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INTEGRATING MATRICES FOR ARBITRARILY 

SPACED GRID POINTS 

BY 

William D. ~akinl 

SUMMARY 

Integrating matrices form the basis of an efficient numerical 

procedure for solving differential equations associated with rotating 

beam configurations. By expressing the equations of motion in matrix 

notation, utilizing the integrating matrix as an operator, and applying 

the boundary conditions, the spatial dependence is removed from the 

governing partial differential equations and the resulting ordinary 

differential equations can be cast into standard eigenvalue form. 

Previous derivations of integrating matrices are limited to the case of 

equally spaced grid points and approximation by interpolating polynomials. 

The restriction to equally spaced grid points may not be appropriate for 

some beam configurations. This report derives integrating matrices for 

arbitrarily spaced grid points using either interpolating or least- 

squares fit orthogonal polynomials. Several previously unnoticrd 

features of the equally spaced grid case are also discussed. 

INTRODUCTION 

The equations of motion governing the vibrations and aeroelastic 

stability of such rotating structures as helicopter rotor blades and 

propeller blades have no closed form solution, and approximate methods 

of solution such as asymptotic techniques, Galerkin's method, or direct 

numerical integration must be employed. A numerical procedure based on 

the use of integrating matrices (refs. 1, 2) has been employed to solve 

for the vibrations and stability of a wide variety of rotating beam 

configurations (refs. 3, 4). The integrating matrix provides a means 
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f o r  numerically in tegra t ing  a function t h a t  is  expressed in terms of t h e  

values of t h e  function a t  increments of t h e  independent var iab le .  By 

expressing t h e  equat iors  of motion in matrix nota t ion ,  u t i l i z i n g  t h e  in t e -  

g ra t ing  matrix as an operator ,  and applying t h e  boundary condit ions,  t h e  

s p a t i a l  dependence is removed from t h e  governing p a r t i a l  d i f f e r e n t i a l  

equations and t h e  r e su l t i ng  ordinary d i f f e r e n t i a l  equations can be c a s t  

i n t o  s tandard eigenvalue form. Solut ions can now be determined by 

standard methods. His tor ica l ly ,  in tegra t ing  matr ices  have been derived 

f o r  equal increments of t he  independent var iab le  by expressing t h e  

integrand a s  a polynomial i n  t he  form of Newton's forward-difference 

in te rpola t ion  formula. However, many p r a c t i c a l  beam configurat ions have 

spanwise va r i a t i ons  i n  t h e  sec t iona l  proper t ies  which requi re  t he  use of 

an in tegra t ing  matrix which can t r e a t  unequal increments. Thus, a need 

e x i s t s  f o r  in tegra t ing  matrices which can accommodate a r b i t r a r y  increments 

i n  t he  indeperzent var iable .  

This repor t  documents t h e  derivat ion of i n t eg ra t ing  matrices which 

a r e  v a l i d  f o r  a r b i t r a r y  increments of t h e  independent var iable .  To s e t  

notat ion,  t he  sec t ion  t i t l e d  "Existing Theory f o r  Equally Spaced Grid 

Points" begins with a b r i e f  review of ex i s t i ng  theory f o r  equal incre- 

ments i n  t he  independent var iab le .  The in tegra t ing  matrix i s  derived 

here tnrough use of an in te rpola t ion  polynomial. In addi t ion t o  t he  

basic  der ivat ion,  t h i s  sec t ion  discusses  severa l  previously unnoticed 

fea tures  of t h i s  approach. Integrat ing matrices f o r  a r b i t r a r y  increments 

of t he  independent va r i ab l e  a r e  derived under "Theory f o r  Grids with 

Arbi t rary Spacing." Methods based on both in te rpola t ion  and l ea s t -  

squares polynomial f i t t i n g  a r e  discussed and re la ted .  Final ly ,  t o  t e s t  

accuracy, t he  l a s t  sectio.7 of t h i s  repor t  ("Verif icat ion of Accuracy 

Using Integrat ing Matrices Lased on Grids with Unequal Spacing") descr ibes  

t he  appl icat ion of the  generalized in tegra t ing  matrices t o  several  problems 

whose so lu t ions  a r e  known. A n~mber of sample matrices a r e  given i n  

Appendices A and B. 



EXISTING THEORY FOR EQUALLY SPACED GRID POINTS 

The in t eg ra t ing  matrix method is a technique f o r  obtaining approxi- 

mations to the  i n t e g r a l  of a  continuous function on a  f i n i t e  i n t e rva l .  

To i l l u s t r a t e  t he  bas ic  ideas  in t h e  ii~ethod, and t o  develop nota t ion ,  

t h i s  sec t ion  w i l l  b r i e f l y  review t h e  e x i s t i n g  theory f o r  equal ly spaced 

g r i d  points .  

Let f  (x) be a continuous function on an i n t e r v a l  [a,  b l  . Suppose 

the  values of f ( x )  a r e  known a t  t h e  N+l equal ly spaced g r i d  p o i n t s  

where h = (b  - a ) / N  and xN = b. For convenience, we a l s o  define 

Information on the  function a t  t h e  g r i d  poin ts  may now be used t o  approxi- 

mate t h e  function on each of t h e  N subin terva ls  [xj ,  x ~ + ~  I (j = 0, ..., 
N-1)  i n  the  i n t e r v a l  [a,  b].  Consider, f o r  example, t he  subin terva l  

[ X Q ,  x l ] .  Assume t h a t  f  (x) can be approximated by an nth degree poly- 

nomial (n s N) on each subinterval  and wr i t e  f (x) " go (p) where g ~ ( p )  

is Newton's n th  degree forward-difference in te rpola t ion  polynomial 

I n  t h i s  formula 



while 

i . e . ,  E is  a shift operator.  

As dx = hdp, f (x) = go(p) implies t h a t  f o r  t h e  i n t e g r a l  of f(x) 

over the  i n t e r v a l  [xo, xll 

In tegra t ion  of equation ( 3 )  with respect  t o  p and considerable 

manipulation now give the  approximate r e s u l t  

For example, i f  n = 3 ,  the  approximation t o  t h e  i n t e g r a l  i n  equation 

(7)  i s  

Approximations t o  the  in t eg ra l  of f ( x )  on each of the  subin terva ls  

[xj ,  Xj+l  I (0 5 j 5 N - 1 )  may be s imi la r ly  obtained. using the appropriate  

s e t  of n+l  g r id  poin ts ,  say x , x . , Xm+nt which includes x m m + l l  j 
and x ~ + ~ ~  f(x) i s  approximated by an nth degree Newton's forward-differ- 

ence in te rpola t ion  polynomial g . ( p ) .  This polynomial is  then in tegra ted  
3 

with respect  t o  p from j t o  j + l  and the r e s u l t  manipulated i n t o  

the  form of a l i n e a r  combination of the function values f m I  ... , m+n 



For example, if n = 3, approximations to the integrals of f(x) over the 

subintervals txl,x21, ..., [ x ~ - ~ ,  xN1 are 

Having obtained approximations to the integral of f (x) over each 
b 

of the N subintervals in [a, bl, an approximation to f (x)dx itself 
b 

a 
is now easily obtained. We need only note that ( f (xldx can be written 
as the "collapsing sum" 



and hence sum the approximations on the N subintervals. 

The integrating matrix representation for the approximation to the 

integral of f(x) uses the above information but puts it in a compact 

matrix form suitable for matrix manipulation Let the superscript T 

si. a vector denote the transpose, and define the N+1 dimensional 

column vectors {f 1 and {F) by 

and 

Then, relations (7) and (9) for all j = 0, ... , N-1 can be consolidated 
into a single matrix equation 

IF) = [ A ~  

where [A I is an 
n 

N+1 x N+1 matrix. As the first element of { ~ j  is 0, the 

first row of [A I contains all zeros. Each of the remaining N rows of n 
[A,] contains a group of n+l nonzero ~lements. For example, by equation 

(71, the second row of [An] is 

Several sample matri~es [A 1 are shown in Appendix A. Finally, in accord 
n 

with the collapsing sum [eq. (1111, the integrating matrix [In] is 

obtained by left-multiplying both sides of relation (14) by the N+1 x N+l 



sunning matrix 

i.e. b = 1 i f  i r  j butb = O i f  i < j. If isthe N+l 
ij ij 

dimensional column vector 

we now obtain the integrating matrix relation 

with 

As [B] is known a priori, the derivation of the integrating matrix 

[I I is equivalent to the derivation of the matrix [An] in equation (14). 
n 

We also note that while [An] depends on the number and spacing of the 

grid points in the interval of interest and on the degree of the approxi- 

mating polynomials, it does not depend on the values 
fi that the function 

takes at the grid points. This separation of grid dependence and function 

dependence is one of the major strengths of the integrating matrix. 

As described above, the theory developed in reference 2 is based on 

the use of a Newton's forward-difference interpolation polynomial to 

approximate the function on each subintesval. However, as the dimension- 

less variable p is based on the uniform spacing h, it is impossible 

to generalize this derivation directly to grid points with unequal 

spacing. 



Two subtle aspects of the above derivation of the integrating 

matrix for equal spacing have apparently not been recognized. One 

point involves the use of Newton's forward-difference interpolation 

formula rather than a Lagrange interpolation formula. The former 

formula ie equivalent to consolidating powers of x with coefficients 

that involve combinations of the functional values, i.e. 

where ao, al, ... , a are linear combinations of the f . A large 
n i 

amount of manipulation may be required to turn equation (19) into an 

explicit linear combination of the functional values, which is the 

form that is really required to derive the integrating matrix. By 

contrast, the Lagrange interpolation formula is already in the proper 

form without manipulation, i.e. fwxtional values are isolated and 

coefficients involve linear combinations of powers of x. For example, 

the Lagrange interpolation polynomial of degree n on the n+l points 

x 3 ,  XI, ... x is n 

where 

It is certainly somewhat easier to ir~tegrate equation (19) than equations 

(20) and (21) ; however, equation (20) is clearly in the precise form re- 

quired by the integrating matrix derivatmn. Further, unlike Newton's 

difference interpolation formula, Lagrmge: interpolation is not intrinsi- 

cally limited to equally spaced grid points. 

A second important point i:wolves the choice of a forward-difference 

formula. Rather than using forward differences, which involve starting 

at xo and moving to the right across the interval to x one c d d  
N ' 

equally well use backward differences, start at and move to the 
"N' 

left toward xo. The two choices are ecpivalent when the number of 



interpolation points n+l is even as, away fracn the end points, the 

intexval [xj, xj+l] is centered in the interpolation interval [x , x ~ + ~  
Y 

I 
where y = j - (n-1)/2 (see fig. la). When n+l is odd, however, two 

distinct choices are possible (see figs. Ib and lc) . Use or forward 

differences leads to a "left biasing" with one more interpolation grid 

point to the right of x 
j +l 

than to the left of x (fig. lb) . 
j 

Similarly, backward differences lead to a "right biasing" (fig. lc). As 

the sample matrices in Appendix A for n = 4 and n = 6 indicate, the right 

and left biased matrices are related, but quite different. In partlcu- 

lar, a different row "marches" across the center of the matrix [An]. 

Hence, even for equally spaced grid points, care must be taken when an 

odd number of interpolation grid points is used to approximate the 

function on each subinterval. No general rule cur be formulated for 

preferring left to right biasing when n+l is odd. The choice of 

which ~ y p e  of biasing, if any, to use must be made in the context 

of each 'nZividual application. 

THEORY FOR GRIDS WITH ARBITRARY SPACING 

Let xo, x l ,  ... 
X~ 

be N+l grid points such that 

Also, let f(x) again be a continuous function on the interval la, bl 

whose values f = f(x.) are known at the grid points. In this section, 
i 1 

we do not assume that the grid points are equally spaced in [a, b]. 

The key step in the derivation of the integrating matrix is use of 

the data at the grid poin'is to obtain an appropriate approximation to 

the function f (x) in each subinterval [xj , x ~ + ~  I ( j  = 0, ... , N-1). 
For arbitrary grid spacing, these approximations, and the corresponding 

integrating matrices, can be obtained in several ways. Two methods, 

interpolation and laast-squares polynomial fitting, are di'scussed in thi's 

report. 
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(a) No biasing 

(b) Left biasing 

( c )  Right biasing 

Figure 1. Examples of grid points used to approximate the 

function on the interval Ixj, x ~ + ~  I. Approximating 

points are marked with 0. In (a) , n+l .: 4, 
while in (b) and (c) n+l = 5. 



Interpolation 

Both the classical Lagrange interpolation formula and the m r e  

modern divided difference interpolation formulas are valid for arbi- 

trarily spaced grid points. Indeed, the Newton's difference formulas 

are the specialization of divided differences to uniform grid spacings. 

Unfortunately, like the Newton's difference formulas, divided differences 

in effect consolidate powers of x. The resulting coefficients again 

involve linear combinations of the data and arc not well suited to use 

in deriving the integrating matrix. For thi* reason, we shall restrict 

attention here to the more appropriate Lagrange interpolation formula. 

The first step in approximating f(x) by an nth degree interpo- 

lating polynomial on the interval Ixj, x ~ + ~  1 ,  j = 0, ... , N-1, is to 
determine the appropriate set of n+l grid points 

to use in the Lagrange interpolation formula. The index y in equation 

(23) will be a function of both j and n, and will further depend an 

whether n+l is even, odd with right biasing required, or odd with 

left biasing required. For grids xo, ... , x with n+l points, there 
N 

will be N - n + 1 different sets G of n+l consecutive grid points. 
Y 

Define y 1 (j , n) , y2 (j, n) and y3 (j , n) by the relations 

and 

y3(j1 n) - j - + 1 

Then, with 



I if n+l is even 

- 
y ( j ,  n) = y2 if lr+l is odd with right I biasins 

( yg if n+l is odd with left 
biasing 

the appropriate &finition of the interpolation set hdex y (j ,n) in 

equation ( 2 3 :  is 

Having properly defined the interpolation index y, and hence the 

interpolation set 
=Y' 

the nth degree Lagrange interpolation polynomiul 

for f (x) on the subinterval [x x I ,  j = 0, ... , N-1, is of the 
j' j+l 

form 

, (XI f (x) = f d y )  (x) + fy+l~;:; + . . . + fy+n Y+,, 
Y Y  

where the Lagrange soeff icients t ('I (x) are now 
m 

If we further define 

jil 

m 
d Y )  (XMX 
m 

then equation ( 3 0 )  immediately shows that the ( j + 2 )  row of t h ?  matrix 

[An] for j = 0, . . . , N - 1  is 



y zeros N-n-y zeros 

As before, the first row <,f [A I contains all zero elements. 
n 

-, 

The derivation of the integrating matrix via Lagrange interpolation 

is quite straightforward. However, in practice, the actual computation 

of the nN+N quantities Fm (j) in the matrix [A I for arbitrary grid 
n 

spacings may be algebraically difficult. This is because the Lagrange 

coefficients P (x) in equations (30) and (31) involve a product of 
m 

n factors rather than simply powers of x. Further, evaluation of the 

denominators in the L(') (x) requires rmputation of a large nuxnber of 
m 

differences of the form 5 - xm (m # k and I k - m I S n) . Fortunately, 
these implementation problems are not associated with the next method to 

be considered. Further, the following method for deriving an integrating 

matrix includes interpolation as a special case. 

Least-Squares Polynomial Fitting 

In interpolation, the interpolating polynomial agrees exactly with 

the function at the n+l interpolation grid points. However, in certain 

situations, interpolation may - not make the best use of the data at the 

grid points. Suppose, for example, that the degree of reliability of 

the values assigned to the function at the grid points is not well esta- 

blished. For example, this might be the case if the data on the function 

comes from experimental measurements and small random measurement errors 

are suspected. In these circumstances, as pointed out in reference 5, 

.. . it is foalish (and, indeed, inherently dangerous) to attempt to 
determine a polynomial of high degree which fits the vagaries of such 

data exactly and hence, in all probability, is represented by a curve 

which oscillates violently about the curve which represents the true 

function." Fitting the data with a lower degree polynomial may be far 

more appropriate as the resulting approximation to the function will 

wsmmooth" out unrealistic oscillations. 



In the present context, we will consider approximating f (x) on 

each subinterval by a least-squares polynomial fit based en data at 

n+l grid points with polynomials of degree k (where k S n). To briefly 

review least-square polynomial fits, let pg (x) , pl (XI, . . . , pk(x) be 
a sequence of k+l appropriately chosen polynomials of degrees 0, 1, 

2 . , k. Let f (x) be the kth degree polynomial 
k 

Suppose we wish to approximate f(x) on the interval [ao, an] 

containing the n+l grid points ao, al, ap, . . . , a,. Then fk (x) 

is the required least-squares polynomial fit of degree k on this 

grid if the sum of the errors squared over the grid is a minimum, i.e. 

We note that if k = n, the interpolating polynomial on the grid ao, all 

... , a has the minimum value of E as it agrees with f(x) exactly 
n 

at all grid points. Hence, interpolation can be considered a special 

case of least-square polynomial for which k = n. 

The coefficients 
'm 

in the kth degree least-squares fit f k ( x )  

are solutions cf the k+l linear equations a~/3E,= 0 (m = 0, ... , 
k). Solution of these equations is considerably simplified if the 

polynomials p (x) in f (x) are chosen to be orthogonal on the grid m k 
points ao, ... , a,. In the present context, this means 

for 



Orthogonal polynomials on a discrete  gr id  may be defined recursively.  

L e t  the orthogonal polynomials on the grid be denoted by P.(x) and 
3 

let 

' j + l  = T./S and v = S / S  
J j j j j-1 

Then, 

and 

The coef f ic ients  *m i n  the least-squares orthogonal polynomial f i t  of  

degree k S n on the n+l  grid points ao, ... , a, are now 

where y = f (ai) . i 



Equations (33) and (42) as written involve linear combinations of 

the grid data in each coefficient B and so must be modified for the m 
present purposes. However, the required modifications to isolate grid 

data are quite straightforward. We obtain the basic relation 

where the coefficients q. (x) are given by 
1 

Equations (43) and (44) may now be used to approximate the integral of 

f (x) on any interval contained in [ao, an]. We note that the only 

integrals contained in such approximations will be integrals of the 

orthogonal polynomials P. (x) (j = 0, . . . , k) which are quite easy to 
3 

evaluate. Hence, the implementation difficulties associated with 

Lagrange interpolation will not be present when the least-squares fit 

is used. 

The above discussion gives the least-squares orthogonal polynomial 

fit to f (x) based on data at the grid points ao, a1 , . . . , an. We 

now wish to apply these results to approximate the integral of f(x) on 

the subintervals [x,, x ~ + ~  ] (j = 0 . , - 1  For this purpose, let 

the set G be as defined in equations (23) through (28) and let 
Y 

We also denote by P:) (x) (m = 0, . . . , kl the orthogonal polynomials 
of degree less than or equal to k on the grid G . As the grid data 

Y 



Yi 
is nor. by equation (451, yi = f (x 

Y+l 
) = f  y+i 

by equations (43) 

and (44) the appropriate fit for f (x) on the interval bj, Xj+l 1 is 

now 

where 

equation (46) hl:diately gives for the ( j + 2 )  row of the matrix [A  I 
n 

y zeros N-n-y zeros 

We note that, in this notation, the subscript n on the ~ + 1  x ~ + 1  

matrix 1 2 1  I denotes that n+l grid points are used to approximate f(x) 
n 



on each subinterval [ x  , x I ,  not that the approximating polynomial 
j j+l - 

is of degree n. As noted previously, if the degree k of the 

approximating polynomial does equal n (its maximum possible value), 

we recover the matrix [A I obtained from interpolation. 
n 

krl example of a matrix IA 1 obtained via least~squares fAtting 5s 
n 

given in Appendix A. It is Interesting to note that when k = n - 1, 
tha middle rows of the matrices [A I are the same as for the fnterpo- 

n 
lation case when k = n. This feature disappears when k n - 1, 
Additional examples in Appendix B give matrices [A 1 for varibus sample 

n 
nonuniform grids. 

VERIFICATION OF ACCURACY USING INTEGRATING MATRICES 

BASED ON GRIDS WITH UNEQUAL SPACING 

As a test of accuracy, integrating matrices based on grids with 

unequal spacing were employed in the analysis of four types of beam 

problems previously analyzed in reference 4. These include the axial 

vibrations of a rotating beam, buckling of a rotating beam, vibration 

and stability of a rotating preconed beam, and the stability of an 

asymmetric shaft. For the present computations, the length of the 

beam was divided into 10 subintervals of unequal length (N=10). Eight 

grid points were used to obtain approximations on each subinterval 

(n=7). Both interpolaticn (k=n) and least-squares polynomial fit 

(k<n) cases were considered. 

Numerical results using matrices based on seventh-degree inter- 

polation polynomials (k=n) were found tc be in excellent agreement 

with results in reference 4. These earlier results were obtained 

using integrating matrices based on equally spaced grid points and 

seventh-degree polynomials. 

Most applications will involve the use of approximating polynomials 

of maximum degree (k-n). However, if smoothing of experimental data is 

a factor, a least-squares polynomial fit (k<n) rather than interpolation 



may be appropriate. Limited numerical evidence in the present study 

suggests that if a least-squares fit is used, the degree of the approx- 

imating polynomials should be bn-1. Results for k<n-1 may be suspect 

if k is relatively small compared to n. 



INTEGRATING MATRICES FOR EQUALLY SPACED GRID POINTS 

This appendix contaias examples of matrices [An] for equal grid 

spacings based on approximating polynomials of degree n. When n is 

odd, the resulting matrix [A I is unique for a given grid. The matrix 
n 

[A71 shown in table A1 is an example of this case. When n is even, 

however, two different matrices [A 1 are possible for a given grid, de- 
n 

pending on whether the approximating scheme is left- or right-biased 

(see fig. 1). This fact has not been previously recognized. Tables A2 

to A5 show that the two possible matrices [A  ] are related. However, 
n 

as can te seen, a different row "marches" across the center of the 

matrix in the left- and right-biased cases. It should be noted that 

the derivation in reference 2 corresponds to a left-5iased approxim- 

tion. 

The matrix [A7] obtained using least-squares fit polynomials of 

degree six rather than interpolating polynomials of degree seven is 

shown in table A 6 .  















APPENDIX B 

INTEGRATING MATRICES FOR GRIDS 

WITH ARBITRARY SPACING 

This appendix contains three examples of the matrix [A7] derived 

using approximation by interpolating polynomials (k=n=7) on grids with 

unequal spacing. 
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