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ABSTRACT

I
An analytical solution is developed for the determination of the

I stresses and displacements in a unidirectional fiber-reinforced composite

containing an arbitrary number of broken f_.beN_as well as longitudinal

I yielding and splitting of the matrix.

The solution is developed using a "materials-modeling" approach which
is based on a shear-lag stress transfer mechanism. The equilibrium equation

in the axial direction gives a pair of integral equations which are solved

numerically.

Excellent agreement is shown to exist between the solution and

experimental results for _otehed unidirectional boron/aluminum laminates

without splitting. For brittle matrix composites (ie. epoxy) equally good

results are indicated for both matrix yielding and splitting.

For yielding without splitting the fracture strength is found to

I depend on crack length _hile for large splitting it is crack length

i independent.

I
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INTRODUCTION

t
An attempt is made in this study to develop an analytical model capable

I of predicting the characteristic strength and fracture properties of a

unidirectional composite laminate. The inJes_igation considers a two-

I dimensional region containing an arbitrary number of broken fibers as well

I as longitudinal matrix damage as shown in Figure 1. The fiber breaks lie
along a transverse line and therefore represent a notch. Damage to the

matrix originates at the ends of the notch, i.e., in the region between

the last broken and first unbroken fiber and consists of both yielding

I and splitting. Symmetry is assumed as indicated and only the first

I quadrant of the region is shown in Figure i.
The matrix is taken to be an elastic-perfectly plastic material and

I the fibers are linearly elastic. Load is transferred from adjacent

fibers through the matrix by a simple shear-lag mechanism with the shear

I stresses being independent of transversedisplacements. The axial fiber

I stress is also independent of transverse displacements and the equilibrium
equation in the fiber direction reduces to an equation in the longitudinal

displacement alone, is of solutions.
as typical shear-lag

Similar investigations have been presented by Hedgepeth and Van Dyke

in [i] and [2] in which only one broken fiber was considered with yielding

alone in [i] and splitting alone in [2]. _e extension to more than one

broken fiber however !s not developed conveniently by the influence function

technique as suggested in [1] because the _o__a_n=fiber adjacent to the

damaged region is not typical of any of the remaining broken fibers.

I
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For a given number of broken fibers and a known applied axial stress,

I taken to be uniform at points remote from the damage, the stress concen-

tration in unbroken fibers, the extent of the matrix damage and the fiber

I displacements are desired.

An interesting study is presented by Peters in [3] concerning the
fracture strength of unidirectional composites which exhibit large matrix

I splitting (Boron/epoxy, graphite/epoxy) and those such as boron/aluminum

which have large plastic yielding but little splitting. For the first class

the fracture strength is independent of crack length while in the second

crack length dependence is found. This behavior is considered in detail

I using the present model and the extremes of large splitting and large

I yielding with no splitting are predicted accurately. The_model apparently

does not have the capability of accounting for those composites which

j exhibit matrix yielding and small but stable longitudinal splitting. Some

consideration is given to the reasons for such difficulties and possible

i modifications to give a more complete model are _±scusse_.
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I FORMULATION

I The laminate is modeled as a two-dimensional region, shown in Figure i,

i having a single row of parallel, identical, equally spaced fibers with the

broken fibers being symmetric about the center line and the matrix damage

I occuring the last broken and the first unbroken fiber. It is
between

assumed that the fibers have a much higher elastic modulus in the axial

I direction than the matrix and therefore the fibers are taken as supporting

all of the axial stress in the laminate. The matrix supports transverse

normal stresses and shear stresses.

composites consist of more than one
Admittedly, most unidirectional

lamina with all fibers,i_..eack_-71ami_a_,.surelynot perfectly aligned either

I through the thickness or, _ith-in each layer. These variations can have

i a considerable influence on the stress state. For example, in [_] and

[5] it is shown that the shear stress becomes large as the fiber spacing

I rigid fibers where d is the minimum distance
decreases, i.e. 0(i//_) for

between fibers. Local failure may_well occur at critical points through

I the thickness in =-dvanceof laminate splitting which could give =_n

i apparent shear stiffness considerably different from that for the matrix
alone. It is assumed that such variations can be accounted for by an

appropriate choice of the shear modulus GM and the tr_-nsferdistance, h.

it is with this in mind that the following development -__llbe concerned

_ith an equivalent lamina where GM and h are to be ie_erm_ined

experimentally for =_nyparticular laminate.
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A free-body diagram for a typical element is given in Figure 2, with the

I special condition for the last broken fiber, ,denotedoy n = N, and for

y < L that

TIN+I = -To<Y- £> _ (i)

I where £> = i >
<y

(2)

I <y - £> = 0 , y < Z , and

L eqUals the total damaged length, _Z split length, and T the matrix" ' 0

I yield Stress.

The equilibrium equations in the longitudinal and transverse directions

I respectively,for all fibers n, with the.exception of N and N+I when

I y<_L, are

1 --AFd_ftn+_l -_l_=o and (3)t dy n+l '

+ h d___{T1 + Tin} = 0 (4)ml -(_mI 2 dy n+l.n+l n

/
_ = <y - Z>, end the equilibrium equationsFor fU.ber N, y < L, "rlN+l -T o

i are
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AFd%IN
..... T <y-_>-tl N = 0 , and (5)

I t dy o

%nI + kd_ {__o<y_ ._>+ tiN}= 0 . (6)Cml - 2_dyN+l N

For fiber N+I, y < L, TIN+I = -T <y - £>, and the equilibrium equationsm O

I are
dofIN+l

I + + To<y - Z> = 0 and (7)t dy TN+2

-_ I +h___{_l - -_>}--o (8)
(_mlN+2 m N+I 2 dy N+2 To<Y

I Further simplifying assumptions are now made regarding the stress-

I displacement relations which reduce the number of unknowns from three

stresses to the two displacements, un and vn. Let

n

I Cfln= EF d--_-' (9)

oral = _M{u+! - Un}/h, azd (10)n

Tln+l = GM{Vn+! - Vn}/h (ll)

Substituting into the equilibrium equations, the following pairs of

equations are obtained:

For all fibers, except N and N.! when .v _<L,

hAFEF d2vn
+ {Vn+ I - 2v + Vn_1} = 0 , and (12)

[ GMtdy2

I



I " EM GM d Vn_I} = 0 [13)_-{U+l-2Un.U-l}+_-d7[q+l-

I For fiber N, y <L,

. GMtdY2 v__1 v_ %0

EM +

J
- To<Y - £>} = 0 (15)

l
For fiber N+I_ y < L.

l
EFA_ d2vN._ h_........_.(_ + + _<y - Z> =.0 and (16)

"I" EM --

- T <y - Z>} -_0 (17)
o

The shear stress-displacement form assumed in equation (ll) is

refer_ed to as the shear-lag assumptio_ end, as can be seen above, the

equilibrium equation in the axial directiOn iS independent of the

I transverse displacement un. It is then possible to obtain a solution

) for the axial displacement Vn, and therefore the fiber stress a_ud shear
I

stress, independently of un. OnCe vn is known, the transverse

displacement and matrix stress may be obtained from the remaining

i
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equilibrium equation. References [5] and [6] consider similar three- and

I two-dimensional solutions, _-Ltho_t;matrix damagehowever, in which the

shear stress is asstunedto depend on the transverse as _well as the axial

I displacement and the equilibrA_m equations do not uncouple as for the

"I shear-lag assumption.It is the intent of this study to investigate behavior due to broken

I fibers and matrix damage in which the failure criterion for the matrix

is due to shear alone and the matrix is assumed to be elastic-perfectly

I plastic. In this case, the matrix transverse normal stress plays no role

and the remaining discussion will focus on the solution of the axial

I equilibrium equation and the determination of the fiber stress and shear

I stress. The inclusion of the matrix normal stresses in a modified failure

criterion using the shear-lag model as well as using the coupled

I equilibrium equations of [6], with damage, is being considered by the first

i author and will be presented at a later date.The single equilibr_u_e_uation in the longitudinal direction is

I then:
for all fibers, except N and N+l when y _<L,

EFAFh d2v
n + Vn+l _ 2v + Vn_1 = 0 , (18)

I GMt dy2 n

I for fiber N, y K L

_i-_ " N GMGMt dy "

J

t

i



I
and for fiber N+I, y <L

I
EFAFhd2VN.l h
-- + VN+2 - VN+i '1._ To<Y -£> = 0,.. (20)I aMt dy2

Noting the coefficient of the second derivative term in the above

equations, the following changes in tl_e variables are suggested. Let

y j aMt n and _fl =_n =EF,_n
= _ , then the normalized displacement

n

I is defined by the equation
Vn

JEA_ Vn

and the normalized shear stress _ is given by.
" O

To o

I,
i Algebraic manipulation then gives

dV T _ dV

__n = .2.o n (21)n o_j

r ln = _= (Vn - Vn_I} To

L = _ , and £ = 8 , where
4 GMt _l -M

I
D, _n' Vn' _o' _ and 8 are non-dimensional.

__De_In these equations E_, Am, t, L and Z are taken as actual e_" _ modulus,

fiber cross-sectional area, lamina thickness anddamage dimensicns respectively.

I
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I The quantities To and GM/h are equivalent yield stress and lamina
stiffness respectively and are to be determined experimentally. The yield

I stress, To, should be reasonably close to the matrix yield stress obtained

from a test using matrix material alone as long as the damage occurs in the

I matrix rather than along the interface or vitnin the fiber. The quantity

GM/h is felt to be less well defined as discussed above.

I The resulting non-dimensional equations are:

I For all fibers, except N and _+l when n < _,

I d2V - +v_1=o (aa)_n2+V.l.2vn

for fiber N, T] < e

I d2V_

I an2 -vN+v__l-_<n-_>=o,and (23)

i and for fiber N+l, 11< e

d2VN+1

I d_2 VN+1 + VN+2 + _<n - 8> = 0 (24)

I Defining a new unknown function f(_) such that

f(o) = VN - VN+ 1 - _<_ - 8> if n < a , and

f(n) : o , n > a

i

J
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]
with g(q) - VN - VN+I for the same range of _ values, the above three

I equations then become

.n -- (25)
an-T+V+l-2v +V_l 0 ..

d112 - . . . ,

d2V_+l
I . + + --dn2 vN+2 -2VN.1 vN f(n) (27)

I differential-difference eq,uationsmay be reduced to differential.These

equation,s by intro_ucing_a:ne_':,ftmcti:o_:

I
V(n,e)= g Z Vn(n)cos(ne)from which (28)

n=0

I the three equat_ionsbecome

i

2 Trd2V 2[z - cos(e)]V}cos(ne)de=0 (30)
fO{dn2-

2 ,w d2VZ (@)]V}cos(ne)d@ = -e(q) fiber N n < _, and (31)

I T_o ( -2[l-cos - , , _dn2

2 ir {cler_ _ 211 - cos(e)]?}:c.os(ne)cm= f(,q) fiber N+I, rt < c_ (32)
I ' -

Making use of the orthogonalit_ of _he circula-_functions these three

equations may be written as one equazion, valid for all values of n

and q, as follows:

I
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2 _ {d2_V

I _-'ro _2 - 2[1 - cos(e)}f}cos(ne)de= 2__<c_-n>r_"f(n){cos[(N+l)e]
1T

- cos(_e)}cos(ne)de. (33)

I This equation is of the form

I
2 i0wF(n,e)cos(ne)de= 0 for all n and n

I
and noting the definition of V(n,e) in equations (28) and (29) it is seen

that the ftmction F(n,e) is even valued in 8 and therefore, if the

I integral _s to vanish for all :n.., the f_mction F(rl',-e) must be zero.
The single equation specifying _(n,e) is then

d2_ _2_ = -<e - q>D2f(n), where (35)
I dn_F_

62 = 211 - cos(e)] = 4 sin2(e/2), and (36)

I D2 = cos(Ne) - cos[(N+l)e] (37)

i
)

It is very significant that the irregular boundary condition, equation

(!), of specified stress over a finite length, not coincident with either
)

coordinate axis can be accounted for exactly and that the problem reduces

_c one differential equation which must sazisfy boundary conditions along

-he coor_inate axes only. The _foi!ityto do so strongly depends on _he

form of the Tallure criterion. A ccndiuion in which both normal and shear

I
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I

stresses were included generally would couple the axial and transverse

I equilibrium equations and yield a far more complicated set of differential

equations. The apparent need to investigate such modifications is indicated

l by the results and, as mentioned above, is being considered.

I The solution to the problem of vanishing stresses and displacements
at infinity and uniform compression on the ends of the broken fibers will

I now sought. The complete solution is obtained by adding the results
be

corresponding to uniform axial stress and no broken fibers to the

I following solution.

i The boundary conditions are then

V =:_O as n . _n ' (38)

I clV
n= _ = -i, for _]= O, broken fibers, and (39)dn n

V = 0 , for' q = O, unbroken fibers. (hO)

i n

i Using a technique such as variation of parameters to determine a
particUlar solution to equation (35), the complete solution Satisfying

I vanishing stresses and displacements at infinity is

I D2V(n,e)= A(e)e-_n+ =--<a-n>fa sinh[_(n-t)]f(t)dt (hl)• 0 rl

where the unknown functions are A(e) __nd °:(_), The remaining two

boundary conditions give

]
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! dV (0)
n 2 w D2 e cosh(6t)f(t)dt}cos(ne)de = -1 (42)

I dn = _ I0 {-_A(8) + f0

I for all broken fibers

I and

2 w DR _ sinh(_t)f(t)dt}cos(nS)de = 0 (43)
V(O) --¥10 {A(e) - _-/0

I
for al! unbroken fibers.

Equation(43)is solved,exact_-_°'taMing'_

t
N

D2 _ sinh(6t)f(t)dt = Z B cos(me) (44)

i A(e) - _- fO m=O m

I where the B are constants. Equation (42) then gives a system of N+Im

algebraic equal;ions for the N.I constants B in terms of f(rl) whichm

I is, as yet, unknown. For the case of no damage the problem is then solved,

i i.e. see [7]. For example, consider the special case of no damage and
one broken fiber, _"nen equation (42) gives

I
J

2_2o_ B cos(O)de:-io

2B
o. :w 2 sin(ei2)de = i ,

or w "0

Therefore 5 = 7/8 = A(O) and
o

i



I V
2 _r

n = _ IO A(e)e-_ncos(n_)de•

The maximum fiber stress is in the first unbroken fiber at _ = O, and is

I cfl (o)1 dVI(O) 2 _ l
= an '" = _fo - _A(e)cos(e)de= _-,

"I O"

I or, for a unit stress at infinity and an unloaded free end of the broken

fiber

t
_I= _/3.

I The normalized crack opening disp_acement, 2Vo(O), is _/2.

For matrix damage, _ # O, equation (h2) must be supplemented by the

I condition that

f(n:) -_ g(n:) - £6n-S>, n < _ , and- (n,_).

t
I
I The constants Bm and the function g(n) are then specified by

requiring that equations (h2) and (h5) be satisfied. Using equation (hl),

1 and after considerable algebraic manipulation, the displacement of any

fiber for all values of _ is

)
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I
2 _ e-_n

Vn(n) = _I 0 7. Bm cos(me]cos(he)de

1
+ _-I0 f(t){Cn(It-nl)- Cn(t+n)}dt, (46)!

I where

I 2 _ D2 -6_Cn(E)= _ I0 7 e cos(ne)ae

Equation (42) then becomes

2 w N _ -_t + 2- _ -St
I0 {-6 Z Bm cos(m@)......D2 /O e g(t,)dt.-D ToE.B:e dt} ×

I m-O

i × cos(ne)de= -i, n = O, I, ...,N (47)

I and equation (45) along with (46) gives

I 2 W e__n N
g(n) = _ /0 _. Bm cos(me){cos(Ne) - cos[(N+l)e]}d@

m=0

+ _IfOa g(t){CN(It - nl) - CN(t + n) - CN+l(It - nl) + CN+I(t + n)}dt

_rc_ {CN([t -Tll) - CN(t + 'q) - CN+!(It - Of) + CN+I(t + n)}dt- 2 "BI
J

; The condition that
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also must be satisfied.

I Physically, it would be more specify , _
direct to the applied stress

and the number of broken fibers, N, and determine the damage zone e and
I

"_ depending on given yielding and spli_ting conditions. As _ and 8 appear

I in the limits of the above integrals this is not convenient mathematically
and it is easier to specify the number Of broken fibers, N, and the damage

I zone e and 8, and compute o .
the required applied stress

TheSe equations were solVed as follows:

I i. A_ initial set of c_nstants B was determined for the problem of nom

damage, a = 6 --0 in equation (47), i_e.,

N

I BrrE m _'0 d cos(me)cos(ne)d8 = i , (50)
m=O

I n = O, i, ..., N

II. These initial constants were then substitUted into the integral

equation (48) and, along with equation (49), the function g(_)

and _o were determined using _.hedesiged values for a and _3,

I !ii_ Using g(n) and _@ja new set of constants, Bm, was computed from

i equation (47) with the desiPed v__luesof _ and B,
IV. This procedure was repeated until the unknowns changed less than a

f

I prescribed amount with additional iterations.

__un_tlon,g(n) was assumed toIn the above solution the unknown _ _ ..... ,

be piece-wise linear over the interval 0 <__ <_e of the form

i i " .kg_(n = Y + ¥_n, ! : _,2,..
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]
when the interval was divided into k equal subdivisions. The function

I g(n) then contained 2k Unkmowns with one additional unlmown being _@. As

g(n) is the displacement difference it should be a positive, monotonically

I decreasing function and its representation as a piece-wise linear function

I should be sufficiently accurate. The [2k + _ equations were obtained by
requiring that the integral equation, equation C_8), be satisfied at the

I (k + l) end points_ (k - 1] equations resulted from the requirement of

continuity of the function g(_) between adjacent intervals and the last

equation was given by g(a) = O"

With the longitudinal displacement v now known the transverse dis-
n

placement u is obtaine_by solving equations (4), (6), and (8).n

. This solutionEquation (10) gives the matrix normal stress in terms of un

is recorded below for completeness.

W

-_ tsln (NS)

0

.sint(_.1)el}_[i[cos(ne)(ede) (51)

I
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SOLUTION AND RESULTS

The numerical solution to equations (47), (48) and {h9) was developed

i as described above:and was solved using the NASA_Langley Research Center
_DC computer, Convergence was fairly rapid _th the number of subdivisions,

I k, required in the representation of the function g(_) being on the order

of fifteen and the number of iterations necessary to give a change in the

normalized she_ar,_, such that (_i+l - _i)/_i < lO_h on the order of ten.

Larger wa!_uesof the damage region, e and B, required an increase

in both the number of subdivisions and nu_nberof iterations, with a, B < 2

I being relatively small values and _, B > 6 requiring increased accuracy.

Computa$io_ time varied het_o_th_ _ke_above parametezs and with the

I number of broken fibers with _ypical times being on the order of one minute

for a, B _ 2 and N = l, to twenty minutes for a, B = 4 and N = 15.

One problem of particular significance is the behavior of a laminate

i after damage develops and the investigation of the potential for continued

longitudinal yielding or splitting or for notch extension due to progressive

I fiber breaks. Some typical results are given in Figur.e 3 for one and seven

broken fibers using a two/one split strain-to-yield strain condition as shown.

The maximum fiber stress normalized by the laminate constant To r

is plotted against the normalized applied stress where the ms_ximum

fiber stress is always found to occur in the first unbroken fiber at the

end of the split, (n = B).

d_._er_nt cases worked, i.e.gm 4-These r_sul_s are representative of many _

increasing the strain a_ which splitting occurs simP_lyincreases both qf

and G_ aZ mhe ooint of splitting bnt the nature of the behavior is

unchanged. That is, in all cases once the split forms the fiber unloads

I



and the split length becomes unbounded under a five to ten percent further

increase in applied stress, at _hich time the behavior reduces
to that of

an unnotched laminate with _f = q_. The net section fracture stress is

I then independent of initial crack length as t3].

I This predicted behavior indeed happens iL unidirectional graphite/
epoxy or boron/epoxy composites. However, for a less brittle matrix

I material such as aluminum some splitting
small has been observed [3]and

17], but it is stable and the stress in the fiber continues to increase

I with increased remote stress until the ultimate fiber stress is reached.

The model then appears to give reasonable results for large splitting but

does not account for small_ ats]s1elongitudinal splitting. It is of

I interest to determine if the inability of the model to
considerable

predict the behavior of stable splitting is due_to theeassumed failure

I criterion or the shear-lag model. As mentioned above, a more complex

failure criterion including the matrix normal stress as determined from the
shear-lag solution as wel_ asmore com_rlete_shea_stres_s_-_isplacement_-

I assumptions are being
studied.

Surprisingly, in view of the above difficulties, the present model

I approximates the behavior of boron/alumimum amazingly well for strains

I such that splitting does not occur, and gives an accurate estimate of
the laminate strength as a function of number of broken fibers (crack

length) as well as crack opening displacement. The following results

are for no sp_litting(S = 0) and conclusions for a specific boron!aluminum

laminate _Jillbe drawn from the general results.
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I Figure 4 gives a plot of the maximum fiber stress as a function of the

I applied stress for different numbers of broken fibers. Defining a function
S equal to the normalized ultimate fiberstress as,

|

_ S_ TO _E_t '

Cult

the required applied stress for a specified ultimate fiber stress is

I then given by the intersection of the horizontal lines corresponding to
specific values of S as shown.

I As the applied stress is increased the matrix undergoes plastic

deformation as indicated by Figure 5. For all ranges of a indicated, the

I maximum shear strain which is at n = 0 between the N and N+l fibers,

I is no greater than threetimesthe yield strain and therefore for a boron/
aluminhm composite splittingprobably would not occur. The lines of

I constant S values on Figure 5 are obtained by locating the corresponding

(c ,N) points from Figure h. Figure 6 is also developed from Figure 4

I and gives the streng_chof't.helaminat:eas a.fu_ti_o_ o.fnumher of.broken

I fibers (or crack length). That is, q is the remote stress required to
give a particular ultimate stress in the first unbroken fiber.

In addition to these results the displacement of the center broken

fiber, or therefore one-half the crack opening displacement, is obtained

and is depicted in Figure 7 as a function of applied stress for different

numbers of broken fibers. As the number of broken fibers (crack length)

increases it is seen that the matrix yeilding contributes a constant

proportion of the total crack opening displacement. _is is consistent with

Figure 5 where, if the damage length, e, is o!o_ed against number of broken

fibers for constant remote stress,Figure 8 is ob_alned and the relationship

I is linear as shown.

i •
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I Using these general results the values of T and the stiffness constanto

GM/h will now be determined by comparing with the experimental study of
Awerbuch in 18] for unidirectional boron/aluminum. The laminate used in [8]

had the following material and geometric properties:

= 475 x l09 Pa,

AF = 1.59 x l0-8 m , (D = 0.1427 mm),

I t = 0.165 mm/ply, eight plies,

Gult - 3.98 x l09 Pc,

I w = width = 25.4 ram,and

fiber centerline spacing = 0.178 mm

I For a laminate having seven broken fibers, which corresponds to a crack

I length of about 1.2T ram,_he laad _si._COD curve is given in Figure 9. An
approximate "best fit" of this curve with [8] requires that the yield stress

I and stiffness be

T = 0.i09 x l09 Pa, and

I o
l012

GM/h = 65.4 x N/m 3,

" I°

from which the normalized ultimate stress, S, is

ault _ 4.1
I S = TO _ EFht =

I For reference, the damage length is then L = 4.71 a fiber spacings and the

I l_na_e constant T = 8.65 T •
O O

_iow,using these values, the corresponding curve for 29 broken fibers, or

a crack length of 5 mm is plotted in Figare 9 and the comparison is seen to be

very =_ood.
)

I
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Further, referring to Figure 6, the failure stress of the laminate as measured

in [8] is seen to be of the_ame form as the predicted value, although the

model gives a much larger decrease in strength for small crack length than the

I experimental result. The value of S determined from the COD measurements

does, however, predict the failure stress reasonably well for longer crack

I lengths. The significant point is that the simple shear-lag model does relate

I crack opening displacement and l_n_te strength. Changes in the shear-lag

assumption and/or the failure criterion may well improve the agreement with

I experimental results, and an investigation into which modifications are

important should lead to a better understanding of the fracture process.

I It should be noted that the value of T given above is close to the

I measured value for a homoge_eo_ aluminum specimen and is also approximately
equal to the value determined experimentally by Peters [3] for a boron/

I aluminum composite. The equivalent stiffness, GM/h, for h = 1.78 x l0"4 m,

which is the center-line distance between flbers, gives a shear modulus

Ii GM = 11.6 x 109 P_. _ 1_ a_the order of one half the value for aluminum.

I Smaller values of h, of course, give smaller values of GM.
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CONCLUSIONS

! It has been shown that a model based on the shear-lag assumptions and

using a shear stress failure criterion of an elastic-perfectly plastic
matrix material is capable of predicting the behavior of a unidirectional

boron!aluminum composite quite accurately for strain levels below those

sufficient to cause splitting. For brittle matrix composites the model

I gives equally good results for both yielding and large splitting.

i The fracture stress is then predicted for the two limit cases of large
yielding with no splitting and large splitting. For yielding alone the

I fibers nearest the notch continue to increase in stress as the applied load
is increased and the fz_ctu_s,_re_:is crack length _[ependent, In a

I brittle matrix longitudinal cracks develop under low loads and become

unbounded for a small increase in load, thereby negating the effects of the

I notch and the fracture stress is crack length independent.

!
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