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INTEGRATING MATRICES FOR ARBITRARILY

SPACED GRID POINTS

By

William D. Lakin!

SUMMARY

Integrating matrices form the basis of an efficient numerical
procedure for solving differential equations associated with rotating
beam configurations. By expressing the equations of motion in matrix
notation, utilizing the integrating matrix as an operator, and applying
the boundary conditions, the spatial dependence is removed from the
governing partial differential equations and the resulting ordinary
differential equations can be cast into standard eigenvalue form.
Previous derivations of integrating matrices are limited to the case of
equally spaced grid points and approximation by interpolating polynomials.
The restriction to equally spaced grid points may not be appropriate for
some beam configurations. This report derives integrating matrices for
arbitrarily spaced grid points using either interpolating or least-
squares fit orthogonal polynomials. Several previously unnoticed

features of the equally spaced grid case are also discussed.

INTRODUCTION

The equations of motion governing the vibrations and aeroelastic
stability of such rotating structures as helicopter rotor blades and
propeller blades have no closed form solution, and approximate methods
of solution such as asymptotic techniques, Galerkin's method, or direct
numerical integration must be employed. A numerical procedure based on
the use of integrating matrices (refs. 1, 2) has been employed to solve
for the vibrations and stability of a wide variety of rotating beam

configurations (refs. 3, 4). The integrating matrix provides a means

1 professor, Depar ment of Mathematical Sciences, 0ld Dominion University,
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for numerically integrating a function that is expressed in terms of the
values of the function at increments of the independent variable. By
expressing the equatiors of motion in matrix notation, utilizing the inte-
grating matrix as an operator, and applying the boundary conditions, the
spatial dependence is removed from the governing partial differential
equations and the resulting ordinary differential equations can be cast
into standard eigenvalue form. Solutions can now be determined by
standard methods. Historically, integrating matrices have been derived
for equal increments of the independent variable by expressing the
integrand as a polynomial in the form of Newton's forward-difference
interpolation formula. However, many practical beam configurations have
spanwise variations in the sectional properties which require the use of
an integrating matrix which can treat unequal increments. Thus, a need
exists for integrating matrices which can accommodate arbitrary increments

in the indeperient variable.

This report documents the derivation of integrating matrices which
are valid for arbitrary increments of the independent variable. To set
notation, the section titled "Existing Theory for Equally Spaced Grid
Points" begins with a brief review of existing theory for equal incre-
ments in the independent variable. The integrating matrix is derived
here tnrough use of an interpolation polynomial. 1In addition to the
basic derivation, this section discusses several previously unnoticed
features of this approach. Integrating matrices for arbitrary increments
of the independent variable are derived under "Theory for Grids with
Arbitrary Spacing." Methods based on both interpolation and least-
squares polynomial fitting are discussed and related. Finally, to test
accuracy, the last section of this report ("Verification of Accuracy
Using Integrating Matrices kased on Grids with Unequal Spacing”) describes
the application of the genera.ized integrating matrices to several problems
whose solutions are known. A mumber of sample matrices are given in

Appendices A and B.



EXISTING THEORY FOR EQUALLY SPACED GRID POINTS

The integrating matrix method is a technique for obtaining approxi-
mations to the integral of a continuous function on a finite interval.
To illustrate the basic ideas in the method, and to develop notation,
this section will briefly review the existing theory for equally spaced

grid points.

Let f(x) be a continuous function on an interval [a, b}. Suppose

the values of f(x) are known at the N+1 equally spaced grid points
Xp =a, xj=x+ih (i=0,1, ..., N) (1)

where h = (b - a)/N and xN = b. For convenience, we also define

£, = f(xi) (2)
Information on the function at the grid points may now be used to approxi-
mate the function on each of the N subintervals [xj, xj+l] (3 =0, ...,
N-1) in the interval [a, b). Consider, for example, the subinterval
[xg, x1]. Assume that £(x) can be approximated by an nth degree poly-
nomial (n § N) on each subinterval and write f(x) = gg(p) where gg(p)

is Newton's nth degree forward-difference interpolation polynomial

go(p) = fo + pAfy + 2—} p(p - 1)A%g, + -3-}—p(p - 1) (p - 2)43f

+...+B—,l—p(p-l) (p-n+1)Anfo (3)

In this formula

= X - X0 (4)

e



while

k k . j .
8fg = (E -~ 1)fy witl Elfp=f£4, (=1, ..., n) (5)
i.e., E 1is a shift operator.

Aas dx = hdp, f(x) = 9q(P) implies that for the integral of f(x)

over the interval [xg, %]

' X1 1l

Jr f(x)dx = h./.go(p)dp (6)

Xg 0

Integration of equation (3) with respect to p and considerable

manipulation now give the approximate result

X
1
f f(x)dx = hlappfy + ap1fy + ... + appfnl

X0

(7

For example, if n = 3, the approximation to the integral in equation

(7) is

X1
f f(x)dx = -2'% (9f0 + lgfl - 5f2 + f3) (8)

X0

approximations to the integral of f(x) on each of the subintervals

4 < N-1) may be similarly obtained. Using the appropriate

{xj. xj+1] (0 <
, which includes xj

set of n+l grid points, say Xoo Xogqr oo X

and xj+1, f(x) is approximated by an nth degree Newton's forward-differ-
ence interpolation polynomial gj(p). This polynomial is then integrated

with respect to p from j to 3j+1 and the result manipulated into

the form of a linear combination of the function values fm, . fm+n



%541 3+1
-4 = +
f f(x)ax = h f gj (p)dp = h [ajmfm ajm+1fm+1

x. q
j ]

+ ...+ ajm+nfm+n] (9)

For example, if n = 3, approximations to the integrals of f(x) over the

subintervals [xy,x21, ..., [xN-l' xN] are

X2
f f(x)dx = ?%(-fo + 13f) + 13f, ~ f3)
X)

X3
f E(xdx = s2(-£1 + 136, + 1363 - £)
X2 .

*N-1 )

= b -

f f(x)dx 24( fN_3 + 13fN_2 + l3fN—1 fN)
*§-2

*N

. D -

f £(x)dx = S2(F o = SE o+ 19F . + 9f ) (10)
*N-1

Having obtained approximations to the integral of £(x) over each
b

of the N subintervals in [a, b]l, an &approximation to f f(x)dx itself

b
a

is now easily obtained. We need only note that f f(x)dx can be written

a
as the "collapsing sum”



e

b

[ cwen- ’f f ....+xj‘“}m,dx a
N-1

a

and hence sum the approximations on the N subintervals.

The integrating matrix representation for the approximation to the
integral of f(x) uses the above information but puts it in a compact
matrix form suitable for matrix manipulation Let the superscript T
z.. a vector denote the transpose, and define the N+1 dimensional

column vectors {f} and {F} by

T
{£} = <fo, f1, v, fN) (12)
and
X1 X3 X T
{F} ={o, ./' f(x)dx, ‘/. f(x)ax, ... ., ./' £ (x)dx (13)
XQ X3 xN-l

Then, relations (7) and (9) for all j =0, ... , N-1 can be consolidated

into a single matrix equation
{r} = (8 1{£} (14)

where [An] is an N+1 x N+1 matrix. As the first element of {F} is 0, the
first row of [An] contains all zeros. Each of the remaining N rows of
[An] contains a group of n+l nonzero elements. For example, by equation

(7), the second row of [An] is
apgg agp) a¢2 +-- 8o 0 -... O
Several sample matrices [An] are shown in Appendix A. Finally, in accord

with the collapsing sum [eg. (11)], the integrating matrix [In] is
obtained by left-multiplving both sides of relation (14) by the N+1 x N+l



summing matrix

1 0
(B] = . t . (15)
1 . . . ¢ 1
i.e. bij-lifizjbutbij-01f1<j. 1f {f} is the N+1
dimensional column vector
X1 X2 ﬁi T
{F} = {o, f £ (x)dx, f £(x)dx, ... , f £ (x) dx (16)
X0 X0 X0
we now obtain the integrating matrix relation
{F} = [In]{f} (17)
with
[In] = [B][Ah] (18)

As [B] is known a priori, the derivation of the integrating matrix
[In] is equivalent to the derivation of the matrix [An] in equation (14).
We also note that while [An] depends on the number and spacing of the
grid points in the interval of interest and on the degree of the approxi-
mating polynomials, it does not depend on the values fi that the function
takes at the grid points. This separation of grid dependence and function

dependence is one of the major strengths of the integrating matrix.

As described above, the theory developed in reference 2 is based on
the use of a Newton's forward-difference interpolation polynomial to
approximate the function on each subinterval. However, as the dimension-
less variable p is based on the uniform spacing h, it is impossible
to generalize this derivation directly to grid points with unequal
spacing.



Two subtle aspects of the above derivation of the integrating
matrix for equal spacing have apparently not been recognized. One
point involves the use of Newtoa's forward-difference interpolation
formula rather than a Lagrange interpolation formula. The former
formula is equivalent to consolidating powers of x with coefficients

that involve combinations of the functional values, i.e.

f(X) =ap +x + ... + unxn (19)
where og, 81, ««. a, are linear combinations of the fi’ A large
amount of manipulation may be required to turn equation (19) into an
explicit linear combination of the functional values, which is the
form that is really required to derive the integrating matrix. By
contrast, the Lagrange interpolation formula is already in the proper
form without manipulation, i.e. functional values are isolated and
coefficients involve linear combinations of powers of x. For example,
the Lagrange interpolation polynomial of degree n on the n+l points
LSV SVREETIE is

F(x) = folp(x) + £32;(x) + ... + £,8,(x) (20)
where

(x=%0) ... (x=%x5-1) (x=%x541) ... (x-xp)
R.j (x) = (21)

(x5=x0) «.. (X57%5.7) (X5=%y4q) .0 (X5=%p)

It is certainly somewhat easier to integrate equation (18) than equations
(20) and (21); however, equation (20) is clearly in the precise form re-
quired by the integrating matrix derivation. Further, unlike Newton's
difference interpolation formula, Lagrange interpolation is not intrinsi-

cally limited to equally spaced arid points.

A second important point involves the choice of a forward-difference
formula. Rather than using forward differences, which involve starting
at xg and moving to the right across the interval to xN, one unHuld
equally well use backward differences, start at Xy and move to the
left toward xp. The two choices are equivalent when the number of



interpolation points n+l1 is even as, away from the end points, the
interval [xj, xj+1] is centered in the interpolation interval [xy, xy+n]
where vy = § - (n-1)/2 (see fig. la). When n+l is odd, however, two
distinct choices are possible (see figs. lb and 1lc). Use or forward
differences leads to a "left biasing” with one more interpolation grid
point to the right of xj+1 than to the left of xj (fig. 1b).
Similarly, backward differences lead to a "right biasing"” (fig. lc). as
the sample matrices in Appendix A for n = 4 and n = 6 indicate, the right
and left biased matrices are related, but quite different. In particu-
lar, a different row "marches" across the center of the matrix [An].
Hence, even for equally spaced grid points, care must be taken when an
odd number of interpolation grid points is used to approximate the
function on each subinterval. No general rule can be formulated for
preferring left to right biasing when n+l is odd. The choice of

which .ype of biasing, if any, to use must be made in the context

of each ‘nlividual application.
THEORY FOR GRIDS WITH ARBITRARY SPACING
Let Xg, X1/ ees Xg be N+1 grid points such that

as=x) <X < ... < Xy = b (22)
Also, let f(x) again be a continuous function on the interval [a, b]
whose values fi = f(xi) are known at the grid points. In this section,

we do not assume that the grid points are equally spaced in [a, b].

The key step in the derivation of the integrating matrix is use of
the data at the grid points to obtain an appropriate approximation to

the function f(x) in each subinterval [xj, x...] (=0, ... , N-1).

j+l
For arbitrary grid spacing, these approximations, and the corresponding
integrating matrices, can be obtained in several ways. Two methods,
interpolation and l:ast-squares polynomial fitting, are discussed in this

report.
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Figure 1. Examples of grid points used to approximate the

function on the interval [xj, xj ). Approximating

+1
points are marked with O. 1In (a), n+l = 4,

while in (b) and (c) n+l = 5.



Interpolation

Both the classical Lagrange interpolation formula and the more
modern divided difference interpolation formulas are valid for arbi-
trarily speced grid points. Indeed, the Newton's difference formulas
are the specialization of divided differences to uniform grid spacings.
Unfortunately, like the Newton's difference formulas, divided differences
in effect consolidate powers of x. The resulting coefficients again
involve linear combinations of the data and are not well suited to use
in deriving the integrating matrix. For thi- reason, we shall restrict

attention here to the more appropriate Lagrange interpolation formula.

The first step in approximating f(x) by an nth degree interpo-

lating polynomial on the interval (x., x =0, ... , N-1, is to

NE I
determine the appropriate set of n+l grid points

Gy = {xy, X4l e xy+n} (23)
to use in the Lagrange interpolation formula. The index Yy in equation
(23) will be a function of both j and n, and will further depend on
whether n+l is even, odd with right biasing required, or odd with

left biasing required. For grids xg, ... , x_ with n+l points, there

N
will be N - n + 1 different sets GY of n+l consecutive grid points.

Define y;(j, n), v2(3, n) and v3(j, n) by the relations

G, 1 =5 - 822 (24)
Yo2(j, n) =3 ~ % (25)
and
n
y3(j» n) =3 -3 +1 (26)
Then, with

11



Y, if n+l is even

Y(3, n) = } y, if u+l is odd with right
biasing

Y3 if n+l is odd with left

biasing

the appropriate lefinition of the interpolation set index <vy{(j,n) in

equation (23} is

0 if Yy <0
Y{(j, n) = ; if 0 <« ;'< N-n
N-n if ; 2 N-n

Having properly defined the interpolation index Y, and hence the

interpolation set Gy, the nth degree Lagrange interpolation polynom. &l

for f(x) on the subinterval [xj, xj+1], j=0, ... , N-1, is of the

form

N {v) - (v) (v)
f(x) = fYRY (x) + ‘Y+12Y+1 + ...+ Y+n2Y+n(x)

where the Lagrange coefficients RAY)(X) are now

(x-x) ... (x - xm_l)(x - xm+l) oo (x - xlfn)

(xm - xY) i (xm - xm_l)(xm - xm+l) cen (xm - xy+n)

Y)

2( {x) =
m

If we further define

xj+l
p3) f 2 () ax
m m

X

3

then equation (30) immediately shows that the (j+2) row of the matrix

[An] for j =0, ... , N-1 1is

12

(27)

(28)

(29)

(30

(31)



(3) _(3) (3)
0 ... 0F F ees F 0...0 (32
_— Y Yt Yt o )
Y zeros N-n-y zexos

As before, the first row -.f [Ah] contains all zero elements.

The derivation of the integrating matrix via Lagrange interpolation

is quite straightforward. However, in practice, the actual computation

of the nN+N quantities F;j) in the matrix [Ah] for arbitrary grid

spacings may be algebraically difficult. This is because the Lagrange
()
m

n factors rather than simply powers of x. PFurther, evaluation of the
denominators in the 2;7)
differences of the form xk - xm m# kand | k - m l < n). Fortunately,

coefficients & '’ (x) in equations (30) and (31) involve a product of

{(x) requires computation of a large number of

these implementation problems are not associated with the next method to
be considered. Further, the following method for deriving an integrating

matrix includes interpolation as a special case.

Least-Squares Polynomial Fitting

In interpolation, the interpolating polynomial agrees exactly with
the function at the n+l interpolation grid points. However, in certain
situations, interpolation mayv not make the best use of the data at the
grid points. Suppose, for example, that the degree of reliability of
the values assigned to the function at the grid points is not well esta-
blished. For example, this might be the case if the data on the function
comes from experimental measurements and small random measurement errors
are suspected. In these circumstances, as pointed out in reference 5,

" ... it is foolish (and, indeed, inherently dangerous) to attempt to
determine a polynomial of high degree which fits the vagaries of such
data exactly and hence, in all probability, is represented by a curve
which oscillates violently about the curve which represents the true
function."” Fitting the data with a lower degree polynomial may be far
more appropriate as the resulting approximation to the function will

"smooth" out unrealistic oscillations.

13



In the present context, we will consider approximating f(x) on
each subinterval by a least-squares polynomial fit based on data at
n+l grid points with polynomials of degree k (where k < n). To briefly
review least-square polynomial fits, let pg(x), p1(x), ... , pk(x) be
a sequence of k+l1 appropriately chosen polynomials of degrees 0, 1,

2, ... , k. Let fk(x) be the kth degree polynomial

k
£, (x) =Z 8, B (x) (33)
m=0

Suppose we wish to approximate £(x) on the interval [ag, aj]

containing the n+l grid points ag, ai, a2, ... , a Then fk(x)

n’
is the required least-squares polynomial fit of degree k on this
grid if the sum of the errors squared over the grid is a minimum, i.e.

n k 2
[f‘az’ - Z Bmpm(aﬂ,)] = minimum (34)
m=0

(4]
[

£=0

We note that if k = n, the interpolating polynomial on the grid ag, aj,
cee so@ has the minimum value of € as it agrees with f(x) exactly
at all grid points. Hence, interpolation can be considered a special

case of least-square polynomial for which k = n.

The coefficients Bm in the kth degree least-squares fit fk(x)
are solutions ~f the k+l1 1linear equations 38/38m =0 (m=20, ...,
k). Solution of these equations is considerably simplified if the
polynomials pm(x) in fk(x) are chosen to be orthogonal on the grid

points ag, -.. ., an. In the present context, this means
n

me(ag) pi_(ag) =0 for m# s (35)
=0

14



Orthogonal polynomials on a discrete grid ixlay be defined recursively.
Let the orthogonal polynomials on the grid be denoted by Pj (x) and
let

Tj = E ai[Pj(ai)] (36)
i=0
n 2
= (o)
Sj E [Pj\ j_'] (37)
i=0
. = T./S. and v, =8 /S, 38)
Y541 J/ J J j/ i-1 (
Then,
Po(x) = 1 (39)
Pi(x) = x - (40)
and
Pj+l(x) = (x - ”j+1)Pj (x) - vy Pj_l(x) (41)
The coefficients Bm in the least-squares orthogonal polynomial fit of
degree k s n on the n+l grid points ag, ... , a, are now
n
E Yy Pm(ai)
g = 20 (42)
m n 2
E [Pm(ai)]
i=0

where y; = f(ai) .

15
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Equations (33) and (42) as written involve linear combinations of
the grid data in each coefficient Bm and so must be modified for the
present purposes. However, the required modifications to isolate grid

data are quite straightforward. We obtain the basic relation

n
fk(x) = Z Y, qi(x) (43)
i=0

where the coefficients qi(x) are given by

k P.(a,) P, (x)
q, (x) = Z -] ] (44)

n 2

i=0 Z [pj (a,) ]

2=0

Equations (43) and (44) may now be used to approximate the integral of
f(x) on any interval contained in [ag, ap]. We note that the only
integrals contained in such approximations will be integrals of the
orthogonal polynomials Pj(x) (j =0, ... , k) which are quite easy to
evaluate. Hence, the implementation difficulties associated with
Lagrange interpolation will not be present when the least-squares fit

is used.

The above discussion gives the least-squares orthogonal polynomial
fit to f£(x) based on data at the grid points agp, aj, ... , ap. We
now wish to apply these results to approximate the integral of f£f(x) on
the subintervals [xj, xj+l] (j =0, ... , N=1). For this purpose, let
the cet GY be as defined in equations (23) through (28) and let

a0 = Xy, @] T Xy4lr ce- 1 @ T Xy g (45)

We also denote by PAY)(x) (m=20, ... , k) the orthogonal polynomials
of degree less than or equal to k on the grid Gy. As the grid data

16



Yy is now, by equation (45), Y, = f(xY+1) = f7+i' by equations (43)

and (44) the appropriate fit for f£(x) on the interval [xj, xj+1] is
now
n
£x) = £V (x) = Z £ ui qm (x) (46)
i=0
where
P (x ) 2" ()
qi(Y) (x) = (47)
= z["‘*’ ]
“hus, if

xj+1 k W Y+i m
(ﬂ =f qim (x)dx=z: — l - 148)
X =0 (1)
j :E:: [§m (x +2)]
2=0

equation (46) im.:ciately gives for the (j+2) row of the matrix [An]

(3) (N (3)
n ... 0 - e
Q 2Y+1 QY+n 0 0 (49)
—— e — e—
Y zeros N-n-y zeros

We note that, in this notation, the subscript n on the N+l x N+l

matrix 1An] denotes that n+l grid points are used to approximate f£(x)

17
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£

on each subinterval [x,, x

3 j+1

is of degree n. As noted previously, if the degree k of the

], not that the approximating polynomial

approximating polynomial does equal n (its maximum possible value),

we recover the matrix [An] obtained from interpolation.

An example of a matrix IAnJ obtained via leastrsquares fitting is
given in Appendix A. It is interesting to note that when k = n ~ 1,
the middle rows of the matrices [An] are the same as for the interpo~
lation case when k = n, This feature disappears when k <« n = 1,

Additional examples in Appendix B give matrices [An] for various sample
nonuniform grids.

VERIFICATION OF ACCURACY USING INTEGRATING MATRICES

BASED ON GRIDS WITH UNEQUAL SPACING

As a test of accuracy, integrating matrices based on grids with
unequal spacing were employed in the analysis of four types of beam
problems previously analyzed in reference 4. These include the axial
vibrations of a rotating beam, buckling of a rotating beam, vibration
and stability of a rotating preconed beam, and the stability of an
asymmetric shaft. For the present computations, the length of the
beam was divided into 10 subintervals of unequal length (N=10). Eight
grid points were used to obtain approximations on each subinterval
(n=7). Both interpolaticn (k=n) and least~squares polynomial fit

(k<n) cases were considered.

Numerical results using matrices based on seventh-degree inter-
polation polynomials (k=n) were found tu be in excellent agreement
with results in reference 4. These earlier results were obtained
using integrating matrices based on equally spaced grid points and

seventh-degree polynomials.

Most applications will involve the use of approximating polynomials
of maximum degree (k=n). However, if smoothing of experimental data is

a factor, a least-squares polynomial fit (k<n) rather than intexrponlation

18



may be appropriate. Limited numerical evidence in the present study

suggests that if a least-squares fit is used, the degree of the approx-

imating polynomials should be k=n-1. Results for k<n-1 may be suspect

if k 1is relatively small compared to n.

19
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APPENDIX A

INTEGRATING MATRICES FOR EQUALLY SPACED GRID POINTS

This appendix contains examples of matrices [An] for equal grid
spacings based on approximating polynomials of degree n. When n is
odd, the resulting matrix [An] is unique for a given grid. The matrix
[A7] shown in table Al is an example of this case. When n is even,
however, two different matrices [An] are possible for a given grid, de-
pending on whether the approximating scheme is left- or right-~biased
(see fig. 1). This fact has not been previously recognized. Tables A2
to A5 show that the two possible matrices [An] are related. However,
as can ke seen, a different row "marches" across the center of the
matrix in the left- and right-biased cases. It should be noted that
the derivation in reference 2 corresponds to a left-b»iased approxim--

tion.

The matrix [A;) obtained using least-squares fit polynomials of
degree six rather than interpolating polynomials of degree seven is

shown in table A6.

20
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APPENDIX B

INTEGRATING MATRICES FOR GRIDS
WITH ARBITRARY SPACING

This appendix contains three examples of the matrix [A;] derived
using approximation by interpolating polynomials (k=n=7) on grids with

unequal spacing.
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