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_ 1.0 INTRODUCTION

The CARE III (C_omputer-AidedR_eliabilityEstimation,

version three) computer program is being developed as a

general-purpose reliability estimation tool for fault-tolerant

avionics systems. The first CARE Program, developed at the

Jet Propulsion Laboratory in 1971, provided an aid for esti-

mating the reliability of systems consisting of a combination

of any of several standard configurations (e.g. standby-

replacement configurations, triple-modular redundant configu-

rations, etc.) Non-unity dormancy factors were allowed as

well as user-supplied non-unity coverage probabilities.

_ CARE II was subsequently developed by Raytheon, under

contract to the NASA Langley Research Center, in 1974. It,

_ like the original CARE, was based on a combinatorial reli-

ability model. The model in this case, however, was consider-

,: ably more versatile.

A simple mathematical expression was used to evaluate

the reliability of any redundant configuration over any

interval during which the failure rates and coverage parameters

"" remained unaffected by configuration changes. In addition,

provision was made for convolving such expressions in order to

evaluate the reliability of a "dual-mode" system; i.e., a

system in which a single coverage-parameter/failure-rate con-

figuration change was allowed during the interval of interest.

A coverage model was also developed to determine the various

relevant coverage coefficients as a function of the available

hardware and software fault detector characteristics (detec-

-- tion delay, scheduling interval, etc.), and the subsequent

isolation and recovery delay statistics.

_ 1



CARE II suffers from two limitations that make it

difficult to use as a general-purpose reliability estimation

tool for avionics systems. The most serious of these limi-

tations is its two-mode restriction. In many avionics system

configurations, each new failure precipitates a mode change

(i.e., a failure rate or coverage coefficient change). Con-

sequently, many operating modes are possible. While CARE II --

could be modified to allow this possibility, the resulting

program would be cumbersome and the computer run-time excessive.

A second limitation in CARE II is the lack of a mechanism

for specifying multiple success criteria; i.e., for allowing

the user to indicate that there are several operational system

configurations, as is almost always the case in avionics sys-

tems. Although this latter limitation could be easily remedied

within the CARE II structure, the former could not. According-

ly, it was decided to develop a more general reliability esti-

mation computer program specifically designed to overcome these

limitations. The present report summarizes the accomplishments

made during the first phase of this two-phase effort.

Three tasks were emphasized during phase one: requirements

assessment; definition of program structure; development of

the reliability model. The remaining work needed to complete

the objectives of the CARE III program will be accomplished

during phase two; viz: adaptation of the CARE II coverage model

to satisfy CARE III requirements; development of a user inter-

face for system configuration and success criteria specifica-

tion; integration of the various program modules into a unified

program structure.



-- The structure postulated for the CARE III program is

described in section 4. In brief, the program will consist

-- of three independent modules. CAREIN interprets user inputs

defining the system structure, the system success criteria,

-- the various fault models and coverage parameters, and generates

files to be used by COVRGE and CARE3. COVRGE then translates

-- these specifications into the coverage parameters associated

with each of the various system stages and operating modes.

The third program module, CARE3, operates on files generated

by both CAREIN and COVRGE to produce system reliability

-- estimates in accordance with the user-defined success criteria.

The major effort during phase one was devoted to developing

and programming the reliability model to be implemented in

CARE3. The results of'this effort are described in detail in

section 3. The selected mathematical model is based on

Kolmogorov's forward equations. In a parallel effort, a

detailed examination was made into techniques for obtaining

solutions to multi-state Markov models. The initial impetus

for this work was to develop an alternative model for CARE3

should the Ko!mogcrov method run into computational difficul-

ties. The latter method, however, proved to be highly effec-

tive for the class of structures of concern here, overcoming

most of the limitations (e.g., extremely large number of

states, time invarient transition rates) associated with time-

homogeneous Markov models. Nevertheless, the Markov investi-

gation was continued when it became apparent that these tech-

niques would be useful in determining coverage parameters

associated with intermittent faults. (An example of this is

presented in paragraph 3.3). The results of this investiga-

tion are described in an appendix to Volume II of this report.
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The coverage model to be implemented in COVRGE will be an

extension of that implemented in CARE II (Ref. i). This

coverage model has been modified to produce the (generally

time-varying) recovery rates, as required by CARE III,

rather than the recovery probabilities used in CARE II. The

model has not yet been integrated into CARE III, however,

nor has it been combined with intermittent fault models.

(The reliability model tests described in section 3 used

simplified coverage models involving either constant recovery

rates or fixed recovery delays.) Completion of the coverage

model and its integration into the CARE III structure is one

of the first tasks to be completed during phase 2.

The major task remaining to be accomplished during phase

2 is the development of CAREIN. The intent here is to provide

the user maximum flexibility in specifying the system structure,

fault models, coverage parameters, success criteria, etc., in

the simplest possible format. A general approach to this tasi[

is outlined in section 4 and detailed in Volume II of'this
report.



2.0 CARE III REQUIREMENTS ASSESSMENT

Four fault-tolerant systems were examined in an effort to

characterize the class of structures CARE III will be expected

to model and to estimate the kind and range of parameters

needed to describe these structures. The four systems examined

were: Boeing Aircraft Corporation's ARCS (Airborne Advanced

-- Reconfigurable Computer System, Ref. 2), SIFT (Software Imple-

mented Fault Tolerance Computer, Ref. 3) under development at

-- SRI, International, FTMP (Fault-Tolerant Multi-Processor, Ref.

4) under deve!opment at Charles Stark Draper Laboratory and

FTSC (Fault-Tolerant Spacecraft Computer, Ref. 5) under devel-

opment at Raytheon. A study was made both of the structures

-- of these systems and of the techniques used to estimate their

reliability. The results of this study are briefly summarized

-- in paragraph 2 l. Paragraph 2.2 then lists the requirements

that were imposed on the CARE III reliability and coverage

•-- models as a result of this study and due to other considerations.

2.i SUMMARY OF FINDINGS

-- 2.1.1 SIFT

The SIFT computer system consists of a number of identical

processors (containing both memory and processing elements)

interconnected by several interprocessor buses.* The Processors

are dynamically assigned to various groups, with each group

typically comprised of three processors, but in some cases as

manv as five. The looselv svnchronized Drocessors in each

group perform the same operations on the same data and transmit

*The bus structure was changed subsequent to this investigation;
the change, however, does not modify the conclusions reached

here concerning CARE III requirements.
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the results of these operations to each of the other processors

in their group. Each processor evaluates its own health and

that of the other processors in its group by comparing these

results. Faulty processors and buses are identified by

analyzing discrepancies in these results; reconfiguration takes

place whenever a majority of processors in a group concludes

that one of its elements is defective.

In CARE II terminology (Ref. i), SIFT is comprised of two

stages:* a processor stage consisting of m processors, and a

bus stage comprising n buses. The system has failed by time t

if fewer than mI processors or fewer than nI buses are still

functioning, or if a coverage failure has occurred prior to
that time.

The reliability of SIFT was estimated in Ref. 3 by using

a continuous-time Markov model with time-independent transi-

tion parameters. Coverage was taken into account be defining

a deterministic latency period TO between the occurrency of a

failure and its detection. If a second processor or bus fails

during this period, a system failure is declared. Since all

processors and buses are presumably always powered, the dor-

mancy factor is assumed to be unity.

Note that the probability of a coverage failure is a

function of the number of processors (buses) functioning at

the time of a processor (bus) failure. That is, the probability

of a second processor or bus failure, and hence a coverage

failure during the _0-second latency period depends upon the

number of processors or buses functioning at that time. Since

*The term "stage" refers to an ensemble of identical, inter-
changeable units.



the possibility is (not unreasonably) ignored that two bus

(processor) failures occur between the time that a processor

• (bus) failure occurs and the time that the failure is detected,

the coverage parameters associated with a processor (bus)

failure are independent of the number of buses (processors) in

operation at the time of the failure. Thus, the system can be
r_

modeled as a two-stage configuration, a processor stage exhib-

iting m-i modes (corresponding to the different numbers of

processors that could be functioning at the time of a new

failure), and an (n-l)-mode bus stage. It is important to

emphasize that there is no coupling between the two stages; a

mode change in the processor stage does not result in a bus-

stage mode change, and vice-versa. This simplifies the

reliability model since each stage can be treated independently.

Transient faults in the SIFT model are, like permanent

faults, of two types: processor faults and bus faults, both

having time-independent rates of occurrence. Any transient

fault can have one of two outcomes: with probability Ptr the

system recovers completely; with probability l-Ptr the system

loses the aff!icted bus or processor. The following events

are not allowed: a transient fault occurring during a latent

permanent fault; a permanent fault occurring during a still

active transient; a transient fault occurring while a previous

transient is still active.

2.1.2 FTMP

The FTMP is comprised of a set of processors, a set of

memories, and a set of buses over which processors and mem-

ories can communicate. The processors, memories, and buses

-- are each grouped into "triads." A processor triad consists

7



of three tightly coupled processors all committed to the same

task; a memory triad consists of three memory modules all con-

taining the same data; and a bus triad consists of three buses

with each bus used for transmission purposes by exactly one

of the three units comprising each processor or memory triad.

The system is thus partitioned, at any given time, into a

number of processor triads and a number of memory triads, with

all processor-memory communication taking place over a common

bus triad. Each processor-bus and each memory-bus interface

(bus guardian unit) contains a voter that produces as an out-

put the majority-vote of the three inputs received over the bus

triad. Faulty processors, memories, or buses are identified

by diagnosing the pattern of discrepancies observed at these

voters.

Four different reliability models for the FTMP are

described in Ref. 4. The first involves a 146-state discrete-

time Markov model with time-invarient transition parametera.

The states are defined by the number of detected and undetected

faults in the processor modules, the memory modules, the bus

system and the bus guardian units. The Markov model was kept

to 145 states by identifying all system states involvina more

than two undetected faults or more than three total faults with

the failed state. Other approximations were also made in order

to obtain tractable transition parameters. Even so, the com-

puter time needed to obtain numerical results using this model

were such that reliabilities were determined for only the first

second of FTMP operation.

To extend these results, a simplified ll-state Markov

model was obtained by treating modules having detected failures



-- as though they were again operational and by assuming any

combination of three or more faults cause a system failure.

Numerical reliability results were then obtained for the

first 40 seconds of FTMP operation using this model.

The reliability of the FTMP for longer durations was

estimated using a combinatorial model to determine the

probability that at least P0 of P processors, M0 of M mem-

ories, and B0 of B buses are operating at time t (assuming

Ferfect coverage) and by extrapolating the coverage failure

Frobabilities obtained using the ll-state Markov model.

In a later investigation, the ll-state Markov model was

modified to determine the effect of transient faults on the

FTMP for short (i00 minute) missions. The permanent failure

states in the origina! model were replaced by intermittent

failure states in which failures healed (temporarily) at a

constant rate _ and recurred at a constant rate 6. (Once a

failure has occurred, it remains in the intermittent mode

_ either until it is detected or until it results in a system

failure.)

-- In a!l _f these models, coverage was defined in terms

of the probability that a second fault of a given type

- occurred during the exponentially distributed latency period

of the fault in question.

In CARE II terminology, then, the FTMP mode! consists of

three stages: processor, memory and bus. There are as many

operating modes as there are modules, since the recovery

Frobability is a function of the number of previous failures

in each of the three stages. Thus, the three stages are

"coupled" in that the coverage associated with a fault in

9



stage i depends, in part, on the absence of faults in stage

j _ i during the latency period.

2.1.3 ARCS

The ARCS system involves a computer stage (consisting of

three or four identical computers), several sensor stages, and

several servo (actuator) stages. The non-internally-redundant

computers accept information from their associated sensors,

interchange this information over cross-channel buses, and

generate signals to their associated servo systems. The out-

puts of the (generally three) servos comprising a given stage

are voted on by a mechanical voting mechanism assumed to have

complete first-failure fault tolerance.

The computers use a combination of hardware and software

techniques to monitor their own performance and that of their

associate computers, and to identify defective sensors and

servos. Reconfigurations (following which, for example, a

servo is deactivated, or the outputs of some sensor or computer

are ignored) are effected through information passed back and

forth among the ARCS computers.

The ARCS system was modeled in Ref. 2 by breaking

it up into stochastically independent stages and then repre- --

senting each stage with a continuous-time, constant-parameter

Markov model of up to ten states. The coverages used in de-

riving the Markov transition parameters were estimated, in

some cases, by testing actual devices using a randomly selected

subset of possible faults; in other cases, coverage probabili-

ties were simply postulated Since no data were available.



-- The ARCS reliability model took into account the

peripheral devices (sensors and servos) as well as the central

computer. The ARCS architecture is such that a failure in a

redundant module in one of its stages may cause the function

-- of a module in one or more of its other stages to be lost as

well. Accordingly, provision was made whereby the user could

-- specify a "dependency" relationship among the various stages

of the ARCS configuration; i.e., the user could in effect

specify more than one definition of an operational system

configuration.

Transient and intermittent faults were bcth taken into

account in that they were allowed to influence the Markov

transition parameters. Transients affected these parameters

to the extent that they were "leaky"; i.e., the permanent fault

hazard rate was increased by a term reflecting the rate of

occurrence of transients of duration exceeding some test

interval T. Since the Markov model implemented in the ARCS

reliability evaluation program allowed unidirectional transi-

tions only, the effect of intermittent faults (causing

transitions back and forth bet_een two states) was approximated

by calculating an "effective" unidirectional transition

parameter from one of these states to the other.

2.1.4 FTSC

The FTSC (Ref. 5) is an internally redundant central

_ processor being developed for the U.S. Air Force. It is

partitioned into nine types of elements (central processing

__ unit, memory module, direct memory access unit, serial bus

interface unit, power module, timing module, configuration

control unit, circumvention unit, and hardened timer)

-- ii



interconnected by seven different bus networks (address bus,

data bus, control bus, power bus, timing bus, interrupt bus,

status bus). Each of these elements and buses is provided

with redundant spares, in various configurations depending

upon its complexity. (One element, the memory module, is

itself internally redundant as well.)

The current FTSC reliability model is a simplified, one-

mode, sixteen-stage version of CARE II. In some cases, non-

unity dormancy factors were used to account for the lower

failure rate of inactive and unpowered modules.

2.2 CARE III REQUIREMENTS

The emphasis in the previous section was on the techniques

used to estimate the reliabilities of the systems in question.

At a minimum, CARE III must provide a unified model for all

four of those systems and hence reproduce, under the appropriate

set of conditions, the results obtained using each of these

models. This, of course, is a necessary but not a sufficient

condition to place on CARE III. To be most useful, it must be

flexible enough to overcome any limitations imposed by the

above models (e.g., restrictive coverage models, limited fault

models, etc.) and at the same time sufficiently general to

allow other, as yet unspecified, fault-tolerant systems to be

modeled without introducing artificial restrictions. The

following paragraphs outline the requirements imposed on

CARE III and explain the rationale for each of these require-

ments in terms of the above objectives.

i. Capability of modeling up to at least 40 stages.

Rationale: This is specified in the CARE III Statement of

Work. Although none of the systems considered in paragraph 2.1

require as many as 40 stages, it is not difficult to conceive

of systems that do. This requirement will be satisfied in

CARE III by providing a means for concatenating independent

12



-- runs. If the coupling between stages is limited,

it will in fact be possible to model an arbitrarily large

number of stages by making repeated runs.

2. Multiple operating modes for each set of coupled

stages.

Rationale: The operating mode of a system or subsystem

is, so far as its reliability model is concerned, a function

of its structure (number of units of various types that have

to be operational for the system to function as specified) and

its coverage parameters. If the system's structure or coverage

coefficients change stochastically during its operating life-

time (e.g., if they depend upon the number of faults already

-- incurred) such changes must be reflected in its reliability

model. If a mode change in one stage precipitates a mode change

in some other stage, the two stages are said to be coupled.

(Deterministic structural or coverage parameter changes must,

of course, also be reflected in the reliability model. Such

changes are relatively easily accommodated, however, by

introducing time-dependent coverage parameters and by concatenat-

ing reliability models representing the disjoint time intervals

during which the system structure is invarient. Thus, such

mode changes impose no new constraints provided only that the

coverage parameters are allowed to be time-dependent.)

-- CARE II allowed only one mode change (two operating modes);

the exhaustion of the spares available at any one stage could

_ cause the system to change from, say, a dual-redundant to a

single-string configuration, thereby changing both the system

_ structure and the coverage coefficients associated with each

stage. Two of the systems discussed in paragraph 2.1, however,

_ 13



(SIFT and ARCS) exhibited mode changes after each new fault.

Thus, the two-mode limitation of CARE II is not acceptable for

CARE III.

3. Separate coverage model similar to that in CARE II

but capable of handling latent and intermittent faults as well

as permanent faults.

Rationale: The major advantage in keeping the reliability

and coverage models distinct (as they were in CARE II) is

that it allows the user to concentrate on each of these two

areas relatively independently and hence simplifies the task

of defining the system model. In addition, there are some

significant practical advantages (cf. Section 4) in separating

the reliability model, driven by infrequently occurring

failures, from the coverage model reflecting the much more

rapid detection, isolation and recovery events.

The need to handle both intermittent and latent faults in

the coverage model is evident from the discussion in paragraph
2.1.

4. Multiple success criteria

Rationale: As ARCS clearly demonstrates, some redundant

systems may be considered operational under any one of a number

of possible conditions. It is therefore necessary for the user

to be able to define each of those conditions and for CARE III

to calculate the probability that at least one of them occurs.

5. n-point failure mechanisms ("category 3" faults)

Rationale: Most fault-tolerant systems exhibit "n-point-

failure" mechanisms; i.e., sets of n failures (n> i) that can

disable the system eventhough spare hardware is available.

If two BGUs fai! in the enable mode in the FTMP_ for example,

14



_ the system is potentially inoperative even though spare opera-

tional modules are available. CARE II modeled such failure

_ mechanisms only for n = i. Although the probability of such

failures is generally a rapidly decreasing function of n, it

_ cannot a priori be considered negligible for all n > i. The

concept of a single-point failure must therefore be generalized

to take this into account.

6. Time-dependent hazard rates

-- Rationale: All of the reliability models considered in

paragraph 2.1 assumed constant hazard rates. There are at

-- least two reasons why it would be desirable to relax this

restriction: (i) Recent data indicate that at least in some

-- environments (space) the hazard rates are far from constant.

(2) The hazard rates associated with modules having internal

-- redundancy are not constant even if the individual component

hazard ratesare.

7. Transient faults

Rationale: Most faults are modeled either as permanent

or intermittent, the latter actually being permanent faults

that manifest themselves intermittently. Some faults may

well be transient in nature, however; e.g., faults due to

noise or those due to improperly validated software. In suoh

cases, no hardware damage has occurred and, as soon as the

cause of the fault disappears, the system can, in principle,

function as before.

_ 8. Non-unity dormancy factors

Rationale: Of the four models discussed in paragraph

2.1, only the FTSC model allowed non-unity dormancy factors.

In some cases, it is reasonable to assume that dormant (e.g.,

_- unpowered or inactive) modules may have lower hazard rates

15
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than active modules. Non-unity dormancy factors will be

defined as follows: Let P(t) be the probability that an

active unit survives until time t and let Pe(t) be the

probability that a dormant unit survives until time t. The

exponent _i is the dormancy factor.

16



3.0 RELIABILITY MODEL DEVELOPMENT

Three basic mathematical approaches were considered

for development of the reliability model: (i) Extension of

the CARE II method. (2) Markov chain method. (3) A

recursion technique based on Kolmogorov's forward differential

equations.

The CARE II approach was rejected because of the large

number of operational modes needed to model some of the fault-

tolerant systems of interest. The coverage probabilities

_ in both the SIFT and the FTMP systems are functions of the

number of units still operating. Thus, each new failure

-- effectively defines a new mode of operation. As demonstrated

in the CARE II Final Report (Ref. i), the complexity of the

_ closed-form analytic expressions used in the CARE II model is a

rapidly growing function of the number of possible operating

modes. Even if transform techniques (e.g. Laplace trans-

forms) are used to eliminate the multiple integrals found in

-. these expressions, the model becomes intractable for systems

involving more than four or five operating modes.

-- Some effort was made to generalize the basic CARE II

equation (relating the probability of operating at time t

with exactly _ known failures to the failure rates, coverage

probabilities, number of active and spare elements, etc.) to

include the case in which the coverage parameters were

allowed to be functions of the number of previous failures

-- in the stage in question. This would have, in principle,

drastically reduced the number of required "system modes"

-- since a mode change would no longer necessarily be needed to

accommodate a change in the number of operating units in a

-- given stage. This effort was abandoned, however, when it

-- 17



became apparent that the cross-coupling between stage

coverages (i.e., the dependence of the coverage in one

stage on conditions in another stage) could also be a signifi-

cant factor in some cases of interest.

The term "Markov chain" in the present context denotes

the following modeling structure: The system state at any

given instant is characterized by all those parameters needed

to determine both the likelihood that it will experience some

fault at time t and the probability that it will successfully

recover from that fault. These various system states are

then interrelated through a set of transition functions repre-

senting the rates at which the system state changes from any

given state to any other state. (Thus, the transition functions

r..(t) and r.. (t) relating states S. and S. define the condi-
13 31 l 3 --
tional probability densities of transitions at time t from S.

1

to S. and from S. to S respectively; cf , Figure 3 1 )3 ] i' " " "

The avionics systems to be modeled by CARE III are to be

extremely reliable; only rare combinations of unlikely events

can be permitted to cause the system to fail. Consequently,

numerous parameters are needed to characterize each state and,

in particular, its vulnerability to subsequent faults. Specifi-

cally, each state is defined not only by the number of faults

in each of its coupled stages, but by the status ef each of

these faults as well. The status of a fault is defined by all

those parameters needed to determine the system's vulnerability

to subsequent faults (e.g., detected; undetected, benign, inter-

mittent fault of a given type; undetected, active, intermittent

fault of a given type; etc.) It should not be surprising that

under these circumstances, the number of states needed to

characterize a system can be extremely large. If a system --

18



From Other States

S.
1

To Other States

Figure'3.1

General Structure of a Markov Model
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consists of n coupled stages, if the ith stage can sustain as

many as m faults and still be operational, and if the status

of each stage-i fault can be any one of £. possibilities the1

total number N of system states that have to be considered is

n £ j-I
N = H i

i=l LJ=O j

This number can be large even for relatively small parameters

£i' mi' and n. (For example, _hen n = 4, and £. = 6, m = 2
1

for all i, N = 614,656.)

Mathematical methods for determining the probability

that a system is in any one of its Markov states at any time t

are well known and particularly efficient solution techniaues

are available when the state transition functions r..(t) are
13

independent of t. With the Markov model just described, iu

is possible (although undesirably restrictive) to treat these

functions as time invarient, so these mathematical methods can,

in fact, be applied. Even so, these methods become computa-

tionally infeasible when the nul_er N of states becomes large,

even when advantage is taken of the fact that the number of

allowed state transitions is much less than the maximum possible

number, N(N-I). Since, as already noted, the number of states

needed to describe systems of interest here can easily exceed

105, another approach was clearly needed. (Nevertheless, a

thorough investigation was made into methods for efficient

computer manipulation of Markov model transition matrices.

This investigation was undertaken for two reasons: (i) to

provide an alternative should difficulties be encountered in

20



-- developing the preferred CARE III approach; (2) to develop

techniques that may be useful in implementing the CARE III

coverage model. The results of this investigation are sum-

marized in Volume II of this report.)

By far the most promising of the reliability modeling

techniques examined for the class of fault-tolerant systems_4

ef concern here was one based on Kolmogorov's forward differ-

ential equations; for convenience, it will be referred to as

_he Kolmogorov Method. Several variations on this method

were postulated and examined in detail in order to determine

the most efficacious procedure for applying it to the problem

at hand. The variations considered are described in the fol-

icwing paragraphs. Before proceeding, however_ it may be

useful to outline the general approach.

As already noted, the major problem with the Markov

Method, as outlined, is the inordinately large number of states

needed to distinguish all the various fault conditions. As

_ also noted, these conditions can be specified in terms of two

sets of parameters: i) the number of faults in each of the

_ ccupled stages; 2) the status of each of these faults. The

essence of the Kolmogorov approach is in the separate treatment

_ of these two sets of parameters. That is, system states are

used to represent only the firstset of parameters; the effect

_ of the second set of parameters is reflected implicitly in the

state transition functions.

-- The separate treatment of the two sets of parameters

needed to model fault occurrence and fault recovery has two

- major advantages: i) It drastically reduces the number of

states needed to represent the system (from the previously

21



defined number N to, in the same notation,

n

NI I(mi•l)i.efromN010656statesinthe
previous example to N1 = 81). 2) It circumvents the serious

computational difficulty presented by a model that combines

in one homogeneous structure the relatively infrequent state

transitions characterized by the first set of parameters

(perhaps one fault/103 hours) and the much more frequent

transitions due to fault status changes (e.g., detection

rates of the order of seconds, intermittent fault transition

rates of the order of minutes or less, error generation rates

of the order of milliseconds).

The major disadvantages of this modeling approach are

also two-fold: i) The state transition functions are now con-

siderably more difficult to determine. They are in effect --

conditioned only on time and on the number of previous faiiures

of each type; the probability density of a transition under

these conditions can be determined only by averaging over all

possible values of the implicit parameters. 2) The state-

transition functions are necessarily functions of time, thereby

precluding from the outset the time-homogeneous Markov chain

solution techniques mentioned previously.

The first of these disadvantages is reflected in a more

complex coverage model than would otherwise be required. The

important point here, however, is that the co_)inatorial and

Markov techniques mentioned earlier can be applied at the

coverage mode! leve! as wel! as at the reliability mode! level.

Furthermore, the number of states needed to determine the

22



conditional transfer functions is vastly less than the number

of states in an undifferentiated Markov model of the entire

system. Thus, the coverage model computational effort, while

greater than it would otherwise have been, is still almost

-- negligible compared to that needed to determine the state

probabilities for the system level Markov model. Inie:ffect,

-- the model has been reduced from one having N = nI xn 2 x...x n£

states to one having nI + n2 + ... + n£ states, with n.denotingl

-- the number of relevant states given that i faults have already

taken place. (The reduction is in fact more dramatic than this

-- since much of the computational effort needed to determine the

transition functions given i faults can also be used ho deter-

- mine these functions given j # i faults.)

The detailed development of the CARE III coverage model

will be undertaken in Phase 2 of this effort. As currently

invisioned, it will combine both combinatorial antiMarkov

techniques. The former will be used to determine the prob-

ability that a given combination of faults can, under a

specific set of conditions (e.g., all faults simultaneously

active) cause the system to fail; the latter will be used to

determine the probability that the specified set of conditions

does indeed obtain at any given time. Some specific examples

of this coverage modeling approach, used during Phase one as part

of the reliability model test exercise, are described in

paragraph 3.3.

-- The second of the above-mentioned disadvantages to the

modeling approach outlined here is largely overcome by basing

-- the solution techniques on Kolmogorov's forward differential

equations. The procedure for doing this is the subject of

-- the remainder of this section.
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3.1 THEORETICAL DEVELOPMENT

Let Pjli(tlT) denote the conditional probability that aw

system is in state j at time h given that it was in state

i at time T. Similarly, let P£1J, i(tl_'T) denote the
conditional probability that a system is in state £ at time

t given that it was in state j at time _ and in state i at

time T. Then, clearly, for any T< n <t,

P£1i(tlT) = _ Pjli(_IT)P£1j, i(tl_, T) (i) _
J

with the sum taken over all the (assumed finite number of}

possible intermediate states j. (If, for all T< _ < t,

P£1J, i(tI_' T) = P£1j(tl_), then equation (i) reduces to
the Chapman-Kolmogorov equation for continuous-time, discrete

state systems.)

It follows from equation (i) that

P£1i (t + Atl_) = P£1i(tlT)P£1£, i(t + Atlt, T)

(2)

+ ___Pjli(tlT)P£1j, i(t + Atlt, T)

j_
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Let

1 - P£ (t + Atlt T)

l£1i(tlT) = lim I£, i 'AtAt _0

and

cj£1i(tlT)lj£1i('tlT)= lim P£1J, i(t + Atlt' T)-- At
At .0

(The reason for this latter notation will become apparent

shortly.) Then, rearranging terms in eauation (2), dividing

by At and taking the limit as At _ 0 yields

_P_li(tl T)
-- (tIT) (tiT)

-- _t li £Ii

(3)

+ _ Pjli(t[T)cj£1i(tIT)lj£1i(tlT)
j_£

This set of ecuations is a form of the Kolmogorov

forward equations. It differs from the more conventional

form in that the transition parameters cj£1i(tlT)lj£1i(tlT)..
are also functions of the initial state i of the system at

time T. If the notation indicating the condition that the

system be in state i at time T is suppressed, equation (3)

can be expressed in the more convenient form
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dP£ (t)

= -P£(t)l£(t) + _/_ Pj (t)cj (t)_ (t) (4)
dt j_£ £ J£

It must be remembered in the ensuing discussion, however,

that tlletransition parameters may also be functions of the

initial conditions.

Four recursive reliability modeling methods based on

Kolmogorov's forward eauation, equation (4), were investigated

in an effort to find the most suitable application cf this

result to the class of problems of concern here. These four

methods are described in the following paragraphs.

3.1.i DIFFERENCE EQUATION FOR RELIABILITY

Let P£(t) denote the probability that the system is

operating at time t having undergone exactly £ failures.

(If it is necessary to distinguish between different types

of failures, £ will actually be a vector; e.g. £ = (i, j, k)

indicating i failures of type i, j of type 2 and k of type

3.) Let l£(t) denote the rate at which failures occur given
that the system has sustained £ failures by time t. Let

_j£(t) denote the rate of occurrence of failures ti_atwould,

if coverage were perfect, lead from state j to state £ (i.e.,

from the state characterized by j failures to that character-

ized by £ failures).

Then

lj£(t) = lj(t)
£
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with the sum taken over all states £ which can be reached

in one transition from state j. Finally, let cj£(t) denote
-- the coverage probability associated with a failure which

would, in the event of perfect coverages, cause a transition

-- from state j to state £. (The coverage associated with a

failure occurring when the system is in state j is therefore

c (t)= cj (t)x-- 3 £ j£
£

-- with the range of summation and the term l.(t) as previously

defined.) 3

With these definitions, equation (4), rewritten in

difference-equation form

-- P£(t + At) = P£(t)(! - l£(t)At)

(5;

-- + _Pj (t)cj£ (t)I_£(t)At
J

defines a recursion, on both t and £, on the probabilities

P£(t). The probability that the system is successfully

operating at time t is then just

R(t) = _ P£(t) (6)
£sL

-- with the summation taken over all allowable states £.
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Actually, equation (5) defines a recursion on £ only if

the states can be suitably ordered. This is the case, for

example, if it is impossible to go from a state having II£II

failures (with If%If indicating the number of failed units

represented by the vector £) to a state having fewer than

II£11; i.e., if failed units never "heal"_ This would

appear to eliminate transient failures from the model. This

is not the case, however, if the coverage coefficients make

the proper distinction between "leaky" and "non-leaky"

transients.

3.1.2 DIFFERENCE EQUATION FOR UNRELIABILITY

Let P_(t) be the probability that the system would be

operating in state £ at time t were coverage perfect, let

Q£(t) = p_(t) - P£(t) and let cj£(t) = 1 - cj£(t) . Then
equation (5) can be rewritten:

Q%(t + At) = Q£(t) [i - l£(t)At]

(7)

+ _ [Q5(t) + P_(t)c. (t)]Ii (t)At

J

and the system unreliability becomes

1 - R(t) : _ Q£(t) + _P_(t) (8)
£eL £_L
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m

-- with L as previously defined and L U L the set of all
%

possible states.

An interesting variation on the approach suggested by this
formulation is obtained by treating all states representing

-- system failures as terminal _ather than transient states.

This is equivalent to redefining Q£(t) as the probability
that the system has failed by time t and at the time of the

-- failure it contained exactly £ failed units. Since unit
failures occurring after the system has failed do not in
this case cause a state change, equation !7) now assumes the

-- simpler form

Qi(t+At) = Q£(t) + 7.P(t)cj£(t)lj£(t)At-- j j

Now, however, the two probabil_ties
-- A A

Q(t) = 7 Q£(t) and P*(t) = Z- P£*(t)

no longer represent disjoint events and equation (8) becomes

an inequality rather than an equality. That is, the proloo-,_
ability Q(t) here is a measure of the event (A) that the

-- s_vstemhas failed by time t due to a coverage failure; P(t)
measures the event (B) that £ units have failed by time t.
Thus, l-R(t) = P(AUB) = P(A) + P(B) - P(AIB)P(B ) ."P(A) + P(B).

-- (It can be agreed that P(A IB) > P(A); that is, the conditional
probability of a coverage failure given that the total hUh'her
of failures exceeds some minimum must be greater than the un-

-- conditional probability of a coverage failure. Thus, l-R(t) =
P(AUB) < Q(t) + P*(t) - Q(t)p*(t).) Since clearly 1 - R(t) >
max (Q(t), P*(t)), the fact that the events A and B are not --
mutually exclusive is of potential concern only when Q(t) and
P*(t) are both small and of the same order of magnitude. Even
in this case, the unreliability would be overestimated by at

-- most a factor of two. The reduction in computational com-
plexity, potentially achievable by treating each failed state
as a terminal state, may well justify this small reduction in

-- accuracy; this possibilit}:will be exp!ored during Phase Two
of this study.
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This formulation offers a significant potential

advantage when, as is the situation of concern here, R(t)= 1

for all t of interest. In this case,

P£ (t)_ 1
£cL

and the sum of the round-off errors obtained in calculating

the individual P£(t) terms may well be of the order of the

quantity of major interest; viz: the unreliabil_ty

1 - _ P£ (t).
£cL

Under these same conditions, however, the terms Q£(t) must

be small for all ££L and the terms P_(t) must be small for
all ££L. If the round-off error associated with each of

these terms can be kept small relative to the terms them-

selves, it follows that the cummulative round-off error will

be small compared to their sum.

3.1.3 INTEGRAL EQUATION FOR RELIABILITY

Equation (4) is a linear, first-order differential

equation. This equation can be easily solved to yield:

t / 3_ (T)

e-_v I£(T)dT (T (T)1Jz )cj£ j£P£(t) dT (9)

0 e 0
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This also can be used to define a recursion on £ and t.

If the integrals in equation (9) are replaced by their

first-order approximations:

f(T)dT _ f(T)dT + f(t)At

-- 0 0

-- and if the exponentiais are replaced by the first two terms

in their power-series expansions:

-f(t)
e _ 1 - f(t)

_ equation (9) is identical to equation (5). If more

sophisticated approximations are used, however, it might

_ well be possible to achieve accuracy comparable to that

attainable with the equation (5) difference equations but

_ without the need to use such small step sizes At. This

possibility was investigated using Simpson's rule integration

_ for the integrals in equation (9) and using an existing

exponential evaluation subroutine. The results of the two

_ approaches are compared in Section 3.2.

3.i.4 INTEGRAL EQUATION ON UNRELIABILITY

If the substitutions described in paragraph 3.1.2 are

-- made in equation (9), the resulting expression assumes the

form:

-- t / tj_i£[Q cj ]

-/0 I£(T)dT j(T) + mj (T) £(T) Ij£(T)

_ Q£(t) = e _0/T dTe X£(n)dn
o (lO)
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This formulation has the same potential advantage over that

represented by equation (9) as the equation (7) approach

has over the equation (5) approach.

3.2 EVALUATION OF THE KOLMOGOROV RECURSION METHODS

It quickly became apparent, after only a few trial

program runs, that the recursions on unreliability were

decidedly superior to those based on reliability for the

situations of interest here. Although the reliability

recursions did yield acceptable results, considerably better _

results could be obtained with comparable program execution

time (larger step sizes) using the unreliability recursions.

Consequently, the competition was quickly reduced te one

between the method described in paragraph 3.1.2 and that

described in paragraph 3.1.4.

The only approximations in the recursions develope_ in

Section 3_.iare those introduced in approximating a differential

equation by a difference equation or by approximating an

integral by a discrete summation. The modeling task is

considerably simplified, however, if one other approximation

is made in these formulations. This approximation involves

the determination of the coverage coefficients cj£(t) .

In the examples to be considered here, the coverage

coefficients are the only parameters in the reliability

model recursions that are influenced by the implicit con-

dition that the system was in state ! = 0 at time T = 0.

These terms are functions of, among other things, the probabil-

ity that any of a certain subset of failures are still latent

at the time of occurrence of the failure in question. Since

II11] failures took place in time t, it is clear that the
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-- likelihood of a latent failure at time t is a genera!ly

increasing function of the ratio [I£11/t. If no other

-- conditions were imposed, it would be relatively easy to

determine the probability that _ latent failures are present

-- at time t given that the system was in state j at time t-.

There is another condition, however: the system was still

-- operating at time t-. This condition reduces the likelihood

of certain failure sequences and hence perturbs the

-- stochastic process characterizing failure events relative

to the case when this condition does not apply. For example,

-- the fact that the system is still operating reduces the

probability that two failures occurred'within a short interval

-- of each other if a system failure would have resulted were

one of these failures latent when the other took place.

It is apparent (or at least it will become apparent once

specific examples are considered) that the effect of this

perturbation in the stochastic failure process must be highly

insignificant except, possibly, for very small values of t.

in which case all failure events are extremely unlikely_

Accordingly, this effect is ignored in the following formula-

tions. The resulting distribution of latent faults is

precisely that that would be found were no distinction made

as to whether the system was operational or not; i.e., if no

distinction was made between the state represented by the

probability Pj(t) and that represented by Qj(t). Since the
probability of being in either of these two states is P_(t)_-- 3
therefore, the probability of a system failure at time t can

be overbounded by replacing pj (t) in equation (7) or (i0) by

P_(t) and ignoring the condition on cjz(t) just discussed3

Further, since ignoring this condition on the failure process
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presumably results in a more favorable distribution of fault

events so far as coverage at time t is concerned%, leaving Pj(t)
in equations (7) and (i0) should result in a lower bound

on the probability of system failure. In fact, as several

computer runs demonstrated, the calculated system reliability

is identical to six or seven decimal places regardless of

whether P.(t) or P_(t) is used. This of course supports the
3 3

contention that the ignored condition is in fact not significant.

The following paragraphs discuss the results obtained in

applying the methods discussed in Section 3:.](primarily those

of paragraphs 3.1.2 and 3.1.4)to the FTMP and SIFT computers.

It should be emphasized here that the purpose of these

%To illustrate this, consider the following simplified situa-
tion. Suppose failures can occur only at discrete instants
of time (t = 0, i, 2, ...), that no two failures can occur

simultaneously, and that each failure is latent for exactly
one unit of time. If a second failure occurs during the
latency of a previous failure (i.e., exactly one time unit

later), the system fails. Now consider c 2 3(t = 8). If the
condition that the system is still operatlng at time t = 7 is

ignored, there are exactly (_)=28 ways in which 2 failures
could have occurred in the 8 time instants t = 0s i, ..., 7;
exactly 7 of these failure sequences result in a latent

failure at t = 8. The probability c2 3(8) of a coverage
failure is therefore 7/28 = 0.25. If'the condition in
question is not ignored, however, the number of possible
sequences is reduced to 21, 6 of which result in a latent
failure at t = 8. The probability of a coverage failure is
thus increased to 6/21 = 0.286. Note that even in this
extreme case, with t small (only 8 times the latency period),
I!£11 large (the third failure occurs after only 8 latency
periods), and with all'latent failures causing a system
failure in the event of any other failure, the effect of the
condition in question is to increase _ by 14%. Under more
realistic conditions, the effect on the coverage coefficients
should be entirely insignificant°
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-- exercise was not to model the computers themselves, but

rather to incorporate the same genera! assumptions used in

-- the previously developed models for these computers and to

compare the results thus obtained with the results obtained

-- using these earlier models.

The purpose of this effort was to judge the efficacy of

the various reliability models under consideration before

proceeding with their more detailed development. In order to

accomplish this, it was necessary to derive analytic expres-

sions for the coverage probabilities needed in the reliability

model. This task was subsequently eliminated, so far as the

user is concerned, by restructuring the reliability model.

This restructuring, and the application of the restructured

model to both FTMP and SIFT are described in paragraph 3.3.

The following paragraphs, therefore, concentrate on the

results of this reliability model comparison rather than on
w

the derivation of expressions for c..(t)._3

3.2.1 APPLICATION TO FTMP - PERMANENT FAILURE CASE

_ The four recursions discussed in paragraphs 3o1.1, 3.1.2,

3.1.3, and 3.1.4 (henceforth to be referred to as reliability

-- models RMI, RM2, RM3, and RM4_ respectively) were first used

to model the FTMP with all failures treated as permanent.

-- The first recursions tc be programmed for this applica-

tion were RM3 and RM4. For comparative purposes, an exact

-- solution was determined analytically for the probability

P3,0,0(t) (i.e., the probability that the system is still
- operating at time t after having sustained exactly three
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processor failures, no memory failures and no bus failures).*

This exact solution was also programmed and the result used

to evaluate the accuracy of the two recursive methods. The

values obtained for t = 30 seconds, for example, when the

*The exact solution can be expressed as follows:

P3,0,0 (t) = (l-e"XPt)3 2np P- (np-2)A(I ,6p,t)

-2np (np-3)B (lp,6p,t)-4npC(ip,6p,t)

" )] (np-3) t
-2n (np-3)D(1 6p t e- Ipp p' '

e-nmlmt e-nBiBt

A(1,6,t) = I le-lt ,13e-(6+21)t -31t_ _ .le _

3(6+21) 2(6+I) (62-I2)(6+21) 6(6-I)

B(l,6,t) = 1 _ 13e-(6+I)t _ le-21t +I -3),t

6(6+I) (62-_k2)(6-21) 2(6.-I) 3(6-21)

2 -(6+I)t -21t
C(I,6,t) = 16 _ I 6e _ le +

6(6+I) (6+21) (62-I2) (6-21) 2(6-I)

12e-(6+21)t + 16e-31t
(6-I)(6+2i) 3(6-I)(6-21)

D(1,6,t) = 12 + 12e-(°+1)t _ 12e-(6+21)t- 12e-31t _
3(6+I)(6+21) (6+I)(6-21) (6-I)(6+21) 3(6-I)(6-21)

with n nm nB denoting the initial number of processors,p, , ..............

memories, andbuses, Ip, im,'_B, their respective hazard rates,

and S the detection rate for processor faults.
P 36



-- initial configuration consisted of 15 processors, 9 memories

and 5 buses, were:

RM3: P£(t) = .26330 x 10-15-15
RM4: P£(t) = .25575 x i0

Exact: P£(t) = .25579 x 10-15

_ Similarly, with a 15 processor, 8 memory, 4 bus initial

configuration, the results for t = 300 hours were:

-2
-- RM3: P£(t) = .64394340 x i0

-2
RM4: P£(t) = .64384685 x i0

-2
-- Exact: P£(t) = .64384684 x i0

These agreements, especially between RM4 and the exact

solution are surprisingly good, particularly when it is

recognized that the "exact" solution is also subject to

round-off error.

_ The results of the comparison between RM3 and RM4

strongly favored the latter model. Since RM2 presumably ha_

_ the same advantage over RMI that RM4 has over RM3, the

competition, as previously noted, was quickly narrowed to

_M2 and RM4.

Table 3.1 summarizes results obtained using RM2 and

-- _M4 with At = tmax!50, and RM2 with Ati= tmax/100. (A more
complete listing of the results summarized here and in the

fol!owing examples can be found in an appendix to this

report.) As can be seen, RM2 is slightly faster than RM4

-- when At is the same in the two cases° The accuracy attain-

able with RM4 seems to be somewhat better than that attain-

" able with RM2 even wllenthe latter's step size is half (and

its running time nearly double) that of the former. Note,

-- in particular, that halving the step size in the RM2 recursion
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IABLE _, I

COMPARISONOFT!!REE_IUMERICALEVALUATIONTECHNIQUES

ESTIMATEDFAILURE PROBABILITIESAND RUNNING TIMESTIME INTERVAL
VS, NUMERICALEVALUATIONTECHNIQUE

I -MODELED ELAPSED TIME INTEGRAL DIFFERENCE-EQ, DIFFERENCE-EQ, VOL,2 REFERENCE
I FROMSTART (50 STEPS) (50 STEPS) (100 STEPS) TABLEA2-

i000HRS, 20HRS, ,9115504128E-08 ,4759138922E-08 ,9013134766E-08 i,4,7

i000HRS, 1000HRS, ,2693321948E-01 ,2693321885E-01 ,2693322063E-01 1,4,7

1000HRS, RUNNING 41,078SECS, 40,141SECS, 76,282SECS,
TIME

30 SECS, 30SECS, ,3410688041E-11 ,3372096536E-11 ,3391798683E-11 2,5,8

30SECS, 1200MS, ,3189783213E-13 ,1656918144E-13 ,2439316532E-13 2,5,8

30SECS, 600MS, ,8284643018E-14 -,8526508200E-22 ,4409338212E-14 2,5,8

30 SECS, RUNNING 32,866 31,094 56,244
TIME

800Ms, 600MS, ,8642938477E-14 ,8421766317E-14 ,8531124275E-14 3,6,9

800MS, ,1495029013E-13 ,1466706658E-13 ,1480876007E-13 3,6,9

16MS, ,6686304258E-].7 ,8£00221654E-33 ,3349778148E-17 3,6,9

RUNNING 32,991 ' 30,998 56,332
TIME

I I I I I I 1 i I i I J I i I I



always brings the results obtained more nearly in line with

those obtained using RM4. Note, too, the excellent agreement

between RM4 runs having very different values of tmax"

Specifically, the t = 600 ms. result obtained %_hen

t = 30 sec. agrees quite well with that obtained whenmax

t = 800 ms. Yet in the first instance, t = 600 ms. is_ max

the first point evaluated; in the second case, it is the

37.5th point (obtained by linear interpolation between the

37th and 38th points). This close agreement clearly is

not obtained with RM2, even when At is halved.

As a result of these comparisons, it was concluded that

_ RM4 is clearly the best of the reliability modeling

approaches examined, and that it appears to be entirely

_ satisfactory, in terms of accuracy, stability and computer

running time, for the applications of interest.

-- Four computer runs were made using RM4 for purposes ot

comparison with results obtained by Draper in their mode]

-- of the FTMP. The results of these runs, with t = 800 ms.max

and 30 sec. are superimposed over results obtained by Draper

-- in Figures 3.2 and 3.3 respectively. Figure 3.4 compares

Draper's results with those obtained from two RM4 runs, one

-- with t = i0 hrs. and one with t = i000 hrs.max max

The RM4 results on the whole compare well with Draper's

results. The reason for the discrepancy in Figure 3.2 is not

clear. It is conceivable that the discrepancy is due to a

difference in the assumed conditions under which certain combina-

tions of latent faults can cause a system failure. The fact

that Draper's model treats three or more concurrent undetected

failures as a system failure does not, however, appear to be

sufficiently restrictive to explain the difference. In any
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-- case, the two resul_s agree to within about 20%.

The agreement between the results obtained with RM4

and those obtained with Draper's ll-shate Markov model

(Figurei3.3) are remarkably good. The agreement between

the two sets of results in Figure 3.4 is also quite good,

the difference possibly attributable to the difficulty in

plotting on a gridless graph.%

-- 3,2.2 APPLICATION TO SIFT

_ Four different cases were investigated using RM4 to

model SIFT. The first three cases (cases la, ib and ic) all

_ modeled the computer in a permanent fault environment;

variations were introduced in order to gauge the sensitivity

_ of the model to what appeared %o be relatively minor

perturbations. Case la was postulated to reflect those

_ conditions imposed in SRI's reliability model of SIFT. In

that model, buses are not permitted to fail while a processor

failure is still latent and processors cannot fail while a

bus failure is latent. In Case ib, this restriction is

%For the record, it should be mentioned that the analytical
_ expression for coverage used for Table 3.1 was not identical

to that used for Figures 3.2 _.3.3and 3.4 In the former
case, the recovery rate associated with a processor or

_ memory was equated to the weighted average of the unit's
recovery rate and those of its associated BGU's. In
the latter cases, the slightly more cumbersome weighted

_ average of the corresponding recovery time distributions
was used. The difference in the results obtained in the
two cases was smal! and in no way affects the conclusions

_ gleaned from Table o3.1. The change was made before the
results plotted in Figures 3.2 3.3 and 3.4 were obtained
since the latter recovery model°more accurately represents

_ that postulated by Draper.
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removed, but neither of these two events (bus failure during

failed processor latency or vise-versa) causes a system

failure. This restriction is also removed in Case ic, but

here either event does cause a system failure.

The fourth SIFT case (Case 2) involved a coverage model w

similar to that used in Case ib, but the fault environment

was changed to reflect SRI's transient fault model.

The results of these four investigations are summarized

in Table 3.2 as are the corresponding results obtained by SRI.

As can be seen, the results obtained using RM4 agree remarkably

well with those obtained by SRI. The fact that the Case la

and Case ib results are nearly identical demonstrates that

the restriction imposed by SRI in their model is indeed

benign. This would be only slightly less true even if the

recovery from one type of failure were adversely affected by

a latent failure in a unit of the other type (Case ic).

3.2.3 APPLICATION TO FTMP - INTERMITTENT FAULTS

The CARE III reliability model was used to estimate the

reliability of the FTMP in the presence of intermittent

faults. The intermittent fault model used was that defined

by Draper. That is, when a fault first occurs, it is in a

"bad" state, i.e., a state in which its effects are manifest.

It then switches between bad states and "good" states (in

which the fault is totally benign) at the constant rates B

(good-to-bad) and _ (bad-to-good). A fault can be detected

only when it is in a bad state; the fault detection rate is

then a constant _ (which may be different for the different

medule types).

44



1 I I I I I I I I I I I l - I I I I I ]

TABLE3,2 SIFTMODELINGRESUtT_SS
(CF, VOL 2, TABLES #2-54 THROUnH 65

T TRANS, EXP, CASE1A CASE1B CASElC CASE2 SRInp nb SECS,
" - , , -, i i i

10 5 I0 No -8 2.4863013332,4861769002,762068196 2,50

9 4 10 No -8 1.988342096 1.988242157 2.186894736 .2.00

8 3 i0 No -8 4.5400324214.5400324214.675449311 4,56

10 5 0.1 YES -10 2,511510104 2.55

9 4 0.1 YES -10 2,061165614 2.10
i

8 3 0,1 YES -8 3,641260227 3.65
J

PARAMETERS'..o

u_ hop 10 hour

_'ob = 10 -5/hour

r : 0.1
P

r = 1
b

P tr -- 0.9



The results obtained with the RM4 model are listed in

Table 3.3 along with the results obtained by Draper using

their Markov model. (To enable comparison, the parameters

used in the RM4 model for a, 8, 6, I and t were precisely

those used by Draper.) The column labeled CARE III, Form i,

shows the RM4 reliability predictions when no restrictions are

placed on the number of faults that can be simultaneously

present in the system. As can be seen, the reliabilities

predicted by _M4 are generally very close to those predicted

by Draper, the difference between the two predictions, however,

increasing as B decreases. It was conjectured that these

differences were due to two basic differences in the CARE III

and Draper models: First, the Draper model did not allow more

thantwo faults to be present at the same time, even if some

of these faults were in the "good" state. Any such situation

was treated as a system failure. The RM4 model places no

restriction on the number of coexisting faults so long as

these faults are not by themselves catastrophic (e.g., simul-

taneous "bad" faults in two processors in the same triad).

The second difference is due to the fact that the _44 model

treats as a system failure at time t any combination of faults,

first appearing at time t, that eventually cause a system

failure even though the actual failure may occur at some time

t' > t. When 8 is small and a large, faults spend most of

their time in the good state. Thus, there can be a significant

delay between the time a fault occurs and the time that it,

in combination with some other intermittent fault, produces an

actual failure. Since the RM4 model treated a system as being

in a failed state if it contains a combination of faults that

will eventually prove fatal, it is somewhat pessimistic
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-- relative to a model in which such faults are not counted until

they actually occur.

The first of these differences is thus due to a restriction

on the Draper model, the second due to a restriction on the

CARE III model. In order to overcome this latter restriction,

a modification was made in the integrand used in the Form 1

version of RM4 described in paragraph 3 .1.4. This modified

version of RM4, called Form 2 and discussed in detail in

paragraph 3.3, does take into account the delay between the

occurrence of a fault and the resulting system failure. The

results obtained with this model are also plotted in Table

3.3. As can be seen, the differences between the Form 1 and

Form 2 reliability estimates can indeed be significant when

Finally, in order to determine the significance of the

Draper model restriction, the same restriction (more than two

concurrent faults treated as a system failure) was placed on

the Form 2 version of _M4. The results obtained with this

restricted model (Form 2R) are tabulated in the third column

of Table 3.3. A comparison of these results with those

obtained by Draper (fourth column in Table 3.3) provides strong

support for the conjecture concerning the differences between

the Form 1 model and Draper's model.

-- It is believed that in most realistic situations, the

difference between the reliabilities predicted by the Form 1

-- and Form 2 models will be insignificant. It is not possible,

at this point, to conclude that this difference will be

-- insignificant in all cases of interest, however. Accordingly,

CARE III will implement both models, thereby allowing the
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Table3 .3

FTMP INTERMITTENT FAULT MODEL RESULTS

(cf. Vol. 2, Tables A2-18 Through 53)

Failure Probability (x 10-8)

CARE III CARE III CARE III

O I B Form 1 Form 2 Form 2R Draper Model

i0 1 1.1181 1.1161 1.1218 1.124

i0 i0 1.2049 1.2041 1.2046 1.207

I0 i00 1.1720 1.1718 1.1720 1.174

i0 1000 1.1274 1.1274 1.1275 1.129

[00 1 1.0925 1.0054 1.2058 1.2073

L00 i0 1.9392 1.9072 1.9219 1.924

_00 100 1.6614 1.6585 1.6591 1.661

.00 i000 1.2182 1.2181 1.2183 1.220

00 1 0.9749 0.4239 1.4593 1.46

00 i0 5.5057 3.7975 4.2295 4.22

)00 I00 6.2531 6.1513 6.1668 6.!7

_00 i000 2.1208 2.1198 2.1203 2.12
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-- user to decide whether or not the more accurate reliability

prediction afforded by Form 2 justifies its increased running

-- time. (Form 2, when applied to FTMP, requires about three

times as much CPU time as does Form i.)

3 .3 RELIABILITY MODEL STRUCTURE

Preliminary evaluation of the various reliability modeling

techniques under consideration was accomplished by defining

analytically the coverage functions needed for the test cases

described in the previous paragraphs. This task can be

arduous, however, and severely restricts the coverage model that

can be accommodated. The reliability model was therefoze

restructured, both to increase its generality and to enable it

to use coverage parameters generated by a coverace model of

the sort implemented in CARE II. The new structure distinguishes

among inputs defining the system structure, inputs specifying

-- the underlying fault models and coverage-model-generated inputs

characterizing the system's response to various categories of

faults. This structure is described in detail in the follow-

ing paragraphs.

3 .3.1 SUBSYSTEM CHARACTERIZATION

The reliability model to be described here is designed

to model the reliability of a subsystem consisting of some

arbitrary number of stages. The system reliability is then

determined by taking sums of the products of the reliabi!ities

of appropriate sets of subsystems multiplied by the probability

that no category 3 faults have occurred (cf. section 2). This

!ast procedure, while relatively straightforward, has not yet

been implemented and hence will not be discussed here.
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(Combining subsystem reliabilities to determine the system

reliability clearly requires knowledge of the various success-

ful system configurations as interpreted by CAREIN. Accordingly,

implementation of this operation has been deferred until after

CAREIN has been more fully defined.) The discussion here

concerns the task of modeling the reliability of arbitrary

subsystem configurations.

Each stage in a subsystem consists of some number of

identical modules or units; since the subsystem is fault-

tolerant, it can presumably continue to operate successfully

even after some of these units have failed. The probability

that the subsystem recovers from a fault (i.e., its coverage

for that fault), however, may depend upon many factors,

including both the number of detected faults and the number of

undetected faults in other modules in the same subsystem.

(If the coverage associated with a fault in one stage is a

function of the number of faults in some other stage, the two

stages are said to be coupled.)

For notational convenience, each stage will be indexed by

a Latin letter. Stage x, for every x, is subject to faults,

each of which be!ongs to some category xi, i = i, 2, ....

The subsystem state is represented by a vector L = (...£Xl ,

£x2' "''' £Xm' £YI' £Y2' ...), £xi indicating the number of

stage x units that have experienced a category xi fault, etc.,

with each stage and each fault category thus represented. The

parameter £x represents the total number of faulty stage x

units, _£= (''" £x' £y' "'') is a vector whose components

indicate the number of faulty units of each type, and

x
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the total number of faulty units. Similarly, the vector

= ('''_xI' _x2' "''' _x ' _YI' _Y2' "'') designates them

number of latent faults in each category. (A fault is called

_ latent if it has not yet been isolated.)

In addition to the preceding categorization, faults are

-- also classified in accordance with their effect on the subsystem

of concern at the time of their occurrence. Specifically,

-- faults are divided into three classes: (i) Subcritical faults.

A fault is said to be subcritical if it, by itself, cannot

-- cause a subsystem failure in the absence of subsequent faults

(e.g., the first processor fault in SIFT or FTMP). (2) Critical

-- faults. A fault is called critical if it, in combination with a

pre-existing latent fault, may eventually cause the system to fail

-- even in the absence of subsequent faults (e.g., certain processor

faults in SIFT or FTMP while a previous fault is stil! undetected).

-- (3) Supercritical faults. A fault is designated supercriticai if

its occurrence causes the subsystem to fail immediately, possibly

-- but not necessarily, as a result of pre-existing faults (e.g.,

faults causing single-point failures).

If a category yj fault is critical in the presence of a
pre-existing latent category x. fault, the subsystem is said

to be in an xiYj-critical state. Such a state is possible,
for example, when faults (or their effects) are intermittent

in nature. Faults of this sort will be said to be either active

(i.e., capable of generating errors) or benign (not active). A

subsystem in an xiYj-critical state wil! fail in the absence of
other faults, if, and only if, both faults are simultaneously

active. (This statement effectively defines the terms "active"

and "benign.") It will be assumed that any other fault occurring

while the subsystem is in a critical state will also cause it to

fail. (The significance of this assumption is discussed later.)
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3.3.2 SUBSYSTEM RELIABILITY MODEL

Table 3.4 defines the inputs needed for the restructured

Form 1 and Form 2 reliability models. The various inputs are

divided into three categories: i) those provided by the user

in defining the subsystem configuration; 2) those defined by

the user in selecting fault models; and, 3) those determined

by the coverage mode!. Table 3.5 defines both mathematically

and in words the functions of these inputs evaluated by CARE3

(cf. section 3) and used to define the integrand in the RF4

version of the Kolmogorov recursion.

The RM4 recursion can be expressed in terms of these

functions as follows (cf. equation i0) :

t -A£(t T)Q£_(t)= e -- ' K£_(T)dT (ii)
0

with A£_(t,T)= / tx£(_)dn._ The Form l version of K£(T) can
T

be expressed as

Q£_-CyK£ (T) : [ (T) + P__£y(T)Cyj(T)](n -£ +i)I (T) (12)-- _ Y Y Y:_
Yj

with £_-Sy= (... £x' £y-l, £z, ...) and with

I2Cyj(T) = Dyj(£_-_y,T)+ Bxi" yj(__-_y,T)gl(T,xi, yi) (13)

xi

EQuation (ll) is identical to equation (10) but with a slight

change in notation to emphasize the relationship between
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-- Tablel3.4

CARE3 INPUTS

Source Function Definition

User: b (_, £) Probability that a category yj
configuration xi'Yj fault would place the system

_ description in an xi, y_-critical state
given that _he total number of
faults and the number of latent

-- faults of each category, just
prior to the occurrence of the
category y. fault are defined

-- by £ and _ respectively.

dyj(_, £) Probability that a category yj-- fault would be supercritical
given _ and £.

-- n Number of initially function-
x ing stage-x modules.

-- mx Minimum number of functioning
stage-x modules needed for the
system or subsystem to function.

User: qx. (t)dt Probability that a category xi
_ fault model l fault occurs in a given stage

selection x module in the interval (t,
t+dt).

Coverage model Pl(tIT,xi) Probability that a category xi
outputs fault is active but undetected

-- at time t given that it occurred
at t_me T.

P2(tIT,xi) Probability that a category x.
fault is benign but undetecte_
at time t given that it occurred

-- at time T.

_3



Table 3.4 (Cont.)t

Source Function Definition -

Coverage model p(tlT, xi, yj) Probability that any x.y_-outputs critical state, entere_ _t --
time T, persists until time t
(i.e., neither fault has been

detected nor has a subsystem
failure occurred).

q(tlT, xi, yj)dt Probability that a system
failure occurs in the interval
(t, t+dt) as the result of an

xiYj-critical state entered at -_im_ T •
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-- state transitions and the fault category. (Note that the

summation here is over all fault categories.) Equation (13)

-- expresses the coverage failure probability in terms of the

functions defined in Table 3.5. That is, the probability of

-- a coverage failure is just the probability that the fault in

question forces the subsystem into a supercritical state

-- plus the probability that the fault forces it into an xiYj-
critical state which eventually causes it to fail.

The Form 2 expression for K£(T) is

" _ (T) + P__e (T)(C (T) + ACT l£-ey))]lyj(T)
K£(T) = [Qz-E

_ -- yj -- y -- y Yj

-- + A'(T 19,)P_(T) (14)

m

-- Here c (T) is as defined in equation (13) but with
Yj

gl(T, xi, yj) replaced by g2(T, Xi, yj). This reflects the
fact that in the Form 2 recursion, a subsystem failure is not

counted until it actually occurs. Thus, a fault forcing the

subsystem into a critical state does not actually cause the

system to fail at that time unless the pre-existing fault is

active. The term A' (TI9,) accounts for subsystem failures

occurring at time T as a consequence of previously entered

critical states that did not immediately cause a failure.

The term A(TI£-_ ) reflects the fact that any third fault
_-. -- y

occurring while the subsystem is in a critical state is

assumed to cause it to fail.
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Table 3 .5

CARE3 FUNCTIONS

Function Mathematical Expression . Definition

r (t) 1 Itx. - j qx. (T)d_ Probability that a given stage
1 0 i x module has not experienced a

category x. fault by time t1

r (t) H r (t) Reliability of a stage xX X.
i l module

1 (t) qx (t)/rx (t) Rate of occurrence of categoryX 0 0 °

1 l 1 x. faults in a given operational
stage x module

l£(t)_ _ (nx - £x)_Ix. (t) Rate of occurrence of faults

x i i in the_(nx - £x) modules
x

that are fault-free at time t-

f t , (T)dT Probability that a given stageaxi(t) Ps(tlT xi)r_(T)Ixi x module has a category x.,1
0 latent fault at time t g_ven

that it has experienced some
1 - r (t) fault by time tx

[Ps(t[ T, x i) --Pl(tIT, xi) + P2(tIT, xi.)]
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Table 3 .5 (Cont.)

Function 1 Mathematica! Expression Definition

a (t) _ a (t) Probability that a given
X _ X.

i l stage x module has a latent
fault at time t given that it
has experienced some fault
by time t

P(Uxl£x, t) £ 1(l-a (t))£x-_x a_x" (t)
x.l Probability that a subsystem

-- X X l
contains._x stage x latent

(£x - _x)l i _x.! faults glven that it has
l £x faulty stage x modules

_ P(UI£, t) _ P(_xl£x, t) Probability that a system
x having _ faulty modules has

latent faults

D (£, t) _d (_, £)P(_I£, t) Probability that
Yi - -- Yi .... containing £ faultsasystemwould be

in a superc_itical state were

a category Yi fault to occur
at time t

B (1, t) _b £
xiY_3_ _xiYj(_' )P(_I£,_t) Probability that a systemcontaining £ faults would

_. enter an x.v.-criticalstate
i'"

were a category yj fault tooccur at time t



Table 3 .5 (Cont.)

Function Mathematical Expression Definition

t
g2 (t' xi) Pl (tIT' xi)rx(T)Ix.(T)dt Probability that a category

l x. fault is active at time1
0 t given that it _ latent at

time t

a (t) (i - r (t))
X. X
1 u

gl(t, xi) 1 - [l-g2(t, xi)] [i -/ q(Tlt, xi' yj)dT] Probability, given that a
t system enters an x.ya-critical

state at time t, t_a_ this
event eventually causes a
system failure

!tA(tl_) (ny-£y+l) B (_-_y,T) Probability that a system
xiYj - having £ faults is in a critic_

xi,Y j 0 state at time t
(...£ , h -1, £ ..x y z

qyj (T) (!-g2(T , x')}P(tl_'l xi' yj)d_

t

A'(tl£) _ (n-£ +l) / B (£-_ ,T)-- y y xiYj - y Rate at which systems having£ faults fail at time t due

xi,Yj 0 to critical fault conditions

qyj(r) (l-g2(T, xi))q(tlT, xi, yj)dT

I I I I _ I i I 1 I I I



-- There are several assumptions implicit in these expressions

which should be noted:

i. It is assumed that a:faulty module can be character-

ized by the first fault it experiences, although the possibility

of subsequent faults is not excluded. (See, for example, the

expression for a (t) in Table 3.5.) If a second fault doesx

occur, it could have one of three effects: a) it could

shorten the latency period; b) it could cause the subsystem

to fail only if the first fault is still latent; c) it

could cause the subsystem to fail even if the first fault

has been detected.

The first of these effects can be accounted for in the

coverage model, the second by adding a term to the recursion

__ integrand K£(t) to account for that possibility, and the

third can be modeled as a "category 3" failure. It is

_ proposed, however, to ignore the first effect and to combine

the second and third effects in estimating the probability

of a category 3 failure. The rationale for this is as

follows: The likelihood of a second failure during the

_ latency period of a previous failure in the same module is,

in most instances, entirely negligible. In any event, the

- approach just described overbounds the subsystem failure

probability. (Ignoring the reduced latency caused by a

_ second fault is clearly pessimistic. Treating the second

effect in a separate category results in some "double count-

_ ing"; i.e., a single fault is allowed to cause the subsystem

to fail twice, once as a result of a second failure in the

_ same module and again as a consequence of a failure in some

other module.) The increase in the failure probability

estimate as a result of such approximations is clearly
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insignificant for all cases of practical interest. Thus,

while more exact expressions could be relatively easily

incorporated into CARE3 and COVRGE to account for such

events, their minor importance does not appear to justify

the added complexity.

2. Critical states are defined only for pairs of latent

faults. It is possible, for example, to define an xiYjZk-
critical state in which a failure occurs only if all three

faults are simultaneously active. None of the fault-tolerant

systems examined thus far, however, have exhibited such

failure mechanisms. Thus, while the reliability model struc-

ture described in the preceding paragraphs could readily

accommodate a more general critical-state definition, the

resulting added complexity does not seem to be justified.

3. Any new fault occurring while the subsystem is in a

critical state causes it to fail. In many cases this is in

fact not true; an arbitrary fault does not necessarily cause

the subsystem to fail even when it is in a critical state.

The purpose of making this assumption was, of course, to

eliminate the need to account for even more complicated

fault patterns involving, for example, simultaneous xiYj-
and X.Zk-critical states Once again, the probability of

such events is small, and the complexity needed for more

precise estimation does not seem to be justified.

(It should be noted that the restriction under discussion

here is considerably less severe than the restriction that

three simultaneous latent faults cause a failure, as is

evident from the results in paragraph:3.2).
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__ 3.3.3 SPECIALIZATION FOR FTMP AND SIFT

The input parameters used for the FTMP and SIFT test

-- cases discussed in paragraph 3.2 are listed in Table _.6. The

FTMP model used for intermittent faults recognized only three

rather than five fault categories; in this case the input

parameters are as defined in Table 3.6 but with £P2 = £m2 =

_p2 = _m2 = 0.I.

The definition of these parameters is relatively straight-

forward. The functions °M0, NO and N 1 are just the probabilities

that no two modules in any FTMP processor or memory triad

both contain latent faults, that no active bus contains a

latent fault, and that exactly one active bus contains a

latent fault, respectively. Thus, bplP2(_, £) for example, is

the probability that no two processors or memories in any

triad contain latent faults, that no active bus contains a

latent fault, and that, should a category P2 fault occur, it

would affect a processor in a triad already suffering from a

latent category Pl fault. Similarly, the parameter bpb(_, £)
is the probability that no two processors or memories in any

triad contain a latent fault, that no active bus contains a

latent fault, that all memories having latent faults and all

but one processor having a latent fault use the same bus, and

that that bus is the one to be affected should a bus fault

Occur.

One class of fault situations in the FTMP requires

special consideration. Suppose one of the active buses con-

tains a latent fault, that all processors and memories

-- containing latent faults use that bus and that at least one

processor does contain a latent fault. Then a new processor

_ fault affecting the triad already containing one latent fault
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Table 3 .6a

FTMP INPUT PARAMETERS *

L = (£Pl ' ' ' £b)' £P2 £ml £m2

£ = (£ £m' £b) £ = £ + £ £ = £ + £
-- P' P Pl P2 m mI m2

= ( ' ' ' ' _b) _p + _m = +-- UPl NP2 Uml Nm2 = UPl _P2 Nml Nm2 -

n

Let

1 _x = 0, 1

_0(Nx' £x) = (nx-£x+_x-3)(nx-£x+_x-6)'''(nx-£x+_x-3(Nx-l))

(nx-£ +Nx-I) (nx-£ ....x x+Nx-2) (nx-£x+Nx-(Nx-l)) NX_I

N0(_b, £b) = (nb-£b)(nb-£b-l)(nb-£b-2)

(nb-£b+Nb)(nb_£b+Ub_l)(nb_£b+Nb_2)

3(nb-£b) (nb-£b-l)Nb
Ni(_b, £b) =

(nb-£b+Nb)(nb-£b+Ub-l)(nb-£b+Nb-2)

M0(U, £) = M0(_p, Zp)M0(Nm, £m)

Then (for x. = PI' P2' ml' m2" x = p, m):l w

2_]x.

b (Z £) = i M0(_, £)N0(Jb £b)x.x. --'-- n -£
i ] x x

* See "List of Symbols" for verbal definitions.
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2Nx. Nm-i
bx b(_, £) = I (1) Np+

l nb-£b M0(U, £)N0(Nb, £b)

2 nx-£x-2Nx (1) Zp+Zmbbx. (_-'£--)= 3 n-£ M0(N' £)NI(Nb' £b)l X X

{2nb_£b NI(_b, £b) _p = Um = 0
_ bbb(__,£_)=

0 otherwise

b (N, £) = b (N, £) = 0
, pim. -- _3 miPj

2Zx. Np+_m- 'x. n-£ M0(N' £)N1('€b, £b)l X X

0 Np+Nm=0 ,

db(_, £) =

-- 3[ Up+Urn ]nb_£b 1-(}) - 2(Np + Nm) ()) NP+Nm N0(Ub, £b)

2 (3)_p+Zm NI(Ub, £b) ] M0(N, £)
_ + nb--£b I --

-- _p + _m > 0

l (t) = I ; I (t) = Ibx. x. b
-- 1 1
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Table3.6b

SIFT INPUT PARAMETERS *

Case la: L = £ = (£p, £b) £ = (_p, _b)

1 _ = (i, 0)
b (_, £) =
pp -- _ 0 otherwise

bpb(_, £) = bbp(__, _£)= 0

i = (0,i)
bbb(_, £) = _

0 otherwise

dxy(_, £) = 0 all x, y

i (t) = I l (t) = Ibp p b

Cases lb, 2 (two independent subsystems):

L = £ = £ L = £ = £b_ _ p -- _

PP _ € 1 (_' £) = _ _ 1
o_

d (_, £) = 0
pp dbb(_, £) = 0

I (t) = 10pS I (t) = 10bSP b

s = 1 + r(l-Ptr) (r = 0 for case ib)

* See "List of Symbols" for verbal definitions.
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Table 3.6b (Cont.)

-- Case lc

Same as case la except:

I 1 _ = (i, 0)

bpb(g' £) = I 0 otherwise

-- I1 _ = (0, i)bbp(_' £) = 0 otherwise
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creates two critical situations: a bpS-critical fault and a

piPj-critical fault. Although such an event does not

necessarily cause the system to fail, it was elected to treat

all such events as fatal and hence to reflect their probabil-

ities in the dx(_, £) parameters. Since these are clearly

events of relatively low probability, the added complexity

needed to account for the possibility that the system could

recover from them was not felt to be justified. Treating all

such events as system failures, of course, again overbounds

the true failure probability. The parameters dpi(_, £) and

dmi(_, £) thus account for the event just described. The -

parameter db(_, £) is the probability either that at least

two buses are used by memories or processors containing --

latent faults or that one bus and at least one memory or

processor contains a latent fault and that, when a new bus

fault occurs, it affects an active bus. Again both events

produce a pair of critical fault situations.

The SIFT parameters shown in Table 36 are largely

self-explanatory. The first three cases (cases la, ib and ic)

differ only in the nature of the coupling between the two

stages (cf. paragraph 3.2). The fourth case allows transients

to occur at a rate r times the permanent fault rate. Since

the probability of a "leaky" transient is 1 - Ptr and since

leaky transients do not produce coverage failures, the

probability that an arbitrary fault produces a critical fault

situation is reduced by the probability i/[i + r )] that(l-Ptr

the fault is a leaky transient.

In addition to the parameters specified in Table 3 .6, the

CARE3 model must have access to the functions, defined in

Table 2.5, used to characterize coverage. Since COVRGE has
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not yet been implemented, these functions were generated by

hand. These functions are easily defined in the permanent

-- fault case:

-- Pl(tlT, xi) = 1 0< t-T _T 0 SIFT
0 otherwise

-- P2(tlT, xi) = 0

-- p(tlT, xi, yj) = 0

q(tlT, xi, yj) = a(t)

with 6xi the FTMP fault detection rate, TO the SIFT detection
delay, and _(t) the Dirac delta function.

In the FTMP intermittent case, the first two of these

functions are defined by a three-state Markov mode! and the

last two by a five state Markov model, as shown in Figure 3.5.

-- If Pij(tlT) represents the probability of being in state i at

time t given that the system described by the three-state

-- Markov model was in state j at time T, and if P..(tit) is
l]

similarly defined for the five-state model, then

Pl(tIT, x) = Pll(tlT)

- p2(ti ,x) = P21(tl )

p(tlT, x, y) = Pll(tlT) + P21(tlT) + P31(tI%)

q(tlT, X, y) = 8[Pll(tlT) + P3l(tl_:)]
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The functions Pij(tlT) and Pij(tlT) are readily determined
either by hand (the first function involves solving a

-- quadratic equation, the second a cubic) or by using one of

the techniques described in Appendix "..
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3.4 PROGRAMMING APPROACHES FOR SYSTEM UNRELIABILITY MODEL

3.4.1 INTRODUCTION

The following paragraphs describe the techniques usedi

to program the reliability model RM4 postulated in paragraph

3.1.4. For illustrative purposes, the parameters and

dimensions discussed are those used for the FTMP model. As

will become apparent, however, these parameters and dimensions

can be readily modified as required to accommodate other

situations.

3.4.2 COMPUTATION OF Q£(t) RECURSIVELY

In order to compute the probabilities Q£(t) recursively

where £ . (i, j, k)%, an array must be defined for the Q£(t)

probabilities so that Qi-l, j, k (t)' Qi, j-l, k(t) and

Qi, j, k_l(t) can be accessed when computing Qi, j, k(t) . --

If NP = no. of processors = 15; NPS = no. of processor

survivors = 2

NM = no. of memories = 9; NMS = no. of memory survivors = 2 --

NB = no. of buses = 5; NBS = no. of bus survivors = 2

ITMAX = maximum no. of time steps = 50

QLT = array representing Q£(t), then

the array QLT must be dimensioned

tFor purposes of this example, £ is a three-dimensional vec-
tor, £ = (i, j, _), with i _enotinq the number of faile_
processors, j the number of failed memory units and k the
number of failed buses.
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_ (NP - NPS + i, NM - NMS + i, NB - NBS + i, ITMAX)=(14, 8, 4,

51), which includes 0 processor failures, 0 memory failures,

_ 0 bus failures and time 0.

The immediate requirement then becomes the definition of

a loop structure within the program for computing Q£(t) so that
all required probabilities have been previously computed and

stored in the array. For example, when computing Q£(t) for

_ (3, 2, i), Q2 2 1(t)' Q3 i, 1(t) and Q3 2 0(t) mustl ! f ! l

have been previously computed and stored in the QLT array.

-- Let II, JJ, KK, IT be the indices into the QLT array

representing Qi (t) The basic structure in FORTRAN is, j, k
-- then as shown on the following page.
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C Basic Fortran Algorithm

C

NPPI = NP + 1

NMPI = NM + 1

NBPI = NB + 1

DO i00 KK = i, NBPI

DO 100 JJ = i, NMPI

DO i00 II = i, NPPI

C

I = IIMI = II - 1

J = JJMI = JJ - 1

K = KKMI = KK - 1

DO 75 IT = i, ITMAX

C Compute Q (II, JJ, KK, IT) using

C Q (IIMI, JJ, KK, IT), Q (II, JJMI, KK, IT),

C Q (II, JJ, KKMI, IT) where computing subroutines

C use I, J and K

75 Continue

C

i00 Continue

C

This structure would compute the state probabilities in

the sequence as shown on the following page.



Indices Example
QLT, L _ (II, JJ, KK) Reauired States

1 1 1

2 1 1

3 1 1

NPPI 1 1

1 2 1

2 2 1

3 2 1 (2, , i), (3, i, i), (3, 2, 0)*

NPP1 NMP1 1

1 1 2

2 1 2

3 1 2
t • •

NPPl

13 6 3 (12_6, 3), (13, 5, 3,), (13, 6, 2)

NPPI NMPI NBPI

-- * A state vector with an index of 0 is defined as havinq 0
probability because a 0 index represents a negative component
in the state vector (i, j, k), and hence desiqnates a non-

- existent state•
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Clearly all state Drobabilities will have been previously

defined and stored in QLT array so that they are available when

required.

Several problems occur if QLT is dimensioned and computed
in this manner:

i. CDC Fortran Extended allows a maximum of 3 array

declarators. Therefore the statement:

DIMENSION QLT (14, 8, 4, 51)

is an illegal declaration and will not compile.

2. The amount of memory required for such an array
would be enormous:

14 x 8 x 4 x 51 words, i.e., 22,848 words

3. Extending the model ho include, for example, I/O

modules would cause a problem because this would

reauire an added dimension to the array (if

such a dimension were legal). This would also

increase the size of the QLT array even further.

4. Unnecessary computation of state probabilities

would result--namely those which are so small

that they have no affect upon the resultant

probability. For example, the probability

associated with state (13, 6, 3), i.e., 13

failed processors, 6 failed memory modules and 3

failed buses by time t may be too small to effect

the system probability as a whole.

The solution to Droblem 1 is to create a maDDing of

(i, j, k)----nwhich will reduce the QLT array to 2 dimensions:

QLT(NMAX, IT). This will also solve problem 3; extending the
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model from (i, j, k)----nto (i, j, k, m)----nwould be a

relatively minor programming enhancement. The only part of the

-- program to change would be the mapping routine--plus model

changes due to the addition of vector component m. This

dimension solution, however, has no effect upon the size of

the QLT array. The dimension statement now becomes

DIMENSION QLT (448, 51) and would require the same amount of

storage as previously.

The solution to problems 2 and 4 would be to modify the

basic loop structure defined above so that:

a. The state probabilities are computed in a

-- flow from largest to smallest_ this

enables the program to halt execution at a

-- point where the probabilities no !onger affect

the result;

-- b. Only those probabilities actually needed to

calculate the current state probability have

to be stored in array QLT at any one time,

thus reducing its size.

The following chart lists the computational flow required

versus the basic computational flow. Each set consists of all

permutations of vectors where the largest component of any

vector is the set number. Vectors with components all less

than the current set number were defined in previous sets; the

probabilities associated with these vectors are not recomputed.
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COMPUTATIONAL FLOW Or STATE VECTORS

CHART 1

BASIC COMPUTATIONAL MODIFIED COMPUTATIONAL

FLOW FLOW WITH SETS EXAMPLE REQUIRED STATES

II JJ KK II JJ KK II-i JJ KK, II JJ-i KK, II JJ KK-I

1 1 1 Set 1 1 1 1_...._ -
2 1 1 Set 2 1 1 1

3 1 1 2 1 1 (i, i, i), (2, 0, i)**, (2, i, 0)**
4 1 1 1 2 1

5 1 1 2 2 1

6 1 1 1 1 2_
7 1 1 2 1 _ _-

8 1 1 1 2 _

1 1 2 2 2, 11

•_ 1 1 set 3 ! 1 i*\

\Ii 1 1 2 1 i*
i12 1 1 3 1

4 1 1 2 2 i*

! 2 1 3 2

." 2 1 1 3

3 2 1 2 3

3 3

1 1 2"_
4 2 1 2 1 2* \

3 1 2 (2, i, 2), (3, 0, 2)**, (3, i, i)

1 2 2*

_4 8 1 2 2 2*

1 1 2 3 2 2*

2 1 2 1 3 2

2 3 2

3 3 2

-" 8 2

3 3 3

_4 8 3 Set 4 1 1 i*

. 4 (3, _4, 4), (4, 3, 4), (4, 4, 3)

i_ 8 4 4 4 4

Set 5 1 1 I*

5 5 4

Set 6 1 1 i*

6 6 4
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COMPUTATIONAL FLOW OF STATE VECTORS

CHART 1

MODIFIED COMPUTATIONAL

FLOW WITH SETS

II JJ KK

set 7 1 1 i,

2 1 i,

3 1 !.

4 1 i.

5 i 1"

6 1 I*

7 ! 1

7 7 4

Set 14 1 1 i*

14 8 4

*These state probabilities have been previously comouted and will not be recomputed.

They are only dummy place holders used to show the alqorithm more clearly.

**States with 0 indices do not exist.
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The chart shows that only two sets need be in memory at

any one time--the set being computed and its predecessor set.

This occurs because the required states have either been com-

puted in the predecessor set or previously in the set being

computed. Also, with this method, only the state probabilities

not computed in prior sets are stored in array QLT. Therefore,

the number of unique states in each set for the case where

NP = 15, NPS = 2

NM = 9, NMS = 2

NB = 5, NBS = 2

is shown in the following chart:

Set No. of Unique States

1 1

2 7

3 19

4 37

5 36

6 44

7 52 ] largest two con-

J8 60 secutive sets

9 32

i0 32

Ii 32

12 32

13 32

14 32

CHART 2
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Set 7 and 8 are the largest two consecutive sets--having

52 and 60 states, respectively. Therefore, 0LT array need

only be dimensioned (112, 51), which is a total of 5712 words•

Using this method, the amount of storage reauired for OLT

array was decreased by 17,136 words.

The Vortran code reauired to compute the QLT array in

sets, with only two sets of probabilities in memory at anv

one time follows:

C FORTRAN ALGORITHM TO COMPUTE SETS OF STATES

C

C Compute QLT (i, IT) for _--_, 0, 0)directly for all time

steps.

C Initialize NSET(ISET) for set 1 to 1--only one state

vector exists in set i: (0, 0, 0).

NSET(1) = 1

C

C Compute maximum number of failures permitted including 0
NPF = NP - NPS + 1

NS_ = NM - NMS + 1

NBF = NB - NBS + 1

C

C Compute maximum indicies.

NPPI = NP + 1

N_I = NM + 1

XBPI = NB + 1

C

C Determine maximum set to compute.

_X = MAX0 (NPF, NMV, NBF)
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c

c compute sets of state vector probabilities.

DO 200 ISET = 2, MAX

ISETB = ISET

ISETM = ISET

ISETP = ISET

IF (ISETB.GT.NBPI) ISETB = NBPI

IF (ISETM.GT.NMPI) ISETM = NMPI

IF (ISETP.GT.NPPI) ISETP = NPPI

C

C Initialize QLT index N to the number of vectors in the

C previous set plus one.

NUMPREV = NSET (ISET-I)

N = NUMPREV + 1

IF (ISET.EQ.2) GO TO 60

C

C Pop vector probabilities off 0LT array which were defined

C two sets ago by moving the predecessor set up in the array.

NPOP = NSET (ISET-2)

DO 50 M = l, NUMPREV

MM = NPOP + M

C Transfer QLT(MM, IT) for all time steps.

DO 50 IT = i, ITMAX

QLT(M, IT) = OLT(MM, IT)

50 CONTINUE

C

60 Continue

C

C Initialize unique state vector's counter to 0.

NSTOT = 0
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-- c

c Begin main three loops which define the state vectors

DO i00 KK = i, ISETB

DO i00 JJ = i, ISTEM

-- DO i00 II = i, ISETP

C DO not compute any previously computed state vector

-- C probabilities.

IF (II.LT.ISET.AND.JJ.LT.ISET.AND.KK.LT.ISET) GO TO i00

- I = II-i
J = JJ-i

_ K --KK-I

C

_ C Compute QLT(N, IT) for all time steps•

DO 75 IT=I, ITMAX

_ 75 CONTINUE

C

_ C Increase QLT index N and unique vector counter NSTOT by
C one.

_ N = N + 1

NSTOT = NSTOT + 1

C

i00 CONTINUE

_ C

C Store total number of unique vectors for the current set

_ C ISET.

NSET(ISET) = NSTOT

_ 200 CONTINUE

C
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This Fortran structure is the basic programming core for

the various CARE III models programmed thus far.

3.4.3 PROGRAM DIFFERENCES PER MODEL

The subroutine which computes the unique mathematical

calculations for each model is subroutine SUMMAT. This

subroutine and its associated functions vary for each model.

They represent the numerator in the integ_and of the inte-

grated form of the Kolmogorov equation:

SUMMAT
t t

QZ(t) = e I£(T)dT Qj (T) + Pj (T)_j£(T)Ij£(T)
d_

0 I£ (n) dne

The main concern in programming subroutine SUMMAT for

each model is to eliminate redundant computations. Two types

of function computations are required: functions which are

time dependent and functions which are vector dependent; i.e.,

dependent upon (i, j, k). The time dependent functions must

be removed from subroutine SUMMAT and computed in subroutine

TDXPEND. TDEPEND computes all time dependent functions once

and stores them in arrays. These arrays can later be accessed --

from subroutine SUMMAT each time the vector changes. This

approach keeps execution time at a minimum because it takes

much less time to retrieve a function value from an array

than it does to recompute the function each time the vector

(i, j, k) changes. SUMMAT then computes the vector dependent

portions of the model while accessing the time dependent arrays.
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-- 3 .4 .4 NUMERICAL INTEGRATION TECHNIQUES

The Trapezoidal rule

1 _x_ f(x)dx = --_ [f(x0) + f(xl)]
x0

and Simmson's 1/3 rule

?]2 f (X)dx Ax= "-_ [f(xO) + 4f(xI) + f(x2)]
-- x0

are the numer:ical ntegratlon techniques used within the

program to compute the integral

/0 ]
t [ 0j(T) + P (T)cj (T) 1 (T), L J £ J£ aT

!T I£(q)dq__ e 0

_ of the Kolmogorov equation.

The Trapezoidal rule is used to commute the integral

-- from time 0 to time STEP where STEP is the step size or _x.

Simpson's 1/3 rule is used to commute the remaining intervals

-- as shown in the following Figure 3.6. (The subroutines associated

with these numerical techniques are called TRAPINT and SIMPINT.)
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IT 1 2 3 4 5 6 7 8 9 i0 ii 12 13 14
T 0.0 STEP 5*STEP 10*STEP

TIME

o • •

Simoson's 1/3 Rule

IT

_here QLT(N, i) = 0.0

QLT(N, 2) = area 1 * e I£(T)dT

!tQLT(N, 3) = AREA 2 * e l£(?)dT0

_!t X£(T)dTQLT(N, 4) =(AREA 3 + area i) * e

!t I (T)dTQL'I_(N, 5) :(AREA4 + AREA 2)* e £

• _0_,£
QLT(N, ITSTPS) = (area ITSTPS - 1 + area ITSTPS - 3 (T)dT

+ area ITSTPS - 5 + ... + area i) e

•INTEGRATION METHODS

Figure 3.6
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-- 3.4.5 MACRO FLOW CHART OF SYSTEM UNRELIABILITY MODEL

The following macro flow chart shows the organization of

the entire basic model which comDuhes the system unreliability.

The loop structure computing the vectors in sets is shown in

relationship to the subroutines TDEPEND, SUMMAT, TRAPINT and

SIMPINT.

_t
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MACRO FLOW CHART

READ/
CONFIGURA-/
TION I

INPUTS /

I -
COMPUTE\

TIME DEPEND-/ LOOPTO --
ENT PORTIONS/ I_- COMPUTE
OF MODEL / _ QLT IN SETS

I _ -
ISET = 2 ISET COMPUTE

ISET = _ REMAINING
ISET +I MAX P*'s

I i
IPRINTSUM iI

POP SET I IOFQLT AND I
ISET-2 IP*'s FOR SYSTEMI

OFF QLT I

ARRAY .

( STOP)
KK = I

KK = KK+I ISET

I

LOOPS TO
([_... JJ = 1 jj_ _ . COMPUTE

JJ = JJ+1 ISET STATEVECTOR
(l,J, K)

I
II = i

II-= II+l ISEl
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/ LOOP TO

COMPUTE

i/ TIME STEPS
/ I TO ITSTPS

/
/

/
/

-- IT = I
IT< p = p._

IT = ImsmPs QLT(N,IT)
-- IT+I

I
' I I

_ SUMMAT> PRINT

COMPUTE I PROBABILITIES
£-r

j=O

- I
COMPUTE

p*
(perfect
coverage)

TRAPINT
-- YES

USING

-- RULE

1/3

QLT(N,IT):
_ QLT(N,IT)

e-XZ-_ f

- l
CARE3 MACRO

PAGE2 OF 2 FLOWCHART
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4.0 CARE III PROGRAM STRUCTURE -

An implementation of a Modularized Direct Access

Information System is the proposed structure for the CARE III

system. The system will consist of three main modules:

a. Batch or interactive input processor:
CAREINB or _AREINI

b. Coverage model: COVRGE

c. Reliability model: CARE3

The following flow diagrams depict the proposed design

of the CARE III system.

Two text input files are required: one to define the

computer configuration and one to aid in the calculation of

the coverage model. If coverage is preset per stage in the

configuration file INFILE, the coverage input file CVFILE

need not be defined by the user.

The Direct Access Information System (DAIS) files generated

by CARE III are designed to be random, word addressable mass

storage files. Each record within these files can be

accessed with a master index or subindex(es). The DAIS

files wil! contain the processed user input required by

programs COVRGE and CARE3. They will be made permanent disk

files by CARE III so that they can be modified if desired

without having to reinput the entire data set. Thus a second

run can use existing files CAREDF and CARECV, after minor

modifications have been made to them, by running program

CAREIN using only an updated portion of the original input.

This capability is especially convenient if the user runs the

interactive CAREIN program.
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_ The DAIS files are to be created and accessed through

the use of FORTRAN Mass Storage Input/Output (MSIO)

_ subroutines OPENMS, WRITMS, READMS and CLOSMS. Record Manager

word addressable file organization is used to i_plement these

_ files.

In the following flow diagrams the symbol _ name

<process it>

_performs/

-- denotes a separate routine for which a separate f!ow diagram

exists in the pages following. For a more detailed look at

-- the proposed system, see the CARE III Computer Program

Requirements Document.
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