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PREFACE

This Annual Technical Report presents research performed during the

first year of NASA-Lewis Grant NSG-3217, which was initiated on August 1,

1978, The grant is continuing, presently being budgeted for the second

year. The NASA-Lewis Technical Monitor since the inception of this grant

has been Dr. J. A. DiCarlo «{ the Materials Science Branch,

The study is being performed within the Composite Materials Research

Group at the University of Wyoming. Principal Investigators are Mr.

Daniel P. Murphy, Graduate Student, and Dr. Donald F. Adams, Professor,

both of the Mechanical Engineering Department. Mohamed M. Monib and Brent

G. Schaffer, Graduate Students in Mechanical Engineering, have also made

significant coutributions.




TR LT R AR A R T T T e e e e - ?

CONTENTS
;
1. INTRODUCTION « & v o v v v o o v v v o o w6 v s o o s o v o ue 1 3
20 SUMARY. & o v v v b e e e e e e e e e e S ]
Bu ANALYSIS & v v v v o v v e v et i et et e .. 8 ﬁ
E 3.1 THE FINITE ELEMENT METHOD AS AN ANALYSIS . . . . . .... B8 %
; 3.2 FINITE ELEMENT MICROMECHANICS ANALYSIS . . . . . . . . . . 10 i
% 3.3 CRACK INITIATION AND PROPAGATION . « . . o « + o 4 . o . . 12
' 3.4 DEVELOPMENT OF THE BROKEN FIBER,
LONGITUDINAL SECTION MODEL + + + o & « « « o« « « « « o 4 25
. 3.5 DEVELOPMENT OF THE TRANSVERSE SECTION MODEL . . . . . . . . 31
5r 4. MATERIAL PROPERTIES .+ « v o v v o v v o v v o v e oo s v a s v 33
?‘ 5. NUMERICAL RESULTS  + o & v o v v e v o v v v o v o v s o e 35
,é 5.1 AXTAL LOADING OF THE 45° SECTION LONGITUDINAL MODEL . . . . 3§
b 5.2 AXTAL LOADING OF THE 90° SECTION LONGITUDINAL MODEL . . . . 45
: 5.3 AXTAL LOADING OF THE TRANSVERSE SECTTON MODEL . . . . . . . 53
' 6. FUTURE WORK . + o v v v v o v i % e o oo oo s o e e v e e v 64
? REFERENCES « « « « o v v o o v o v v o n s o e e o e o n v oo s 66
i APPENDIX A. FINITE ELEMENT FORMULATION OF THE MICRO-
r?' “ MECHANICS ANALYSIS COMPUTER PROGRAM . . . . . . . . 69




SECTION 1

INTRODUCTION

Y a2 L i L

It is widely recognized that crack initiation and propagation in
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fiber~reinforced composite materials is necessarily quite different from
that in homogenous solids, and that most applications of classical lin-

early elastic fracture mechanics have not bheen satisfactory.

The inhomogenous nature of fiber-reinforced materials strongly

S i D A

suggests the use of so-called micromechanical analysis techniques, where-

in the interactions of the individual reinforcing fibers with the surround-

ing matrix material are considered., Specifically, if sufficient insight

into the geometrical effects can be gained, the energy absorption due to

crack initiation and growth in a unidircctional boron/aluminum composite

can be characterized with a two-dimensional micromechanics analysis.

This 1is the primary objective of the present study.
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The first-year effort reported here has been directed at investigat-

ing the response of a unidirectional boron/aluminum composite containing

a fiber flaw site or discontinuity, Tensile loading in the direction of

the fiber axes is of primary interest, although transverse loading has

also been analyzed. To approximate the behavior of a metal matrix com-

posite under these conditions, two features are of major importance to a
micromechanics analysis:
°The ability to model the full elastic-plastic range of the

matrix material and modify it to account for changes in

temperature.

°The availability of a procedure for approximating crack

1
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growth in the matrix material.

The finite element micromechanics program previously developed at
the University of Wyoming [1l] possessed the first of these features at
the time that the present grant was awarded, and a crack propagation
capability was incorporated during the fourth quarter of this first-
year effort.

A survey of the literature available on the topics of micromechan-
ics analyses and the effect nf flaws in unidirectional metal matrix com- |
posites has yielded some valuable information, and has provided insight
into the problems involved. But the exact problem dealt with in this ,%
grant study does not appear to have been attempted before. ?

Among previous analysis efforts is a series of two reports published

in 1973 by Adams [2], and Repnau and Adams [3], in which a finite ele-

ment micromechanics program was developed, incorporating both elasto- .
plastic capability and crack propagation. A unidirectional boron/aluminum

composite was studied, although no flaw sites were incorporated and the

model grid represented a section of the composite which was transverse

to the fiber axes, Also, because a plane strain solution was assumed,
only transverse loading could be studied. Material modifications to
reflect environmental changes were also not available in these programs.
Another effort was that of Ko [4) 1in 1977, His analysis was of an
axially loaded boron/aluminum composite using the NASTRAN finite element

analysis program as a micromechanics tool. His model consisted of a

single boron fiber surrounded by an annular section of aluminum matrix. .
Axisymmetric finite elements were employed and discontinuitites in both

the fiber and the matrix were studied. However, the NASTRAN solution did

not incorporate elastoplastic material response, nor was any sort of

crack propagation scheme used.




Akbarzadeh (5] undertook a micromechanics analysis of flawed uni-

divectional composites in 1978, The material he studied was E-glass/

epoxy and the flaws were taken to be discontinuous fibers. Again, the

NASTRAN finite element program was employed, and no elastoplastic de-
formation or crack growth was considered. His finite element grid rep-
resented a cross-sectional cut transverse to the fiber axes and all load-
ing was confined to the plane cf thkat section, i.e., there was no axial
loading., Akbarzadeh's finite elemeut grid was very fine, and his analy-
8ils yielded valuable information concerning the eclastic microstress state
in composites with different fiber packing geometries and densities, and

the effects of varying the elastic moduli of the constituent materials.

Finally, there has been a limited amount of experimental work done

in the area of interest dealt with in this report. One of the more im-

portant of these was by Awerbuch and Hahn [6], in which the crack tip dam-

age and fracture toughness of axially loaded unidirectional boron/aluminum

composites was studied. Awerbuch and Hahn prepared tensicn coupons of

boron/aluminum in which a center notch was machined, cutting several fibers

and the aluminum matrix between them, Among the data penerated by their

efforts are some describing the deformation of the aluminum matrix surround-

ing the last cut fiber at the edge of the notch. This has been of some

help in evaluating the results of the present analysis.

The present study has yielded valuable information about the analyti-
cal approach to the problem of energy absorption in a flawed metal matrix
composite. The analysis is a quasi-three-~dimensional formulation (see
Section 3), which allows traction loads to be applied to threee mutually

perpendicular surfaces ot a two-dimensional finite element array. This

program in its present form can predict the microstress state of a matal
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matrix composite with flawas quite well, and provides information regard-

ing the energy absorption resulting from plastic deformation and crack

arowth at such flaw sitea. However, the full characterization of this

problem involves the rather complex geometry resulting from an array of
cylindrical fibers inbedded in an elaatoplastic matrix, and the final

solution would appear to require a three-dimensional analysis. The follow=- !

on second-year study will consider such an analysis, incorporating all

of the features of the present analysis into a three-dimensional form-
ulation,
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SECTION 2

SUMMARY

Considerable progress in the investigation of the energy absorption
and the microstress state of unidirectional metal matrix composites has
been made to date, Further development of the analytical procedures de-
seribed in this report, together with a carefully conceived and executed
experimental program is expected to lead to a reliable means of pre-
dicting the strength and toughness of these composite materiuls under
actual conditions of manufacture and service. That is, given certain
statistical parameters which define the quality of the constituents, a
prediction of the energy capacity of the composite could be made,

As was discussed in Section 1, and confirmed by an on-going litera-
ture survey, the particular problem being dealt with here, and the analyti-
cal procedures employed, make this study unique. A finite element analy-
gls program is used to determine the stress-strain state of a unidirection-
al, metal matrix composite material. A rather comprehensive description
of the theoretical foundations and the special capabilities of this computer
program is provided in Appendix A. This program has been modified, and
is in the process of being expanded to make it more suitable for the study
of energy absorption mechanisms in axially loaded metal matrix composite
materials containing flaws in the form of microcracks in the matrix
material, or discontinuities in the fibers. The two most important energy
absorption mechanisms being studied are plastic deformation due to the
stress concentrations arising out of a material flaw, and growth of any

cracks initiated by such a flaw.
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A major problem in investigating the microstress state of uni-
directional composites 18 related to their geometrical inhomogeneity, i.e.,
the fact that a detailed representation of the stress state in and around
the filaments embedded in an ineclastic matrix is required. While the
finite element analysis program employed i8 quasi-three-dimensional in
that it can be loaded in all three coordinate directions and the result- é
ing stresses and strains computed, the actual modeling of the region of
interest is essentially a two-dimensional representation. As described
in Sections 3.3 and 3.4, an attempt to account for the complex geometry
of the problem was made by constructing two types of finite element
arrays. One is the "longitudinal" model, which represents a cross-section=
al cut through the composite running parallel to the axes of the boron
fibers. This model 18 particularly useful in studying the effects of dis~-
continuous fibers, or fibers with regions of reduced strength. In addition,
the presence of cracks or voids in the metal matrix can be modeled and their

effect on the axial strength, and to some extent the transverse strength,
of the material can be studied.

The other type of model developed will be referred to the "transverse"
section model, and depicts a cross=sectional cut perpendicular to the
fiber axes of the composite. This model is well-suited for studying the
effects of transverse loading of the composite material, and the influence
of the circular cross section of the fibers is fully accounted for. Fiber
flaws and matrix flaws can be completely characterized for transverse
loading. Due to the generalized plane strain formulation used in the
analysis, it 1s possible to load the transverse model in the axial, or
z-directions. Unfortunately, with this mode of loading, it has not been

possible to study to stress concentrating effects of flaws and discon-




tinuitiea. This is due to the fact that all element displacements out

of the plane of the model muat be equal (sce Sect.uii 4.2 of the Appendix),
and variations in axial strese are thus due to Poisweon e¥fects and differ-
ences in material properties only,

The longitudinal models have been useful in studying the effects of
flaws on the axial strength of unidirectional composites, as detailed in
Sections 5.1 and 5.2, The extent of plastic deformation around a flaw
and the effects on the load redistribution among the surrounding fibers
can be characterized quite well, For this model too, considerations
have to be made regarding the geometry of the composite. As discussed
in Section 3.3, this leads to the two configurations of the longitudinal
model which are necessary to characterize a square or rectangluar fiber
array.

Crack initiation and propagation are¢ clearly important considerations
in the study of energy absorption in flawsd materials. This capability
has been added to the micromechanics analysis, and is described in Section
3.2, Unfortunately, a numerical inconsistency was discovered near the
end of this first-year program, and subsequent corrections to the program
have not yet been fully debugged. Consequently, numerical results of
crack propagation in a unidirectional, metal matrix composite will be

presented in the next quarterly report.
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SECTION 3

ANALYSTS METHOD

3.1 THE FINITE ELEMENT METHOD AS A MICROMECHANICS TOOL

The scope of the following analysis is to determine the internal
stress distribution in a unidirectional fiber-reinforced, metal matrix
composite material subjected to mechanical loadings and variations in
temperature. In addition, the effects of material flaws or discontin-
uities and their subsequent propagation through the material continuum
are to be characterized.

The typical unidirectional composite has a nonhomogenous internal
structure that consists of at least two distinct phases, i.e., a homogen-
ous matrix material reinforced by isotropic or transversely isotropic
fibers. Transverse isotropy refers to the condition in which the axial
properties of the fiber (e.g., strength and modulus) differ significantly
from those in a plane normal to the fiber axis. In most unidirectional
composites, boron/aluminum included, the reinforcing fibers are much
stronger and possess # much higher axial elastic modulus than the surround-
ing matrix. The nonhomogenous nature of such a composite, together with
the geometrical considerations of a cylindrical f£ilament embedded in a
matrix and containing a microscopic flaw, results in a boundary value
problem of such compexity that a classical closed form centinuum solution
to evaluate the microstress state would be impractical. As a result, in-
vestigators for the last 12 to 14 years have formulated numerical schemes
to evaluate microstresses in unidirectional composites. In one of the
earlier efforts, Adams and Doner [7] applied finite difference techniques

8
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to their micromechanical studics. More recently, the finite alement
method has emerged as the most versatile tool available for such studics,
as demonstrated by numerous investigators [8-18].

The finite element analysis method is based on the concept of dis-
cretizing a material continuum into an assembly of "elements” of "finite"
size. The individual elements are assembled into a network representing
the continuum by joining them at predetermined points or “nodes' along
their boundaries. For any element, approximate functions representing
either stress, strain or the displacement field within that element can
then be written., By a suitable choice of coefficients for these assumed
field equations, a minimization of the potential energy of the system is
achieved. To dat:, the nsmnmo; displacement field technique has been the
most successful and the most penerally applied {19]. For an assumed dis-
placement field for the interior 65 an assembly of elements, minimization
of the potential energy results in a set of simultancous algebraic equa-
tions relating loads to diaplqpementa. These equations can readily be
solved with modern digital computers. This procedure i8 expisined in
rigorous detail by Heubner [19) and Zienkiewicz [20] wherein they point
out that the finite element method is as useful in solving thermodynamics
and fluid mechanuics problems as it is in solid mechanics, the only differ-
ence being that functionals other than potential energy must be minimized.

One of the great advantages of this method is that the approximate
field equations need only sacisfy the constraints of the individual ele-~
ments. An important consequence of this situation is that equilibrium and
compatibility conditions between the assumed fields of the individual ele~
ments must be met in order to insure convergence to a correct solution.

These conditions are also thoroughly discussed and developed in texts by

9
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Heubner [19), Cook [21], and Zienkiewicz [20].

The finite element method may be applied to any general three-di-
mensional problem, the primary limitation being one of computer capacity.
In an effort to analyze rather complex structural configurations in suffi-
cient detail, most analyses, including all micromechanics analyses to date,
are reduced to two-dimensional problems, i.e., plane stress, plane strain,
or generalized plane strain formulations. The analysis method used in the
present study is a two~-dimensional form incorporating a condition of gen-
eralized plane strain, which permits a specific loading to be applied in
the third direction. This concept is discussed in detail in Section A.2

of Appendix A.

3.2 FINITE FLEMENT MICROMECHANICS ANALYSIS

The primary analytical tool used in the present study has been the
micromechanics finite element analysis program developed by A. K. Miller
while completing his Ph.D. studies at the University of Wyoming, which is
described in considerable detail in Reference [l]. This program was created
to investigate the microstress state in unidirectional composite materials
subjected to trangverse mechanical loads, thermal gradients, and dilatation-
al stresses due to moisture absorption by polymeric matrix materials.

Among the special features of this program are its ability to model the
elastic-plastic stress-strailn response of the isotropic matrix material,
and in concert with the determination of thermal and moisture dilatational
stresses, the functional dependence of the matrix material properties on
temperature and moisture content. In other words, the elastic or plastic
properties of any matrix material finite element are automatically computed

to reflect the state of stress and the environmental conditions of temp-

10
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evature and humidicy. The adjuatment of material propertics is ingorpor-
ated with the incremental loading tectmique that is employed in this pro-
gram, Once the initial temperature, moisture countent, and/or elaatic
atrvesa level for the continuum have been specified, additional loads, be
they mechanical ov environmental, are introduced in incroments small enough
to permit cloae approximation of the nonlinear matrix material propertics
by small linear segments. A more detailed description of this technique
1a presentad in Section A5 of Appendix A.

The bulk of the elastoplastic formulation in the present analyais
program atema from provious work done by Adams [2, 3, 18], The development
of the hygrothermal loading and material properties dependence was the
subject of Miller's Ph.D. rvesearch {1], and the addivion of crack fnittation
and crack propagation capability, to be discussed in detail in the following
section, was performed by the present writers. The basia for tiids program
is the procedure set down by Zienkiewicz [20), and in fact, the primavy
ovganization and flow of the present computer program closely follows the
suggestions of Appondix A of that text. This flow and organizacion has
subsoquently been rather sevevely altered to include crack propagation
capability,

The finite olement used in this study is8 a modifiod version of the
familiar constant strain or simplex triangle. VFor this clement, a linear
displacement field within each element fs assumed, to arvive at a function-
al representation of the potential energy of the system, as referrved to
In Section 3.1 and described In Section A.2 of Appendix A. The constant
strain triangular eloment has some wall~known liwitations, but for the
purposes of micromechanics analyses, it is an acceptable, economic, and

powerful tool. ‘The trade-offs involved in the chotee of the constant strain

11
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triangular clement instead of one of the higher ovder finite elements is
covered quite well by Miller in Chapter 3 of Reference [1]. A brief
deacription of the formulation of the constant strain triangular element
in {its generalized plone strain form is8 presented in Sections A.l through
A.3 of Appendix A. The manner in which loads are introduced to the finite
element model is described in Section A.4 of Appendix A. A discussion of
the concepts and procedure used to analyze the isotropic matrix material
in the plastic zone, and the temperature/moisture dependence of the matrix
material properties, is presented in Section A.5 of Appendix A. In the
following Section 3.3, the concepts and methodology used to simulate the
initiation and propagation of cracks in the comnosite material are briefly
outlined, and the analytical relations along with the required sequence

of operations in the computer pregram to accomplish this are presented.

3.3 CRACK INITIATICN AND PROPAGATION

The purpose of the present study was to investigate the effects of
flaws in unidirectional boron/aluminum composites, with the eventual goal
of predicting the strength of such composites given a certain statistical
distribution of internal flaws. These defects manifest themselves in two
forms: a discontinuity in one or more boron fibers, or a localized void
in the aluminum matrix. The loading condition of primary interest lis
that of tension applied parallel to the fiber axes. With suitable modi-
fication, a so-called longitudinal model was analyzed with the micromechan~-
ics program in its original form [22]). This permitted modeling of the
flaw, generally a fiber discontinuity, and an evaluation of the resulting
localized stress concentration and the local plastic deformation it caused.
The redistribution of the load to the broken fiber could also be character-
1ze&, but only up to the point at which a matrix clement failed (crack

12
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initiation). What was necessary for further study of the load capability
of the flawed composite was a crack propagation scheme. This capability
would also permit a characterization of the energy required to isolate
the defect in a "zone" of plastically deformed matrix material, or alter-
natively, the total energy capacity of the system at the point of cata-
strophic failure.

The approach to crack inititation and propagation taken here ia known
as the "failled element" approximation as employed by Adams [2, 3). When
an element in an area of high stress exhausts its strain energy capacity,

it fails. From this, we assume that a "crack" has formed and has the

dimensions of the failed element. This approximation has two implications,

the most important of which is that a finite amount of material is removed
from the system, which in an actual material is not the case. The other
is that the crack is not likely to close up on itself in subsequent load-
ing because of its exaggerated width. These effects can be minimized to

a practical degree by making the finite element grid very fine and uniform
in the area of anticipated crack initiation.

It is not enough to simply delete an element from the finite element
grid when it reaches its ultimate stress., The finite element method in-
volves the maintenance of force equilibrium at every node point in the
array, as discussed in Section A.3 of Appendix A. This equilibrium must
be maintained when ar element fails or unloads. Thus, to represent the
unloading due to element failure, node point loads which are equal and
opposite in sense to those equivalent to the state of stress within the
element at its failure level must be applied at its node points. In
addition, the failed element's material properties must be set to zero,
so that the element makes no further contribution to the global stiffness

13
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matrix, and all of its computed values of stress and strain are set to
zero. This insures that the element is completely unloaded and that no
stresses will be developed in 1t in subsequent load increments.

The "reaction loads" applied to the node points of a failing element
are computed in the following manner. Given the state of stress within
an element at the time of failure, i.e., oy, Oys Txys the statically
equivalent forces acting at the mid-sides of the element, as illustrated

in Figure 3.1 can easily be computed: (See for example pp 40-43, Refer-
ence [19].)

FIGURE 3.1

Force-Stress Relationships

ffﬁ = ox¥ji + txyXij

Y =
fij nyij + 'rxyyji
x N
fik = OxYkj ¥ TxyXjk (3-1)

fj\,(_ = nyjk, + Txyykj
X
fik = OxYik * TxyXki

Fik = OyXq + TyyYyp
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where the quantitites Xij+ Ykj» otc. are as defined in Figure 3.2,
which identifies the important geometrical parameters of the generalized

plane strain triangular element.

yis(TYP)

e

|

] ]
[ s
1) L]
Rk L ¥
I |
] i ]

(]

L

-t

]

‘-— Rik Rkj
Typical Typicol

FIGURE 3.2

Typical Triangular Finite Element of Unit Thickness

These forces, when translated to the node points with their directions
reversed, are the reaction loads required for the unloading of the element,
and are shown below and illustrated in Figure 3.3.

B = (e + )

RY = -h(eg) + £33
: RY = ~l(£4§ + £)
: RY = -4(£7) + £40)
Ri = -(Edk + €45

Y= - y y
B = —hlfg + )

(3-2)

15

P ,me

Gl g Sl a e gt o

T R T R et PUTTRR | LOPRt ()




FIGURE 3.3

Node Point Reaction Loads Statically
Equivalent to Stresses in the Element

In the present analysis, element failure can occur in one of
two modes: when both the computed octahedral shear stress and the plas-
tic octahedral shear strain reach their maximum allowable values (maxi-
mum distortional energy criterion), or when the hydrostatic tensile
stress in an element exceeds the tensile ultimate strength of the mater-
ial. This second failure criterion is also known as failure due to ulti-
mate cleavage, and failure occurs whenever a tensile principal stress
exceeds the ultimate tensile strength.

Although loading increments are kept small once elements begin to
enter the plastic region, it is unlikely that an element will fail ex-
actly at the maximum value of an applied load increment. That is, the
load increment will probably be more than sufficient to cause failure
in the element. TFor this reason, it is desireable to scale doﬁn the
load increment to the point of element failure. This fraction of the
load increment required to cause an element to fail is referred to as

the "Ratio" and its definition is clarified in Figure 3.4.

16
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Determination of Increment Scale
Factor (Ratio) for Element Failure

Once one or more elements have failed during a given loading incre~

B L B T STt R YT P I T hiidt iy

ment, the crack propagation procedure is set into motion. This procedure

will be outlined below and is {illustrated in the flow chart showm in

Figure 3.5.

The first operation to be performed in effecting crack growth is to

P D B SN S 5 K - KAISE s B b i LS

identfy which element failure in a single load increment, if indeed more

than one element has failed, required the greatest portion of that load in-

crement to cause failure. The Ratio, as defined in Figure 3.4, is then com-
puted for this element. This quantity is the fraction of the load incre-
ment that is necessary to fail all of the elements in that increment. It is
now necessary to multiply all of the element stresses and nodal displacements
that were computed as a result of the load increment application by this max-
imum value of Ratio. These reduced incremental quantities are then added to

the sums of the stresses, displacements and strains in the normal manner

17
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to give "adjusted" quantities. The next step is to compute the nodal

point reaction loads of the failed elements, using the adjusted accum-

RTINS

ulated stress values and the relationships of Equations 3-1 and 3-2.

. Theae forces become the "adjustment loads" which must be applied to the
finite element model with the stiffnesses of the failed elements deleted
from the global stiffness matrix (see Section A.3 of Appendix A). In
this manner, the energy required to cause the element failure is redis-
tributed into and absorbed by the remainder of the region being studied.
This results in new increments of stress, strain and displacement being
added to the accumulated values, but the operation is not counted as a
load increment by the program. Of course, this adjustment loading may

result in the failure of additional elements adjacent to those that have 5

already failed, causing the crack to grow without the application of
additional external loading. This is similar to the behavior of a crack

that has reached its critical length. When this occurs, all the elements

that have failed have nodal reaction loads computed from the stresses re-
sulting from the adjustment load application, 1.e., no ratioing takes S
place. These elements are then deleted from the global stiffness matrix

and their nodal reaction loads are applied to the model consisting of the

rémaining elements. This procedure is repeated until no further element
failures occur as the result of an adjustment load application, or until
catastrophic failure of the finite element model occurs. Catastrophic

failure is assumed to have occurred when a progression of failed and

deleted elements results in the division of the model into two segments.

' - This violates the boundary conditions of the analysis scheme and the pro-

At R ol e T S T Rt e f e o SR 3 s LR

gram terminates, printing the stresses, strains and displacements

accumulated just prior to total failure. On the other hand, 1if successive

adjustment load application results in no further element failures, the

é f 24




next full load increment is read into the program, added to the accumul=-
ated load, which now reflects a "ratioed" load increment, and the anlysis
continues as it did before element faflure, {.e., 1f no elements feil,

another load increment is applied, or if failures occur, the entire crack

propagation procedure outlined above is repeated.

3.4 DEVELOPMENT OF THE BROKEN FIBER, LONGITUDINAL SECTION MODEL

There are two primary reasons for the development of a longitudinal
model. One is to permit study of localized stress concentrations, the
resulting elastic-plastic behavior of the aluminum matrix, and subsequent
crack propagation in the area of boron fiber flaws. Another is to charac-
terize the load carrying capability of a flawed boron fiber as a function
of distance from the location of the fiber flaw.

These two considerations lead to the most important aspects of de-
signing the longitudinal model, {1.e., geometry, finite element grid re-
solution, boundary conditions in the vicinity of a flaw, and spacing of
the boron fibers in the model. The problem of fiber spucing will be dis-
cussed first,

A typical cross section of a unidirectional, square array, boron/
aluminum composite as shown in the figure below, the section being perpen-
dicular to the fiber axes. A longitudinal finite element model attempts
to represent the composite in a plane oriented perpendicular to this sec-
tion. A longitudinal model of a section parallel to the x or y axes,
through the centers of the fibers, would be representative of the minimum
distance between fibers. A section cut at 45° to the x-axis and through
the fiber centers would depict a maximum fiber spacing situation. When

one of these fibers is broken, the load it carries decays to zero at the

25

ST RCITRCHIR S ERCAR T PSR SR

i

R SRR Y s kR L 3 i




fy 6=46°

0.690 O O 96

| @2 O? OO

OO B

a0t O&QO
00O

Cross Section of a Square Array of Fibers,
55 percent Fiber by Volume

broken surface, assuming that the boron-aluminum interface remains intact.
At the flaw site, the fibers adjacent to the broken fiber, and to some ex-
tent the surrounding aluminum matrix, must absorb the load that the broken
fiber would have otherwise carried. The aluminum transfers this excess
load back into the broken fiber via a shear mechanism so that at some dis-
tance from the fiber break, that fiber is again fully effective in carry-
ing load. It is logical to presume that the amount of aluminum between
the boron fibers will have an effect on this load transfer mechanism. To
characterize the effects of variation in fiber spacing, two longitudinal
models were studied, one representing a 90° section cut of the transverse
cross section, and another representing a 45° section cut. These two
models are shown in Figures 3.6 and 3.7. Note that the fiber diameter
dimensions have been normalized to unity. In Figure 3.7 the effect of

the 90° section cut in diminishing the amount of local aluminum matrix is
shown quite clearly., The size and aspect ratios of the fiber elements are
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exactly the same as those of Figure 3.6, but the aluminum elements nf the
90° section model are so compressed that the element numbers, which are
identical to those of Figure 3.6 have been eliminated for clarity.

The second problem that must be solved in the finite element modeling
of a broken fiber in a composite is the geometry in the area of the fiber
discontinuity-matrix interface. The efforts of the present investigators
to resolve this problem have been evolutionary in nature and were described
in detail in Section 5.2 of Reference [23].

The results of this evolutionary process are the finite element models
shown in Figures 3.6 and 3.7. Some of the features of this model can be
illustrated by referring to Figure 3.8, a section of the model represent-
ing the discontinuous fiber and the local aluminum matrix. Note that the
free surface of the discontinuous boron fiber is extended out to the model's
plane of symmetry by the addition of fiber element number 157. Longitud-
inal models run without this element developed extremely high stress
levels in aluminum element number 1 at very low levels of applied load.
While this situation might occur in a boron/aluminum composite if the
fiber were discontinuous and its ends separated by some finite amount at
the time of fabrication, it was felt that the present configuration, as
shown in Figure 3.8, was of more general use. This configuration might
be used to represent a fiber that has broken during fabrication, or, if
flawed locally, failed at a very low loading of the unidirectional com-
posite. Note the small size and uniformity of the aluminum elements in
the area of the end of the discontinuous fiber. This is to permit a closer
approximation of actual crack growth, as discussed in Section 3.3. 1In
order to prevent the broken fiber from having any load capability at x = 0,

node point 12 has been relased from its x~direction fixity. This results
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in a free surface for element 2 along the y-axis, or in other words, an
initial crack in the aluminum as might actually occur from the initial

release of energy caused by the fiber failing at a low load level. ; 1

3.5 DEVELOPMENT OF TRE TRANSVERSE SECTION MODEL

Finite element modeling of a transverse section of a unidirectional
boron/aluminum composite is fairly straightforward. However, the need to
study the influence of a reduced load capacity in one fiber on its neigh-
boring fibers requires that a minimum section model such as that shown in
Figure 3.9 be employed. This model represents the first quadrant of a re-
peating unit cell of a rectangular array of fibers. 1In effect, a flawed §
fiber can be considered to be surrounded by eight other fibers in the
array. A model of this type can easily lead to a great number of elements,
and attempting to increase the resolution of the grid at selected locations
often results in a very large bandwidth of the overall stiffness matrix
for the finite element model. The transverse model developed and reported
in the First Quarterly Report [22], proved to be too large for the University

of Wyoming's present computer. This resulted in the development of the

model shown in Figure 3.9. Also, during the last year, the micromechanics

analysis computer program has been modified to permit the inclusion of as
many as four different materials, each having different properties. This
capability is essential in representing breaks or flaws in the boron fibers

of a transverse model via reduced stiffness.
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SECTICN 4

MATERIAL PROPERTIES

In modeling the boron/aluminum composite, the boron fibers have been
treated as brittle, linearly elastic materials with isotropic strength
and stiffness properties. The aluminum matrix has also been considered
to be isotropic, but is modeled as an elastoplastic material. To accomp~
lish this, the actual stress-strain curve of the aluminum alloy selected
is input to the analysis by curve fitting via a Richard-Blacklock two-
parameter equation, as discussed in Section A.5. Thus, at any load level
the tangent modulus for any given element can be computed. This makes
possible an accurate representation of the plastic deformation of the
matrix.

Although the nonlinear material properties of any matrix material,
e.g., another aluminum alloy, can readily be incorporated in the analyses,
a 6061-T6 aluminum alloy at 75°F was chosen for the initial studies. The
material properties shown in Table 4.1 were obtained from Reference [24]:
the full range stress-strain curve for determining the curve fit para-

meters used is shown in Figure 4.1,

TABLE 4.1

Aluminum Matrix Material Properties - 6061-Té Alloy [24]

Young's Modulus E = 10.0 x 106 psi
Poisson's Ratio v = 0,33

Tensile Yield Strength FtY = 36000 psi

Tensile Ultimate Strength FtY = 45000 psi

Coefficient of Thermal Expansion a = 13.0 x 10=6 in,/in./°F
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The boron fiber properties indicated in Table 4.2 were obtained from

Reference [25).

TABLE 4.2
Boron Fiber Material Properties [25])

Young's Modulus E= 60.5 x 106 pat

Poisson's Ratio v = 0,130

Tensile Strength Ftu = Fty = 500,000 psi

Coefficient of Thermal Expansion a= 9,0 x 106 {n./in./°F

Ultimate Strain cty = Eﬁ! = 8264 x 1076 in,/in.
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FIGURE 4.1

Typical Full Range Stress-Strain Curve For
6061-T6 Aluminum Alloy at Room Temperature [24]
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SECTION 5

NUMERICAL RESULTS

The introduction of crack initiation and growth capability to the
micromechanics program has made possible a much more extensive study cf
the effects of a discontinuous fiber in a boron/aluminum composite. How-
ever, a numerical difficulty was revealed in the crack propagation pro-
cedure shortly before the end of this report period. Debugging of the
subsequent corrected computer program has prevented the presentation of
the crack growth results in this report; they will be presented in full
detail in the next quarterly progress report. In spite of this difficulty,
the results of loading both the 45° section and the 90° gection models to
the point of first element failure are available, and very informative
significant differences in the load carrying capability of the 45° section
model versus the 90° section model have been revealed., It is antici-
pated that future analyses with crack propagation will generate even more
important insights concerning the generalized plane strain treatment of
this problem.

The 45° section model and the 90° section model, as described in
Section 3.4, represent a unidirectional composite with 25 percent of the
fibers containing a break. Larger models with more unbroken fibers can
easily be studied 1if desired. Each of these models has been loaded to
the point of crack initiation (first element failure), and the difference
in load capability of each at this point is considerable. In both cases,
initial plastic deformation occurs at very low load levels, and due to

congiderable plastic strain capability of the aluminum matrix, as shown
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in Pigure 4.1, the loading incroments beyond that puint are kept very
emall, 1i.e., 1000 to 3000 pei. Considerable localized plastic deformation
was developed in the region of the fiber discontinuity hefore an element
failure occurred. This in turn generally triggered the failure of several
more matrix elements before another loading increment could be applied.

In the paragraphs that follow, the results of loading the 45° section and
the 90° section lungitudinal models up to the point of crack initiation
will be studied. In Section 5.3, the results of axial loading of the

transverse model and simulation of a broken fiber are reviewed.

5.1 AXIAL LOADING OF T§§_¢§° SECTION LONGITUDINAL MODEL

The 45° section longitudinal model, as iilustrated in Figure 3.6,
was loaded in the direction of the fiber axes (x-direction) to a level
of 66,076 psi average applied stress, at which point element number 2
failed. Initial plastic deformation was also observed in element number
2, at an average applied stress level of 17,000 psi. Plastic deformation,
in this analysis, is defined as the point at which the octahedral shear
stress-octahedral shear strain curve becomes nonlinear. For the 6061-T6
aluminum alloy used in this study, the octahedral shear yield strength
is 16,970 psi. Element number 2 would be the first to experience plastic
deformation, for the reasons cited in Section 3.3.

Loading was increased monotonically until element number 2 failed,
at an average applied stress level of 66,076 psi. At this level there
was considerable plastic deformation in the region of the fiber discontin-
uity, with several elements adjacent to number 2 very near failure. 3y
using the plotting capability of the micromechanics computer program, this

zone of plastic deformation at the point of imminent failure of element
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number 2 can b¢ seen. In Pigure 5.1, contours of constant octahedral
shear stress for the aluminum matrix have been plotted on an outline of
the 45° section finite elemer model. Note that the contour values are
for octahedral shear stressces normalized with respect to the yield strength,
16,970 psi. This meane that any arca enclosed by contour lines that are
greater than or equal to one has been plastically deformad. As Figure 5.1
shows, considerable plastic deformation has occurred at the 66,000 psi
applied stress level. In addition, similar contour plots for octahedral
shear strain, maximum principal stress, minimum principal strees, and in-
plane shear stress (rxy) are provided in Figures 5.2, 5.3, 5.4, and 5.5,
respectivaely., These illustrate very well the general state of stress in
the aluminum matrix at the load level of imminent crack initiation.

A study was also made of the loading intensities in the horon fibers
at variocus load levels, in an attempt to further understand the mechanisms
of load transfer to the discontinucus fiber as plastic deformation increases.
In Figures 5.6 and 5.7, the relative loading intensities of the three
boron fibers in the model are compared as a function of the axial distance
from the flaw site, The two load levels chosen are 16,000 psi for Figure
5.6 and 66,000 psi for Figure 5.7. From these figures it can be seen
that the end of the broken boron fiber carries no axial stress, as it
must, and that the load level in the adjacent fiber rises abruptly in the
vicinity of the fiber break. Of particular interest is the relative
loading of the discontinuous fiber as the load level increases. It will
be noted that the slope of the load curve for the discontinuous fiber at
the flaw site decreases as the applied load increases. In addition, at an
applied stress level of 16,000 psi, the broken fiber has attained a stress

level 78 percent that of a remote fiber at 4.55 fiber diameters from the
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flaw site, while at an average applied stress level of 66,000 psi, the
broken fiber has been loaded to only 73 percent at 4.55 fiber diamecers.
These values imply that at a sufficiently large distance from a flaw

site, all the boron fibers will be equally loaded, but that the diatance
required for this condition to exist increases as the average stress level
increases. Crack propagation will no doubt cause the distance from the
crack at which the broken fiber is again fully loaded to be much greater
still.

As an {llustration of the energy absorption capacity of the 45°
section broken fiber longitudinal model, the composite stress versus
composite strain has been plotted up to the point of crack initiation, as
shown in Figure 5.8. It will be noted that the curve is essentially
linear, in spite of the considerable plastic deformation shown in Figure
4.1, This is due to the fact that the boron fibers,whose axial modulus
is very much higher than that of the aluminum, are essentially linear in
their stress-strain response. In fact, even at the plane of fiber dis-
continuity, the boron fibers are carrying 76 percent of the applied load.
At two fiber diameters frow rhat plane, 90 percent of the applied load is
being carried by the boron fibers. The overall stiffness of the 45°
section model, {.e., the shape of the stress-strain curve as shown in
Figure 5.8, proved to be 36.0 x 106 psi, or about 60 percent of the axial

stiffness of the boron fibers.

5.2 AXIAL LOADING OF THE 90° SECTION LONGITUDINAL MOLEL

In loading the 90° section longitudinal model, Figure 3.7, parallel

to the boron fiber axes, plastic deformation was first observed in element

number 2 at an applied averape stress level of just under 10,000 psi. This
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FIGURE 5.8

Plot of Applied Stress Versus Composite Strain
for the 45° Section Longitudinal Model

is substantially lower than the 16,000 psi level that was necessary to
cause plastic behavior in the 45° section model, and is due primarily to
the fact that the apparent volume of aluminum matrix available to trans-
mit load between the discontinuous and intact boron fibers is only about
30 percent of that seen by the 45° section model.

Loading of the 90° section model was increased until element number

2 exhausted its strain energy capacity at 40,150 psi applied stress. Again,
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stress and strain contour plots were generated for the load level which
was reached Immediately prior to the firat failure, and these are shown
in Figures 5.9, 5.10, 5.11, 5.12, and 5.13 for the normalized octahedral

shear stress, octahedral shear strain, maximum and minimum principal

stresses, and the in-plane shear atress, respectively. It will be noted
that the zone of plastic deformation, as defined by the 1.03 contour in
Figure 5.9, is considerably less extensive than was observed in the 45°

section model, Figure 5.1. From preliminary results of crack propagation
computer runs, it is quite apparent that the pattern of deformation, flaw

growth, and fiber loading differs quite significantly between the 45° and

the 90° section longitudinal models. Further, the differences in load

levels necessary to initiate plastic deformation and later, crack formation,
for the two models indicates that the proximity of adjacent fibers to a
flawed or discontinuous fiber has an important effect on the behavior of
the total composite material. This problem will be discussed further in

Section 6.

Another difference in the response of the 90° section model when

BTV T PO R LT PO Ly EaE T IRUBILLITROREAL: ¢ WWRGTTE 27 TICRT I T T

compared with the 45° section model is shown in Figure 5.14, in which the

composite stress-strain response of the 90° section model is plotted up
to the point of crack initiation. The composite axial modulus of the 90°
section model is found to be 49.0 x 106 psi, using Figure 5.14. This is
significantly stiffer than the 45° section model, as would be expected

in view of the larger boron fiber volume fraction of the 90° section model.

The strain energy necessary to initiate failure in the 90° section model
! N was determined to be 36.1 in.-1b./in., while in the 45° section model,

123.2 in,-1b./in. of energy was absorbed before crack initiation,
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5.3 AXIAL LOADING OF THE TRANSVERSE SECTION MODEL

The transverse section model, as illustrated in Figure 3.9, was loaded

in the out-of-plane or z-direction, both in the unflawed condition and with

one broken fiber. In order to approximate the broken fiber plane of the

longitudinal models, the transverse model was run with the stiffness prop-

ertics of one of the fibers reduced to zero, as shown in the following sketch:
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.— E = 60.5 Msi

P E = 10.0 Msi

o

E = zero -

(broken
fiber)

The percentage of the total load carried by the fibers of the un-
flaved transverse model proved to be 89.0 percent, which compares very
well with the percentage of load carried by the fibers of the 45° section
moidel, which was 89.1 percent. When the transverse model was run with
one fiber deleted, it was found that the three remaining fibers carried
85 percent of the applied load, which is in good agreement with the 90°
section longitudinal model, which showed 86 percent of the load in the
boron fibers at the plane of discontinuity.

The stress distribution in the aluminum matrix for the transverse
scction model is shown in Figures 5.15 and 5.16. These plots represent
the stress in the fiber axis divection (o in this case) for the matrix
material along the y-axis and along a line 45° to the y-axis. Both the
stresses for an unflawed composite and one in which the fiber centered
at x = y = 0 has an effective modulus of zero are shown. The applied
stress 18 2,000 psi. As these plots show, there is a definite change
in stress levels when one fiber is deleted; the stress gradients between
the fibers are quite low when compared to those seen in the longitudinal

models. This of course is due to the fact that the transverse model can
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only represent differences in material properties caused by broken or
reduced capacity fiber elements, but cannot account for the physical dis-
continuity of a fiber and the resulting stress concentrations. In fact,
for both the unflawed case and the model in which one boron fiber is de-
leted, the variation in stresses in the axial or z-direction is no more
than about 10 percent throughout the aluminum matrix, and considerably
less then this in the boron elements.

The in-plane stresses, i.e., Ox, Oy, and txy, show congiderable vari-
ation in the aluminum matrix, but are about 10 orders of magnitude less
than the axial stress. Contour plots for constant values of in-plane
shear stress, and maximum and minimum principal stresses, are shown in
Figures 5.17, 5.18, 5.19, 5.20, 5.21 and 5.22, for both the unflawed and

flawed longitudinal models, to show the influence of deleting one fiber.
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FIGURE 5.17

Maximum Principal Stress Contours (ksi), Unflawed Transverse Section Model,
Applied Stress o, = 32 ksi




FIGURE 5.18

Minimum Principal Stress Contours (ksi), Unflawed Transverse Section Model,
Applied Stress o0, = 32 ksi
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Shear Stress Contours (ksi), Unflawed Transverse Section Model, Applied
Stress o, = 32 ksi
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One Broken Fiber, Applied Stress o, = 32 ksi
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Minimum Principal Stress Contours (ksi), Transverse Section Model With
One Broken Fiber, Applied Stress o, = 32 ksi
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SECTION 6

FUTURE WORK

Debugging of the updated and corrected crack propagation version of
the micromechanics computer program is nearly complete. Production runs
using this program will soon be performed on the 45° and the 90° section
models. Behavior in terms of crack propagation and energy absorption will
be determined, and attempts to correlate these results to the experimental
results of other investigators will be made. From experience to date with
crack propagation analysis schemes, a further refinement of the 90° section
longitudinal model appears desirable. Specifically, the aspect ratios of
some of the finite elements are presently rather large; the region of uni-
form and small elements required to more accurately study crack growth will
be extended. Once the energy absorption characteristics of these longi-
tudinal models have been determined, several additional areas of interest
will be explored.

Transverse loading of both longitudinal and transverse section models
containing flaws will be of interest, particularly if these loading con-
ditions are preceded by temperature gradients and hydrostatic loading
increments to simulate the fabrication process for boron/aluminum. This
"preconditioning' provides a prediction of the residual stresses and
strains in the composite prior to mechanical loading, and could have a
significant effect on the overall influence =f internal flaws.

Finally, it has not been possible, to this point, to relate the
stress concentration effects seen in a longitudinal model to a transverse

section model. This would not be a serious problem were it not for the
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differences in behavior obmerved in axial loading of tho 90° and the 45°

section models. Furthermore, in examining a transverse section of a typical

equare array unidirectional componite, as illustrated in Section 3.3, one
can sac that the fiberr in closest proximity to a broken fiber, e.g.,

those represented by a 90° section model, will be affected in turn by

their closest unflawed neighbors, some of which are the continuous fibers
represented in a 45° section model. In effect, all of the fibers surround-

ing a broken fiber are coupled in the mechanism of load redistribution,

and crack propagation is likely to be too complex to be characterized by a
two-dimensional formulation. Until more extensive experimental data are 'J

available to verify and improve the present two-dimensional formulation,

a three~dimensivnal finite element micromechanics analysis appears to be

the logical approach to further understanding of energy absorption in

metal-matrix composite=. Such a program is in the final stages of devel-

opment at the University of Wyoming, and during the second-year study, pre-

liminary investigations of its applicability to the present problem will

g8 pie

be made. :
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APPENDIX A

FINITE ELEMENT FORMULATION OF THE
MICROMECHANICS ANALYSIS COMPUTER PROGRAM

G PR TP

A.1 COORDINATES AND BOUNDARY CONDITIONS

L preg TR e

To aid in the discussion of topics to follow, Figure A.l is prosented
as representative of a typical repeating unit of a composite material

under analysis, and Figure 3.2 defines some of the geometrical parameters

7 R S A g o SO P bR+ L T
S B

describing a typical triangular element.

Y,V AT yzao
Oy Sy constant, Tyx =0
/ /" Typical element ‘
f ) (See FIGURE 3.2)
’/’ X ;
AT x=b ;
~——8x £ constant
| =0 |
;
]
\
\ ! 3
1 e
L,’ >x’u :
X" \—“_V‘°
ATz=0 8ys0
8220
ATz=1,8z=constent
: . Ti=Tyz=0
| FIGURE A.1

Configuration of the Area of Interest for a Typical
Micromechanics Analysis, Including Boundary Conditions
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As discussed by Miller (pp. 32-42 of Reference [1]), the fiber
packing geometry is assumed to be symmetric, and the repeating first
quadrant unit of the composite continuum represented by Figure A-1 must
remain rectangular when any combination of normal tractions, Ox, Oy,
and 0z are applied to the three orthogonal planes. This results in the
specification of unique boundary conditions to maintain the symmetry and
continuity of the material under investigation. These boundary conditions
are explained in detail by Miller and Adams (1], and by Adams [2], and

summarized in Figure A,l,

A.2 GENERALIZED PLANE STRAIN

In Miller's [1] formulation of the governing constitutive equations
for the finite elements used in this analysis, generalized plane strain
conditions were assumed in order to reduce the analysis to a quasi-three-
dimensional problem. 1In past micromechanics investigations, finite ele-
ment models representing a transverse section of a unidirectional com-
posite were treated as ordinary plane strain problems. Under these con-
ditions, the body under consideration is assumed io be thick, i.e., the
axial dimension 1s much larger than the transverse dimensions, and the
displacement in that direction is assumed to be zero, resulting in zero
strain in that direction, {i.e.,

€5 = Yxz= Yyz = 0 (A-1)
For isotropic materials, this condition permits an induced normal stress
in the axial direction of

o, = v(o, + oy) (A-2)
Miller's primary reason for incorporating generalized plane strain con-
ditions was to allow axial loading, i.e., loading parallel to the fiber

axes, the z-direction in his transverse section finite element grids (see
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Figure A-1). In addition, when a composite is loaded in the transverse
direction with no longitudinal tractions being applied, the generalized
plane strain conditions allow a normal strain to develop along the longi-
tudinal axis, resulting in zero stress in the longitudinal direction.
Lekhnitskii [26) defines generalized plane strain in a very general
manner, stating that all of the strains associated with the z-axis di-
rection can be nonzero constants, including the shear strains, yy, and
Yyz« In the current analysis, a somewhat less general form of generalized
plane strain has been employed in which it is assumed that only the normal
strain, €, is nonzero, i.e., yxz and sz are assumed to be zero, This
definition requires that all planes perpendicular to the z-axis direction
be a linear function of the position coordinates in that direction, i.e.,
W= Kz (A-3)
where x is a constant., In other words, some constant strain, €,, exists

in the z-axis direction

Epy = we =3 -l

z =5, %K (A-4)
This means that the displacements of all of the node points in the z-axis
direction are identical. It is also important to note that the axial

stress, o is uncoupled from the transverse stresses, Oy, oy, and Txy*

z9
Keeping this in mind and referring to Figure 3.2, the following points
are noteworthy:

a) Node points 1', }', and k' are required to have the same dis-
placements in the x and y directions as points i, j, and k.

b) Node points i, j, and k have identical displacements in the
z-directions, while from symmetry considerations, i', j', and k'
have zero displacements in the z-direction.

c) Since each element is assumed to be of unit thickness, thy dis-

placements of the unprimed node points in that direction represent
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the strain, €,.

A.3 FORMULATION OF ELEMENTAL STIFFNESS MATRICES BASED ON GENERALIZED

PLANE STRAIN CONDITIONS

The full development of the basic finite element method is avail-
able in complete detail in several texts (References [19-21), for example),
and a complete examination of the formulation and assembly process re-
sulting in a set of simultaneous algebraic equations will therefore not
be included here. Only a brief overview of the process is presented so
that the unique capabilities of the present analysis scheme might be better
explained.

Once the assumed displacement field within each element has been ei-
pressed in terms of unknown node point displacements (see Figure 2.1), the

strain at any point within the element can be expressed as

€44 = 5(§§}+ %ﬁi) (A-5)
with 4 = 1,2

up = u = x-displacement

up = v = y-displacement

X1 = X

Xy =y

As a result, a general expression relating the strains to the displacements
in any element, 1, can be written as
e}y = [B)y {8}y (A-6)

The matrix [B]y 1s a set of geometric parameters relating the vector of
the node point displacements, {8}4, to the strains in the i-th element.
The form of [B]y, generally known as the "shape' matrix, is dependent on
the form of the assumed displacement field.

The stresses and strains are related by an appropriate constitutive

relationship, Hooke's law being a familiar example. The general Duhamel-
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Neumann form of these constitutive relationships [20, 27, 28] is

{o} = [H] ((e} ~ {co)) (A-7)
Where {v} and {(c} are the stress and strain vectors, respectively, and
{H] is a matrix containing thua appropriate material properties relating
the two. The elements of the initial strain vector, {c,}, are dilata-
tional strains induced by thermal or moisture changes. This topic will
be discussed in greater detail in Section A.5.2 of this Appendix, but
for now it is noted that the temperature and moisture sensitive matrix mat-
erials have an order of symmetry which is at least orthotropic, so that
dilatational shear strains cannot exist. That is, the initial strain

vector can be expressed as

{eo) = Yo (A-8)

As described by Zienkiewicz [20] for instance, an expression for the
strain energy within an element can be written using the relationships
given above, leading to an expression for a potential energy functional
in terms of strain energy and forces acting at the node points. Mini-
mization of this functional results in a set of simultaneous algebraic
equations relating node point forces to node point displacements.
Typically,

(Fyy = [Rlgl8dy + (F, g (A-9)
where {F}§ is the vector of forces acting on the node points of element
i, and [k] is the stiffness matrix for element i. The elements of the
vector {Fe }{ are the forces acting on ihe node points resulting from

o

initial diiatational strains developed within the element. For constant

strain elements, the form of [k}; is
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(k)y = [B)] (M) [B]y tyAy (A-10)
vhere ty is the thickness of the element and A{ is the area of element i
in the x-y plane.

All of the forces on each node point in an array due to each element
sharing that node point must be in equilibrium. In addition, the summation
of all such node point forces must be in equilibrium with all externally
applied loads and specified boundary restraints. This equilibrium require-
ment and the summation process it entails leads to the formation of a
“global" stiffness matrix, [K], for the entire region under analysis.

What this essentially does is to assemble all of the equations of the form
of (A-9) for all elements, resulting in a total set of simultaneous equa-
tions for the entire area being analyzed.

{F}= [K] {8} + {Fe } (A-11)
o

For our constant strain element, the displacement fields under gener-
alized plane strain conditions are
u = ay + asx + ajy
v = by + box + by (A-12)
W= Kz
where x is a constant,
For the triangular element shown in Figure ?.2, the coefficients Ay, A3,
A3, b3, b2, and b3y can all be expressed in terms of the node point dis-
placements in the x-y plane. This leads to the shape matrix [B]4 as de-
veloped by Heubner {19], but with a fourth row and a seventh column added

to express the condition of generalized plane strain:
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wherc ¢j = a'AT + B'AM

For a complete discussion of the derivation of the material propertics
matrices shown above, the interested reader will find a thorough and
easily understood development by Miller and Adams (pp. 47-53 and Appendices
A and C of Reference [1]). It is to be noted that while these expressions
for [H]4 involve the region of elastic or linear stress-strain behavior,
the values of the material constants E, v, o, B, etc.,, can be functions

of temperature and moisture.

A4.0 LOAD APPLICATION

Loads introduced to the finite element array in the micromechanics
analysis can be in the form of applied mechanical tractions, or arise from
thermally or moisture induced dilatations. Mechanical loading can consist
of average applied normal stresses in the x, y, and z directions, as de-
fined by Figure A-1l, for each load increment, while thermal and moisture
gradients can be applied at any increment to reflect environmental changes
the composite may be subjected to. Mechanical loading will be discussed
first.

The application of mechanical tractions to the finite element model
is considerably simplified by taking advantage of tie boundary conditions,
as speciﬁied in Figure A~l, which permits a rearrangement of the global
stiffness matrix [K], and the total force vector; {F}, by a method intro-
duced by Branca [30]. The displacement boundary conditions for the re-
peating unit finite element model were specified in order to maintain
continuity of the material continuum under investigation. Specifically,

referring again to Figure 2.1, displacements in the x-direction of node

points along the right-hand vertical boundary must be uniform, Displace-~
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ments in the y-direction of the upper horizontal boundary must be uniform,
and the displacements of all node points in the z-axis direction must be
uniform. Uhen the overall force-displacement equation of the system is
considered, 1i.e.,

{F} = [K) {6} (A-18)
one can see that all of the boundary node points involved in mechanical
loading will have identical displacements with respect to the direction
of the load application. These identical displacements allow combining of
certain terms in the global stiffness matrix that result in the replacement
of the applied forces on boundary nodes by zeroes, in the manner described
by Branca [30]. Successive modification of the global stiffnessc mat-
rix for each boundary node point displacement resulta in the following
form of Equation (A-18) for the simultaneocus application of uniform values

of oy, Oy and o, for an array of n nodal points

q
(09 LTI TRCERPRETC ™)) B N
0 kyp ka3 "' 62
0 ka3 83
* > - ) < ? (4-19)
ﬁx - 52n
Fy - 82n+1
L F‘zz \, symmetric - - \S$2n+2J/

where Fy, Ty, and F, are the total applied loads in the x, y, and z direc-

tions, and are defined, for a unit thickness model, as

x- Uxb

F
F, = o,ab
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where a and b arc as defined in Figure 2.1. On pp. 63-67 of Reference [1],
Miller clearly illustrates, by means of a simple two-element model, the
manner in which the elements of the global stiffness matrix are manipulated
to obtain Fquation (A-19). The important point is that this procedure
allows a rather straightforward simultancous application of external trac-
tions in the directions of the three coordinate axes.

Thermal-dilatational and moisture-dilatational effects are also in-
cluded within a given loading increment. These effects appear as the vec-
tor {Fco)i in Equation (A-9). The eclements of this vector represent the
forces on the node points of an element which are the result of dilatational
strains, ¢,, due to thermal and moisture gradients, as given by Equation
(A-15). The magnitudes of these induced nodal forces are a function of
the shape of the element, [B]), and its material properties, [H], i.e.,

(F, )y = SUHURCS AR (A-21)

When a loading increment includes a change in temperature or moisture
content, the node point forces given by Equation (A-21) are calculated
and then moved to the right-hand side of Equation (A-9)

{F'-Fco}i = [k] {6}y (A-22)

This form is retained when the elemental equations are assembled in-
to the total global form, as given by Equation (A-11), so that a single
loading vector exists for each increment and only one inversion of the

total stiffness matrix, (K], is required.

A.5 NONLINEAR MATERIAL RESPONSE

The University of Wyoming micromechanics analysis program models the
response of the isotropic matrix of composite materials to both external

traccions and changes in temperature and/or moisture concentrations. Be-

79

N et . E . . T L e e e
e TETEal oot ik g iTT agagBES Loiiiio o iSiT s G i il geoaniiiiTe Lo iidie i i o

SO

e

e ’




TR T L - e m LT LR LT T R T T LT TR i e ok Mg cat me e T e R e R TR L e L T e e T T R A __H
|
!
4
]
1
1

cause the vast majority of matrix materials in use today are capable of
considerable plastic deformation before failure, an elastoplastic analysis
scheme for deformation due to mechanical loading is essential for micro-
mechanics studies. In addition, the effects of temperature and moisture
(hygrothermal) changes must be considered. Internal stresses induced by
the high temperature fabrication and bonding processes that most composites
are subject to can actually cause material failures before any mechanical
load is applied, while tne effecte of moisture absorption by polymeric
resins has become an area of major concern for anslysts and designers in
recent years. Past micromechanics studies [2, 3, 7-18] have assumed that i
the material properties remain constant for all states of temperature and

moisture to which the constituent materials are exposed., This is not the

case, as these changes in temperature and moisture content not only induce
gtrosses, but at the same time significantly alter the material properties. *

This is also a type of nonlinear behavior and it must be accounted for. A

at et Nt Rt e Tt el TR el

brief description of the manner in which the effects of plasticity and the
hygrothermal dependence of the material properties are incorporated into

the finite element stiffness matrix follows in the next two subsections.

A.5.1 ISOTROPIC MATERIALS IN THE PLASTIC REGION UNDER GENERALIZED PLANE

STRAIN CONDITIONS

Of the many elastoplastic finite element analyses of undirectional

composites performed to date [2, 3, 8-11, 13, 16, 18], the present proced-

ure is most like that described by Adams [13]). It 1is modified to account

for the generalized plane strain assumptions and for the inclusion of the

effects of environmental changes. Like most methods of approximating non-

linear material behavior, the present proccedure requires that loading be
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applied in esmall increments. This nececsitates the accumulation of dis-
placements, stresses and strains from each succeeding increment. It will
be shown that this is possible due to the fact that the material properties
used in incremental techniques are linear and therefore superposition prin-
ciples apply.

Two basic techniques exist for accounting for the plastic portion of
each loading increment: the tangent modulus method and the method of in-
itial atrains. The method of initital strains uses the elastic material
properties, as employed in Equation (A-14), throughout the entire loading
sequer2e., It accounts for plastic strain by adding an initial strain to
the strain vector of each element and then iterating until equilibrium con-
ditions are satisfied. The advantage of this method is that the global
stiffness matrix [K] need only be formed and inverted once. The tangent
modulus method uses the tangent modulus of the material at a4 particular
stress-strain state to define the stiffness of eacn finite element for the
next loading increment. While no iteration is required, a new global
stiffness matrix must be assembled and inverted for every loading incre-
ment. A more detailed description of both of these methods is given by
Adams (pp. 36-39 of Reference [2]), wherein the tangent modulus method
emerges as being preferred for material: that exhibit relatively "flat"
stress-plastic strain curves, which is the case for many metal matrix ma-
terials used in advanced composite materials. The current analysis uses
the tangent modulus method for this reason. In addition, since the mater-
ial properties must be modified at the beginning of each loading increment
to account for environmental factors, which also requires the assembly of
a new global stiffness matrix, use of the tangent modulus method imposes

no penalty.
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For each loading increment beyond the elastic limit, the correspon-

ing increment of strain fo* any element can be separated into an elastic

(recoverable) and a plastic (irrecoverable) part, or in Adams' notation [2], !

éij - éij(e) + éij(p) (A-23)

where the elastic portion, éij(“),behnves according to the generalized

st s bl

Hooke's law,
0 e 1"2\’ 1"'\)
cij( )a 35 Spkdqy + = 814 (A=24)
where §14 1s the Kronecker delta, and éij is the deviatoric component of k

the rate of stress tensor,

515 = 013 - 5 Oy (A-25)

For this analysis, the plastic portion of the deformation is assumed to

it e b e e i i e sk e e i

follow the Prandtl-Reuss flow rule [31],

e3P = fsy, (A-26)
where iis a positive scalar function. In other words, at any instant,
the rate of change of the plastic strain is proportional to the devia- . S
toric stress only. The mean normal, or dilatational, strain makes no

contribution to plastic deformation. Adams (pp. 13-15 of Reference [2]),

goes through a detailed explanation of the procedure involved in obtaining

a convenient form of : A

i = 2:°M£ (A-2 7)

where T 18 the octahedral shear stress

To = (1/3 s1y814)% (A-28)

To 1s the octahedral shear stress rate of change, and 2My is the tangent

! modulus of the octahedral shear stress-octahedral plastic shear strain

curve .

dr
2My = v—?d% p) (A-29)
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a linear relationship. The above equations lead to an incremental con-

stitutive equation for alastoplastic matarial behavior

[ ] [ 'Y a B 0
fyq ﬁ%? oy - %“kkﬁij + .i Eﬁiwkl (A-30)
' ' Toll

Miller [1) adds an additional term to this expresaion to account for the

dilatational strain increments induced by the environmental changes.

Thus, .
a,. 8 .d . i
coaky e v o Mtk _ |

(o]

Equation (A-31) must be inverted in order vo obtain the constitutive re-

lationship in the form of Equation (A-6). Details of this dnversion pro~

cedure under generalized plane strain conditions are given by Miller

(Appendix D of Refeorence [1]). 7The resulting waterial propecties matrix,

P DR A e T TR A T A AT I

[ul, is
a4
- 2 - f
by o) (s ?}.1533) _suew) (v Sty ;
1-2v B 1-2v B B 1-2v B ﬁ
(,}::L B} ‘:.zi) ( fz_zi‘}g) (.,_\:m _ B22%33
. 1= T B B 1-2v B :
’ | 9 :
fuj = oo 1 0 51987 :
1+ 1 s-*.s..a) (- 212833 |
2 B B :
( -y _ 833 )
o symmetric Vi-2v B - :
(A-32) ;
wvhore B = BTQZ [ 14+ (Q+v) i%h ] ;
and the elements of the incremental dilatational strain vector are
¥
0
. g ,
Egt = o (A-33)
0
€y
vhere éo = AT + BAM (A-34)
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Ai and Ah representing the incremental changes in temperature and moisture
content, respectively. Thus, for each matrix material element that has
exceeded its elastic limit at a particular temperature and moisture con-
dition, Equation (A-32) 1is used to define its material properties so that
its elemental stiffness matrix, Equation (A-9), can be formed and incorpor-
ated int> the global stiffness matrix, [K]), for the current load increment.
An additional feature of the present analysis is that it is not re-
stricted to monotonic loading. That is, unloading from the plastic region
is possible for those elements that undergo stress relief due to local de-
formation or crack formation. It is assumed that the material unloads
linearly elastically, with a modulus equal to the elastic modulus. If
total unloading were to occur, the total plastic strain sustained by the
element up to the point of unloading would be retained. If reloading sub-
sequently occurs, the material follows the stress~-strain response described
by the elastic modulus until it attains the stress level from which it
began to unload. For any loading past this point, the material continues

to move along the original elastoplastic curve.

A.5.2 HYGROTHERMAL DEPENDENCE OF MATERIAL PROPERTIES

As noted previously, the alteration of the properties of the consti-
tuent materials of a composite as they are exposed to a changing environ-
ment has a significant effect on the microstress state of the composite.
The present analysis scheme evaluates the stress-strain behavior, the
coefficient of thermal expansion, the coefficient of moisture dilatation,
the yield strength, the ultimate strength, and the ultimate strain for
each element at the beginning of each load increment.

Many past elastoplastic analyses have input the entire stress-strain
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response of the material under study as data tables, utilizing considerable
amounts of core storage or peripheral storage in the process. If one were
to do this for each stress-strain curve corresponding to a range of temp-
eratures and moisture levels, a prohibitive amount of storage would be
required, and even on today's larger computers, this would significantly
limit the size of model that could be analyzed. The present analysis uses
a three-parameter model to parametrically describe the stress-strain curve
of a material at any temperathre and moisture of interest. The model uscd
is based on the Richavd-Blacklock equation [32], which is capable of
accurately modeling material behavior which exhibits large amounts of

plastic deformation. The general form of the Richard-Blacklock equation

(

where E is the clastic modulus of the material and o, and n are independ-

is e

Ee
%o

n )l/h
(A=35)

ent parameters as illustrated in Figure A.2,

gult

FIGURE A.2

Richard-Blacklock Representation of Stress-Strain Curves
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For the present analysis, Equation (2.35) i{s modified to describe an

octahedral shear stress-octahedral plastic shear strain curve, as the

primary material failure criterion employed is the ultimate octahedral
shear stress criterion., Fortunately, uniaxial test data for a given
material can be converted directly to octahedral shear stress and strain.

The octahedral form of Equation (A.35) is

.. B

Ee l“] 1/n (A-36)
—

0

where 1, is the octahedral shear stress as defined by Equation (A-28), and
To and n are again independent parameters which fit the curve to empirical

data by means of a numerical least squares curve fit procedure (p. 76 of
Reference [1]). The term ¢ 1s the octahedral shear strain, defined as

e = (/3 eijeij)sﬁ (A-37)

and E is the slope of the initial linear portion of the octahedrali shear

stress~octahedral shear strain curve, being related to the elastic modulus,
E, as follows

Foa (ontm)? -
= Cyaany’ (A-38)

The tangent modulus of the octahedral shear stress-plastic octahedral

shear strain curve, 2Mp, is the quantity required in forming the material
properties matrix, [H], shown in Equation (A-32). The tangent modulus,

2Mp, can be related to the tangent modulus, ET’ of the octahedral shear stress-
octahedral shear strain curve by

A-39
F-Eqp (4-39)
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where ET can be obtained by differentiating Equation (A-36) with respect

to €. This yiclds

-
]

E
, (A~40) E
o T e= 0] 1/n 3
. Ee
1+ - |
= i
%o
Thus, for a given octahedral shear strain, the tangent modulus, ZMT,
can readily be calculated. It has been found that small changes of tem=-

perature or moisture do not drastically alter the stress~-strain curve of

a matrix material, but rather modify the material properties in a uniform

manner, In other words, a functional relationship between the parameters g
Og» N and the elastic modulus, E, and temperature and moisture states can
be found. This is done by fitting Equation (A-36), in a least squares

sense, to octahedral shear stress-octahedral shear strain curves obtained

from tenslile test results in various environments. A somewhat more de~

tailed description of this procedure is available on pp. 73-78 of

Reference [1]. 2
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