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PREFACE

This Annual Technical Report presents research performed during the

first year of NASA-Lewis Grant NSG-3217, which was initiated on August 1,

1978. The grant is continuing, presently being budgeted for the second

year. The NASA-Lewis Technical Monitor since the inception of this grant

has been Dr. J. A. DiCarlo c,E the Materials Science Branch.

The study is being performed within the Composite Materials Research

Group at the University of Wyoming. Principal Investigators are Mr.

Daniel P. Murphy, Graduate Student, and Dr. Donald F. Adams, Professor,

both of the Mechanical Engineering Department. Mohamed M. Monib and Brent

G. Schaffer, Graduate Students in Mechanical Engineering, have also made

significant contributions.
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SECTION

INTRODUCTION

It is widely recognized that crack initiation and propagation in

fiber-reinforced composite materials is necessarily quite different from

that in homogenous solids, and that most applications of classical lin-

early elastic fracture mechanics have not been satisfactory.

The Inhomogenous nature of fiber-reinforced materials strongly

suggests the use of so-called micromechanical analysis techniques, where-

in the interactions of the individual reinforcing fibers with the surround-

ing matrix material are considered. Specifically, if sufficient insight

into the geometrical effects can be gained, the energy absorption due to

crack initiation and growth in a unidirectional boron/aluminum composite

can be characterized with a two-dimensional micromechanics analysis.

Th u1,s is the primary objective of the present study.

The Bret-year effort reported here has been directed Lit investigat-

ing the response of a unidirectional boron/aluminum composite containing

a fiber flaw site or discontinuity. Tensile loading in the direction of

the fiber axes is of primary interest, although transverse loading has

also been analyzed. To approximate the behavior of at metaal matrix com-

posite under these conditions, two features are of major importance to a

micromechancs analysis:

*The ability to model the full, elastic-plastic range of the

matrix material and modify it to account for changes in

temperature.

*The availability of a procedure for approximating crack

1,



growth In the matrix material.

The finite element micromachanice program previously developed at

the University of Wyoming (1) possessed the first of these features of

the time that the present grant was awarded, and a crack propagation

capability was incorporated during the fourth quarter of this first-

year effort.

A survey of the literature available on the topics of micromechan-

ice analyses and the effect of flaws in unidirectional metal matrix com-

posites has yielded some valuable information, and has provided insight

into the problems involved. But the exact problem dealt with in this

grant study does not appear to have been attempted before.

Among previous analysis efforts is a series of two reports published

In 1973 by Adams (2), and Repnau and Adams [3), in which a finite ele-

ment micromechanics program was developed, incorporating both elasto-

plastic capability and crack propagation. A unidirectional boron/aluminum

composite was studied, although no flaw sites were incorporated and the
a

model grit represented a section of the composite which was transverse

to the fiber axes. Also, because a plane strain solution was assumed,

only transverse loading could be studied. Material modifications to

reflect environmental changes were also not available in these programs.

Another effort was that of Ko (4) in 1977. His analysis was of an

axially loaded boron/aluminum composite using the NASTRAN finite element

h	

analysis program as a micromechanics tool. His model consisted of a

single boron fiber surrounded by an annular section of aluminum matrix.
1.

Axisymmetric finite elements were employed and discontinuitites in both

the fiber and the matrix were studied. However, the NASTRAN solution did

not incorporate elastoplastic material response, nor was any sort of

crack propagation scheme used.
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iAkbatrxadeh (5) undertook a micromechanics analysis of flawed uni-

directional composites in 1978. The material he studied was E-glass/

epoxy and the flaws were taken to be discontinuous fibers. Again, the

NASTRAN finite element program was employed, and no elastoplastic de-

formation or crack growth was considered. Nis finite element grid rep-

resented a cross-sectional cut transverse to the fiber axes and all load-

ing was confined to the plane o f th4 t section, i.e., there was no axial

loading. Akbarzadeh's finite 01CMCIIL grid was very fine, and his analy-

sis yielded valuable information concerning the elastic microstress state

in composites with different fiber packing geometries and densities, and

the effects of varying the elastic moduli of the constituent materials.

Finally , there has been a limited amount of experimental work done

in the area of interest dealt with in this report. One of the more im-

portant of these was by Awerbuch and Hahn (61, in which the crack tip dam-

age And fracture toughness of axially loaded unidirectional boron/aluminum

composites was studied.	 Awerbuch and Rahn prepared tension coupons of

boron/aluminum in which a center notch was machined, cutting several fibers

and the Aluminum matrix between them, Among the data generated by their

r efforts are some describing the deformation of the aluminum matrix surround-

ing the last cut fiber at the edge of the notch.	 This has been of some

Help in evaluating the results of the present analysis.

The present study has yielded valuable information about the analyti-

cal approach to the problem of energy absorption in a .flawed metal matrix

composite.	 The analysis is a quasi-three-dimensional formulation (see

Section 3), which allows traction loads to be applied to threee mutually

x
w perpendicular surfaces of a two-dimensional finite element array. This

program in its present form can predict the microstress state of a metal

3



matrix composite with flaws quite well,, and provides information regard-

ing the energy Absorption resulting from plastic deformation and crack

growth at such flaw sites. However, the full characterization of this

problem involves the rather complex geometry resulting from an array of

cylindrical fibers inbedded in an elastopla®tic matrix, and the final

solution would appear to require a three-dimensional analysis. The follow
_a

on second-year study will consider such an analysis, incorporating all

of the features of the present analysis into a three-dimensional form-

ulation.

i
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SECTION 2

SUMMARY

r

0

Considerable progress in the investigation of the energy absorption j

and the microstress state of unidirectional metal matrix composites has

been made to date.	 Further development of the .analytical procedures de-
i

4cribed in this report, together with it carefully conceived and executed

experimental program is expected to lead to u reliable means of pre-

dicting the strength and toughness of these composite materials under

Factual conditions of manufacture and service.	 That is, given certain

statistical parameters which define the quality of the constituents, a

prediction of the energy capacity of the composite could be made.

As was discussed in Section 1, and confirmed by an on-going litera-

ture survey, the particular problem being dealt with here, Lind the analyti-

cal procedures employed, make this study unique.	 A finite element analy-

sis program is used to determine the stress-strain state of a unidirection-

al, metal matrix composite material. 	 A rather comprehensive description

of the theoretical foundations and the special capabilities of this computer

program is provided in Appendix A. 	 This program has been modified, and

is in the process of being expanded to make it more suitable for the study

of energy absorption, mechanisms in axially loaded metal matrix composite

materials containing flaws in the form of microcracks	 in the	 matrix

material, or discontinuities in the fibers.	 The two most important energy 1

absorption mechanisms being studied are plastic deformation due to the

stress concentrations arising out of a material flaw, and growth of any

cracks initiated by such a flaw.
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A major problem in investigating the microstxehe state of uni-

directional compOHIt0A ie related to their geometrical inhomogenalty, i.e.,

the fact that a detailed representation of the stress state in and around

the filaments embedded to an inelastic matrix to required. While the

finite element. analysis program employed is quasi-three-dimensional in

that it can be loaded in all three coordinate directions and the result-

ng stresses and strains computed, the actual modeling of the region of

interest is essentially a two-dimensional representation. As described

In Sections 3.3 and 3.4, an attempt to account for the complex geometry

of the problem was made by constructing two types of finite element

arrays. One is the "longitudinal" model, which represents a cross-section-

al cut through the composite running parallel to the axes of the boron

fibers. This model is particularly useful in studying the effects of dis-

continuous fibers, or fibers with regions of reduced strength. In addition,

the presence of cracks or voids in the metal matrix can be modeled and their

effect on the axial strength, and to some extent the transverse strength,

0 	
of the material can be studied.

The other type of model developed will be referred to the "transverse"

section model, and depicts a cross-sectional cut perpendicular to the

fiber axes of the composite. This model is well-suited for studying the

effects of transverse loading of the composite material, and the influence

of the circular cross section of the fibers is fully accounted for. Fiber

flaws and matrix flaws can be completely characterized for transverse

loading. Due to the generalized plane strain formulation used in the

analysis, it is possible to load the transverse model in the axial, or

z-directions. Unfortunately, with this mode of loading, it has not been

possible to study to stress concentrating effects of flaws and discon-

6

1

r p



tinuities. This is due to the fact that all element displacements out

of the plane of the modal must be equal (see Sect ua k.2 of the Appendix),

and variations in axial stress are thus due to Potmept9 effects and differ-

euces in material properties only.

The longitudinal models have been useful in studying the effects of

flaws on the axial strength of unidirectional composites, as detailed in

Sections 5.1 and 5.2. The extent of plastic deformation around a flaw

and the effects on the load redistribution among the surrounding fibers

can be characterized quite well. For this model too, considerations

have to be made regarding the geometry of the composite. As discussed

in Section 3.3, this leads to the two configurations of the longitudinal

model which are necessary to characterize a square or rectangluar fiber

array.

Crack initiation and propagation are clearly important considerations

in the study of energy absorption in flaw°d materials. This capability

has been added to the micromechanics analysts, and is described in Section

3.2. Unfortunately, a numerical inconsistency was discovered near the

end of this first-year program, and subsequent corrections to the program

have not yet been fully debugged. Consequently, numerical results of

crack propagation in a unidirectional, metal matrix composite will be

presented in the next quarterly report.

a
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SECTION 3

ANALYSIS METHOD

3.1 THE FINITE ELEMENT METHOD AS A MICROMECHANICS TOOL

The scope of the following analysis is to determine the internal

stress distribution in a unidirectional fiber-reinforced, metal matrix

composite material subjected to mechanical loadings and variations in

temperature. In addition, the effects of mater°tal flaws or discontin-

uities and their subsequent propagation through the material continuum

are to be characterized.

The typical unidirectional composite has a nonhomogenous internal

structure that Consists of at least two distinct phases, i.e,, a homogen-

ous matrix material reinforced by isotropic or transversely isotropic

fibers. Transverse isotropy refers to the condition in which the axial

E"	
properties of the fiber (e.g., strength and modulus) differ significantly

from those in a plane normal to the fiber axis. In most unidirectional

composites, boron/aluminum included, the reinforcing fibers are much

stronger and possess a much higher axial elastic modulus than the surround-

ing matrix. The nonhomogenous nature of such a composite, together with

the geometrical considerations of a cylindrical filament embedded in a

matrix and containing a microscopic flaw, results in a boundary value

problem of such compexity that a classical closed form continuum solution

to evaluate the microstress state would be impractical. As a result, in-

vestigators for the last 12 to 14 years have formulated numerical schemes

to evaluate microstresses In unidirectional composites. III one of the

earlier efforts, Adams and boner [7] applied finite difference techniques



to their micromechan cal studies. More recently, the finite element

method has emerged an the most versatile tool available for such studies,

as demonstrated by numerous investigators (e-18).

The finite element analysis method to based on the concept of dis

cretizi.ng a material continuum into an assembly of "elements" of "finite"

size. The individual elements are assembled into a network representing

the continuum by joining them at predetermined points or "nodes" along

their boundaries. For any element, approximate functions representing

either stress, &train or the displacement field within that element can

then be written. By a suitable choice of coefficients for these assumed

field equations, a minimization of the potential energy of the system is

achieved. To date, the assumed displacement field technique has been the

most successful and the most Zeneral y applied (19). For an assumed dis-

placement field for the interior of an assembly of elements, minimization

of the potential energy results in a set of simultaneous algebraic equa-

tions relating loads to displacements. These equations can readily be

solved with modern digital computers. This procedure is expl ned in

rigorous detail by Heubner {191 and Zienkiewicz (20)' wherein they point

out that the finite element method is as useful in solving thermodynamics

and fluid mechanics problems as it is in solid mechanics, the only differ

once being that functionals other than potential energy must be minimized.

One of the great advantages of this method is that the approximate

field equations need only satisfy the constraints of the individual ele-

ments. M important consequence of this situation is that equilibrium and

compatibility conditions between the assumed fields of the individual ele-

ments must be met in order to insure convergence to a correct solution.

These conditions are also thoroughly discussed and developed in texts by

9
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Heubner [19), Cook [21), and Zionkiewicz (20).

s
The finite element method may be applied to any general three-di-

mensional problem, the primary limitation being one of computer capacity.

In an effort to analyze rather complex structural configurations in suffi-

cient detail, most analyses, including all micromechanice analyses to date,
r

are reduced to two-dimensional problems, i.e., plane stress, plane strain,

or generalized plane strain formulations. The analysis method used in the

present study is a two-dimensional form incorporating a condition of gen-

eralized plane strain, which permits a specific loading to be applied in

the third direction. This concept is discussed in detail in Section A.2

of Appendix A.

3.2 FINITE RLEMENT MICROMECHANICS ANALYSIS

The primary analytical tool used in the present study has been the

micromechanics finite element analysis program developed by A. K. Miller

while completing his Ph.D. studies at the University of Wyoming, which is

0 

	

	
described in considerable detail in Reference [1) This program was created

to investigate the micxostress state in unidirectional composite materials

subjected to trantiverse mechanical loads, thermal gradients, and dilatation-

al stresses due to moisture absorption by polymeric matrix materials.

Among the special features of this program are its ability to model the

elastic-plastic stress-strain response of the isotropic matrix material,

and in concert with the determination of thermal and moisture dilatational

stresses, the functional dependence of the matrix material properties on

I

	

	
temperature and moisture content. in other words, the elastic or plastic

properties of any matrix material finite element are automatically computed

to reflect the state of stress and the environmental conditions of temp

10



orature and humidity. Tito adjustment of material properties to Irti'Mrpor-

aced with the Incremental loading technique tit-it In employed in thin pro-

gram. Once the Initial temperature, moisture content, and/or elastic

stress level for the continuum have been specified, additional loads, be

they inachanic ►l or environmental. are introduced lot Increments small enough

to permit clone approximation of 
the nonlinear matrix material properties

by small linear segments. A more detailed description of this technique

in presented tit Section A.5 of Appendix A.

'rite bulk of tile olastopl ► stic formulation to tile pre",ont analysis

program atoms from previous work done by Adams 12. 3. 181. Title development

of the hygrotfierm ► l loading and material, proporties dependence was the

subject of Millor'o Ph.D. research [I.I, and the addition of crack, initiation

and er ►ck propagation capability.to be discussed in detail, tit the following

section. was performed by tile pro"ont writers. rile basis for this program

is the procedure set down by Zionklowivz [201. and In fn(!t, thee

organization and flow of the present computer prograin eloaoly follows Oci

suggestions of Appendix A of that toxt. This flow and organA."Intion his

subsequently been rather severely altered to inelude crack propagation

capability.

The finite elenlent used -in this study Is it modified version of. tho

familiar constant strain or, tilinplex triangle. For 01H element, it lintlar

displacement field within each element is atio ► tned, to arrive tit at function-

al representation of tile potential energy of the oyAten%, its referred to

tit Section 3.1 and deseribed tit Section A.2 of Appendix A. 	 The constant

strain. triangular element hit.,; some well-known limitations, but for tile

purpoova of micromechanics analyses. it it4 all accoptablo. 'economic, and

powerful tool. 'rite trader-offs involved in the ObO • CO of the constant strain



triangular element instead of one of the higher order finite elements in

covered quite well by Miller in Chapter 3 of Reference 111. A brief

description of the formulation of the constant strain triangular element

s
in its generalized plane strain form is presented in Sections A.l through

A.3 of Appendix A. The manner in which loads are introduced to the finite

element model is described in Section A.4 of Appendix A. A discussion of

the concepts and procedure used to analyze the isotropic matrix material

in the plastic zone, and the temperature/moisture dependence of the matrix

material properties, is presented in Section A.5 of Appendix A. In the

following Section 3.3, the concepts and methodology used to simulate the

initiation and propagation of cracks in the composite material are briefly

outlined, and the analytical relations along with the required sequence

of operations in the computer program to accomplish this are presented.

3.3 CRACK INITIATION AND PROPAGATION

The purpose: of the present study was to investigate the effects of

flaws in unidirectional boron/aluminum composites, with the eventual goal

of predicting the strength of such composites given a certain statistical

distribution of internal flaws. These defects manifest themselves in two

format a discontinuity in one or more boron fibers, or a localized void

in the aluminum matrix. The loading condition of primary interest is

that of tension applied parallel to the fiber axes. With suitable modi-

fication, a so-called longitudinal model was analyzed with the micromechan-

ics program in its original form [22]. This permitted modeling of the

flaw, generally a fiber discontinuity, and an evaluation of the resulting

`	 localized stress concentration and the local plastic deformation it caused.
x

Y

The redistribution of the load. to the broken fiber could also be character-
i

ized, but only up to the point at which a matrix element failed (crack

I,
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Initiation ) . What was necessary for further study of the load capability

of the flawed composite was a crack propagation scheme. This capability

would also permit a characterization of the energy required to isolate

the defect in a "zone" of plastically deformed matrix material, or alter-

natively, the total energy capacity of the system at the point of cata-

strophic failure.

The approach to crack inititation and propagation taken here is known

as the "failed element" approximation as employed by Adams [2, 31. When

an element in an area of high stress exhausts its strain energy capacity,

it fails. From this, we assume that a "crack" has formed And has the

dimensions of the failed element. This approximation has two implications,

the most important of which is that a finite amount of material is removed

from the system, which in an actual material is not the case. The other

is that the crack is not likely to close up on itself in subsequent load-

ing because of its exaggerated width. These effects can be minimized to

a practical degree by making the finite element grid very fine and uniform

in the area of anticipated crack initiation.

It is not enough to simply delete an element from the finite element

grid when it reaches its ultimate stress. The finite element method in-

volves the maintenance of force equilibrium at every node point in the

array, as discussed in Section A.3 of Appendix A. This equilibrium must

be maintained when ar element fails or unloads. Thus, to represent the

i:nloading due to element failure, node point loads which are equal and

opposite in sense to those equivalent to the state of stress within the

element at its failure level must be applied at its node points. In

addition, the failed element's material properties must be set to zero,

so that the element makes no .further contribution to the global stiffness

13
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matrix. and all of its computed values of stress and strain are set to

zero. This insures that the element is completely unloaded and that no

stresses will be developed in it in subsequent load Increments.

The "reaction loads" applied to the node points of a failing element

are computed in the following manner. Given the state of stress within

an element at the time of failure, i.e.. crx, oy s rrxy, the statically

equivalent forces acting at the mid-sides of the element, as illustrated

In Figure 3.1 can ensily be computed: (See for example pp 40-43, Refer-

ence [191.)

Y
y k	 fjk

f ik

X
 fjk

x

fik	
jxr	 x

fij

i	 fy
fi	 iJ

FIGURE 3.1

Force-Stress Relationships

fi) = aXYJ i + TXYxij

fY o 
°YXij + Txyy j i

£ j k = oxvkj + 
TxY xj k	 (3-1)

yy
f jlc	 ayxj k. + Txyykj

X
f 11 

s oxYik + Tx.yxki

fik = °y xlci + TxyYile

14
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where the quantitites xij, ykj, ate. are an defined in Figure 3.2,

which identifies the important geometrical parameters of the generalized

plane strain triangular element.

.ofd	 Vi,fi
k

OP OP
	 10 vievie f!

r{	 I

tt

	 i

I«i

y

ylk(TYPI	

yk

 -- yl

X
21	 9k	 t!

^ Rik	 Kkl	 -^

Z	 Typical	 Typical

FIGURE 3.2

Typical Triangular Finite Element of Unit Thickness

These forces, when translated to the node points with their directions

reversed, are the reaction loads required for the unloading, of the element,

and are shown below and illustrated in Figure 3.3.

Ri • -(fij +fik)

Ri -' (f + fik)



Rim
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1	 ^

Ry

RyA y

►Ry	 .

FIGURE 3.3

Node Point Reaction Loads Statically
Equivalent to Stresses in the Element

In the present analysis, element failure can occur in one of

two modes: when both the computed octahedral shear stress and the plas-

tic octahedral shear strain resch their maximum allowable values (maxi-

mum distortional energy criterion), or when the hydrostatic tensile

stress in an element exceeds the tensile ultimate strength of the mater-

ial. This second failure criterion is also known as failure due to ulti-

mate cleavage, and failure occurs whenever a tensile principal stress

exceeds the ultimate tensile strength.

Although loading increments are kept small once elements begin to

W	
enter the plastic region, it is unlikely that an element will fail ex-

actly at the maximum value of an applied load increment. That is, the

load increment will probably be more than sufficient to cause failure

in the element. For this reason, it is desireable to scale down the

load increment to the point of element failure. This fraction of the

load increment required to cause an element to fail is referred to as

the "Ratio" and its definition is clarified in Figure 3.4.
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FIGURE 3.4

Determination of Increment Scale
Factor (Ratio) for Element failure

Once one or more elements have failed during a given loading incre-

ment, the crack propagation procedure is set into motion. This procedure.

will be outlined below and is illustrated in the flow chart shown in

Figure 3.5.

The first operation to be performed in effecting crack growth is to

dentfy which element failure in a single load increment, if indeed more

than one element has failed, required the greatest portion of that load in-

crement to cause failure. The Ratio, as defined in Figure 3.4, is then com-

puted for this element. This quantity is the fraction of the load incre-

ment that is necessary to fail all of the elements in that increment. It is

now necessary to multiply all of the element stresses and nodal displacements

that were computed as a result of the load increment application by this max-

imum value of Ratio. These reduced incremental quantities are then added to

the sums of the stresses, displacements and strains in the normal manner
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to give "adjusted" quantities. The next stop is to compute the nodal

point reaction loads of this failed elements, using the adjusted accum-

ulated stress values and the relationships of Equations 3-1 and 3-2.

These forces become the "adjustment loads" which must be applied to the

finite element model with the stiffnesses of the failed elements deleted

from the global stiffness matrix (see Section A.3 of Appendix A). In

this manner, the energy required to cause the element failure is redis-

tributed into and absorbed by the remainder of the region being studied.

This results in new increments of stress, strain and displacement being

added to the accumulated values, but the operation is not counted as a

load increment by the program. Of course, this adjustment loading may

result in the failure of additional elements adjacent to those that have

already failed, causing the crack to grow without the application of

additional external loading. This is similar to the behavior of a crack

3

that has reached its critical length. When this occurs, all the elements

that have failed have nodal reaction loads computed from the stresses re-

sulting from the adjustment load application, i.e., no ratioing takes

place. These elements are then deleted from the global stiffness matrix

and their nodal reaction loads are applied to the model consisting of the

remaining elements. This procedure is repeated until no further element

failures occur as the result of an adjustment load application, or until

catastrophic failure of the finite element model occurs. Catastrophic

failure is assumed to have occurred when a progression of failed and

deleted elements results in the division of the model into two segments..

This violates the boundary conditions of the analysis scheme and the pro-

gram terminates, printing the stresses, strains and displacements

accumulated just prior to total failure. On the other hand, if successive

adjustment load application results in no further element failures, the
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next full load increment is read into the program, added to the accumul-

ated load, which now reflects it "ratioed" load increment. and tilts anlysis

continues as it did before element failure, i.e.. if no elements feil,

another load increment is applied, or if failures occur, the entire crack

propagation procedure outlined above in repeated.

3.4 t)EWELOPMENT OF THE BROKEN FIBER, LONGI`runINAL SECTION NODEL

There are two primary reasons for the development of a longitudinal

model. One is to permit study of localized stress concentrations, the

resulting elastic-plastic behavior of the aluminum matrix, and subsequent

crack propagation lit 	 area of boron fiber flaws. Another is to charac-

terize the load carrying capability of a flawed boron fiber as a function

of distance from the location of the fiber flaw.

'these two considerations lead to the most important aspects of de-

signing the longitudinal modes, i.e., geometry, finite element grid re-

solution, boundary conditions in the vicinity of a flaw, and spacing of

the boron fibers in the model. 'rhe problem of fiber spae,cing will be dis-

cussed first.

A typical cross section of it unidirectional, square array, boron/

aluminum composite as shown in the figure below, the section being perpen-

dicular to the fiber axes. A longitudinal finite element model Attempts

to represent the composite in A plane oriented perpendicular, to this 6ec-

Lion. A longitudinal model of a section parallel to the x or y axes,

through the centers of the fibers, would be representative of the minimum

distance between fibers. A section cut at 45 0 to the x-axis and through

the fiber centers would depict a maximum fiber spacing situation. When

one of these fibers is broken, the load it carries decays to zero at the

.'
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broken surface, assuming that the boron-aluminum interface remains intact.

At the flaw site, the fibers adjacent to the broken fiber, and to some ex-

tent the surrounding aluminum matrix, must absorb the load that the broken

fiber would have otherwise carried. The aluminum transfers this excess

load back into the broken fiber via a shear mechanism so that at bome dis-

tance from the fiber break, that fiber is again fully effective in carry-

ing load. It is logical to presume that the amount of aluminum between

the boron fibers will have an effect on this load transfer mechanism. To

characterize the effects of variation in fiber spacing, two longitudinal

models were studied, one reprenenting a 90 * section cut of the transverse

cross section, and another representing a 45 0 section cut. These two

models are shown in Figures 3.6 and 3 . 7. Note that the fiber diameter

dimensions have been normalized to unity. In Figure 3.7 the effect of

the 90 * section cut in diminishing the amount of local aluminum matrix is

shown quite clearly. The size and aspect ratios of the fiber elements are
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exactly the same as those of Figure 3.6, but the aluminum elements of the

900 section model are so compressed that the element numbers, which are

identical to those of Figure 3.6 have been eliminated for clarity.

The second problem that must be solved in the finite element modeling

of a broken fiber in a composite is the geometry in the area of the fiber

discontinuity-matrtx interface. The efforts of the present investigators

to resolve this problem have been evolutionary in nature and were described

in detail in Section 5.2 of Reference [23).

The results of this evolutionary process are the finite element models

shown in Figures 3.6 and 3.7. Some of the features of this model can be

illustrated by referring to Figure 3.8, a section of the model represent-

ing the discontinuous fiber and the local aluminum matrix. Note that the

free surface of the discontinuous boron fiber is extended out to the model's

plane of symmetry by the addition of fiber element number 157. Longitud-

inal models run without this element developed extremely high stress

levels in aluminum element number 1 at very low levels of applied load.

While this situation might occur in a boron/aluminum composite if the

fiber were discontinuous and its ends separated by some finite amount at

the time of fabrication, it was felt that the present configuration, as

shown in Figure 3.8, was of more general use. This configuration might

be used to represent a fiber that has broken during fabrication, or, if

flawed locally, failed at a very low loading of the unidirectional com-

posite. Note the small size and uniformity of the aluminum elements in

the area of the end of the discontinuous fiber. This is to permit a closer

approximation of actual crack growth, as discussed in Section 3.3. In

order to prevent the broken fiber from having any load capability at x B 0,

node point 12 has been relased from its x-direction fixity. This results

Y
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In a free surface for element 2 along the y-axis, or in other words, an

initial crack in the aluminum as might actually occur from the initial

release of energy caused by the fiber failing at a low load level.

i

3.5 DEVELOPMENT OF THE TRANSVERSE SECTION MODEL

Finite element modeling of a transverse section of a unidirectional

boron/aluminum composite is fairly straightforward. However, the need to

study the influence of a reduced load capacity in one fiber on its neigh-

boring fibers requires that a minimum section model such as that shown in

Figure 3.9 be employed. This model represents the first quadrant of a re-

peating unit cell of a rectangular array of fibers. In effect, a flawed

fiber can be considered to be surrounded by eight other fibers in the

array. A model of this type can easily lead to a great number of elements,

and attempting to increase the resolution of the grid at selected locations

often results in a very large bandwidth of the overall stiffness matrix

for the finite element model. The transverse model developed and reported

0 	 in the First Quarterly Report [221, proved to be too large for the University

of Wyoming's present computer. This resulted in the development of the

model shown in Figure 3.9. Also, during the last year, the micromechanics

analysis computer program has been modified to permit the inclusion of as

many as four different materials, each having different properties. This

capability is essential in representing breaks or flaws in the boron fibers

of a transverse model via reduced stiffness.
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SECTION 4

MATERIAL PROPERTIES

In modeling the boron/aluminum composite, the boron fibers have been

treated as brittle, linearly elastic materials with isotropic strength

and stiffness properties. The aluminum matrix has also been considered

to be isotropic, but is modeled as an elastoplastic material. To accomp-

lish this, the actual stress-strain curve of the aluminum alloy selected

is input to the analysis by curve fitting via a Richard-Blacklock two-

parameter equation, as discussed in Section A.S. Thus, at any load level

the tangent modulus for any given element can be computed. This makes

possible an accurate representation of the plastic deformation of the

matrix.

Although the nonlinear material properties of any matrix material,

e.g., another aluminum alloy, can readily be incorporated in the analyses,

a 6061-T6 aluminum alloy at 75°F was chosen for the initial studies. The

material properties shown in Table 4.1 were obtained from Reference (241

the full range stress-strain curve for determining the curve fit para-

meters used is shown in Figure 4.1.

TABLE 4.1

i
Aluminum Matrix Material Properties - 6061-T6 Alloy [24)

Young's Modulus	 E = 10.0 x 106 psi
Poisson's Ratio	 v = 0.33
Tensile Yield Strength	 FLY = 36000 psi
Tensile Ultimate Strength	 Ttu 45000 psi
Coefficient of Thermal Expansion	 a 13.0 x 10-6 in./in./°F
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The boron fiber proportion indicated in Table 4.2 were obtained from

Reference (25).

TABLE 4.2

Boron Fiber Material Properties (25)

Young's Modulus E . 60.5 x 106 psi
Poisson's Ratio v n 0.130
Tensile Strength Ftu a Fty 0 500,000 poi
Coefficient of Thermal Expansion 	 a - 9.0	 x 10-6 in./in./°F
Ultimate Strain ttu

- tu • 8264 x 10-6 in./in.

50

10

0
0 0.02	 0.04	 0.06	 0.08	 0.10	 0.12	 0.14

Strain, in./in.
	FIGURE 4.1	 }

Typical Full Range Stress-Strain Curve For
6061-T6 Aluminum Alloy at Room Temperature [24)
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SECTION 5

NUMERICAL RESULTS

The introduction of crack initiation And growth capability to the

micromechanics program has ;Wade possible a much more extensive study cf

the effects of a discontinuous fiber in a boron/aluminum composite. Ho w-

ever, a numerical difficulty was revealed in the crack propagation pro-

cedure shortly before the and of this report period. Debugging of the

subsequent corrected computer program has prevented the presentation of

the crack growth results in this report; they will be presented in full

detail in the next quarterly progress report. In spite of this difficulty,

the results of loading both the 45° section and the 90° section models to

the point of first element failure are available, and very informative

significant differences in the load carrying capability of the 45 0 section

model versus the 90° section model have been revealed. It is antici-

pated that future analyses with crack propagation will generate even more

important insights concerning the generalized plane strain treatment of

this problem.

The 45 0 section -model and the 90° section model, as described in

Section 3.4, represent a unidirectional composite with 25 percent of the

fibers containing a break. Larger models with more unbroken fibers can

easily be studied if desired. Each of these models has been loaded to

the point of crack initiation (first element failure), and the difference

in load capability of each at this point is considerable. In both cases,

initial plastic deformation occurs at very low load levels, and due to

considerable plastic strain capability of the aluminum matrix, as shown
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In Figure 4.1, the loading Increments'beyond that point are kept very

small, i.e., 1000 to 3000 pal. Considerable localized plastic deformation

was developed in the region of the fiber discontinuity before an element

failure occurred. This in turn generally triggered the failure of several

more matrix elements before another loading increment could be applied.

In the paragraphs that follow, the results of loading the 45 0 section and

the 900 section longitudinal models up to the point of crack initiation

will be studied. In Section 5.3, the results of axial loading of the

transverse model and simulation of a broken fiber are reviewed.

5.1 AXIAL LOADING OF THE 430 SECTION LONGITUDINAL MODEL

The 45° section longitudinal model, as illustrated in Figure 3.60

was loaded in the direction of the fiber axes (x-direction) to a level

of 66,076 psi average applied stress, at which point element number 2

failed. Initial plastic deformation was also observed in element number

f	 2, at an average applied stress level of 17,000 psi. Plastic deformation,

in this analysis, is defined as the point at which the octahedral shear

stress-octahedral shear strain curve becomes nonlinear. For the 6061-T6

aluminum alloy used in this study, the octahedral shear yield strength

is 16,970 psi. Element number 2 would be the first to experience plastic

deformation, for the reasons cited in Section 3.3.

Loading was increased monotonically until element number 2 failed,

at an average applied stress level of 66,076 psi. At this level there

was considerable plasL:c deformation in the region of the fiber discontin-

uity, with several elements adjacent to number 2 very near failure. By

using the plotting capability of the micromechanics computer program, this

zone of plastic deformation at the point of imminent failure of element
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number 2 can bo seen. In figure 5.1, contoura of constant octahedral

shear stress for the aluminum matrix have been plotted on an outline of

the 45' section finite elemor w model. Note that the contour values are

for octahedral shear stresses normalized with respect to the yield strength,

16,970 psi. This means that any area enclosed by contour lines that are

greater than or equal to one has been plastically deformed. As Figure 5.1

shows, considerable plastic deformation has occurred at the 66 0 000 psi

applied stress level. In addition, similar contour plots for octahedral

shear strain, maximum principal stress, minimum principal stress, and in-

plane shear stress (txy) are provided in Figures 5.2, 3.3, 5.4, and 5.5,

respectively. These illustrate very well the general state of stress in

the aluminum matrix at the load level of imminent crack initiation.

A study was also made of the loading intensities in the Soren fibers

at various load bevels, in an attempt to further understand the mechanisms

of load transfer to the discontinuous fiber as plastic deformation increases.

In Figures 5.6 and 5.7, the relative loading intensities of the three

boron fibers in the model are compared as a function of the axial distance

from the flaw site. The two load levels chosen are 16,000 psi for Figure

5.6 and 66,000 psi for Figure 5.7. From these figures it can be seen

that the end of the broken boron fiber carries no axial stress, as it

must, and that the load level in the adjacent fiber rises abruptly in the

vicinity of the fiber break. Of particular interest is the relative

loading of the discontinuous fiber as the load level increases. It will

be noted that the slope of the load curve for the discontinuous fiber at

I the flaw site decreases as the applied load increases. In addition, at an

applied stress level of 16,000 psi, the broken fiber has attained a stress

level 78 percent that of a remote fiber at 4.55 fiber diameters from the

37



1-4 

O

0
Aj

C
U rd

41 0)

to

ca

a	 at

Al

ii

I 'r,

r

>-.4*

38

1lfffff"^11ff^^
	

f I



^i

^^	 1 1	 AX

r

Ilt1

	
4

P	 }

0
0

uv
Ln
a

p
0

u
ro
H
CJ

.H
0 0

N " w
►r1 N

q
^rl

u? b
O
0 O
V r^7

i^

^tl
h+
t^
W
H

ch

tU

ro

V

q^.

I

r

"^i

a

9
y

i



1 41

CR

0

ro

ri

u
WM

L)

0
41

O

wN

iv
-H

Li

tv be

•H 0

CL{

w

o
In

ro

0

0

ppC

&LPG

40



- 4--	 I - -'. Z-----,--'.----

I

It

0

tC

U)

(V 0

0

En
0

V)

4-1
0

(0

O

O

41



OR

9

i	 S;^

M

x

t1T a0
U
N
0

.r4

t0
44
Ai

a

u
N

0 i

0

w

0

y
y
4U+

f^

N

y

rZ

a
O i

^. w



d' a

Q ^

0, w '^
N

W
m o

111 LL. ^c
M U-

0

W b

0 a 'JM 4.
lw

n
In

N
ar

it1 ^ CO

N v
LL
N I cn

0+N G N^
W ►°+

Q
.c

W Q

m W
lL ^

Q
Z

N

z a
N
a

O c~_n to

O
cQ
G

O b

O ®	 a°O
N

I U
	

'

O, 0 J'
	

^ Q m
^.	 1	 O l 4	

j Wo
I ^	 W

^	 v O O O ^

I	 O ` O O O 'a

00 00 ►
0 0 0 0 0 w o

I	
00000 0

o

ff a b
t	 ZW

^	 m

I	 ' W
W

1 	 ,
LO
U.

z
W

Ya^m

W
W
co
4.

i

0 N 	 N	 ^	 0	 Ln
to	

(u!/ql £013 `JNK1d01 8381A

43



a

00I
0

'	

ro-
\ \O 0 O	 '•

1 t	 0 4 ^0^0 V g 0 0 0 0

	

1	 ^	 Q

0
 Iw

Wac	 b

I	 ,

	

1	 1

I	 11

1

1 WY
c

V

1
ac

a^

^ v

C
0
u
u
a^

0

M w ^

to t%

8Ml	 01

aoPW

6
LM 4)

_

,CLM

Q
M w oQ

u
ow

O Az
vo,W

^'a

F

R)

►a
.

M

O O O O O O O O O O O O O 0 0 	 w
M N	 O	 40 to N -

(ul/ql rL01) `JNIOdO'1 a381A

44

YL



flaw site, while at an average applied stress level of 66,000 psi, the

broken fiber has been loaded to only 73 percent at 4.55 fiber diameters.

These values imply that at it sufficiently large distance from a flaw

site, all the boron fibers will be ega"lly loaded, but that the distance

required for this condition to exist increases as the average stress level.

increases. Crack propagation will no doubt cause the distance from the

crack at which the broken fiber is again fully loaded to be much greater

still.

As an illustration of the energy absorption capacity of the 45°

section broken fiber longitudinal model, the composite stress versus

composite strain has been plotted up to the point of crack initiation, as

shown in Figure 5.8. It will be noted that the curve is essentially

linear, in spite of the considerable plastic deformation shown in Figure

4.1. This is due to the fact that the boron fibers,whose axial modulus

is very much higher than that of the aluminum, are essentially linear in

their stress-strain response. In fact, even at the plane of fiber dia-

continuity, the boron fibers are carrying 76 percent of the applied load.

At two fiber diameters frols) that plane, 90 percent of the applied load is

being carried by the boron fibers. The overall stiffness of the 45°

section model., i.e., the shape of the stress-strain curve as shown in

Figure 5.8, proved to be 36.0 x 10 6 psi., or about 60 percent of the axial

stiffness of the boron fibers.

5.2 AXIAL LOADING OF THE 90" SECTION LONGITUDINAL MODEL

In loading the 90° section longitudinal model, Figure 3.7, parallel

to the boron fiber axes, plastic deformation was first observed in element

number 2 at an applied average stress level of just under 10,000 psi. This
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is substantially lower than the 16,000 psi level that was necessary to

cause plastic behavior in the 45° .section model, and is due primarily to

the fact that the apparent volume of aluminum matrix available to trans-

mit load between the discontinuous and intact boron fibers is only about

30 percent of that seen by the 45° section model.

Loading of the 90° section model was increased until element number

2 exhausted its attain energy capacity at 40,150 psi applied stress. Again,
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stress and strain contour plats were generated for the load level which

was reached Immediately prior to the first failure, and these are shown

In Figures 5.9, 5.10, 5.11, 5.12, and 5.13 for the normalized octahedral

shear stress, octahedral shear strain, maximum and minimum principal

stresses, and the in-plane shear stress, respectively. It will be noted

than the zone of plastic deformation, as defined by the 1.03 contour in

Figure 5.9, is considerably less extensive than was observed in the 450

section model, Figure 5.1. From preliminary results of crack propagation

computer runs, it is quite apparent that the pattern of deformation, flaw

growth, and fiber loading differs quite significantly between the 45 0 and

the 90° section longitudinal models. Further, the differences in load

levels necessary to initiate plastic deformation and later, crack formation,

for the two models indicates that the proximity of adjacent fibers to a

flawed or discontinuous fiber has an important effect on the behavior of

the total composite material. This problem will be discussed further in

Section 6.

Another difference in the response of the 90° section model when

compared with the 45° section model is shown in Figure 5.14, in which the

composite stress-strain response of the 90° section model is plotted up

to the point of crack initiation. The composite axial modulus of the 90°

section model is found to be 49.0 x 10 6 psi,, using Figure 5.14. This is

significantly stiffer than the 45° section model, as would be expected

in view of the larger boron fiber volume fraction of the 90 0 section model.
i

The strain energy necessary to initiate failure in the 90 0 section model

f
	 was determined to be 36.1 in.-lb./in., while in the 45° section model,

123.2 in.-lb./in. of energy was absorbed before crack initiation.
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5.3 AXIAL LOADING OF THE TRANSVERSE SECTION MODEL

The transverse section model, as illustrated in Figure 3.9, was loaded

in the out-of-plane or z-direction, both in the unflawed condition and with

i	 one broken fiber. In order to approximate the broken fiber plane of the

longitudinal models, the transverse model was run with the stiffness prop-

ertics of one of the fibers reduced to zero,as shown in the following sketch:



E - 60.5 Hsi

E - 10.0 Mai

---0 X

E • zero

(broken
fiber)

t 
Y

'rite percentage of the total load carried by tale fibers of the un-

flawed transverse model, proved to be 89.0 percent, which compares very

well with the percentage of load carried by the fibers of the 45° section

model, which was 89.1. percent. When the transverse model was run with

one fiber deleted, it was found that the three remaining fibers carried

85 percent of the applied load, which is in good agreement with the 900

0 	 section longitudinal model, which showed 86 percent of the load in the

boron fibers at the plane of discontinuity.

The stress distribution in the aluminum matrix for thL transverse

section model is shown in Figures 5.15 and 5.16. These plots represent

the stress in the fiber axis direction (az in this case) for the matrix

material along the y-axis and :along a Line 45° to the y-axis.. Both the

stresses for an unflawed composite and one in which the .fiber centered

at x - y 0 has an effective modulus of zero are shown. The Applied

stress is 2,000 psi,. As these plots allow, there is a definite change

in stress levels when one fiber is deleted; tile, stress gradients between

the fibers are quite low when compared to those seen in the longitudinal

models. This of course is due to the fact that the transverse model can
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only represent differences in material properties caused by broken or

reduced capacity fiber elements, but cannot account for the physical dis-

continuity of a Fiber and the resulting stress concentrations. In fact,

for both the unflawed case and the model in which one boron fiber is de-i

leted, the variation in stresses in the axial or z-direction is no more

x	
than about 10 percent throughout the aluminum matrix, and considerably

less then this in the boron elements.

The in-plane stresses, ;i.e., ax, ay, and Txy, show considerable vari-

ation in the aluminum matrix, but are about 10 orders of magnitude less

than the axial stress. Contour plots for constant values of in-plane

shear stress, and maximum and minimum principal stresses, are shown in

Figures 5.17, 5.18, 5.19, 5.20, 5.21 and 5.22, for both the unflawed and

flawed longitudinal models, to show the influence of deleting one fiber.

i
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FIGURE 5.22

Shear Stress Contours (ksi), Transverse Section Model With One Broken
Fiber, Applied Stress ax 	 32 ksi
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FUTURE WORK

Debugging of the updated and corrected crack propagation version of

the micromechanics computer program to nearly complete. Production runs

tieing this program will soon be performed on the 45° and the 90° section

models. Behavior in terms of crack propagation and energy absorption will

be determined, and attempts to correlate these results to the experimental

results of other investigators will be made. From experience to date with

crack propagation analysis schemes, a further refinement of the 90° section

longitudinal model appears desirable. Specifically, the aspect ratios of

some of the finite elements are presently rather large; the region of uni-

form and small elements required to more accurately study crack growth will

be extended. Once the energy absorption characteristics of these longi-

tudinal models have been determined, several additional areas of interest

will be explored.

Transverse loading of both longitudinal and transverse section models

containing flaws will be of interest, particularly if these loading con-

ditions are preceded by temperature gradients and hydrostatic loading

increments to simulate the fabrication process for boron/aluminum. This

"preconditioning" provides a prediction of the residual stresses and

strains in the composite prior to mechanical loading, and could have a

significant effect on the overall influence -,f internal flaws.

Finally, it has not been possible, to this Point, to relate the

stress concentration effects seen in a longitudinal model to a transverse

section model. This would not be a serious problem were it not for the
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differences in behavior observed in axial loading of tho 90' and the 45•

section models. Furthermore, in examining a transverse section of a typical

squares array unidirectional composite, as illustrated in Section 3.3, one

can see that the fibers in closest proximity to a broken Fiber, e.g.,

those represented by a 90 0 section model, will be affected in turn by

their closest unflawed neighbors, some of which are the continuous fibers

represented in a 45° section model. In affect, all of the fibers surround-

ing a broken fiber are coupled In the mechanism of load redistribution,

and crack propagation is Likely to be too complex to be characterized by a

two-dimensional formulation. Until more extensive experimental data are

available to verify and improve the present two-dimensional formulation,

a three-dimensional finite element mieromechanics analysis appears to be

the logical approach to further understanding of energy absorption in

metal-matrix composite -1. Such a program is in the final stages of devel-

opment at the University of Wyoming, and during the second -year study, pre-

liminary investigations of its applicability to the present problem will

be made.
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APPENDIX A

FINITE ELEMENT FORMULATION OF THE
MICROMECHANICS ANALYSIS COMPUTER PROGRAM

A.1 COORDINATES AND BOUNDARY CONDITIONS

To aid in the discussion of topics to follow, Figure A.1 is pra3ented

as representative of a typical repeating unit of a composite material

under analysis, and Figure 3.2 defines some of the geometrical parameters

describing a typical triangular element.

y ov	 AT y-- a

0*y	 a y 
-C constont ' ryx 20

	

a3/=	 Typical element
(See FIGURE 3.2)

AT x= b

	

S 04	
---Bx 2 constant

Txy = 0
ATx =0

8K 2 0	 ow o-, b

xjU
v

zjW	 AT Y=O
ATz =0	 $y= 0
3z -- 0
AT  = I 8z zz constant

'rz = 'ryz =o

FIGURE A.1

Configuration of the Area of Interest for a Typical
Micromechanics Analysis, Including Boundary Conditions
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As discussed by Miller. (pp. 32-42 of Reference [l]), the fiber
	

F

packing geometry is assumed to be symmetric, and the repeating first

quadrant unit of the composite continuum represented by Figure A-1 must

remain rectangular when any combination of normal tractions, 
ax,

 oy,

and oz are applied to the three orthogonal planes. This results in the

specification of unique boundary conditions to maintain the symmetry and

continuity of the material under investigation. 'These boundary conditions

are explained in detail by Miller and Adams [1), And by Adams 121 0 and

summarized in Figure A.I.

A.2 GENERALIZED PLANE STRAIN

In Miller's [1] formulation of the governing constitutive equations

for the finite elements used in this analysis, generalized plane strain

conditions were assumed In order to reduce the analysis to a quasi-three-

dimensional problem. In past micromechanics investigations, finite ele-

ment models representing a transverse section of a unidirectional com-

posite were treated as ordinary plane strain problems. Under these con-

ditions. the body under consideration is assumed Lo be thick, i.e., the

axial dimension is much larger than the transverse dimensions, and the

displacement in that direction is assumed to be zero, resulting in zero

strain in that direction, i.e.,

C  ° Yxy Yyz ° A	 (A-l)

For isotropic materials, this condition permits an induced normal stress

in the axial direction of

o z v(ax + Qy)	 (A-2)

Miller's primary reason for incorporating generalized plane strain con-

ditions was to allow axial loading, i.e., Loading parallel to the fiber

axes, the z-direction in his transverse section finite element grids (see

7 {



Figure A-l). In addition, when a composite is loaded in _..- _ -- .__--

direction with no longitudinal tractions being applied, the generalized

plane strain conditions alloy: a normal strain to develop along the longi

tudinal axis, resulting in zero stress in the longitudinal direction.

Lekhnitskii (26i defines generalized plane strain in a very general

manner, stating that all of the strains associated with the z-axis di-

section can be nonzero constants, including the shear strains, Yxz and

Yyz ' In the current analysis, a somewhat less general form of generalized

plane strain has been employed in which it is assumed that only the normal

strain, ez is nonzero, i.e., Yxz and yyz are assumed to be zero. This

definition requires that all planes perpendicular to the z- axis direction

be a linear function of the position coordinates in that direction, i.e.,

	

W	 KZ	 (A-3)

where K is a constant. In other words, some constant strain, e z , exists

in the z-axis direction

	

cx	
az	 K	 (A-4)

This means that the displacements of all of the node points in the z-axis

direction are identical. It is also important to note that the axial

stress, a z , is uncoupled from the transverse stresses, ax , cy , and Txy.

Keeping this in mind and referring to Figure 3.2, the following points

are noteworthy:

a) Node points i', J', and k' are required to have the same dis-

placements in the x and y directions as points i, 3, and k.

b) Node points i, i, and k have identical displacements in the

'	 z-directions, while from symmetry considerations, i', 3', and k'
have zero displacements in the z-direction.

c) Since each element is assumed to be of unit thickness, the dis-



.x

the strain, cZ.

A.3 FORMULATION OF ELEMENTAL STIFFNESS MATRICES BASED ON GENERALIZED

PLANE STRAIN CONDITIONS

The full development of the basic finite element method is avail-

able in complete detail in several texts (References [19-21] 0 for example),

and a complete examination of the formulation and assembly process re-

sulting in a set of simultaneous algebraic equations will therefore not

be included here. Only a brief overview of the process is presented so

that the unique capabilities of the present analysis scheme might be better

explained.

Once the assumed displacement field within cacti element has been e;;-

pressed in terms of unknown node point displacements (see Figure 2.1), the

strain at any point within the element can be expressed as

aui+ huh
cij _ (ax., Dxi)	

(A-s)

with i = 1,2
ul = u = x-displacement

u2 - v y-displacement
X1 = x
x2-y

As a result, a general expression relating the strains to the displacements

in any element, i, can be written as

[e } i = [13] i {S } i	(A-6)

The matrix [B] i is a set of geometric parameters relating the vector of

the node point displacements, W i, to the strains in the -th element.

The form of [t3] i , generally known as the "Shape" matrix, is dependent on

the form of the assumed displacement field.

The stresses and strains are related by an appropriate constitutive

relationship, Hooke's law being a familiar example. The general Duhamel
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Neumann form of these constitutive relationships [20, 27, 281 is

(a)	 (H) ((c)	 (co ))	 (A-7)

where (u1 and (c) are the stress and strain vectors, respectively, and

[H1 is a matrix containing they appropriate material properties relating

the two. The elements of the initial strain vector, (co), are dilata-

tional strains induced by thermal or moisture changes. This topic will

be discussed in greater detail in Section A.5.2 of this Appendix, but

for now it is noted that the temperature and moisture sensitive matrix mat-

erials have an order of symmetry which is at least orthotropic, so that

dilatational shear strains cannot exist. That is, the initial strain

vector can be expressed as

Opp

I 
x

O
E

(C O )	 yo	 (A-8)
E

z
O

As described by Zienkiewicz [201 for instance, an expression for the

strain energy within an element can be written using the relationships

given above, heading to an expression for a potential energy functional

in terms of strain energy and forces acting at the node points. Mini-

mization of this functional results In a set of simultaneous algebraic

equations relating node point forces to node point displacements.

Typically,

(F)i = [kl i (S) i + (Fe ?i	 (A-9)
0

where (F)i is the vector of forces acting on the node points of element

i, and [k] is the stiffness matrix for element I. The elements of the

vector 
(Fe )

i are the forces acting on Ltie node points resulting from
0

initial dilatational strains developed within the element. For constant

strain elements, the form of [kl l is
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(k) l	(Bji 111 1 (BJi tiAi	 (A-10)

where t i is the thickness of the element and Al is the area of element i

in the x-y plane.

All of the forces on each node point in an array due to each element

sharing that node point must be in equilibrium. in addition, the summation

of all such node point forces must be in equilibrium with all externally

applied loads and specified boundary restraints. This equilibrium require-

ment and the summation process it entails leads to the formation of a

"global" stiffness matrix, W, for the entire region under analysis.

What this essentiaE y does is to assemble all of the equations of the form

of (A-9) for all elements, resulting in a total set of simultaneous equa-

tions for the entire area being analyzed.

{F)- [K] (d) + {Fe }	 (A-11)
0

For our constant strain element, the displacement fields under gener-

alized plane strain conditions are

u - al + a2x + a3y

v - b l + b2x + b3Y	 (A-12)

w = Kz

where K is a constant.

For the triangular element shomi in Figure 3.2, the coefficients Al, A2,

A3, bl, b2, and b3 can all be expressed in terms of the node point dis-

placements in the x-y plane. This leads to the shape matrix [B) i as de-

veloped by Heubnex 119), but with a .fourth row and a seventh column added

to express the condition of generalized plane strain:



where so s a' AT + B' AM

For a complete discussion of the derivation of the material properties

matrices shown above, the interested reader will find a thorough and

easily understood development by Miller and Adams (pp. 47-53 and Appendices

A and C of Reference [11). It is to be noted that while these expressions

for [N] i involve the region of elastic or linear stress-strain behavior,

the values of the material constants E, v, a. S, etc., can be functions

of temperature and moisture.

A4.0 LOAD APPLICATION

Loads introduced to the finite element array in the micromechanics

analysis can be in the form of applied mechanical tractions, or arise from

thermally or moisture induced dilatations. Mechanical loading can consist

of average applied normal stresses in the x, y, and z directions, as de -

fined by Figure A-1, for each load increment, while thermal and moisture

gradients can be applied at any increment to reflect environmental changes

the composite may be subjected to. Mechanical loading will be discussed

first.

The application of mechanical tractions to the finite element model

is considerably simplified by taking advantage of t`„te boundary conditions,

as specified in Figure A-1, which permits a rearrangement of the global

stiffness matrix [K], and the total force vector; { F}, by a method intro-

duced by Branca [ 30]. The displacement boundary conditions for the re-

peating unit finite element model were specified in order to maintain

continuity of the material continuum under investigation. Specifically,

referring again to Figure 2.1, displacements in the x-direction of node

points along the right-hand vertical boundary must be uniform. Displace
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s (A._19)

n 9

ments In the y-direction of the upper horizontal boundary must be uniform,

and the displacements of all node points in the z-axis direction must be

uniform. When the overall force-displacement equation of the system is

considered, i.e.,

(F) - W {6}	 (A-18)

one can see that all of the boundary node points involved in mechanical

loading will have identical displacements with respect to the direction

of the load application. These identical displacements allow combining of

certain terms in the global stiffness matrix that result in the replacement

of the applied forces on boundary nodes by zeroes, in the manner described

by Branca (30).	 Successive modification of the global stiffness mat-

rix for each boundary node point displacement results in the following

form of Equation (A-18) for the simultaneous application of uniform values

of ax, vy, and az for an array of n nodal points

0	 kll k12 k1 3 ...kl(2n+Z)	 61

0	 k22 k23	 62

0	 k33	 63

u..

rx	 S2n

r 1 	- 	 62n+1

Fz 	 symmetric	 -	 62n+2
t

where rx, Fy, and FZ are the total applied loads in the x, y, and z direc-

tions, and are defined, for a unit thickness model, as

F x - vxb

Fy - aya	 (A-20)

Fz m a.ab
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where a and b are as defined in Figure 2.1. On pp. 63-67 of Reference (1),

Miller clearly illustrates, by means of a simple two-element model, the

manner in which the elements of the global stiffness matrix are manipulated

to obtain Equation (A-19). The important point is that this procedure

allows a rather straightforward simultaneous application of external trac-

tions in the directions of the three coordinate axes.

Thermal-dilatational and moisture-dilatational effects are also in-

eluded within a given loading increment. These effects appear as the vec-

tor (FCo)i in Equation (A-9). The elements of this vector represent the

forces on the node points of an element which are the result of dilatational

strains, Co, due to thermal and moisture gradients, as given by Equation

(A-15). The magnitudes of these induced nodal forces are a function of

the shape of the element, [B) , and Its material properties, [H), i.e.,

fFC ) i • - [B)i[Hl i (co ) i t iA 	( A-21)
u

When a loading increment includes a change in temperature or moisture

content, the node point forces given by Equation (A-21) are calculated

and then moved to the right-hand side of Equation (A-9)

(F, 
FC 

) 1 Q [k] (6} i	(A-22)
0

This form la retained when the elemental equations are assembled in-

to the total global form, as given by Equation (A-11), so that a single

loading vector exists for each increment and only one inversion: of the

total stiffness matrix, [KJ, is required.

A.5 NONLINEAR MATERIAL RESPONSE

The University of Wyoming micromechanics analysis program models the

response of the isotropic matrix of composite materials to both external

tracis ions and changes in temperature and/or moisture concentrations. Be-



cause the vast majority of matrim materials in use today are capable of

considerable plastic deformation before failure, an elastoplastic analysis

scheme for deformation due to mechanical loading is essential for micro-

mechanics studies. In addition, the effects of temperature and moisture

(hygrothermal) changes must be considered. Internal stresses Induced by

the high temperature fabrication and bonding processes that most composites

are subject to can actually cause material failures before any mechanical

load is applied, while toe effects of moisture absorption by polymeric

resins has become an area of major concern for analysts and designers in

recent years. Past micromechanics studies ( 2, 3, 7-181 have assumed that

the material properties remain constant for all states of temperature and

moisture to which the constituent materials are exposed. This is not the

case, as these changes in temperature and moisture content not only induce

str e!mses, but at the same time significantly alter the material properties.

This is also a type of nonlinear behavior and it must be accounted for. A

brief description of the manner in which the effects of plasticity and the

hygrothermal dependence of the material properties are incorporated into

the finite element stiffness matrix follows in the next two subsections.

A.5.1 ISOTROPIC MATERIALS IN THE PLASTIC REGION UNDER GENERALIZED PLANE

STRAIN CONDITTONS

Of the many elastoplastic finite element analyses of undirectional

I
^	 composites performed to date [2, 3, 8-11, 13, 16, 183, the present proced-

ure is most like that described by Adams [13). ft is modified to account

for the generalized plane strain assumptions and for the inclusion of the

effects of environmental changes. Like most methods of approximating non-

linear material behavior, the present procedure requires that loading be
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applied in small increments. This nececsitstes the accumulation of dis-

placement*, stresses and strains From each succeeding increment. It will

be shown that this is possible due to the fact that the material properties

used in incremental techniques are linear and therefore superposition prin-

ciples apply.

Two basic techniques exist for accounting for the plastic portion of

each loading increment, the tangent modulus method and the method of In-

itial strains. The method of initital strains uses the elastic material

properties, as employed in Equation (A-14), throughout the entire loading

sequence, It accounts for plastic strain by adding an initial strain to

the strain vector of each element and then iterating until equilibrium con-

ditions are satisfied. The advantage of this method is that the global

stiffness matrix [K) need only be formed and inverted once. The tangent

modulus method uses the tangent modulus of the material at a particular

stress-strain state to define the stiffness of eaen finite element for the

next loading increment. While no iteration is required, a new global

stiffness matrix must be assembled and inverted for every loading incre-

ment. A more detailed description of both of these methods is given by

Adams (pp. 36-39 of Reference (2)), wherein the tangent modulus method

emerges as being preferred for materialo that exhibit relatively "flat"

stress-plastic strain curves, which is the case for many metal matrix ma-

terials used in advanced composite materials. The current analysis uses

the tangent modulus method for this reason. In addition, since the mater-

ial properties must be modified at the beginning of each loading increment

to account for environmental factors, which also requires the assembly of

a new global stiffness matrix, use of the tangent modulus method imposes

no penalty.
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For each loading increment beyond the elastic limit, the correspon-

ing increment of strain for any element can be separated into an elastic

(recoverable) and a plastic (irrecoverable) part, or in Adams' notation [21,

iij - e ij (e) + Eij(P)	 (A-23)

where the elastic portion, e ij (" ),behaves according to the generalized

Hooke's law,

Eil (e)• L--2 bkkdi j + + b i j	 (A-24)

where 6ij is the Kronecker delta, and ;i1 is the deviatoric component of

the rate of stress tensor,

sij . bij - 
3 6kkdij	 (A-25)

For this analysis, the plastic portion of the deformation is assumed to

follow the Prandtl-Reuss flow rule [311,

eij(p)	 is ij	 (A-26)

where Xis a positive scalar function. In other words, at any instant,

the rate of change of the plastic strain is proportional to the devia-

toric stress only. The mean normal, or dilatational, strain makes no

contribution to plastic deformation. Adams (pp. 13-15 of Reference [21),

goes through a detailed explanation of the procedure involved in obtaining

a convenient form of	 a

2 M a
	 (A-27)

of

where To is the octahedral shear stress

To = ( 1/3 si j si j A	 (A-28)

is is the octahedral shear stress rate of change, and M t is the tangent

modulus of the octahedral shear stress-octahedral plastic shear strain

curve

2Mt a ddT	 (A-29)
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a linear relationship. The above equations land to an incremental con-

stitutive equation for 4lastoplastic material, behavior

a ui kl. kl
cii ,.
	

ri
2 V, Qil - YhOij + "^ C^	 (A-30)

r
Millar [1) adds an additional term to this exprei lion to account for the

dilatational strain increments i.nduc;cul by the env ironmentail changes.

'Thus,
s s u

e.i
.1	It\► ail _	 ctkk5i	

.s i; 21 k1 + r 
odi,j	

(A-31)

Equation (A-31) must be inverted in order to obtain t1 ►e constitutive re-

lationship in the form of Equation (A-6). Details of this inversion pro-

cedure tinder generalized plane strain cond itions are given by Miller

(Appendix U of Reference [11). The resulting material properties matrix,

[Nl, is

2	 111-v	 sl.l	 v	 ^'11s22^	 sllsl2^

	`'

	 ail

	1

	

^	 >_
^.I3	 Cl,-2v	 13

	

1-\) _ 0 221	 (M s 22"12	 v _ s?2s33.

1
-2v	 It I	 \	 K	 1-2.v	 B

	

l+v ,
,	 n1  1 - s1233^

	

w	 ^IZ	 1	 ^11

lry 
r `'3_23

s ytutuo t:r. i.c	 1-'_2v_ B

(A-32)

where 11 - 3T 2 [ .1 + 1

and thc^ clemc,nt s of the incremental di,l.atationaal Strain vector are

R0

(ca [
	

^`	 °	 (A-33)
c^

o

where o tWi + 5AM*	 (A-34)
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AT and AM representing the incremental changes in temperature and moisture

content, respectively. Thus, for each matrix material element that has

exceeded its elastic limit at a particular temperature and moisture con-

dition, Equation (A-32) is used to define its material properties so that

its elemental stiffness matrix, Equation (A-9), can be formed and incorpor-

ated into the global stiffness matrix, [K], for the current load increment.

An additional feature of the present analysis is that it is not re-

stricted to monotonic loading. That is, unloading from the plastic region

is possible for those elements that undergo stress relief due to local de-

formation or crack formation. It is assumed that the material unloads

linearly elastically, with a modulus equal to the elastic modulus. If

total unloading were to occur, the total plastic strain sustained by the

element up to the point of unloading would be retained. If reloading sub-

sequently occurs, the material follows the stress-strain response described

by the elastic modulus until it attains the stress level from which it

began to unload. For any loading past this point, the material continues

to move along the original elastoplastic curve.

A.5.2 HYGROTHERMAL DEPENDENCE OF MATERIAL PROPERTIES

As noted previously, the alteration of the properties of the consti-

tuent materials of a composite as they are exposed to -a changing environ-

ment has a significant effect on the microstrass state of the composite.

The present analysis scheme evaluates the stress-strain behavior, the

coefficient of thermal expansion, the coefficient of moisture dilatation,,

the yield strength, the ultimate strength, and the ultimate strain for

each element, at the beginning of each load increment."

Many past elastoplastic analyses have input the entire stress-strain
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response of the material under study as data tables, utilizing considerable

amounts of core storage or peripheral storage in the process. If one were

to do this for each stress -strain curve corresponding to a range of temp-

F	 eratures and moisture levels, a prohibitive amount of storage would be

required, and even on today ' s larger computers, this would significantly

limit the size of model that could be analyzed. The present analysis uses

a three-parameter modal to parametr i cally describe the stress-strain curve

of a material at any t:rmperatire and moisture of interest,. `d.'he model. use+J.

L bases on the Richard-131tacic` ock equation (321, which is capable of

accurately modeling material. behavior which exhibits large amounts of

plastic deformation. The general, form of the Richard-Blacklock equation

is	 H 
c^ Ee \1 n

f	 `	
(701 1

1 J	 (A=35 )

where E As the elastic: modulus of the material and a. and n are independ-

ent parameters as illustrated in Figure A.2.
,r

FIGURE A.2

Richard-1lacklock Representation of Stress-Strain Curves

AS



For the present analysis, Equation (2.35) is modified to describe an

octahedral shear stress-octahedral plastic shear strain curve, as the

primary material failure criterion employed is the ultimate octahedral

shear stress criterion. Fortunately, uniaxial test data for a given

material can be converted directly to octahedral shear stress and strain.

The octahedral form of Equation (A.35) is

t R
Cs

1+
1

-- n 1 n

60

(A-36)

where To is the octahedral shear stress as defined by Equation (A-28), and

To and n are again independent parameters which fit the curve to empirical

data by means of a numerical least squares curve fit procedure (p. 76 of

Reference 111). The term a is the octahedral shear strain, defined as

e m (113 e i^e i^?	 (A-37)

and E is the slope of the .initial linear Portion of the octahedral shear

stress-octahedral shear strain curve, being related to the elastic modulus,

E, as follows

C s ( 3(1+2v^))

	
(A-38)

The tangent modulus of the octahedral shear stress-plastic octahedral

shear strain curve, 2MT , is the quantity required in forming the material

properties matrix, [N), shown in Equation (A-32). The tangent modulus,

2MT, can be related to the tangent modulus, E T , of the octahedral shear stress-

octahedral shear strain curve by

2MT	 E—-	 (A-39)
E-ET
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where ET can be obtained by differentiating Equation (A-36) with respect

to e. This yields

ET
n 1/n	

(A-40)
r	 ^£ 

a 11 50-

Thus, for a given octahedral shear strain, the tangent modulus, 2MT,

can readily be calculated. It has been found that small changes of tem-

perature or moisture do not drastically alter the stress-strain curve of

a matrix material, but rather modify the material properties in a uniform

manner. In other words, a functional relationship between the parameters

oo n and the elastic modulus, E, and temperature and moisture states can

be found. This is done by fitting Equation (A-36), in a least squares

i
sense, to octahedral shear stress-octahedral shear strain curves obtained

from tensile test results in various environments. A somewhat more de-

tailed description of this procedure is available on pp. 73-78 of

Reference (1).

n ;

a
a

t
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