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ABSTRACT

An analytical solution is developed for the_detefminatién-of-the
stresses and displacements in a wnidirectional fiber-reinforced composite
containing an arbitrary number of broken fibers as well as longitudinal
vielding and splitting of the matrix. |

The solution is developed using a 'materials-modeling" approach which
is based on a shear-lag stress transfer mechanism. The equilibrium equation
in the axial direction gives a pair of integral equations which are solved
numerically.

Excellent agreement is shown to exist between fhe solution and
experimental results for notched- unidirectional boron/aluminum laminates
: withqut splittiné. For brittle matrix composites (ie. epoxy) equally good
results are indicated for both matrix yielding and splitting.

For yielding without splitting the fracture strength is found to
depend on crack length while for large splitting it is crack length

independent.
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INTRODUCTION

An sttempt is made in this study to develop an analytical model capable
of predicting the characteristic strength and fracture properties of a
unidirectional composite laminate. The irvestigation considers a twé-
dimensional region containing an arbitrary number of broken fibefs as well
as loﬁgitudinal matrix damage as shown in Figure 1. The fiber breaks lie
along a transverse line and therefore represent a notch. Damage to the
matrix originates at the ends of the notch, i.e., in the region between
the last broken and first unbrocken fibef and consists of both yielding
and splitting. Symmetry is assumed as indicated and only the first
quadrant of the region is-shownfin,Eigufe.l.i

The matrix is taken to be an elastic-perfectly plastic material and
the fibers are linearly elastic. Load is transferred from adjacent
fibers through the matrix by a simple shear-lag mechanism with the shear
stresses being independent of transverse displacements. The axial fiber
stress is also independent of transverse‘displacements and the equilibrium
equation in the fiber direction reduces to an equation in the longitudinal
displacement alone, as is typicai of shear-lag solutions.

Similar investigations have been presented by Hedgepeth énd Van Dyke
in (1] and (2] in which only one broken fiber was considered with yielding
alone in [1] and splitting alone in [2]. The extension to more thah one
broken fiber however is not developed conveniently by the influence function
techhiquebas suggested in {[1] because the brcken fiber adjacent to the

damaged region is not tyvical of any of the remaining broken fibers.
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For a given number of broken fibers and a known applied axial stress,
taken to be uniform at points .remcte from the damage, the stress concen-
tration in wibroken fibers, the extent of the matrix damage and the fiber
displacements are desired..

An interesting study is presented by‘Peters in [31 concerning the
fracture strength of unidirectional composites which exhibit large matrix
splitting (Boron/epo#y, graphite/epoxy) and thoseﬂsuch as boron/aluminum
which have large plastic yielding but little spiitting._ For the first‘class
the fractﬁre strength 1s independent of'érack length while in the secona '
crack length dependence is fqund. This behavior is considered in detail
using the present model and theuextremes of large splitting and iarge
yielding with no splifﬁingxareupredicﬁed accurateiy. The ‘model apparently

does ﬁot have the capability of accounting for those composites which.

exhibit matrix yielding and small but stable longitudinal splitting. Some

consideration is given to the reasons for such difficulties and possible

modifications: to give & more-complete model are. discussed...




FORMULATION

The laminate is modeled as a'two—dimensiOnal:region, shown in Figure 1,
having a single row of para;lel, identical, equally spaced fibers with the
broken fibers being symmetric asbout the center line and the matrix damage
occuring bétween the last broken and the first unﬁroken fiber. If is
assumed that the fibers have a much higher elastic modulus in the axial
direction than' the matrix and therefore the fibers are taken as supporting
all of the axial stress in the laminate. The matrix supports transverse
normal stresses and shear stresses.

Admittedly, most unidirectional composites consist of more than one

. lamina with all fibers. in each: lamina surely not perfectly aligned either

through the thickness or, with-in each layer. These variations can have
a considerable influence on the stress state. For example, in [L4] and
[5] it is shown that the shear stress becomes large as the fiber spacing
decreases, i.e. 0(1/vd) for rigid fibers where d is the minimum distance
vetween fibers. Local failureumayiwell occur at critical peints through
the thickness in advance of laminate splitting which could give an
apparent shear stiffﬁess considerably different from that ‘or the matrix’
alone. It is assumed that such variations éan be accounted for by an
appropriate choize of the shear modulus GM and the transfer distance, h.
It is with this in mind that the following developmentb'iil be concerned
with an equivalent lamina where GM and h are to be 5e3ermined

experimentally for =ny particular laminate.



A free<body diagram for a typical element is given in~Figure'2,_with the
special condition for the last Srokén fiver, denoted;by.n = N,rand”for-;"

vy < L that

’TIN+1 =Ty =y , (1)
‘where ‘ | <y - =l,y2%,
(2)
=0,y <%, and

<y - 4>

L equals the total damaged length, & split length, and T_ the matrix
yleld stress. |

The equilibrium equations-in the longitudinal and transverse directions
réspectively'for all fibers n, with the exception of N and N+1 wheﬁ

vy £ L, are

¥~ ay lper = Tl =0 and (3)
ha )
SINRCAIRS + 35 NEL RPN

For fiber N, y <L, TlN+l = T <y - &>, 2nd the equilidrium equations

are
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- Y w LD = = : v .
i v T <Y L T]N 0 , and (5)
B hd .
ol | -.0 l + === {-T <y - > + TI }=0.. (6)

For fiber N+l, y <L, T|N+1 = -1,y - %>, and thei equilibrium equations

are

Ap 90, ly,y .

ry iy Ty+2 + To<y - IL>‘= 0, and (1)
hd

o] =-ol +Z>{t]g, -t <y-2}t=0.(8)

LAY LAY 2 dy N+2 o

Further simplifying assumptions are now made regarding the stress-
displacement relations which reduce the number of unknowns from three

stresses to the two displacements, un and V.- Let

dv

o.| =E,—, (9)
n F ¥

Omln = ‘*‘M{urﬁ-l - un}/h, and | (10)

]y =G lv g v e - (11)

Substituting into the equilibrium equations, the following pairs of

equations are obtained:

Tor all fibers, except N and N+l when K 7y < L,

2
" hA dv - ' :
.f_F_'E.E.-_._r.l-.-y- {V -2V + v }= 0 , and (12) .
G. t 2 n+l N ‘
‘M dy
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E ST |
B U " 2% Tl 3 gy Man Yyl =0 (3

For fiver N, y <L,

2 .
E. A, d" v, . .
i ¢ Yy R N
» et — 4 v, - ¥, = =T <y -.2>
. Ot gy® Bl WGy e

. - ‘
Sp—— . T w—: —a———-

0, and S(1k)

E, | Oy
i lugyy -2y * uyopd t 2 dy {h [VN Va1

- To<y =} =0 » (15)4
For fiber N+1, y & L.
EFAthzvN"'l ‘ B h’l‘o 4 A
Gt —-———2—- + VN+2 _ VN“']. + a—-—- Ky = > =20 ; .and (16 )
M ay - M

G
M hd
2 togg - 2“’\H—l L iy G Ue e

= TO‘<y - 2,>} = O . - . (17)

The shear streSSHdisplacemeﬁt form assumed in equation (11) is

referred to as the shear-lag assumptioh end, as can be seen above, the

equilibrium equation in the4axial,dirécti0n is independent of the
& ‘transverse displacement w Iﬁ is then possible to obtain a solution
) for the axial displacement V. and ﬁherefore the fiber stress and shear
stréss,,independently éf »un; Once‘3vh..;s known; the‘transve?sg

} . Qdisplacement and matrix stress may be . obtained from the remaining




equilibrium equation. References [5] and [6] consider similér.three— and
two-diménsionai solutions, without matrix damage however, in which the
shearvstress is assumed to depend on tpeTﬁransverse as;wellvaé the axial
displacément and the equilihnium equations do notruncouple as' for the
shear-lag assumption.

It is the intént of this study to‘invéstigate beha&iof”due to broken
fibers and ma.trik damage in whiéh the failure criterion for the matrix
is due» to shear alone and the matrix is assumed to be'elastic-perféctly ‘
plastic. In this case, the matrix transvérse normal stress -plays nho role
and the remaining discussion will focus on the solution of the axial
equilibrium‘equation and the determination of the fiber.stress and shear
stress. The.inclusion'of’thevmétrix normal stresses in a modified failure
criterion using ﬁhe‘sheafalag-model.as well as. using the coupled
equilibrium equations of [6], with damage, is being considered by thelfirét
author and will be presented at. a later date.

The single~equiiibriumueqpation»in,the loﬁgitudinalwdirecfion is
théﬁ:

for all fibers, except N and N+1 when ¥y < L,

2
Eghen 271,

- + =

G, t 2 * Va1 2vh Va-1 ;o s (18)
M dy
for fiver N, y <L
EpAh &y

N : h .
; : -V = LKy = 4> = .
I R Sl TN A (19)
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8
and for fiber N+l, y <L
EFAFh ‘dng*.l ‘ i B -
ot ) * Ve T N+l + = To<y - > = 0. (20)
M dy o M

Noting the coefficient of the sec¢ond derivative term in' the above

equations, the' following changes in the variables are suggested. Let

Ephgt _ v, o » |
vy =|—5+n and o, =00 =E; s, then the normalized displacement
GMb £ - ®n Fay 7 . ‘ T

Vn is d.e_fin_ed by the equation

T = T
o )
Algebraic manipulation then gives
vt i av |
_n o n
£ ®© & T, GyAp dn

N, 0. Vs '?O, o and B ‘are non-dimensional.

In these egquations ' E_F",, AF’ t, L and % are-taken as actual fiber modulus,

fiber cross-sectional area, lamina thickness and damage dimensicns respectively.
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‘The quantit.i'és‘ T, and GM/h are equivalent yield stress and lamina

stiffness res_pectivelyv and are to be determined experimentally. The. yield
stress_, ‘ro, should be reasonably close to the matrix yield stress obtained

from'- a test using matrix material alone as long as the damage occurs ‘in the

‘matrix rather than along the interface or within the fiber. The quantity

GM/h- is felt to be less well defined as discussed sbove.

The resulting non-dimensional equations are:

For all fibers, except N and N+l when nsa,

dZVn
2 * Vnﬂ-l-, - 2Vn * Vn-l =05 (22)
an~ S
for fiber N, n<a
Eas )
‘,-.——2———VN+VN_1-T<H—B>=O,BIIG. (23)
an .
and for fiber N+l, n <o
.devN+1 = ' |
F-VN+1+VN+2+T<H—S>=O . (24)

Defining a new unknown function f(n) such that

f(n) Vg = Vy4p - TN - 8> if n<a, and

_f(n)

n
o
-
3
v
Q
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with g(n) =y - Vyep TOT the same rangevdfv n values, the above three
equations then become

aP . o

5+ Vn+l, - avn *V, =0 (25)

dn ' ,

dZVN ‘ | :

5t Ve T Ayt Vg T -f(n), and . (26)

dn . : :

szN-i-l | - |

-;:2—4‘ VN_*IQ - 2YN+1 + VN = f(n) . (21) .

These differential-di fferen,ce‘ equations may be reduced to diffe'rential

equatigné by introdueing:a: new fimetion: .

(n,0) = 12; > V_(n)cos(n8) from which (28)
' o on=0 .
Vﬁ(n)"‘. = % fg ‘V(h,e)cos_(‘ne.)de and’ ' (29) -

23 -
2 MY _5[1 - cos(8)]Tlcos(nd)ad = 0 (30)
™0 .2 , : w
dn
2 . GV = N . . . :
— Iy = - 2[1 - cos(8)]V}cos(n8)a = -f(n), fiber N, n <o, and (31)
dn‘- L
2w a°F - ‘ «
;fo {——é- -201 -»cos(e)]V}:c.os(ne)_de = £(n), fiber N+l, n <o (32)

©an

-

Making use of the orthogonality of the circular functions these three = -
equations may be written as one equation, valid for all values of n

and n, as follows:




of
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;o

2= 3
-gjfg {igg'- 21 - cos(e)}V}cps(nQ)d9’=‘%-<q—n> fg f(n){cos[(N+l)61_

v‘-~coskN6)}cos(n6)d9 . (33)

This equation is of the formv

12? fg F(n,B8) cos(nB)d® = 0 for all n and n

and noting the definition of ¥(n,8) in equations (28) and (29) it is seen
that the function F(n,8) is even valued in 6 and therefore, if the
integral is to vanish.fOrlall;,h,,the function F(n;ﬂﬂvfmust'be zero.

The single equation specifyingf'f(h,e) is then

d2

__g._ 625.§-—<a - n>D2f(n), where (35)

dn

6% = 2[1 - cos(0)] = b sin®(8/2), and (36)
D° = cos(N8) - cos[(N+1)8] . o (37)

It is very significant that the irregular boundary céndition, equetion
(1), of specified stress over a finite iength, not coincident with either
ccordinate axis can be accounted for exactly and that the broblem.reduces
Tc cne differential equation whigh must sasisfy boundary conditions als g

ne coordinate axes only. The 2bility tc do so strongly depends on tae

'y

orm of the failure criterion. A cchdi:ic in which both normal and shear



stresses were included generally would couple the axial and transverse

]

I

“I equilibrium equations and yie;d'a:fér_more'complicated set of differential
equations. The épparent-nee& to'ihﬁeétigate such modifications is indicated"'i'

I by the results and, as méntioned above, is being considered.

I The solution to the problem of vanishing stresses and displacements
at infinity and uniform compression on the ends of the broken fibers will

; now be sought. The complete solution is obtained‘By adding the results
corresponding to uniform axial stress and no broken fibers to the

following solution.

The boundary conditions are then

v‘-‘a ‘as. N >, | ’ (38

| . nl
av -
aﬁg-= Uh = -1, for n =0, broken fibers, and (39)
V, =0, for m =0, unbroken fibers. _ (ko) .

Using a technique such as variation of parameters to determine a
particular solution to equation (35), the complete solution satisfying
- vanishing stresses and displacements at infinity is
2

-5n 1

&

7(n,8) = A(8)e <a-n>fY sinn[8(n-t)le(elas  (u)

“l

where the unknown functions are A(8) and £(t). The remaining two.

] . .boundaryfconditions:givé
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av (o) : ;
dﬁ = %—fg {-6A(8) + e Ig cosh(8t)f(t)dt}cos(nB)dd = -1 | (42)
.for all broken fibérs
and
v (0) = 2 (™ {a(e) QE-I“ inh(8t)f(t)dt}cos( a)&e =0 (43)
a9 =T _ -5 ‘g8t cos(n =

for all unbroken fibers.

Equation (43) is solved exactly by taking - .

. N | §
A(8) - g—fg'sinhwt)f(_t)dt = I B_ cos(md) (L)
i =0

where the Bm are constants. Equation (42) then gives a system of N+l

algebraic equations for the N+1  constants Bm in terms of f(n) which
is, as yet, unknown. For the case of no damage the problem is then solved,
i.e. see [T]. For example, consider the special case of no damage and

one broken fiber. Then equation (L42) gives

2 M .
FIO -8 Bo cos(0)dd = -1

2B

; -———O f'Tr i = 3
or i 2 sin(6/2)d6 =1 ,

Therefore 33 = 7/8 = A(8) and



14
v, - -1?;- m 4(8)e™" cos(n8)a® .

The maximum fiber stress is in ‘the "f,i_rs‘b,unbréken fiber at n =0, and is

0f|1(0) av, (o) |

r

E R LY

. _L
o,  dn 0~ 8A(8)cos(8)d8 = 3,
or, for a unit stress at infinity and an unloaded free end of the broken
fiber
G, = W/3.
Twe pormalized erack opening displacement, 2V (0), is /2.
For metrix damage, o # 0, equation (L2) must Dbe supplemented by the

condition that
f(n)=&¢n) -kfén—ﬁ’% n<a, ad o (45)
gla) = Tg.
The constants Bﬁ and the.fupction g{n) are theh spegified by
requiring that equations (42) and (L45) ve éatisf‘ied.‘ Using equation (L1),

and after considerable algebraic manipulation, *“he displacement of any

fiber for all values of T is



'
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2 . <0 N
Vﬁ(n) = E’fo e™n mio Bm cos(me)cos(na)dﬂ
+ 272 2(e)Me (Jen]) - (s4n)}at , (46)
‘where
c()?- ™ D2 -6E  o(ne)as .
g 7703 e 7 cos(nB)do .

Equation (L42) then becomes

Q. -dt o -3t

N
28 I B cos(md) 12 /% a™SY g(t)ar + D250 e at} x

m=0

x cos{n®)d® = -1, n =0, 1, ..., N (b7)

and equation (L5) along with (46) gives.

_ . |
g(n) = i fg -n I B, cos(m8){cos(¥8) - cos[(N+1)6]}d6
: m=0 .

+ -é—fg g(e){cy(lt = nl) = cyle +m) = ¢y (Jo = nl) + Oy (v + n)Ke

l\)lall

72 ogle = nl) = Ggle + ) = Sy (e = nl) + ey (e e mdas
(18)

The condition that

[13]
Q
1]
'
Q

(9}
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also must‘be satisfied.

: 'PhysiCally,‘it would be mbre-dfreét‘tOHSpecify the applied;stress, O
and the number of broken fibers, N,vand deteymine the damage zome o and B
depending on given yielding and splitting conditions. As. a andv B appear
in the limits of the above integrals this is not convenient mathematiCaliy
and it is easier to specify the number of broken fibers, N, aﬁd the damage
zone o and B, and compute the required applied stress O_.

These equations were solved as follows:
I. Ari initial set of constants Bm was determined for ﬁhe problem of no

damage, o = B = 0 in equation (47), i.e.,

N L R
mio B, = fo § cos(mbleos(n6)de = 1 , (50)

n=0, 1, sies N

II. These initial consténté"wé?éwtheﬁ substituted into the inﬁegral
equation (LB) and, along wi;h equation (L9), the function g(n)
and T, were determined using the desired values for o and 3.

III‘,vUSing g(n) and ?a,a}new set of constants, Bm, was computed froém
equation (47) with the desired values of & and B. |

Iv. This procedure was repeated until thebunknOwns changéd lesé than 2
prescribed amount with additionél itefations.
In the above solution the unxhown function, g(n); was assumed tc

‘e piece-wise linear over the interval 0 <n < a of the form
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when the interval wes divided into k equal subdivisions.. The function
g(n) then contained 2k Unknpwns with one additional unknown-being i, As
g(n) is the displacement difference it should be a positivé, monotonically
decreasing function and its representation as a piece-wise linear functionv
should be sufficiently accurate. The (2k + ., equations were obtained by
requiring that the integral equation, equation (48), ve satisfied at the
(k + 1) end points; (k - 1) equations resﬁlted from the requirement of
continuity of the function g(n) between adjacent intervals and the last
equation was gi&en by g(a) = %o'

With the longitudinal displacement v, now known the trénsvgrse dis-
plagement u is obtained by solving»equétioqs (E), (6), and (8).
Equation (10) gives the ﬁatrix normal stress in‘termS'of u . This solution

is recorded below for completeness.

§is
g G“h o -
oM y &V df s *
(o]

+ sin[(N + i>91§>>§3%’§§§lz%% | | (515
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~ The maximum fiber stress normalized by the laminate constant T = TO;/

'is plotted against the normalized applied stress where the maximum

' 18
SOLUTION AND RESULTS

The numerical solution_tovequationsl(h7)};(MB) and (49) was developed
as described sbove and was solved using the NASA-Lengley Research Center

CDC computer. CQnVérgepce was fairly rapidiwith'the number of subdivisions,

'k, required in the representation of the function g(n) being on the order

of fifteen and the number of iterations necessary to give a change in the

normalized shear, T, such that (%

- - q-h
“FTYT <1
(541 ri)/ji lQ 7, on the order of ten.

Larger values bf‘the démage region, o and B, required an increase

in both the number of subdivisions and number of jterations, with o, B <2
being relatively small values and q, B 2 6 requiring ingreaséd aceuracy.
Computation time varied both: with:the above parameters and with.thé

number of broken fibers with typical times being on the order of one minute

for a, B2 and N =1, to twenty minutes for @, B = 4 and N = 15.

One problem of particular significance is the behavior of a laminate
after damage develops and the inygstigation of the potential for continued
longitudinal yielding or splitting;bf”for notch extension due to progressive

fiber bresks. Some typical results.are given in Figure 3 for one and seven

" broken fibers using a two/one split strain-to-yield strain condition as shown.

BT
fiber stress is always found to occur in the first unbroken fiber at the
end of the split, (n = 8).

These results are representative of many different cases worked, i.e.

~increasing the strain at which splitiing occurs simply increases both -Gf

and 0, at the voint of splitting but the.naturegof»the behavior is

unchanged. That is, in 2ll cases once the split forms the fiber unloads
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and the split length becomes unbounded‘under,a five to ‘ten percent further .
1ncrease in applled stress, at which time the behavior reduces to that of
ah unnotched laminate with _of = Gm The net section fracture stress is
then independent of initial crack length as [3].

This predicted behavior indeed happens ir unidirectional graphite/
epoxy or boron/epoxy composites. Howe&er, for a less brittle matrix
material such as aluminum some small splitting has been observed [3] and
[7], but it is stable and the stress in the fiber continues to increase
with increased remote stress until the ultimate fiber stress is reached.
The model then appears to give reasonable results for large splitting but
doeé ﬁot account for small, stable longitudinal.splitting. It is of
considerable interest to determine if the inability of the~model:to
predict the behavior of stable splittingfis-duéeto the- assumed failure
criterion or the shear-lag model. As mentioned above, a more complex
failure criterion including the matrix normal stress as determined from the
shear-lag solutidnbanwell'asvmnre'complete%shear«stressgﬁisplacementﬂ
assumptions are being studied.

Surprisingly, in view of the above difficulties, the present model
approximates the behavior of boron/alumimum amazingly well for strains
such that splitting does not occur, and gives an accurate estimate of
the iaminate strength as a function of dumber of brcken fibers (crack
length) as well as crack opening displacement. The following results
are for no splitting (8 = oi and conclusions Zor a specific boron/aluminum-:

laminate will be drawn from the general resulfs.
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Figure h’gives a plot of the maximum fibef_stress as a function of the
applied stress for different numbers of broken fibers. Defining a function

S equal to the normalized ultimate fiber stress as,

s;:iz_l_‘c_’G_MfF_
To Eth‘

the reqnired applied stress for a specified ultimate fiber stress is
thenvgiven by,the:interséction of the horizontal linés corresponding to
specific values of S as shown.

As the applied stress is increased the matrix undergoes plastic
deformation as indicated by Figure 5. For all ranges of o indicated, the
maximum shear strain which is at n\= 0 between the N and N+1 fiberé,
is né greater  than threeuﬁiﬁesxfﬁewyieldJstrain'and}thérefore'for a boron/
aluminum compcsite splittinguprébablyzwould not occur. The lines of
constant S values on Figure 5 are obtained by locating the corresponding
(o,sN) points from Figure b Figure 6 is also developed from Figure L
and gives the strength of the laminate as a function of number of broken.
fibers (or crack length). That i"sr,'%.v:vcfo° is the remote stress required to
give a particular ultimate stréss in the first unbroken fiber.

In addition to theée results fhe displacement of the éenter broken
fiber, or therefore one-half the_éfack opening displacement, ié-obtained
and is depicted in Figure 7 as a function of apvplied stfess for different
numbers of broken fibers. As the number of broken fibers (créck length)

increases it is seen that the matrix yeilding contributes a . constant

proportion of the total crack opening displacement. This is consistent with

“Pigure 5 where, if the damage length, -a, is plotzed against number of broken -

fibers for ccnstant remote stress, Figure 3 is cbtained and the relationship

is linear as shown.
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Using these general results the values of To and the stiffneés constant
.GM/h will'now be determined by comparing with the.experimental study of
Awerbuch‘in [8] for unidirectional boron/aluminum. - The laminate used.in‘[8}
~had the following material and geometric properties:
EF = 475 x 109 Pa, .
A -8 2

1.59 x 10~ m“, (D = 0.1427 mm),

t = 0.165 mm/ply, eight plies,
- 9
o, = 3.98 x 10° Pa,
w = width = 25.4 mm, and

fiber centerline spacing = 0.178 mm

For a laminate having seven broken fibers, which corresponds to é crack
length of about 1.27 mm, the load ¥s:. COD curve is given in Figure»9; An
approximate "best fit" pf this curve with [8] requires that the yield stress
and stiffness be ' |

TO = 0.109 x 109 Pa, and

GM/h =65.4 x 10‘2 N/m3,

from which the normalized ultimate stress, S, is

_ %t S
To Lth

For reference, the damage length is then L = 4.71 o fiber spacings and the
laminate constant T = 3.65 Ty

jow, using these values, the corresponding curve for 29 broken fibers, or
a crack length of 5 mmiis plotted in Figure S and the comparison is.seen to ce

very 2ocd.
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Further, referring to Figure 6, the failure stress of the 1aminaté as measured
in [8] is seen to be éf the ssame form as the predicted value;uaithough the
mbdel gives a much‘iarger decrease‘in strength for smallAcraek length than the
experimental‘resu;t. ‘The value of S determined from the COD measurements -
does, however, predict the failure stress reasonably well for 1qﬁger erack
lengths. The significant pointvis that thelgimple shear-lég model doés relate
crack openiﬁg displacement and lamingte strength. Changes in the shear-lag
assumption énd/oi' ﬁhe failure criterion may well improve t’,he agreement with
experimental results, and an investigation into which modifications are
important should lead to a better understanding Qf.the fracture process.

It should be noted that the VQlue of T_ given above is close to the
measured value fof a homcgengteus;;:aluminﬂm specimen and ‘is also approximately:
equal to the value determiﬁed'expgrimentally by Pete?s.[S] for a boron/
aluminum composite. The equivalept stiffness, GM/h’ for h=1,78x lO—h m,
which is the center—liﬁe distance vetween fibers, givés a shear modulus
G, = 11.6 x 109 Pa.. ‘Thiénis»onathe.§;demk9f,onechalffthe value for aluminum.

M
Smaller values of h, of course, give smaller values of GM'
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CONCLUSIONS

It has been'shown thétvg model based on the shear-lag assumptions and
ﬁéing a shear stress failure‘critefibn of ‘an élaétic;perfectly plastic..
matrix material is capable of predicting the behaviof of a unidirectional
boroﬁ/alﬁminum composite qﬁite accurately fox‘straiﬁ levels below.those
sufficient to cause splitting. For 5rittle matrix‘composités the model
gives equally good resﬁlts for both yielding and large splitting..

Thé ffacture stress ié then predicted for the two limit cases of large
vielding with no splitting and large splitting. For yielding alone the
fiﬁers nearest the notch céntinue to increase in stress as the applied load‘
is increased and,the.fzécﬁuzéﬁ&ﬁﬁeségis.crack length dependent. In. a
brittle matrix longitﬁdinal crécksfdevelop under low loads and become
‘unbounded.for a smali’incréaserin;IOad, thereby negating the effects of the

notch and the fracture stress is crack length independent.
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