NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
SIXTH SEMI-ANNUAL REPORT

to

NASA-LEWIS RESEARCH CENTER

Grant No. NSG 3107

THEORY OF DEPOSITION OF CONDENSIBLE IMPURITIES ON SURFACES IMMERSED IN COMBUSTION GASES

Principal Investigator: Daniel E. Rosner

Period Covered: 15 January 1979 - 14 July 1979

High Temperature Chemical Reaction Engineering Laboratory
Yale University
Department of Engineering and Applied Science
New Haven, CT 06520

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
TABLE OF CONTENTS

1. INTRODUCTION AND RESEARCH OBJECTIVES 1
2. RECENT ADVANCES IN THE THEORY OF SALT/ASH DEPOSITION FROM COMBUSTION GASES 1
3. ADMINISTRATIVE INFORMATION 5
4. REFERENCES 5
5. APPENDICES 7
6. FORM NASA-C-168 9

LIST OF TABLES

1. Characteristics of Deposition Over the Spectrum of Particle Sizes 3

LIST OF FIGURES

1. Predicted dependence of Na$_2$SO$_4$ deposition rate on particle size in a proposed high pressure burner facility (normalized by monomer (vapor) rate); $p = 12$ atm 4
1. INTRODUCTION AND RESEARCH OBJECTIVES

Gas turbine development is being impeded by performance losses and "hot corrosion" of components resulting from the deposition of inorganic salts (e.g., Na₂SO₄) and oxides present in the combustion products. Engine operating experience and captive engine tests have provided valuable clues to such phenomena, but smaller-scale laboratory experiments under more precisely controlled conditions, coupled with necessary advances in deposition rate theory, will be necessary to obtain an improved understanding of the mechanisms of deposition on which future control measures can be based [KOHL, et al (1979); ROSNER, SESHDRI, et al (1979)].

We describe here recent theoretical studies directed at providing a sufficiently general, rational framework for future predictions of salt/ash deposition rates in the gas turbine (GT) and related combustion environments. A review of previous work on the mechanisms of deposition reveals that inadequate attention has been paid to the effects of multicomponent vapor transport, thermophoretic transport of vapors and small particles to actively cooled surfaces, variable fluid properties within mass transfer boundary layers, and free stream turbulence. Moreover, insufficient attention has been paid to the transition between vapor transport (Sc = 0 (1)) behavior and particle transport (Sc >> 1) behavior (illustrated below for the case of sodium sulfate capture from seeded combustion gases) and interactions between the mechanisms of concentration diffusion, thermal diffusion and impaction. In the present report, we summarize recent results of a long-range basic research program at Yale directed at obtaining an improved theoretical understanding of ash/salt deposition rate phenomena in combustion systems. Clearly, a reliable, well-grounded predictive scheme in this area could be used to guide the:

*setting of rational fuel purity standards;
*selection of engine materials and optimum engine operating conditions;
*development and optimization of fuel additive systems;
*development of simulation test facilities and interpretation of their data;
*development and signal interpretation of on-line deposition detectors.

2. RECENT ADVANCES IN THE THEORY OF SALT/ASH DEPOSITION FROM COMBUSTION GASES

Our research during the present reporting period has been focused on three areas:

a. Extension of exact laminar boundary layer mass transport theory† into the high Schmidt number (small particle) domain;

†Page proofs of our first paper in this series [SRIVASTAVA and ROSNER (1979)] have been corrected and returned. The journal version should appear in print this fall.
b. Critique of Vermes' thermophoretic deposition theory (VERMES (1978)) and the development of a comprehensive turbulent boundary layer theory including thermophoresis in a self-consistent way;

c. Application of our CFBL deposition rate theory to conditions anticipated in future, high pressure test facilities.

Additionally, we have developed and exploited useful correlation of inertial impaction efficiencies for cylinders in cross flow, to account for the effects of departures from Stokes' drag law.

Our preliminary results for predicted deposition rate behavior over the entire particle size range from monomeric vapor to particles for which inertial effects predominate (cf. Table 1) are summarized in Figure 1, constructed for conditions anticipated in a high pressure test facility with cylindrical targets in cross flow [ROSNER, D.E. and FERNANDEZ de la MORA, J. (1979)]. Shown plotted is the deposition rate of a particle containing g-Na$_2$SO$_4$ monomer units normalized by the corresponding monomer (vapor) value at the same mainstream mass fraction. Note that in the absence of thermophoresis the deposition rate drops to a value more than 3-decades below the corresponding vapor rate before the onset of inertial capture at a (pressure-level dependent) particle radius between 0.1 and 1.0 μm. Irrespective of wall cooling, for sufficiently large particles the inertial deposition rate sharply rises to values ca. 2-decades above the vapor value, assuming each incident particle "sticks." Clearly, for an uncooled surface a fairly sharp minimum deposition would therefore occur at a particle size just prior to the onset of inertial capture. We anticipate that this situation will be drastically modified by the phenomenon of thermophoresis accompanying surface cooling. Using CFBL theory, this is indicated in Figure 1 for two collector cooling conditions at a test pressure level of 12 atm. Thermophoresis is seen to "arrest" the decline in Brownian deposition rate accompanying increased particle size, and for $T_w/T_{	ext{stag}} = 0.8$ is expected to increase the deposition rate of ca. 1 μm diam. particles by almost 2-decades above the uncooled surface case. Thus thermophoretically augmented deposition rate is in fact at a level "only" about ½ decades beneath the anticipated vapor value under otherwise identical aerodynamic conditions.* While the underlying theory is still under intense development, it is clear that the ability to accurately predict such phenomena, and provide perspective on the overall deposition process, could be of significant value in future engine development involving synthetic (alternate) fuels. It should also be remarked that the information displayed in Figure 1 is essential to predict deposition rates from a particle size distribution (PSD) in the mainstream. In that case Figure 1 provides the "weighting factors" which dictate how efficiently each size range will be captured. The implications with regard to total capture from a PSD, and the falsification of a PSD (via electron microscopy on the sampled material) will be discussed elsewhere.

*It is interesting to note that for still colder walls, and especially at lower pressures, we predict that the deposition rate can actually increase slightly with particle size, for reasons totally unrelated to particle inertia. Thus, well below the onset of inertial effects we anticipate a (weak) minimum in the deposition rate, corresponding to an optimum particle size (ca. 10^{-2} μm radius in the present case) for minimum deposition rate on highly cooled walls.
<table>
<thead>
<tr>
<th>Size</th>
<th>Deposition Mechanism</th>
<th>Typical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>vapors (1-10A)</td>
<td>Fick diffusion</td>
<td>dp less than mainstream temperature</td>
</tr>
<tr>
<td></td>
<td>eddy diffusion</td>
<td>low apparent deposition efficiency</td>
</tr>
<tr>
<td></td>
<td>Soret diffusion</td>
<td>weak thermophoretic (Soret) effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dep rate plateau at T_w well below dp</td>
</tr>
<tr>
<td>submicron</td>
<td>Brownian diffusion</td>
<td>apparent dp equal to mainstream T</td>
</tr>
<tr>
<td></td>
<td>eddy diffusion</td>
<td>lowest deposition (collection) efficiency</td>
</tr>
<tr>
<td></td>
<td>thermophoresis</td>
<td>large thermophoretic effect—rate more linear in $T_e - T_w$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no apparent dp</td>
</tr>
<tr>
<td>supermicron</td>
<td>inertial impaction</td>
<td>highest deposition efficiency ($\sim 100%$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no thermophoretic effect—rate insensitive to $T_e - T_w$</td>
</tr>
</tbody>
</table>

* Taken from ROSNER and FERNANDEZ de la MORA (1979).
Figure 1. Predicted dependence of Na$_2$SO$_4$ deposition rate on particle size in a proposed high pressure burner facility (normalized by monomer (vapor) rate); $p = 12$ atm
3. ADMINISTRATIVE INFORMATION

The work described herein is primarily due to the writer and his students, J. Fernandez de la Mora, S. Gokoglu, and A. Zydney. The primary focus for the period covered was the preparation of our paper for the DOE/EPRI Conference [ROSNER and FERNANDEZ de la MORA (1979)].* Our participation in this conference was not only valuable in alerting the gas turbine community to our NASA-supported theoretical and experimental work, but also in making contact with industrial R&D groups (GE, Westinghouse, Pratt and Whitney, Solar, etc.) facing similar technological problems. Some of the key developments reported were the result of A. Zydney's NASA-sponsored participation in the Yale Engineering and Applied Science Summer Research Program. An abstract of Mr. Zydney's talk, presented at the final conference for this program (8-9 August 1979), is included (Section 5.2).

Our comprehensive paper on chemically frozen boundary layer (CFBL) theory [ROSNER, CHEN, FRYBURG and KOHL (1979)] has just been published in Combustion Science and Technology (Vol. 20, Nos. 3, 4, p. 87 ff) and reprints will be transmitted to NASA in a few weeks.

During the next semi-annual period attention will be focused on the development of turbulent boundary layer theory for small particle deposition in the important general case of nonunity a Le product. A portion of this period (October through December) will be spent at the University of California – Santa Barbara, where the writer will investigate new laser probing techniques to be used in future experiments aimed at testing our vapor and particle deposition rate theories.

4. REFERENCES

ROSNER, D.E.; CHEN, B-K; FRYBURG, G.C.; and KOHL, F.J. "Chemically Frozen Multi-component Boundary Layer Theory of Salt and/or Ash Deposition Rates from Combustion Gases." Combustion Science and Technology (in press); 1979

*Our abstract for this paper is given in Section 5.1. The paper will appear in The Proceedings of the Conference, to be published in 1980 by the U.S. Government Printing Office. The participation of Mr. Fernandez de la Mora was jointly sponsored by NASA and the Yale University Department of Engineering and Applied Science.

5. APPENDICES (5.1)

RECENT ADVANCES IN THE THEORY OF SALT/ASH DEPOSITION IN COMBUSTION SYSTEMS

Daniel E. Ronner* and Juan Fernandes de La Mora
High Temperature Chemical Reaction Engineering Laboratory
Yale University, New Haven, CT

ABSTRACT

Gas turbine development is being impeded by performance losses and "hot corrosion" of components resulting from the deposition of inorganic salts (e.g., Na, SO₄) and oxides present in the combustion products. Engine operating experience and captive engine tests have provided valuable clues to such phenomena, but smaller-scale laboratory experiments under more precisely controlled conditions, coupled with necessary advances in deposition rate theory, will be necessary to obtain an improved understanding of the mechanisms of deposition on which future control measures can be based.

We describe here recent theoretical and experimental studies directed at providing a sufficiently general, rational framework for future predictions of salt/ash deposition rates in the gas turbine GT and related combustion environments. A review of previous work on the mechanisms of deposition reveals that inadequate attention has been paid to the effects of multicomponent vapor transport, thermophoretic transport of vapors and small particles to actively cooled surfaces, variable fluid properties within mass transfer boundary layers, and free stream turbulence. Moreover, insufficient attention has been paid to the transition between vapor transport (Sc<0.1) behavior and particle transport (Sc>>1) behavior (illustrated here for the case of sodium sulfate capture from seeded combustion gases) and interactions of the mechanisms of concentration diffusion, thermal diffusion and impaction. Recent advances in some of these areas are described. Thus, information derived from new experimental techniques based on the on-line use of optical methods to rapidly probe deposition onset and rates in combustion systems. We conclude with an assessment of research needs highlighted both by this program and the increased interest in "synthetic fuels."

*Supported in part by NASA-Lewis Research Center/Materials and Structures Division, under Grants NGR-3107 and 3169.

Professor of Chemical Engineering and Applied Science; Director ofHTCRE Lab.

Graduate student.
The problem of corrosion of gas turbine materials, known to be associated with the formation of a condensate layer, has motivated our interest in predicting inorganic vapor and particle deposition rates. For example, when the fuel contains sulfur impurities and the ingestion air contains NaCl, hot corrosion caused by Na₂SO₄(c) will occur if the turbine blades are at temperatures below the dew point of sodium sulfate.

Deposition rates can be predicted by a "chemically frozen" boundary layer (CFBL) theory, based on the assumption that negligible amounts of chemical reaction and/or condensation occur within the mass transfer boundary layer, and an inertial capture theory. These theories include the coupled effects of Fick (concentration) diffusion and Soret (thermal) diffusion.

One of our goals is to predict the deposition rates of Na₂SO₄(c) from a seeded laboratory burner now being designed at the NASA-Lewis Research Center. This test facility will operate at stagnation pressures well above one atmosphere, will have velocities near sonic, and will use five adjacent cylindrical cooled targets to measure deposition rates. Some interesting features of this problem are the appearance of Na₂SO₄ particles (g-meru) in the mainstream, non-negligible effects of thermophoresis, the importance of viscous dissipation, and the interference caused by the presence of the cylindrical targets. The computer program required to incorporate these effects has been constructed in modular form to allow for possible future refinement and application to other related systems.

For vapor deposition an interesting corollary of CFBL theory is that the dew point is not a purely thermodynamic quantity but is influenced by thermal and multicomponent diffusion. In fact there is more than one "dew point" depending upon its operational definition: one defined by extrapolating the mass deposition rate as a function of temperature curve to zero deposition and one defined by the temperature at which a clean (condensate-free) surface will first exhibit a stable condensate upon cooling. We are investigating the magnitude of the difference between these two "dew points", as well as the approximate dew point predicted solely on the basis of thermodynamics using mainstream chemical element ratios.

Supported in part by NASA Grant 3107

We describe here recent theoretical and experimental studies directed at providing a sufficiently general, rational framework for future predictions of salt/ash deposition rates in the gas turbine GT and related combustion environments. A review of previous work on the mechanisms of deposition reveals that inadequate attention has been paid to the effects of multicomponent vapor transport, thermophoretic transport of vapors and small particles to actively cooled surfaces, variable fluid properties within mass transfer boundary layers, and free stream turbulence. Moreover, insufficient attention has been paid to the transition between vapor transport (Sc = 0 (1)) behavior and particle transport (Sc > 1) behavior (illustrated here for the case of sodium sulfate capture from seeded combustion gases) and interactions between the mechanisms of concentration diffusion, thermal diffusion and impaction.