)]+ (l - 2a)(if;n,m+1 - 2if;nm + if;n,m-l)

(
2 (B-3)

+ a if;n-l,m+1 - 2if;n-l,m + if;n-l,m-I) - cl if;nm = if;n+l,m - 2if;nm + if;n-l,m

2 k
2

2 2 2
where p = -2- and cl = k Al

Kh
The parameter a is to be determined from a Von Neumann stability analysis, which we now

in8 imex
if;nm = e e

ix -ix 2
e - 2 + e = - 4 sin (x / 2)

(B-4)

the preceding equation simplifies to

2[ 2 J[ 2 ] 2 2p - 4 sin (8/ 2) I - 4a sin (ex / 2) - c I =- 4 sin (ex / 2)
2

Solving this equation for sin (ex I 2) , we have
2 2 2

2 p sin (8 / 2) + C I / 4
sin (ex / 2) = 2 2

I + 4p a sin (8 / 2)
A necessary condition for stability is that equation (B-4) can be solved for real ex for every
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real (). This will bc truc if and only if

2 2 2
p sin (0 /2) + cl /4

O~ ~l
2 2

1 + 4p a sin (0 / 2)

(B-5)

The left-hand side inequality is automatically satisfied. The right-hand side inequality is
equivalent to

2[ 2 ] 2p sin (0 / 2) [1 - 4a] ~ 1 - c 1 / 4 for all O.

If a is chosen such that a ;;;. (1 / 4), then the left-hand side is ~ 0 for all 0 (and p). Since
the left-hand side is 0 for 0 = 0 we must have

2
l-cl /4=0

2
Using the definition of c1 we have that equation (B-6) is equivalent to

(B-6)

kAl ~ 2

Thus the difference equation (B-3) is stable for all

(i) a;;;' 14

k
p=--

hVK
provided that

(B-7)

(ii) kAl ~ 2
Choosing a according to (i) for convenience, we can satisfy (ii) by selecting k sufficiently
small for the given reduced frequency and Mach number.

With these restrictions on k and a, we now find the solution VJ nm as hand k go to zero.
Then, as before, we let

0:= hv

and

28

and equation (B-4) becomes

(
2 ~~ 2 2) 2 2~ ~ + k Al

2 Kh 4 4
sin (01. / 2) := (2)

k 2 2
1+ -- ahv

2
Kh

Since hand k are small we have



r;
kV~-K++AAll- ~22 (3)

ex:=::: ==k -+Al +0 k
2 K

akv
1+--

K

The solution 1/I nm to the difference equation then becomes

>/Jnm = eimO einc< = exp (ivym) • exp0xnJ: + AI 2) + O(k
3

)

We see that this is the exact solution to the difference equation in equation (A-l 0) and
shows no attenuation of the initial value problem as the solution progresses through the
mesh. Since a is the order of unity, its value affects only the third-order terms in the grid
spacing.

Before choosing a, it is convenient to write equation (B-3) in another form to maintain the
generality.

Tridiagonal Form

Here we consider as known all terms whose 1/1 superscripts are";;;; n, and as unknown those
terms with 1/1 superscript equal to n + 1. Thus equation (B-3) becomes

- p2a (1/I n+l ,m+1-1/In+l,m-l)+ (1 + 2p
2

a) 1/In+l ,m

2 2
== p 0 - 2a)(1/In+l,m+l + 1/In,m-l) + p a (1/In-l ,m+l + 1/In-l,m-l) (B-8)

+[2(1 -p20 -2a)) -CI
2

]1/Inm - (1 + 2ap2)1/In_l,m

which represents a tridiagonal system for each fixed n.

a == 1/2

For this choice of a, equation (B-8) becomes
2

- ~ (1/In+l,m+l + 1/In+l,n-l) +(1 + p2)1/In+l,m

2

~ (\jIn-l,m+l + \jIn-1 ,m-I) +(2 - e1
2

) \jInm -(1 + p2) \jIn-l,m

For point relaxation this may be written ~ 2)

p 2 - cI
1/In+l,m == 2(1 + p) [1/In-l,m-l + 1/In-l,m+l + 1/In+l,m-l + 1/In+l,m+I]+ 2 1/Inm -1/In-l,m

1+ p
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APPENDIX C

EVALUATING THE WAKE INTEGRAL FOR THE
DOWNSTREAM BOUNDARY CONDITION

In the quest for a better formulation of the downstream boundary condition~ we assumed the
unsteady perturbation potential on the downstream boundary plane to be dominated by the
flow induced by the doublet sheet shed from the wing trailing edge. Hence, for two-dimen­
sional flow, the velocity potential at a point (x,y) on the vertical downstream boundary is

given by ~ fOO
'PI (x'YI) = ~te eXP[-iw(x'-Xte)]· [tJ;y'(X-X',yI-y'l)l ,_ dx'

~ ~YI-O
Xte

(see, for example, the second term of equation (109) in reference I). The notation is that
used in reference I.

Since tJ; has the form

then

(C-l)

and we obtain

"'1 ~ i:"'tef~ exp [- iw(x' - Xte)] ."Y1 dx',

Xte
where, from equation (113) of reference I

tJ;= eXP[iAIM (x - x')] • HO(2)[Al ~(x - x,)2 +yl2 ] (C-2)

and HO(2) is the Hankel function. From (C-2)

"Y, ~ 1- exp [iXjM (x - x,~. XjyjH, (2)[X jvex - x') 2 +Y/]i/V<x - x,)2 + yj2

Since y I = 1K y . we have

(C-3)
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In reference I on page 61, it was shown that the integral in equation (C-I) resulting from the
combination 'PIx + iW'Pl can be integrated in closed form. From equation (78) of reference

( I) this is seen to be



where

(C-4)

The jump in potential 'PI at the trailing edge can be found in terms of values of the perturba­

tion potential at grid points in the neighborhood of the trailing edge. From equation (104)
or referenee I. we have for points on the wing

b.'P = 'P" I - 'P" - C I ('P" ! - 'P" + I)I I.J m+ I.J m s I,J m+- 1,J m

(
(U) (L))

- e ") 'P" - 'P" - d F· + d F·s_( I,J m I,Jm-l) sl 1 s2 1

where the constants are given in equation (105) and Fi(U) and Fi(L) are the boundary con­

ditions on the upper and lower side. respectively. Since for the sake of economy in comput­
ing resources for the test we restricted our analysis to steady-state flows without lift, 'PI is
antisymmetric and

(C-5)

Then on the airfoil

b.'P' = - 2'P" + c ('P" - 'P" ) + C ('P" - 'P" ) + (d F.(U) + d F.(L))I I,J m sl I,Jm-1 I,Jm s2 I,Jm I,Jm-l sl 1 s2 1 (C-6)

b.'Pi=-(CSI +CS2+2)'Pi,jm +(CSI +Cs2)'Pi,jm-1 +(dSlF/U)+ds2F/L))

where the constants are given in equation (105) of reference 1. At the trailing edge the
Kutta condition requires

b.'P1 + iwb.'P1 = 0 (C-7)
x

at x = Xi ,from equation (37) of reference 1, we have
I

cl. (Ll'P I . -Ll'PI. )+d 1. (b.'P I . -b.'PI. )+iWb.'P I . =0
11 11+1 11 11 11 11-1 11

where c I. and d 1. are given on page 40 of reference 1. Solving for b.'Pi 1+ 1 yields
I 1

b.lfl = b.'Pil+1 = b.'Pi • (I - d 1. / cl. - iw / cl. ) + (d 1. / cl. )b.'Pi -1 (C-8)
te 1 11 11 11 11 11 1

Using equation (C-6) to define Ll'Pi 1 and b.'Pi I-I yields
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~'Pte = [1 - (d 1· + iW) /c1· ] [- (c 1 + c 2 + 2) 'P' .11 11 s s 11,Jm

+ (CSl + Cs2) "'i,im- I - (dSI F/
U

) + ds2Fj /L»)] (C-8)

+ (d Ii I I cl i l) [-(cSI + cs2+2)"'i r l,im +~sl + CS2)"'irl ,im-l - (dSI Fil~~) +ds2Fj(~}I)]
Hence we write

~'Pl = h 1'P' . + h2'P' . -1 + h 3'P' -1' + h4'P' -1 . -1 + R (C-9)te 11,Jm 11,Jm 11 ,Jm 11 ,Jm

where

hI = - (cs1 + cs2 + 2) (1 - d 1. / c 1. _ iw / c 1· )
11 11 11

(C-I0)

h2= (cs1 + Cs2) (1 - d 1. / c 1. - iw / c1. )
11 11 11

R = -(1 - d 1. / cl. - iw / cl. \)fd IF. (U) + d 2F . (L»)
11 11 I} \' s I} s 11

(
(U) (L))

- (d 1i1 / c 1i1) ds1Fi 1-1 + ds2Fi 1-1

We now apply equations (C-4), (C-9), and (C-lO) as the boundary conditions on the down­
stream boundary. Thus in difference form we write

<Pimax ,j + <Pimax-1 ,j
+iw-------

2
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where a; = (x. + x· -I) /2 and r
J
. = ,/(Xte - a2)2 + KyJ.

2
..- 1max 1max Vl

This has the same form as equations (119) of reference I with a simpler function replacing
p. J' Solving the previous equation for ~IJ'I yields

1max te

IJ'I. .(I + iw02 / 2) - (I - iw02 / 2)1J'1. . = 02~1J'1 Fj (C-ll)
1max,J 1max-I,J te

where

Then

where

0; = x· - x· I and
~ 1max 1max-

Fj = -i{eXP[O\I M(a2- Xte)] OA, I "VKYjHI (2)(A,l rj)}/(4rj)

IJ" . = Ck31J" I . + Ck4.6.1J'1 F·1max ,J 1max- ,J te J

Ck3=(I-iw02/2)/ (I +iw02/2)

ck4 = 02 / (I +iw02 / 2)

(C-12)

(C-13)

(C-14)

(C-15)

Substituting for ~IJ'I yields
te

IJ" , = Ck31J" I .1max ,J 1max- ,J (C-16)

+ ck4F.fhllJ" , + h 21J" . -I + h31J" -I' + h41J" -I . -I + RJJ l 11,Jm 11 ,Jm II ,Jm II ,Jm

In the difference equation for general i,j, the potential 1J'1. I is replaced by the right-
Imax-

hand side of equation (C-16) when i = imax-I ,the x index of the downstream boundary
plane.
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(D-I)

APPENDIX D

A PANEL METHOD FOR MATCHING THE OUTER SOLUTION
WITH THE INNER FINITE DIFFERENCE SOLUTION

FOR TWO-DIMENSIONAL TRANSONIC UNSTEADY FLOW

D.1 INTRODUCTION

The velocity potential for the unsteady linearized harmonic flow produced by a source
distribution on a line segment s is given by

eiAIMJa I (2)
<PI = - . o(x )HO (nds

41 s

if 2 2 . .
where ~ = AIr, r = V(x - x') + K(y - y') . The derIvatIves take the form

2

<PI = AI. K1JO(X') [HI (2)(n I ~Jy -y') ds (eiAIMx (D-2)
y 41 s ~

2

<PIx = ~l l[O(X') [H1(2)(n n] (x - x') ds 1e
iX1

Mx + IX1M<PI

For convenience, we shall introduce the cylinder functions

2

2 Al [2 ]where u = (~ I 2) = 4 (x - x') + K(y - y')

the simple form

. The derivatives of the functions take

(D-4)

and higher order derivatives are obtained by simple recursion formula derived from the
differential equation.

k+2 r k+l k ]
Qn (u)=-L(n+k+ l)Qn (u)+Qn (u) lu k~O (D-5)

34

To match the outer mesh boundary with the proper outgoing wave solution for the rectangu­
lar mesh in figure 6, we prescribe the following source and doublet distribution.
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-iA\Mx If '
'P Ie = 4i (J\!o( 1I his

(0-6)

)

AI "--VI~ YLl'Pi"'f'" i(.J(X' - XiiI I) , ,

--~~i----- l' Y., (1I(0 dx

xi rt I

where au' ad' aQ' or denote the source strength on the upper, lower, left, and right edges of

the mesh region, respectively. The subscript iI+] denotes the point just downstream of the

trailing edge. Accordingly, the u variables are defined by

2
, Al ~ I 2 2Ju =- (x-x) +K(y-b)
u 4

2
, AI r , 2 2J
ud=-~x-x) +K(y+b)

4

2
U

'
A] r I 2 2Jo=-~x - x) + Ky

4

(0-7)
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To simplify the derivation we assume a symmetric configuration without lift in the steady
flow. Then the perturbation potential 'P] for the unsteady flow is antisymmetric and



o (y') = - 0 (- y')r r

(D-8)

Since we consider only the lower half plane we have

1b 0Q(y')QO(uQ)dy' = (0 0Q(Y') [Qo(UQ-) - Qo(UQ+)J dy'
-b )[b

(0-9)

where 2
± i\ 1 r 2 2J

uQ = 7L(x-al) +K(y±y')

Similar relations hold for the right boundary with a2 replacing a l' Finally, for 'P 1:

-ii\ 1Mx 1 fa 2
'PIe =- 4i 0d(x') [QO(Ud) -QO(uu)]dx'

a1 (0-10)

-ii\ 1Mx
+ 'Pwe

(0-11)
-ii\I Mx i\ 11'K y Ll'Pi 1+1fOO iw(x'-xi 1+l)

( ') ,e 'Pw =- 8i e Q1 Uo dx

xi 1+1

2
, i\1 r ,2 2J

Uo = 4~x - x) + Ky

Note that equation (0-10) satisfies the requirement 'PI (y) = - 'PI (- y)

where

where we have changed the sign on or for convenience and 'Pw is the contribution from the

doublet wake:

D.2 BASIS FUNCTION FOR THE FINITE ELEMENT METHOD

For each station xi on the upper and lower boundaries we use a linear distribution of
doublet strength with the source strength defined at these grid points. For the basis func­
tion centered at x = xn' we follow Chen, Dickson, and Rubbert (ref. 9) and use
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(0-12)

where 8k =xk - xk-l . This form was chosen so that

1Xn+l
[a(x') / an] dx' = 1

xn-l
A similar relation holds for sources at station Yn on the x =al and x =a2 boundaries.
Instead of x1 and xi we replace these values by

max

and
2

respectively in the end basis functions. We treat the end points on the other boundaries
the same way.

iA1Mx
We now consider the perturbation velocity potential without the factor e . Then
with

(0-13)

we consider the contribution from the source distributions

(0-14)

(0-15)

38

where l/I(){ is the contribution from the integral over the lower boundary and l/IQ and l/I r are
the contribution from the left and right boundaries, respectively. Substituting the basis
function into the integrals and performing the integrations yield

imax-l

l/I d = L: adn l/I dn
n=2

jm

l/IQ = L: aQn l/IQn
n=2

jm

l/I r = L arnl/l rn
n=2

where



(0-16)

.n = 2,... , imax-l

where '8k = Yk - Yk-2 ' k = 2,3,... , jm ' and a similar relation holds for 1/J rn from the
source distribution on the boundary x = a2' We note that, from equation (0-10), the
potentials all have the form

1/J t = 1/J(y) -1/J(- y) (0-17)

The integrals in equation (0-16) may be calculated by Simpson's rule, requiring the evalua­
tion of the £O(u) functions at five points for each integral. With efficient coding this re­
quired evaluation of the cylinder functions at the mesh boundary points and at midpoints
between them for each point the induced flow is to be calculated. Far-field and near-field
expansions of the integrals also may be used to reduce computing costs.

D.3 FORMULAE FOR A FAR-FIELO EXPANSION OF THE INTEGRALS

When the distance from the center of the panel inducing the flow to the point x,y is large
compared with the range of integration xn-l to xn+l (or Yn-l to Yn+ 1)' then the functions
£n(u) may be approximated by an expansion of the form

00 (k) kook
Qn(u + LlU) =:E Qn (u)· LlU / k! =:E ankLlU (0-18)

k=O k=O
where u depends only upon x,y and points (xn,b), (a I'yn) or (a2,yn)' We see immediate­
ly that

(0-19)
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where

From equations (0-5) and (0-18) we see that the ank satisfy the recursion relation

[
ankJan k+2 = - (n + k + l)an k+l + -- I[(k + 2)u]

, 'k+ 1
or more conveniently

r an k-2]
ank =- L(n + k - l)an,k-l + k' _ 1 I (ku)

We need to evaluate the integration along x'. Thus we write

QO(u' ) = QO(u + ~u)

00 k
= L: aOk~u

k=O

aOl =-Q1(u)

aOk = - [(k - 1)aOk-1 + aOk-2 I (k - 1)] I (ku)

Substituting equation (0-21) into equation (0-16) yields

I ; {I X
n

( I ) k II/Jdn =- '(~ + ~ ) LJ aOk x -Xn-l ~u dx 18n
21 un+ 1 un k-O x- n-1

j Xn+l }
+ (Xn+1 - XI)~Ukdx' 18n+1

xn

(0-20)

(0-21 )

(0-22)

(0-23)

where, as we shall see, ~u = M(w1 - x' )(w2 - x') . For convenience we shall introduce
the functions

I f,n k ,
Unk(x) = x ~u dx (D-24)

Note that equation (0-23) contains only one of the functions in equation (0-16) for the
sake of simplicity.

We require the functions UOk and U1k' and for later considerations, U2k- For the lower
boundary we choose

where

40

2
Al [2 1

ud = 7 ~x - x') + K(y + b~

2
Al r 2 ]

ud= 7L(x-xn) +K(y+b)

(0-25) ..



then

where

(D-26)

(D-27)

Similarly, for the left-hand boundary we have

uQ = uQ + ~u

where

(0-28)

from which

2
Al r 2 2J

uQ = 4 L(x - al) + K(Y - Yn)

2

~u= Al K~WI-Y')(W2-y/)l 2
4 ~ Al k

where wI =Ynandw2=2Y-Yn . If we define fl= -4-

~U=fl[(WI-Y')(W2-y')J

~U = fl [(WI - x/)(w2 - X/)J
and the integrals along the boundaries take the same form.

then

(0-29)

We now evaluate the functions Ujk(x'). Thus with equation (0-29)

, f k ( ,)k ( ,)k,UOk(x ) = fl wI - x w2 - x dx

Let wI -x'=~;then

kf k k
UOk(x

/
) = - fl ~ (w2 - wI +~) d~

Expanding the kth power of the term in parenthesis and integrating yields

, k k (k) k-j , k+j+1 .
UOk(X)=-fl ~ j (w2- w I) (wI-x) j(k+J+I)

(
k) J=O

where j are Newton's binomial coefficients.

Writing

(0-30)

(0-31 )

(0-32)
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Jl(WI - X')(W2 - WI) = ~

(wI - x') / (w2 - wI) = t (0-33)

yields

k k (k) t
j

UOk(x')=-~ (WI-x') L ' k+'+ I
j=O J J

(0-34)

Now

(0-35)

Similarly

(0-36)

(0-37)f k( ,)2k,UOk = Jl wI - x dx

Note that wI - x' = 0 for x' = xn and wI = w2 for x = xn ' For this special case the Unk take

a simpler form

k , 2k+I
=-Jl (WI-x) /(2k+l)

(0-38)

(0-39)
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Denoting

and substituting for Unk into the right-hand side of equation (D-23) yields

aOO 1 00 1[ n-l n-1J
- 4i - 2i (8 + <5 ) - L: xn-1 UOk - U1k / on

n+ 1 n k=1

(D-40)

(0-41 )

+ 0n+ I UO~+ 1
- U 1~+1

] / 0n+ I ~ aOk

Since the aOk are functions of u, which we shall define for convenience in the form

u=fJ.[(X-Xn )2+ z2J (D-42)

and since the Unk are functions of fJ., WI = xn' w2 = 2x - xn ' we can define a general func­
tion

[
n+ I n+1J t

+ xn+1 UOk - U1k / 0n+l \ aOk

Then we have finally 2

~dn = GO(': ' x, '/K (y + b), xn-l' xli' Xn+l)

(D-43)

(D-44)

D.4 FORMULAE FOR THE NEAR-FIELD EXPANSION OF THE INTEGRALS

For the near field, the argument of u in the Qn(u) functions is assumed sufficiently small

that the power series of the functions may be integrated term by term. Now

n 00 2k k
J (t) = (1.) L: (~/ 2) (- 1)
n 2 k!(n + k)!

k=O
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Y (t) = - !.. (~)n I: (n - k - 1) (l)2k + l:. log (~)J (n (0-45)
n 11" ~ k! 2 11" 2 n

k=O

n = k 2k
- ! (i.) E {1/1(k + 1) + 1/1(k + n + 1)} (- 1) (~/ 2) (0-46)

11" 2 k!(n+k)!
k=O

~1 2
where 1/1(1) = 'Y and 1/1 n == - 'Y + E Q / m Since u = (~ /2) then

m=l

Similarly

k k
J = (- 1) u = k

QO (u) = JO(t) = 1: 2 = 1: cOku

k=O (k!) k=O

= k k =J (- 1) u k
Q1 (u)=2Jl(t)/~= E k!(k+1)! = 1: clku

k=O k=O

(0-47)

(0-48)

k 2
where cOk = (- 1) / (k!) and clk = cOk / (k + 1)

We also have

(0-49)

Y 1 J 2 = k
QO (u) = YO(t) = - log u QO (u) - - 1: 1/1(k + 1)cOku (0-50)

11" 11" k=O

Y 1 J 2 =
QO (u) = YO(t) = - log u QO (u) - - E 1/1(k + 1)cOku

11" 11"
k=O (0-51)

Y 1 1 J
Q1 (u) = 2Y 1(n / ~ = -- + -log u Q1 (u)

1I"U 11"

44

Since

where

1 = k- -; E ~1/1(k+ 1)+ 1/1(Q+2)~clku
k=O

(2) J . Y
QO(u) = HO (t) = QO (u) - lQO (u), then

= ~ icOk t k
QO(u) = E lbOk - --;-log u ~ u

k==O

[
2i ]bOk = cOk 1 + -; 1/1(k + 1)

(0-52)

(0-53)



Sim ilarly

(0-54)

where

(0-55)

We need to evaluate integrals of the form

I f,n k I
Vnk(x ) = x u dx

and

I f,n k I
Wnk(x ) = x u log u dx (0-56)

where

where wo = x + iCy - b)1JK

with respect to y' we have

For integration along x', we have 2
Al r 2 21

u= 4~X-Xl) +K(y+b) J
We now factor the quadratic in a form similar to equation (0-29). This leads to

A 2

u = _1_ (wO - x')(wO - x')
4

and Wo is the complex conjugate. Similarly for integration

As before we define

u = J.1[(w - x')(w - x')] (0-57)

and obtain a general formula that holds, with appropriate arguments, for each of the three
boundaries. Thus f k

VOk = u dx'

kf I
k _ ,k I=J.L (w-x) (w-x) dx

Comparing with equations (0-34) and (0-36) we obtain
k k-j I k+j+lV = _ J.1kE (k) (w - w) (w - x)

Ok . j k + j + I
J=O

Similarly from equation (0-35) and (0-36), we have
k ( ) _ k-j , k+j+2

V = wV + J.1k '" k (w - w) (w - x )
Ik Ok LJ. k + . + 2

j=O J J

(0-58)

(0-59)

(0-60)
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Now

2 k k (k)(- k-j I k+j+3w-w) (w-x)
Y2k =2wY 1k -w Y 1k -Jl E . .

j=O J k + J + 3

log u = log Jl + log(w - x') + log(w - x')

(0-61 )

- f VOk(X')dy'
+ YOk log(w - x') + W_ x'

then we have

j k I

WOk(x ') = u log u dx

j
YOk(Xl)dyl

= YOk log Jl + YOk log(w - x') + I

w- x
Substituting for YOk yields

WOk" YOk log j< + 2 Real{YOk log(w - xl

k k-j k+j+lJ
+ Jlk E (~)(W -w) (w - X')2

j=O J (k + j + 1)

(0-62)

Now
I I' kw1k(x)= . xu logudx'

j
Y lk(x')dy'

= YlklogJl+Y1klog(w-x')+ I

w-x

_ Vlk(x')dx'

+ Y lk 1og(w - x') +f w - x'

46

Substituting for YOk yields

wlk(x)" Ylk log j< + 2 Real {V lk log(w - x')

k k (k)(W _ w/-\w _ xl)k+
j
+1

+Jl E . 2
j=O J (k + j + l)

k k-j k+j+2 J
_ JlkE (~)(W -w) (w - x')2

j=O J (k + j + 2)

(0-63)



Similarly

W2k(x') =V2k log ~ + 2 Real {V2k log(w - x')

k k-j k+j+1
+W2pkL(~)(W-W) (w-x')

. 0 J 2
J= (k + j + I)

k k-j k+j+2
+ 2wpk L (~yw -w) (w - X

I

)2

j=O J (k + j + 2)

k k-j k+j+3 ~
-pkE(~) (w -w) (W-X

I

)2

j=O J (k + j + 3)

(D-64)

With the functions Vjk and Wjk defined and with
n

Vjk(xn) = V jk '

Substituting equation (D-64) into (D-23) leads to

>#dn = - 2; (5 I H ) i:: {In (x' - Xn_l) [bOk - ;:Ok log uJukdx' / Sn (D-6S)
n+1 n k=O xn-l

+[X
n

+I(xn+I _ x') [bOk _ ;:Ok log uJ ukdx ' / Sn+I}

n

1/Jdn= - b040 - 0(5 I 5) 1: bOk{[Xn_I(Vo~-I_vo~)
1 ~1 n+ 1 + n k= 1

-(V I~-I - VI~)J/5n + [xn+] ( vat I - Von -(V Ikn+
1VI~)J; 5n+I}

+ .1 ECOk {[Xn_1 (WO~-I - WO~)
27T (on+ 1 + on) k=O

( n-I n)J [ (n+In)- wlk - wlk IOn + xn+l wOk - wOk
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Writing for the variable w
w =x + iz

and defining the function

PO(Jl' x, z, xn-l' xn' xn+l)

as the left-hand side of equation (0-65), we obtain

~dn =pot~
2

, x, YK(y + b), xn_\, xn' Xn+1)

~ 2 )Al K
I/1Qn = Po -4- ,y, (x - a1) / 1K, Yn-1' Yn, Yn+1

and similar relations for l/1 un and I/1 rn .

0.5 CALCULATION OF NORMAL DERIVATIVE TO MESH BOUNDARIES

(0-66)

(0-67)

2
Al r 2 2J

then u =-~x - x') + 11
4

The calculation of the contribution to 1,01 on Y= -b from the source distribution on the
Y

line y =-b is very simple. We consider

()
1 fa2

I I1/1 x,y = - -:- a(x )QO(u)dx
2 41 a1

Al r 2 2J
where u =4~x - x') + K(y + b) . Let 1K (y + b) =11

and

and obtain
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AI17 fa 2
1/1 11 = 8i a(x' )Q 1(u)dx '

a1

Near u = 0, Q1(u) = i / 1TU + 0(1) ; thus near 11 = 0 the integral takes the form

_ 11 fa 2
a(x')dx'

1/1 11 - 21T I 2 2
a1 (x - x) + 11

Since the integral does not exist at 11 = 0, we introduce the variable

(x' - x) / 11 = ~

j
(aTx) / 11

1/111 = 2~ a(x + 11~)d~ / (~2 + 1)
(a1-x)/11 .

If y goes to -b through values of y > -b, then 11 is positive and for a1 < x < a2' the limit as
goes to 0 becomes



then

VJT/=a(x)/2

and
VJ y = -vKa(x) / 2

If y goes to -b through values of y < -b, then the limit becomes

VJ y = - "YKa(x) / 2

Similarly for sources on the y' axis we write

1 b2
VJ = - -. [ a(y')QO(u)dy'

where u= A:2[(x _a,) 2+ K(y - y,/j: \t iK (y' _ y) = ~',

{
1JK(bTY)

I "VJ = - 4iVK a(T/ )QO(u)dT/

VK (bl-y)

Since this has the same form as the a(x') contribution, we see that

(D-68)

(D-69)

VJ x = - a(y) /(2VK)

VJ x = a(y) /(2'iK)

for -b < y < b and x going to a 1 through values of x > a 1.

of x < aI' we obtain

(0-70)

For x going to al through values

(D-71)

"',

D.6 THE BOUNDARY CONDITIONS ON THE MESH BOUNDARIES

To match the interior finite difference solution with the outer finite element solution, we
make the values of the potential from the two solutions and the values of the normal deriva­
tives from the two solutions equal on the mesh boundary. Thus on y = -b = (Yl + Y2) / 2,
we match the values of 11'1 and 11'1 y

from the two solutions while on x = al = (xl + X2) /2 and on x = a2 = (xi + xi -1) /2,
max max

we match the values of

11'1 and 11'1 x

from the two solutions.

We could actually evaluate II'x and lI'y for the outer solution by differentiating II' from the

wake and source distributions; but to simplify the programming, we will approximate 11'1
at x =xi by (lI'il + lI'i2) /2 on the lower boundary both for the finite difference solution

and for the finite element solution. For the derivative with respect to y, we take
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for the finite difference solution and from the exterior solutions for the source distributions
on the sides x = a1 and x =a2; but we will use

limit a"'d
y ~_ b ay

from the source distribution terms for the lower boundary y = -b.

(D-72)
2

Let "'Q' "'f' "'d' "'w be the contributions to the exterior solution from the left, right, lower

boundary source distributions, and the wake. Then the boundary conditions on y = -b at
x=xi are + +

"'il + "'i2 "'Qi1 + "'Qi2 + "'ril + "'ri2 + "'di 1 + "'di2---=--------------
2

. "'dil + "'di2

2

"'wil + "'wi2
+

2

+

(D-73)

Yl -Y2 Yl-Y2
where the + and - denote the lower source distribution and its image at y = b, and

+ +
"'r = "'r - "'r and "'Q = "'Q - "'Q. Since we are interested in the outer solution at y = -b

through values of y < -b, then from the preceding equation we obtain

"'il - "'i2 = "'Qil - "'Qi2 + "'ril - "'ri2

2 2

iA.lMxi "'dil-"'di2
--vK°die (Yl-Y2)/4- 2

Adding and subtracting equations (D-72) and (D-73) yields

- (+ + ) iA.lMxi (Yl -Y2r~K/4+"'wil
"'il = "'Qil + "'ril - "'dil + "'dil + "'di2 / 2 - odie (D-74)

- ( + + ) iAl MXi (Yl - Y2) "YK/4 + "'wi2
"'i2 = "'Qi2 + "'ri2 - "'di2 + "'dil + "'di2 / 2 + odie (D-75)

iA.l Mx
Because of the factor e , the normal boundary conditions on x = al and x = a2 take a
different form. For the derivative with respect to x we have

+
a"'Q iA.l Mx [ + +Ja; =e I]JQx + iA.l MI]JQ
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=

Since we must approach x = a I from values x < a I' we obtain from equation (D-7I)
+

lim alPQ + iX IMa I
- = iXIMIPQ - 0Q(y)e /2VK

x ~ al ax
Thus the boundary conditions on x = a I become

+ +
IPQ lj + IPQ2j - IPQ I j - IPQ2j + IPr2j + IPr lj

2
(D-76)

+ IPw Ij + IPw2j

2

(D-77)

-IPQ lj + IPQ2j + IPr lj - IPr2j IPw lj - IPw2j
= + ---'------'~

xl - x2 xl - x2

IPdlj-lPd2j () iXIMai (,(;7). (lP;lj +1P;2j)
+ - aQ Yj e / 2vK + IX IM

xl -x2 2

Adding and subtracting equations (D-76) and (xl - x2) / 2 times equation (D-77) yield

IPlj=ao(lP;lj +1P;2j) -IPQIj +lPrIj+lPd1j+IPW1j_(OQjeiX1Mal/(41KY(X1_X2) (D-78)

1P2j=<i0(IPQ~j +1P;2j) -IPQ2j +lPr2j+lPd2j+IPW2j+(OQjeiXIMal /(41K~(X1-X2) (D-79)

where aO = 1 / 2 + iMX 1( x 1 - x2) / 4.

On the right-hand boundary we apply the boundary conditions

(IP' . - IP' 1') IPQ' . -lPn' l' + IPd' . - IPd' l'\' ImaxJ lmax-' J ImaxJ x.lmax-' J ImaxJ lmax-' J

( X, - x· 1) (x. -x· 1)lmax lmax- 1max lmax-
(D-80)

x· - x' 1lmax 1max- x· - x· 1lmax lmax-

2
=

2 (D-81 )

..
+ +

IPrimaxj + IPrimax-l, j IPrimaxj + IPrimax-l, j IPwimaxj + II'wimax-l, j
+ +--------

2 2 2
Now
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Since we approach a2 from the outside, or x > a2' we have from equation (D-70)
+

lim a\Pr + iX 1Ma2
x ~ a2 ax =iX1M\Pr + e 0rj /(21K)

Thus equation (D-80) with the aid of equation (D-82) becomes

\Pimaxj - \Pimax-1, j \PQimaxj - \PQimax-1, j + \Pdimaxj - \Pdimax-1, j

(D-82)

(D-83)

iX 1Ma2 \Pwimaxj - \Pwimax-1, j
+ e 0rj /(21/KJ+ 2

and the other boundary condition is

\p' , + \p' l' \PQ' ' + \PQ' l' + \Pd' - + \Pd- 1-ImaxJ Imax-' J ImaxJ Imax-' J ImaxJ Imax- ,J

2
=

2

+ + +
-\P- '-\P- 1 '+\p' -+\p' 1-TImaxJ TImax- ,J TImaxJ TImax-' J

+-----------------
2

(D-84)

+
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2
Adding (Xi - xi -1) /2 times equation (D-83) to equation (D-84) yields

max max

\P- l' = \PQ' 1 -+ \Pd' l' - \P ' 1 -+ \P - l'Imax- J Imax-' J Imax- ,J TImax-' J Wlmax-' J

"\ M (D-85)

~
+ + ~ 1/\1 a2 ( ~ .+ &'1 l{)' - + \P ' -1' - eo' x' - x- -1 /(41K)TImaxJ TImax ' J rJ Imax Imax

Subtracting leads to ,

- ( + + )\P- - = \P - ' + \P - , - \P ' - + \p' , + ex \p' , + \P ' -
ImaxJ QlmaxJ dlmaxJ TImaxJ WlmaxJ 1 TImaxJ TImax-1, J

(D-86)

iX 1Ma
2 ( ~+eo- x' - x- -1 /(4-vK)

1] Imax Imax

where



D.7 EVALUATION OF THE WAKE INTEGRAL FOR THE OUTER SOLUTION

We must also include the contributions from the doublet wake integral in the outer solution.
From equation (110), page 68, of NASA CR-2257, we have

_ i~IPt100

-iW(X'-Xil+l) ,
IPw - -4- e l/ty Idx I (D-87)

Xii +I

i~IPt100

-iW(X'-Xi l +1) I

= 4VK e l/tydx
Xi 1+ 1

From the bottom of page 68 this takes the form

~ 2 2where r = (x - x') + Ky , Since the infinite integral is very slowly convergent, we divide
it into two parts and change the contour of integration of the infinite integral. Thus

IPw =-

iWXi + I + iMi\ I x x ., / 2 J
+ell e-

1WX
{3 HI(i\lr)dX' / r

Xi 1+1

Now by translating the range of integration of the first integral we obtain
00 2 00

-i\IKyl e-
iw

(x'-x)/{3 HI(i\lr)dx ' /r~~1 e-iw~ Ho(i\lr)d~ (D-90)
x ay 0

where r = ~""~2~+-K-y::;-2 . In reference I, this integral was made more convergent by changing
the contour of integration so that we obtain real negative exponentials. The integral then
takes the form
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which is computed numerically for each value of y.

The remaining integral is over a finite range and becomes
x , 2 A x 2

1 iwx / {3 I J iwx' / (3
e Hl(Alr)dx/r=- e Ql(u)dx'

x· +1 211 xil+l

where 2

Al r 2 2J
u =-- L(x - x') + Ky

4
This integral must also be evaluated numerically.

Finally, combining equations (0-91) and (0-92) into equation (0-89) yields

(0-91)

(0-92)

(0-93)



or

where

and

"Pw = Ll"Pt G(X,y)

. 11"/2 2
It.. 1y {. r e-wl/Ky cos e / f3 J J(t.. 1i/Ky sin edeG(x,y) = - -4- 1 Jo

fa 1l" / 2 ~ -w1'Ky cos e / l y (t..YKy sin e)
+ e 1o

2 -wifKy cosh e / i K (t.. 1fKy sinh e)l de
+-e 1 1 J

11"

2 100

-wYKy cos e / f32 K (t.. YKy sinh e) de}+ - ell
11"

11" / 2 2

j x -iwx' I f3. 2,1';; iwx· +l+iMAl x e
IAI vKy 11 QI(u)dx
--- e XiI+I8

2
Al r 2 2J

u = - L(x - x') + Ky
4

(0-94)

(0-95)

(0-96)
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Since we have assumed steady symmetric flow, the unsteady perturbation potential satisfies

(D-97)

56

then on the airfoil

d"PI' = - 2"P" + c 1("P" I - "P" )!Jm s IJm- IJm

At the trailing edge the Kutta condition requires

dlPlx + iW~lPl = 0

at x = xi l' from equation (37) of reference 1, we have

c1i (AlPi 1+1 - AlPi1) + d 1i 1( AlPi1 - AlPi 1-1 ) + iWAlPi 1 = 0

Solving for d"Pi 1+ 1 yields

A"Pt =A"P' +1 = A"P' (1 - d 1· / cl' - iw / cl' )+(d 1· / cl' )A"P' 111 lJ 11 II 11 11 11 11-

Using equation (D-98) to define d"Pi 1 and AlPi 1-1 yields

d"Pt = [1 - (d 1i1 + iw)/ Cli I] [- (Csl + cs2 + 2)"Pi1,jm

+ (csi +CS2)"Pil,jm-1 - (dSlFilU +dS2Fi1L)

+ (d li1 / Cli 1) [- (CSI + cs2 + 2) lPi1-I,jm

+ (Csl +Cs2)lPi1-1,jm-1- (dS1Fi1_1U +dS2Fi 1-1
L
)]

Hence we write

dlPt =h 1IP' . + h2"P' . -1 + h3"P' -1' + h4"P' -1' -1 + R11,Jm 11,Jm 11 ,Jm 11 ,Jm

(D-98)

(D-99)

(D-I00)

(D-I01)



where

hi =- (CSI +CS2+ 2)(I-d lil IClil-iwlclil)

h2 = (CsI +Cs2)(t-dIi/clil-iwlclil)

h4 =(CsI + Cs2) (d lil I Cli l )

R=- (l-d l , ICI' -iwicl' )(d IF. U+d 2F. L)II II II s II s II

- (d Ii I CIi) (dS1Fi -I U + ds2Fi -1 L)

(D-I02)

Substituting equation (D-I 01) into equation (D-94) yields the following expressions for the
induced flow from the wake at the point xi' Yj:

where

HI" = hlG(x, y.)IJ I' J

and similarly for the other quantities.

D.8 DERIVATION OF THE COEFFICIENTS FOR
A MESH WITH TWO AXES OF SYMMETRY

(D-I03)

(D-104)

To reduce the number of integrals to be evaluated, we consider two lines of symmetry for
the rectangular mesh region, We define

l/Jd(xn - Xi'Yj) = l/Jdn(xi'Yj) = l/Jdnij

with similar relations for l/J un and l/Jrn' For imax even, we see from figure 7 that the follow­
ing relations hold for points on the left and right boundaries:

l/Jd ., = l/Jd' l' .nIJ Imax-n+ ,lmax,J

t/JQ I' = t/J' .n J rnImaxJ

Similarly,
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11 • • • • • • • •

10 • • •

9 • • • •

8 x• • • • • •

7 • • • • • • • • •

6 1, j • • • • • • • • • • • • imax, j
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• • • • • • .n • • • • • • .imaX;n+l • • • • •
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Figure 7.-lIIustration of Equal Values of the Integral for Points Associated
With the Upstream and Downstream Boundaries for a Grid
With Two Axes ofSymmetry



tJ;d 2' = tJ;d' I' I .n J 1max-n+ , 1max- ,J

tJ;Q 2' = tJ;. 1 .n J rmmax-,J

tJ; 2' = tJ;Q . 1 .rn J mmax- ,J

On the lower boundary we have from figure 8

tJ;d '1 = tJ;d" l' . 1 1m 1max-n+ , 1max-1+ ,

tJ;Q '1 = tJ;. . 1 Im rmmax-1+ ,

tJ; '1 = tJ;Q' . 1 1rn1 mmax-1+ ,

tJ;d '2 = tJ;d' I" 1 2m 1max-n+ , 1max-1+ ,

tJ;Q '2 = tJ;. . I 2m rmmax-1 + ,

tJ; '2 = tJ;Q' '+1 2rn1 mmax-1,

Because of these equalities we need to compute only the left boundary integrals and the
lower boundary integrals. For the left boundary, we have

tJ;dniJ' = tJ;di -n+l i -i+l J' i = 1,2 andj = 2,3,···,jm and n = 2,3,... , imax-I
max ' max '

tJ;Q .. = tJ;. . 1 .mJ rn1max-1+ ,J

tJ; ., = tJ;Q' . 1 .rn1J mmax-1+ ,J

On the lower boundary we have

t/Jd ., = t/Jd' l' '+1'mJ 1max-n+ ,1max-1 , J

t/JQ ., = t/J. . . I .I11J 1I11max-1+ ,J

for i = I ,2and j = 2,3,... , jm and n = 2,3,... , jm

for i = 1,2 and j,n = 2,3,... , jm

for j = 1,2 and i = 2,3,... , imax / 2 and n = 2,3, ... , imax-l

t/Jrnij = tJ;Qnimax-i+ l,j for j = 1,2 and i = 2,3,... , imax / 2 and for n = 2,3,... , jm

The total number of tJ; integrals to be evaluated are:

I. On left boundary
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0

y

imax-(n - 1) imax-In - 1)
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15 • • • • • • • •

14 • • • • • • • • • •

13 • • • • • • • • • • • • •

12 • • • • • • • • • • • • • • •

11 • • • • • • • • • • •
n

10 • • • • • • • • •

9 • • • • • • •
x

8 • •

7 • •
n

6 • •

5 • •

4 • • •

3 • • • • • •

2 • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 8.-lIIustration of Equal Values of the Integral for Points
Associated With the Lower Boundary for a Grid
With Two Axes of Symmetry



1/1Qn: 2(jm - l)(jm - 1)

1/1 rn : 2(jm - l)(jm -1)

2. On lower boundary

1/1dn : 2(imax /2- l)(imax - 2) == (imax - 2)2

1/1 rn : (jm - 1) (imax - 2)

Total on lower boundary == (imax - 2) [20m - 1) + imax - 2J

Combining the two totals yields the following total number NI of integrals to be evaluated:

NI == emax + 2(jm - 1) - 2J2

D.9 DERIVATION OF THE MATRIX ELEMENTS OF THE
SYSTEM OF EQUATIONS TO BE SOLVED

For the sake of completeness we write down the difference equations whose coefficients of
the 1Pj' form the elements of part of the matrix. The present program with simpler far-field
boun~ary conditions can be coded to compute these coefficients with small modification.
At elliptic points we have, in the notation of reference 1,

ajlPij_1 - (aj + bj + E1 + E2 - Qij) lPij + bjlPij+ 1 + E 11Pi+ 1,j + E2IPi-1,j == 0

for j == 2,3, ... , jm and i == 2,3,... , imax-1

At hyperbolic points,

a·"" .. 1 - (a. + b· - E3 - Q.. ),r,.. + b·,".. 1 - (E3 + £4) ,,,. 1 . + £4'''' 2 . == 0JYIJ- J J 1J Y1J JY 1J+ '1"'1- ,J '1"'1- ,J

for j == 2,3,... ,jm and i == 2,3,... , imax-1

For j = jm' we have lPij+ 1 == - lPij , and the two equations become

a·'"'' 1 - fa· + 2b· + E1 + E2 - Q..),,, .. + E1,,,· 1 . + E2,,,· 1 . =0
JY 1J- \ J J 1J Y1J '1"'1+ ,J '1"'1- ,J

a'IP" 1- (a. + 2b.-E3 -Q..),,,··-(E3 +E4),,,· 1 ·+E4,,,· 2 ·=0J 1J- J J 1J Y1J '1"'1- ,J '1"'1- ,J

For j == jm' we also have boundary conditions for iO < i < i1 and jump conditions for i > i l'
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The coding is already written for the difference equations and we need only consider the
boundary conditions on the mesh edges. Thus we add to the difference equations the
boundary conditions

jm r (+ iAIMxI + iAIMX2)
IPlj = E2 LO'O \1/IQnlj e + 1/IQn2j e

- iA IMx I iA IMa I J
-1/IQnlje -<Snje (X-X2)/(4YK~ 0Qn

.'

+
iAIMxI jm iAIMxI

1/Idnlje 0dn+ ~ 1/Irn lje 0m+1/Iwlj
n=2

j = 2,3,..·,jm

jm [ I + iAI MXI + iAI MX2)
1P2j = L: ~O \1/1Qn lj e + 1/1Qn2j e

n=2

- iA1Mx') iAIMal ,1
-1/IQn2j e ~ + <Snj e (Xl - x2) /(4YK')J 0Qn

imax-l iA IMX2

+ ~ 1/Idn2j e 0dn
n=2

iAIMx2
1/Irn2j e om + IPw2j
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for j = 2,3,... , jm

Here the function 1/1 without the plus or minus subscripts designate the combination 1/1
+ -

1/1 -1/1.

iAI MXi { jrn jm
lPil = e ~ 1/IQniloQn + E 1/I rnil om

n=2 n=2

imax-l

+ ~ [(1/I~nil + 1/I~ni2) /2 -1/Idnil
n=2

- -vK6ni (Yl - Y2) / 4J a dn } + "'wi!

f . = 2 3 .or 1 , , ... ,lmax- l



iAl MXi { jm jm
lPi2 = e E l/IQni2oQn + E l/Irni2orn

n=2 n=2

imax-I

+ E [(l/I~nil + l/I~ni2) / 2 -l/I~ni2
n=2

+1'K5 ni (Y I - YZ) /4] adn } + "'wi2

for i = 3,4,... , imax-2

for j = 2,3,... , jm

j = 2,3,... , jm

Here

also.

~o= I / 2+ iMA l (xI -x2) /4

~ 1= 1 / 2 + iMA 1(Xi - xi -1) /4
max max

We notice that there are two expressions for 1P22 and lPi -I 2' The two equations must be
max

equal; hence we obtain for 1P22
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n=2
iAlMal ]

+ Dn2 e (xl - x2) /(4YK) aQn

0"\ M i -1
1/\ 1 x2 max (+ +)

+ e :E t/Jdn22 - t/Jdn2l /2
n=2

-1fKDn2(Yl-Y2)]adn =0

0.10 THE DEFINITION OF THE BASIC VARIABLES AND
THE FORMULATION OF THE MATRIX

We write for the equations N

:E -anmXn ;:: Rm, m = 1,2'0'0' N
n=l

Let xn = IPij for n = (i - 1)jm - 1 + j for i < imax and n = (imax - 1) jm - 2 + j for i = imax '

Let Np be the total number of potential variables. Then

Np =imaxjm - 2

The total number of aQn variables is jm - 1 (see fig. 8)

The total number of am variables is jm - 1

The total number of adn variables is imax - 2

Hence the total number of variables an is

2Om - 1) + imax - 2

Combining this total with the total number of potential variables, we obtain for the total
number of variables N
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To summarize the previous discussion, we identify the variables xn as

X = ,Il·· for n = (i - l)j + j - 1 for i < i andn 't"'lJ m max

for n = Np + k - 1, k = 2,3,... , jm

forn= (Np+jm -1) +k-1, k=2,3,... ,jm

..

Xn = 0dk forn = (Np + 2jm - 2) + k-1, k= 2,3,... ,jm

We now consider the numbering of the equations which make up the matrix system. The
number of difference equations for the inner solution is

Nd = (imax - 2)(jm -1)

The number of I{J boundary conditions is

Nbc = 40m - 1) + 2(imax - 2) - 2

The total number of equations is then

Ne = imaxjm + 2(jm - 1) + imax - 6

We therefore require two more equations to complete the system. These equations are
provided by making the relations for 1{J22 and l{Ji -1 2 equal.

max

We now define the equation numbers and the corresponding matrix elements.

1. Equations numbered m = 1,2,... , Nd are the difference equations of the inner solution
and

Nd = (jm - 1) ( imax - 2)

2. Equations numbered m = Nd + 1,... , Nd + jm - 1 are the boundary conditions on

1{J1j' j = 2,3,... , jm

Nb 1 = Nd + jm - 1 is the number of difference equations + the number of I{Jlj boundary

conditions.

3. Equations Nb 1 + 1 to Nb 1 + jm - 1 are the boundary conditions on 1{J2j' j = 2,3, ... , jm

Nb2 = Nb 1 + jm - 1 is the number of difference equations + number of 1{J1j + number of

1{J2j boundary conditions

4. Equations m = Nb2 + 1 to Nb2 + jm - 1 are the boundary conditions on l{Ji -1 J'
max

boundary conditions.
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Nb3 = Nb2 + jm -I is the number of difference equations + the number of lPlj + the

number of lP2J' + the number of lPi -1 J' boundary conditions,
max

5, Equations m = Nb3 + 1 to Nb3 + jm - 1 are boundary conditions on lPi J', j = 2,3,.. , jm
max

Nb4 = Nb3 + jm - I is the number of difference equations + the number of lPlj + the

number of lP2J' + the number of lPi _ 1 + the number of lPi j boundary conditions.
max max

6, Equations m = Nb4 + I to Nb4 + imax - 2 are boundary conditions on

lPil' i = 2,3",., imax - I

NbS = Nb4 + jm - 1 is the number of difference equations + the number of lPil + the

number of lP2J' + the number of lPi -I j + the number of lPi J' + the number of
max max

lPi I boundary conditions

7, Equations m = NbS + I to NbS + imax - 4 are boundary conditions on

lPi2' i = 3,4,.." imax - 2

The total number of equations is

N = NbS + imax - 4 = Nb4 + 2imax - 6

N = Nd + 4(jm - 1) + 2imax - 6
= imaxjm + 2(jm - 1) + imax - 6

We require two more equations, since the total number of variables is

imaxjm + 20m - 1) + imax - 4. These equations are obtained from equating the two

relations which give lP22 and also give lPi -I 2 '
max

Since the wake integral is involved in all equations greater than m = Nd, we need to identify
the lP variables associated with it; we have

lPwij = -(HlijlPiljm + H2ijlPiljm-l + H3ijlPil-l, jm + H4ijlPil-l, jm-1 + Rij )

Let nl = (i 1 -I)jm +jm -I =iljm- l

then ,.



DJl FORMULAS FOR MATRIX COEFFICIENTS
REQUIRED BY OUTER SOLUTION

We shall now write the equations for the various coefficients of the matrix anm . For the

equations m = 1 to Nd , the coefficients are for the inner finite difference solutions and are

described in reference (1). We now formulate the boundary condition coefficients anm
resulting from the source distribution of the outer solution.

1. Equations m = Nd + 1 to Nd + jm - 1; If'lj boundary condition

m = Nd + j - I, for j = 2,3,... , jm

a. Coefficients of If'lj a. 1 N . 1 = 1
J- , d+J-

a 1 = - H2l ·nl- ,m J

a =- H3l · a 1 =- H4l ·n2,m J nr ,m J

when n 1 = (j 1 - 2)(im - 1) + jm and n2 =( i1 - 1) Urn - 1) are the variables associated with

the potentials about the trailing edge.

b. Coefficients of aQk variables, k = 2,3, ... , jm

(
+ iAl MXl + iAl MX2)

aNp +k-l ,m = <Xo lJIQklj e + lJIQk2j e

_ iAlMxl iAlMal
-lJIQklj e - Dkj e (Xl - x2) /(4YK')

c. Coefficients of ark variables, k = 2,3,... , jm

iAI MXI
aN+k-I,m = lJI rklj e

d. Coefficients of adk variables, k = 2,3,... , jm iAI MXI

aN +k-I,m = lJIdkIj e
e. Right-hand side Rm = R Ij r

+
Here the functions 1JI - are defined in equations (D-16) and (D-I7) and 1JI without the
± signs in this section is understood to be the combination 1JI+ - 1JI- .

2. Equations m =Nb I + i to Nb 1 + jm - 1; 1P2j boundary conditions

m = Nb 1 + j - 1, j = 2,3,... , jm

a. Coefficients of If'ij variables
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a· . 1 = 1Jm+J- ,m

a 1 = - H22·nl- ,m J

an2 ,j = - H32j anT I,m = - H42j

b. Coefficients of aQk variables _ (+ iX1Mx 1 + iX1MX
2
)

aNp+k-l,m =aO 1/IQklj e + 1/IQk2j e

_ iX l MX2 iX l Mal
- 1/IQk2j e + 0kj e (Xl - x2) /(4YK)

for k = 2,3,... , jm

c. Coefficient of ark variables

for k + 2,3,... , jm

d. Coefficients of adk variables

for k = 2,3,... , jm

e. Right-hand side Rm = R2j

3. Equations m = Nb2 + 1 to Nb2 + jm - 1; \Pi -1 J' boundary condition
max

m =Nb2 + j - 1 for j =2,3,.··,jrn

a. Coefficients of \Pij variables

a· 2"1 =1lrnax- Jrn+J- ,rn
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a = - H3· 1 .n2,rn lrnax- ,J

b. Coefficients of aQk variables

c. Coefficients of ark variables

a 1 = - H2· 1 .n 1- ,rn lrnax- ,J

a 1 =- H4· .nT ,rn lrnax-l,J



(
ii\I MX ' ii\I Mx, I)_ + 1max + lmax-

UNQ+k-Im=G:I tJ;rki je +tJ;rki _Ie, max max

ii\I Mx. I 'i\ MImax- 1 I a2( ,fYTx· -x' 14yK- tJ;rki -lj e + Ski e 1max Imax- l)max

for k = 2,3"00' jm

d. Coefficients of 0dk variables
ii\IMxi -I

max
aNr+k-l,m = tJ;dkimax-l,j e

e, Right-hand side Rm = Ri -I J'
max'

for k = 2,3'00" imax - I

4. Equations m = Nb3 + I to Nb3 + jm - I; \Pi j boundary conditions
max

m = Nb3 + j - I for j = 2,3'00" jm
a. Coefficients of \Pij variables

a· 1"2 =1Imax- Jm+J- ,m

a =-HI · ,nl,m Imax,J a I = - H2· .n 1- ,m Imax,J

b. Coefficients of 0Qk variables
ii\ IMXi

max
aN k I = e tJ;Qk"p+ - ,m ImaxJ

for k = 2,3'00" jm

c. Coefficients of ark variables

(
ii\ IMXi ii\ IMXi -I)+ max max

aN +k I = G:l tJ; k' 'e + tJ; k' I' eQ -,m - r ImaxJ r Imax- , J

ii\I Mx. 'i\ M- Imax 1 I a2
-tJ;rki je +okje (Xi -xi -I) 1(4VK)

max max max

for k = 2,3"00' jm

d. Coefficients of 0dk variables
ii\IMx1'

max
aNr+k-l,m = e tJ;dkimaxj

for k = 2,3'00" imax - I
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e. Right-hand side Rm = Ri J'
max

5. Equations m = Nb4 + I to Nb4 + imax - 2 = NbS

m = Nb4 + i-I, i = 2,3,... , imax-I

a. Coefficients of 'Pij variable

a . I' = I1- Jm,m

..

an I,m = - HI i I

a I = - H4' 1nr ,m 1

iAI MXi

aNp+k-l,m =e l/JQkil

an2 ,m = - H3i1

b. Coefficients of aQk variables

for k = 2,3,... , jm

c. Coefficients of ark variables
iAIMxi

aNQ+k-l,m = e l/Jrkil

k -')3 .- -, ,... , J1TI

d. Coefficients of adk variables

iA IMXi ~( + +) J
aNr+k-l,m = e L l/Jdkil + l/Jdki2 / 2 -l/J~kil-1fKcSki(Yl - Y2) /4

for k = 2,3,... , imax - I

e. Right-hand side Rm = Ril

6. Equations m = NbS + 1 to NbS + imax - 4

m = NbS + i - 2, i = 3,... , imax - 2

a. Coefficients of 'Pij variable

a i-I jm+ I,m = I

a =- H1'2 a I =- H2'2n I ,m 1 n 1- ,m 1

an m =- H31'2 an I =- H4 '22, r ,m 1

b. Coefficients of aQk variables
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..

iAI MXi
aN +k-l m = e l/tQki2p ,

for k = 2,3'00" jm

c. Coefficients of ark variables

iAI MXi
aNQ+k-l,m=e l/t rki2

k = 2,3'00" jm

d. Coefficients of adk variables

aNr+k-l,m = eiAlMxi [(l/t~ki1 + l/t~ki2) / 2 -l/t~ki2 + v'K0ki(YI - Y2) /4J

for k = 2,3'00" imax - I

e. Right-hand side Rm = Ri2

7. Equation m = NbS + imax - 3

Matching of two relations giving '-Pn

a. Coefficients of '-Pij variables are zero.

b. Coefficients of aQk' k = 2,3'00" jm

_ + iA IMx 1 + iA 1MX2 _
aNp+k-l,m::::: a 01/JQkI2 e +1/JQk2,2 e (au-I)

iAI Mal
+ 0k2 e (xl - x2) ;(4v'K)

c. Coefficients of ark variables are all zero.

d. Coefficients of adk' k = 2,3'00" imax - I

aNr+k-l,m::::: eiAlMx2 [(l/t~k22 -1/J~k21)/ 2 - -vK0k2 (YI -Y2) /4J

e. Right-hand side Rm ::::: 0

8. Equation m = NbS + imax - 2

Matching of two relations giving 'Pi - 1 2
max

a. Coefficients of '-Pij variables are all zero.

b. Coefficients of aQk variables are all zero.
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c. Coefficients of ark' k =2,3,... , jm

The integrals ¥Jdn' ¥JQn> and ¥J rn can be expressed in the form of a single function of

several variables resulting in considerable saving in coding. These integrals are represented by
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(D-I06)

(D-I07)

..



•

where

I 2r I 2 2J
ud =1\1 ~x - x) + K(y + b) /4

, 2 r()2 ,2JuQ = 1\1 Ux - al + K(y - y) /4

, 2 r()2 , 2Jur = 1\ 1 ux - a2 + K(y - y ) /4

(0-108)

(0-109)

(0-110)

(0-111)

= 1\ 12K ~y - y'? + (x - a2)
2

/ KJ /4

(2) - - -
and QO(u)=HO (n with r=2YU. Thefunctionsljldn, ljIQn' and ljIrn can be written

down by replacing y by -Yo

Let

(0-112)

and define the function

ljI(fJ,~,1J,xn) =- 4
i

l. 2 { (x
n

(x' - xn_l)QO(u)dx' / on
0n+l + on }y

xn-l

f X
n
+

l
( ') '/ }+ xn+l - x QO(u)dx 0n+l

xn
where on = xn - xn-l as before.

(0-113)

By comparing u in equation (0-112) with ud' uQ' and u~ in equations (0-109), (0-110), and

(0-111) and comparing equations (0-105), (0-106), and (0-109) with equation (0-113), we
see that

ljI~n = ljI(1\1 2K / 4, (x - al) / "VK,y,Yn)

ljI;n = ljI(1\1
2K /4, (x - a2) / "YK,y'Yn)

Hence the subscripted quantities become

(0-114)

(0-115)

(0-116)
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I/J~nij = I/J (A1
2

/4, 1/K(b + Yj),Xi'Xn)

I/J;nij =1/J(A1 2K / 4, (xi -a)/1Ji('Yj'Yn)

I/J;nij = I/J (A1 2K /4, (xi - a2) / "V'K'Yj'Yn )

I/J~nij = I/J (A1
2

/4, n(b -Yj) ,Xi'Xn)

I/JQnij =l/J(A1 2K / 4, (xi-al) /v'K,-Yj'Yn)

I/J~nij = I/J (A1 2K / 4, (xi - a2) / 'VK, - Yj'Yn)

(0-117)

(D-118)

(D-119)

(D-120)

(D-121)

(D-122)



APPENDIX E

AN OBLIQUE COORDINATE SYSTEM FOR
SWEPT AND TAPERED WINGS

",

- -
Consider a vector function F with x,y,Z, components F 1,F2,F3; then the divergence of F

under the transformation of equation (G.1) becomes

- aF
V'·F= -·V'g+F2 +F3 (E-1)

a~ ~ ~

where g = (gx,gy)' and F 1,F2,F3 are the x,y,Z components of F. Expressing the opera­

tor in conservation form yields

(E-2)

Now

V'g = (1 / c(y), ~c' / c - x'Qe(Y) / c)

Here c may be written as c(~) and we find that

a I /
a~ V'g = (0, - c c)

(E-3)

(E-4)

We also have

F= ( U1P 1
x

-2iw1P1 / € ,IPIy ' 1P 1z)

or substituting the transformation yields

F= (UIP1~gx - 2iwIP1 / €, 1P1~gy + 1P1~' 1P1~)

(E-5)

(E-6)

(E-7)

V' • F + qIP1 = °
we obtain from equations (E-3) through (E-6)

~~ [gx (UlP1lx - 2iwIP1 / €) + gy(lPl~ + gyIP1~)J + ~~ (1P1~ + gylPl~)

Since the linear transonic small perturbation equation for unsteady flow can be written in
the form

+ 1P1 + (c' / C)(1P1 + gylPl ) + qlPl = 0
~~ ~ E

The first derivative terms must be changed to reduce the equation to conservation form.
Thus
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The conservation form of the differential equation then becomes

:~ [(g}u + gy2)1I'1~ + (gy + 2iw I €)1I'1 + gyll'l
77

]

+ ~ [0 + c' I c) "PI + gyll'l ] + 11'1
077 77 ~ 55

+ [q+c' Ic-(c' I c)'] 11'1 =0

(E-8)

..

(E-9)

For the coefficient of 11'1 we see that the second derivative of the chord in the spanwise

variable must be continuous for the conservation form to be valid. If the nonconservation
form is used, there is not this restriction on the planform and we obtain

gx (0/ on [gxUlI'l~ - 2iwII'1 I €J + gy (0 I on (11'1
77

+ gyll'l~)

+(0/077 )(11'1
77
+gyll'l~)+lI'lss +qll'l =0

The condition that the equation be hyperbolic for both forms is
2 2

gx u + gy < 0 (E-10)

The root chord of the wing must be a plane of symmetry and we must impose the conditions
that "PI = 0 at y = 77 = O. In terms of the t77 variables this becomes

y
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11'1
77

+ gyll'l ~ = 0 for y = 77 = 0

Since this term is zero we must also have, for small 772'

(11'1 77 + gyll'l 5)77 = - 772/2 ~ - (11'1 77 + gyll'l ~)77 = 772/2

and the difference form of the 77 derivative becomes, at 77 = 0,

o _ (11'1 77 +gy"P1
5)77 =772/2

077 (11'1 77 + gy1l'1 5) - 772

If we introduce the quantities

J.l = gx = 1 / C(77) , v = gy = - ~C'(77) I C(77) - XQe(77) I C(77)

then the differenential equation (eq. E-9) becomes

,

+ (0 I (77)("P 1 + VlI'l ) + 11'1 + q"Pl = 0
77 ~ 55

(E-11 )

(E-12)

(E-13)

..



Using the equations (E-ll), (E-12), and (E 13) yields the following differential equation for
points along the root chord T/ =0 of the wing

/l(a / anr/lUlJil - 2iwlJil / €] + r/1Ji1 + VlJil) _ /] / T/2 + IJil + qlJil =0 (E-14)L ~ L\ T/ ~ T/ - T/2 2 ~~

Equations (E-13) and (E-14) may be differenced in the same way as the differential equa­
tions in reference 2. Thus for the first derivative in t we have

IJil ~ = cli (lJii+ 1, jk - lJiijk) + d Ii (lJiijk - lJii-l, jk)

where from equation (H-20) on page 40 of reference 2

cli = (~i - ~i-l) / [(~i+l - ~i-l) (~i+l - ~i)J

d li = (~i+l - ~i) / [(~i+l - ~i-l) (~i - ~i-l)J
Similarly

IJi 1T/ = c1j (lJiij+ 1, k - lJiijk) + d 1j (lJiijk - lJiij-l, k)

where clj and dlj have the same form as equation (E-16) but with T/ replacing~.

Since /l is a function of y and v is a function of x and y, we may write

/l(T/j) =/lj and V(~i,T/j) =vij at the point (i,j,k)

From equations (19) and (20) of reference 1 we see that

{
/l ~ r/lU1Ji1 - 2iwlJil / €J}

a~ L ~ "k1J

2
= /lj [ 2ciui+ I /2, jk (lJii+ ljk - If'ijk)

-2diui-l /2, jk (lJiijk - lJii-l jk)

also

(E-1S)

(E-16)

(E-17)

(E-18)

(E-19)
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Applying the formula in equation (E-15) to each term of equation (E-19) we have, finally,

rV~\PI J" =v"{c1,fc 1'(\p'+1 '+1 k-\P'+1 'k)+d 1'(\p'+1 'k-\P'+1 '-I k)Jl a~ 17 IJk IJ 1 L: J 1 ,J, 1, J J 1 , J I, J ,

+ (d li - c li) [c lj (\pij+ 1, k - \Pijk) + d lj (\Pijk - \Pij-l, k)J

- dli [eli ("'H, j+ I, k - "'i-l,jk) + d lj ("'i-I, jk - "'i-I, j-I, k)] }

Similarly, from equations (19) and (20) of page 40 of reference 1 we obtain

a
v a~ 0\Pl~) = vij [2CiVi+1/2, j(lPi+1, jk -lPijk) - 2divi_l/2, j(\pijk - lPi-l, j0J

The remaining second derivative terms take the form

\P 1
1717

= 2aj (\pij+ I, k - \Pijk) - 2bj (\Pijk - \Pij-l , k)

(E-20)

(E-21 )

(E-22)

(E-23)

(E-25)

(E-26)
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The boundary conditions on the wing take the same form as for the cartesian coordinate,
since the \PI ~~ is essentially unchanged from the unswept case derived in reference I,

Consider the term in equation (E-14)

[(IP I17 +V\Pl~)17=172/2]/172 (E-24)

We need to express it in terms of the quantities at the grid points. Now

\PI I = (tp'2k-\P'Ik)/ 17217 17 = 172/2 1 1

Remembering that 17j = 0 for j = I and 17 = 17j for j = 2, we see that

\P117117 =172/2 =Cli(lPi+l, 2, k + lPi+l, 1, k - lPi2, k -lPil, k)

+ d li (\pi2, k + \Pil , k - lPi-l, 2, k - \Pi-I, 1, k) / 2

Substituting equations (E-25) and (E-26) into equation (E-24) leads to

[("I~ + ""'It)~ =~2/2] I ~2 =("'i2, k-"'i!, k) I ~/

+ vi,3/2 [Cli (\pi+1, 2, k -lPi+1, 1, k - lPi2, k -lPil, k)J / 2172

The assumption of plane wave boundary conditions on upstream, downstream, upper and
lower boundaries in the cartesian coordinate system yields



,.

"',

I{) 1 + iwMCf'l / (l + M) = 0 at x = x·
x ~~

I{) 1 +iwMCf'l/(l-M)=O atx=xl
x

I{) 1 - iX l 1{KCf'l = 0 at y = y.
y Jmax

In the new variables, these relations become

I{) 1 + iwMCf'l / (l + M) = 0
~

I{) 1 -iwMCf'l/(l-M)=O
~

I{) 1 + Vl{)l + iX 1 1/KCf'1 = 0
11 ~

I{)1 + VI{) 1 - iX 1 1/KCf' 1 = 0
11 ~

From the form of the second derivative terms and particularly the cross-derivative terms we
see that the difference equations associated with an interior point involve the 11 points in
figure 4 in place of the usual 7 points in figure 5. For the x = constant line relaxation solu­
tion, the matrix is still tridiagonal. For a direct solution, the matrix is still sparse and
somewhat banded.

Along the wake, the condition that the vortex sheet not support a load is

Lll{)l + iWLll{)l = 0
~

and is thus unchanged from the cartesian form.
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APPENDIX F

ROW RELAXATION FOR THREE-DIMENSIONAL FLOW

For hyperbolic points, additional fictitious time-dependent terms must be added to make the
row relaxation procedure converge. Under the assumption that the calculations are swept in
the direction of increasing j and k, the difference equation (A-2) from reference 2 becomes

•,

(
(s) (S)) ( (s) (S))

2E3 'Pijk - 'Pi-I, jk + 2E4 'Pi-2, jk - 'Pi-I, jk

(
(n) (S)) ((S) (n-I))

+ 2ayj 'Pij_l, k - 'Pijk - 2byj 'Pijk - 'Pij+ I, k

(
(n) (S)) ((S) (n-I))

+ 2azk 'Pijk-I - 'Pijk - 2bzk 'Pijk - 'Pijk+1

(s)
+ qijk'Pijk = 0

where E3 = ci_1 ui-l /2jk - iw c2i / E, E4 =di- l ui-3/2jk - iwd2i / E,

(F-I)

and the superscripts nand n - 1 denote the results of the current relaxation sweep and the
previous one, respectively. The superscript s denotes the quantities for which equations
(F-l) for all i and for fixed j and k are solved. The subscripted variables a, band care
defined in reference 2 on page 68.

We now introduce a fictitious time derivative related to the iteration by the relation:

(s) (n) (r -I) .( (n))
'P"k = 'P"k - - At 'P"k1J 1J r 1J t

(n-l) (n) ((n))
'Pijk = 'Pijk - At 'Pijk t

Introducing underrelaxation by a factor r yields

(n) ((S) (n-l)) (n-I)
(n-l) 'Pijk = r 'Pijk - 'Pijk + 'Pijk

Eliminating 'Pijk leads to

(F-2)

(F-3)
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by means of ew;ations (F-2) and (F-3), the difference equation can be expressed entirely in
terms of the nt iteration for the potential. After dropping the superscript n, we obtain



2E" lV'ook -V"-l 'k - (~)At (V"'k -V"-l 'k) ],) LIJ 1, J r \ IJ 1, J t

+ 2E4 ~i-2, jk -V'i-l, jk - (r ~ I)At (V'i-2, jk -V'i-l, jk)J

+ 2a ,1V'oo I k -V"'k + (r - 1) At(V"'k) ]YJ L1)- , 1J r 1J t

(F-4)

(F-5)

- 2b ,1V'ook - (~) At V'ook -V'oo+l k + At (V'oo+l k)]YJ LIJ r IJ t IJ, IJ, t

+2aZk [V'ijk-l -V'ijk+(r~ I)At(V'ijk)t]

-2bZk[V'ijk-(r~l)At(V'ijk)t -V'ijk+l + At(V'ijk+l)t] +qijk[V'ijk-(r~I)At(V'ijk)t] =0

Replacing the difference terms by their appropriate derivatives in preparation for taking the
limit as the grid size goes to zero yields

-2byjAt(V'ij+l,k-V'ijk)t =-2byj (Yj+I-Yj)AtV'yt

Substituting for byj from equation (A-3) of reference 2 leads to

2At
- 2b 'At(V'oo+1 k -V'ook) = - - V' tYJ IJ, IJ t Ay, Y

J
where Ay ::: Yj+ 1 - Yj-l' A similar V'zt term results from the bk term, The V'xt terms result-

ing from the first two terms of equation (F-4) cancel on taking the limit as AX, Ay, Az go
to zero, We now proceed to the limit, Neglecting terms of order one and higher in the
small increments we obtain the following differential equation from the difference equation
(F-4)

(F-6)

Let

, then

]
At ~ AYj )

[ UV'1 - 2i(w / <:)V'1 + V'1 + V'1 - 2 - V'l + - V'1 + 133V'1 + qV'l ::: a
x x YY zz AYj yt AZk zt t

The differential equation finally becomes

(F-7)

(F-8)
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(F-9)

where
yj+1 - Yj-1

{3'k = ...::-----==---
J zk+1- zk-1

To obtain a convergent operator we add terms {31 11' 1 + {3211' 1 to the terms in parentheses
xt t

and determine {31 and (32 to yield a differential equation with the correct time-like behavior

for the x coordinate, Let T = exl x + ex2Y + ex3z + t then

11'1 = ex11P1 + 11'1 11'1 =ex1211'1 + 2ex11P 1 + 11'1x T x xx TT XT xx

•.

(F-10)

Substituting equations (F-10) into the differential equation yields

u fex1
2

11'1 + 2ex11P1 + 11'1 ) + ex/11'1 + 2ex21P1 + 11'1
\' TT XT XJ.' TT yT yy

(F-1l)

82

+ {3J'k (ex31P 1 + 11'1 ) + {3311'1 ] + qlP1 = 0
TT ZZ T

It is necessary to eliminate the cross derivative terms in time T to reduce the differential
equation to canonical form, This requires



,

from which

al = f31 (At / AYj)/ u

a2 = (At / AYj)

a3 = f3jk (At / AYj)

(F-12)

The elimination of the \(Jr terms yields

al (ux - 2iw / €) - 2f32At / AYj .. 2f33At / AYj = 0

The quantity f32 is given in terms of f3] and f33 by substituting f31 (At / AYj) / u for al'

Thus

f32 = f3] (ux - 2iw / €) / 2u - f33 (F-13)

In order for the x variable to be time-like the coefficient of must be positive. This yields
the following relation

2 2 2 At
al u+a2 +a3 -2 Ay' [a2+ f3 ]al +f3jka 3J>0

J
Substituting for the aj terms yields 2

- (~~) ~1
2

/ u + 1 +Pj/]> 0

Since u < 0, we have f312 > (- u) (1 + f3jk
2
) or

f31 =c~ ~ + f3jk
2

, c > 1

f32 =f31 (ux - 2iw / € ) / 2u - f33

f33 =- (Yj+l - Yj-l) [bj + bk - (aj + ak)(r - 1)J / r

(F-14)

(F-15)

(F-16)

(F-17)

(F-18)

We have now determined the values of f31 and f32 required to establish a convergent operator.

The differential equation which now must be differenced is

(F-19)
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Now
(n-I) (n) a ((n»)

lPijk = lPijk -.1t at \lPijk

(F-20)

(n)
Eliminating lPijk yields

(s) (n) (r - 1) a ((n»)
lPijk = lPijk - -r- .1t at \lPijk

(s) (n-I) 1 a ((n»)
lPijk -lPijk =;.1t at \lPijk

alPijk / (s) (n-I))
.1t~ = r\lPijk -lPijk

(F-2I)

The resulting difference equation then becomes (see equation (F-l))

(
(s) (s») / (s) (s»)

2E3 lPijk - lPi-l , jk + 2E4 \lPi-2,jk - lPi-ljk

( (n) (s») ((s) (n-I))
+ 2a· 11'" 1 k- '/l"k - 2b· '/look - ,/l.. 1 kJ IJ-, 'rIJ J 'rIJ 'rIJ+,

( (n) (s») ((s) (n-I))
+ 2ak lPijk-l - lPijk - 2bk lPijk - lPijk+ 1

( (s) (n-I) (s) (n-I) )
- r{3l d 1i-I \lPi-l , jk - lPi-l , jk - lPi-2, jk + lPi-2, jk

/ (s) (n-I)) ] (s)
+ (32r \ lPijk - lPijk / 2 + qlPijk = 0

(F-22)

We now consider the case in which the z or k variable is swept in the direction of decreasing
k. The only terms that change in equation (F-I) are

..
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/ (n-I) (S») ((S) (n»)
2ak \lPijk-l - lPijk - 2bk lPijk - lPijk+ 1 (F-23)



.. . (n-l). (s)
Ehmmatmg lfJ by equatIOn (F-2) and lfJ by equation (F-3) yields

2ak [lfJijk-l - LH(lfJijk-l) t -lfJijk +(r ~ 1)~t(lfJijk)J
-2bk~ijk-(r~ 1)~t(lfJijk)t -lfJijk+l]

Now

(F-24)

(F-25)

2ak~t [lfJijk - lfJijk-l] t :::: 2ak (zk - Zk-l) ~tlfJzt

From equation (A-3) of reference (2) we have 2 ~t

2azk~trlfJijk -lfJijk-l] :::: ~t lfJzt:::: -lfJzt
L t zk+l - zk-l ~zk

Taking the limit as ~x, ~y, ~t yields for equation (F-24)

(
r - 1) ~t

lfJzz + 2bzk - ~t lfJt - 2azk~t lfJt / r + --lfJzt
r ~zk

In place of equation (F-9) we obtain

UlfJl + lfJl + lfJI + (ux-2iw / €)lfJI - 2(~t / ~YJ-) (lfJI - {3J'klfJI + (33l{J1 ) + ql{J1 :::: 0xx yy zz x yt zt t

(F-26)

where {33 is now given by
{33 :::: [azk + byj - ( ayz + bzk) (r - I)J ~Yj / r (F-27)

instead of equation (F-7). Equation (F-26) differs from equation (F-9) in form only in the
sign of the lfJzt term. Thus the third line in equation (F-12) becomes

~t
~3 :::: - {3'k - / 2 (F-28)

J ~Yj

Equation (F-13) remains unchanged but the sign of ~3{3jk in equation (F-14) is changed.

Substitution of equation (F-28) for ~3' however, yields equation (F-15) unchanged. Thus

the only change in {31 and {32 is the definition of {33 by equation (F-27).

The correction terms for three-dimensional flow do not differ in form from the terms
derived in reference 2 for two dimensions. The quantity {31 differs only by the factor

~l + (~Yj / ~Zk)2
from the two-dimensional value. The coefficient of the (32 term contains the additional
term contains the additional term from the z derivative (increasing)

[bzk - azk(r - I)] / r

analogous to the two-dimensional relation

[byj - ayjCr - 1)J /r

(This term is given in error in reference 2 as - ayj(r -1) / r .)
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