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1.0 INTRODUCTION

The CARE III (Computer-Aided Reliability Estimation,
version three) computer program is being developed as a
general-purpose reliability estimation tool for fault-tolerant
avionics systems. The first CARE Program, developed at the
Jet Propulsion Laboratory in 1971, provided an aid for esti-
mating the reliability of systems coﬁsisting of a combination
of any of several standard configurations (e.g. standby-
replacement configurations, triple-modular redundant configu-
rations, etc.) Non-unity dormancy factors were allowed as

well as user-supplied non-unity coverage probabilities.

CARE II was subsequently developed bv Raytheon, under
contract to the NASA Langley Research Center, in 1974. 1It,
like the original CARE, was based on a combinatorial reli-
ability model. The model in this case, however, was consider-

ablyv more versatile.

A simple mathematical expression was used to evaluate
the reliability of any redundant configuration over any
interval during which the failure rates and coverage parameters
remained unaffected by configuration changes. 1In addition,
provision was made for convolving such expressions in order to
evaluate the reliability of a "dual-mode" system; i.e., a
system in which a single coverage-parameter/failure-rate con-
figuration change was allowed during the interval of interest.
A coverage model was also developed to determine the various
relevant coverage coefficients as a function of the available
hardware and software fault detector characteristics (detec-
tion delay, scheduling interval, etc.), and the subsequent

isolation and recovery delay statistics.




CARE II suffers from two limitations that make it
difficult to use as a general-purpose reliability estimation
tool for avionics systems. The most serious of these limi-
tations is its two-mode restriction. In many avionics system
configurations, each new failure precipitates a mode change
(i.e., a failure rate or coverage coefficient change) . Con-
sequently, many operating modes are possible. While CARE II
could be modified to allow this possibility, the resulting

program would be cumbersome and the computer run-time excessive.

A second limitation in CARE II is the lack of a mechanism
for specifying multiple success criteria; i.e., for allowing
the user to indicate that there are several operational svstem
configurations, as is almost always the case in avionics sys-—
tems. Although this latter limitation counld be easily remedied
within the CARE II structure, the former could not. According-
ly, it was decided to develop a more general reliability esti-
mation computer program specifically designed to overcome these
limitations. The present report summarizes the accomplishments

made during the first phase of this two-phase effort.

Three tasks were emphasized during phase one: requirements
assessment; definition of program structure; development of
the reliability model. The remaining work needed to complete
the objectives of the CARE III program will be accomplished
during phase two; viz: adéptation'of the CARE II coverage model
to satisfy CARE III requirements; development of a user inter-
face for system configuration and success criteria specifica-
tion; integration of the various program modules into a unified

program structure.




The structure postulated for the CARE III program is
described in section 4. 1In brief, the program will consist
of three independent modules. CAREIN interprets user inputs
defining the system structure, the system success criteria,
the various fault models and coverage parameters, and generates
files to be used by COVRGE and CARE3. COVRGE then translates
these specifications into the coverage parameters associated
with each of the various system stages and operating modes.
The third program module, CARE3, operates on files generated
by both CAREIN and COVRGE to produce system reliability

estimates in accordance with the user-defined success criteria.

The major effort during phase one was devoted to developing
and programming the reliability model to be implemented in
CARE3. The results of this effort are desecribed in detail in
section 3. The selected mathematical model is based on
Kolmogorov's forward equations. In a parallel effort, a
detailed examination was made into techniques for obtaining
solutions to multi-state Markov models. The initial impetus
for this work was to develop an alternative model for CARE3
should the Kolmogorov method run into computational difficul-
ties. The latter method, however, proved to be highly effec-
tive for the class of structures of concern here, overcoming
most of the limitations (e.g., extremely large number of
states, time invarient transition rates) associated with time-
homogeneous Markov models. Nevertheless, the Markov investi-
gation was continued when it became apparent that these tech-
niques would be useful in determining coverage parameters
associated with intermittent faults. (An example of this is
presented in paragraph 3.3). The results of this investiga-

tion are described in an appendix to Volume II of this report.



The coverage model to be implemented in COVRGE will be an
extension of that implemented in CARE IT (Ref. 1). This
coverage model has been modified to produce the (generally
time-varying) recovery rates, as required by CARE III,
rather than the recovery probabilities used in CARE II. The
model has not yet been integrated into CARE IiI, however,
nor has it been combined with intermittent fault models.

(The reliability model tests described in section 3 used
simplified coverage models involving either constant recovery
rates or fixed recovery delays.) Completion of the coverage
model and its integration into the CARE ITT structure is one

of the first tasks to be completed during phase 2.

The major task remaining to be accomplished during phase
2 is the development of CAREIN. The intent here is to provide
the user maximum flexibility in specifying the system structure,
fault models, coverage parameters, success criteria, etc., in
the simplest possible format. A general approach to this tasi-

is outlined in section 4 and detailed in Volume II of this

report.




2.0 CARE III REQUIREMENTS ASSESSMENT

Four fault-tolerant systems were examined in an effort to
characterize the class of structures CARE IIT will be expected
to model and to estimate the kind and range of parameters
needed to describe these structures. The four systems examined
were: Boeing Aircraft Corporation's ARCS (Airborne Advanced
Reconfigurable Computer System, Ref. 2),FSIFT (Software Imple-
mented Fault Tolerance Computer, Ref. 3) under development at
SRI, International, FTMP (Fault-Tolerant Multi-Processor, Ref.
4) under development at Charles Stark Draper Laboratory and
FTSC (Fault-Tolerant Spacecraft Computer, Ref. 5) under dével—
opment at Raytheon. A study was made both of the structures
of these systems and of the techniques used to estimate their
reliability. The results of this study are briefly summarized
in paragraph 2.1. Paragraph 2.2 then lists the requirements
that were imposed on the CARE III reliability and coverage

models as a result of this study and due to other considerations.

2.1 SUMMARY OF FINDINGS

2.,1.1 SIFT

The SIFT computer system consists of a number of identical
processors (containing both memory and processing elements)
interconnected by several interprocessor buses.* The processors
are dynamically assigned to various groups, with each group
typically comprised of three processors, but in some cases as
many as five. The loosely synchronized processors in each

group perform the same operations on the same data and transmit

*The bus structure was changed subsequent to this investigation;
the change, however, does not modify the conclusions reached
here concerning CARE III requirements.
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the results of these operations to each of the other processors
in their group. Each processor evaluates its own health and
that of the other processors in its group by comparing these
results. Faulty processors and buses are identified by
analyzing discrepancies in these results; reconfiguration takes
place whenever a majority of processors in a group concludes

that one of its elements is defective.

In CARE II terminology (Ref. 1), SIFT is comprised of two
stages:* a processor stage consisting of m processors, and a
bus stage comprising n buses. The system has failed by time t
if fewer than m? processors or fewer than nl buses are still

functioning, or if a coverage failure has occurred prior to
that time.

The reliability of SIFT was estimated in Ref. 3 by using
a continuous-time Markov model with time-independent transi-
tion parameters. Coverage was taken into account be defining
a deterministic latency period T between the occurrency of a
failure and its detection. If a second processor or bus fails
during this period, a system failure is declared. Since all
processors and buses are presumably always powered, the dor-

mancy factcr is assumed to be unity.

Note that the probability of a coverage failure is a
function of the number of processors (buses) functioning at
the time of a processor (bus) failure. That is, the probability
of a second processor or bus failure, and hence a coverage
failure during the To—second latency period depends upon the

number of processors or buses functioning at that time. Since

*The term "stage" refers to an ensemble of identical, inter-
changeable units.




the possibility is (not unreasonably) ignored that two bus
(processor) failures occur between the time that a processor
(bus) failure occurs and the time that the failure is detected,
the coverage parameters asscciated with a processor (bus)
failure are independent of the number of buses (processors) in
operation at the time of the failure. Thus, the system can be
modeled as a two-stage configuration, a processor stage exhib-
iting m-1 modes (corresponding to the different numbers of
processors that could be functioning at the time of a new
failure), and an (n-1)-mode bus stage. It is important to
emphasize that there is no coupling between the two stages; a
mode change in the processor stage does not result in a bus-
stage mode change, and vice-versa. This simplifies the

reliability model since each stage can be treated independently.

Transient faults in the SIFT model are, like permanent.
faults, of two types: processor faults and bus faults, both
Having time-independent rates of occurrence. Any transient
fault can have one of two outcomes: with probability Py, the
system recovers completely; with probability l—ptr the system
loses the afflicted bus or proceszor. The following events
are not allowed: a transient fault occurring during a latent
permanent fault; a permanent fault occurring during a still
active transient; a transient fault occurring while a previous

transient is still active.

2.1.2 FTMP

The FTMP is comprised of a set of processors, a set of
memories, and a set of buses over which processors and mem-
ories can communicate. The processors, memories, and buses

are each grouped into "triads." A processor triad consists




of three tightly coupled processors all committed to the same
task; a memory triad consists of three memory modules all con-
taining the same data; and a bus triad consists of three buses
with each bus used for transmission purposes by exactly one

of the three units comprising each processor or memory triad.
The system is thus partitioned, at any given time, into a
number of processor triads and a number of memory triads, with
all processor-memory communication taking place over a common
bus triad. Each processor-bus and each memory-bus interface
(bus guardian unit) contains a vcter that produces as an out-
put the majority-vote of the three inputs received over the bus
triad. Faulty processors, memories, or buses are idenﬁified
by diagnosing the pattern of discrepancies observed at these

voters.

Four different reliability models for the FTMP are
described in Ref. 4. The first involves a l46-state discrete-
time Markov model with time-invarient transition parameters.
The states are defined by the number of detected and undetected
faults in the processor modules, the memory modules, the bus
system and the bus guardian units. The Markov model was kept
to 145 states by identifying all system states involvina more
than two undetected faults or more than three total faults with
the failed state. Other approximations were also made in order
to obtain tractable transition parameters. Even so, the com-
puter time needed to obtain numerical results using this model
were such that reliabilities were determined for only the first

second of FTMP operation.

To extend these results, a simplified ll-state Markov

model was obtained by treating modules having detected failures




as though they were again operational and by assuming any
combination of three or more faults cause a system failure.
Numerical reliability results were then obtained for the

first 40 seconds of FTMP operation using this model.

The reliability of the FTMP for longer durations was
estimated using a combinatorial model to determine the
probability that at least P0 of P processors, Mo of M mem-
ories, and B0 of B buses are operating at time t (assuming
rerfect coverage) and by extrapolating the coverage failure

vrobabilities obtained using the ll-state Markov model.

In a later investigation, the ll-state Markov model was
modified to determine the effect of transient faults on the
FTMP for short (100 minute) missions. The permanent failure
states in the original model were replaced by intermittent
failure states in which failures healed (temporarily) at a
constant rate a and recurred at a constant rate §. (Once a
failure has occurred, it remains in the intermittent mode
either until it is detected or until it results in a system

failure.)

In all of these models, coverage was defined in terms
of the probability that a second fault of a given type
occurred during the exponentially distributed latency perind

of the fault in question.

In CARE II terminology, then, the FTMP model consists of
three stages: processor, memory and bus. There are as many
cperating modes as there are modules, since the recovery
trobability is a function of the number of previous failures
in each of the three stages. Thus, the three stages are

"coupled" in that the coverage associated with a fault in




stage i depends, in part, on the absence of faults in stage

jJ # i during the latency period.

2.1.3 ARCS

The ARCS system involves a computer stage (consisting of
three or four identical computers), several sensor stages, and
several servo (actuator) stages. fThe ncn-internally-redundant
computers accept information from their associated sensors,
interchange this information over cross~channel bUSesf and
generate signals to their associated servo systems. The out-
puts of the (generally three) servos comprising a given stage
are voted on by a mechanical voting mechanism assumed to have

complete first-failure fault tolerance.

The computers use a combination of hardware and software
techniques to monitor their own performance and that of their
associate computers, and to identify defective sensors and
servos. Reconfigurations (following which, for example. a
servo is deactivated, or the outputs of some sensor or computer
are ignored) are effected through information passed back and

forth among the ARCS computers.

The ARCS system was modeled in Ref. 2 by breaking
it up into stochastically independent stages and then repre-
senting each stage with a continuous-time, constant-parameter
Markov model of up to ten states. The coverages used in de-
riving the Markov transition parameters were estimated, in
some cases, by testing actual devices using a randomly selected
subset of possible faults; in other cases, coverage probabili-

ties were simply postulated since no data were available.

10




The ARCS reliability model took into account the
peripheral devices (sensors and servos) as well as the central
computer. The ARCS architecture is such that a failure in a
redundant module in one of its stages may cause the function
of a module in one or more of its other stages to be lost as
well. Accordingly, provision was made whereby the user could
specify a "dependency" relationship among the various stages
of the ARCS configuration; i.e., the user could in effect

specify more than one definition of an operational system

configuration.

Transient and intermittent faults were bcth taken into
account in that they were allowed to influence the Markov
transition parameters. Transients affected these pafameters
to the extent that they were "leaky”; i.e., the permanent fault
hazard rate was increased by a term reflecting the rate of
occurrence of transients of duration exceeding some test
interval T. Since the Markov model implemented in the ARCS
reliability evaluation program allowed unidirectional transi-
tions only, the effect of intermittent faults (causing
transitions back and forth between two states) was approximated
by calculating an "effective" unidirectional transition

parameter from one of these states to the other.

2.1.4 FTSC

The FTSC (Ref. 5) is an internally redundant central
processor being developed for the U.S. Air Force. It is
partitioned into nine types of elements (central processing
unit, memory module, direct memory access unit, serial bus
interface unit, power module, timing module, configuration

control unit, circumvention unit, and hardened timer)

11




interconnected by seven different bus networks (address bus,
data bus, control bus, power bus, timing bus, interrupt bus,
status bus). Each of these elements and buses is provided
with redundant spares, in various configurations depending
upon its complexity. (One element, the memory module, is-

itself internally redundant as well.)

The current FTSC reliability model is a simplified, one-
mode, sixteen-stage version of CARE II. In some cases, non-
unity dormancy factors were used to account for the lower

failure rate of inactive and unpowered modules.

2.2 CARE III REQUIREMENTS

The emphasis in the previous section was on the techniques
used to estimate the reliabilities of the systems in question.
At a minimum, CARE III must provide a unified model for all
four of those systems and hence reproduce, under the appropriate
set of conditions, the results obtained using each of these
models. This, of course, is a necessary but not a sufficient
condition to place on CARE III. To be most useful, it must be
flexible enough to overcome any limitations imposed by the
above models {(e.g., restrictive coverage models, limited fault
models, etc.) and at the same time sufficiently general to
alliow other, as yet unspecified, fault~tolerant systems to be
modeled without introducing artificial restrictions. The
following paragraphs outline the requirements imposed on
CARE III and explain the rationale for each of these require-

ments in terms of the abeve objectives.

1. Capability of modeling up to at least 40 stages.

Rationale: This is specified in the CARE III Statement of
Work. Although none of the systems considered in paragraph 2.1
require as many as 40 stages, it is not difficult to conceive
of systems that do. This requirement will be satisfied in

CARE III by providing a means for concatenating independent

12




runs. If the coupling between stages is limited,
it will in fact be possible to model an arbitrarily large

number of stages by making repeated runs.

2. Multiple operating modes for each set of coupled

stages.
Rationale: The operating mode of a system or subsystem

is, so far as its reliability model is concerned, a function

-of its structure (number of units of various types that have

to be operational for the system to function as specified) and
its coverage parameters. If the system's structure or coverage
coefficients change stochastically during its operating life-
time (e.g., if they depend upon the number of faults already
incurred) such changes must be reflected in its reliability
model. If a mode change in one stage precipitates a mode change
in some other stage, the two stages are said to be ccuprled.
(Deterministic structufal or coverage parameter changes must,

of course, also be reflected in the reliability model. Such
changes arevrelatively easily accommodated, however, by
introducing time-dependent coverage parameters and by concafenat—
ing reliability models representing the disjoint time intervals
during which the system structure is invarient. Thus, such

mode changes impose no new constraints provided only that the

coverage parameters are allowed to be time-dependent.)

CARE II allowed only one mode change (two operating modes) ;
the exhaustion of the spares available at any one stage could
cause the system to change from, say, a dual-redundant to a
single-string configuration, thereby changing both the system
structure and the coverage coefficients associated with each

stage. Two of the systems discussed in paragraph 2.1, however,
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(SIFT and ARCS) exhibited mode changes after each new fault.

Thus, the two-mode limitation of CARE II is not acceptable for
CARE III.

3. Separate coverage model similar to that in CARE IT
but capable of handling latent and intermittent faults as well
as permanent faults.

Rationale: The major advantage in keeping the reliability
and coverage models distinct (as they were in CARE II) is
that it allows the user to concentrate on each of these two
areas relatively independently and hence simplifies the task
of defining the system model. In addition, there are some
significant practical advantages (cf. Section 4) in separating
the reliability model, driven by infrequently occurring
failures, from the coverage model reflecting the much more

rapid detection, isolation and recovery events.

The need to handle both intermittent and latent faults in

the coverage mcdel is evident from the discussion in paragraph
2.1.

4, Multiple success criteria

Rationale: As ARCS clearly demonstrates, some redundant
systems may be considered operational under any one of a number
of possible conditions. It is therefore necessary for the user
to be able to define each of those conditions and for CARE III

to calculate the probability that at least one of them occurs.

5. n-point failure mechanisms ("category 3" faults)

Rationale: Most fault-tolerant systems exhibit "n-point-
failure" mechanisms; i.e., sets of n failures (n>1) that can
disable the system even though spare hardware is available.

If two BGUs fail in the enable mode in the FTMP, for example,
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the system is potentially inoperative even though spare opera-
mechanisms only for n = 1. Although the probability of such
failures is generally a rapidly decreasing function of n, it
cannot a priori be considered negligible for all n > 1. The
concept of a single-point failure must therefore be generalized

to take this into account.

6. Time-dependent hazard rates

Rationale: All of the reliability models considered in
paragraph 2.1 assumed constant hazard rates. There are at
least two reasons why it would be desirable to relax this
restriction: (1) Recent data indicate that at least in some
environments (space) the hazard‘rates are far from constant.
(2) The hazard rates associated with modules having internal
redundancy are not constant even if the individual component

hazard rates are.

7. Transient faults

Rationale: Most faults are modeled either as permanent
or intermittent, the latter actually being permanent faults
that manifest themselves intermittently. Some faults may
well be transient in nature, however; e.g., faults due to
noise or those due to improperly validated software. In'such
cases, no hardware damage has occurred and, as soon as the
cause of the fault disappears, the system can, in principle,

function as before.

8. Non-unity dormancy factors

Rationale: Of the four models discussed in paragraph
2.1, only the FTSC model allowed non-unity dormancy factors.
In some cases, it is reasonable to assume that dormant (e.g.,

unpowered or inactive) modules may have lower hazard rates
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than active modules. Non-unity dormancy factors will be
defined as follows: Let P(t) be the probability that an
active unit survives until time t and let P*(t) be the
probability that a dormant unit survives until time t. The

exponent a<1 is the dormancy factor.

16




_3.0 RELIABILITY MODEL DEVELOPMENT

Three basic mathematical approaches were considered
for development of the reliability model: (1) Extension of
the CARE II method. (2) Markov chain method. (3) A

recursion technique based on Kolmogorov's forward differential

equations.

The CARE II approach was rejected because of the large
number of operational modes needed to model some of the fault-
tolerant systems of interest. The coverage probabilities
in both the SIFT and the FTMP systems are functions of the
number of units still operating. Thus, each new failure
effectively defines a new mode of operation. As demonstrated
in the CARE II Final Report (Ref. 1), the complexity of the
closed-form analytic expressions used in the CARE II model is a
rapidly growing function of the number of possible operating
modes. Even if transform techniques (e.g. Laplace trans-
forms) are used to eliminate the multiple integrals found 1in
these expressions, the model becomes intractable for systems

involving more than four or five operating modes.

Some effort was made to generalize the basic CARE IT
equation (relating the probability of operating at time t
with exactly ) known failures to the failure rates, coverage
probabilities, number of active and spare elements, etc.) to
include the case in which the coverage parameters were
allowed to be functions of the number of previous failures
in the stage in question. This would have, in principle,
drastically reduced the number of required "system modes"
since a mode change would no longer necessarily be needed to
accommodate a change in the number of operating units in a

given stage. This effort was abandoned, however, when it
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became apparent that the cross-coupling between stage
coverages (i.e., the dependence of the coverage in one
stage on conditions in another stage) could also be a signifi-

cant factor in some cases of interest.

The term "Markov chain" in the present context denotes
the following modeling structure: The system state at any
given instant is characterized by all those parameters needed
to determine both the likelihood that it will experience some
fault at time t and the probability that it will successfully
recover from that fault. These various system states are
then interrelated through a set of transition functions repre-
senting the rates at which the system state changes from any
given state to any other state. (Thus, the transition functions
rij(t) and rji(t) relating states Si and Sj define the condi-
tional probability densities of transitions at time * from Si

to Sj and from Sj to Si' respectively; cf., Figure 3.1.;

The avionics systems to be modeled by CARLC III are to be
extremely reliable; only rare combinations cf unlikely events
can be permitted to cause the system to fail. Consequently,
numerous parameters are needed to characterize each state and,
in particular, its vulnerability to subsequent faults. Specifi-
cally, each state is defined nct only by the number of faults
in each of its coupled stages, but by the status of each of
these faults as well. The status of a fault is defined by all
those parameters needed to determine the system's vulnerability
to subsequent faults (e.g., detected; undetected, benign, inter-
mittent fault of a given type; undetected, active, intermittent
fault of a given type; etc.) It should not be surprising that
under these circumstances, the number of states needed to

characterize a system can be extremely large. If a system
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consists of n coupled stages, if the i-t-—'E stage can sustain as
many as m faults and still be operational, and i€ the status
of each stage-i fault can be any one of li possibilities, the

total number N of system states that have to be considered is

This number can be large even for relatively small parameters
Qi' m. , and n. (For example, fhen n = 4, and 2, = 6, m, = 2
for all i, N = 614,656.)

Mathematical methods for determining the probability
that a system is in any one of its Markov states at anv time =
are well known and particularly efficient solution fechniques
are available when the state transition functions rij(t) are
independent of t. With the Markov model just described, it
is possible (although undesirably restrictive) to treat these
functions as time invarient, so these mathematical methods can,
in fact, be applied. Even so, these methods become computa-
tionally infeasible wher the number N of states becomes large,
even when advantage is taken of the fact that the number of
allowed state transitions is much less than the maximum possible
number, N(N-1). Since, as already noted, the number of states
needed to describe systems of interest here can easily exceed
105, another approach was clearly needed. (Nevertheless, a
thorough investigation was made into methods for efficient
computer manipulation of Markov model transition matrices.
This investigation was undertaken for two reasons: (1) to

provide an alternative should difficulties be encountered in
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developing the preferred CARE III approach; (2) to develop
techniques that may be useful in implementing the CARE III
coverage model. The results of this investigation are sum-

marized in Volume II of this report.)

By far the most promising of the reliability modeling
techniques examined for the class of fault-tolerant systems
cf cohcern here was one based on Kolmogorov's forward differ-
ential equations; for convenience, it will be referred to as
the Kolmogorov Method. Several variations on this method
were postulated and examined in detail in order to determine
the most efficaéious procedure for applying it to the problem
at hand. The variations considered are described in the fol-
lowing paragraphs. Before proceeding, however, it may be

useful to outline the general approach.

As already noted, the major problem with the Markov
Method, as outlined, is the inordinately large number of states
needed to distinguish all the various fault cdnditions. ~As
also noted, these conditions can be specified in terms of two
sets of parameters: 1) the number of faults in each of the
ccupled stages; 2) the status of each of these faults. The
essence cf the Kolmogorov approach is in the separate treatment
of these two sets of parameters. That is, system states are
used to represent only the first set of parameters; the effect
of the second set of parameters is reflected implicitly in the

state transition functions.

The separate treatment of the two sets of parameters
reeded to model fault occurrence and fault recovery has two
major advantages: 1) It drastically reduces the number of

states needed to represent the system (from the previously
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defined number N to, in the same notation,

n
Nl = 1 <mi + 1); i.e., from N = 614,656 states in the
1

i=
previous example to Nl = 81). 2) It circumvents the serious
computational difficulty'presented by a model that combines
in one homogeneous structure the relatively infrequent state
transitions characterized by the first set of parameters
(perhaps one fault/lO3 hours) and the much more frequent
transitions due to fault status changes (e.g., detection
rates of the order of seconds, intermittent fault transition
rates of the order of minutes or less, error generation rates

of the order of milliseconds).

The major disadvantages of this modeling approach are
also two-fold: 1) The state transition functions are now con-
siderably more difficult to determine. They are in effect
conditioned only on time and on the number of previous faiiures.
of each type; the probability density of a transition under
these conditions can be determined only by averaging over all
possible values of the implicit parameters. 2) The state-
transition functions are necessarily functions of time, thereby
precluding from the outset the time-homogeneous Markov chain

solution techniques mentioned previously.

The first of these disadvantages is reflected in a more
complex coverage model than would otherwise be required. The
important point here, however, is that the combinatorial and
Markov techniqﬁes mentioned earlier can be applied at the
coverage model level as well as at the reliability model level.

Furthermore, the number of states needed to determine the
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conditional transfer functions is vastly less than the number
of states in an undifferentiated Markov model of the entire
system. Thus, the coverage model computational effort, while
greater than it would otherwise have been, is still almost
negligible compared to that needed to determine the state
probabilities for the system level Markov model. 1In:effect,

1 an XaeeX nz

the model has been reduced from one having N = n
states to one having n, + n, + .. 4 n, states, with nidenoting
the number of relevant states given that i faults have already
taken place. (The reduction is in fact more dramatic than this
since much of the computational effort needed to determine the
transition functions given i faults can also be used to deter-

mine these functions given j # i faults.)

The detailed development of the CARE IIT coVerage model’
will be undertaken in Phase 2 of this effort. As currently
invisioned, it will combine both combinatorial and Markowv
techniques. The former will be used to determine the prob-
ability that a given combination of faults can, under a
specific set of conditions (e.g., all faults simultaneously
active) cause the system to fail; the latter will be used to
determine the probability that the specified set of conditions
does indeed obtain at any given time. Some specific examples
of this coverage modeling approach, used during Phase onhe as part
of the reliability model test exercise, are described in

paragraph 3.3.

The second of the above-mentioned disadvantages to the
modeling approach outlined here is largely overcome by basing
the solution techniques on Kolmogorov's forward differential
equations. The procedure for doing this is the subject of

the remainder of this section.
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3.1 THEORETICAL DLVELOPMENT

Let lei(tlT) denote the conditional probability that a
system is in state j at time t given that it was in state

i at time 1. Similarly, let P i(tln,"r) denote the

213,
conditional prokability that a system is in state £ at time
t given that it was in state j at time n and in‘state i at

time 1. Then, clearly, for any 1<n<t,

Popi(elm = D lei(nlr)lej’ sty o (1)
3

with the sum taken over all the (assumed finite number of)

- possible intermediate states j. (If, for all tT<n<t,

P,r. .(tln, 1) =P, ,.(t[n), then equation (1) reduces to
'Q'IJr 1 'Q'IJ ’

the Chapman-Kolmogorov equation for continuous-time, discrete

state systems.)

It follows from equation {1l) that

lei(t + At]T) = lei(t[T)P ;6 + At|t, T)

2%,
(2)

+ EE:Pin(tlT)Pllj, J(E + atlt, 1)
J#L
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Let

1 -7P (t + At|t, 1)
Agpiftlm) = lim 2o, 4
* At
At »+ 0
and
P, .(t+ Atlt, 1)
' _ _ . 213, i
cjlli(t|T)Ajlli(t]T) = lim "
At » 0

(The reason for this latter notation will become apparent
shortly.) Then, rearranging terms in equation (2}, dividing

by At and taking the limit as At =+ 0 yields

aPzLi(tIT)

= <P . (t|T)A,,. (t]T)
5t L] i 2]

(3)

+ :E:pjli(tlw)cjzli(;lr)leli(t|r)
J#%

This set of ecuations is a form of the Kolmogorov
forward equations. It differs from the more conventional
£|i(tlt)lj£|i(tlr)

are also functions of the initial state i of the system at

form in that the transition parameters cj
time t. If the notation indicating the condition that the

system ke in state i at time T is suppressed, equation (3)

can be expressed in the more convenient form
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dp, (t)
= =P, (t)A (L) +
L £
dt 3#8

1

Pj(t)cjz(t)ljl(t) (4)

It must be remembered in the ensuing discussion, however,
that the transition parameters may also be functions of the

initial conditions.

Four recursive reliability modeling methods based on
Kolmogorecv's forward eguation, eguation (4), were investigated
in an effort to find the most suitable application cf this
result to the class of problems of concern here. These four

methods are described in the following paragraphs.

'3.1.1 DIFFERENCE EQUATION FOR RELIABILITY

Let Pz(t) denote the probability that the system is
operating at time t having undergone exactly & failures.
(If it is necessary to distinguish between different types
of failures, £ will actually be a vector; e.g. & = (i, Jj, k)
indicating i failures of type 1, j of type 2 and k of type
3.) Let Ag(t) denote the rate at which failures occur given
that the system has sustained 2 failures ky time t. Let
Ajz(t) denote the rate of occurrence of failures that would,
if coverage were perfect, lead from state j to state & (i.e.,
from the state characterized by i failures to that character-

ized by 2 failures).

Then

DAL, (8 = AL (t)
JL 3
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with the sum taken over all states % which can be reached
in one transition from state j. Finally, let cjl(t) denote
the coverage probability associated with a failure which
would, in the event of perfect coverages, cause a transition
from state j to state &. (The coverage associated with a

failure occurring when the system is in state j is therefore
c.(t) =N"c. (B)A., (t)/Ar.(t
5 2S5y (BIA () /A4 (x)
L

with the range of summation and the term Aj(t) as previouslyv
defined.) |

With these definitions, equation (4), rewritten in

difference-equation form

Pz(t + At) = Pz(t)(l - Az(t)At)

(5!
+ }:Pj(t)cjz(t)kj&(t)At
J

defines a recursion, on both t and %, on the probabilities

Pz(t). The probability that the system is successfully

operating at time t is then just

R(£) = D P, (t) (6)

with the summation taken over all allowable states £.
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Actually, equation (5) defines a recursion on £ only if
the states can be suitably ordered. This is the case, for
example, if it is impossible to go from a state having ||2]|
failures (with |[%2|| indicating the number of failed units
represented by the vector &) to a state having fewer than
[f2|ls i.e., if failed units never "heal". This would
appear to eliminate transient failures from the model. This
is not the case, however, if the coverage coefficients make
the proper distinction between "leaky" and "non-leaky"

transients.

3.1.2 DIFFERENCE EQUATION FOR UNRELIABILITY

Let Pz(t) be the probability that the system would be
operating in state £ at time t were coverage perfect, let
= pP* - oy = - :

Qz(t) Pz(t) Pz(t) and let Cjz(t) 1 cjz(t). Then

equation (5) can be rewritten:

Qz(t + At) = Q) () [1 - Ay (B)At]

| (7)
+ (£ + PL(t)e, . (£)1r.. (£)At
>, [0, S ()0 (£ 1y (6)
3
and the system unreliability becomes
1 - R(£) = 3.0, (t) + Y Ph(t) (8)

LeL 2eL
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with L as previously defined and L U L the set of all

possible states.+

'An interesting variation on the approach suggested by this
formulation is obtained by treating all states representing
system failures as terminal rather than transient states.
This is equivalent to redefining Q,(t) as the probability
that the system has failed by time t and at the time of the
failure it contained exactly 2 failed units. Since unit
failures occurring after the system has failed do not in

this case cause a state change, equation (7) now assumes the
simpler form

= ' - (
Qp (E+0E) = @, (t) + I P(t)ey, (t)h,, (£)at
JJ
Now, however, the two probabilities

A oA
Q(t) = I Qz(t) and P*(t) = I _ PQ*(t)
Lel, 2elL

no longer represent disjoint events and equation (8) becomes
an inequality rather than an equality. That is, the proo-
ability Q(t) here is a measure of the event (A) that the
svstem has failed by time t due to a coverage failure; P(t)
measures the event (B) that £ units have failed by time t.
Thus. 1-R(t) = P{AUB) = P(A) + P(B) - P(A[B)P(B) < P(%) + P(B).
(It can be agreed that P(A|B) > P(A); that is, the conditional
probability of a coverage failure given that the totai number
of failures exceeds some minimum must be greater than the un-
conditional probability of a coverage failure. Thus, 1-R(t) =
P(AUB) < Q(t) + P*(t) - Q(t)P*(t).) Since clearly 1 - R(t) >
max (Q(t), P*(t)), the fact that the events A and B are not
mutually exclusive is of potential concern only when Q(t) and
P*(t) are both small and of the same order of magnitude. Even
in this case, the unreliability would be overestimated by at
nost a factor of two. The reduction in computational com-
plexity, potentially achievable by treating each failed state
as a terminal state, may well justify this small reduction in

accuracy; this possibility will be explored during Phase Two
of this study.
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This formulation offers a signifidant potential
advantage when, as is the situation of concern here, R(t)~ 1
for all t of interest. 1In this case,

2 P, (t)~ 1

LeL
and the sum of the round-off errors obtained in calculating
the individual Pz(t) terms may well be of the order of the

quantity of major interest; viz: the unreliability

1 - > P, (t).
LeL,

Under these same conditions, however, the terms Qz(t) must
be small for all feL and the terms PE(t) must be smalil for
all 2eL. If the round-off error associated with each of
these terms can be kept small relative to the terms them-
selves, it follows that the cummulative round-off error will

be small compared to their sum.

3.1.3 INTEGRAL EQUATION FOR RELIABILITY
Equation (4) is a linear, first-order differential

equation. This equation can be easily solved to yield:

t

t
] A, (nar (T, (1) A, (1)
P, (t) = e 'é * 23:5‘3’% L —dr  {9)

T
) Sy man
0
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This also can be used to define a recursion on % and t.
If the integrals in equation (9) are replaced by their

first-order approximations:

t + At t
/ f(t)dr ~3 [f('r)d‘t + £(t)At

0 0

&

and if the exponentials are replaced by the first two terms

in their power-series expansions:

e—f(t) 1 - f(tf

equation (9) is identical to equation (5). If more
sophisticated approximations are used, however, it might

well be possible to achieve accuracy comparable to that
attainable with the equation (5) difference equations but
without the need to use such small step sizes At. This
péssibility was investigated using Simpson's rule integration
for the integrals in equation (9) and using an existing
exponential evaluation subroutine. The resuits of the twc

approaches are compared in Section 3.2.

"3.1.4 INTEGRAL EQUATION ON UNRELIABILITY

If the substitutions described in paragraph 3.1.2 are

made in equation (9), the resuiting expression assumes the

form:
t
S A ;
: Q.(t) + P.(1)cC. (10] AL, (T)
- A, (T)dT [} 3 L '3
Qz(t) =e”0 % iz J ; ] J ar
'f Ag(n)dn
evp
0 (10)
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This formulation has the same potential advantage over that
represented by equation (9) as the eguation (7) approach

has over the equation (5) approach.

3.2 EVALUATION OF THE KOLMOGOROV RECURSION METHODS

It quickly became apparent, after only a few trial
program runs, that the recursions on unreliability were
decidedly superior to those based on reliability for the
situations of interest here. Although the reliability
recursions did yield acceptable results, considerably better
results could be obtained with comparable program execution
time (larger step sizes) using the unreliability recursions.
Consequently, the competition was quickly reduced tc on2
between the method described in‘paragraph_3§l.2 and that
described in paragraph 3.1.4.

The only approximations in the recursions developed in
Section 3.1 are those introduced in approximating a difterentia.
equation by a difference equation or by approximating an ‘
integral by a discrete summation. The modeling task is
considerably simplified, however, if one other approximation
is made in these formulations. This approximation involves

the determination of the coverage coefficients cjz(t).

In the examples to be considered here, the coverage
coefficients are the only parameters in the reliability
model recursions that are influenced by the implicit con-
dition that the system was in state L = 0 at time t = 0.
These terms are functions of, among other things, the probabil-
ity that any of a certain subset of failures are still latent
at the time of occurrence of the failure in question. Since

[12]] failures took place in time t, it is clear that the
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likelihood of a latent failure at time t is a generally
increasing function of the ratio |[|%2|]|/t. If no other
conditions were imposed, it would be relatively easy to
determine the probability that p latent failures are pfesent
at time t given that the system was in sta*e j at time t .
There is another condition, however: the system was still
operating at time t~. This condition reduces the likelihood

of certain failure sequences and hence perturbs the

stochastic process characterizing failure events relative

to the case when this condition does not apply. For example,
the fact that the system is still operating reduces the
probability that two failures occurred within a short interval

of each other if a system failure would have resulted were

one of these failures latent when the other took place.

It is apparent (or at least it will become apparent once
specific examples are considered) that the effect of this
perturbation in the stochastic failure process must be highly
insignificant except, possibly, for very small values of t.
in which case all failure events are extremely unlikely,
Accordingly, this effect is ignored in the following formula-
tions. The resulting distribution of laten:t faults is
precisely that that would be found were no distinction made
as to whether the system was operational or not; i.e., if no
distinction was made between the state represented by the
probability Pj(t) and that represented by Qj(t). Since the
probability of being in either of these two states is Pg(t),
therefore, the probability of a system failure at time t can
be overbounded by replacing Pj(t) in equation (7) or (10) by
Pg(t) and ignoring the condition on Cjz(t) just discussed.

Further, since ignoring this condition on the failure process
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presumably results in a more favorable distribution of fault
events so far as coverage at time t is concernedf, leaving Pj(t)
in equations (7) and (10) should result in a lower bound

on the probability of system failure. In fact, as severgl
computer runs demonstrated, the calculated system reliability
is identical to six or seven decimal places regardless of
whether P (t) or Pg(t) is used. This of course supports the

contention that the ignored condition is in fact not significant.

The following paragraphs discuss the results obtained in
applying the methods discussed in Sectionf3;1 (primarily those
of paragraphs 3.1.2 and 3.1.4) to the FTMP énd SIFT ccmputers.
It should be emphasized here that the purpose of these

tTo illustrate this, consider the following simplified situa-
tion. Suppose failures can occur only at discrete instants
of time (¢t =0, 1, 2, ...), that no two failures can occur
simultaneously, and that each failure is latent for exactly
one unit of time. If a second failure occurs during the
latency of a previous failure (i.e., exactly one time unit
later), the system fails. Now consider c2'3(t = 8). If the
condition that the system is still operating at time ¢ = 7 is
ignored, there are exactly (8)=28 ways in which 2 failures
could have occurred in the 8 time instants t =0, 1, ..., 7;:
exactly 7 of these failure seguences result in a latent
failure at t = 8. The probability Eé (8) of a coverage
failure is therefore 7/28 = 0.25. If'the condition in
question is not ignored, however, the number of possible
sequences is reduced to 21, 6 of which result in a latent
failure at t = 8. The probability of a coverage failure is
thus increased to 6/21 = 0.286. Note that even in this
extreme case, with t small (only 8 times the latency period),
|12]] large (the third failur=s occurs after only 8 latercy
oeriods), and with all’ latent failures causing a system
failure in the event of any other failure, the effect of the
condition in question is to increase c by 14%. Under more
realistic conditions, the effect on the coverage coefficients
should be entirely insignificant.
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exercise was not to model the computers themselves, but

" rather to incorporate the same general assumptions used in
the previously developed models for these computers and to
compare the results thus obtained with the results obtained

using these earlier models.

The purpose of this effort was to judge the efficacy of
the various reliability models under consideration before
proceeding with their more detailed development. In order to
accomplish this, it was necessary tc derive analytic expres-
sions for the coverage probabilities needed in the reliability
model. This task was subsequently eliminated, sco far as the
user is concerned, by restructuring the reliability model.
This restructuring, and the application of the restructured
model to both FTMP and SIFT are described in paragraph 3.3.
The following paragraphs, therefore, concentrate on the
results of this reliability model comparison rather than on

the derivation of expressions for Eij(t)'

3.2.1 APPLICATION TO FTMP - PERMANENT FAILURE CASE

The four recursions discussed in paragraphs 3.1.1, 3.1.2,
3.1.3, and 3.1.4 (henceforth to be referred to as reliability
models RM1, RM2, RM3, and RM4, respectively) were firs£ used
to model the FTMP with all failures treated as permanent.

The first recursions tc be programmed for this applica-
tion were RM3 and RM4. For comparative purposes, an exact
solution was determined analy*ically for the probability
P3’0,0(t) (i.e., the probability that the system is still

operating at time t after having sustained exactly three
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processor failures, no memory failures and no bus failures) .*
This exact solution was also programmed and the result used
to evaluate the accuracy of the two recursive methods. The

values obtained for t = 30 seconds, for example, when the

*The exact solution can be expressed as follows:

(gp> - >\p t, 3
— — — I —
P3’0'0(t) = (1-e ) 2np\np 2)A(AP,6p,t)

T =2n -3)B(A ,8 ,t)-4n C(A_,6 _,t
p(np )(plpl) np(prp )

-(n -3), t
-2n (n -3)D{(A ,§ ,t A
p( b )D{ p' p ) e P o)

TN 20880 280 o 6 (N
BOLS4 = o adem (8t et Y

ST+~ (212, (aomny  206-M1 ' 3(8-2M)
cC(x,§,t) = A6 N P A P

6060 (BF20) (3232, (aoany 2067

—/ —

\2o7(82E g o

(5-2) (8+27) . 3(8=n) (6=2n)
L. t) = 2 La2T(HNE 2 m(eRNE 2 mnt

3(8+X) (8+2X) (+X) (6-22) (8-2) (8+21) 3(8-2) {(8-2X)

with np, n
memories, and buses, A, X, X, their respective hazard rates,
and Sp the detection rate for processor faults.
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initial configuration consisted of 15 processors, 9 memories

and 5 buses, were:

RM3: P, (t) = .26330 x 1071
RMA : P, (t) = .25575 x 10713
= .25579 x 10 1°

Exact: Pz(t)

Similarly, with a 15 processor, 8 memory, 4 bus initial

configuration, the results for t = 300 hours were:

64394340 x 1072
RM4: P, (t) = .64384685 x 1072
Exact: Pz(t) = ,.64384684 x 10

RM3: Pz(t)

~

-2

These agreements, especially between RM4 and the exact
solution are surprisingly good, particularly when it is
recognized that the "exact" solution is also subject to

round-off error.

The results of the comparison between RM3 and RM4
strongly favored the latter model. Since RM2 presumably has
the same advantage over RMl that RM4 has over RM3, tha
competition, as previously noted, was quickly narrowed to

RM2 and RM4.

Table 3.1 sumﬁarizes results obtained using RM2 and

RM4 with At = t__ /50, and RM2 with At = t__/100. (A more
complete listing of the results summarized here and in the
following examples can be found in an appendix to this
report.) As can be seen, RM2 is slightly faster than RM4
when At is the same in the two cases. The accuracy attain-
able with RM4 seems to be somewhat better than that attain-
able with RM2 even when the latter's step size is half (and
its running time nearly double) that of the former. Note,

in particular, that halving the step size in the RM2 recursion
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[ABLE 5.1

COMPARISON OF THREE MUMERICAL EVALUATION TECHNIQUES

TIME INTERVAL

ESTIMATED FAILURE PROBABILITIES AND RUNNING TIMES
vs. NUMERICAL EVALUATION TECHNIQUE

oveiey | SRERRT | oo | s | Dipeemecefa. Vo2 Rersence
1000 Hrs., 20 HRrs, ,9115504128 E-08 4759138922 E-08 .9013134766 E-08 | 1, 4, 7
1000 Hrs., 1000 HRrs, 2693321948 E-01 2693321885 E-01 ,2693322063 E-0L | 1, 4, 7
1000 HRrs. ??SSING 41,078 secs. 40,141 secs. /6,282 secs, |
s 3 SECS., 30 sEcs. 3410688041 E-11 3372096536 E-11 .3391798683 E-11 | 2, 5, 8
30 secs. | 1200 ms. ,3189783213 E-13 .1656918144 E-13 2439316532 E-13 | 2, 5, 8
30 secs. 600 ms, ,8284643018 E-14 | -,8526508200 E-22 4409338212 E-14 | 2, 5, 8
30 secs. RUNNING 32,866 31.094 56,244
TIME
800 ms, 600 Ms. 8642538477 E-14 8421766317 E-14 .8531124275 E-14 | 3, 6, 9
800 Ms, .1495029013 E-13 1466706658 E-13.| 1480876007 E-13 3, 6,9
16 ms, .6686304258 E-17 8800221654 E-33 3349778148 E-17 | 3, 6, 9
RUNNING 32.991 30.998 56,332

TIME




always brings the results obtained more nearly in line with
those obtained using RM4. Note, too, the excellent agreement
between RM4 runs having very different values of tmax‘
Specifically, the t = 600 ms. result obtained when

tmaX = 30 sec. agrees quite well with that obtained when

t ax = 800 ms. Yet in the first instance, t = 600 ms. is
the first point evaluated; in the second case, it is the
37.5th point (obtained by linear interpolation between the
37th and 38th points). This close agreement clearly is

not obtained with RM2, even when At is halved.

As a result of these comparisons, it was concluded that
RM4 is clearly the best of the reliability modeling
approaches examined, and that it appears to be entirely
satisfactory, in terms of accuracy, stability and computer

running time, for the applications of interest.

Four computer runs were made using RM4 for purposes of
comparison with results obtained by Draper in their model |
of the FTMP. The results of these runs, with tmaX = 800 ms.
and 30 sec. are superimposed over results obtained by Draper
in Figures 3.2 and 3.3 respectively. Figure 3.4 compares
Draper's results with.those obtained from two RM4 runs, one

with t = 10 hrs. and one with t = 1000 hrs.
max max

The RM4 results on the whole compare well with Draper's
results. The reason for the discrepancy in Figure 3.2 is not
clear. It is conceivable that the discrepancy is due to a
difference in the assumed conditions under which certaini combina-
tions of latent faults can cause a system failure. The fact
that Draper's model treats three or more concurrent undetected
failures as a system failure does not, however, appear to be

sufficiently restrictive to explain the difference. In any
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case, the two results agree to within about 20%.

The agreement between the results obtained with RM4
and those obtained with Draper's ll-state Markov model
(Figure 3. 3) are remarkably good. The agreement between
the two sets of results in Figure 3.4 is also quite good,
the difference possibly attributable to the difficulty in
plotting on a gridless graph.?t

3.2.2 APPLICATION TO SIFT

Four different cases were investigated using RM4 to
model SIFT. The first three cases (cases la, 1b and 1c) all
modeled the computer in a permanent fault environment;
variations were introduced in order to gauge the sensitivity
of the model to what appeared to be relatively minor
perturbations. Case la was postulated to reflect those
conditions imposed in SRI's reliability model of SIFT. 1In
that model, buses are not permitted to fail while a processor
failure is still latent and processors cannot fail while a

bus failure is latent. In Case lb, this restriction is

tFor the record, it should be mentioned that the analytical
expression for coverage used for Table 3.1 was not identical
to that used for Figures'3.2 3,3 and 3.4 In the former
case, the recovery rate associated with a processor or
memory was equated to the weighted average of the unit's
recovery rate and those of its . associated BGU's. In
the latter cases, the slightly more cumbersome weighted
average of the corresponding recovery time distributions
was used. The difference in the results obtained in the
two cases was small and in no way affects the conclusions
gleaned from Table 3.1. The change was made before the
results plotted in Figures 3.2 3.3 and 3.4 were obtained
since the latter recovery model more accurately represents
that postulated by Draper.




removed, but neither of these two events (bus failure during
failed processor latency or vise-versa) causes a system
failure. This restriction is also removed in Case lc, but

here either event does cause a system failure.

The fourth SIFT case (Case 2) involved a coverage model
similar to that used in Case 1lb, but the fault environment

was changed to reflect SRI's transient fault model.

The results of these four investigations are summarized
in Table 3.2 as are the correspending results obtained by SRI.
As can be seen, the results obtained using RM4 agree remarkably
well with those obtained by SRI. The fact that the Case la
and Case 1lb results are nearly identical demonstrates that
the restriction imposed by SRI in their model is indeed
benign. This would be only slightly less true even if the
recovery from one type of failure were adversely affected by

a latent failure in a unit of the other type (Case lc).

3.2.3 APPLICATION TO FTMP - INTERMITTENT FAULTS

The CARE III reliability model was used to estimate the
reliability of the FTMP in the presence of intermittent
faults. The intermittent fault model used was that defined
by Draper. That is, when a fault first occurs, it is in a
"had" étate, i.e., a state in which its effects are manifest.
It then switches between bad states and "good" states (in
which the fault is totally benign) at the constant rates 8
(good-to-bad) and g (béd-to—good). A fault can be detected
only when it is in a bad state; the fault detection rate is
then a constant § (which may be different for the different

module tvpes).
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e 32 S ou 65)
o | ny | sees. | TRANS. | Exp. Case 1A CASE 1p CAsé 1c CASE 2 SRI
10 5 10 No -8 2.486301333 | 2.486176900 | 2.762068196 2.50
9 | 4 | 10 No -8 | 1.988342066 | 1.988242157 | 2.186894736 | 2,00
8 3 10 No -8 4,540032421 | 4.540032421 | 4.675449311 4,56
10 5 0.1 YES -10 2,511510104 2,55
9 i 0.1 YES -10 2,061165614 | 2.10
& | 3 | 0.1 Yes -8 3,541250227' 3.65 |
PARAMETERS :
5 Aop ™ 10”4/hour
Agp = 10‘5/hour
r = 0.1




The results obtained with the RM4 model are listed in
Table 3.3 along with the results obtained by Draper using
their Markov model. (To enable comparison, the parameters
used in the RM4 model for a, B, 8§, A and t were precisely
those used by Draper.) The column labeled CARE ITI, Form 1,
shows the RM4 reliability predictions when no restrictions are
placed on the number of faults that can be simultaneously
present in the system. As can be seen, the reliabilities
predicted by RM4 are generally very close to those predicted
by Draper, the difference between the *wo predictions, however,
increasing as B decreases. It was conjectured that these
differences were due to two basic differences in the CARE TIII
and Draper models: First, +he Draper model did not allow more
than.two faults to be present at the same time, even if some
of these faults were in the "good" state. Any such situation
was treated as a system failure. The RM4 model places no
restriction on the number of coexisting faults so long as
these faults are not by themselves catastrophic (e.g., simul-
taneous "bad" faults in two processors in the same triad).

The second difference is due to the fact that the RM4 model
treats as a system failure at time t any combination of faults,
first appearing at time t, that eventually cause a system
failure even though the actual failure may occur at some time
t' >t. When B is small and « large, faults spend most of
their time in the good state. Thus, there can be a significant
delay between the time a fault occurs and the time that it,

in combination with some other intermittent fault, produces an
actual failure. Since the RM4 model treated a system as being
in a failed state if it contains a combination of faults that

will eventually prove fatal, it is somewhat pessimistic
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relative to a model in which such faults are not counted until

they actually occur.

The first of these differences is thus due to a restriction
on the Draper-model, the second due to a restriction on the
CARE III model. In order to overcome this latter restriction,
a modification was made in the integrand used in the Form 1
version of RM4 described in paragraph.3.1.4. This modified
version of RM4, called Form 2 and discussed in detail in
paragraph 3.3, does take into account the delay between the
occurrence of a fault and the resulting systém failure. The
results obtained with this model are also plotted in Table
3.3. As can be seen, the differences between the Form 1 and

Form 2 reliability estimates can indeed be significant when

<<,

Finally, in order to determine the significance of the
Draper model restriction, the same restriction (more than two
concurrent faults treated as a system failure) was placed on
the Form 2 version of RM4. The results obtained with this
restricted model (Form 2R) are tabulated in the third column
of Table 3.3. A comparison of these results with those
obtained by Draper (fourth column in Table 3.3) provides strong
support for the conjecture concerning the differences between

the Form 1 model and Draper's model.

It is believed that in most realistic situations, the
difference between the reliabilities predicted by the Form 1
and Form 2 models will be insignificant. It is not possible,
at this point, to conclude that this difference will be
insignificant in all cases of interest, however. Accordingly,

CARE III will implement both models, thereby allowing the
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Table 3.3
FTMP INTERMITTENT FAULT MODEL RESULTS

(cf. Vol. 2, Tables A2-18 Through 53)

Failure Probability (x 1079)

CARE III CARE III CARE III Dra Model
a B Form 1 Form 2 Form 2R raper Mode
10 1 1.1181 1.1161 1.1218 1.124
10 10 1.2049 1.2041 1.2046 1.207
10 100 1.1720 1.1718 1.1720 1.174
10 1000 1.1274 1.1274 1.1275 1.129
L0O 1 1.0925 1.0054 1.2058 . 1.2073
Loo 10 1.9392 1.9072 1.9219 1.924
.00 100 1.6614 1.6585 1.6591 1.661
L00 1000 1.2182 1.2181 1.2183 1.220
)00 1 0.9749 0.4239 1.4593 1.46
)00 10 5.5057 3.7975 4.2295 4.22
100 100 6.2531 6.1513 6.1668 6.17
100 1000 2.1208 2.1198 2.1203 2.12
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user to decide whether or not the more accurate reliability
prediction afforded by Form 2 justifies its increased running

time, (Form 2, when applied to FTMP, requires about three

times as much CPU time as does Form 1.)

3.3 RELIABILITY MODEL STRUCTURE

Preliminary evaluation of the various reliability modeling
techhiques under consideration was accomplished by defining
analytically the coverage functions needed for the test cases
described in the previous paragraphs. This task can be
arduous, however, and severely restricts the coverage model that
can be accommodated. The reliability model was therefore
restructured, both to increase its generality and to enable it
to use coverage parameters generated by a coverace model of
the sort implemented in CARE II. The new structure distinguishes
among inputs defining the system structure, inputs specifying
the underlying fault models and coverage-model-generated inputs
Characterizing the system's response to various categories of
faults. This structure is described in detail in the follow-

ing paragraphs.

'3.3.1 SUBSYSTEM CHARACTERIZATION

The reliability model to be described here is designed
to model the reliability of a subsystem consisting of some
arbitrary number of stages. The system reliability is then
determined by taking sums of the products of the reliabilities
of appropriate sets of subsystems multiplied by the probability
that no category 3 faults have occurred (cf. section 2) . This
last procedure, while relatively straightforward, has not yet

been implemented and hence will not be discussed here.
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(Combining subsystem reliabilities to determine the system
reliability clearly requires knowledge of the various success-
ful system configurations as interpreted by CAREIN. Accordingly,
implementation of this operation has been deferred until after
CAREIN has been more fully defined.) The discussion here
concerns the task of mbdeling the reliability of arbitrary

subsystem confiqurations.

Each stage in a subsystem consists of some number of
identical modules or units; since the subsystem is fault-
tolerant, it can presumably continue to operate successfully
even after some of these unité have failed. The probability
that the subsystem recovers from a fault (i.e., its covérage
for that fault), however, may depend upon many factors,
including both the number of detected faults and theAnumber of
undetected faults in other modules in the same subsystem.

(If the coverage associated with a fault in one stage is a
function of the number of faults in some other stage, the two

stages are said to be coupled.)

For notational convenience, each stage will be indexed by

a Latin letter. Stage x, for every x, is subject to faults, -

each of which belongs to some category Xs i=1, 2, ... .
The subsystem state is represented by a vector L = ("'le' —
2X2, “ ey lxm, ng’ 2y2, cee)y Qxi indicating the number of

stage x units that have experienced a category x; fault, etc., —
with each stage and each fault category thus represented. The
parameter %y represents the total number of faulty stage x —
units, 2= (... zx, zy, ...) is a vector whose components

indicate the number of faulty units of each type, and —

z=sz
X




the total number of faulty units. Similarly, the vector

u = (...ux N Y., ...) designates the

u ’
1 % m Y1 ¥
number of latent faults in each category. (A fault is called

latent if it has not yet been isolated.)

In addition to the preceding categorization, faults are
also classified in accordance with their effect on the subsystem
of concern at the time of their occurrence. Specifically,
faults are divided into three classes: (1) Subcritical faults.
A fault is said to be subcritical if it, by itself, cannot
cause a subsystem failure in the absence of subsequent faults
(e.g., the first processor fault in SIFT or FTMP). (2) Critical
faults. A fault is called critical if it, in combination with a
pre-existing latent fault, may eventually cause the system to fail
even in the absence of subsequent faults (e.g., certain processor
faults in SIFT or FTMP while a previous fault is still undetected).
(3) Supercritical faults. A fault is designated supercriticai if
its occurrence causes the subsystem to fail immediately, possibly
but not necessarily, as a result of pre-existing faults (e.qg.,

faults causing single-point féilures).

If a category yj fault is critical in the presence of a
pre-existing latent category X, fault, the subsystem is said
to be in an xiyj—critical state. Such a state is possible,
for example, when faults (or their effects) are intermittent
in nature. Faults of this sort will be said to be either active
(i.e., capable of generating errors) or benign (not active). A
subsystem in an xiyj—critical state will fail in the absence of
other faults, if, and only if, both faults are simultaneously
active. (This statement effectively defines the terms "active"
and "benign.") It will be assumed that any other fault occurring
while the subsystem is in a critical state will also cause it to

fail. (The significance of this assumption is discussed later.)
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3.3.2 SUBSYSTEM RELIABILITY MODEL

Table 3.4 defines the inputs needed for the restructured
Form 1 and Form 2 reliability models. The various inputs are
divided into three categories: 1) those provided by the user
in defining the subsystem configuration; 2) those defined by
the user in selecting fault models; and, 3) those determined
by the coverage model. Table 3.5 defines both mathematically
and in words the functions of these inputs evaluated by CARE3
(cf. section 3) and used to define the integrand in the RF4

version of the Kolmogorov recursion.

The RM4 recursion can be expressed in terms of these

functions as follows (cf. equation 10):

. .
Q, (t) =/ e_A&(t’T)Kz('r)dT (11)

0

with Ay (t,T) = J[ tAg(n)dn. The Form 1 version of KQ(T) can
: b

be expressed as

Ry (1) = E [0y ¢ (V) + Py (Mey (D](n,-L +DA (1) (12)

="fy oty 5
Y5
with &7ey = zx, zy—l, £,, «..) and with
cyj(r) = Dyj(&-ey,r) + E BXi’ yj(&—ey,r)gl(r, X4 yi) (13)
Xi

Equation (11) is identical to equation (10) but with a slight

change in notation to emphasize the relationship between
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Table'3'.4

CARE3 INPUTS

Source Function
User: bx (u, &)
configuration i’Yj
description

d_ (u, 2)
Y3
n
X
m
X
User: q, (t)dt
fault model i
selection
Coverage model pl(tlr,xi)
outputs
p,(tlT,x,)

53

Definition

Probability that a category y.
fault would place the system

in an x,;, y.-critical state
given tﬁat the total number of
faults and the number of latent
faults of each category, just
prior to the occurrence of the
category y. fault are defined
by £ and yu; respectively.

Probability that a category y.
fault would be supercritical
given y and &.

Number of initially function-
ing stage-x modules.

Minimum number of functioning
stage-x modules needed for the
system or subsystem to Function.

Probability that a category X4
fault occurs in a given stage
x module in the interval (t,
t+dt) .

Probability that a category X4
fault is active but undetected

at time t given that it occurred
at time T.

Probability that a category x,
fault is benign but undetecte

at time t given that it occurred
at time T.



Table;3.4 (Cont.)

Source Function Definition
Coverage model p(tlT, Xg0 v.) Probability that any x,y.-
J critical state, entered at

outputs

time T, persists until time t
(i.e., neither fault has been
detected nor has a subsystem
failure occurred).

qg(t]r, X., y;)dt Probability that a system
J failure occurs in the interval
(t, t+dt) as the result of an
X.y.-critical state entered at
time T.




state transitions and the fault category. (Note that the
summation here is over all fault categories.) Eguation (13)
expresses the coverage failure probability in terms of the
functions defined in Table 3.5. That is, the probability of
a coverage failure is just the probability that the fault in
question forces the subsystem into a supercritical state
plus the probability that the fault forces it into an xiyj—

critical state which eventually causes it to fail.

The Form 2 expression for KQ(T) is

Ry (1) = D lo,_ (1) +2f_ (1, (1) + Alt|i-e M2, (D)
- Y3 ~ ¥ =y j j

+ Al ]e) PA(T) (14)

Here c .(T) is as defined in equation (13) but with

gl(T, xi, yj) replaced by gz(T, Xs yj). This reflects the
fact that in the Form 2 recursion, a subsystem failure is not
counted until it actually occurs. Thus, a fault forcing the
subsystem into a critical state does not actually cause the
system to fail at that time unless the pre-existing fault is
active. The term A'(t|&) accounts for subsystem failures
occurring at time T as a consequence of previously entered
critical states that did not immediately cause a failure.

The term A(Tlgfey) reflects the fact that any third fault

occurring while the subsystem is in a critical state is

assumed to cause it to fail.
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Table 3.5

CARE3 FUNCTIONS

Function Mathematical Fxpression Definitidn
r. (t) 1 —./Pt d, (t)ar Probability that a given stage
i 0 i ' x module has not experienced a
category X fault by time t
rx(t) r (t) Reliability of a stage x
X,
- i i module
A (t) a. (t)/r_ (t) Rate of occurrence of category
X, X, X. \ - : .
_ i i i X, faults in a given operational
b stage x module
AL (E) (n. - %) A (t) Rate of occurrence of faults
L X X X. .
” ! in theZ(nx - 2 ) modules
X
that are fault-free at time t-—
t _
a_(t) p (tlt, x)r_(t)A_ (1)dt Probability that a given stage
X, s i’ 7x X.
1 - i x module has a category x.

0

1 - rE(t)

[ps(th, xi) = pl(tlr, ki) + pz(tlf, xi)]

latent fault at time t gi%en
that it has experienced some
fault by time t
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Table 3.5 (Cont.)

Function

Mathematical Expression

Definition

a  (t)
X

P(EX|2 , )

RS

i

le(l-ax(t))gx—ux

1

(2,

- : !
Ux)l i u

EP‘EXMX' t)

a , 2)P ,
E:yim DPwlL, o

B

Zb
X.
1

13

v

3

(W, L)P(ul2, t)

Probability that a given
stage x module has a latent
fault at time t given that it
has experienced some fault

by time t

Probability that a subsystem
contains B stage x latent
faults given that it has

zx faulty stage x modules

Probability that a system
having # faulty modules has
U latent faults

Probability that a system

containing £ faults would be

in a supercritical state were

a category y. fault to occur
. i

at time t

Probability that a system
containing £ faults would
enter an X,y.-criticalstate
were a categary y. fault to
occur at time t



Table 3.5 (Cont.)

Function

Mathematical Expression

Definition

89

92(t’ Xi)

N

ar(t]g)

1

t
/[ pl(tlr, xi)rx(T)*x.(T)dt

0

axi(t) (1 - rxljt))

1 - [1-g,(t, x)101 -/ altle, x,, y,)ar]
t

t
-9 +1 B (2-¢ ,T)
Z(nyy )/ Xy, =y’
xi,yj

]
0

qyj(T)(l—gz(T, x Ip |, x,, Yj)dT

t
§ : - B =g ,T
(ny ly'l‘l)/ XlYJ (_ .yl )

0

qyj(r)(l-gz(t, xi»q(tlr, Xy yj)dr

Probability that a category
X fault is active at time

t given that it is latent at
time t

Probability, given that a
system enters an x,y.-critical
state at time t, that this
event eventually causes a
system failure

Probability that a system
having £ faults is in a critic:
state at time t (f-g ) =
(voif, 2.-1, 2 ..0)7

p \4 z

'~

Rate at which systems having
L faults fail at time t due
to critical fault conditions



There are several assumptions implicit in these expressions

which should be noted:

1. It is assumed that a:faulty module can be character-
ized by the first fault it experiences, although the possibility
of subsequent faults is not excluded. (See, for example, the
expression for ax(t) in Tablei3.5.) If a second fault does
occur, it could have one of three effects: a) it could
shorten the latency period; b) it could cause the subsystem
to fail only if the first fault is still latent; c) it
could cause the subsystem to fail even if the first fault

has been detected.

The first of these effects can be accounted for in the
coverage model, the second by adding a term to the recursion
integrand Kl(t) to account for that possibility, and the
third can be modeled as a "category 3" failure. It is
proposed, however, to ignore the first effect and to combine
the second and third effects in estimating the probability
of a category 3 failure. The rationale for this is as
follows: The likelihood of a second failure during the
latency period of a previous failure in the same module is,
in most instances, entirely negligible. 1In any event, the
approach just described overbounds the subsystem failure
probability. (Ignoring the reduced latency caused by a
second fault is clearly pessimistic. Treating the second
effect in a separate category results in some "double count-
ing"; i.e., a single fault is allowed to cause the subsystem
to fail twice, once as a result of a second failure in the
same module and again as a consequence of a failure in some
other module.) The increase in the failure probability

estimate as a result of such approximations is clearly
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insignificant for all cases of practical interest. Thus,
while more exact expressions could be relatively easily
incorporated into CARE3 and COVRGE to account for such
events, their minor importance does not appear to justify

the added complexity.

2. Critical states are defined only for pairs of latent
faults. It is possible, for example, to define an xiyjzk-
critical state in which a failure occurs only if all three
faults are simultaneously active. None of the fault-tolerant
systems examined thus far, however, have exhibited such
failure mechanisms. Thus, while the reliability model struc-
ture described in the preceding paragraphs could readily
accommodate a more general critical-state definition, the

resulting added complexity does not seem to be justified.

3. Any new fault occurring while the subsystem is in a
critical state causes it to fail. 1In many cases this is in
fact not true; an arbitrary fault does not necessarily cause
the subsystem to fail even when it is in a critical state.
The purpose of making this assumption was, of course, to
eliminate the need to account for even more complicated
fault patterns involving, for example, simultanecus xiyj-
and xizk~critical states. Once again, the probability of

such events is small, and the complexity needed for more

precise estimation does not seem to be justified.

(It should be noted that the restriction under discussion
here is considerably less severe than the restriction that
three simultaneous latent faults cause a failure, as is

evident from the results in paragraph:3.2).
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3.3.3 SPECIALIZATION FOR FTMP AND SIFT

The input parameters used for the FTMP and SIFT test
cases discussed in paragraph.3.2 are listed in Table.326. The
FTMP model used for intermittent faults recognized only three
rather than five fault categories; in this case the input

Parameters are as defined in Table 3.6 but with lpz = zmz =

pp = ¥mpy = 0-1.

The definition of these parameters is relatively straight-
forward. The functions My, N, and N;
that no two modules in any FTMP processor or memory triad

are just the probabkilities

both contain latent faults, that no active bus contains a
latent fault, and that exactly one active bus contains a
latent fault, respectively. Thus, bplPZ(E' %) for example, is
the probability that no two processors or memories in any
triad contain latent faults, that no active bus contains a
latent fault, and that, should a category P,y fault occur, it
would affect a processor in a triad already suffering from a
latent category Py fault. Similarly, the parameter bpb(g, L)
is the probability that no two processors or memories in any
triad contain a latent fault, that no active bus contains a
latent fault, that all memories having latent faults and all

but one processor having a latent fault use the same bus, and

that that bus is the one to be affected should a bus fault

occur,

One class of fault situations in the FTMP requires
special consideration. Suppose one of the active buses con-
tains a latent fault, that all processors and memories
containing latent faults use that bus and that at least one
processor does contain a latent fault. Then a new processor

fault affecting the triad already containing one latent fault
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]

Then (for xi =

Table 3 .6a

FTMP INPUT PARAMETERS *

Knx—lx+ux-3)(nx—£X+uX-6)°°'(nx-2x+ux~3(ux-l)) .
(nx—zx+ux—l)(nx—2X+ux—2)--°(nX-2X+uX—(ux—l))' X

(n -9 )(n -2 —l)(n -2 —2)

(n n, - b+ub)(nb b+ub l)(nb b+ub-2)

3(nb 2b)(n
(n

p 1Y,
N~ Aptuy) (ny =8 4y, -

1) (n, - =-2)

b~ ¥ty

Pyr Py ml’ mz: X = p, m):

* See "List of Symbols" for verbal definitions.
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X, u_+ um—l

_ 1 1\ "p
Py pltr &) = =—— (3) Mo (Br DING(npy &)

n_-%2 -2y u_+u
=2 X x "x (ly "p'm
b, (W &) =5 X (3) Mo (w, 2N (u, L)
1 X X
2 N ( 2.) = = 0
n -4 1'Mp’ “b Hp = Wy =
(b, 2) = b b
bb 'L X
0 ] otherwise
(B, %) =Db (u, 2) =0
lej mipj
2y
X U Fu
_ i1 (LY 'pm ]
o = — (3) Mo (L 2N G, £,)
1 X X
0 + =O \
M, *u
b(EI &) =
u_+u HU_+u
3 Ly'p "m _ 1. "p 'm
— [1 (3) 200+ w) (3 Ny, 2y)
b b ,
2 1y ¥ptHpy 9
* n-%, (7PN (uy e B Mgy, )




Table 3.6b

SIFT INPUT PARAMETERS *

Case la: L =32 = (lp, zb) uo= (up, ub)

1 uw= (1, 0)

(UI &)=
PP 0 otherwise
1 u= (0, 1)

0 otherwise
(p, 2) = 0 all x, y

kp(t) = Ap kb(t) = X

Cases 1lb, 2 (two independent subsystems) :

L=L- L=ty
b (u, 2) = ‘/g b by (n, 2) '/g' y
(s 2) =0 " a,. (u, 2)

Ap(t) = Aops :Ab(t) = AOb

s = 1 + r(l«ptr) (r = 0 for case 1b)

* See "List of Symbols" for verbal definitions.
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Table 3 .6b (Cont.)

Case 1lc

Same as case la except:

[ 1 =

- v = (1, 0)

bpb(y-’ L) = I 0 otherwise
— 1 u=(0, l)

bbp(E' L) = [0 otherwise
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creates two critical situations: a bpj—critical fault and &a
pipj—critical fault. Although such an event does not
necessarily cause the system to fail, it was elected to treat
all such events as fatal and hence to reflect their probabil-
ities in the dx<E' %) parameters. Since these are clearly
events of relatively low probability, the added complexity
needed to account for the possibility that the system could
recover from them was not felt to be justified. Treating all
“such events as system failures, of course, again overbounds
the true failure probability. The parameters dpi(H' %) and
dp; (W, %) thus account for the event just described. The
parameter db(E’ L) is the probability either that at least
two buses are used by memories or processors containing
latent faults or that one bus and at least one memory or
processor contains a latent fault and that, when a new bus
fault occurs, it affects an active bus. Again both events

produce a pair of critical fault situations.

The SIFT parameters shown in Table 3.6 are largely
self-explanatory. The first three cases (cases la, 1lb and lc)
differ cnly in the nature of the coupling between the two
stages (cf. paragraph' 3.2). The fourth case allows transients
to occur at a rate r times the permanent fault rate. Since
the probability of a "leaky" transient is 1 - Piy and since
leaky transients do not produce coverage failures, the
probability that an arbitrary fault produces a critical fault
situation is reduced by the probability 1/[1 + r(l—pti)] that

the fault is a leaky transient.

In addition to the parameters specified in Table '3 .6, the
CARE3 model must have access to the functions, defined in

Table 2.5, used to characterize coverage. Since COVRGE has
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not yet been implemented, these functions were generated by
hand. These functions are easily defined in the permanent

fault case:

e—§xi(t—r) FTMP

p,(t|T, x;,) = {1 0<t-t<T
1 T 0 SIFT
0 otherwise .

pz(tlr, x;) =0

il
o

p(t~|'r, Xil yj)

atelt, x;, vy = 8(¢)

-with sxi the FTMP fault detection rate, TO the SIFT detection

delay, and §(t) the Dirac delta function.

In the FIMP intermittent case, the first two of these
functions are defined by a three-state Markov model and the
last two by a five state Markov model, as shown in Figure 3.5.
If pij(tlr) represents the probability of being in state i at
time t given that the system described by the three-state
Markov model was in state j at time 1, and if Pij(tlr) is

similarly defined for the five-state model, then

pl(t"rr X) pll(tlT)

p2(tITI x)_ (tIT)

Po1

]

p(t]t, x, y) p;l(tlr) + Py (ElT) + Py (t]D)

altlt, x, ) = Blp, (t]1) + py, (£]D))]
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a) Single-fault Markov model

4 DETECTED 5
BX Y
a a
BOTH
x BENIGN
BENIGH \\\\\‘—,//3 y ACTIVE
B B
v “ B

b) Double-fault Markov mode

Figure 3,5 INTERMITTENT FAULT MODEL
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The functions pij(tlr) and Pij(tlr) are readily determined
either by hand (the first function involves solving a
quadratic equation, the second a cubic) or by using one of

the techniques described in Appendix L.
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3.4 PROGRAMMING APPROACHES FOR SYSTEM UNRELIABILITY MODEL

3.4.1 INTRODUCTION

The following paragraphs describe the techniques used
to program the reliability model RM4 postulated in paragraph
3.1.4. For illustrative purposes, the parameters and

dimensions discussed are those used for the FTMP model. As

will become apparent, however, these parameters and dimensions

can be readily modified as required to accommodate other

situations.

3.4.2 COMPUTATION OF Q,(t) RECURSIVELY

In order to compute the probabilities Qz(t) recursively
where & -+ (i, i, k)+, an array must be defined for the Q2<t)
probabilities so that Qi i

- ’
Qi, 5, k_l(t) can be accessed when computing Qi,

1, 5, kB Q) 5.1 y(t) and

L ().

S

If NP = no. of processors = 15; NPS = no. of processor
survivors =2
NM = no. of memories = 9; NMS = no. of memory survivors
NB = no. of buses = 5; NBS = no. of bus survivors =
ITMAX = maximum no. of time steps = 50
QLT = array representing Qg(t), then

the array QLT must be dimensioned

tFor purposes of this example, & is a three-dimensional vec-
tor, & = (i, j, k), with i denoting the numher of failed
processors, j the number of failed memory units and k the
number of failed buses.
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(NP - NPS + 1, NM -~ NMS + 1, NB - NBS + 1, ITMAX)=(14, 8, 4,
51), which includes 0 processor failures, 0 memory failures,

0 bus failures and time 0.

The immediate requirement then becomes the definition of
a loop structure within the program for computing Qz(t) so that
all required probabilities have been previously computed and
stored in the array. For example, when computing Qg(t) for
.& -»> (3’ 2' l)r Q2’ 2, l(t)l Q3’ l, l<t) and Q3, 2' O(t) must

have been previously computed and stored in the QLT array.

Let II, JJ, KK, IT be the indices into the QLT array

representing Qi k(t). The basic structure in FORTRAN is

v J
then as shown on the following page.
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QO 0O 0O Q

Basic For

tran Algorithm

NPP1l = NP + 1

NMPl = NM + 1

NBP1 = NB + 1

DO 100 KK = 1, NBP1

DO 100 JJ = 1, NMP1

DO 100 II = 1, NPP1

I =1IiIM]l = ITI - 1

J =JIML = JJ - 1

K = KKML = KK - 1

DO 75 IT = 1, ITMAX

Compute Q (II, JJ, KK, IT) using
Q (IIM1, JJ, KK, IT), O (II, JIJM1, KK, IT),
Q (II, JJ, KKMl, IT) where computing subroutines

use- I, J and K

75 Continue

100 Continue

This structure would compute the state probabilities in

the sequence as shown on the following page.
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Indices Example

QLT, L (II, JJ, KK) Required States

1 1 1
2 1 1
3 1 1

NPP1 1 1
1 2 1
2 2 1
3 2 1 ‘\\\\737 2, 1), (3, 1, 1), (3, 2, 0)*

NPP1 NMP1 1
1 1 2
2 1 2
3 1 2

NPP1 NMP1 NBP1

* A state vector with an index of 0 is defined as having 0
probability because a 0 index revresents a negative component

in the state vector (i, j, k), and hence designates a non-
existent state.
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Clearly all state probabilities will have been previously

defined and stored in QLT array so that they are available when

required.

Several problems occur if QLT is dimensioned and computed

in this manner:

1. CDC Fortran Extended allows a maximum of 3 array

declarators. Therefore the statement:
DIMENSION OLT (14, 8, 4, 51)
is an illegal declaration and will not compile.

2. The amount of memory required for such an array

would be enormous:
14 x 8 x 4 x 51 words, i.e., 22,848 words

3. Extending the model to include, for example, I/0
modules would cause a problem because this would
require an added dimension to the array (if
such a dimension were legal). This would also

increase the size of the QLT array even further.

4. Unnecessary computation of state probabilities
would result--namely those which are so small
that they have no affect upon the resultant
probability. For example, the probability
associated with atate (13, 6, 3), i.e., 13
failed processors, 6 failed memory modules and 3
failed buses by time t may be too small to effect
the system probability as a whole.

The solution to problem 1 is to create a mapping of
(i,-3, k)—=n which will reduce the QLT array to 2 dimensions:

QLT(NMAX, IT). This will also solve problem 3; extending the
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model from (i, j, k)—=n to (i, j, k, m)—=n would be a
relatively minor programming enhancement. The only part of the
program to change would be the mapping routine--plus model
changes due to the addition of vector component m. This
dimension solution, however, has no effect upon the size of

the QLT array. The dimension statement now becomes

DIMENSION QLT (448, 51) and would require the same amount of

storage as previously.

The solution to problems 2 and 4 would be to modify the

basic loop structure defined above so that:

a. The state probabilities are computed in a
flow from largest to smallest; this
enables the program to halt execution at a
point where the probabilities no longer affect
the result;

b. Only those probabilities actually needed to
calculate the current state probabilityv have
to be stored in array QLT at any one time,

thus reducing its size.

The following chart lists the computational flow required
versus the basic computational flow. Each set consists of all
permutations of vectors where the largest component of any
vector is the set number. Vectors with components all less
than the current set number were defined in previous sets; the

probabilities associated with these vectors are not recomputed.
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BASIC COMPUTATIONAL

FLOW
II JJ KK
1 1 1
2 1 1
3 1 1
4 1 1
g 1 1
6 1 1
7 1 1
8 1 1
2 1 1
p 1 1
11 1 1
12 1 1
12 1 1
14 1 1
A 2 1
2 2 1
3 2 1
24 2 1
P 8 1
: 1 2
2 1 2
P 8 2
4 8 3
14 8 4

COMPUTATIONAL FLOW OV STATE VECTORS

CHART 1

MODIFIED COMPUTATIONAL
FLOW WITH SETS

EXAMPLE REQUIRED STATES

Set 1
Set 2

Set 3

Set 4

Set 5

Set 6

11

1
1
2
1
2
1
2
1
2
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3

. Lod

[SN

o
I

W W W N DN WWwWw NN NN DN DD

v =W

.

Ll
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KK II-1 JJ KK, II JJ-1 KK, II JJ KK-1l

1*
(L, 1, 1), (2, 0, 1)**, (2, 1, 0)**

1, 2, 2, (2,1, 2), (2,72, D

/

N DN

1*

2%
2%
» 2), (3, 0, 2)**, (3, 1, 1)
2%
2%
2%




COMPUTATIONAL FLOW OF STATE VECTORS

CHART 1

MODI¥IED COMPUTATIONAL
FLOW WITH SETS

II JJ KK

Set 7 1*
1*

1*

1*
1*
1*
1

[ N S I

~1

e T = R S R S

Set 14 1 1 1*

14 8 4

*These state probabilities have been previouslv comvuted and will not be recomputed.

They are only dummy place holders used to show the alceorithm more clearly.

**States with 0 indices do not exist.
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The chart shows that only two sets need be in memory at
any one time--the set being computed and its predecessor set.
This occurs because the required states have either been com-
puted in the predecessor set or previously in the set being
computed. Also, with this method, only the state probabilities
not computed in prior sets are stored in array QLT. Therefore,

the number of unicue states in each set for the case where

NP = 15, NPS = 2
NM = 9, NMS = 2
NB = 5, NBS = 2

is shown in the following chart:

Set No. of Unigque States
1 1
2 7
3 19
4 37
5 36
6 44
7 52 }____largest two con-
8 60 secutive sets
9 32
10 32
11 32
12 32
13 32
14 32
CHART 2
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Set 7 and 8 are the largest two consecutive sets~~-having

52 and 60 states, respectively. Therefore, OLT arrav need

only be dimensioned (112, 51), which is a total of 5712 words.

Using this method, the amount of storage reauired for OLT

array was decreased by 17,136 words.

The Fortran code required to compute the QLT array in

sets, with only two sets of probabilities in memory at anvy

one time follows:

C

FORTRAN ALGORITHM TO COMPUTE SETS OF STATES

Compute QLT (1, IT) for 2—(0, 0, 0)directly for all time

steps.

Initialize NSET(ISET) for set 1 to l--only one state
vector exists in set 1: (0, 0, 0).

NSET(1) = 1

Compute maximum number of failures permitted including 0
NPF = NP - NPS + 1
NMF = NM - NMS + 1
NBF

]

NB - NBS + 1

Compute maximum indicies.

NPP1 = NP + 1
NMP1 = NM + 1
NBPl = NB + 1

Determine maximum set to compute.
MAX = MAXO0 (NPF, NMF, NBF)
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Compute sets of state vector probabilities.
DO 200 ISET = 2, MAX
ISETB = ISET

ISETM = ISET
ISETP = ISET
IF (ISETB.GT.NBP1) ISETB = NBP1l
IF (ISETM.GT.NMP1l) ISETM = NMP1
IF (ISETP.GT.NPPl) ISETP = NPP1l

Initialize QLT index N to the number of vectors in the
previous set plus one.
NUMPREV NSET (ISET-1)

N NUMPREV + 1

1l

Il

IF (ISET.EQ.2) GO TO 60

Pop vector probabilities off QLT array which were defined
two sets ago by moving the predecessor set up in the array.
NPOP = NSET (ISET-2)

DO 50 M = 1, NUMPREV

MM = NPOP + M

Transfer QLT(MM, IT) for all time steps.

DO 50 IT = 1, ITMAX

QLT(M, IT) = OLT(MM, IT)

50 CONTINUE

60 Continue

Initialize unique state vector's counter to 0.
NSTQT =
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Begin main three loops which define the state vectors
DO 100 KK ISETB
DO 100 JJ ISTEM
DO 100 II = 1, ISETP

I n
o

Do not compute any previously computed state vector

probabilities.

IF (II.LT.ISET.AND.JJ.LT.ISET.AND.KK.LT.ISET) GO TO 100

I = II-1
J = JJ-1
K = KK-1

Compute QLT(N, IT) for all time steps.
DO 75 IT=1, ITMAX

75 CONTINUE

Increase QLT index N and unique vector counter NSTOT by

Oone.
N=N«+1
NSTOT = NSTOT + 1

100 CONTINUE

Store total number of unique vectors for the current set
ISET.

NSET(ISET) = NSTOT
200 CONTINUE
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This Fortran structure is the basic programming core for

the various CARE III models programmed thus far.

3.4.3 PROGRAM DIFFERENCES PER MODEL

The subroutine which computes the unique mathematical
calculations for each model is subroutine SUMMAT. This
subroutine and its associated functions vary for each model.
They represent the numerator in the integfand of the inte-

grated form of the Kolmogorov equation:

SUMMAT

e

S (e T o
Q, (t) = e,{ Ao (1) 4o [Lj_,o (1) + Pj(r)cjz(rflkj (1)

T
0 e:{ Ay (n)dn
The main concern in programming subroutine SUMMAT for
each model is to eliminate redundant computations. Two types

of function computations are required: functions which are
time dependent and functions which are vector dependent; i.e.,
dependent upon (i, j, k). The time dependent functions must
be removed from subroutine SUMMAT and computed in subroutine
TDZPEND. TDEPEND computes all time dependent functions once
and stores them in arrays. These arrays can later be accessed
from subroutine SUMMAT each time the vector changes. This
approach keeps execution time at a minimum because it takes
much less time to retrieve a function value from an array

than it does to recompute the function each time the vector

(i, Jj, k) changes. SUMMAT then computes the vector dependent

portions of the model while accessing the time dependent arrays.
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3.4.4 NUMERICAL INTEGRATION TECHNIQUES

The Trapezoidal rule

. A
f(x)dx = —% [f(xo) + f(Xl)]

X0

and Simpson's 1/3 rule

2
Ax
~/} f(x)dx = 3 [f(xo) + 4f(xl) + f(x2)]

X0

are the numerical integration technicques used within the

program to compute the integral

t 1
[ZJ: Oj(r) + Pj(T)Cj.Q,(T)J Ajz(T)

dt
T
0 e{ Ag (M)dn

of the Kolmogorov equation.

The Trapezoidal rule is used to compute the integral
from time 0 to time STEP where STEP is the step size or Ax.
Simpson's 1/3 rule is used to compute the remaining intervals
as shown in the following Figure 3.6. (The subroutines associated

with these numerical technicues are called TRAPINT and SIMPINT.)
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-INTEGRATION METHODS

Figure 3.6
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3.4.5 MACRO FLOW CHART OF SYSTEM UNRELIABILITY MODEL

The following macro flow chart shows the organization of
the entire basic model which computes the system unreliability.
The loop structure computing the vectors in sets is shown in
relationship to the subroutines TDEPEND, SUMMAT, TRAPINT and
SIMPINT.
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PAGE 1 OF 2

MACRO FLOW CHART

READ
CONFIGURA-
TION
INPUTS

/ TDEPEND '\

N ¢

COMPUTE
TIME DEPEND- LOOP TO
ENT PORTIONS 4 COMPUTE
OF MODEL ’,,»" QLT IN SETS
~
~
e
//
ISET = 2 | 1oer [ COMPUTE
— < |——s{ REMAINING
ISET +1 | MAX Prs
PRINT SUM
POP SET OF QLT AND
ISET-2 P*'s FOR SYSTEM
OFF QLT UNRELIABILITY
ARRAY
KK = 1
KK < N
Kk = kxe1] DOET { ;
|
Jd =1 LOOPS TO
JI< S| compure
] 1ser = ;) STATE VECTOR
JJ = J9+1 s
|
7 =1
- KK < )
11 = 1141] F (:;
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LOOP TO
COMPUTE
P TIME STEPS
- 1 7O ITSTPS
-~
-~
-~
-~
IT = 1 2
IT< P = p*-
—> IT = ITSTPS "> QLT(N,IT)
IT+1
/ SUMMAT _ \ PRINT
COMPUTE PROBABILITIES
1! FOR VECTOR
S

I
COMPUTE ;

p*
(perfect
coverage)

/  TRAPINT '\

COMPUTE QLT
(N,2) USING
TRAPEZOIDAL
RULE

SIMPINT

COMPUTE QLT
(N,IT) USING
SIMPSCN'S
1/3 RULE

QLT(N,IT)=

QLT(N,IT)
Ayt

e

CARE 3 MACRO
PAGE 2 OF 2 FLOW CHART
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4.0 CARE III PROGRAM STRUCTURE

An implementation of a Modularized Direct Access
Information System is the proposed structure for the CARE ITT
system. The system will consist of three main modules:

a. Batch or interactive input processor:
CAREINB or CGAREINI

b. Coverage model: COVRGE

c. Reliability model: CARE3

The following flow diagrams depict the proposed design
of the CARE III system.

Two text input files are required: one to define the
computer configuration and one to aid in the calculation of
the coverage model. If coverage is preset per stage in the
configuration file INFILE, the coverage input file CVFILE

need not be defined by the user.

The Direct Access Information System (DAIS) files generated
by CARE III are designed to be random, word addressable mass
storage files. Each record within these files can be
accessed with a master index or subindex(es). ‘The DAIS
files will contain the processed user input required by
programs COVRGE and CARE3. They will be made permanent disk
files by CARE III so that they can be modified if desired
without having to reinput the entire data set. Thus a second
run can use existing files CAREDF and CARECV, after minor
modifications have been made to them, by running program

CAREIN using only an updated portion of the original input.

This capability is especially convenient if the user runs the

interactive CAREIN program.
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The DAIS files are to be created and accessed through
the use of FORTRAN Mass Storage Input/Output (MSIO)
subroutines OPENMS, WRITMS, READMS and CLOSMS. Record Manager
word addressable file organization is used to implement these

files.

In the following flow diagrams the symbol

performs

denotes a separate routine for which a separate flow diagram
exists in the pages following. For a more detailed look at
the proposed system, see the CARE III Computer Program

Requirements Document.
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