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Abstract

Scalable Standard Optical Sources in the VUV; Emissions from Electron
Impact on Metals. ]

A compact optical standard lamp in the vacuum ultraviolet is being
developed at the University of Arkansas using electron impact on metals.
Two different mechanisms are exploited, transition radiation and
bremsstrahlung. Transition radiation will be used as a primary standard
from 1200A to 3000A using 10-keV electron impact on tungsten. Bremsstrahlung
will be used in the soft X-ray region below 1200A to less than 5A as an

optical transfer standard from 4-keV electron impact on tantalum or tungsten.

Introduction

It is important to develop optical standards in the vacuum ultraviolet
and soft x-ray regions. Electron impact on metals produce optical radiation

which can be used for such standards. It has many advantages. (1) The light

level is easily scalable by changing the electron beam current. (2) The light
level is comparable to that encountered in atomic physics and space astronomy'
without any necessary attenuation. (3) The lamp operates in a hard vacuum
without attenuation of the radiation by window materials. (5) Either
bremsstrahlung or tansition radiation can be selected as the radiation
mechanism by altering the energy of the electron beam (6) Transition radi-
ation can, in principle, be calculated and used as a primary standard source.
(7) The e-beam source, in principle, can be used for calibration at all VUV
wave lengths since both radiation mechanisms produce continuous radiation.
Figures 1 and 2 show expected levels from electron impact on'tungsten

and tantalum respectively.
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Experimental Results

Final design and testing are still not completed but the basic concepts
and basic understanding'of the mechanisms are essentially established.

High-field thermionic electron emission produces an intense well-
focussed electron beam striking the anode normal to the surface. The viewing
direction is 450 to the beam direction. This viewing direction is chosen
because transition radiatior under these conditions has a spectral distri-
bution that generally varies slowly with frequency.1 (It is also near the
direction for maximum intensity for bremsstrahlung.)

. The intensity of both types of radiation can be non-linear with beam
current below a certain threshold beam power level. It is suspected that the
beam has to simultaneously clean the surface in order to realize full inten-
sity. |

In general cold-cathode field emission is not sufficient to generate
enough beam power to provide the required cleaning threshold. However, a
clean surface was once genzrated using zero cathode heat when the beam power
of 6 watts was sufficient to heat thé anode to incandescence. Heat transfer
to the cathode apparently thenhionically assisted the field emission. The
required conditions for zero cathode heat have yet to be duplicated but
simply reducing heat conductance at the anode should again provide the
conditions for zero heat.

At the Physics Department, University of Arkansas, the radiation has
been studied from 3500A to 1200A. It has been established that the
emissions are not a strong function of surface roughness. Electron impact
on metal films evaporuted onto quarter-wave optical flats and on mill-surface

foils all produced similar results. Studies of small current, high energy




(50 - 100 keV) impact produced transition radiation that scaled properly
with energy but produced intensities that were too small by an order of
magnitude or more in the VUV,

Apparatus using cold cathode field emission of electrons was built which
produced erratic optical emission and again too small in magnitude. However,
with a special knife edge cathode and thermonic assistance from a hot cathode
produced strong bremsstrahlung from 2-keV impact on tungsten.

Parallel short term investigations were conducted at the University of
Arkansas and at the Oak Ridge National Laboratory. External heating of the
knife edge cathode was provided in both experimental apparatus. The Oak Ridge
source was used to investigate radiation from 3-keV electron impact on tanta-
lum and tungsten in the wave length range from 8A to 1300A while the Arkansas
apparatus studied 5- to 9-keV impact on tungsten in the wave length range
from 12A to 2000A. The Oak Ridge apparatus used a McPherson 247 grazing
incidence spectrometer while the Arkansas apparatus used a Jarrell-Ash %-m
Seya-Namioka spectrometer.

The Oak Ridge apparatus provided sufficient cathode heating to establish
linearity of the optical emission with electron current. The source could
not deliver the same optical intensity per unit current when the current fell
much below 1 mA. The source produced emissions linear with current from
1 to 6 mA. Figure 3 shows 3-keV bremsstrahlung from tantalum. Figure 4
shows bremsstrahlung from both Ta and W in the soft x-ray region.

The Arkansas apparatus produced transition radiation from 9-keV
electron impact on tungsten that now begins to approach theory (See Fig 5).
Unfortunately, the cathode heat was not sufficient to establish linearity

with current. However, it was clear from optical emissions from 5, 6, and

e
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8-keV impact that optical emission efficiency was increasing with increasing
electron beam power. A cathode identical to the one used at Oak Ridge is
being installed into the Arkansas apparatus. There is no physical reason why
the transition radiation should not come up to the theoretical predictions.
Thus the discovery of the apparent threshold effect gives some confiderce that
the source will fipnally produce transition radiation at the expected theo-

retical level.

When these expectations are realized, the results will be published

and reprints will be forwarded to NASA.
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Figure 1. Theoretically predicted optical emissions from electron impact on
tungsten, It is assumed that the electron beam is directed normal to the
surface and the viewing direction is 450 with respect to the ¢lectron beam.
Optical constants from Juenker gg_gl? are used in the calculations. Transi-
tion radiation calculations make full use of the expressions of Ritchie and
Eldr'idge.1 Optical bremsstrahlung without reflection losses is calculated
using the Kramers theory as modified by Boersch 33_91,3 This modification
attempts to correlate electron energy loss, electron penetration, ard optical
absorption of the resulting hremsstrahlung on its way to the surface. Optical
brehsstrah]ung with reflection losses is a modification of the above using

a reflection factor from Ritchie gg_gl,q

Figure 2. Theoretically predicted optical emissions from electron impact on

tantalum. Explanation regarding the curves follows that for Fig. 1.

Figure 3. Bremsstrahlung from 3-keV impact on tantalum, 18 watts of
e-beam power. Spectra is taken with a McPherson 247 grazing incidence
spectrometer at the Oak Ridge National Laboratory using a Ceratron photo

detector. Grating blaze at 191A.

Figure 4. Bremsstrahlung from 3-keV impact on tungsten and tantalum. Spectra
taken with the McPherson spectrometer and Ceratron detector. Grating biaze

at 47.7A. The 45.6A feature implies an optical window in W at this wavelength.

Figure 5. Transition radiation from 9-keV impact on tungsten, 7.7 watts

of e-beam power. Spectra taken with a %-m Jarrell-Ash Seya-Nomioka spec-
trometer using an EMI G26H15 ultraviolet photomultiplier with a CsTe cathode.
Grating blaze at 1200A. Loss of intensity at the short wavelength is due

to loss in grating reflectivity and in detector sensitivity.
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