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BEHAVIOR OF VORTEX SYSTEMS*

By A. Betz

Progressive application of the Kutta-Joukowsky theorem to the relation-

ship between airfoil lift and circulation affords a number of formulas con-

cerning the conduct of vortex systems. The application of this line of

reasoning to several problems of airfoil theory yields an insight into many
hitherto little observed relations.

The report is confined to plane flow, hence all vortex filaments are

straight and mutually parallel (perpendicular to the plane of flow).

I. GENERAL THEOREMS

i. Kutta-Joukowsky theorem.- When a body, about which the line integral

of the flow is other than zero, i.e., with a circulation F, is in motion

relative to this fluid with speed v, it is impressed by a force perpendicular

to the direction of motion, which per unit length is

P = pvr (I)

(Kutta-Joukowsky theorem, fig. i). If there is no motion in the fluid other

than the circulatory flow, then v is the speed at infinity relative to the

fluid. But, if the fluid executes still other motions aside from the circula-

tion, say, when several vortices, or sources and sinks are existent, it is

not forthwith clear which is to be considered as the relative speed. On the

other hand, we do know that v should be the speed of the body relative to

that flow which would prevail in the place of the body in its absence. The

body is thereby assumed as infinitely small, otherwise different speeds could

prevail at different places of the body. (This case can be worked up by

integration from infinitely small bodies.) This finer distinction of the

Kutta-Joukowsky theorem is readily understood when bearing in mind that a

free vortex, upon which no force can act, moves at the same speed as the flow

in the place of the vortex if the latter were nonexistent. Consequently, the

Kutta-Joukowsky theorem must afford the force zero for the motion at this

speed, that is, the speed in the Kutta-Joukowsky theorem must be measured rel-

ative to this motion. But this may also be shown direct by appropriate

*"Verhalten yon Wirbelsystemen." Z.f.a.M.M., vol. XII, no. 3, June 1932,

pp. 164-174.
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derivation of the Kutta-Joukowsky theorem. The general rule for this deriva-

tion consists of computing those pressures in a coordinate system, in which

the body rests (steady motion), which as result of superposition of circula-

tion and translation act upon a control area enveloping the body and the

momentums which enter and leave through it. Thus when we choose as control

area a cylinder enveloping the body so closely that the speed of translation

in the whole region of the control area can be considered as constant, this

selfsame translatory speed contiguous to the body becomes the speed v in

the Kutta-Joukowsky theorem, although it is the speed which would prevail at
this point if the body were nonexistent.

2. The center of gravity of finite vortex zones.- If there are a number

of vortices in a fluid, each individual one is within a flow which as field of

all other vortices is determined by their magnitude and arrangement, and each

vortex moves with this flow. Visualizing these vortices replaced by individual

solid bodies with the same circulation as the vortices (say, rotating cylinders),

the flow also is the same. Preventing these bodies from moving with the flow

without effecting a change in their circulation, each cylinder is impressed

according to Kutta-Joukowsky by a force and we must, in order to hold it,

exert an opposite force upon it. For a body with circulation Fn, existing
at a point with speed v , this force is

n

P = p v F (2)
n n n

and is at right angles to v . The resultant of the forces exerted on the

cylinders must be taken up b_ the walls at the boundaries of the fluid, i.e.,

it must be equal to the resultant from the pressures of the fluid onto the

boundary wall.*

*By restraining the vortices the flow becomes steady (provided that there are

no singularities other than those vortices, and that the boundary walls are

rigid and quiescent). For which reason the pressures can be computed by the

simple Bornoulli equation p + _ = v2 = constant. For free vortices the type

of flow within a stated time interval is the same as for restrained vortices,

but it is usually no longer steady, for the vortices travel, that is, change

their arrangement in space. Therefore the pressures change also, because for

nonsteady flow the generalized Bornoulli equation p + v 2 + p -_ = constant

is applicable (_ = flow potential for steady flow 3--_-_= 0). With free
' 3t

vortices there is no force as is in the restrained vortices, so that the

resultant force on the boundary walls must disappear. This is precisely
S0

obtained by the accelerating forces p -_-. Consequently, the forces on the

fluid boundaries used here and in the following are those forces which would

occur if the vortices were restrained, i.e., by steady flow.
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Now, if the fluid is very much extended so that its assumedly rigid and

quiescent boundaries are everywhere far removed from the vortices (or bodies

with circulation), the resultant of the pressures onto the boundary walls

approaches zero when the vortices are restrained. For the flow velocity v

produced by the vortices decreases inversely proportional to the first power

of the distance, while the relevant pressure differences (Bornoulli's

equation P - Po = - _2 v2) drop inversely proportional to the square of the

distance; the surface of the boundary increases linearly with the distance, so

that the force produced as sum of pressure difference and surface is a

decrease inversely proportional to the distance.

But when this force on the boundary walls vanishes, the resultant force

on our body must disappear also, or in other words,

E P = p E v F = 0 (3)
n n n n n

As the forces Pn or the speeds v may assume any direction, E isn
considered a vectorial addition of the forces or speeds, respectively. Instead

of that the components in the X and Y direction may be added separately, in

which case

and

E P = p E v F = 0 (3a)
n nx n my n

E P = p E v F = 0 (3b)
n ny n nx n

with x and y as components along X and Y of the respective vectors. If we

release the bodies, whereby they can be replaced again by common vortices, they

move at the speed v , and our preceding equations constitute a general predic-
n

tion as to the displacement of the vortices within a fluid without extraneous

forces, especially in a fluid extended to infinity. To illustrate: visualize

the vortices replaced by mass points (material system) whose mass is propor-

tional to the vortex intensities. Admittedly, we must also include negative

masses, in which the vortices with one sense of rotation correspond to

positive masses and those with opposite sense of rotation correspond to

negative masses. Then we may speak of a center of gravity of a vortex system,

while meaning the center of gravity of the corresponding mass system. Applying

this interpretation, the vortex motion can be expressed as follows:

Theorem i.- The motion of vortices in a fluid upon which no extraneous

forces can act (fluid extended to infinity), is such that their center of

_ravity relative to the rigid fluid boundaries or relative to the fluid at

rest at infinity remains unchanged. This theorem has already been developed,

although in a different way, by Helmholtz, in his well-known work (reference i).

The premise is, of course, the absence of further singular points in the fluid

other than the stipulated vortices.
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If the fluid is bounded by rigid walls and it is possible to make some

prediction as to the resultant force on the boundary walls by restrained

vortices (steady flow), then equation (2) gives an account of motion of the

center of gravity of the vortex.

If the resultant force on the walls is P, then

_v r =P (4)
n n

with v = velocity in center of gravity relative to the rigid walls, we have
o

p v Z F = p E v F = P
o n n n

hence,

P
v --

o p Z F
n

P. Thus,which is at right angles to the force

(5)

Theorem 2.- When, by restrained vortices (steady flow), the pressures

exerted by the fluid onto the boundary walls produce a resultant force, then

the movement of the center of gravity of the free vortices is Such as an air-

foil whose circulation equals the sum of the circulations of the vortices

would need to have an quiescent, infinitely extended fluid to make its lift

equal to this resultant force.

As a rule the pressures on the boundary walls and thus their resultant

force are not summarily known, although it is possible to make at least certain

predictions in many cases. For example, if the fluid is bounded on one side

by a flat wall or enclosed between two parallel walls, the resultant force

can only be perpendicular to those boundary walls. Since the center of gravity

of the vortices moves perpendicularly to this force.

Theorem 3 reads as follows: If there are vortices between two flat,

parallel walls or on one side of a flat boundary wall, the distance of the

center of gravity of the vortex from these walls remains unchanged (it moves

parallel to the walls). This result has already been obtained for a small

number of vortices by numerical calculation of the vortex paths.*

3. Inertia moment of finite vortex zones.- Again visualize the vortices

as being held fast in a fluid and decompose the speeds on each vortex into a

component radially toward or away from the center of gravity and one at right

angles thereto. If r is the distance of a vortex with circulation F away

from the center of gravity, and v r the radial (outwardly directed) speed

component, this vortex is impressed with a force

*W. Muller's report before the meeting of the members of the Ges. f. angew.

Math. u. Mech., at Gottingen, 1929; and of physicists, at Prague, 1929.
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T=0rv
r

which is perpendicular to r and therefore forms a moment T r with respect

to the center of gravity. The tangential component v (perpendicular to r)
t

produces a force along r which does not set up a moment about the center of

gravity. The sum of the forces impressed upon the vortices can be divided

into a resultant passing through the center of gravity (radial force component

due to vt) and a moment

M=O Z F v r.
r

They must be equal and opposite to the forces and moments acting on the fluid

boundaries. Releasing the vortices, the center of gravity moves conformably

to the laws of the individual force. Moreover, the vortices move also in

radial direction at speed v . Sincer

Dr
V = --

r _t

we obtain

_ = _ _ Z F r2 = M
PZrrat 2_ (6)

where M = moment of extraneous forces, by restrained vortices, with respect

to the center of gravity. If this is zero,* we have

Z F r2 = constant (7)

Z F r2 is a quantity which corresponds to the polar mass moment of inertia

Z m r2 relative to the center of gravity. Consequently, it may be designated

as inertia moment of the vortex system and we obtain

Theorem 4.- When, by restrained vortices, the extraneous forces acting on

a fluid have no moment with respect to the center of gravity of the vortex

system within this fluid, the inertia moment of this system of vortices remains

constant.

If the moment of the extraneous forces is in the same sense as the chosen

positive vortex rotation, this inertia moment increases according to equa-

tion (6) and vice versa.

4. Vortex systems whose total circulation is zero.- The kinetic energy

of a potential vortex in infinitely extended flow in a circular ring between

r and dr and thickness layer 1 is

*Whether or not there is an extraneous moment in a given case requires a more

careful analysis than the problem of extraneous forces, since, for example,

the forces decrease toward zero with i/r when the boundary surfaces are

enlarged, whereas the moments may remain finite because of the added factor

r as lever arm.
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2 2 r _ dr = p F2 dr
227 r

Integration over the whole fluid (from r = 0 to r = _) yields by approxima-

tion to r = 0 as well as to r = _, the energy as _. For which reason it is

physically impossible to realize such vortices. The difficulty with r = 0 is

obviated because the physical vortices always have a nucleus of finite diameter,

in which the speed no longer rises with i/r toward _, but remains finite.

But by r = _ the difficulty remains (apart from the energy the rotary momen-

tum likewise = _). As a result, the production of vortices in an infinitely

extended fluid can only be effected by pairs, so that the sum of the circula-

tions is zero. The velocity field of such a doublet drops at great distances

inversely as the square of the distance so that the fluid energy remains

finite for any extension. Hence,

Theorem 5.- The total circulation ot all vortices in an infinitely extended

fluid is zero. No vortex system with finite total circulation can occur unless

the fluid is finitely limited. And of course, a part of the vortices in an

infinitely extended fluid can also be at such a remote distance as to be of no

account for the flow at that particular point. There may then be vortex

systems with one-sided total circulation, in which the very vortices which

supplement the total circulation to zero are very remote from it. Since,

however, energy and momentum of two opposite vortices increase with the distance,

very great distances are encountered only in cases of very great energy input.

The case of a vortex system with zero total circulation is consequently rela-

tively frequent and deserves special consideration, since the center of gravity

of such a system lies, as we know, at infinity, so that the preceding theorems

are not summarily applicable in part.

Combining one part of the vortices into one group and the others into

another group, we can analyze each group by itself, as, for instance, the

clockwise rotating vortices in one, and the anticlockwise vortices in another,

although this is not necessary. The only condition is that the total circula-

tion of the one group be equal and opposite to that of the other group and
other than zero.

In the absence of forces and moments on the fluid,* as, say, by infinitely

extended fluid, the forces and moments on restrained vortices must be zero or,

in other words, the resultant force on one group must be equal and opposite to

the force on the other and be on the same line with it. But these forces need

not necessarily pass through the center of gravity of each of the two groups.

When the vortices are released the center of gravity of each of the two groups

moves perpendicularly to this onesided force and at the same speed. This is

expressed in

*In such vortex systems the moments also are forthwith small when pushing

beyond the rigid boundary walls. (Compare footnote on page 8.)
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Theorem 6, as follows: The motion of the centers of gravity of two groups

of vortices with equal and opposite total circulation is mutually parallel and

has the same speed, hence constant distance.

Knowing at first absolutely nothing about the direction of the opposite

force, we can make no prediction as to the direction of motion. When this

opposite force passes through the center of gravity of a group, this group is

without extraneous moments and its inertia moment is then constant (theorem 4).*

As a rule this force does not exactly go through the center of gravity of the

two groups. But when they are separate to a certain extent and closed in

themselves, the force almost always passes very close to the center of gravity,

in which case we can then consider the inertia moments at least approximately

as constant.

If the force does not pass through the centers of gravity of the groups,

their inertia moment changes. But if the force is parallel to the line

connecting the two centers of pressure (SI, $2, fig. 2), which is manifested

by their perpendicular motion to the connecting line, the moment of the force

relative to the two centers of gravity is equal and opposite. The result is

that the inertia moment of one group increases at the same rate as that of the

other group decreases. (One inertia moment is usually positive, the other

negative; their absolute values thus increase or decrease to the same extent.)

Theorem 7.- If the motion of the centers of gravity of two groups of

vortices of equal and opposite total circulation within an infinitely extended

quiescent fluid is perpendicular to the line connecting the gravity centers,

the algebraic sum of the inertia moments of the groups remains unchanged.

When the force forms an angle with this connecting line (S1 $2, fig. 3),

that is, when one velocity component v is along its connecting line, the
x

inertia moment of one group increases more than that of the other decreases

or vice versa. In any case, the sum of the inertia moments of the two groups

is changed. It amounts, in fact, to

(_ rl 2 FI + Z r2 2 F2) = 2 v a E F (8)
3t x

according to equation (6) and figure 3. (E rl 2 F1 is the inertia moment of

one group, E r2 2 F2 that of the other, a is the distance of the two centers

of gravity, and Z F the total circulation of one group.)

*It was always assumed that no singularity other than the vortex system

existed. But with the two groups and each considered by itself, the assump-

tion ceases to hold. However, the previous considerations can be generalized

so that the forces needed to restrain the vortices of the momentarily dis-

regarded group, become the extraneous forces on the fluid. It is readily seen

that theorem 4 is equally applicable in this sense to a group of vortices in

the presence of further vortices.
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The sum of the inertia moments increases when the motion of the centers

of gravity in direction of the group with positive circulation is toward the

group with negative circulation. It decreases for opposite direction. Thus

F in equation (8) denotes the total circulation of that group, which moves

toward the other.

II. APPLICATION

In the practical application of these theorems, it frequently is not so

much a case of a number of individual vortices, but rather of continuously

distributed vortices. But that presents no difficulty; it merely means substi-

tuting terms for E terms. It is, however, something else when the vortex

systems extend to infinity and at the same time have infinitely large circula-

tion. But with some care, they also are amenable to solution by these

theorems.

I. Vortices back of an airplane wing.- According to airfoil theory (see

Handb. d. Phys., vol. VII, p. 239 ff), an area of discontinuity is formed

behind a wing by optimum lift distribution (minimum by given lift), which has

the same speed of downwash at every point. Thus the flow behind an airfoil

may be visualized as if a rigid plate, the area of discontinuity, were down-

wardly displaced at constant speed and thereby sets the fluid in motion

(fig. 4). This, however, is applicable only in first approximation when the

interference velocities (foremost of which is the speed of displacement w)

are small compared to the flight speed. For this motion would only be possible

for any length of time if the area of discontinuity actually were rigid. By

flowing around the edges, laterally directed suction forces P occur, which

only could be taken up by a rigid plate. These forces are absent when the

area of discontinuity is other than rigid, as a result of which the suction P

effects other motions; starting at the edges, it unrolls and gradually forms

two distinct vortices (fig. 5).

dF
With I = wing span, the circulation per unit length of d-x for such an

area of discontinuity is distributed across the span conformably to the

following equation

dF (_)2 x (9)dx= o
with Fo = circulation about the wing in its median plane. The downward veloc-

ity of the area of discontinuity prior to development is

F
O

w = 7- (i0)

The area of discontinuity may be regarded as a continuously distributed

system of vortices with zero total circulation. The distribution of the
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vortices is given in equation (9). Combining the two symmetrical halves

(- _ <= x <= 0 and 0 <= x <= _) into one group each, the distance of the center

of gravity of the two groups must remain the same, according to theorem 6.

The center of gravity of a system of vortices conformable to equation (9) from

0 to 1/2 lies, as is readily computable, at a distance.

x = - - (ii)
o 4 2

from the center, so that the distance of the centers of gravity of the two

groups becomes

7T
a = 2 x = _ (12)

o

This, then, is accordingly also the distance of the centers of gravity of

the two formative individual vortices (fig. 5). The steady symmetry of the

process in the present case is indicative of the consistently parallel dis-

placement of the centers of gravity and consequently, that the individual

vortices are also symmetrical to the original plane of symmetry.

The process of convolution or development with respect to time can also

be followed by similar considerations, although this calls for _ considerable

mathematical work. Up to the present the course of the process has been

explored very accurately in its first stages, during which the developed part

was still small compared to the whole area of discontinuity (reference 3).

In the present report an attempt is made to gain approximate information

regarding the magnitude of the tip vortices and the circulatory distribution

within them. The vortices of the area of discontinuity are divided at some

point x and those lying to the left are grouped into one; these to the right

of it (full line in fig. 6) into another. Then it is assumed that the opposite

forces on the two groups - the vortices being restrained - pass through the

center of gravity of both groups, which actually proves fairly correct, because

of the comparatively strong concentration of the vortices toward the tips and

the ensuing distinct separation of both groups. Now the inertia moment of one

vortex group must remain approximately constant during development. The total

circulation of one group of the undeveloped area of discontinuity from x to

_/2 is

I/2 _r dx F

x 3x o
(13)

For the ensuing calculation the angle

which is bound up with x through

2x

cos S = _-- and

S is used in place of the variable x,

sin S = _i -(_) 2 (14)
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Thus the vortex distribution (equation 9) becomes:

_F /2'_ 2 X 2

_x = F o_) = Fo _ cot _ (9a)

V_(_)_
r = r - = r sin _ (13a)

x o \ll o

The distance of the center of gravity of this group is:

_f_,2_ _fo _ _ [_+_ ]Xl = -- _x xdx = sin ¢ 2 c°s2¢d¢ = 4 sin ¢ 2 sin2 _ (15)
x x

The inertia moment of the group with respect to the center of the area

of discontinuity (x = 0) is:

fx1/2 3F x2dx Fo sine 1 - sin 2 _ (16)Jo = --3x = c°s3_d_ = Fo

The inertia moment of the group with respect to its center of gravity is:

_ _ _xX_{(_)2(_ )x o = F sin_ I - sin2¢o ?

sine + _ sin

This inertia moment must be present again after the convolution.

Now the coiled-up group is assumed to be circular; that is, the asymmetry

stipulated by the mutual interference of the two coiled-up vortices is dis-

regarded, so that the circulation may be presented as a pure function of radius

(F = f(r)). The vortex group from x to 1/2 is coiled up into a spiral

which fills the circle with radius r. Then the circulation F r must be equal

to the circulation of the original vortex group

r = r (18)
r x

and likewise, the inertia moment of the vortices coiled up in this circle must

be equal to the original inertia moment of the vortex group

_o r _F r2Jr = -_r dr = Jx (19)

Permitting r to increase by dr, then decreases x by dx and increases

¢ by de under these premises. The result is an increase of
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sr ar
dr = _ d4 = r cos 0 d0 (20)

3r 30 o

in circulation, and of

ar 3J
r r2 dr = _ d0 (21)

3r 30

in inertia moment.

Then the differentiation of (17) yields

3J
X

-- ----r

30 o
[c ((_)2 OS30 + 4 sin2 4 4 +_sin 20

2 sin0 4 + _ sin 24 i + cos 2

which, written into (21) and with regard to (20) gives

cos ( )
(_)2 = c°s20 + 4 slin20 +_ sin 2_ sin4 4 + _ sin 24 (22)

Since sin4 = - , (equation 22) connotes the relationship between

r and x, that is, it gives the size of the circle into which a piece of the

original area of discontinuity has changed. And, knowing the circulation

r = ro sin 4, the equation also discloses the distribution of the circulation

in the coiled-up tip vortex. Figure 7 shows the respective values of r and

x versus r, and also the distribution of the vortex density

dr 12

d(r2_) 20 ro

yields

When forming the pertinent boundary transitions, equation (22)

for very small values of

i= _ sin40

4, so that

(23)

r = _ (24)
l 3

-- -- X

2
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In other words, a small boundary piece of the area of discontinuity coils

up into a circle, whose radius is 2/3 of the length of the original piece.

2r

For _ =_21 we have _- = _ , which means that the radius_ ofl the tip

vortices is 4 2 Since the center of the tip vortices is 4 2 distant from

the plane of symmetry, it would indicate that the two tip vortices precisely

touch each other. But for such close proximity, our assumption that the

individual tip vortices shall be symmetrical circles, ceases to hold: the

speed between the two vortices is substantially greater than it is outside,

with the result that the individual streamlines are outwardly displaced. So

in reality the vortices should not touch each other. The established approxi-

mate result however, may, because of its simplicity, give a ready picture

of the order of magnitude of the vortices. According to figure 7, the rela-

)lationship between r and x is fairly linear. Hence r = 3 - x in the

greater part of the vortex conformable to (24), and it is only in the outer

edge of the vortex that the factor 2/3 changes to _/4. The curve for the

distribution of the vortex density shows the main part of the vortices to be

very much concentrated around the center despite their comparatively great

extent.

2. Phenomena behind cascades of airfoils.- Cascades of airfoils also

form areas of discontinuity aft of the airfoils (fig. 8), and whose motion

relative to the undisturbed flow would, by optimum lift distribution, be as

for rigid surfaces, if the edges could absorb the suction. But in reality

they develop with respect to time. (See Handb. d. Phys., vol. VII,

p. 272 ff.)

Let us analyze the practically always existing case wherein the distance

a' of the surfaces is small compared to their span. Assuming the areas of

discontinuity to be actually rigid, the flow around the rigid surfaces far

behind the airfoils would, near the edge, be as shown in figure 9, when

choosing a system of coordinates within which these surfaces rest. The motion

in this system of coordinates being steady, Bernoulli's equation can be

employed. Inasmuch as the interference velocity between the surfaces far

removed from the edge is evanescently small relative to the surfaces, whereas

outside in the undisturbed flow the relative velocity is equal and opposite

to the velocity of displacement w, Bernoulli's equation yields

w 2

p = p _- (25)
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positive pressure between the surfaces with respect to the pressure in the

undisturbed flow on the side of the surfaces.* This positive pressure balances

the suction at the plate edges. For an analysis of the horizontal forces

acting upon a fluid strip of the height of the surface spacing a', reveals

w 2

on one side a force a' p _- , as result of the pressure difference within and

without, and on the other the suction at one plate edge. No momentums are

transmitted by the boundary surfaces, therefore the suction must be

w 2

P = a' p _-- (26)

In such a system of surfaces the vortices are very much concertrated at

the boundaries, at great distance from the edge, that is, in the entire middle

part of the surfaces the relative velocities are practically zero and with it,

of course, the velocity differences on both sides of the surfaces, i.e., the

vortices. As a result, the effects of the developed and of the undeveloped

areas of discontinuity are equal at distances which are great compared to

spacing a', since the spatial transformation of the vortices during develop-

ment is subordinate as against the great distance. Nevertheless, there is a

fundamental difference as far as the flow is concerned between the theoretical

process with undeveloped rigid surfaces and the actual process with developed

individual vortices, a fact which up to now has never been pointed out, to my

knowledge.

The vortex group at one side is in the velocity field of the vortices of

the other. Owing to its remoteness, this field does not change appreciably

during the development. Thus assuming the vortices as restrained before and

after development, the mutual force exerted by the vortices, remains the same,

and with it the velocity in the center of gravity of the developed and the

undeveloped vortices. But when visualizing the areas of discontinuity as

rigid, they are then no longer exempt from forces because of the suction P,

and in that case the velocity is greater by an amount

Aw =P--- (27)
pF

*Directly behind the cascades the pressures and velocities are different. By

contraction or expansion of the lateral edges of the areas of discontinuity

(positive or negative contraction) equilibrium is, however, established with

the pressure of the lateral undisturbed flow, resulting in a correspondingly

different speed. (see Handb. d. Phys., vol. VII, p. 259 ff.) Here and in

the following the conditions subsequent to this balance are considered only.

For many purposes it should be noted that owing to the width changes of the

hypothetical rigid area of discontinuity the suction at the edges has a

component along the direction of flow.
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than with the free vortices. F is herein the circulation about the part of

the area of discontinuity lying on one side of the plane of symmetry, respec-

tively, about the single vortex developed therefrom (for the rest equal to the

circulation about the airfoil in its median part). Following the line integral

in figure 9, it is readily seen that

F = a' w (28)

hence, with due regard to (26):

W

A w = _ (29)

Then the velocity of the free vortices is:

W

w' = w - &w = 2 (30)

As a matter of fact, the process of development is such that the center

of gravity of the vortices clustered around each edge, lags behind the velocity

of the central main part of the surfaces. Whereas the latter moves at velocity

w, the center of gravity of the vortices moves at a speed w/2 and it maintains

this speed in the final attitude after development.

However, this speed w/2 can also be deduced direct from the field of

the opposite vortices. At great distance it is identical with that of a

vertical row of concentric vortices (fig. i0). But at medium distance the

= + F

field of such a vortex row is a constant speed +w' -2a---w downward on one

side and upward on the other. Between the two rows the fields of the two rows

add up to speed w, so that

w = 2 w' (31)

The signs for the fields outside of the rows are contrary, hence the

speed is zero. Each vortex row itself moves under the effect of the momentary

other row, that is, its speed is

WW w
= _ (32)

But there is yet another result which is not as readily conceived as the

change in vortex velocity. For the rigid surfaces we had within the deflected

w2
flow a positive pressure q = p _-- which balanced tPe suction at the edges.

After development the suction is absent, so that there is also no more positive

pressure within between the vortex rows, as can be proved from the Bernoulli

equation. In the chosen system of coordinates of figure i0, w is the speed

of the inside flow, 0 that of the outside flow, and w/2 that of the vortices.

To insure steady conditions, we must select a coordinate system in which the

vortices rest. Then the speed of the inside flow is w/2 and that of the
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outside flow -w/2 (fig. ii). Both are of equal absolute magnitude, hence of

equal pressure within and without the vortex rows.

Now this change of pressure during development is not without influence

on the flow inside. Analyzing a cut through the airfoil cascades (figs. 8

and 12) while applying Bernoulli's equation to the speeds in front of and

behind the cascades, reveals by pressure balance (developed vortices, fig. 12).

and by

C 3 = C I

w 2

p = p _-- (undeveloped vortices)

c2 2 + w 2 = c I

(33)

2 (34)

Therefore the speed is greater after development than before (c 3 > c2).

This result, while at first sight perhaps somewhat peculiar, can also be

elucidated in a different fashion. Looking at the cascades from the side,

once with undeveloped vortex surfaces (fig. 8), and then with developed vor-

tices (fig. 12), the direction of the detached vortices is manifestly different

because their own speed relative to the undisturbed flow is different (w and

w/2). The interference velocity w, which may be considered as vortex field,

is perpendicular to the vortices, and has therefore a somewhat different posi-

tion in both cases. For nondeveloped vortices, the vortices lie in the direc-

tion of c2, w is perpendicular to c 2 (fig. 8), and since c 2 is composed

of undisturbed velocity c I and interference velocity w, we have

c22 = Cl 2 - w 2

In the developed state the vortices move with natural speed w/2, that is,

they are between c I and c 3. Since w and therefore w/2 in turn are

perpendicular to the vortices, the velocity vectors cl, c3, and w form a

triangle in which the vortex line is the median line (fig. 12). But this

implies that c 3 = c I .

Translation by J. Vanier,

National Advisory Committee for Aeronautics.
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Figure l.-Kutta-Joukowsky

theorem.

Figure 2.-Two groups of vortices

whose centers of gravity

move perpendicular to their con-

necting line.
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Figure 3.-Two groups of vortices

whose centers of gravity

move obliquely to their connecting

line.

Figure 4.-Displacement of a

rigid plate in a

fluid.
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Figure 5.-Development of area of

discontinuity behind

an airplane wing.

Figure 6.-Part of area of

discontinuity and

circle over which it is dis-

tributed after development.
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Figure 7.-Relationship between

developed and non-

developed area of discontinuity.

ci

a

±

7
a A

Figure 8.-Flow past cascades

of airfoils with

hypothetical rigid areas of

discontinuity.
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Figure 9.-Flow about the theoretical

non-developed areas of

discontinuity in cut A-A.

Figure lO.-Velocities relative

to undisturbed flow.
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Figure ll.-Velocities relative to

vortices after develop-

ment (steady flow).

Figure 12.-Composition of velocity

after development.
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