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The relations between several semiempirical fracture analyses (SEFA) and the 
R-curve concept of fracture mechanics a re  examined and the conditions for equivalence 
between a SEFA and an R-curve are  derived. A hypothetical material is employed to 
study the relation analytically. Equivalent R-curves a re  developed for several real ma- 
terials using data  from the literature. For each SEFA there is an equivalent R-curve 
whose magnitude and shape are determined by the SEFA formulation and its empirical 
parameters. If the R-curve is indeed unique, then the various empirical parameters 
cannot be constant, and vice versa. However, for one SEFA the differences a re  small 
enough that they may be within the range of normal data scatter for real materials. 

INTRO DUC TI0 N 

The relations between several semiempirical fracture analyses and the R-curve 
concept of fracture mechanics are  examined. These relations may explain why a semi- 
empirical fracture analysis will yield good results with one set  of data and poor results 
with another. They may a1s.o indicate which analyses deserve further consideration. 

Over the past decade a number of semiempirical fracture analyses have been pre- 
sented (refs. 1 to 5). 
cracked tension specimens with initial crack length over a range of crack lengths. 
correlations involve the determination of one (refs. 1 to 3) or two (refs. 4 and 5) em- 
pirical parameters from test data. The parameters a re  treated as material properties 
which are  independent of the specimen and crack configurations but which are  functions 
of specimen thickness and such variables as heat treatment and test temperature. The 
analyses often provide very good correlations using some data sets but poor correla- 
tions using other data sets. To date these analyses have only been formulated for and 
applied to test specimen configurations. Thus their applicability to the design of com- 
plex structural configurations is uncertain. 

ence 6 .  The concept postulates that, for a given material and thickness, there is a 
unique relation between the amount of stable crack growth under rising load and the 
crack-tip s t ress  intensity factor. This relation is called the crack extension resistance 
curve, or R-curve, and represents the response of the material in the vicinity of the 
crack tip to externally imposed loading. If the R-curve is known, both failure load and 
critical crack length can be predicted (as functions of initial crack length) for any spe- 

These analyses all attempt to correlate failure stresses for pre- 
The 

The progressive development of the R-curve concept has been reviewed in refer- 



cimen or  structural configuration for which an appropriate s t ress  intensity analysis is  
available. Thus the R-curve concept appears to be a much more useful method than any 
of the semiempirical analyses. 

residual strength (fracture stress as a function of initial crack length) for any test spe- 
cimen configuration. The converse should also be true. That is, if  a relation between 
fracture stress and initial crack length is available, one should be able to calculate the 
corresponding R-curve. This observation was the impetus for the present study, which 
was undertaken to test the following hypotheses: 

R-curve (ERC) whose magnitude and shape a re  determined by the SEFA formulation and 
its empirical parameters. The ERC is equivalent in that i t  predicts exactly the same 
relation between fracture s t ress  and initial crack length as the SEFA. 

the actual R-curve of the material in question and will correlate poorly if the match is 
poor. 

(3) It should be possible to predict the critical crack length in terms of the initial 
crack length and the empirical parameters. 

This report first reviews some characteristics of the R-curve concept when ap- 
plied to finite-width specimens. Next the conditions for equivalence between a semi- 
empirical analysis and an  R-curve a re  derived. A hypothetical material is employed 
to study the relation between R-curves and semiempirical analyses. Finally, equivalent 
R-curves are developed for several real materials using data from the literature. 

If the R-curve for a given material and thickness is available, one can calculate 

(1) For each semiempirical fracture analysis (SEFA) there is an equivalent 

(2) A SEFA will correlate residual strength data closely if  its ERC closely matches 

SYMBOLS 

a 

B specimen thickness 

'm 
E' effective modulus, E for plane s t ress  or E/(1 - v ) for plane strain, where E 

length of single-tip crack or  half-length of double-tip crack, a. + A 

empirical parameter (ref 1) 
2 

is Young's modulus and u is Poisson's ratio 

strain energy release rate 

crack extension resistance 

fracture toughness, GA or  GR at instability condition 

empirical parameter (ref. 3) 

empirical parameter (ref. 4) 

GA 

GR 

GC 

KC 

Kf 
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KTc 

KU 

KI 
m 

n 

W 

Y 

a! 

A 

h 

0- 

OU 

(T 

0 

YS 

empirical parameter (ref. 5) 

empirical parameter (ref. 2) 

opening-mode s t ress  intensity factor 

empirical parameter (ref. 4) 

number of crack tips (one or two) 

specimen width 

stress intensity calibration factor, KI/a$ 

sensitivity factor (eq. (1)) 

effective crack extension (sum of physical crack extension plus a plastic zone 
correction) 

relative crack length, na /w  

stress normal to crack 

ultimate tensile strength 

yield strength 

empirical parameter (ref. 5) 

Subscripts : 

C 

0 

at critical or instability condition 

initial value (prior to loading) 

R-CURVE CONCEPT 

The R-curve concept is illustrated schematically in figure 1 for an infinite body 
containing a crack whose original length is 2a0. The strain energy release rate is 
given by 

2 
G =- 

A E' 

and represents the driving force (per unit thickness) tending to cause crack propagation. 
The material's resistance to crack propagation, GR, is a function of crack extension, A. 
In R-curve analysis the subscripts A, R, and c are  customarily used to denote applied 
and resisting forces and critical values, respectively. The R-curve is located with its 
origin at a = a A s  s t ress  normal to the crack is applied and increased to 90 percent 
of the subsequent critical s t ress  in figure 1, the crack must extend only a small distance 

0' 
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to develop a large resistance. At this point the crack extension resistance equals the 
driving force and the crack is stable. A s  the s t ress  is increased, progressively larger 
amounts of crack extension a re  required to resist  the crack driving force. Finally, at  
the critical stress ac the driving force curve and the R-curve a re  tangent. Beyond the 
point of tangency the driving force increases faster with crack length than does the ma- 
terial's resistance. This instability condition represents the failure of the body. The 
point of tangency defines the fracture toughness Gc and the critical crack length 2ac. 
Since the driving force curve for an infinite body is a straight line, it should be apparent 
that both the fracture toughness Gc and the amount of crack extension at instability Ac 
increase with increasing original crack length 2a0. If the R-curve exhibits a plateau, 
Gc and Ac may asymptotically approach limit values. 

In simple finite bodies and test specimens, the presence of stress-free boundaries 
results in an additional increase in the crack driving force as the crack extends toward 
a boundary. Thus the slope of the driving force curve increases continuously with in- 
creasing crack length. The instability condition for a typical finite-width specimen is 
shown in figure 2 and is determined as follows. For a given specimen configuration and 
loading, the dimensionless s t ress  intensity calibration factor is defined as 

where KI is the opening-mode elastic s t ress  intensity factor, h = na/W is the relative 
crack length, and n is the number of crack tips (one o r  two). If we define a dimension- 
less sensitivity factor as 

then (for constant stress) the crack driving force curve and its slope are 

2 2  E'GA,= Y cr a 

For convenience, the crack extension resistance curve and its slope a re  written here as 
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dGR g'(A) = E' - 
dA 

A t  the instability point, GA = GR and dGA/da = dGR/dA (see fig. 2). If g(A) and 
g'(A) a re  mathematically describable, the instability point is determined by the simul- 
taneous solution of the following equations : 

= Y:<(l+ 2ac) = g' (Ac) 
da 

(3) 

The coefficients Y and a are usually expressed as trigonometric or  polynomial 
functions of the relative crack length A. As  a result, a closed-form simultaneous solu- 
tion is seldom possible, and numerical methods must be used to solve for Ac. 
can be done as follows. Dividing equation (2) by equation (3) and rearranging terms give 

This 

If the functions g(A) and g'(A) and the appropriate equation for a a re  substituted into 
equation (4) then, for prescribed values of a. and W, Ac is the least positive root of 
equation (4). This root can be found by any of several numerical methods. Next, the 
function g(A) i s  evaluated at Ac to calculate g(Ac). Finally, the fracture s t ress  oc 
is obtained from equation (2) using the appropriate value of Yc. In this report the ex- 
press ions 

Y =  rsecant-  ( T2 
for the center-crack specimen (ref. 7) and 

Y=A-1/2(l-  A)-3/2(2+A)(0.866+4.64A- 13 .32A2+ 14.72A3- 5 . 6 A )  4 

for the compact (tension) specimen (ref. 8; A 2 0.2) a re  used except where noted. 
For a crack in an infinite body, both Gc and Ac increase with increasing initial 

crack length. In a finite body, as the initial crack length is increased from zero, Gc 
and Ac increase at first. However, due to the fact that dY/dA continually increases 
with A, both Gc and Ac reach maximum values which depend on the specimen width 
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W and the forms of both the driving force curve and the R-curve. A s  the initial crack 
length is increased still further, both Gc and Ac begin to decrease. This behavior is 
shown schematically in figure 3 where instability curves a re  shown for a wide range of 
initial crac$ lengths. The locus of all instability points is shown by the dashed line. 
From figure 3 it is also apparent that there a re  pairs of initial crack lengths, say 
(nao)l = 0.2W and (nao)2 M 0.7W, which will have the same critical crack extension, 

these initial crack lengths are  related by 
and fracture toughness, (Gc)l, 2. From equation (2), the fracture stresses for 2’ 

Thus there is a relation between fracture stresses for short cracks and long cracks 
which is implicit in the R-curve concept, and this relation is a function of the specimen 
type and the shape of the R-curve. 

If an equation for the R-curve is available, residual strength can be calculated for 
any specimen size and configuration using the procedure which follows equation (4). If 
the R-curve equation has a simple form, it is sometimes possible to develop a dimen- 
sionless residual strength curve. For example, suppose the R-curve is given by 

g(A) = AAb 

where b < 1.0. Then for center-crack specimens the residual strengths a re  as shown 
in figure 4 for two values of the exponent, b = 0.5 ( a  parabola) and b = 0.2. For this 
case the shape of the residual strength curve depends only on the exponent b. Here it 
is obvious that the R-curve concept implies a particular residual strength curve which 
is a function of the specimen type and the R-curve shape. 
ful in later comparisons of R-curves and semiempirical analyses. 

fective crack extension. It is the sum of the physical crack extension plus an adjust- 
ment to account for the effect of crack tip plasticity. The nature of the plasticity ad- 
justment, although technically significant, has no influence on the analyses and conclu- 
sions in this report. 

This implication will be use- 

In concluding this section it should be emphasized that, in  this report, A is the - ef- 

EQUWALE NC Y ANALYSIS 

In the preceding section it was shown that, if a mathematical formulation of the 
R-curve is available, fracture s t ress  can be determined as a function of original crack 
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length. In this section it will be shown that, if an equation for fracture s t ress  as a 
function of original crack length is available, the equivalent R-curve can be determined. 

To do this we must differentiate equation (2) with respect to Ac, and that operation 
requires some prior consideration. For a given specimen type, there a re  many combi- 
nations of specimen width and initial crack length which wil l  result in instability at the 
same point on the R-curve, and each combination has an associated fracture stress.  To 
cause a small change (dAc) in the instability point, there must be a change in the speci- 
men width or  the initial crack length or  both, and there will be a change in the fracture 
stress.  Thus, when differentiating equation (2), the terms W, 0, and a. are  treated 
as variables. First, note that 

Now, differentiating both sides of equation (2) with respect to Ac yields 

“0’ Ac d~ + y (a + Ac) ) : o  
dac 

and substituting equation (3) results in 

(5) 
+ 

E] + (ao + A c )  “(u:) 
dAc dAC 

2ac W 

-4.t this point it is helpful to reduce the problem to one of a single independent variableby 
prescribing the manner in which a. and W may vary. Three cases will be considered. 

Case I: W = Constant (dw = 0) 

Assume that there is a function f such that we can define 
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f(a ) = aC 
0 

( 2)Jf0r w = constant 
OC 

daO 

f'(a ) = - 
0 

Then equation (5) becomes 

and, since dao/dAc # 0, w e  have 

0 = (1 + 2ac)f(a0) + (ao + Ac)f'(ao) 

P.JW assume tha 

Case 11: ao/w = Constant [dW = (W/ao)dao] 

there is a function h such that 

h(a 0 ) CJ C 

a 
for o= constant 

(CJ: ) W 
h'(a ) =  - 

0 
daO 

Now equation (5) becomes 

h(ao) + (ao + Ac)h'(ao) 1 
and since dao/dAc # 0,  we have 

h(ao) + (ao + Ac)h'(ao) 1 
8 
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Case III: a. = Constant (dao = 0) 

This case is of limited usefulness but is included for completeness. Assume that 

there is a function j such that 

d E ) J f o r  a. = constant 

j'(W) = 

Now equation (5) becomes 

and since dW/dAc # 0 and (ao + Ac) # 0, 

For cracks in infinite bodies, a = 0 and equation (6a) becomes 

which, after substituting the infinite-body formulations for f (a,) and f '  (ao) from the 
Appendix, gives Ac for any a 
can be rearranged to give a. as a function of Ac, say 

in terms of the empirical parameters. Then terms 
0 

Substituting this function into equation (2) yields 

E'Gc = YE P(Ac) + Ac] - f [F(Ac)] 

Since equation (7) gives Ac for any value of ao, equation (8a) must give E'Gc for any 
and all values of Ac, which is a definition of the R-curve. Thus, after writing the func- 
tion F in terms of the empirical parameters, it is appropriate to write equation (sa) in 
the general terms of E'GR and A, rather than E'Gc and Ac. The end result is an 
explicit ERC formulation in terms of the empirical parameters. 
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To determine the ERC for cracks in finite bodies, an indirect method is required. 
First, the finite-body formulation for f ,  h, or j and its derivative (see the Appendix) 
a re  substituted into the appropriate one of equations (6). Because of the more compli- 
cated nature of the finite-body formulations, it is unlikely that an explicit function F(Ac) 
will be obtainable. But for any given value of Ac, ;to is a root of equation (6) which 
may be found by standard numerical methods and which represents a single value of 
Fgc ) .  For Case III, of course, one determines W = FUc) and solves for W as a root 
of equation (6c). Substituting the root into equation (Sa) (if Case I) or into 

E'Gc = Y2 C [F(Ac) + AC] h [F(Ac)l if Case I1 

C ] j k(ac)1 if Case I11 

as appropriate yields a discrete point on the ERC. By incrementing Ac and repeating 
the calculation, the ERC can be determined point by point. 

ANALYT1CA.L COMPARISONS 

Dimensionless Equivalent R-Curves 

It is helpful and more efficient to first compare semiempirical fracture analyses 
(SEFA) and equivalent R-curves (ERC) on an analytical basis. 
using the problem of a crack in an infinite plate as a baseline. 

described in the paragraph containing equations (7) and (sa). Substituting equations (Al) 
and (A2) from the Appendix into equations (7) and (sa) with Y: = 7r yields 

This is most easily done 

The infinite-body ERC for Kuhn's analysis (ref. 1) is obtained using the method 

L 
111 

where C 
in dimensionless form in figure 5 (a). 
might be expected to closely match some (but not all) experimental R-curves. 

is an empirical parameter having units (L-1'2). Equation (loa) is plotted 
This curve obviously resembles an R-curve and 

m 
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The infinite-body ERC for Orange's analysis (ref. 2) is obtained in the same man- 
ner. Using equations (A3) and (A4) results in 

A =- 
A 

C 

where Ku is an empirical parameter having units (FL-3'2). These equations define a 
single point. In order to relate this single point to the R-curve concept, the point may 
be thought of as the corner of a step-function, and that step-function might in turn be 
considered as a very simple approximation of an actual R-curve. 

equations (-4.5) and (A6) into equations (7) and (Sa) as before, yielding 
The infinite-body ERC for Feddersen's analysis (ref. 3) is obtained by substituting 

2 

for a. 5 (9/4?r)(Kc/a )2 where Kc is an empirical parameter having units (FL - 3/2) 
YS 

Equation (9c) requires that critical crack extension decrease as original crack length in- 
creases from zero. This is in direct opposition to the R-curve concept and is not sup- 
ported by any data known to this author. Equation (~OC), which is plotted in figure 5(b), 
does not look at all like an R-curve but does satisfy the requirements of coincidence and 
tangency. For a. = 0, the point of tangency is the right terminus of the curve. A s  a. 
increases, the point of tangency moves downward and leftward along the curve. Finally, 
at a. = ( 9 / 4 ~ ) ( K ~ / u ~ ~ ) ~ ,  the point of tangency is the left terminus. 

equations (All) and (Al2) into equations (7') and (Sa) as before, yielding 
The infinite-body ERC for Newman's analysis (ref. 4) is obtained by substituting 
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2 A  E'GR = U 

n. 

where I is an empirical parameter having units (FL -3'2) and m -5 a dimensionless 
empirical coefficient which is not greater than unity. Equation (10d) is plotted in di- 
mensionless form in figure 5 (c) . This ERC is asymptotic to E'GR = ISf, and the coef- 
ficient m determines the rapidity of the approach. A s  m decreases from unity to 
near-zero, the ERC develops a progressively sharper knee. The flexibility of this 
two-parameter ERC should allow it to match R-curves for a wide range of real ma- 
terials. 

2 

The infinite-body ERC for Fbckrath's analysis (ref. 5) is obtained by substituting 
equations ( A l 5 )  and (&6) into equations (7) and (Sa) as before, resulting in 

A C =(:)a 0 

where w is a dimensionless empirical coefficient and KTc is an empirical parameter 
having irrational units (FLU). Equation (loe) is plotted in figure 5(d). This ERC has 
no asymptote, and its slope is infinite at A = 0. Except for notation, it is identical to 
the R-curve model proposed by Broek as equation (10) of reference 9 .  Broek's model 
was derived using R-curve concepts and the experimental observation that, for small 
cracks in wide specimens, the critical crack length is often proportional to the initial 
crack length. 

At this point we can state the following. For each SEFA, in its infinite-body form 
at least, there is indeed an ERC. 
sembles or  approximates an actual R-curve. The ERC for Feddersen's analysis does 
not resemble an R-curve and will not be considered further. 

. 

For four of the analyses considered, the ERC re- 

Comparisons Using Synthetic Data 

Hypothesis (2) of the INTRODUCTION postulates that a SEFA will correlate residual 
strength data closely if its ERC closely matches the actual R-curve and will correlate 
poorly if the match is poor. To test this hypothesis we would need, as a minimum, both 
residual strength data (over a wide range of crack lengths) and R-curve data for two 
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materials having significantly different R-curve shapes. Further, it would be desirable 
to have data for several specimen sizes (including quasi-Knfinite) and specimen types. 
Since no such body of data is known to this author, it was necessary to synthesize one. 
This was done by formulating two R-curve equations using the following guidelines. 
First, to avoid exact fits, neither equation should be mathematically equivalent to one of 
of the ERC formulations previously derived. Second, one curve should have a definite 
knee, the other should be gently curving. Using these two R-curve equations, synthetic 
test  data can be calculated by instability analysis for any specimen size and type. 
practical advantage of this approach is the total absence of data scatter. 

its ultimate tensile strength is 150 and its R-curve is given by 

A 

Unobtainium is assumed to be a heat-treatable material. In the annealed condition, 

E'GR = 8000 d l 0  A - A2 

Since the material is imaginary, the units will be left to the reader's imagination. In 
the aged condition, its ultimate tensile strength is 200 and its R-curve is given by 

E'GR =- 50 Oo0 arctan (IO A) 
7-r 

These are shown in figure 6 .  The coefficients in equations (11) were selected so that 
the significant features of both curves would lie within the ranges 0 5 EIGR 5 25 000 
and 0 1 A s l .  

described in the paragraph containing equation (4). 
here were sized as  follows. 
lengths a. were chosen (by trial and error)  to give Ac values well distributed over 
the entire R-curve. 
crack lengths were used but the specimen widths were fixed at eight times (first ser- 
ies) and four times (second series) the largest initial crack half-length. For the com- 
pact specimens, the ratio ao/W was fixed at 0 . 5  and the widths chosen (again by trial 
and error)  to give approximately the same Ac values a s  those calculated for the 
infinite-width pseudotests. The calculated values of s t ress  and crack extension at in- 
stability are given in table I. The values of s t ress  and initial crack length were then 
used as inputs to the various semiempirical analyses. 

The empirical parameters were determined as follows. Kuhn's parameter Cm 
was calculated for each specimen in the infinite-width series using equation (Al). The 
simple average of seven values Cm is given in table I. The bar  is used here to denote 
the average value for one data set. Orange's parameter Ku was  also calculated for 

The pseudotest data points are  calculated using conventional instability analysis as 
The "specimens" that are  studied 

For the infinite-width pseudotests, the initial crack half- 

For the finite-width center-crack pseudotests, the same initial 

- 
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- 
each specimen in the infinite-width series using equation (A3). 
given in table I is a weighted average determined in the same manner as equation (6) of 
reference 2. Newman's parameters Kf and m were determined using the least- 
squares procedure given in Appendix C of reference 4. Bockrath's parameters KTc 
and W were,determined by a least-squares f i t  of equation (Al.5). Since Bockrath's 
method is restricted to cases where the crack area is less than 10 percent of the gross 
area, specimens having a > W/20 were excluded from the fit.  

The equivalent R-curves were calculated as follows. For the infinite-width series, 
the empirical parameters from table I were simply substituted into the appropriate one 
of equations (10). For the remaining series, the indirect method (described in the par- 
agraph containing eqs. (8b) and (8c)) was used. Specifically, for the finite-width center- 
crack series, equations (&) and (A10) o r  equations (Al5) and (Al.6) were used along 
with equations (6a) and (8a) and the appropriate empirical parameters. For the compact 
specimen series, equations (Al3), (Al4), (6b), and (8b) were used. 

When determining the Newman ERC for constant-finite-width specimen configura- 
tions, some precautions must be taken. For values of Ac near zero, there are three 
positive roots of equation (6a); one at ho near zero, one at ho - 0.44, and one at ho 
near unity. The middle root gives an ERC which resembles the Feddersen ERC of fig- 
ure 5(b) and which should be ignored. The other two roots give ERCs which are  numer- 
ically similar but distinctly different. A s  discussed earlier in the section R-CURVE 
CONCEPTS, the R-curve concept implies a particular relation between fracture stresses 
for short cracks and long cracks. Since Newman's analysis does not match this relat- 
tion, we have separate ERCs for short and long cracks. A s  the value of Ac is in- 
creased, the middle root converges upon one of the other roots whereupon the converged 
roots vanish. In this report, the Newman ERC for constant-finite-width configurations 
is determined using the least positive root of equation (6a) over the range of Ac/W for 
which three positive roots exist. 

The residual strength of the infinite-width Unobtainium is shown in figure 7. For 
the annealed condition, Bockrath's semiempirical fracture analysis (SE FA)  provides a 
nearly perfect fit to the pseudodata. When ranked according to the sum of the squares 
of the deviations, Newman's SEFA, Kuhn's, and Orange's follow in that order. For the 
aged condition, the ranking is quite different. Here Newman's SEFA provides a nearly 
perfect fit, with Orange's, Kuhn's, and Bockrath's following in that order. The equiva- 
lent R-curves (ERCs) a re  shown in figure 8. For the annealed condition, the Bockrath 
ERC matches the actual R-curve almost perfectly. When ranked according to the inte- 
gral of the square of the deviation, the Newman ERC, the Kuhn ERC, and the Orange 
ERC follow in that order. For the aged condition, the Newman ERC is the best match 
to the actual R-curve. The Kuhn ERC, the Bockrath ERC, and the Orange ERC follow 

The average value Ku 

- 
- 

0 
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in that order. The Orange ERC, although crude, is a better match to the aged mate- 
rial than to the annealed. 

in figure 9. The Bockrath ERC predicts crack extension fairly closely for the annealed 
condition, but neither ERC gives a very good prediction for the aged condition. This 
last observation should not be surprising. Returning to figure 2, it should be apparent 
that a small change in the slope of the R-curve near the instability point will cause a 
large change in the critical crack extension but only a small change in the critical 
stress.  Thus when instability calculations a re  made from any R-curve, be it actual or 
equivalent, fracture s t ress  can be predicted with much more confidence than can crack 
extension. 

Since the Orange ERC is rather crude and since Kuhn's SEFA. is equivalent to a 
special case of Newman's (see the Appendix, following eq. ( A l 2 ) ) ,  these two were not 
considered further 
series are  shown in figures 10 and 11. Here the same trends a re  seen as in the infinite- 
width series. The Bockrath ERC is the better match for the annealed condition, while 
the Newman ERC is the better match for the aged condition. Note in table I that the em- 
pirical parameters KTc, w, Kf, and m all vary slightly with specimen width. The 
ERCs shown in figures 8, 10, and 11 are also distinctly different for different specimen 
widths, but the differences a re  slight. 

Since Bockrath's SEFA does not include the compact specimen geometry, only the 
Newman ERC was determined for the compact specimen series. Note again in table I 
that Newman's empirical parameters for the compact specimen series differ from those 
obtained for the various center-crack series. The differences in the parameter Kf 
are  slight; the differences i n  m are  somewhat larger. The Newman ERCs for the 
compact specimen series are  shown in figure 12 .  
lent and actual R-curves is not quite as close as for the center-crack series, but the 
general trend is the same. 
for the annealed. 

Hypothesis (2) of the INTRODUCTION postulates that an SEFA will correlate residual 
strength data closely if its ERC closely matches the actual R-curve and will correlate 
poorly if the match is poor. Strictly speaking, this hypothesis cannot be proven, since 
the ERC magnitude and shape depend on empirical parameters which must be obtained 
from residual strength data. However, the converse appears to be true. That is, if an 
SEFA correlates residual strength data closely, its ERC will  closely match the actual 
R-curve. Furthermore, it is apparent that i f ,  for a given material and thickness, the 
R-curve is unique the various empirical parameters are not, and vice versa. Also, al- 
though it is possible to predict the critical crack length in terms of the original crack 

Critical crack extensions derived from the Newman and Bockrath ERCs a re  shown 

The Newman and Bockrath ERCs for the finite-width center-crack 

- - - 

- 

The correspondence between equiva- 

A much better match is obtained for the aged condition than 

The results of this exercise using synthetic data can be summarized as follows. 
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length and the empirical parameters, this cannot be recommended. The crack extension 
at instability is quite sensitive to small  differences in the slope and magnitude of the 
R-curve near the instability point. 

COMPARISONS USING ACTUAL TEST DATA 

A s  mentioned earlier, experimental studies containing both residual strength and 
actual R-curve data are relatively few in number. Nevertheless, enough were found in 
the literature to allow some comparisons to be made using actual data obtained from 
real materials. 

NASA Data for 2014-T6 Aluminum Alloy 

In reference 10 this author presented test data for 2014-T6 aluminum alloy speci- 
mens 1.5 millimeters (0.06 in.) thick, tested at 77 K (-320' F). Figure 14 in refer- 
ence 10 presented typical curves of crack growth against applied stress for notches of 
six initial lengths in 30-centimeter (12-in0) wide specimens. Those curves were  de- 
veloped by plotting individual crack growth data points for replicate specimens, then 
drawing a smooth curve to give a good visual average. For the present report, those 
data were reanalyzed. The crack extension resistance and effective crack length were 
computed for each data point as 

E'GR = 2meff  secant (%) 

respectively. Since these equations a re  transcendental, an iterative solution was re- 
quired. A total of 176 data points were obtained from 17 specimens with initial crack 
lengths 2a0 ranging from 3 to 100 millimeters (1/8 to 4 in.). The empirical parame- 
ters for the Newman and Bockrath SEFAs were determined in the manner described 
earlier. As before, only specimens with a 5 W/20 were included in the Bockrath 
analysis. The fitted empirical parameters are listed in table 11. 

entire range. 
be poor if extrapolated to longer cracks. The R-curve data points and the equivalent 

0 

Residual strength is shown in figure 13. Newman's SEFA gives a good f i t  over the 
Bockrath's SEFA fits the short-crack data fairly well, but the f i t  would 

16 



R-curves are shown in figure 14. Both ERCs f i t  the data rather well, with Bockrath's 
somewhat better at small crack extensions and Newman's somewhat better for larger 
extensions. These results suggest that the ERC concept applies to real data as well as 
to synthesized data. 

Battelle Data for 7075-T7351 Aluminum Alloy 

Reference 11 contains test data for 7075-T7351 aluminum alloy specimens 25 milli- 
meters (1.0 in.) thick and 40 centimeters (16 in.) wide. This data set  is unusual in that 
the ratios of initial crack length to plate width range uniformly from near-zero to near- 
unity; also, the specimens were instrumented to measure crack opening displacement 
(COD) during loading, and the s t ress  corresponding to a 5-percent secant offset on the 
load-COD curve is reported. A secant offset corresponds to an increase in the effective 
crack length. 
cause such an increase. 

From an R-curve one should be able to predict the s t ress  required to 

Since Bockrath's analysis is restricted to small cracks, only the Newman ERC was 
used here. First Newman's empirical parameters were determined by fitting the re- 
sidual strength data as  described earlier. The s t ress  at 5 percent secant offset is cal- 
culated as  follows. According to reference 12, the crack opening displacement 6 for a 
finite-width center-crack plate is 

where 
- 

2 V1@) = -0.071 - 0.535 A +  0.169 A + 0.020 A3 - 1.071 1-l ln(1 - A) 

The slope of the load-COD curve is thus proportional to 

Let A, be the crack extension at 5 percent secant offset. Then a crack of half- 
length a. + A5 will give a slope 5 percent less  than a crack of half-length ao, or 

17 



where h = 2(a0 + A5)/W. Rearranging terms results in 5 

and A5 is the least positive root of the previous equation, which may be found by stan- 
dard numerical methods. Now that A5 is known, the corresponding crack extension 
resistance E'G5 is obtained from the Newman ERC. Finally the s t ress  at 5 percent 
secant offset o5 is 

dE'G5/7r(ao + A5) secant "(ao + A5)/W 
( T =  

2 4 1 - 0.025 h5 + 0.06 h5 
5 

Here the modified-secant s t ress  intensity factor expression from reference 12  was used 
for greater accuracy at relative crack lengths near unity. 

The fitted empirical parameters a re  given in table 11. Residual strength is shown 
in figure 15, where Newman's SEFA can be seen to f i t  the data reasonably well. The 
stress at 5 percent secant offset is shown in figure 16. Except for the shortest crack, 
the s t ress  predicted by equation (12) agrees well with the reported data, the scatter be- 
ing 110 worse than the scatter in the residual strength. Since the length of the shortest 
crack is less than twice the plate thickness, it is likely that the two-dimensional repre- 
sentation implicit in the analyses is no longer valid. The otherwise good agreement 
suggests that, even though the actual R-curve is not available for comparison, the New- 
man ERC must closely approximate it. 

I 

Alcoa Data for Compact Specimens 

Reference 13 contains test data for compact specimens of 2219-T851 aluminum alloy 
in four thicknesses. Specimen sizes were varied, but the initial crack length was al- 
ways half the specimen width. The maximum loads and the loads designated P are  
reported. The load PQ is the load corresponding to a 5-percent secant offset on the 
load-COD curve and is used to compute the plane strain fracture toughness KIc. As 
was done for the Battelle center-crack specimens, one should be able to predict these 
loads from an ERC. 

only Newman's SEFA is examined here. Newman's empirical parameters were deter- 
mined for each thickness in the manner described earlier for compact specimens. 

Q 

Since Bockrath's SEFA has not been formulated for the compact specimen geometry, 

18 
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According to reference 14, the crack opening displacement Vo measured in a KIc 
test is given by 

2E'V 

P 
-- - 120.7 - 1065.3 A +  4098.2 A2 - 6688.0 A 3 +  4450.5 A4 

Using this expression, the crack extension corresponding to a 5-percent secant offset 
with ac/W = 0.5 is A5 = 0.023 a. and the corresponding crack extension resistance 
E1G5 is thus obtainable from the Newman ERC for the appropriate thickness. The load 
P is then Q 

where B is the specimen thickness and Y5 is the s t ress  intensity calibration factor 
corresponding to a = a. + A = 1.023 ao. The equation from reference 8 given follow- 
ing equation (4) in this report gives Y5 = 13.79 for A = 0.5115. 

with the reported trst loads is generally good, with the average e r ror  for the 32 tests 
being about 8 percent and the largest absolute e r ro r  being less  than 9 KN (2 kip). This 
figure indicates that the Newman ERC can also approximate the actual R-curve using 
residual strength data from compact specimens. 

5 

The predicted loads PQ for each thickness a re  shown in figure 17. Agreement 

Boeing Data for 2219-T87 Aluminum Alloy 

Earlier it was shown using synthetic data that, i f  the actual R-curve is unique, one 
obtains slightly different values of the empirical parameters from data sets for speci- 
mens having different widths. Data from the Boeing Co. for 2219-T87 aluminum alloy 
specimens have the same characteristics. These data originally appeared in an internal 
report (Eichenberger, T. W. : Fracture Resistance Data Summary. Report D2-20947, 
Boeing Airplane C o .  , June 1962) but a re  also tabulated in reference 1. Center-crack 
specimens 2.5 millimeters (0.10 in.) thick were tested. The data for specimens 60 and 
120 centimeters (24 and 48 in.) wide are used here because they cover a wide range of 
crack lengths. 

Bockrath's analysis was not applied since only one of the wider specimens had 
a 5 W/20. Newman's parameters were determined separately for each specimen width, 
and somewhat different values were obtained as can be seen in table 11. The residual 
strength curves f i t  the data quite well, as can be seen in figure 18, with the average 

0 
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e r ro r  being less than & percent. Using a method that is outside the scope of this re- 
port, it was found that the actual R-curve for this material could be estimated by 

15 AO. 554 E'GR = 8.07X10 

2 3  where E'GR is in N /m and A is in cm, o r  by 

9 0.554 E'GR = 1 1 . 2 X l O  A 

where E'G, is in lb2/in. and A is in inches. Residual strengths calculated from 
- _  

this equation using conventional instability analysis are also shown in figure 18. 
agreement is very slightly better than for Newman's SEFA, the average e r ro r  being less 
than 3 percent. The estimated R-curve and the Newman ERCs are  shown in figure 19, 
and as expected the differences a re  small. Although these data tend to support the con- 
cept of a unique R-curve, the differences are so small as  to be within the bounds of 
probable data scatter. 

The 

CONCLUDING REMARKS 

The relations between several semiempirical fracture analyses (SEFA) and the 
R-curve concept of fracture mechanics a re  examined and the conditions for equivalence 
between a SEFA and an R-curve are  derived. A. hypothetical material is employed to 
study the relation analytically. Equivalent R-curves a re  developed for several real ma- 
terials using data from the literature. The results of this study lead to the following 
conclusions: 

1. For each semiempirical fracture analysis (SEFA) there is an equivalent R-curve 
(ERC) whose magnitude and shape a re  determined by the SEFA formulation and its em- 
pirical parameters. The ERC is equivalent in that it predicts exactly the same relation 
beween fracture stress and initial crack length (residual strength) as the SEFA. 

2. I€, for a given set  of data, a SEFA correlates residual strength closely, its ERC 
will closely approximate the effective R-curve of the material. 

3. It is possible to predict the critical crack length in terms of the initial crack 
length and the fitted empirical parameters. However, this is not recommended since 
the crack extension at instability is particularly sensitive to the slope of the R-curve. 

4. Of the five SEFAs examined, Newman's appears to be the most generally useful. 
Bockrath's SEFA, which is only formulated for quasi-infinite bodies, is too restrictive 
for widespread use. Three other SEFAs do not appear to warrant further consideration. 

5. If the effective R-curve is unique, then the various empirical parameters cannot 
be constant, and vice versa. 
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The analytical comparisons made herein indicate that the variations in Newman's 
parameters are  small enough that the differences may well be within the range of nor- 
mal data scatter for real materials. Thus a very carefully planned and conducted ex- 
periment would be required to determine which concept (R-curve or SEFA) is more uni- 
versally applicable. 

Lewis Research Center, 
I National Aeronautics and Space Administration, 

Cleveland, Ohio, September 18, 1979, 
505-02. 
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APPENDIX - SEMIEMPIRICAL FRACTURE ANALYSES 

In this Appendix, equations from references 1 to 5 are  rewritten using the notation 
of this report. Note the following definitions from the text: 

f(a ) = (T 

0 “1 
2) 1 for w = constant 

“c 

daO 

fl(ao) -= - 

h(a ) = uC 
0 

a (e),/ for ; 0 = constant 

hl(a ) = 
0 

daO 

P. Kuhn (1968) 

Equations (3) and (4) of reference 1 give the fracture s t ress  for a finite-width 
center-crack plate as 

“C = au(l - ho) [ 1 + cm 

where Cm is an empirical parameter having units (L-1/2). Thus for an infinite plate, 
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T. Orange (1969) 
! i 

Equation (8) of reference 2 gives the fracture s t ress  for a finite-width center-crack 
plate as 

, 

a2 = K'/W tan c u  

where Ku is an empirical fracture toughness parameter having units (FL-3'2). For an 
infinite plate, this reduces to 

f'(ao) = -f(ao) a + - 
(0 :;) 

C. Feddersen (1970) 

In reference 3, the fracture stress for a finite-width center-crack plate is given in 
equations (6) and (10) by 

CJ = o  
c YS 

I 
and in equation 0) by 

(T = Kc(nao) -1/2 W 
C 

and in equations (8) and (11) by 
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I o  

W for a I- 
' 6  

3 
(T = -  (l - ho, 
c 2  

where (T 
YS 

parameter. 
is the material's yield strength and Kc is an empirical fracture toughness 
For an infinite plate, the first of these three equations reduces to 

and the second to 

f' (ao) = -f(ao) 

-f(ao) 
f '  (ao) = - 

a 
0 

J. Newman (1972) 

Equation (12) of reference 4 gives the fracture s t ress  for a finite-width center- 
crack plate as 

(T = Kf 
C 

b 

? 

where Kf is an empirical fracture toughness parameter and m is a dimensionless 
empirical coefficient which is not greater than unity. Rewritten and differentiated, this 
is 
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-2 

f(a 0 ) = Kf" [{-+ 1 1 - lo y] 

which, for an infinite plate, reduce to 

(A1 1)  

(A.12) 

Note that, if we let m = 1 and kf = uu )r;;/Cm, equation ( A l l )  reduces to equation (Al). 
For the compact (tension) specimen, equations ( l ) ,  (7), and (16) to (19) of reference 15 
result in 

r 1 - 2  

h' (ao) = -h(ao) 1 (A.14) 

where 

25 
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L =  

Equation (1.3) of reference 5 

1 - ho 1 - ho 

G. Bockrath (1972) 

gives the fracture s t ress  for a center-crack plate as 

where U is a dimensionless empirical coefficient and KTc is an empirical toughness 
parameter having irrational units of (FLU). This equation is limited to h 5 0 . 1 ,  which 
approximates an infinite plate. Thus, 

0 

(A.16) 
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0.0953 
.2013 
.3053 

.4081 

.4942 

.6286 

.6760 

162.92 
100.05 

69.64 
52.58 

42.73 
30.21 
19.60 

168.4 
0.7469 

167.0 
0.9533 

TABLE I. - PSEUDOTEST DATA FOR HYPOTHETICAL MATERIAL UNOBTAINKJM 

AND FITTED EMPIRICAL PARAMETERS 

(a) Annealed condition; ultimate tensile strength uu = 150 
~- 

Center crack specimens I Compact specimens 1 aO 

0.10 
.21  
.32 
.44 
.56 

.80 
1.10 
- 
'm 

KU 

- 

- 
- KTc 
W 

- 
- Kf 
m 

a 

0.05 

.36 
1.0 
2.0 
3.2 
6.4 
12.0 

- 
'm 

~~ 

w =  8.8 W 

AC 

0.0980 
.2015 
.3008 
.4044 
.30 36 

.6897 

.9016 

m 

ff 
C 

112.56 
93.25 

83.70 
77.08 
72.36 
65.82 
60.36 

AC 

1.0971 
.1939 

.2773 

.3529 

.4137 

.4996 

.5580 

- 

- 
AC 

). 0945 

.1757 

.2313 

.2692 

.2901 

.2986 

.2713 
~ 

U 
C 

112.42 
92.75 
82.71 
75.43 
69.98 

61.79 
54.09 

a 
C 

6.073 
5.094 
4.591 
4.261 
4.019 
3.630 
3.400 

112.00 
91.36 
80.08 
71.29 
64.26 
52.84 

41.02 

1.355 

111.8 
Not computed 

- 1  I 
62.13 
1.853 

60.76 59.52 
1.727 1.642 I I 

165.7 
0.8549 0.8497 1.0 

@) Aged condition; ultimate tensile strength cu = 200 
. - -.__ 

Center crack specimens Compact specimens 
(ao = 0 .5  W) 

W = 48 
_ .  

W = 96 
~~ 

W 

1 . 2  
4.0 
8.0 

15.0 
23.0 
45.0 

75.0 

__ . .  

-__ 

- 
uC 

162.93 
100.08 

69.77 
52.91 

43.37 
31.93 
23.95 

. 

U 

162.93 
100.07 

69.74 
52.82 
43.21 
31.50 

22.87 

- .. .. -. 

AC 
- 

0.0953 
.20 14 
.3067 
.4135 
.5093 
.6978 
.9 346 

AC 

3.0953 
.2014 
.3064 
.4121 
.5054 

.6791 

.8566 

AC 

0.1011 

.2049 

.2943 

.4042 

.5001 

.6971 

.a971 

a 

8.006 

5.864 
4.592 
3.579 
2.988 
2.221 

1.759 

1.820 
Not computed 

140.7 

63.80 
0.838 

.. .~ 

66.57 
1.151 

163.3 

0.7266 
. .__ 

166.0 
0.7378 
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. _ _ _  - 

Empirical parameters  (ref. 4) Data Alloy 
source 

Ref. 10 2014-T6 

Ref. 11 7075-T7351 

Ref. 1 3  2219-T851 

_. 

Ref. 1 2219-T87 

Specimen 
constant 

- -  

W = 30 cm 

W = 40 cm 

B = 13 mm 
B = 25 m m  
B = 38 m m  
B = 50 mm 

W = 60 cm 
W = 120 c m  

~ -. ~ 

.__.c .- - 

__ - - - 

FOR TEST DATA. FROM 

Kf 

MN-me3/' 
- 

89.9 

84.1 

101.4 
78.2 
65.4 
58.4 

183.1 
210.2 

- __ 

k s i c  

81.8 

76.5 

92.3 
71.1 
59.5 
53.1 

166.6 
191.3 

_ _  

- -. 

- 

- 

m 

__ . ~ 

0.8094 

1.0 

1.0 
1.0 

~.- 

.8921 

.6997 

0.8841 
1.0 

-~~ 

- .. 

THE LITERATURE 

in least squares  fit. 

.~ ~ ~~ 

Empirical parameters  (ref. 5)a 
__ - 

I 

99.70 I 34790 I 2.188 

Not computed 

CRACK LENGTH, a 

Figure 1. - Schematic representation of R-curve instabi l i ty  concept 
for an i n f i n i t e  body. 
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1.5 - \ 

CRACK LENGTH, a 

Figure 2. - R-curve instabil ity concept for  a f in i te  body. 

'\ 

0 .2  . 4  .6 .8 1.0 
RELATIVE CRACK LENGTH, h 

'\ 
\ 
I 
I 

GR 

Figure 3. - R-curve instabil ity for  a wide range of in i t ia l  crack lengths. 

0 . 2  . 4  .6 .8 1.0 
RELATIVE ORIGINAL CRACK LENGTH, 2ao/W 

Figure 4. - Dimensionless residual strength fo r  center-crack specimens 
of a material w i th  a n  R-curve of the  general form E'GR = A(Ajb. 
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(a) K u h n ' s  analysis (ref. 1). 
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(c) Newman's analysis (ref. 4). 
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(b) Feddersen's analysis (ref. 3). 
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(d) Bockrath 's analysis (ref. 5). 
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F igu re  5. - Dimensionless R-curves equivalent to var ious semiempirical f rac tu re  analyses for t h e  case of a crack in a n  i n f i n i t e  plate. 
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CRACK EXTENSION, A 

Figure 6. - R-curves for hypothetical material Unobtanium. 

PSEUDOTEST DATA ----- KUHN SEFA (EQ. (A l ) )  - -- ORANGE SEFA (EO. (A3)) ----- NEWMAN SEFA (EQ. (A9)) --- BOCKRATH SEFA (EQ. (A1511 
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Figure 7. - Residual strength of hypothetical material Unobtainium, inf in i te width series; various semiempirical fracture 
analysis (SEFA) f i t  to pseudotest data. 
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F igure 8. - A c t u a l  R-curves and equivalent R-curves 
(ERC) for  hypothetical material Unobtainium; i n f i n i t e -  
width series. 
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Figure 9. - Crit ical crack extension for hypothetical material Unobtainium; inf in i te width series; calculated from actual R-curves and  from equiva- 
lent R-curves (ERC). 
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Figure 12. - Actual  R-curves and  equivalent R-curves (ERC) for  hypothetical mater ia l  Unobtainium; compact specimens; a,/W = 0.5. 
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Figure 13. - Residual strength of 2014-T6 a lum inum alloy sheet 
at 77 K (ref. 10); two semiempirical f racture analyses (SEFA) 
fit  to test data. 
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Figure 17. - Load at 5 percent secant offset PQ f o r  2219-T851 a l u m i n u m  alloy 
compact specimens (ref. 131, predicted from Newman equivalent R-curve. 
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Figure 18. - Residual strength of 2219-T87 a l u m i n u m  alloy sheet 
(ref. 1) calculated from Newman's semiempir ical f rac tu re  analy- 
sis (SEFAI and from estimated R-curve. 

25x109 

M N' .F 20 I 
P I  

& I  
L '  

0 15 - 
* I  2 
C '  

c3 

W- 

v , l  
W '  
(11 

z 
v, 

+ 

P 10 - 
5 
5 

a 
Y 
V 

6 5 -  

1 

0 -  

3 x p  

/ 
/ 

/ 
/ 

CRACK EXTENSION, A, cm 

0 1 2 3 4 
CRACK EXTENSION, A, in. 

Figure 19. - Equivalent R-curves (ERCI and estimated R-curve fo r  
2219-T87 a l u m i n u m  alloy sheet (ref. 11. 



i 

9. Security Classif. (of this report) 20. Security Classif. (of this page) 
Unclassified Unc las sif ied 

1. Report No. 

NASA TP-1600 

21. NO. of Pages 22. Price’ 

44 A03 

4. Title and Subtitle 

A RELATION BETWEEN SEMIEMPIRICAL FRACTURE 
ANALYSES AND R-CURVES 

7. Author(s) 

Thomas W. Orange 

. .  -. - - - ~ _ _ _ _  

9. Performing Organization Name and Address 

National Aeronautics and Space Administration 
Lewis Research  Center 
Cleveland, Ohio 44135 

National Aeronautics and Space Administration 
Washington, D. C. 20546 

12. Sponsoring Agency Name and Address 

3. Recipient’s Catalog No 

5. Report Date 
January 1980 

~ 

6. Performing Organization Code 

8. Performing Organization Report No 

- 
E-9963 

10. Work Unit No. 

505-02 
11. Contract or Grant No 

13. Type of Report and Period Covered 

Technical P a p e r  
14. Sponsoring Agency Code 

15. Supplementary Notes 

- 
16. Abstract 

The relations between s e v e r a l  semiempir ical  f r ac tu re  analyses (SEFA) and the R-curve concept 
of f r ac tu re  mechanics are examined and the conditions fo r  equivalence between a SEFA and a n  
R-curve are derived. A hypothetical mater ia l  is employed to  study the relation analytically. 
Equivalent R-curves are developed f o r  s e v e r a l  r e a l  mater ia ls  using data f rom the l i terature .  
F o r  each SEFA the re  is a n  equivalent R-curve whose magnitude and shape are determined by 
the SEFA formulation and i ts  empir ical  pa rame te r s .  
the various empir ical  pa rame te r s  cannot be constant, and vice ve r sa .  However, for  one SEFA 
the differences are s m a l l  enough that they may b e  within the range of normal  data sca t t e r  fo r  
real mater ia ls .  

If the R-curve is indeed unique, then 

7. Key Words (Suggested by Author(s) 1 

Cracks;  Crack  growth; F r a c t u r e  mechanics; 
F r a c t u r e  propert ies ;  Resistance curves;  
Residual strength; Semiempirical  analyses 

18. Distribution Statement 

Unclassified - unlimited 
STAR Category 39 

NASA-Langley, 1980 

? 



THIRD-CLASS BULK RATE National Aeronautics and Postage and Fees Paid 
National Aeronautics and 
Space Administration 

Washington, D.C. NASA451 Q Us.lllWL 

Space Administration 

20546 
Official Business 

Penalty for Private Use, $300 

f6 1 1U,D, 1227 19 S U W Y U j D S  
DEPT OF THE A I 3  FORCE 
Af WXEBPOBS LABORATO3P 
ATTN: TECHNICAL LIBRBRY (SUL) 
K I R T L A N D  APB N M  87117 

M S A  POSTMASTER: If Undeliverable (Section 158 
Postal Manual) Do Not Return 


