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GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF 

FLUTTER 

By THEODORE THEODORSEN 

SUMMARY 

The aerodynamic j orces on an oscillating airj oil or 
airfoil-aileron combination of three independent degrees 
of freedom have been determined. The problem resolves 
itself into the solution of certain definite integrals, which 
have been identified as Bessel functions of the first and 
second kind an/l of zero and first order. The theory, 
being based on potential flow and the Kutta condition, 
is fundamentally equivalent to the conventional wing
section theory relating to the steady case. 

The air forces being !mown, the mechanism of aerody
namic instability has been analyzed in detail. An exact 
solution, involving potential flow and the adoption of the 
Kutta condition, has been arrived at. The solution is of 

· a simple j orm and is expressed by means of an auxiliary
parameter k. The mathematical treatment also provides
a convenient. cyclic arrangement permitting a unijorm
treatment of all subcases of two degrees of freedom. The
flutter velocity, definpd as the air velocity at which flutter
starts, and which is treated as the unknown quantity, is
determined as a junction of a certain ratio of the fre
quencies in the separate degrees of freedom j or any magni
tudes and combinations of the airjoil-aileron parameters.

For those interested solely or particularly in the numeri
cal solutions Appendix I has been prepared. The rou
tine procedure in solving numerical examples is put
down detached from the theoretiool background of the
paper. It.first is necessary to determine a certain number
of constants pertaining to the case, then to• perform a few
routine calculations as indicated. The result is readily
obtained in the jorm of a plot of flutter velocity against
frequency for any values of the other parameters chosen.
The numerical work of calculating the constants is sim
plified by referring to a number of tables, which are in
cluded in Appendix I. A number of illustrative examples
and experimental results are given in Appendix II.

INTRODUCTION 

It has been known that a wing or wing-aileron struc
turally restrained to a certain position of equilibrium 
becomes unstable under certain conditions. At least 
two degrees of freedom are required to create a con
dition of instability, as it can be shown that vibrations 

of a single degree of freedom would be damped out by 
the air forces. The air forces, defined as the forces due 
to the air pressure acting on the wing or wingaaileron 
in an arbitrary oscillatory motion of several degrees of 
freedom, are in this paper treated on the basis of the 
theory of nonstationary potential flow. A wing
section theory and, by analogy, a wing theory shall be 
thus developed that applies to the case of oscillatory 
motion, not only of the wing as a whole but.,also to 
that of an aileron. It is of considerable importance 
that large oscillations may be neglected; in fact, only 
infinitely small oscillations about the position of 
equilibrium need be considered. Large oscillations 
are of no interest since the sole attempt is to specify 
one or more conditions of instability. Indeed, no 
particular type or shape of airfoil shall be of concern, 
the treatment being restricted to primary effects. The 
differential equations for the several degrees of freedom 
will be put down. Each of these equations contains a 
statement regarding the equilibrium of a system of 
forces. The forces are of three kinds: (1) The inertia 
forces, (2) the restraining forces, and (3) the air forces. 

There is presumably no necessity of solving a general 
case of damped or divergent motion, but only the 
border case of a pure sinusoidal motion, applying to the 
case of unstable equilibrium. This restriction is par
ticularly important as the expressions for the air force 
developed for oscillatory motion can thus be employed. 
Imagine a case that is unstable to a very slight degree; 
the amplitudes will then increase very slowly and the 
expressions developed for the air forces will be appli
cable. It is of interest simply to know under what 
circumstances this condition may obtain and cases in 
which the amplitudes are decreasing or increasing at a 
finite rate need not be treated or specified. Although 
it is possible to treat the latter cases, they are of no 
concern in the present problem. Nor is the internal 
or solid friction of the structure of primary concern. 
The fortunate situation exists that the effect of the 
solid friction is favorable. Knowledge is desired con
cerning the condition as existing in the absence of the 
internal friction, as this case constitutes a sort of lower 
limit, which it is not always desirable to exceed. 

291 



REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Owing to the rather extensive field covered in the

paper it has been considered necessary to omit many
elementary proofs, it being left to the reader to verify
certain specific statements. In the first part of the
paper, the velocity potentials due to the flow around
the airfoil-aileron are developed. These potentials
are treated in two classes: The noncirculating flow
potentials, and those due to the surface of discon-
tinuity behind the wing, referred to as "circulatory"
potentials. The magnitude of the circulation for an
oscillating wing-aileron is determined next. The

y

(xr^ZJr)

P
b 	q

VELOCITY POTENTIALS, FORCES, AND MOMENTS OF
THE NONCIRCULATORY FLOW

We shall proceed to calculate the various velocity
potentials due to position and velocity of the individ-
ual parts in the whole of the wing-aileron system.
Let us temporarily represent the wing by a circle (fig.
1). The potential of a source e at the origin is given
by

EI,= 46 log (x2+y2)

For a source e at (x,,y,) on the circle

i log {(x—x,)2+(y—yf)2}

Putting a double source 2E at (x,,y,) and a double
negative source —2e at (x,,—y,) we obtain for the flow
around the circle

E	 (x—x,)2+ (y — yl)
2

v = ^_7r log (x—x,) 2 + (y+y,)2

FIGURE 1.—Conformal representation of the wing profile by a circle.

forces and moments acting on the airfoil are then
obtained by integration. In the latter part of the
paper the differential equations of motion are put
down and the particular and important case of un-
stable equilibrium is treated in detail. The solution
of the problem of determining the flutter speed is
finally given in the form of an equation expressing a
relationship between the various parameters. The
three subcases of two degrees of freedom are treated
in detail.

The paper proposes to disclose the basic nature of
the mechanism of flutter, leaving modifications of the
primary results by secondary effects for future investi-
(rations.' Such secondary effects are:,,The effects of a
finite span, of section shape, of deviations from poten-
tial flow, including also modifications of results to
include twisting and bending of actual wing sections
instead of pure torsion and deflection as considered in
this paper.

The supplementary experimental work included in
Appendix II similarly refers to well-defined elementary
cases, the wing employed being of a large aspect ratio,
nondeformable, and given definite degrees of freedom
by a supporting mechanism, with external springs
maintaining the equilibrium positions of wing or wing-
aileron. The experimental work was carried on
largely to verify the general shape of and the approxi-
mate magnitudes involved in the theoretically pre-
dicted response characteristics. As the present report
is limited to the mathematical aspects of the flutter
problem, specific recommendations in regard to prac-
tical applications are not given in this paper.

I The effect of internal friction is in some cases essential; this subject will be
contained in a subsequent paper.

The function ^p on the circle gives directly the sur-
face potential of a straight line pq, the projection of the
circle on the horizontal diameter. (See fig. 1.) In
this case z/ = V—x2 and Ip is a function of x only.

We shall need the integrals:

f
f log

(X xI) z +(y—?Af) z dx,=2(r—c) logN-2Vi—x2 cos Ic
e	 (x—x,) +(y+yl)l

and

I	 (.r—:rl) 2 + (y —yi) `	 zIon, 
(x — xt)2+( .

 . 2(xf—c)dx,=—V1—c^/1—x:f
—cos Ic(x- 2e)V1 — x2x2+(x—c)ZlogN

where	 N=
X—C

The location of the center of gravity of the wing-

aileron xa is measured from a, the coordinate of the
axis of rotation (fig. 2); xp the loca.lion of the center

^h

	

\F--	
q. g. of entire wing

	

tea o	 ^^	 +x

'Axiso frotation +/I
C. g.ofoi/eron=

FIGURE 2.—Parameters of the airfoil-aileron combination.

of gravity of the aileron is measured from c, the coordi-
nate of the hinge; and r. and rs are the radii of gyration
of the wing-aileron referred to a, and of the aileron
referred to the hinge. The quantities x0 and ro are
"reduced" values, as defined later in the paper. The
quantities a, x., c, and xs are positive toward the rear
(right), h is the vertical coordinate of the axis of rota-
tion at a with respect to a fixed reference frame and is
positive downward. The angles a and 0 are positive
clockwise (right-hand turn). The wind velocity v is to
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the right and horizontal. The angle (of attack) a
refers to the direction of v, the aileron angle a refers to
the undeflected position and not to the wind direction.
The quantities r. and r,3 always occur as squares.
Observe that the leading edge is located at -1, the
trailing edge at +1. The quantities a, c, x-, xs, r-,
and ro, which are repeatedly used in the following
treatment, are all dimensionless with the half chord b
as reference unit.

The effect of a flap bent down at an angle a (see fig.
2) is seen to give rise to a function V obtained by sub-
stituting -vpb for e; hence

'P
a = v#b [ ^1- x2 cos-Ic - (x- c) log N]

To obtain the effect of the flap going down at an
angular velocity B, we put r __ - (x 1 - c) J b2 and get

ab2 _
p^ = 2̂[^/1 — c2 ^/1 - x2 +cos-IC(x - 2c) 1 --x'

- (X- C)' log N]

To obtain the effect of an angle a of the entire air-.
foil, we put c = -1 in the expression for Ipo, hence

^Oq = vab V -x2
To depict the airfoil in downward motion with a veloc-

ity h (+ down), we need only introduce 
v 

instead of a.

Thus
,p;,=hbVl-x2

Finally, to describe a rotation around point a at an
angular velocity «, we notice that this motion may be
taken to consist of a rotation around the leading edge
e = - 1 at an angular velocity « plus a vertical motion
with a velocity- &(I+ a) b. Then

«b2«=2^rzr(x+2)x/1- 'z-«(1+a)b2V1-rz

WO x-a )
\

Agt-xt

The following tables give in succession the velocity
potentials and a set of integrals 2 with associated con-
stants, which we will need in the calculation of the air
forces and moments.

VELOCITY POTENTIALS

rpm=vabV1-i2

qp«=ab2(!2x -a )^/1-x2

^=^1 	 /^p	 v/ib[^/1- x2 cos Ic- (X-C) log N]

N= 
1r b

2[ 1 --c 2 -VI  -x2 + (x- 2c) V1 - x1 cos-lc
- (.x-C) 2 log N]

where	 N= 1-cx-^/1-x2/1-^

x-c

2 Some of the more difficult integral evaluations are given in Appendix Ill.

INTEGRALS

j
1 

Ax = -	 vaT,
c 2

frl'v;,dx= -.2hT,

1
^o dx = WT,

( I
JC pgdx= - 2 VOT5

f
I ^p4dx= - b 4Z

r 1

J
^p,(x -c)dx=

e
-2vaTj

f

1 

^oA(x- c)dx= —2hT

I

p« (x -
r

c)dx = WT18

I

fr
p0(x - c) dx=

/^

- 

b

b VOT2

f

I 

wA(x-r

b2

c)dx=-- 2 j4z

CONSTANTS

To = - 3 ^/1 - c2 (2 + c2) + c cos lc
T2 =c(1

/
-c2)-j c2(1+c2)cos- Ic+c(cos- Ic)2

+
c2/ 

(cos -I C) 2 +4c	 cos- Ic(7 +2c2)

-8( 1 -c2) (5c2+4)
T4 = cosIc+cV/1 —c2

T;= -(1-c2) - (COS Ic)2 +2cV1-c2 cos:Ic
T5 =T2

T,= -( S+c 2) ( .,Os-,c + c Vl- 2(7+20)

T8 = - 3 J- c2 (2c2 + 1) + c cos_ I c

Ts = 2 L
3(V1-c 2)B +1T4] = 2 (-P+-TI)

where p := - 3

Te= V1—c2 + cos- 1 c
T„ = cos -1 c (1 - 2c) + V'1  - c2 (2 - c)

TI2 = ^1-c2 (2+c)-cos Ic(2c+1)

TI3= 2[-T7-(c-a)Til

T4 = -F6 + 2 ac

FORCES AND MOMENTS

The velocity potentials being known, we are able to
calculate local pressures and by integration to obtain
the forces and moments acting on the airfoil and
aileron.

b
to„dx=2var

2
h'r

J- II (Padx=

+l

«dx= -	 2 'ra«b 2

+l

^ppdx= - 2vOT4I

( +l b2.
^ohdx = - l PT,

J 
1

+I

i
0p

b
(x-c)dx=-2vaCr

f+I b
^Pn (x - c) dx = - 24car

1-I
+I

r+I
JI

b
Apo (x - c) dx = - 2VOT8

f
I l^e(x - c) dx= -- 2
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Employing the extended Bernoulli Theorem for un-
steady flow, the local pressure is, except for a constant

_	 w2 atp

	

p"	 p(2+fit)

where w is the Iocal velocity and ^o the velocity poten-

tial at the point. Substituting w=v+ ax we obtain

ultimately for the pressure difference between the
upper and lower surface at x 	

l(v aP+ a,)
p =- 2p  

ax at
where v is the constant velocity of the fluid relative to
the airfoil at infinity. Putting down the integrals for
the force on the entire airfoil, the moment on the flap

I 

I	 X,Y

1

	

Vi I +ar	 —Ar

FIGURE 3.—Conformal representation of the wing profile with reference to the
circulatory flow.

around the hinge, and the moment on the entire air-
foil, we obtain by means of partial integrations

P= --2pb
J 

+iodx
1

M° = —. b2 110(x — c) dx+2pvb f ^llpdx
J 
+1	 +1

Ma =-2pb2 	0(x—e)dx+2pvb 
—I 

^odx
—1 

+1
- 2pb2 f0 (c — a) dx

Or, on introducing the individual velocity potentials
from page 5,

P=—pb2 [v2r&+alt—baraa—vT,l—Q',s]	 (I)

Alp = —pb3 C— vT,&—T,h+ 2T13ba— 1-1 vT,4 -
1 Tab(

+pvbl —vT9a—Tqh+ 2Toba— I vTp— I T2bs
7r	 7r

_ — pb 2 [T4v'a— (2 To+ TI ) by&+2T13 b2&+ Tsv2R

+(-11 T2 - 1 T2)bv4— 1 VT3p+T,vh—T,bh] (II)
7r	 T	 7r

M^ _ — pb2 I- rv'a + Ir(g + a) b ° %r + r' T4 # + { 7', — T;
—(c—a)T4}bav +{— T,—(c—a) ".}b 2a

	

— bash,— 7rvh,]	 (III)

VELOCITY POTENTIALS, FORCES, AND MOMENTS
OF THE CIRCULATORY FLOW

In the following we shall determine the velocity
potentials and associated forces and moments due to a
surface of discontinuity of strength U extending along
the positive x axis from the wing to infinity. The
velocity potential of the flow around the circle (fig. 3)
resulting from the vortex element —AP at (Xo, 0) is

DI' r 
_tx:::-x0

Y	 , Y

	

IPr = 2m, tan  	—tan	 1

X Xo

—AI tan-1 	 \— Xo +Xo)Y
2a

X2— 
(Xo+X°)X+ 

1-+ 1

where (X, Y) are the coordinates of the variable
and X° is the coordinate of — OP on the x axis.

Introducing Xo + Xo = 2xo

or Xo=xo+ -%G01 -1 on the x axis

and X = x and Y= V — x2 on the circle
the equation becomes

2a
_, ^ z z

	

xxotan 1 lx	
—1

This expressions gives the clockwise circulation
around the airfoil

/

 due to the element — All at xo.

We have: p = — 2p 0̂ + v 6O

But, since the element —OP will now be regarded as
moving to the right relative to the airfoil with a
velocity v

app = a p
^t ^x

Hence p 	 2 v(a?+ 6w)= — p _)x axo

Further

	

X	 + xo 1— x2

2a b<o	 2_ (1—xxo) 1—x2 (1—xxo)'

	

All ax = ^x0 1	 1 + 
(1— x2) (xo2 —1)

(1—xxo)'

VZ2 —1 1

VV 1_—_X_1 (xo — x)
and

	

1	 xo + JxOZ _ 1	 x

2a ap = 3 1 —x2(1—xx0) _42 -1	 (1 —xxo)2

2P axo	 1+ (1—x2)(xo2 -1)
(1— xxo)'

	

x2	 1
jxo2 - I (xo — x)

By addition:	 V
a^ app —_ Al

l
	xo+x

ax e axo 2a ^1 — x2 xo2 — 1
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To obtain the force on the aileron, we need the
integral

f
'("'+ a)dx= 2rf, 1 /

x°zx 11/1—x2 dx
Dr / xo 

	

^^ 	- 'X +	 ]2a x0'-1 co
	xo2-1 c

Ar	 xo	 ^j

2a[V̂ 02- 1 COS-'c +^x 0z -1J
Thus, for the force on the aileron

AP, 1 =- pvb 
or (^/xo° lcos'c + ^/1-c') or

OP, 1 =- pvb Al'[	 (COSxo (co'c- 1—c')
xo2-1

Ixo+ 1 z^

+o

Integrated, with Ar= Udxo	
('

P`'= - p̂ b [(cos 'c- ^/1-c2 ) J ' Vxo2 ° 1 Udxo

+	
f V xo

± i Udxo'

for c= -1 we obtain the expression for P, the force
on the whole airfoil

P= -pvbf 
	

0 °-1 Udxo	 (IV)

Since U is considered stationary with respect to the
fluid elements

U=f(vt—xo)

where t is the time since the beginning of the motion.
U is thus a function of the distance from the location
of the first vortex element or, referred to a system
moving with the fluid, U is stationary in value.

Similarly we obtain for the moment on the aileron

jc
L"

(
'	 "0	 Or ' (x — C) (xo+x) dxc6x + 2xo) (x-c)dx=

2,,J, ^/1-x2^xo2-1
Ar	 __	 z

2^,/x'-11CxoV1-x2+ x^2-x 
0

+ (2 - x0c)c0s-'x]1

^xoI - 1[(xo +2-c)1/1-c'

+ 2(1- 2xoc ) COS-1c

=+ Tj /x2° l l1/1-c'-ccoS-'c)
v o -

	

1	 '1

+^ — (cos ic-c^/1-c')
xo' - 1

Finally

AMP = - pvb 
Or x	 +^

	

2	 °	 ^
2

-cos- 'c' c+2^}+2^x°+i (Co_' c-c^/1-c2^
VVV o

Putting Ar= Udxo and integrating

lMa= - pvb' Lj^/1-c2\1+2/

-cos- 'c(c + 1 )} f m x° Udxo2
1 ('^ /xo+ 1

I (COS- 1c -c^/(1-c2) 2J1 1/xo-1 
Udxo (V)

Further, for the moment on the entire airfoil around a
+I d^ 6V	 Or 1

—1 (ax + axo (x-a)dx=-27r.^/xo2-1 C xo+
x
2-a)1/1-x'

/
+1 2-x °a) COS' x 

+I
-1 = + 2r^ 1 (2-xoa)a\	 xo2 -1

1
2 - xoa

and	 oM^ _ - pvb'A' 
^ x°2 

-1

Integrated, this becomes
1

xoa

Ma	 pvb 
2. fi /xo2 -1 

Udxo

1 1 o	
of	

11

P

2 + 2x x a +2
pvb'_ - 	 / 	 Udxo

V x o2 -1 	 ^/xo -1

_ - pvb2 f I 
/

n± i - (a+ 2) 
xo 

Udxo (VI)l̀  V	 VZ2 —1

THE MAGNITUDE OF THE CIRCULATION

The magnitude of the circulation is determined by
the Kutta condition, which requires that no infinite
velocities exist at the trailing edge,
or, at x=1

Ox (^Or + (Pu + 1p;,, i- ^a + 1p# + 1p^) =finite

Introducing the values of V., etc. from page 5 and

,pr from ax page 6 gives the important relation:

T7rf + _' Udxo=va+h+ b(2 -a)«
0

+ 10v/3+b211	(VII)

This relation must be satisfied to comply with the
Kutta condition, which states that the flow shall leave
the airfoil at the trailing edge.

It is observed that the relation reduces to that of the
Kutta condition for stationary flow on putting xo =co,
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and in subsequence omitting the variable parameters
a $, and h.

Let us write I

,I 'VX2+ Udxo=va+h+bl2—Z)&
  O-

+ Tiovo+b lira=Q

Introduced in (IV)
xo

_ Jxo2-1 Udxo
P= —2apvbQ

fUdxo
xo+ 1

m xo-1
from (V)

Me= —2pvb 2 (^/1—c 2 1 1+2)—	
/

cos , c( c+2)>X

x`—z_ Udxo
^x0 1	 +2

Udxo \
(cos-t c —cV1—c 2^ Q

((	 xo+ 1

!00	
F

F' —	 --j	 —

.80	 -

.60	 —

.40——

.20	
-G

-G

0	 4 
s 8 ` 12 16 20 24 28 32 36 40

1//c

FiGuRE 4.—The functions F and 0 against kT -

 from (VI)

/	 l I	 x0 - Udxo
Ma = -21rpvb' 2—(a+0

. I 1/xn2 -1	 Q

\	
.1 0Vx

°± 1 Udxo
0

Introducing

x0 Udxo
C=' if	

x02-1

f m X° + i UdxO
o—

we obtain finally
P

/

= —2pvb7rCQ	 (VIII)

M,9 2 pvb 2 [(	 1 + 2) — cos-, c( c + 2))C

+2 (Cos- ,  c—c^l1—c\`)^Q= —pvb2 (T,2C — Ta)Q (IX)

X = 2rpvb 2 [( Ii +2)C -2IQ 	(X)

where Q is given above and C= C(k) will be treated in
the following section.

VALUE OF THE FUNCTION C(k)

[k 
( 6_ao) F

Put U=U0e=	
w]

where s = vt (sue co ), the distance from the first vortex
element to the airfoil, and k a positive constant deter-
mining the wave length,
then

F

"	 xa i e-ikxodx°

C(k) = ''	 x0
z
	 (XI)

x0 + 1 e_ ikzodx0l ,^.co2 — 1

These integrals are known, see next part, formulas
(XIV)—(XVII) and we obtain'

—2J,+ifI,,
C(k)	 J, -;k_	 _

—2J,-2Yo+i211,—i"JO —(J,
+ YO) +i(Y, —Jo)

_ ( — J, - I- iY,)1_ (J, +YO)—i(Y,—Jo) 1
(it +Yo)2+(Y,— JO) I

J,(J, + Yo) +Y,(Y, —JO)
(J, + yo) I + (Y, — Jo)2

—i Yl(Jf + Yo) — J,(YC -JO) =F+iG(J, + Yo) 2 + (Y,— Jo)2
where

F_ Ji(J, +YO) +11,(11,— Jo)
	((J,+I0)2+(Y,—Jo)2	 XII)

Y, Yo + J,Jo
G= (J,+110)2 +(Y, — JO) 2	

( XIII)

These functions, which are of fundamental import-
ance in the theory of the oscillating airfoil are given

graphically against the argument k in figure 4.

SOLUTION OF THE DEFINITE INTEGRALS IN C BY MEANS OF BESSEL
FUNCTIONS

We have

K. (z) _ ^me- 2 cosh t cosh nt dt

(Formula (34), p. 51--Gray, Mathews
& MacRobert: Treatise on Besse]
Functions. London, 1922)

where
in,r

K. (t) = e I G. (it)

(Eq. (28), sec. 3, p. 23, same reference)
and

Ga (x) _ — Yn (x) + [log 2 — y + 2 ]J. (x)

but

Yn (x) = 7r Y. (x) + (log 2 — ,y) J. (x)

(where Y. (x) is from N. Nielsen:
Handbuch der Theorie der Cylinder-
funktionen. Leipzig, 1904).

L This may also he expressed in flankel functions, C—	 lIi(^) —
11,0)+i 11,P)
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Thus,

Gn (x) = — 2 [ Yn (x) —iJ- (x)l

We have
e Skx

Ko (— ik)	 eik cosh i dt =dx
o	 i	 x2 — 1

or

^ cos kxdx	 r° sin kxdx
--J Yo(k)+i 2 Jo (k)=Jl m x2-1 +2J1

	 x2-1

Thus,

f

cos kxdx __ _ f Yo (k)
m Vx2 — 1	 2.

ff 
m 

sin kxdx — 
Jo 

(k)
J^  ^/x2 — 1 2

Further,

Kl (— ik) = f m e ok cosh t coshtdt =f l x, xdx

o	 i	 P

iG, (k) _ —i 
r 

Y, (k)	 J, (k)

X (cos kx+i sin kx) dxi yx2-1
Thus,

x cos kxdx = _ a J, (k)W 

V =1

x sin kxdx _ 7 Y
I (k)

a	 =^x =1

TOTAL AERODYNAMIC FORCES AND MOMENTS

TOTAL FORCE

From equations (I) and (VIII) we obtain

P = — pb 2 (v7r&

f

+ ah — arbaa — vT4( — T,b( )

— 2TrpvbCj v«+ h+ b(2 — a)«+1T"V0

+b2jT„ I	 (XVIII)

TOTAL MOMONTS

From equations (II) and (IX) we obtain similarly

MO = —pb 2[{ —2To—T,+T4(a-2)jvb&+ 2Tj'&

+irv2R(Ts—T4T10) —2rrvb#Z T47	 ^rTab2Q

— T,bli] — pvb 2 T,2 C{v«+h,+b(2- a)&

+7T,ovo+ b2̂T„ %l	 (XIX)

From equations (III) and (X)

M. _ — pb f ir(2 - a)vb& + 7rb IG + a2)a

• (T4 + T10)v2a
+(T,— T$ — (c—a)T4 +2T„ )vb/

—(T,+(c—a)T)V2 — a,rb ]

+2pvb 2,r(a+ 2)C{ v«+ h+ b(2 — a)&

• Tjovo+ b2- T o}	 (XX)

DIFFERENTIAL EQUATIONS OF MOTION

Expressing the equilibrium of the moments about a
of the entire airfoil, of the moments on the aileron
about c, and of the vertical forces, we obtain, respec-
tively, the following three equations:
«:	 — I^«—Ip%3—b(c-a)S#%—Soh—«C.+M,=0
R:	 —I^jb(c—a)&S#—hSp— pCo +Mo=0
h:	 — KM— aS^—%Sp—hCh+P=0

Rearranged:.
aL+p(I,,+b(c—a) So) +h&+«C^—M^=0

(3:	 a(I,,+b(c—a) So) +OIo+hS,+(3C,—M,=0
h:	 &&+%Ss+hM+hCn—P=0

The constants are defined as follows:

P) mass of air per unit of volume.
b, half chord of wing.
M, mass of wing per unit of length.
S.A . static moments of wing (in slugs-feet) per

unit length of wing-aileron and aileron,
respectively.	 The former is referred to
the axis a; the latter, to the hinge c.

I. 1 I0 , moments of inertia per unit length of
wing-aileron and aileron about a and c,
respectively.

Ca , torsional stiffness of wing around a, cor-
responding to unit length.

Cll, torsional stiffness of aileron around c, cor-
responding to unit length.

Ch , stiffness of wing in deflection, correspond-
ing to unit length.

DEFINITION OF PARAMETERS USED INEQUATIONS

2
K ='rM the ratio of the mass of a cylinder of air of

a diameter equal to the chord of the
wing to the mass of the wing, both taken
for equal length along span.

(XIV)

(XV)

(XVI)

(XVII)
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r"= V 12b2 the radius of gyration divided by b.
S"X. Mb-	 the center of gravity distance of the wing'

from a, divided by b.

the frequency of torsional vibration
around a.

rs = Mbz ,. reduced radius of gyration of aileron

divided by b, that is, the radius at
which the entire mass of the airfoil
would have to be concentrated to give
the moment of inertia of the aileron Ip.

xg = Mb'	 reduced center of gravity distance from c.

Way =
V 
j0 , frequency of torsional vibration of aileron

around c.
Ch

w,, _	 frequency of wing in deflection.- JM^

FINAL EQUATIONS IN NONDIMENSIONAL FORM

On introducing the quantities M" , Mg, and P,
replacing T9 and •T13 from page 5, and reducing to
nondimensional form, we obtain the following system
of equations:

z	 1	 ll	 v/ 1	 C"	 r	 T,	 Ti	 1 v	 1
(A) &^r " +K (8 +a2/J

+«b Kt 2 —a )+«Mbz+%3Lr ẑ -(c—a)xe— K—(c—a) K]+-/3K
bL

-2p-1 2—a^T,

v2 1	 \	 / 1 	 12
) vC(k) v« h,	 1	

I-' v
	 T,1 •	 \+(3K bz ^(T4 +TIO)+h (x" —aK)b -2K (a+ 	 b Cb+b +(2 —a}«+ 7r b ^+ 2v 1]

	

LY^r 2 +(e —a x KT'— c —a 
T1K^+&
	 T,-1 T4\ K +al r z 1KT)— '2 T4T11vK

(B) d	 ) e— 
7r (	 ) Ir	

p	 2	 b 7r	 \	 a2	 2 a	 b

+a[Mbz+zbzK(Ts—T4Tlo)]+h(xg— ^KTI>b+
1zKVCb(k)rvba+b+(2—

a) «+Moba+2Ra]=0

(C) «(x"—Ka>+«bK+(3(x0— T1K)—%3bT4K-+h(1+K)b+hMb

	

 7r	 Ir

	

vC(k)rv« h, 1	 T10 v 
11-1+2K b 

Lb+&
+(2 —a)«+ ^ bR+2ra^=0

SOLUTION OF EQUATIONS

As mentioned in the introduction, we shall only have
to specify the conditions under which an unstable
equilibrium may exist, no general solution being
needed. We shall therefore introduce the variables at
once as sine functions of the distance s or, in complex

form with k as an auxiliary parameter, giving the

ratio of the wave length to 2a times the half chord b:

ik 6

a = a9e

i(kb+y)
0 = 00e

i (kb+m,
and	 h = hoe

where s is the distance from the airfoil to the first

vortex element, dt = v, and ^1 and Vz are phase angles

of p and h with respect to a.

Having introduced these quantities in our system of

equations, we shall divide through by 
Ok)

%.

We observe that the velocity v is then contained in
only one term of each equation. We shall consider
this term containing v as the unknown parameter OX.
To distinguish terms containing X we shall employ a
bar; terms without bars do not contain X.

We shall resort to the following notation, taking care
to retain a perfectly cyclic arrangement. Let the
letter A refer to the coefficients in the first equation
not containing C(k) or X, B to similar coefficients
of the second equation, and C to those in the third
equation. Let the first subscript « refer to the first
.variable «, the subscript R to the second, and h to the
third. Let the second subscripts 1, 2, 3 refer to the
second derivative, the first derivative, and the argu-
ment of each variable, respectively. A "1 thus refers
to the coefficient in the first equation associated with
the second derivative of a and not containing C(k) or
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X; 0113 to the constant in the third equation attached to
h, etc. These coefficients' are as follows:

Aai= K2+1 8+az/

Aaa= C
2 — a/

Aas = 0

A01= K

r

— T + 
C — a 

K 7r

Aryl=-.L-2p—\(
T'J

l

2—a/

AM 
= a 

(T4 + Tio)

xa
Ahi =— —a

K

Ahz = 0

AN 0
r2 T

B«, — K — 7 + C —a 
K 7r

Baz 7r (2, — T, 
2 
T)

Bas = 0
r_# 1

Bpi — K — ,3 T3

1
B,s2= —2TTlTli

B#3 = z (TD — T4T1o)

Bhl = K Ti

B, =O0
Bh3 = 0

xaCal =
K
-a

C.2,=_ 1

C"3=0
_ x^ 1

Cal -K—?r

Cyz	
1

= — it

Cgs =0

Chi x

Chz =O
Chi =0

+The factor k or k, is not included in these constants. See the expressions for

the R's and I's on next page.

The solution of the instability problem as contained
in the system of three equations A, B, and C is given
by the vanishing of a third-order determinant of com-
plex numbers representing the coefficients. The solu-
tion of particular subcases of two degrees of freedom
is given by the minors involving the particular co-
efficients. We shall denote the case torsion-aileron
(«, (3) as case 3, aileron-deflection (0, h) as case 2, and
deflection-torsion (h, a) as case 1. The determinant
form of the solution is given in the_ major case and in
the three possible subcases, respectively, by:

Raa+ila« , Ra
#_
+ilaa, Rah+ilah

D= Rb.+iIDa, RDd 

I
T 2IDd, R. 2lbh =0

Rc«T'Zlca, ROTilcd, RchTilch

and

_	 Raa-I-ilaa, R.#+ilaa	 _MDh— I
	 — O Case 3
R b« -f- ilb^, Rba -f- ^,Ibe

_ I R b +ila0 , RDh+ilbh

Ma"	 •	
=0 Case 2

R	 aI	 Rcfl+	 ct1,	 ch+filch

+Mb	
R ah U h, Ra«-I-il^« 	 —0I	 l

Case 1as Ral +ila h, ha. +ila a

REAL EQUATIONS	 IMAGINARY EQUATIONS

Ra«R_a9I _ I laalae — 0 I halal I + I laal_ae = 0 Case 3
RbaRbp lbalbo 	Ibalbg	 Rb«Rbd
f?, Rbh I _	 lbtllb h I _ 0 I RbRbh	

+I 
Iaplah I =0 Case 2

Ra#Rah IaftIch	 Ic3lch	 RbaRbh

RahRb« 
I _ I 

Iahlaa I — O I RahRaa I +	 Iahla«
IRahfla.

=0 Case 1
RahRa " lahlaa	 Iahla« 

NOTE.—Terms with bars contain X; terms without bars do not contain X.

The 9 quantities Ra" , Rag, etc., refer to the real parts
and the 9 quantities laa, Ia$, etc., to the imaginary
parts of the coefficients of the 3 variables a, #, and h
in the 3 equations A, B, C on page 10. Denoting the
coefficients of a, a, and a in the first equation by p,
q, and r,

GO

 1
Raa+ilaa=KC p+ig kv +r (kv) J

which, separated in real and imaginary parts, gives
the quantities Raa and Iaa. Similarly, the remaining
quantities R and I are obtained. They are all func-
tions of k or C(k). The terms with bars Raa, Rb#,
and Rah are seen to be the only ones containing the

unknown X. The quantities Q and X will be defined
shortly. The quantities R and I are given in the
following list:

( =A#,)

(= Ahl)

(=Bhl)
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(Raa=— Aa]+Q,X+12(2+a)[(2— a)G-11] (1)

1	 (
Ras=— Aa]+k2 Aa2+ k

1 1
zr`a +21)r

 T11G-2
1kT10I (`')

Rah = —Ahl + 1 2 (a 4- 1 )G (3)

Rba=—Ba1—k r12C(2 —a)G -k F] (4)

Rba =—Ba, +k2 Ba3+ StsX -1 71-1[7 11 G—`̂ t io1F] (5)

R bh = —B hl — 1 T112 G (6)

Raa=— C"1- 12[(2—a)G—
k F] (7)

llr	 1
R aa =—Cal — k 7rLTuG-2T,o k F (8)

R ah =— Ch1+ SthX— 12G (9)

Ia"= — 1[
2 (a +2) {(2- a)F+ 1G} — Aa2] (11)

Iaa	 k[ (a +2)(TuF+2k7]oG) —Aa2J (12)

Iah=
-12(a+2)F (13)

^I ba=k[^2J (2 — a)F+1G}+Ba2] (14)

Iba —k[27r2(TuF+2kT1oG) +Baz] (i5)

Ibh = 1 T112 F
(16)

^Iaa =
1[

2 {(2- a) F+- G
I+

Ca2] (17)

I aa = 1 [1(T.F+2 1 Z1 G)+C12] (18)

I1h =12F (19)

The solution as given by the three-row determinant
shall be written explicitly in X. We are immediately
able to put down for the general case a cubic equation
in X with complex coefficients and can easily segregate
the three subcases. The quantity D is as before the
value of the determinant, but with the term containing
X missing. The quantities Maa, Mbs, and Mah are
the minors of the elements in the diagonal squares
aa, bo, and ch, respectively. They are expressed ex-
plicitly in terms of R and I under the subcases treated
in the following paragraphs.

I Aaa+ QaX	 Aaa	 Aah

D=
 I

A aa	 Aaa +QaX	 Abh	 =0

Aaa	 A,,3A1h+QIX
where Aaa=Raa+ilaa etc.

Complex cubic equation in X:

2a9901,X3 + (QaQ9Aab +it9Q4Aaa+2hQ.Ae9)X1
+(QaMaa+ QaMba+ QhMah) X+D=0 (XXI)

Case 3, (a, 0) :

Q.QOX2 +(QaAba+2,,qA aa) X+Xh= 0	 (XXII)

Case 2, (p, h) :

Q02hX2 +(Q0Aoh + Qh A ba) X+ Maa = 0 	 (XXIII)

Case 1, (h, a) :
StAX2 + (Qh Aaa+ 2a Aah)X+Mba =0 	 (XXI V))

C a _ w r 21 br w 2

"`Y— k'`Mv2K — (w r,) K ( T )vk 

Cs _ _ (-Oro 
21 brrwr 2

k'zMv`K — (wrrr) K( vk )

SthX— Chb21 _ wh 1
/

2 1 br,w,1
/

z
k My K — (CJrrr/ K

and finally
1 brr'0' 2

`Y= K( vk

We are at liberty to introduce the reference param-
eters wr and rr, and the convention adopted is: wr is
the last w in cyclic order in each of the subcases 3, 2,
and 1.

z
Then Stn =	 CJnrn ) and Stn}1 =1, thus for

Q+Irn'+l

z

Case 3, S2"=(w"r") and Qo=1warn

2Case 2, its=( Wha)and ith=1

w
Case 1, Sth=( 10h)2 and ita=1

To treat the general case of three degrees of freedom
(equation (XXI)), it is observed that the real part
of the equation is of third degree while the imaginary
part furnishes an equation of second degree. The
problem is to find values of X satisfying both equa-
tions. We shall adopt the following procedure: Plot

graphically X against 1 for both'equations. The points

of intersection are the solutions. We are only con-

cerned with positive values of k and positive values of

X. Observe that we do not have to solve for k, but
may reverse the process by choosing a number of
values of le and solve for X. The plotting of X

against k for the second-degree equation is simple

enough, whereas the task of course is somewhat more
laborious for the third-degree equation. However,
the genera] case is of less practical importance than
are the three subcases. The equation simplifies con-
siderably, becoming of second degree in X.
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We shall now proceed to consider these three sub-
cases. By virtue of the cyclic arrangement, we need
only consider the first case (a, p). The complex
quadratic equations (XXII)-(XXIV) all resolve
themselves into two independent statements, which
we shall for convenience denote "Imaginary equa-
tion" and "Real equation", the former being of first
and the latter of second degree in X. All constants
are to be resolved into their real and imaginary parts,
denoted by an upper index R or I, respectively.

Let Maa=MRa«+iMra« and let similar expressions
denote Moo and Man
Case 3, (a.0). Separating equation (XXII) we obtain.
(1) Imaginary equation:

(^«Ia9+^91a«)X—I—M'ah =0

__

`Y	 ^«Ie^-I-vela«
(2) Real equation:

Q.Q#X2+ ( QaRbe+ Q9Raa) X +MRch = 0

Eliminating X we get

(oaRbe+ uoRaa) (ua1b9+^9jaa)M'ch

+MRah (QaI be+ Qojaa) 2 = 0

By the convention adopted we have in this case:

cot =Cool	 Q«co
Co AL.) I	

and go=1

Arranging the equation in powers of Q. we have:

Q'a2 [ —M'ah(Rb9Ib9) + MRa 109 +Qa[ (M'ch)2

M'ah (Ra«loo+ la«Rbo) +2MRahlaal b91

+[ —M'ahRaalaa+ MRChjaa2] =0

But we have

(M'ah) 2—M'ah (Ra«jbo+jaaRbo)
=M'ah[Raal b9—Ra9Iba +Rb9la«—Rbala9 —Ra«Ib9 —Rb9la«1

= —M'ah(Ra9lba-f'10Rb«)

Finally, the equation for Case 3 (a, #} becomes:

«2 (MRahje92 — M'ahRo9I b9) + Qa [ —M1 M (Ra9jbq + I a9Rba)

+ 2MRChlaalbo] + MRChla
a2—M'chRa «laa=0 (XXV)

where

MRan =RaaRbo — Ra9Rba — jaajo9+jaejoa

M'ah =1?aJ69 —Ra9I ba+IT,_Rbo—ja9Rba

The remaining cases may be obtained by cyclic
rearrangement:

(( //^^	
// 1Case 2, (P,h)	 Wr=Wh	 Q9=1 ,O,

z

I r02	 gh=1
Wh

Qa(Maajah2 —Ma«Ranlah) + 09[ —Mb«(R bhlca-I IbhRcd)

12Ma«IeAlanlMa«la#t -111a,.Rb#Ib0 =O (XXVI)

where MRa«=Rb,3Ra„—RbhRa9 —Ibolah+lbhja9

Mba =Rbojah —R ehja9+ jboRch — I bhRa9

\\z
Case 1,(h,a)	 Wr=Wa	 2h=^Whl ^2 « =1

Wa r«

9h (M boja«2—Mb9Raalaa) +Qh[ —Mba (R-I.11 + I-R«h)

+2Mb91anla«1 +Mb9jah2— Mb9Rcnjan =0 (XXVII)

where Mbs=RchRaa—RaaRa„—Iahlaa+Icalah

Mbo =Rahla«—Rcal ah+ l,hRaa — IcaRah

Equations (XXV), (XXVI), and (XXVII) thus
give the solutions of the cases: torsion-aileron, aileron-
deflection, and deflection-torsion, respectively. The
quantity 9 may immediately be plotted against

kfor any value of the independent parameters.

The coefficients in the equations are all given'in terms
of R and I, which quantities have been defined above.
Routine calculations and graphs giving Q against
kare contained in Appendix I and Appendix II.

Knowing related values of Q and k, X is immediately

expressed as a function of Q by means of the first-
degree equation. The definition of X and 0 for each
subcase is given above. The cyclic arrangement of
all quantities is very convenient as it permits identical
treatment of the three subcases.

It shall finally be repeated that the above solutions
represent the border case of unstable equilibrium.
The plot of X against Q gives a boundary curve between
the stable and the unstable regions in the XQ plane.

It is preferable, however, to plot the quantity k2 X

instead of X, since this quantity is proportional to the
square of the flutter speed. The stable area can easily
be identified by inspection as it will contain the axis

k2 X
-0, if the combination is stable for zero velocity.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY FIELD, VA., May ,2, 1984..
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APPENDIX I

PROCEDURE IN SOLVING

(1) Determine the R's and Ps, nine of each for a
major case of three degrees of freedom, or those per-
taining to a particular subcase, 4 R's and 4 Ps. Refer
to the following for the R's and I's involved in each
case:

The numerals 1 to 9 and 11 to 19 are used for con-
venience.

(Major case) Three
degrees of freedom

1 Raa	 Iaa 11

2 Rap	 Iap 12

3 Rah	 Iah 13
4 Rb«	 Iba 14
5 Rae	 Ibe 15
6 Rbh	 11h 16
7 R,« 	Ica 17
8 Rap	 Iap 18

9 Rlh	 Iah 19

(Case.3) Torsional-
aileron (a, R)

1 Raa	 Iaa 11

2 Rap	 Iap 12
4 Rb«	 Ib« 14
5 R bp	 Ibp 15

(Case 2) Aileron-
deflection (g, h)

5	 R bp Ibp 15

6	 Rbh Ibh 16

8	 R bp Iap 18

9	 Rah Iah 19

(Case 1) Deflection-
torsion (h, a)

7	 Ra« 1— 17
9	 R", Iah 19
1	 Raa Iaa 11

3	 Rah Iah 13

It has been found convenient to split the R's in two
parts R=R'+R", the former being independent of

the argument
k

. The quantities I and R" are func-

NUMERICAL EXAMPLES

tions of the two independent parameters a and c only.'
The formulas are	 in the following list.

R"a«=

given

k^(a +2)l
(2—a)G—k} (1)

R'ae= k,r (T+ T`) k1 . (a+ 2 
/( T

if G— k Tiol')
1

\

(2)

R"ah = 121 a+ 1)G (3)

R.=— k 7r12{(2
—a)G-k) (¢)

R"
bp= — 

112 
T,2

(Tll G—
k T,oF) — k(TS —T4 Tlo)}

\	 /

(5)

R"bh= — I	 12
G (6)

R" a« = — k 2 ^(2 — 
a)G— k } (7)

R%o= —k-'(Tf,G-2Tto k) (8)

R"ah = — k 2 G (9)

Ia« = - 21 a+2){(2 — a+F+ G}+2 — a	 (11)

Iap— 
—mi l(a+ 1 (T

,tF+l 2 ZoG)+2p	 (12)

+ (2 — a) T41

I,,=-2(a+   k) Fl

	

(13)

Ib«= 
1z `(2 —

a)F-^kG}+1(p—T, - 1T,)	 (14)

`'Where p=`— 3 (1— C2) 3 2

I10-22r2 {Ti2(Z,F+kTfo G)—T4Tu}	 (15)

Ibh = a12 F	 (16)

I,«=2{(2—a)F+1GI+1	 (17)

I,a= 1
{(T,,F+

2

i
TtoG)—T,}	 (18)

Iah = 2F	 (19)
s The quantities 1 given in the appendix and used in the following calculations

are seen to differ from the 11e given in the body of the paper by the factor k - It

may be noticed that this factor drops out in the first-degree equations.
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Choosing certain values of a and c and employing
the values of the T's given by the formulas of the report
(p. 5) or in table I and also using the values of F and
G (formulas (XII) and (XIII)) or table II, we evaluate

the quantities I and R" for a certain number of k
values. The results of this evaluation are given in
tables III and IV, which have been worked out for
a=0,-0.2, and-0.4, and for c=0.5 and c=0. The

range of k is from 0 to 40. These tables save the work

of calculating the I's and R"'s for almost all cases of
practical importance. Interpolation may be used for
intermediate values. This leaves the quantities R' to

be determined. These, being independent of 
k' 

are as

a result easy to obtain. Their values, using the same
system of numbers for identification, and referring to
the definition of the original independent variables on
pages 9 and 10, are given as follows:

2

R'ao= -r2- (c-a) Kry + T'+ (c -a) (2)

x«

R' b«=same as R' a ry (4)

R 'ba = -
rK
o2+ 1 T3 (5)

Lo	 1R bh=- 	+7T1
(6)

K

R',«=same as R' ah (7)

R',o=same as R' bh (8)

R' ch = - 
K - 

1 (9)

Because of the symmetrical arrangement in the
determinant, the 9 quantities, are seen to reduce to
6 quantities to be calculated. It is very fortunate,
indeed, that all the remaining variables, segregate them-

selves in the 6 values of R' which are independent of k,

while the more complicated I and R" are functions
solely of c and a. In order to solve any problem it is
therefore only necessary to refer to -tables III and IV

and then to calculate the 6 values of R.
The quantities (1) to (9) and (11) to (19) thus

having been determined, the plot of 12 against 
k^ 

which

constitutes our method of solution, is obtained by
solving the equation aQ'+bQ+c=0. The constants
a, b, and c are obtained automatically by computation
according to the following scheme:

Case 3

Find products 1.5	 2.4	 11.15	 12.14

ThenMRCh = 1.5-2.4- 1 (11.15-12.14)

Find products 1.15	 2.14	 11.5	 12.4
Then Mrch=1.15-2.14+11.5-12.4

and a=MR,,,(15)2-MI,„(5.15)
b=-Mlbh (2.14+l2.4)+MR,,,(11.15)
c =MR ^h(11)2-Mr.,,(J.11) 	 Find u.

Solution: 1- 0«(15 
n 

11
M,ch,c

Similarly
Case 2

5.9	 6.8	 15.19	 16.18

MRaa= 5.9-6.82(15.19-16.18)

5.19	 6.18	 15.9	 16.8
MIaa=5.19-6.18+ 15.9-16.8

a=Ma. (19)2- Mra.(9.19)
b= -1111raa(6.18-16.8) -2MRaa(15.19)
c =MRaa(15) 2-Mra .(5.15)	 Fiiyd no

1 _Stry(19)+15
X	 Mr..

and
Case 1

9.1	 7.3	 19.11	 17.13
MRbo= 9.1-7.3--k2(19.11-17.13)

9.11	 7.13	 19.1	 17.3
Mrbo=9.11-7.13+19.1-17.3

a=M1ba(11)2-M1bo(1.11)
b= -Mlbo(7.13+17.3)+MRbo(19.11)
e=MRbo( l9 ) 2-MIO(9 - 19 )	 Find %

1	 12„(11)-x-19
X

_
 Mrbry

12. is defined as (w-r.)2 for case 3;
\worry

Slo is defined as 
(W"rry)2 

for case 2; and
Wh

Qh is defined as ( wh )2 for case 1.
War.

2

The quantity X 
is K(bw 

rr) 
by definition.

Since both 12 and 
X 

are calculated for each value of

k' we may plot k2 X directly as a function of 12. This

quantity, which is proportional to the square of the
flutter speed, represents the solution.

We shall sometimes use the square root of the above

quantity, viz,k, - b r , and will denote this
V
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quantity by F, which we shall term the "flutter factor"
The flutter velocity is consequently obtained as

v=F br,
K

Since F is nondimensional, the quantity bb 
,r, must

obviously be a velocity. It is useful to establish the
significance of this velocity, with reference to which
the flutter speed, so to speak, is measured. Observing

2
that K = Lp and that the stiffness in case 1 is given by

Wa- VMb - this reference velocity may be written:

bco„r^ l C.
vR	

^K	 b 7rp or

7rpvR2b2= Ca

The velocity vR is thus the velocity at which the total

force on the airfoil 7rpvR22b attacking with an arm 2

equals the torsional stiffness C. of the wing. This
statement means, in mse 1, that the reference velocity
used is equal to the "divergence" velocity obtained
with the torsional axis in the middle of the chord. This
velocity is considerably smaller than the usual diver-
gence velocity, which may be expressed as

vD = vR 1
2+a

where a ranges from 0 to - 2 We may thus express
the flutter velocity as

VF - vRF

In case 3 the reference velocity has a similar signifi-
cance, that is, it is the velocity at which the entire lift of

the airfoil attacking with a leverage 
2 

b equals numeri-

cally the torsional stiffness Co of the aileron or movable
tail surface.

In case 2, no suitable or useful significance of the

reference velocity is available.

TABLE I.-VALUES OF T

c=1 0= % c =0 C=-A C =-1

T__________________ 0 -0.1259 -0.6667 -1.6967 -3.1416
T2_________________ 0 -0.2103 -1.5707 -4.8356 -9.8697
T3_________________ 0 -.05313 -.8084 -3.8375 -11.1034
T4_________________ 0 -.6142 -1.5708 -2.5274 -3.1416
T5_________________ 0 -.9398 -3.4674 -6.9503 -9.8697
T6_________________ 0 -0.2103 -1.6707 -4.8356 -9.8697
T7_________________ 0 .0132 -.1964 -1.1913 -3.5343
T8_________________ 0 .0903 -.3333 -1.4805 -3.1416
T,O_________________ 0 1.9132 2.5708 2.9604 3.1416
Tu_________________ 0 1.2990 3.5708 6.3538 9.4248
T72----------------- 0 .07066 .42921 1.2990 3.1416

TABLE. II.-TABLE OF THE BESSEL FUNCTIONS Jo, J,
Yo, Y, AND THE FUNCTIONS F AND G

F(k) - J1 (Jrh YO) +Y, (YrTO)
(J,+Y0)2+(Yl-JO)2

- G(k) = Y, (J1+ YO) -J1 (Yi -J0)
(Ji+Y0)2+(Y J0)2

k
k

J0 J, Y0 Y, F -G

0 -------•- --------- __ ---------- 0.5000 0
10 yIo -0.2459 0.0435 0.0557 0.2490 .5006 0.0126
6 yk .1503 -.2767 -.2882 -.1750 .5018 .0207
4 y -.3972 -.0660 -.0170 .3979 .5037 .0305
2 54 .2239 .5767 .5104 -.1071 .5129 .0577
1 1 .7652 .4401 .0882 -.7813 .5395 .1003
.8 1 y .8463 .3688 -.0868 -. 9780 .5541 .1165
.6 136 .9120 .2867 -.3085 -1.2604 .5788 .1378
.5 2 .9385 .2423 -.4444 -1.4714 .6030 .151
.4 254 .9604 .1960 -.6060 -1.7808 .6245 .166
.3 336 .9776 .1483 -.8072 -2.2929 .6650 .180
.2 5 .9900 .0995 -1.0810 -3.3235 .7276 .1886
.	 1 10 .9975 .0499 -1. 5342 - 7.0317 .8457 .1626

.025 0 _	 _____ _	 ______ ________ ___^__ .965 .090
0 m _________ _________ __________ ________ 1.000 0
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TABLE III.-VALUES OF R

I
k 0 Yo 4 Y4 3'6 1 1V4 135 2 2y§ 3^S 5 10 20 40
c a

0 0 -0.00564 -0.01566 -0.03529 -0. 14265 -0.68965 -0.93656 -1.72330 -2.56300 -4.1 
1100

-7.68720 -18. 66150 -85.38300 -365, 72000 -1, 528.2000
R",a (1) -.2 0 -.00353 -.00981 -.02208 -.08905 -.36586 -.58061 -1.08158 -1.5740^ -2. 51580 -4.68430 -11.31010 -51.42490 -219.74900 -917.3526

-.4 0 -.00123 -.00341 -.00767 -.03084. -.12595 -.19936 -.36305 -.53676 -.85520 -1.58540 -3.80774 -17.20670 -73,35520 -305.9280

0 0 -.00163 --ON52 -.01020 -.041.75 -.18016 -.29384 -.56223 -.87212- 1.43983 -2.84988 -7.46300 -38.29650 -172.36360 -741.7972
0 -.2 0 .00030 .00083 .00184 .00679 .01922 .02266 .01629 -.01400 -.06803 -.29517 -1.29480 -10.24590 -52.49020 -241.3664

"
-.4 0 .00222 .00617 .01388 .05531 .21861 .33914 .59499 .84414

--
1.30365 2.25914 4.87340 17.80470

--
67.38320 259.0648

-R °a --'
0 0
--

.00083
--

.00229 .00510
-

.01932
--

.06419
--

.08876 .12176 .12260
--

.12205 -.02900 -.93535 -10.48970 -59 16180 -268.7236
0.5 -.2 0 .00214 .00595 .01336 .05278 .20325 .31065 .53062 .73222 1.10233 1.81136 3.55230 10.14740 31.49620 101.6340

-.4 0 .00347 .00965 .02170 .08656 .34361 .53463 .94336 1.34762 2.09190 3.66913 8.08235 30.97980 120.89760 475.2592

0 0 -.00125 -.00345 -.00763 -.02890 -.10030 -.14560 -.22470 -.30200 -.41500 -.60000 -.94300 -1.62600 -2.64000 -3.6000
R"° n (1) -.2 0 -.00075 -.00207 -.00426 -.01734 -.06018 -.08736 -.13482 -.18120 -.24900 -.36000 -.56580 -.97560 -1.58400 -2.1600

-.4 0 -.00201 -.00334 -.00502 -.01003 -.02006 -.02508 -.03236 -.04012 -.05015 -.06683 -.10030 -.20060 -.40120 -.8024

0 0 00077 .00214 .00482 .01949 .08055 .12821 .23541 .35010 .56143 1.05008 2.54920 11.66330 49.95700 208.7520
0 -.2 0 .00080 .00223 .00503 .02027 .08329 .13219 .24169 .35836 .57276 1.06650 2.57490 11.70770 50.03000 208.8500

R
-.4 0 .00084 .00233 .00523 .02106 .08603 .13616 .24796 .36661

---
.58410 1.08286

--
2.60069 11.76220 50.10160

-
208.9490

" ea ---
0 0 .00013 .00035 .00079 .00321 .01327 .02112

--
.03878 .05767

M'

-
41988.41988 1.92110 8.22870 34.3850

0.5 -.2 0 .00013 .00037 .00083 .00334 .01372 .02177 .03981 .05903 .09434 .17566 .42413 1.92840 8.24060 34.4007
-.4 0 .00014 .00038 .OW86 .00347 .01417 .02243 .04084 .06039 .09621 .17836 .42837 1.93575 8.25246 34.4169

0 0 .00124 .00343 .00772 .03101 .12642 .19830 .35807 .52400 .82930 1.5168 3.54970 15.35120 64.02240 263.2340
R" ea .5 (2) 0 .00031 .00087 .00196 .00785 .03170 .04980 .08935 .13000 .20440 .35940 .84970 3.55050 14.56740 59.3188

R"cn 0 0 .00017 .00047 .00104 .00394 .01370 .01989. .03177 .04125 .05669 .08196 .12881 .22211 .36062 .4918
.5 (2 ) 0 .00003 .00008 .00016 .00065 .00226 .00328 .00506 .00680 .00934 .01350 .02122 .03659 .05940 .0810

0 0 .01128 .03132 .07058 .28530 1.17930 1.87710 3.44670 5. 12600 8.22000 15.37450 37.32300 170.76600 731.44000 3, 056, 4000
R" ( 1 ) -.2 0 .01178 .03270 .07362 .29684 1.21954 1.93540 3.53860 5.24680 8.38600 15.61440 37.70020 171.41640 732.49600 3,057.8400

-.4 _0 .01228 .03408 .07668 .30838 1.25950 1.99360 3.63050 5.36760 8.552001 15.85440 38.07740 172.06680 733.55200 3,059.2800

R"

_
0 (1 ) 0 .00963 .02673 .06018 .24266 1.00561	 1.58246 2.89371 4.29100 6.85898 15. 49965 30.84330 140.26370 ^ 599.41300 2,502.3470'a .5 0 .00680 .01840 .04150 .16810 .69850	 1.11453 2.05320 3.06224 4.92530 9.24438 22.54400 103.67300 444.86400 1,881.9900

F" ° n (1) (2) 0 .00250 .00690 .01420 .05780 .20060	 .29120 .449401 .60400 .83000 1.20000 1.88600 3.25200 5.28WO 7.2000

1 Independent of c.	 2 Independent of a.

TABLE IV.-VALUES OF I

I
k

0 55a Si Y 55 I 13, 1% 2 235 315 5 10 20 ^	 40

c a

0 0.25000 0.25096 0.25255 0.25578 0.27240 0.33055 0.36855 0.44030 0.50050 0.60275 0.76750 1.07920 1.70320 2.68450 3.61750
la, ( 1 ) -.2 ,49000 .49050 .49131 .49302 .50189 .53359 .55464 .59472 .62794 .68671 .78070 .96021 1.32040 1.90140 2.45470

-.4 .81000 .81014 .81037 .81086 .81145 .82395 .82938 .84176 .85186 .87059 .90030 .95763 1.07300 1.26400 1.44630

0 .17805 .17874 .17985 .18219 .19433 23768 .26645 .32132 .36664 .44690 .57526 .82035 1.31213 2.10476 2.85963
0 -.2 .39170 .39212 .39278 .39418 .40147 .42748 .44474 .47761 .60485 .55300 .63002 .77708 1.07215 1.54773 2.00065

-.4 .60531 .60545 .60567 .60614 .60857 .61724 .62299 .63395 .64303 .65908 .68475 .73377 .82313 .99065 1.14163
Io6

0 .13262 .13317 .13425 .13640 .14742 .48544 .20914 .25611 .29514 .35951 .46379 .65973 1.05124 1.65524 2.22869
0.5 -.2 .21297 .21336 .21401 ..21530 .22191 .24472 .25894 .28712 .31054 .34916 .41173 .52929 .76420 1.12651 1.47067

-.4 .29342 .29354 .29376 .29419 .29640 .30400 .30891 .31813 .32594 .33881 .35966 .39884 .47714 .59792 .71260

0 -.50000 -.50060 -.50180 -.50370 -.51290 -.53950 -.55410 -.57880 -.60300 -.62450 -.66500 -.72760 -.84570 -.94100 -.96500
1. 4 ( 1 ) -.2 -.30000 -.30036 -.30108 -.30222 -.30774 -.32370 -.33246 -.34728 -.36180 -.37470 -.39900 -.43656 -.50762 -.56460 -.67900

-.4 -.10000 -.10012 -.10036 -.10074 -.10258 -.10790 -.11082 -.11576 -.12060 -.12490 -.13300 -.14552 -.16914 -.18220 -.19300

0 .39023 .39010 .38988 .38944 .38717 .37923 .37404 .36424 .35601 .34204 .31954 .27696 .19172 .05766 -.06980
0 -.2 .40389 .40378 .40359 .40320 .40119 .39397 .38918 .38005 .37249 .35911 .33771 .29683 .21469 .08255 -.04344

-.4 .41755 .41746 .41730 .41697 .41520 .40871 .40432 .39586
-

.38896 .37617 .35598 .31671 .23793 .10744 -.01707
-lee--

0 .07438' .07435 .07433
-

.07474 .07387
--

.07256 .07171 .07009 .06874 .06644 .06273 .05572 .04168 .01960 -.00327
0.5 -.2 .07663 .07661 .07658 .07651 .07618 .07499 .07420 .07270 .07145 .06925 .06572 .05899 .04548 .02370 .00295

-.4 .07887 .07885 .07882 .07867 .07848 .07741 .07668 .07529 .07416 .07205 .06871 ..06226 .04928 .02779 ..00728

0 (2) .32297 .32288 .32273 .32241 .32075 .31483 .31090 .30342 29721 28625 .26872 .23524 .16806 .05979 -.04333
lbd .5 .04270 .04270 .04270 .04270 .04240 .04150 .04095 .03930 .03904 .03760 .03386 .03080 .02200 .00845 -.00470

0 (2) •06830 •06840 •06850 •06880 .07010 07370 .07570 .07910 .08240 .08530 .09080 .00940 .11550 .12440 .13180
len .5 .01125 .01126 .01129 .01133 .01154 .01214 .01247 .01302 .01357 .01405 .01496 .01637 .01903 .02117 .02171

0 1.50000 1.49808 1.49490 1.48844 1.45520 1.33890 1.26290 1.11940 .99900 .74950 .46500 -.15840 -1.40630 -3.36900 -5.23500

I<a ( 1 ) -.2 1.70000 1.69832 1.69562 1.68992 1.66036 1.55470 1.48454 1.35092 1.24020 1.04430 .73100 .13264 -1.06802 -3.00460 -4.84900
-.4 1.90000 1.89856 1.89634 1.89140 1.88552 1.77050 1.70618 1.58244 1.48410 1.31410 .99700 .42370 -.72974 -2.64020 -4.46300

0 (2) 1.06830 1.08690 1.06470 1.06000 1.03580 .94900 .89150 .78190 .69110 .52840 .27380 -.21640 -1.20010 -2. 78560 -4.29530
I° 6 .5 .40220 .40100 .39880 .39450 .37240 .29840 .24640 .15510 .07610 -.05160 -.26030 -.65220 -1.43520 -2.fi4380 -3.79010

la ( 1 ) ( 2) 1.00000 1.00120 1.00380 1.00740 1.02580 1.07900 1.10820 1.15760 1.20600 1.24900 1.33000 1.45520 1.69140 1.82200 1.93000

1 Independent ofc. 	 2 Independent of a.
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AMIN
NUMERICAL

A number of routine examples have been worked out
to illustrate typical results. A "standard" case has
been chosen, represented by the following constants:

K=0.1, c=0.5, a=-0.4, xa=0.2,

rat =0.25, xs =80' 
r02 

160
wa, coo, wh variable.

We will show the results of a numerical computation
of the three possible subcases in succession.

DIX II

ALCULATIONS

The heavy line shows the standard case, while the
remaining curves show the effect of a change in the

value of xp to 40 and 160 -

Case 1, Flexure-torsion (h, a): Figure 9 shows again

xp =1/160 1/40
4-1

(b)

1,

80

	

I	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

	

n	 i	 ?	 .3	 4	 .S	 R	 _7	 R	 .9	 /,

Ilk
FIGURE 5.—Case 3, Torsion-aileron I(a, (3): Standard case. Showing Ra against k

Case 3, Torsion-aileron (a,(3): Figure 5 shows the ua

against k relation.and figure 6 the final curve

F=K(w^rob)2against Sta=Qprp)2=40( w;

20

/s

8

4

0	 20	 40	 60	 80	 /00	 120	 140	 160 18
Ila

FIGURE 5.—Case 3, Torsion-aileron (a, t1): Standard case. Showing flutter factor
.F against Q..

Case 2, Aileron-flexure ((3, h): Figure 7 shows the

go against krelation I and figure 8 the final curve 
K(w b 12A, /

z

against SEo=(wW a) _ 160(wh)

B It is realized that considerable care must be exercised to get these curves reason-
bly accurate.

J

Ilk
FIGURE 7.—Case 2. Aileron-deflection (]3, h): (a) Standard case. (b), (c), (d) indicate

dependency onxp. Case (d),zy=-0.004, reduces to a point.

the Qh against k relation and figure 10 the final result

K (warab)2 against Qh
 _ (wara)2 — 4(wa)z

Case 1, which is of importance in the propeller theory,
has been treated in more detail. The quantity F shown

in the figures is	
v

warab•

Figure 11 shows the dependency on W"= WI;
wa w2

figure 12 shows the dependency-on the location of the
axis a; figure 13 shows the dependency on the radius of
gyration ra=r; and figure 14 shows the dependency
on the location of the center of gravity x, for three

different combinations of constants.

EXPERIMENTAL RESULTS

Detailed discussion of the experimental work will not
be given in this paper, but shall be reserved for a later
report. The experiments given in the following are

F
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restricted to wings of a large aspect ratio, arranged with able springs restrain the wing to its equilibrium
two or thraa rlaoraaa of frP..P.r1nm in sl.nnnrrlsl.nnn with tha I ri 4;nn

/.4

.2

/.0

.B

F

.6

.4

.2

O	 4	 8	 /2	 /6	 20

(b)

F

x^ =1/40

24---1
	 0 

_t

x11
O	 .002 .004 .006 .008 .0/0	 .012 .014

fin

FIGURE 8.—Case 2, Aileron-deflection (p, h): Final curves giving flutter factor F
against Op corresponding to cases shown in figure 7.

theoretical cases. The wing is free, to move parallel to
itself in a vertical direction (h); is equipped with an

FIGURE 30.-0ase 1, Flexure-torsion (h, a): Standard case. Showing flutter factor
F against fth.

We shall present results obtained on two wings, both
of symmetrical cross section 12 percent thick, and with
chord 2b=12.7 cm, tested at 0°.

/.50

/.00

F

.50

;>P,X°jcu^^e

e
f; A I-

0i

.0	 2	 4	 6	 8	 /O
1/k

FIGURE 0.—Case 1. h lexure-torsion (h, a): Standard case. Showing 14 against-!-

axis in roller bearings at (a) (fig. 2) for torsion, and
with an aileron hinged at (c). Variable or exchange-

0 V6 Z3 V2 213 516

FIGURE 17.—Case 1, Flexure-torsion (h, a): Showing dependency of F on w^ • The

upper curve is experimental, Airfoil with r— L a= —0.4;x=0.2;   4s=.01; .1 variable.

Wing A, aluminum, with the following constants:

K=416' a=-0.4, xa =0.31, 0.173, and 0.038,

respectively;
ra2 =0.33 and wa= 7X27f
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Wing B, wood, with flap, and the constants:

100, c=0.5, a=-0.4,	 xa=0.192, rat=0.178,

xp=0.019, roe =0.0079, and wo	 kept constant
=17.6 X27r

The results for wing A, case 1, are given in figure 15;
and those for wing B, cases 2 and 3, are given in figures
16 and 17, respectively. The abscissas are the fre-
quency ratios and the ordinates are the velocities in
cm/sec. Compared with the theoretical results calcu-
lated for the three test cases, there is an almost perfect

3.00

JOMMITTEE FOR AERONAUTICS

The conclusion from the experiments is briefly that
the general shapes of the predicted response curves re-

2.00

/.so-
A

F

/.00

B

.50

0	 .5	 /.O	 /.S
V

FIGURE 13.—Case 1, Flexure-torsion (h, a): Showing dependency of F on the radius
of gyration ra=r.

A,airfoil with a= —0.4; K= 4; z=0.2; D-1;  r 	 variable.

B,airfoil with a- —0.4; —1; z=0.2; m: 1.00; r variable.

2.

D

2,

50
F

00

J	 —.2	 —.4	 —.6
a

FIGURE 12.—Case 1. Flexure-torsion (h, a): Showing dependency of F on location
of axis of rotation a. Airfoil with r= 2 ; 1=0.2; K = 4 `—'= 8 : ,I'variable.z 

agreement in case 1 (fig. 15). Not only is the minimum
velocity found near the same frequency ratio, but the
experimental and theoretical values are, furthermore,
very nearly alike. Very important is also the fact that
the peculiar shape of the response curve in case 2, pre-
dicted by the theory, repeats itself experimentally.
The theory predicts a range of instabilities extending
from a small value of the velocity to a definite upper
limit. It was very gratifying to observe that the upper-
branch of the curve not only existed but that it was
remarkably definite. A small increase in speed near
this upper limit would suffice to change the condition
from violent flutter to complete rest, no range of transi-
tion being observed. The experimental cases 2 and 3
are compared with theoretical results given by the
dotted lines in both figures (figs. 16 and 17).

2.50

2.00
B

/	 A
/. so

i
F

/.00

.50
	 caZ 1,4k=.01

0	 2	 4	 6
X.

FIGURE 14.—Case 1, Flexure-torsion (h, a): Showing dependency of F on za, the
location of the center of gravity.

A, airfoil with r— 2 % a=-0.4; `=400; "z= B % a variable.

B, airfoil with r— K= 4 % Wz=8	 ;z variable.

C, airfoil with r= 1 ; a=-0.4; a— 1 ; -̀-I; z variable.2	 100 .2

peat themselves satisfactorily. Next, that the influ-
ence of the internal friction' obviously is quite appreci-

2 This matter is the subject of a paper now in preparation.
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able in case 3. This could have been expected since
the predicted velocities and thus also the air forces on
the aileron are very low, and no steps were taken to
eliminate the friction in the hinge. The outline of the
stable region is rather vague, and the wing is subject

BILITY AND THE MECHANISM OF FLUTTER

50

xp = 0.019
40

X30

E	 Experimento/	 xp=G

F

A

U	 .2	 .4	 .6	 .B	 /.0	 1.2	 1.4
wh /wa

FIGURE 15.—Case 1. Wing A. Theoretical and experimental curves giving flutter

velocity a against frequency ratio ^Q • Deflection-torsion.

to temporary vibrations at much lower speeds than
that at which the violent flutter starts. The above
experiments are seen to refer to cases of exaggerated
unbalance, and therefore of low flutter speeds. It is
evident that the internal friction is less important at
larger velocities. The friction does in all cases increase
the speed at which flutter starts.

FiGUnc 15 .—Case 2. Wing B. Theoretical and experimental curves giving flutter

velocity a against frequency ratio WA • Aileron-deflection (0, h).

F

8
rDa/gyp

FIGURE 17. —Case 3. Theoretical curve giving flutter velocity against the fre•

quency ratio w^ • The experimental unstable area is indefinite due to the im-

portance of internal friction at very small velocities. Torsion-aileron (a, 0)
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APPENDIX III

EVALUATION OF Apo

1	 (x-x1)2+(y-y1)2
log 

(x-xl) 2 + (y+yl)2 
dx,

=[X, lo (x-
x1) 2

+(y-y,) 21l 2 f' X' dx,
g (x—x,)2+(y+y1)2I yJC yi (x—xi)

=-2c to 
1—xC—y	

—

	

1 - c2 2 

yJC

'	 x,dx,
g	

(X-C)

	

r 
	 x,2(x-x,)

+ (' 1	 x,dx,_	 ( dx,
c ^l1-x,2(x-x,) ,J V -x z

+
 xJ

dx'	 2 [Putting x,=cos B]
(X X)  -x,

--B_ x 
1og 

1-x cos B+ 1-x2 sin B Cose=l
^/ 1-x

2
	cosB-x	 Cole=C

= COS`lc + x 10a 1-cx+ ^11—x2-^1-c2
X, 

b	 C -x^/1 -

=cos''c+ 
x 

slog
C- x

1-Cx-V --j!Vj-c2

27r. 2c log (1-cx-^T. x2 -^1-c2)+2clog (X-C)

-2V - x2 cos- 'e-2x log (c-x)

+2x log (1-cx- V ---P V/1-c2)

=2 (X-C) 
log Cl-cx-V1-x Vj-C2\

X-C	 J

cos-1c

EVALUATION OF jos

,vx = f 1{log[(x-x^)2+(y-y1)21

-log[(x-x1)2+(y+y,)2]1 (x,-c)dx,

- (x,-
2 

C)2
(log[(x- XI) 2 + (y-y,)2]

-
log[ (x- XI) 2 + (y +yl) 21 } ]1

f+yf1(x1—C)z 
dx,

C	 yl( x-xl)

('1 (x, — c) 2dx1_ ('l (xi — c) 2dx, _ _ (' (Cos B—C)2d0
C y,(x-xl) - C 1- x2,(x -x,) - ,J x-rose

x,=cos 9, y,=sin 9, dx,=-sin ede

(' 1 (x, -C)2 dx _	 f 1 de
yl(x-xl) - sln e+ (x-2c)B-(x-c)2 C x-cos 6

` de d(7r+B)
X-cos e = C x+cos (V+9)

1 
log 
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