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ABSTRACT

This discussion of time series data produced by random physi-
cal processes emphasizes astrophysical data analysis. Several ran-
dom process models phrased in the time domain are defined and dis-
cussed. The moving average (MA) model represents the data as a
sequence of pulses occurring randomly in time, with random ampli-

tudes. The autoregressive (AR) model represents the correlations

in the process in terms of a linear function of its past values

and is closely related to the differential equation describing the
dynamics of the system. A given stationary process always has both
a MA and an AR representation, and one can easily be transformed
into the other using the discrete Fourier transform. The moving

average form is usually more suitable for interpretation, as the

pulses and pulse amplitudes often have direct physical significance.

But the AR parameters are easier to determine from the time series
data. Hence the procedure is to determine the best AR model from
the sampled data, and then transform it to a MA for interpretation

and comparison with theory. The technique for determining the AR
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parameters is based on interpreting the AR model as a filter which,
when applied to the data, yields the sequence of pulse amplitudes.
The parameters are adjusted to maximize the randomness of the pulse
amplitudes — that 1is, to make them as statistically independent as
possible. (It is not enough to make the amplitudes uncorrelated,
or white.) This maximization is implemented by specifying that the
joint cumulative probability function of the pulse amplitudes be as
close as possible to the product of the individual cumulative dis-
tribution functionz. A procedure for carrying this out is presented
as a FORTRAN algorithm which has proven to be relatively stable
numerically. Results of test cases are given to study the effects
of adding noise and of different distributions for the pulse ampli-
tudes. A preliminary analysis of the optical light curve of the

quasar 3C 273 is given.

I. INTRODUCTION: ASTRONOMICAL TIME SERIES

This mcstly self-contained introduction to time domain models
of intrinsically random physical processes is directed toward
astronomers and scientists in related fields, particularly those
involved in the analysis and interpretation of data. The goals are
to develop an intuitive understanding for this view of random pro-
cesses and to give specific numerical techniques for the analysis
of time series data. Many of the concepts presented here have been

developed in other literatures, especially those of geophysics,




economics, and speech analysis. Appropriate references will be
given; although the terminology and basic philosophy will be some-
what different, the reader is urged to consult these references.

Of particular value are the following reviews, which parallel the
present work in their viewpoint and emphasis on applications to
data analysis: Wold (1964) (especially the two chapters by E. A.
Robinson), Robinson (1962, 1967b), Box and Jenkins (1970),
Kanasewich (1975), Claerbout (1976), and Granger and Newbold (1977).
Reviews of stochastic processes in astronomy are given by Deeming
(1970), Rothschild (1977), and Press (1978). A pioneering paper in
the application of time domain models of random processes in astron-
omy is Fahlman and Ulrych's (1975) analysis of the optical light
curve of 3C 273 [see also Ulrych and Clayton (1976) and Ulrych and
Bishop (1975)]. There are several books devoted to explicit com-
puter codes for some of the operations discussed here (Simpson
1966; Robinson 1967a; and Enochson and Otnes 1968). Texts are
available on the following related topics: time series analysis
(Hannan 1970; Anderson 1°71), stochastic processes (Doob 1953;
Parzen 1962; Bailey 1964; Papoulis 1965), prediction and optimiza-
tion theory (Wiener 1949; Whittle 1963; Luenberger 1969), and
probability theory (Feller 1957; Parzen 1960). There are also
several interesting collections of related papers (Wax 1954;
Rosenblatt 1963; Parzen 1967; and Krishnaiah 1969). The December

1974 issue of the IEEE Transactions on Automatic Control was dervoted

VR o -




to system identification and time-series analysis [see the papers
by Hannan (1975), Akaike(1975), and Parzen (1975); sece also Kailath
(1974)]. For an extensive bibliography (roughly 10,000 entries)
on time series and stochastic processes, complete through 1959, as
well as an interesting ''graphic introduction to stochastic processes’
see Wold (1965).

Data from astronomy as well as from other physical and biologi-
cal sciences often consist of a sequence of numbers,
{Xl’ Koy X3s o v oy XN}, obtained by measurement of quantity X at a
set of times, {tl, T,y Tas o v 0y ty}. Such a sequence is a time

series, and the data are time series data. The sample time series

in Figure 1(a) illustrates a feature common in astronomical obser-
vations, brought about by practical considerations such as observ-
ing schedules, weather, equipment malfunction, etc.: the time
points ti are not evenly spaced. (It is then said that the sampling
is uneven.) Several ways of graphically indicating to what degree
the sampling it uneven are demonstrated in parts (b), (c), and (d)
of the figure. Sometimes it is assumed that X is actually constant,
and the repeated measurements are made to reduce- the uncertainty

due to observational errors — such data are not really time series
data, because the serial or sequential nature of the observations

is irrelevant (i.e., the time-ordering contains no useful informa-
tion). This paper deals only with the situation where X may undergo

real variations with time, and the sequential nature of the

_—
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observations is crucial to the clucidation of the variations. The
goal of the analysis — once the existen e of such variations has
been established — is the extraction of information about the physi-
cal process which gives rise to the variations,

This goal is usually approached by identifying a pattern in
the otserved variations and then trying to uncover the cause or
explanation of the pattern, often In terms of a physical model. For
example, the pattern may consist of a4 definite functional d.pendence
of X on %, such as a linear variation or a harmonic oscillation
partially hidden behind noise. One then attempts to fit to the data
a function (or model), the form of which is usually suggested by
prior knowledge, physical understanding or guesswork. This fitting
is usually carried out by minimizing, with respect to the model
parameters, a measure of the difference between the model and the
observations. This measure is usually defined as the sum of some
positive-definite function of the peoint-by-point difference between
the model and the data. The most common such measure is the sum-
of -squares of the X-differences, and the result is the ubiquitous
least-squares procedure.

But what if there is no consistent pattern to the data? It may
be, for example, that the data come from a physical system that is
random. In rome cases the process is intrinsically random because
of quantum mechanical effects — for example, a radioactive decay

process. In cthers, one should perhaps say the process is




effectively random, because detailed kuowledge of the initial con-
ditions and of the governing physical laws might yield predictabil-
ity (nonrandomness) for the system, but such knowledge may be
virtually impossible or simply not practical. This situation is
increasingly important in astrophysics, and examples could be cited
from many areas, especially X-ray and radioc astronomy. Is there
any physical iaformation to be extracted from such random data?

The danswer 1s yes, and the basic subject of this paper is the
modeling of random processes to obtain concise and useful descrip~
tions of the underlying physical processes. The discussion of the
fundamental concept of random process in §II is oriented toward
astrophysical data analysis and description in the time domain.

Just as with deterministic processes, there is an infinite variety
of possible forms or models which can be used to describe random
processes. Familiar examples are shot noise models (Terrell and
Olsen 1970; Terrell 1972), random walks (Wax 1954), diffusion models
(Wax 1954), Markov chains (Doob 1953), discrete branching processes,
birth and death processes, competition and predation, queueing pro-
cesses (Bailey 1964), and other speciali-e~d techniques (e.g.,
Chandrasekhar and Munch 1951). 1In 8IT e descriptions of several
types of models which are less familiar to astronomers. though
ironically the models originated long ago in an astrophysical con-
text (Yule 1927), namely the analysis of sunspot data. These models

are emphasized here because of their direct physical interpretations
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[e.g., in terms of randomly occurring pulses (§III)] and because of
their very general applicability (8IV). A common feature of these

models is their simple and explicit separation of the nonrandom

from the random parts of the process; this feature is responsible

for their usefulness, because such a separation usually has a clear
physical basis — i.e., the random and nonrandom parts correspond to
fundamentally different aspects of the process. Such a separation
is assured only for stationary processes (defined in §IIa). We
shall almost always assume that we are dealing with physical pro-
cesses that satisfy the stationarity condition. For practical
reasons we shall always assume that the time sampling is discrete
(see 8IIa) rather than continuous. All processes will be assumed
ergodic — i.e., such that time averages (determined from one
realization) are the same as statistical averages (determined from
an ensemble of realizations). In addition, non-Gaussian processes
will play an important role, becauce Gaussian processes cannot be
unambiguously modeled in the way mentioned (see §IV). Model con~
struction procedures are outlined in §IV; computational details
appear in §V, and examples of the computations are presented in
§VI. The Appendix contains a description of the algorithm, together

with FORTRAN code, for the deconvolution of time series using cumu-

lative distribution functions.
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II. MODELING RANDOM PROCESSES IN THE TIME DOMAIN

This section begins with a brief account of the theory of
random processes. Rather than a rigorous mathematical treatment,
it is an informal heuristic discussion emphasizing a particular
context — namely the interpretation of time series data pro“uced by
a physical process which is at least partly random. This situation
is common in astrophysics as well as nearly all other quantitative
snieunces. Interpretation often means the construction of a model
of the physical process. This section will discuss several ways of
mathematically modeling a random process in the time domain. Fre- v
quency domain techniques, such as power spectrum aanalysis, are most
useful when harmonic variations are present but are less suited to
random variations. Two goals of this paper are to demonstrate the
richness and usefulness of time domain analysis, and to indicate
the type of problem for which it is superior to frequency domain
analysis. The text by Box and Jenkins (1970) provides a good over-
view of this subject. The paper by Shinners (1974) is an interest-
ing and practical discussion of the application of modeling tech-

niques to human behavior.

al) Time Series and Random Proccsses

Consider a physical variable X that can be measured as a func-
tion of time ¢t. 1In practice the values of £ are not continuous but

discrete because data recording equipment is capable of sampling

"
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the observed quantity only at a finite number of times, separated
by some minimum time interval. There is thus a finite series of
values of ¢, {t;}, ¢ =1, 2, 3, . . ., ¥. The corresponding values
of X form the set {X; = X(¢;)}, ¢ =1, 2, 3, . . ., N. Often the
values of ¢ can be chosen to be evenly spaced, so that ¢; = 1At,
where At is the constant interval between the times of observation.
In any case the set of numbers {X{} is called a time series.

Figure 2 shows an example of a discrete, evenly spaced time series.
Despite the name, time series are not limited to functions of time,
which here stands for any independent variable of interest. Other

examples are: position in space (three-dimensional), pesition on

the sky (two-dimensional), and wavelength (one-dimensional). Because

the term time series is used in all cases, it should be kept in

mind that ¢ may stand for a variable other than time, possibly of

multiple dimensionality. Sometimes the term sequential analysis

b is used in place of time series analysis to emphasize the key
l property that the numbers X; are sequentially related to each other.
, The dependent variable X may also be of multiple dimensionality.
A process is a rule or procedure that generates time series.,
That is, it is a prescription for determining the values of X for
a given set of values of ¢ and may or may not include a random
element. Each such time series is called a realization of the
process, and it is important to distinguish the process from a spe-

cific realization. The process can be identified with the set of

10




FIG. 2.-This artificial time series consists of a sequence of
decaying exponential pulses occurring randomly in time in the sense
that the amplitude of the pulse starting at any given time is a
random variable. The sequence of pulse amplitudes was obtained by
raising a sequence of random variables uniformly distributed on
(0,1) to the ninth power. The horizontal axis represents time,
which 1s discrete and evenly spaced, although straight 1liaes have
been drawn through the data points to give the curve more of the
appearance of a continuous function. The apparent trend of dimin-
ishing amplitude with increasing time 1is spurious — the process
generating these data {s completely stationary.

11




all possible realizations of it. Figure 3 shows two more realiza-
tions of the same process which generated the time seriles in
Figure 2.

The most interesting processes are those for which the rule
gencrating the time series specifies probability distributions of
the X;, rather than specific values that are the same at every

realization. 1TIn this case we have a random process, which can be

thought of as a set of random variables, TX;}. For precise defini-
tions and discussions of random variables the reader is referred tc
any text on probability or stochastic processes (e.g., Feller 1957;

Parzen 1960, 1962). Tt is merely stated that a random variable,

Yy, can be specified by giving its probability distribution, Py,

defined such that

{ 7aY

FY ()de = Prix X{ <o+ Jdad (1)

| in the usual limiting sense.* TIn many cases two random variables

[ *"1n{®} stands for the probability of event ®. 1In these defi-
nitions and elsewhere we shall use capital letters for the process 1
(Y) or random variable (i;), and lower case for specific values of

the random variable (e.g., x).

are related to each other, e.g., knowledge of the value of one may
provide information about the other. There are two important
definitions concerning the degree of such relatedness: two random
variables, Y and Y, are said to be

12
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INDEPENDENT (of each other) if their joint probability dis-
tribution function equals the product of their individual
probability distribution functions:

FXY(:c,y) = PX(x)PY(y), for all x and y

and

UNCORRELATED if the expected value of their product equals
the prcduct of their expected values:

(Xy) = (X))

The joint probability distribution Pyy is defined by
PXY(x,y)dxdy=Pr{ng§x+dx and y s Ysy+dyl. (2)

The notation (®) is used for the expected value of :.c quantity ®:

(@) =f FX(x)q(:x:)dr . 3)

The more familiar definition of uncorrelation is for the case where
the processes are assumed (or made) to be zero-mean, so that (XY)
also vanishes. Note that independence is the stronger of the two
properties; it is easy to show that independence implies uncorrela-
tion, but not vice versa. This is a key fact, and later we shall
deal with variables that are uncorrelated with each other, but are
not independently distributed. Tuere is a third property, inter-
mediate between independence and uncorrelation:

14




X has the MARTINGALE DIFFERENCE PROPERTY (MDP) with respect
to Y if the conditional expectation value of X (given the

value of Y) is the same as the unconditional expectation

value of X: (X|Y) = (X).

The name Martingal Difference Proper.. (Segall 1976), is based on
the fact that this kind of process is to a martingale as an indepen-
dently distributed process is to a process with independent incre-
ments., (Martingales and processes with independent or uncorrelated
increments are defined in continuous time and will be of no concern
here.) It can be shown that if X and Y are independent, they each
have the MDP with respect to the other; in turn, if X has the MDP
with respect to Y, then X and Y are uncorrelated.

Let us now be more precise with the definition of a process,
which was already defined as a set of random variables. Take the
set to be finite, with /¥ members. The process is completely speci-
fied by giving any one of the following functions:

(1) The complete joint probability distribution function

P ~ ‘
XXy, -,XN(JI’ Toy oo xN)dxl(irz e . irN
=Prlz, s X, s +dr)and x) £ X, g7, +dzx,
and . . . and x, 5 Xy 5 T, + de} (4)
(2) The joint cumulative distribution function
FX|,XQ, X (B, Xy vv ey xN) = zﬂ{hl s x) and A: s,
N
and and X, g xN} (5)




(3) The joint characteristic function

¢X1,X2,...,XN(“1’ Ugs « o v uN)

= <éxp i(ulX] Uk, L+ uNXN)> (6)
Equations (5) and (6) are straightforward generalizations of the

individual cumulative distribution function

FX(x) = Pp{X < r} (7

and the characteristic function

¢X(u) = (exp(ZuX)) (8

of a single random variable X. One can define what is called the

moment~generating function by dropping the ¢ in the definition of

the characteristic function, but it does not always exist and is
therefore of less theoretical importance. Nevertheless, it is of
some practical use because of the concise way the nature of a
variable can be expressed in terms of its moments.

We shall now distinguish several degrees of randomness. It is
convenient to define these categories in terms of predictability.

A process 1s said to be deterministic if, based on past observations,

the future of the process can be predicted exactly (i.e., with zero
error). An example of such a process is one with no probabilistic
element at all, such as the sinusoid X; = sin(wti + ¢); in this
case all realizations are the same. However, there are purely
deterministic processes for which each realization is different.

The above sinusoid would be an example if the phase Jere a random
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variable, fixed during each realization but chosen randomly each
time — each realization would be exactly predictable once the phase
had been determined by observation. An example of a deterministic
process from astronomy would be a perfectly regular variable star.

A random process, on the other hand, is not perfertly predict-

able. Even if the rule generating the time series is known com-
pletely, it has a stochastic nature. Different realizations are
therefore different and share only statistical properties (cf.
Figs. 2 and 3). Discussions of the concept of prediction of time
series can be found in texts by Whittle (1963), Robinson (1964b),
Hannan (1970), and Granger and Newbold (1977). For the present
purposes the important point is that while past observations may
provide useful predictive information, for a random process there
is nevertheless always some uncertainty or error in the predictions,
even in the limit that the available data extend infinitely into
the past. A case of particular importance is that in which past
data provide no information about present or future values. (This
must be made precise, because observations of the past provide some
statistical information no matter how random the process: Because
of stationarity, the mean value derived from past data is the best
prediction for Xh). In such cases there is no deterministic ele-

ment, so the process can be called purely random. As with individ-

val random variables there uare three degrees of lack of determinism

which it is crucial to distinguish.

17




The first is independence. A process is independently distrib-

uted (i.d.) if all of the random variables are independent of each
other. Then the past provides no information about the present.
There are four equivalent conditions which are necessary and suffi-
cient that X, X,s « « ., Xy are independent; i.e., that the pro-
cess X is independently distributed (Parzen 1962):

(1) In tcrms of probability distributions: for all real

numbers y, I, < Ty

™

LOUD SN o ‘ 1

I

. (2) In terms of cumulative distribution functions: for all

real numbers Tys Loy oo -y Ty

.y R € U - )
Al,kz,...,AM 1 2 YoM

= P (x))F, (2,) « o . Foo(2,)- (10)
Xy, M X, N

i

(3) 1In terms of characteristic functions: for all real num-

bers e Hay o o oy iy,

- i

\ S . (1 u 7
*xl,.xz....,AN( 1* L ¥

= ¢Xl(u1)¢xq(u?) e ¢T4fuﬁ) . (11)

i

(4) In terms of expectations: for all functions

‘Jlo ﬁJ:,o o e ey ‘JN
é;l(k’l)g?(.\’ﬂ) . e . 57".1(‘)"1!.{))

= <71(X18><:?(X?)> .. <Hﬁﬁ})>. a2y

P, (xl, Loy oo x”) = IX (x])}kﬁ(xz) . e ?XV(xM) . (9)
‘ M
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provided all of the expectations indicated in this equation exist,
These relationships must hold for ¥= 2, 3, . . ., N. 1If, in addi-
tion, the Xi all have the same individual distributions, then X is

said to be identically and independently distributed (i.1.d.).

Independence is the strongest form of lack of relation and absence

of predictability. The term purely random will be reserved for

independently distributed processes.

A second and weaker description of a process is that it is
uncorrelated. For a process with zero mean value, this means that
the autocorrelation function vanishes for all except zero lag;
that is,

= = 52
o (X Xp) = <XnXm> 6 m (13)

(6 is the Kronecker delta, which vanishes if n # m, and 1is unity

n,m
for n =my o = <Xn2>.) Since <XnXm> is zero if X, and X are
independent of each other and can be nonzero otherwise, the auto-
correlation function contains some information about dependence.
Its vanishing implies a degree of lack of mutual dependence — but,
as we shall see, not total :i::ence.

We will d.al almost exclusively with stationary processes.
Most discussions of stationary random processes assume that the

mean value of all processes is zero — because if it is not, the

constant mean can be subtracted. If

Xy = X, - <Xn> : (14)
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the new process X' has zero mean. However, this will not be done
because there are cases where the positivz definite natur¢ of a
signal is crucial (e.g., the examples in Figs. 2 and 3). This
matter will be discussed further in §VIf.

Figure 4 shows examples of four types of nrocesses: determinis-
tiz, random, uncorrelated, and independently distributed. Note
particularly the process depicted in part (c¢), which is uncorrelated
but not independently distributed. (This , :88 will be examined
in detail in §IVb.) Another example of an uncorrelated but depen-
dent process can be constructed as tcllows: Y¢+ - Le any zero-
mean random variable. Define X = §;X;, where s, is randomly +1 or
-1 with equal probability (p = 1/2). 1In general let X, = snXl,
where the s, are defined similarly to 8,, but are independent of
each other and of 8,- It is easy to show that (XnXm) =0 form ¢ n,
because Pz(Xﬁ,Xm) is an even function of at least one of its argu-
ments., “nt the Xh are most definitely not independent, as
{X,] = |x,| for all n > 1. On the other hand, it is straightforward
to show that if a process is independently distributed, then it is
ur.correlated. Most data arise from a process which has a random
aspect to it but is neither uncorrelated nor independently distrib-
uted; such is called a partially random process. In general a
process can contain both deterministic and random components. Iudeed,

it can be shown that any stationavy process’ contains only these

ta stationary process is one whose statistical properties do

uot depend on time. Strict stationarity means that all of the joint
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FIG. 4.-Time series produced by four different types of nro-
cesses (left) and the corresponding autocorrelations (right). The
dashed line is the theoretical autocorrelation, and the solid line
is the estimate from the realization shown. The processes are:

(a) a since wave, (b) a moving average, (¢) a moving average with the
uncorrelated pulse shape shown in Figure 17, and (d) independently
distributed noise with a highly nonnormal distribution. [The auto-
correlation of the sine wave im part (a) is damped because a finite
realization was used to compute it.]
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probability distributions are invariant to a translation of time. :
- \,'1
There are other kinds of stationarity that are less restrictive, - 4

but we will not need to distinguish between them.

S - — |

two components, and the separation between them can be written in u
surprisingly simple and explicit form., This separation, calied the

Wold decomposition, will be discussed in detall in §1V.

It may seem strange, especlally to the reader unfamiliar with

the econometric apprvach to time serfes analvsis (Wold 1964), thot
s0 much emphasis is put on prediction. But the relationship between
prediction and statistical description s clear: a good prediction
of the values of a process depends on good knowledge of {ts statis-
tical properties. It will be scen that the concept of predict ton
must be extended to include the use of future data (f.e., estimat fon
of X, based on ), 4, X“+?. « o W) as well as past data. That is,
one pretends that X, is unknown and tries to estimate or predict its

IR U

value based on knowledge of the neighboring values \U
This approach leads to the concept of a two-sided (acausal) prediction-
errov fi{lter, which forms the basis of the technique to be described
in #lV for the extraction of information from time serfes data,

The ability to know when two random processes, sav 4V oand Y, are
really the sume {5 {mportant. This does not mean that spoecitie

reallzations of the processes are ecqual point=byv-point (i.e.,

A, = Y, tor all ») because even ditferent realtizat{ons of the same




random process are not equal point-by-point. What is meant 1is that

the probabilistic rules for X and Y are the same. Specifically,

the joint probability functions listed in §I must be identical.

D) White Nolse; Iidependently Distributed Noise

0f special importance is the class of random processes A which
satisfy all three of the following conditions:

1) (Hn) = 0 (zero mean value),

~~
ta
S’
—~
&3]
-
to
h
|

~
= 0% < » (finite variance), and

(3) (H”Hm) = 0 for m # » (uncorrelated).

Such a process is called white noise. Nothing is said in this
definition about the probability distribution of A. There are many
different kinds of white noise, according to the probability dis-
tribution. Gaussian, or normally distributed noise is very common,

because of the fact expressed in the Central Limit Theorem.¥ It is

¥The sum of independent random variables with any distributic:s
tends to be normally distributed as the number of variables

increases (Claerbout 1976, 54.5).

also not necessarily true that the #,, be independently distributed,
t.e., that &), be statistically independent of i), for u # m. White

noise may be independently distributed noise or just uncorrelated

noise.  Both are "white'" because the power spectrum of an uncorre-

lated process (and therefore of any independently distributed
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process) is constant with frequency. Figure 5 and Figures 4(¢)

and 4(d) are examples of white noise with various distributions.
Note further that only the second moment of R has been specified.
The third and higher moments ETﬁggﬁnRZ), etc., are not determined,
although they are not completely arbitrary either, as they must

conform to conditions (1) through (3) above.

e} The Moving Average (MA) Model

A model of a random process is an explicit mathematical descrip-
tion which is usually an attempt to describe a physical process in
simple terms. It often involves a relatively small number of param-
eters, the values of which are to be determined by some procedure
using the observed time series data (i.e., one or more realizations

of the process). An extremely useful model is the moving;averagp§

§Unfortunately this term is also sometimes used for the proce-
dure of smoothing data with a running mean, formally similar to the

summation involved in the MA.

(MA). An MA is a process in the form 2 Fkﬁr o where # is a
K =

white noise process and the Fk are constants. The arrav of con-

stants = {Uk} is called a filter or linear system. The reason for

this terminology is that the above expression describes the output
of an electrical filter into which is put a random sequence A of

impulses (noise). That is, Uk regarded as a function of discrete
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time X describes the shape of a pulse that would result from an

impulsive or delta-function input; Ck is the impulse response of
the filter. This is easily seen by letting Rn be set equal to a

§ ), which then yields

delta function at » =n' (i.e., R, = '
! My

X, =

y C"_”' — that is the pulse {Cf} with its origin, { = 0, shifted
to time n'. It is easily seen that if there are several or many
non-zero values of #,,, each one produces a pulse at time 1, of

Al

amplitude &,,. The net result is a sequence of overlapping pulses.
The interpretation of the MA as filtered noise is illustrated in

- Figure 6. The time series in Figures 2 and 3 are also MA's. The

closely related shot noise process will be discussed below, in §IIh.

In most discussions ¢. the MA the restriction is made that
¢, = 0 for # < 0. This condition is called causality, and such a

filter is said to be causal because a nonzero value at a negative

time would correspond to a response of the filter at a time prior

to the input. (The point » = 0 will be called the origin of time

' for the pulse.) In some contexts this acausality would be unphysi-

:
s
;
|
i
i

cal, and it is convenient to restrict filters to respond only at
and after the input, i.e., the filter can possess a memory but not
premonition. However, for a number of reasons it is frequently
useful or even necessary to relax this restriction. One reason is
that it is often convenient to identify the origin of time for a
pulse with a point near the peak rather than with the time of the

causc of the pulse. For time series in which the independent
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variable is not time the concept of causality is obviously of
limited value. There is no Arrow of Space, or Arrow of Wavelength,
as there is an Arrow of Time. Other reasons for dispensing with
causality will be mentioned as they arise below. For the present,
it should be simply noted that a filter is a set of numbers {(,}
where 1 may take on negative as well as positive values. In prac-
tical computations, of course, n takes on a finite number of values,
say ¢, ¢ +1, ¢ +2, . . ., -2,-1,0,1,2, .. .,p=-1,p.
The case g = 0 is the conventional one-sided or causal pulse and
corresponds to a MA process of order p, abbreviated MA(p). The
general case will be called a two-sided MA of order p, ¢, or MA(p,q).
An interpretation of the MA of interest in the economic appli-
cations (Wold 1964) is that the pulses represent the reaction or
response of some system to news or information which arrives in
discrete impulses. The effect of the news persists for some time
(memory) but eventually dies out. This suggests a condition that
the (,, get smaller as n gets large. In addition, it is convenient
to allow the mean value of the input process R to be nonzero. For
example, in some cases the pulse amplitudes must be positive because
of their physical significance, as when the pulses are outbursts of
radiation. If the mean value of the input is positive and the

pulse shape has a positive "area" or total strength, the mean of

the output is also positive, since (X} = (i*%C) = (R)(;«}).
A




The above statements are summarized in the folloving

DEFINITION: A MOVING AVERAGE (MA) is a process X which

can be written in the form:

x, = E CoEL . (Y =0ox) (15)

where A is an uncorrelated white noise process, possibly

with nonzero mean:

o ™ s = It -—‘
((n” - ."\)(:\m - ) = O.A\SI:,I'.‘ [~

()] (16)

and the C:- are constants satisfyingi(‘,2 < » (called
stability of the filter ). 1f the ;j are zero for all
negative (positive) values of [ this is a causal
(acausal) moving average. If neither is true, it is
called a two-sided MA. An MA is said to be of order

(,q) if the range of ¢/ for which ('; is nonzero is from

=7 to p.

The stability condition assures that the pulse dies out at infinity,
and is written in the form given because 2:053 is the total energy
output of an electrical filter if the input X represents the ampli-
tude of the electric field at the input of the filter. The range
of { may be finite or infinite. A finite MA is obviously stable.

It is important to note that 4 is random and ", if considered

as a time series itself, is deterministic. That is, the process ¥
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has its random and its predictable aspects explicitly separated in

the MA representation. Since A represents the new information
arriving at the input of the system, it is called the innovation.
We will be particularly interested in the class of MA's in which A
is independently distributed, but it should be remembered that the
definition requires only that 7 be uncorrelated. Sometimes the
terms "MA process" and "MA model" are used ncarly interchangeably,
but this is a loose usage. An MA process exactly satisfies the
definition given above. An MA model is a representation or model
which can be used to attempt a description of any process, whether
or not it is actually an MA. For example, one can use a low-order
MA model to approximate a process which is a higher-order (or
infinite) MA or not an MA at all. The pulse shape {(;} is also
assumed to be constant (independent of time, n). This will be seen
below (in §IVa) to be less restrictive than it seems at first. A
final point concerns normalization. If the switch ¢ + af, & * o~ IR
is made, then XY obvionusly remains unchanged. Hence, in comparing
different moving averages, it is convenient to remove this ambiguity
by specifying in some sense the "size'" of either A or . Several

possible choices are:

1) cy=1 () o2 = (i) =1
3 Y ¢.7=1 w ¥ oo.=1
i ' i '
(5) 2: |C{| =1 (6) max U{ =1
i i ’
(7) max |c.] =1
1 i




1

For causal filters the conventional choice is (1). However, for

acausal filters this choice would render the size of  dependent on

:
i

the location of the time origin, which is to some extent arbitrary.
(We will see another reason why this choice is poor in §IVe.) The
other six choices make the size of ( invariant to a shift of the %
origin of time. The best choice of normalization seems to depend
on the particular context.

To summarize: the moving average represents the deterministic

part of a process with a constant filter, (, and the random part
with an uncorrelated noise process, 7. The process is the convolu-

tion of C with A, and can be viewed as a random sequence of pulses. v

d)  The Autorcgressive (AR) Model

The MA model expresses the correlations in a process X in terms ‘
of memory — in the sense that the filter ( remembers, for a while
4t least, the previous inputs Fi' There is another way of express-
ing such memory — by saying that the process remembers its own
behavior at previous times, that is, X” remembers, or can be partially
represented in terms of X, ,, X,_,, . . . . If it is assumed that
this representation involves a linear relationship, the memory -an

be represented by an expression of the form BIX”_]4-F?X ?+-F3X +. . ..

N “hn-3

This suggests writing

. = 1 Ny
-\” A‘?! + i L;\',\”_;\‘ . (17)
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where R, is a random noise process just as before, and the B's are
constant coefficients. The first term on the right-hand side of
this equation represents the immediate response of the system to the
random input, while the others are the memory. The conventional
notation is to write Ak = -Bk' so that equation (17) becomes (with

A, = 1)

a

ffy = ; Aan-k (18)
--0

or i = 4*Y., If this sum is finite, say from ¢ to p>, the process is
called a (one-sided) AR process of order p°, or AR(). Note the
symmetry of this relation with that fo:r the MA (eq. (15)), namely,

X = %7, The AR is the inverse of the MA in the sensc¢ that the
filters ¢ and A are convolutional inverses of each other. By analogy
with the acausal or two-sided MA, the sum in the last equation may

be extended to negative X; this gives the two-sided AR

SHEED DUEI S 19)

N
The concept of a process's memory of its own future may seem unusual,
but we are dealing with post~real-time data analysis or with cases
in which the independent variable is not time, so that causality is
not relevant. Also, this extension is necessary for consistency

with the two-sided MA in equation (15). The name autoregressive

arises because the expression just above equation (17) 1is in the
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form of a regression of X, on itself evaluated at different times,
so that equation (17) is a self- or auto-regression.

A schematic electric circuit representation of the AR process
is shown in Figure 7. This circuit assumes a causal model, because
there is no physical circuit that can generate future values. The
discussion of normalization given above for MA's applies as well to
AR models. Corventionally 4, is set equal to 1; this will be done

for some examples (such as the one to follow) but not generally.

DEFINITION: AN AUTOREGRESSIVE (AR) PROCESS is one which
can be written

Aky = Ry = L AX
140

’ (20)
or # = A*X, where R is an uncorrelated white noise process
(as in the definition of the MA) and the Ai are constants
satisfying 2: Aiz < = (stability of 4). The autoregres-
sive filter j is purely causal, purely acausal, or two-
sided depending on whether A; is nonzero for only 12 0,

for only 7 § 0, or for both 7 g 0 and 7 § 0. An AR is of

order (p,q) if the range of 7 is from -q to p.

An example of a second-order AR process is shown in Figure 8.
Note that it has a sinusoidal appearance (and would probably be

called '"quasi-periodic') even though it has no harmonic component
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AR PROCESS
A= 0.80
Ag= -0.75

i

—
=

GAUSSIAN NOISE

SPECTRUM OF AR PROCESS

FIG. 8.-A realization of the second-order AR process
Xy = By + 0.8%,_, - 0.75X,_, (top). The middle curve is the
realization of the Gaussian noise which drove the AR process. Since
X is purely nondeterminiztic the spectrum (bottom) is continuous,

but it has a narrow peak corresponding to the quasi-sinusoidal
appearance of the process.
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nor any deterministic component. Figure 9 gives further examples
of AR processes with quasi-harmonic appearance.

Actual physical random processes can often be well represented
by an AR model with a small number of parameters A;. Equation (20)
is a difference equation which is the discrete version of the dif-
ferential equation which describes the dynamics of the system (i.e.,
the equation of motion). Thus, the AR parameters can be interpreted
as the coefficients of the linear differential equation of the
system. The moving average pulse 1is the impulse response of this
differential equation.

In fact AR models can generally be rewritten in the form of
moving averages. As an example, consider the simplest aontrivial
AR process, namelv the one-parameter process defined by:

Y, = By b Ak (21)

This corresponds to the AR filter (1, -a). Recursive substitution
of the left-hand side of equation (21) into the right-hand side
gives an explicit scolution in the form of an infinite MA:

«
Yy = > “N‘Z"rf-k ' (22)
k=0 '
Thus an input impulse ct time n*, of amplitude h, 4, gives rise to
the output pulse . . . 0, 0, 1, «, o, at, ... (multiplied by
Hn*). For la! < 1 this 1is an exponentially decaying pulse:
0 no< ok

’ n-
Uy = 23
n n=nk) L a

e( yun HI R TE S
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FIG, 9.-A series of AR processes of the form
Xy = Ay + “1"»:-1 + \z“.\',_,_.,. where & Is independent Caussian nofse
;). and the values of dp and oy are shown at the right. The pro-
cesses were chosen to exhibit various spectral peaks, br* none has
a deterministic harmonic component.  The wmiddle column ...ows the
sample (top) and theoretical (bottom) autocorrelations for each
process,
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Note that we have converted this one-parameter AR process into an
infinite but stable MA (J,, + 0 fast enough that the sum :E: an
converges). If lal > 1 the pulse given above is not stagig, and
further C, + < exponentially as n + », To avoid this difficulty,

let » » n + 1 and rewrite equation (21) as

R -1
Xh a Xﬁ+1 a Rn+1 . (24)

Recursive substitution with this equation leads to

- -k .
Xh = - EZ; a Rh+k . (25)

The effect of a single impulse at time n* is thus a growing expo-

nential pulse of amplitude -a~! + and grewsth constant o, terminat-

n

N ln
ing at time n* - 1 (see Fig. 10). Thus, eguation (21) has a stable
solution for any a, unless Ial = 1; in one case the pulse extends

forward in time (i.e., is purely causal) and in the other it extends

backwards (is purely acausal).

e) The Relationship Between the AR and MA Models

In the example given in the previous section a simple AR model
was converted into an MA. This is a general feature: any AR model

can be converted into an MA and vice versa. Iun the standard treat-

ments of this subject special restrictions must be placed on the
models for this to be true, and some otherwise well-behaved AR
models, for example, are not convertible into (stable) MA's. But
with the generalization to two-sided representations, convertibil-

ity holds without restriction. The fundamental reason for this is
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evident from the example in equatioms (21) through (25): |u| > 1
led to a causal MA representation that diverged, and the restric-
tion |a| < 1 is usually imposed. But if two-sided representations
are allowed, this restriction is unnecessary because there is a
convergent acausal representation. The MA corresponding to an
arbitrary AR process is usually two-sided. Unfortunately the direct
approach of recursive substitution of the AR representation into
itself is extremely awkward in the general case, because at each
step there are choices to be made concerning the form of the sub-
stitution which have a complex dependence on the specific values of
the AR parameters. However, the demonstration of how AR and MA
mocdels can be converted into each other, including the computation
of the coefficients, is rendered simple by the introduction of

Z-transforms, as will be shown in §IIIf.

f)  Autoregressive-Moving Average (ARMA) Models

An obvious generalization is to allow the current value of the
output, Xﬁ, to depend explicitly on (i.e., to remember) values of
both the output X and the input F at other times:

X, = z Ban-k + Z CkRn—k , (26)
k#0 K
or A*X = C*R, where A has the same relationship to the By as before.

This is called a mixed autoregressive-moving average model, or an

ARMA model. If the processes involved are finite and causal [e.g.,
AR(p) and MA(q)] the mixed process is denoted ARMA (p,q).

40




(Generalization of this notation to the two-sided case 1s cumber-
some and is not necessary here.) Physically one can think of an
ARMA process as representing a system, described by the AR param-
eters 4, which is driven by an input which i3 itself a moving aver-
age process, rather than white noise. But as was indicated in the

previous section, the distinction between system response as

described by MA and AR models is merely a matter of interpretation.
Hence there is no rigid distinction between what portion of a
process is AR and what part is MA. 1In fact the AR part of an ARMA
can be converted to an MA, yielding a pure MA. Similarly, an ARMA
can also be converted to a pure AR. Furthermore, one could convert
only part of the ARMA to MA (or AR), sc¢ that there is a great range
of possible ARMA combinations to represent a given process.
It may be asked '"What is the use of mixed representations at

all, since they can all be converted to pure AR or MA?" The answer

lies in a concept called parsimony of representation. The point is

that some processes may be representable as an infinite-order AR or
MA, but as a finite ARMA. The latter would then be a more compact
or parsimonious representation. Parsimony can be of great impor-
tance in computing, where one is often searching for models involv-
ing the smallest number of parameters. But it should be stressed
that parsimony is not necessarily of significance in the interpre-
tation of the results of modeling. A good example is that given at
the end of &IId, which has the most parsimonious representation as
AR(1), but might well be most simply interpreted as MA(x).
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There are several discussions of the form of the autocorrela-
tion functions and power spectra of low-order AR, MA, and ARMA
processes which should be consulted by the reader interested in
such functions (Box and Jenkins 1970; Stralkowski, Wu and DeVor

1970, 1974).

g) AR Integrated MA (ARIMA) Models and Nomstationarities

The discussion so far has assumed that the process under dis-
cussion is stationary. This is an important restriction, for non-
stationary processes do not have representations of the kind dis-
cussed up to this point. But a very special kind of nonstationarity
can be incorporated in a simple modification of the AR, MA, or

ARMA models. The general form is

axwlxy = xR, (27)
where V represents the difference operator:

VX, = X = Ky (28)

and Vd stands for the dth difference operator, equivalent to oper-
ating with Vv d times. If we let W = VdX (so that W is an ARMA
process) X can be obtained by integrating ¥ d times. That is,

X = SdW, where S is the summation operator:

n

S, = vlx, = z X; o (29)

-z',=_co
Thus X is said to be an autoregressive-integrated-moving average,
or ARIMA, process.
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Consider the simple case d = 1. While X is not stationary,
its first difference is (Box and Jenkins 1970). The nonstationarity
which this gives to X has the character of a floating mean value —
the mean of the process is not constant with time but drifts.
Similarly, a second-order (d = 2) ARIMA process is such that both
the mean value and average slope wander as time goes on.

Finally, it is interesting to add a further generality in the

form of a constant term in the equation:
dyy =
AX(V'X) = C*R + Dy, - (30)

It can be seen that the meaning of the constant term D, is to allow
the process X to have a deterministic trend in the form of a poly-
nomial of order d.

The ARMA and ARIMA representations can be quite useful in some
specific applications. The current discussion will center on the
less complex AR and MA models for simplicity and because they seem
to be sufficiently general for most astrophysical applications.

The reader should consult Box and Jenkins (1970) for more details

on ARMA and ARIMA models.

h) The Shot Noise Model

As already mentioned, the MA is closely related to the shot

noise model, which is usually defined in continuous time as follows

X(#) = X ot -t (31)
7
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where C(t) is a given function of time (a continuous pulse shape)
and the t; are random points in time which are Poisson distributed.
This process can be viewed as the output of a continuous linear
system, with impulse response ((t), resulting from an input con-

sisting of a Poisson sequence of constant amplitude impulses

R(t) = 25 8(t - t;) . (32)
2

The Poisson distribution results from randomly and independently
placing the time points ti‘ The probability of having kX impulses
in an interval At is

e-AAt X At k

1 ; (33)

Pk(At) =

where A is a constant giving the mean rate of occurrence of the
impulses, which here all have the same amplitude. 1If At is identi-
fied with the time interval in discrete time (see §IIa) then equa-
tion (33) gives the probability distribution of pulse amplitudes,
where k is to be identified with the amplitude. (The amplitudes are
quantized in unit steps.) If time is sliced finely enough so that

AAt << 1, then we have

1 -2 At k = 0 (no pulse)

"
1]
>
>
<t
X
L}

1 (one unit amplitude pulse)\ ; (34)

o
X
[}

2 (multiple pulses)

that is, most of the time a pulse does not occur, but occasionally
a single pulse occurs, always with the same amplitude. It can be
seen that the noise processes ', with large values of n, shown in
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; Figure 5 have approximately these properties (except that they are
zero-mean processes and the amplitudes of the pulses are not always
the same). Thus, an MA with pulse shape given by the discrete
version of C(¢) and with the quantized probability distribution of
the input R given by equation (33) (or in the limit X Af -+ O by
equation (34)), with k¥ + R, is the discrete version of the shot
noise model.

Some useful relations for the moving average, easily derived

from the defining equations, are:

; 0 = (R)(Z ck) , (35)

k

and
0,2 = ((x - <x>)2> - oR2(; ck2) . (36)

These are somewhat different in form from the relations for the

usual definition of the shot noise process. For example, if
oR2 = (0 in a moving average, pulses of uniform amplitude are occur-

ring at every time, and X is constant (0X2 = 0); this is not true

for a Poisson distributed shot noise process where the variance of

the amplitudes of the pulses is often taken to be zero. A related :

difference is that the concept mean pulse rate loses significance

for an MA because it is automatically 1 per unit Af. That is,
pulses occur at every point of (discrete) time. The incidence of

zero amplitude pulses is expressed in the distribution function of
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the innovation [as in eq. (34)] and is absorbed into the mean
pulse amplitude.

For a good discussion of the shot noise model see Papoulis
(1965). Terrell (Terrell and Olsen 1970, 1972; Terrell 1972) has
applied this model, with exponential pulse shapes, to several

astrophysical problems.

III. THE STRUCTURE OF PULSES

The separation of a process into a random part and a purely
deterministic part, as exhibited in the moving average, is often
of direct physical significance. The pulse may represent the
unfolding of some process for which there is a physical theory.

Knowledge of the pulse shape' may provide interesting numbers such

'The terms pulse shape, pulse, {moving average) filter, wave-

let, impulse response, moving average representation, and moving

average parameters are all used in the literature to convey approxi-

mately the same meaning, and are interchangeable in many contexts.
Here the term impulse will be reserved for a pulse, usually taken

as the input to a filter, which is a delta function in time.

as pulse width, rise and decay times, etc. The innovation, or
random noise process K, represents the pulse amplitudes and con-
tains information about pulse rates and the distribution of pulse
amplitudes. To develop a feeling for the structure of pulses,
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this section discusses the representation of physical pulse shapes
as filters, the algebra of filters, and a concept called the phase

character (or sometimes delay character) of filters. These subjects

are discussed extensively in various mathematical works (Robinson
1964a, 1967a,b; Treitel and Robinson 1966; Box and Jenkins 1970;
Anderson 1971), which should be consulted for more details. The
discussion here will be oriented toward the analysis and interpre-
tation of astrophysical time series data and will emphasize two-sided
filters, which have been neglected in much of the standard

literature.

a) The Discrete Represcntation of Pulse Shapes

Suppose that a physical pulse is described by a continuous
fu ~tion of time, C(t). An example would be the light curve pro-
duced by a nova or supernova. Let the values of C be specified
(or "sampled') at evenly spaced points in time, say t, = n At, for
some set of values of n; it is presumed that the points are close
enough that the interesting structure in the pulse is resclved.
Then the set of numbers or filter elemeats, {(,] = {C(¢,)}, is a
discrete representation of the pulse shape C(t).

One-eided pulses.- In many situations there is a moment before
which ¢ is identically zero. The classical example is the pulse
which comes out of an electrical filter in response to an impulse

at time ?,; in accordance with causality this output must be

47




exactly zero at all previous times ¢ < t,. By identifying the
origin of discrete time, n = 0, with this moment, the filter ele-
ments need only be given explicitly for nonnegative indices,

n=0,1, 2, . .. . Such a filter is said to be causal or one-sided. The

sum 2: Ch7 can sometimes be ase- :iated with a physical quantity,
n=0
such as the total energy in an electrical pu. ~2; if so

2 ¢ o

i: Cpt < (37)
n=y

must hold for any physical filter. This condition is called

stability or convergence. In some cases, other stability condi-

tions such as 55!(%1‘ < « are relevant (Robinson 1967. §1.1). A
filter which iz-goth stable and causal is said to be physically
realizable. We shall now see that some perfectly useful physical
pulses are not causal.

Two-sided pulses.- Consider the following scenario: a small
signal grows with time, slowly at first, then more rapidly; reaching

a peak, the signal begins to decay and eventually disappears. For

example, take the specific form

at
(]

t < 0 (exponential growth)
c(t) = Co bt (38)
e t > 0 (exponential decay)
or in discrete time:
ean n=. .., =3 -2, -1, 0
C = (7 (39)
n 0y -k
e o =0,01,2,3, .. ..
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In this case it is not convenient to take the origin of time at the
beginning of the pulse, which strictly speaking lies at n = -w,

[Of course, it would always be possible to take the origin at some
early time before which C(¢) is effectively zero, say to within the
measurement accuracy. In the same sense almost all pulses can be
taken to be of finite length.] A more important reason for con-
sidering noncausal filters is that, among causal filters, only the

members of a very special class (called minimum delay, a term to be

defined below) have stable, causal convolutional inverses. Since
our methods for determining pulse shapes from time series data
depend on first determining the inverse pulse shape, restriction to
causal filters would imply the unnecessarily limiting restriction v
to minimul delay filters.

In many cases when a filter is written explicitly as an array
of filter elemerts, such as (. . ., Cons Coys Co, Cl’ 02, . )y
the location of the origin of time is ob.ious (C0 in this erample).
But in some cases it is not obvious from the indexing or from the
context, and a boldface symbol will be used to locate the origin
[e.g., A, -a) denotes Cp=1, O = -a}. Figure 11 illustrates

the basic difference betweer. one~ and two-sided pulses.

b) Z-Transforms

We now introduce a powerful tool for the analysis of pulses,
the Z-transform. It is a tremendous time saver in the manipulation
of filters as well as in the proofs of certain relationships between

filters. Consider a pulse or filter ¢ = {C,},
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= -, vw+1, . .., -2, -1,01,2, ..., p -1, p, containing
r+ g+ 1 elements. The J=transform of " is defined as the follow-

ing function of the dummy complex variable 3:
oz) = 3 U”z” . (40)

This is simply a polynomia. or power series in positive and nega-
tive powers of z. In the case p or g = «, we assume that the
series converges on the complex plane within some annulus including
the untt circcle.

The coefficients determine the filter (and vice versa); that
is, J(z) determines the &) and vice versa. The transform will some-
times be denoted with the operator I thus: (3) = 0(C). The
inverse transform will be denoted 7', and can be thought of as the
operation of identifving the coefficients in a series expansion of
’(z). The I-transform has the following alternative interpretations:

(1) A representation of the time behavior of pulses in which
2 represents the unit delay operator (and z~1 represents the unit
advance operator).

(?) A discrete analog of the Laplace transform: {f (/) Is
replaced by z: I8 - 8, where f, = 1 At, then the Laplace

5
transform of f becomes the -transform (z = o-ﬁ. where ¢ is the
Laplace transform variable).
(3) Similarly a version of the discrete Fourfer transform (DFT)

fw
¢ .

1

with =




. b

(4) A generating function for the filter C.
The Z-transform maps from the time domain to a transform domain.
The operations of shifting in time are denoted with the unit delay

operator, D, and the unit advance operator A4:

DXy = Xy 5 D) = Xy s
j (41)
AlXy) = Xy 3 AT (K) = Xpps
In the transform domain DJ corresponds to multiplication by zJ and

a7 corresponds to division by zJ. The definitions, theorems, and

proofs involved in the use of the Z-transform closely parallel
those for integral transformations (such as the Laplace and Fourier
transforms) of continuous functions. The Z-transform will be
demonstrated in applications in the rest of this paper. Further
details can be found in various sources (e.g., Jury 1964; Gold and

Rader 1969; Oppenheim and Schafer 1975; Rabiner and Gold 1975).

e) Convolution

Consider the effect of putting a signal R into a filter C and
connecting the output (say Y) into a second filter D. That 1is,

¢ and D are placed in series (see Fig. 12). By definition:

Y, = E_‘, CBp gy s (42)

80

Xp = 21': Dp¥nn = ‘;‘ Dy § CILRn-k-R - ;(: Dy 2 Con i
, m

(43)

]
™
be
3
$'>u
3
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where

Bm =z ; Dk("m-k (44)

which is easily shown to be the same as
B, = fk_: il (45)

Thus, the action of two filters in succession (series) can be com-
pletely represented by a single filter, called the convolution of
the two, written as

B = (%D . (46)

It is readily verified that the Z-transform of the convolution of

two filters is the product of their Z-transforms:

B(z) = C(2)D(z) . 47)
This is the most important reason for the utility of the z-transform.
Furthermore, convolution is commutative and associative:
A*B = B*] , (48)

AX (B*(C)

(A*BY*( | (49)
It should be noted that the output of the MA is formally the
convelution between the input noise process and the pulse shape,
although the physical interpretation is somewhat different in this
case (convolution of a process with a filter instead of two filters

with each other).
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d) Faetortiazation

As will be demonstrated shortly, any finite filter with more
than two nonzero elements can be broken down into the convolution
of a number of shorter filters. In particular, a filter of length
n + 1 can be written as the convolution of n filters of length 2.
Such filters have two and only two successive elements nonzero and

are called couplets or dipoles: (Cn’ Cn+1)' Since many of the

important properties of pulses are invariant to a shift in time,

it is convenient to take n = 0, and denote the dipole as (C, Cl)'
This is acceptable if all pulses are shifted so that their first
nonzero element is at n = 0 (i.e., causality), but to allow factor-

ization of two-sided filters acausal dipoles of the form (C_l, Co)
must also be introduced. Figure 13 depicts causal and acausal
dipoles, and shows how convolutions generate longer filters.

Now consider the filter {Cn}’ N ==,y « +» «y P, where g and p
are nonnegative integers. [This is not the most general case, as
the index set might contain only positive terms (e.g., . . ., 0,
0, 03, 03, 0, 0, . . .), but such cases can be handled with the
same methods.] The function

P(z) = z90() (50)
(where C(z) is the I~transform of {F”}) is a polynomial of degree

p + g, with nonnegative powers of 5 only. Hence by the fundamental

theorem of algebra it can be written

E e
F@ey=c_ 0 \ - 2 (51)
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\ |
| {
1 |
: , . i
—0— % : ©o— —o Sl + —o—>
ORIGIN ORIGIN
5 X E , . | :
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(1,a) * (1,b) = (1,a+b,ab)
(l+az) X (1+bz) z |+(a+b) z +abz?

%
\

pe > = -

(1,0) * (b,1) (b,l+ab,q)
(I1+az) X (bz™!+1) z bz~! + (1+ab) +az

\
\
\

e

1 ' Sr//" ;
(g, 1) * (b, 1) (ab, a+b, )
(az”'+1) X (bz! 1) abz % (a+b)z™'+!

FIG. 13.-Graphical representation of causal and acausal dipoles
(top) and their convolutions in various combinations. Shown with
the filter convolution equations are the corresponding “-transform
relations.
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where the zoi are the complex zeros of P(z). With a little algebra

it can be shown from this expression that

pHg F zoi
C(z) = |C m -z, H" 1 mfr- -2 1 - . (52)
"1 fepe1 7=1 qul g

With the definition

(‘Froi).1 i=1,2, . ...p
a, = , (53)
-zt i=p+1,p+2, .. .,0%q,

o,

the inverse Z~transform of this equation gives

C = X[@a)*@yay)* e oo ¥@ap) 14 (Gpyy DF o *lappg D],

(54)
where X is the quantity in square brackets in equation (52). The
first p dipole factors are causal and the last ¢ are acausal. Since
the ordering of the zoi has not yet been specified, there are many
possible distinct factorizations of this form, depending on which
zoi are assigned to the causal factors and which to the acausal
factors. As will be shown in the next two sections, among the many
choices possible for the origin of time in the original filter and

for the assignment of the 2z 7, there is a single choice which has

Iej
the property that each causal (acausal) dipole has a convergent

causal (acausal) inverse. It is obtained simply by making ]akl <1
for all k, which can be achieved unless |zok[ = 1 for some k. This

can be considered as the unique factorization of the original fil-

ter C, although it really represents merely the simplest of many
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possible factorizations. If the original filter is causal, then

q = 0 and the above analysis shows that there is only one factor-

ization into causal dipoles — and this is the "unique'" factoriza-

tion which is usually discussed.

e) Delay (or Phase) Character

In electrical engineering the frequency response of a filter
describes the degree to which an AC signal at a given frequency
will be attenuated on passing through the filter. Another effect
of a filter is to cause frequency-dependent phase shifts of signals.

' For the present applications, rather than view these effects in the
frequency domain, it is more convenient to use the time domain.

Consider first a causal dipole (Co, Cl) as in the previous

section. This filter is defined to be minimum delay (or minimum

phase) if |C)| < [Cyl; it is maximum delay (or maximum plzse) if

!Cll > |Co[. These names are derived from the way in which energy

is delayed at the output of the filter, as will be detailed below.

— - T T

Since delay properties are not affected by an overall shift in
time, an acausal dipole (C_l, Co) is minimum delay 1if |Co| < [F_l[

and maximum delay with the opposite inequality. The case

ICO| = |C11| is somewhat singular in that the inverse does not
converge (see below); hence this case must be handled separately.

Now consider a filter " = {C;} of arbitrary length, say n + 1.
Again because of time-shift invariance only the causal case need
be considered. That is, if the filter is not causal, its causal
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equivalent should be used. The causal equivalent of a filter is :

—

simply the filter shifted so as to bring its first nonzero element
(which may not exist if the filter is infinit to 7 = 0. From the

previous section we know that there is a unique factorization into

n causal dipoles. Each dipole is either minimum delay or maximum
delay. If all the dipole factors are the former, the entire pulse

is said to be a minimum delay pulse; if the factors are all maximum

delay, so is the entire pulse. If there are some of each, we have

a mixed delay pulse. Thus, the delay character of the pulse is

specified by the delay character of the dipole factors of its causal

12
equivalent. The physical meaning uof these concepts is as follows.
Introduce the quantity
7, 9 i
. = r2 .
s e K’ (53)
,.\..—oo

this is the integrated energy — the energy which has come out of
the filter up to and including time 7 — due to a delta function
input at time O [for electromagnetic signals energy = (amplitude)?].
This function rises from zero for 7 < 0 (since by assumption

C; = 0 Yor 7 < 0), monotonically, to its final maximum at 7 =n + 1,

and thereafter remains constant at a value P_ = F ., = .:E: Ciz,
which corresponds to the total energy output of the filt;;f Corre-
sponding to filter ( there is a family of filters (all of length
n + 1) which is generated by reversing all possible subsets of the

dipole factors of (. The reverse of “90’ Cl) is (CT, 03), where *




represents complex conjugation of the possibly complex filter ele~-
ments. Correspondingly, the reverse of any filter is obtained by
reflection about the origin of time and by complex conjugation of
all of the filter elements. The (time) reverse of any array

X = {Xﬁ} will be denoted ¥ = {X* }. Since there are n such factors,

-n
this family has 2" members, including the original filter itself,
although they are not all necessarily distinct. It will be evident
from the discussion in §IIIg that the power spectra and autocorre-
lations of the members of the family are all identical. 1In fact,
the family may be defined as the set of pulses of length n + 1 with
the same autocorrelation and spectrum as (. Further, the total
energy F_ of all these filters is the same, so the partial energy
curves of these filters all begin and end at the same points (see
Fig. 14). Between these points the curves are quite different and
even cross each other. But it can be shown that there is one curve
which everywhere lies above all the others — and it corresponds to
the single minimum-delay member of the family of pulses. That is,
the energy output of the minimum delay filter is delayed as little
as possible, among all possible filters with the same spectrum, in
that at each moment of time the integrated energy is maximum.
Similarly the unique maximum delay pulse has a partial energy output
which lies below all the other curves and corresponds to delaying
the energy as much as possible.

Minimum delay pulses begin suddenly and decline slowly. In

fact the minimum delay pulse rises as sharply and declines as
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FIG. 14.-The concepts of minimum and maximum delay. (a) A
short autocorrelation function. (b) The set of eight pulses which
share this autocorrelation. (c) A plot of the eight corresponding
partial energy curves: the uppermost curve corresponds to the mini-
mum delay pulse [dashed line, topmost part of (b)] and the lowest
curve corresponds to the maximum delay pulse [solid line, topmost

part of (b)].
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gradually as possible, consistent with the given autocorrelation.
The maximum delay pulse is the time reverse of the minimum delay
and has the reverse of these properties. Further discussions of
the physical and mathematical meaning of minimum delay are in the
geophysical literature (Robinson 1962, 1963, 1964a, 1966, 1967b;

Smylie, Clarke, and Ulrych 1973; Berkhout 1973; Schoenberger 1974).

f) Inverse Filtcr:

The filter which assumes the role of unity for convolution is
the delta function,

§ = {6n’0} = (..., 0,0,1,0,0, ..., (56)

since convolution with it leaves any filter unchanged. Then given

any filter  we can ask whether there is an inverse, C'l, such that

cx¢=! = §. The answer is obtained by Z-transforming this equation:
C(z)C~i(z) =1, (57)

SO

~1 2 -1 [ 1
e [C(z)] , (58)

where 2! denotes the inverse Z-transform. Hence finding the
inverse of C is reduced to finding the coefficients in the series
expansion of the reciprocal of the I-traasform of . Such expan-
sions always involve choices as to whether to use positive or nega-
tive powers of z. The choice is made on the basis that the result-
ing inverse filter should converge, as will now be cexplained.

Consider the dipole factorization given in §7I1d. 1t is casily
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seen that the inverse of the filter is the convolution of the
inverses of its dipole factors, so the problem is reduced to find-
ing the inveirse of a dipole. Consider fii. causal dipoles which,
except for a constant factor, can be written (1, -a). The

Z-transform is (1 - az). Which expansion of (1 - az)"! converges#

#Convergence at 3 = 1 is implied, because we are really inter-
ested in the convergence of the coefficients of 2" in the expansion
of the Z-transform. This allows use of the DFT, because

|z] = |lexp(~tw)| = 1 on the unit circle.

depends on the magnitude of a:
1+az + (@) + (az)3 + . . . if |a] <1
(1 -ax)"1 = .
—[@) "l + @)%+ (@) + . . .1 if |a] > 1
(59)
Thus the Z-transform of the inverse of a minimum (maximum) delay

causal dipole must be expanded in positive (negative) powers of z

if the result is to converge. If C = (1, -a)

@, a, a29 a3a . e ) ‘a| <1
cl = . (60)

(. .., =a3, -a%, -a, 0, 0, 0, . . .) la] > 1
(cf. Fig. 10 and the associated discussion in &§1Ie.) Similarly, a
maximum (minimum) delay acausal dipole gives a convergent expansion
in negative (positive) powers of z. It is easy to prove (e.g., with
Z-transforms) that a minimum delay causal dipole has the special

simplifying property that its inverse is also minimum delay and
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causal.  The same holds for the convolution of arbitrarily many
such dipoles. Similarly the inverse of a maximum delay acausal
pulse is maximum delay and acausal (sce Table 1). Because of this,
it is convenient to arrange the factorization so that all factors

are in one of these forms. This can alwavs be accomplished as

.
1

2. ] ~ 1 and the

[8

)

follows: suppose ' of the zeros of (3) satisfy

: ~ ! ! -
remaining ' zeros satisfy [xu'| < 1 (assume all 30‘| # 1). Then

shift the time origin of . so that in the notation of §I1ld p =1
and g = . Then assign the I” zeros which lie ovutside the unit
circle in the complex plane to the p causal dipoles in the factor-
fzation (eq. (52)) — these will be minimum delay.  The ) zeros
inside the unit circle are assigned to the g acausal dipoles, which
are then maximum delav. This factorization represents the filter

as the convolution of two factors:

-:" = (19‘:1)*(1“:;«)* . . . *(1““y\)

¢

(1 factors, minimum detav, causal) {61)
S Q:p+1’1)*(dp+?'l)* .. *(”!4W'l)

(¢ factors, maximum delay, acausal) (62)
so that ¢ = A(F*) and 71 = BN EIRGTY), where X Is as def Ined

above. Note that #71 and 071 have the same delay and causality
properties as do ¥ and , respectivelv. 1t can be shown that the
Laurent series thus penerated tor 7H(:) converges within an
annulus in the complex plane which {ncludes the unit cirvcle, and it
is the coefficients of the various powers of 5 in this series

which yive the elemonts of o
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In many of the standard treatments of this subject only causal
filters are allowed. It then results that a filter has a convergent
inverse if and only if the zeros of its Z-transf "7 1lie outside
the unit circle — otherwise the forward expansic rges and the
acausal backward expansion is not permitted. I.. .. .c words, only
minimum delay (causal) pulses have (causal) inverses, and then the
inverse is also minimum delay. This problem was apparently first
discussed by Wold (1938b). Two-sided filters always have a con-
vergent inverse (unless a zero lies exactly on the unit circle).

In practice, a very convenient way to evaluate inverses is to
replace the Z-transforms in equation (58) with the discrete Fourier
transform (DFT). A code for this procedure is contained in the
Appendix.  Specifically, given a set of filter elements {(;}, one
evaluates the DFT of (', takes the reciprocal term-by-term, and then

obtains the inverse DFT. This procedure automatically provides the

correct cenvergent expansion of a two-sided filter — without explicit

evaluation of the zeros of the I-transform of the pulse! For
example, consider the pulse ¢ = (X, -u). The DFT procedure yields
the inverse (1, a, a-, a3, . . . If lal < 1 this 1s obviously the
correct inverse, interpreted as a causal pulse. Many terms may be
necessary to get a good representation of the pulse shape, espe-
cially if |u| is ¢lose to 1. If |a| >~ 1, the above inverse,
interpreted as a causal pulse, is divergent (or "unstable"). The

trick is to note that for any finite number of terms,
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@, a, a%, . . ., a"), there will be one largest term, a’'. The

- T

inverse should then be renormalized to make this element unity:

@’ ..., a2 a1, 1), and then interpreted as an expansion
backward in time, (a7, . . ., @ %, a~!, 1). This is the correct

b (acausal) inverse if |a] > 1. The same procedure works in the

| general case, in which the inverse pulse extends both forward and

backward in time.** 1In general some zeros must be appended to the

*%In this case the time origin does not appear at a fixed
place in the inverse and wust be identified by some other means.
This inability to pinpoint the origin of time in the calculated
inverse is the price paid for not having to determine the zeros of
C(z). Specifically, if we knew how many zeros lie inside and out-
side of the unit circle, we could then locate the origin. Fre-
quently, but not always, the origin is located at the peak of the

inverse pulse.

original pulse before applying the DFT inverse because the inverse

is almost always longer than the filter itself. For two-sided

pulses this is also needed to ensure that the backward and forward

! tails o’ > inverse pulse do not overlap, due to the wraparound
feature of the DFT., (Envision the arrays pasted on the surface of a
cylinder, with the righthand and lefthand ends abutting. Any set

of entries on the right end can be transferred to the left end
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without affecting the DFT. This is illustrated in Figure 15.)
Examples of inverses calculated in this way are shown in Figure 16.

While the inverse as defined here 1is unique, there are other
inverses which can be defined. Noting, for example, that the exact
inverse of most filters will be infinitely long, one can ask: What
finite filter, of fixed length, is closest to being an inverse to
C in the sense that the sum of the residuals from the delta

function,

is minimum? The solution to this problem is the truncated approxi-

mate (least squares) inverse of (, and is discussed extensively by

Robinson (1964a, 1967; see also Treitel and Robinson 1966). One
could just as well ask for the truncated inverse which minimizes
the absolute value residuals [see Claerbout and Muir (1973) for an
interesting discussion of some of the properties of this inverse].
Inverses may also be evaluated by various techniques which involve
determination of the zeros of the Z-transform of the filter (see,
e.g., Steiglitz 1974), but this approach is computationally quite

laborious compared to the DFT method.

Jd)  Correlation Functions and iower Specetra

The autocorrelation function of a process Y is defined as

ppOney) = {0, - D, - D), (63)
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FIG. 15.-The wraparound feature of pulse shapes. All the
pulses shown are equivalent in the sense that their inverses (and

DFT's) are identical, except that they are similarly rotated with
respect to each other.

69




et S R TSR

PULSE SHAPE INVERSE
: (al) (a2)

‘ 0

A ,0,0,1,0.-¢°'0,0, )

jesom 0,12,
c"'{‘ ne-f, 2,

-n

b (bl) (b2)

At ,0,G0.0.-¢%% ¢ %e™), )
rQ12,

LIRS k
. -n
w < B

- o
a b
N
1
(ch) (c2)
4
A ‘Jl"""conosn ne0.,2, A:(,0,0.1007 - 799, 189, 13, 20, )
LU ne el -2,
T m——— -n
0 s x fad
g\/\/b__ »n
© /0 30
08 e o
)
P (d1) (d2)
) oo
70,12, ERULETN
a2, A% 007 5 g1 00 )
: [ore*]
TRUNCATION
ERRORS
R [_._*,_ —
g M .

FIG. 16.-A sample zoo of pulse shapes (left) and the corre-
sponding inverses (right) as determined with the discrete Fourier
transform.
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where X = (Xn>. Section Ila outlined its significance. The power

spectrum is the Fourier transform of the autocorrelation and also

is equal to the squared magnitude cf the Fouriler transform of the

time series itself. We shall give, without proof, expressions

which are readily derived from the definitions.

For a moving average X = /*7, where R is assumed stationary
and with spectrum PR(w) = 1, we have

pX(n,m) = pX(n -m) = oﬁzpc(n -m - x2 , (64)

where oRz = (an) is the variance of the innovation and pC is the

actocorrelation of the pulse, defined by
= ~ 12
pC(n -m) = Z chk-m-m . (65)

It can be seen that the autocorrelation is the convolution of the

pulse with its reverse. For zero-mean processes (e.g., with (Rn)= 0)
| the autocorrelation of the MA is proportional to the autocorrelation
of the pulse shape. Similarly, for this case the spectrum of the
process is equal to the spectrum of the pulse shape:

Sew = [cw?, (66)
where ("(w) 1is the Fourier transform of the pulse:

Cwy = O e, (67)
K

and the normalization of F is such that Pﬁ(w) = 1. In terms of

J-transforms we have

Tw

5w = Cx (5D OE) (z=e ) . (58)
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For an AR process, R = 4*X, it is easy to show that

1

S (w) » ————r (69)
X 2
|4 (w) |
where A(w) 1is the Fourier transform of the AR filter:
]
.' ) = 2 4, &R (70)
k

Finally, for an ARMA process, A*X = R*(,

2
PL(w) = lew!” (71)

4w ]
It is readily verified from these formulas (or directly from the
. definitions) that both the spectrum and autocorrelation of X are

unchanged by time reversal of (, a result alluded to in §IIle.
IV. MODEL CONSTRUCTION

The tools are now at hand to construct stochastic models from
time series data. In outline the procedure is: (1) obtain data

from one or more realizations of the process of interest; (2) decide

on the form of the model to be fit to these data; (3) use the data

to generate estimates of the model parameters; and (4) if necessary,
) transform the resulting model to a form more easily interpreted

physically. (The last step recognizes that the form most suited

to computations may not be the most suitable for comparison with

physical models. Typically a low-order AR model is easiest to com-

pute, and the corresponding MA has the simplest physical interpre-

tation. See §Vf.) The stage will be set by presenting an
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existence theorem which justifies the concern in §II and S§ITI for
the MA and AR models, by asserting that any stationary process can
be represented with these models. Then explicit methods for the
estimation of the parameters in these models will be developed. We

assume that all processes of interest are stationary.

Gl A Exlatenee Theorem:  the Wold Decomposition

Moving average models were introduced in §IT as a rather arbi-

trarv way of representing "memory"

or correlations. The question
arises as to what processes can be represented in this seemingly
very special form. 7The surprising answer, first demonstrated in
1938 by the econometrician Herman Wold (1938a), is that any station-

ary process can be sc¢ represented. The simple explicit form, known

as the Wold Decomposition, is given in the following theorem.

THE WOLD DECOMPOSITION THEOREM: Given any stationary
process, Y, there exist:

(1) a purely deterministic process D,

(2) an uncorrelated zero-mean noise process A, and

(3) a moving average filter (,

such that Y = K% + N,

l

This is a decomposition of V into a deterministic part (’) and a

random part (K*’). The random part may contain correlations and
can in turn be deconvolved into a moving average, in which the

correlations are represented by the deterministic filter " and the
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purely random part is contained in the white nois. process R. 1If
the MA 1is restricted to be causal, this decomposition/deconvolution
is unique (except for a constant factor which can be exchanged
between R and (). It is not unique without the causality condition,
because there are other noncausal MA representations. This non-
uniqueness is the subject of the following subsection. If, in
addition, X has an absolutely continuous spectral distribution
function (i.e., X is itse:f .ot deterministic), then ¢ is minimum
delay, and therefore has a convergent, causal, minimum delay
inverse 4. This fact assures the existence of a unique autoregres-
sive representation of the detrended process X - D, in the form
A*(X - D) = R, where A = C~!. Thus the Wold theorem establishes
that any stationary process, with its deterministic part (including
the mean value) removed, can be represented as an MA, AR, or a
mixed ARMA process (see §IIf).

For a thorough discussion and proof of this theorem see Hannan
(1970, p. 137) or Robinson (1964b, p. 126). The following informal
proof conveys the spirit of these rigorous works. Consider a given
stationary process X, which for simplicity will be taken to have

zero mean. The forward predictor of order p is defined as
r
= ’ 2
0 (72)
k=1

s (p)
n

for any set of numbers Bk‘ k=1, 4, . . ., p. This linear expres-~

sion is designed to forecast the value of X

(,;» based on the previous
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values Y, _,, Xn-z' b ey Xn-p’ The quality of the prediction of
course depends on the values of the ?k' Those values which give

the best predictions form the optimum predictor of order ;». Mcre

specifically, the optimum least~squares predictor of order » is

defined as that which minimizes the mezn square prediction error,

E(F) = E[X?z - \})]N i (73)

n
with respect to the parameters in FF. The optimum predictor is the
limit as ;> » ». A very important process is that defined by

- .*.(Of’f)
hy, = Ay = ,\,‘, -

143

’ (74)

the error made by the optimum predictor at time ». This random
process is to be identified with the white noise process * in the
definitions of AR, MA, and AI'MA process:: (§I1) and {s ca. the
innovation of the process Y} (Kailath 1968; prarzen 1969). The error
at time » is due to the rew pulse starting at that time, because
the effects of pulses starting at previous times are completely
incorporated into the optimum prediction. That (%, = 0 follows
immediately from the vanishing of (Xn) and the definition of A, It

can be shown (Wold, 1938a) that

<X ,f€> = for all &~ ~ 0 . (75)
p-K' 9

Intuitively this is so because 5, is the error made at time 0 bv a
predictor optimized on all prior data (f.e., ¥ L} e e )

Nel® et

so there ~an be no correlation of X with these data, otherwise the




correlations could be used to improve the already optimum predictor.

It follows that (Ran) = 0 for all m # n; for, taking m > »n without

loss of generality,
/ ~
<Rm87> = ({{m(xn - Xn)> = Rk, - ; BBk = 0 (76)

because all of the terms are of the form in equation (75). This
makes the Rn a kind of orthogonal set, and the process X can be

expanded in the series

-
K= D OR D (77)
P

where D is a residual process, orthogonal to K. By the usual
technique of multiplying this equation by R, and taking expectation
values, the expansion coefficients can be found:

Cp = YR ) (78)
(This formula is an alternate way of computing the MA paramete.s
and has some advantages over the direct inversion C = A"l.) The
final step, that D is deterministic, is a consequence of the van-
ishing of the prediction error for D. The details of this proof

can t. found in the abrve references. Caines and Sethi (1979) give

an inceresting discussion of causality and the Wold theovrem.

«
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b) 4 Less Restrictive Existence Theorem
The moving average filter of the Wold representation is
(1) convergent (or stable): 2: C

k

=0 for & <O,

2
3 < w,

k
(2) causal: Ck
(3) minimum delay (see §IlIe),

and
(4) constant (C, independent of time).

Extending Robinson's (1962) terminology, we call any filter with

these properties a minimum delay wavelet. It is indeed a curious

feature of the Wold theorem that an arbitrary stationary process

can be represented in such a special torm. What about an MA

process with a pulse that does not have these properties? The Wold

decomposition exactly represents such a process with an MA model

which DOES have these pr perties. For example, it represents a

mixed-delay MA in terms of minimum delay wavelets. It would seem
that such representations are misrepresentative. Some processes
seem to have better representations than the one provided by the
Wold theorem. But how can this be? The ar r lies in the fact
that, while too restrictive with the pulse (, the Wold decomposi-
tion is too liberal with regard to thc innovation. It would be
preferable, at least for physical processes consisting of indepen-
dent pv” 2s, to restrict the icnovation to be independently dis-
tributed — not just uncorrelated — and to allow the pulisze to be
mired-delay and acausal, rather than assuming causality.
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(Incidentally. there © . presumably a similar extension in which
coustancy of the pulse is dispeased with, for one can construct a
stationary MA with noncons’ant pulses, Stability cannot be dis-
pensed with because it corresponds to finiteness of observable
quant ities,)

A kev point is that a given stat fonary process can be repre-
sented by any member ot a larpe tamily of MA models.  The members
of the tamily share a common autocorrelation and power spectrum but
have differenat delav/causality propertics: the corresponding funo-
vations have ditferent degrees of randomness ranging from uncovre-
lated to independently distributed.  The Wold theorem singles out
the unique minimum delay wavelet repiresentat ion because only causal
tilters are permitted.  The existence theorem tor the more general

representations is as tollows (Scarple 1977):

e sl e e e S e it o e e o ey

—
THE EXTENDED DECOMPOSTTION THEOREM:  CGiven any stat {onary
precess X, there exist:

(1) a purely deterministic process [,

(2) a temily of uncocrelated, sero-mean noise

L O
processes, {4 e and

(3) ¢ tamily of two-sided moving average tilters,

(o

‘

N TN ER - . .
such that V= 7+ B « The tilter family {8 the set
of all filters which have the same autocorrelation Yunct fon
as X3 oone of them is mintnum delav, and one maxinnm delay,

and the rest are mixed delav.




The proef i: simple. Since Y is stationary, the Wold theorem
applies and assures the existence of a unique, causal, moving- J

average representation,

X =D=M (79)

where ﬁa iz a minimum delay wavelet. It was shown above (8I1I1d;

see also Robinson 1964b; and Smylie, Clarke, and Ulrych 1973) that

there is a family of filters which share a given autocorrelation

and which can be obtained from each other by all possible combina-

tions of time-reversal of the dipole factors. We define the family

{C([)} as the set of all filters which have the same autocorrela-

tion as 6”. If 5ﬂ is finite, of length ¥ + 1, chen there are ZN v
(not necessarily distinct) members of this set. One is minimum

delay (dﬂ iteelf), one is maximum delay (the reverse of ﬂj), and the

A(?') - [(,(1')]-1

rest are mixed delay. For each F(Z) define and

R = 4w - ). Then f

e ap (D) o O Oy Sy = v o0, (80)

establishing the desired representation. A direct calculation of

v;
the autocorrelation of H( ) shows that it is the same as that of

i)

M ol I3
R, namely o‘Gnm, and this completes the proof. The uniqueness of

this family is also readily demonstrated. Note that the represen-
tations in this theorem are not just similar, they are exactly
equivalent. They differ only in the way in which the random and

determinictic parts are assigned to the innovation and to the pulse.
123
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It is possible that a theorem stating that one and only one
of the R(i) is always independently distributed can be proved.
I do not know whether this theorem is true. There are theorems
dealing with the existence of nonlinear representations with inde-
pendently distributed innovations (Rosenblatt 1971) or innovations
with the martingale difference property (Segall 1976). Therefore,
it seems likely that further restrictions beyond stationarity must
be imposed on a process to ensure the existence of a linear MA with
an independently distributed innovation. Our point of view will be
to assume the independence of the noise driving the observed pro-
cess. Then one of the family of representations will certainly be
independently distributed; this one will be regarded as the correct
one, as it most completely and faithfully separates the random and
nonrandom parts of the process. It is easily seen that the innova-
tions of the other representations can be written as linear combina-
tions of the i.d. one at different lags [cf. eq. (86) below] and
are therefore dependently distributed. Although exactly equivalent
to the correct one, these will be considered incorrect representa-
tions because their innovations are not purely random.

A concrete example wiil help clarify these matters. Consider
the exponential pulse

c, = (81)
>0 (b>0)

1]
P
1\

81




which has been invoked in astronomical shot noise models (e.g.,
Terrell and Olsen 1970). This minimum delay wavelet is the inverse
of the simplest possible nontrivial AR filter, that is, the one-
parameter model used as an example in §IIIf, with a = e_b. Let F
be an i.d. noise process, and consider the moving average Y = R*(.

The inverse of (¢ is the dipole (1,-a). Hence the family of MA

filters for this process has only twe members, namely

=@, a, a2, a3, . . ), (82)
and
= (., aY et a1 . (83}

The corresyonding inverses are (I,-¢) and (-z:,1). The MA represen-
. Y . . .
tations are ¥ = ("*R (precisely the form used to d2fine V) and

M
Y = ™*5',) where

R" = (~a,1)*Y = (=a,1)*(1,-a)"1*R = I*p | (84)
with

P= (~a,D)*@,-0)" 1. (85)
The pulse ' is fundamental in the algebra of dipoles: convolution
with P of a filter that has the dipole factor (1,-u) reverses that

factor. With the aid of J-transforms the following explicit forms

can be derived:

W
(1 - °) akH - aR . 86)
Ntk =1 N
k=0
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and

1 - JQ)G-K X £ 0

Pk ={ -u A=1. (87)
0 k~1

It might be surmised from inspection of equation (86) that RA and
R£+1 are correlated because they have many terms in 7 in common.
However, a straightforward calculation yields

ntpt - 2 - -
Apfg) = o8, N

) (88)

and

(?*F)p = svo [i.e.. (0 LI } 09 Oa l, 0! 0’ A ')] * (89)

Figure 4 shows an example of processes related in this way: that
in Figure 4(d)' is independently distributed, and Figure 4(cl) is
the same process (same realization) filtered with P. The pulse F
is graphed in Figure 17. 1t is perhaps surprising to fiand a pulse
other than the delta function itself which has a delta function
autocorrelation. There are many such pulses. They are sometimes

called all-pass filters. The filter ?hi*A_l, for arbitrary  of

order ¥ or less, has this property [ is the unit delay operator
defined in eq. (41)]. [Radar design is one application where
unautocorrelated pulses are sought (Boehmer, 1€¢67).] Note that our
process, constructed as randomly occurring, decayving exponential
pulses, can also be represented as randomiy occurring, growing
exponentials! These representat ions ave mathematically equivalent,

Al ~ 10 .. .
as (UFF = (Uxy' 0 But U XY {s a better representation because it is

’e
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FIG. 17.-The pulse I = {FH}, described in the text, which has
a delta-function autocorrelation, This was the pulse in the moving
average shown in Figure 4(c¢).
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t1 same one used to construct the process in the first place. It
is better in the sense that its innovation is independently dis-

tributed and not merely uncorrelated, as is the innovation R'.

¢)  Deconvolution via Independently Distributed Inmmovations

The previous subsection assures that a MA representation
exists. While it is not automatic that this linear superposition
of constant pulse shapes is physically significant, it frequently
is. That is, random processes which occur in nature often consist
of the summation of independent pulses. Since the moving average
model represents a process as the convolution of a pulse shape (
with an innovation A, the process of deduc .g the model ({,R) from

time series data is called deconvolution. The goal is to disen-

tangle the overlappirg pulses from each other, revealing the under-
lying pulse shape and information about the amplitudes of the
pulses.

Most of the standard deconvolution technigues (§IVd) are based
on least-squares modeling or the autocorrelation function and are
therefore insensitive to the iuformation needed to determine the
phase character of the pulses. Such techniques cannot distinguish
among the representations in the extended decomposition theorem.
Further, if the driving process R is normally distributed (Gaussian)
noise, it can be shown (Parzen 1962, §3.4) that the procecss U = RB*(

is also normal and therefore completely characterized by its mean

alue and its autocorrelation function. In this case no technique
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can recover tli¢ phase Iinformation. The pulses in an MA driven by
Gaussian noise overlap so much that the phase information is irre-
trievably lost. However, many physical processes are not normally
distributed, and for these the problem arises as to how to deter-

mine the pulse shape with the correct phase property. This is the

FUNDAMENTAL PROBLEM: Given data sampled from the moving
average process Y = F*C, where R is independently dis-

tributed noise and  is a (not necessarily minimum delay)
pulse, find estimates of the pulse shape (' and amplitude

sequence X.

The standard techniques determine the minimum delay pulse which has
the same autocorrelation as (. But if 7 {is not Gaussian. the cor-
rect pulse shape can be recovered. The key fact is that the inno-

vation corresponding to the correct pulse is independentlv distrib-

uted, while the other members of the family of innovations in the
extended decomposition are not independent.

The procedure to be described here is a direct search for an
independently distributed innovation. We seek the model (AR, MA,
or ARMA) which, of all models consistent with the sampled data, has
the least dependence in the distribution of the innovation. Begin
by writing, in terms of the data Y, the innovation as a function of

the model parameters [egs. (15), (19), (26), and (27)]:
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A*X (AR model)

o~ lxy (MA model)

R ={ (30)
A*C™ 1y (ARMA model)

ascm1x(v%)  (ARIMA model)

Because of its simplicity and practicality the AR model is the
prototype in this discussion, but the others can be treated in
much the same way. The explicit form of R in this case is

p

RH. = ZAan-k (Tl=p+l, P+ 2: e ey N - Q) ’ (91)
k=-q

where 4 is of order (p,q): 4 = (A_q, coeoesdiys Ags Ay e, Ap).
Then construct a measure o1 the dependence of the proucess R, and
minimize it with respect to the model para-eters. There is no one
correct way of defining a suitable dependence measure. Correspond-
ing to each of the definitions of independence given in §IIa there

is the Zollowing quantity which could be used as a measure of the

dependence of the process R:

(1) PM(rl, Poy o v e rM) - Pl(rl)Pl(rz) . . Pl(rM)
using probability distributions

(2) FN(rl, s rM) - Fl(rl)Fl(rz) . e . FI(PM)
using cumulative probability functions |

(3) ?M(ul’ Uys = v os JM) - ¢‘(u1)¢1(u2) e ¢](uM)
using characteristic functions

@) (R, RY + +  ayBY) - g, B))g,@R,)) -

Q?“(Rr)> using expectations
" Vil
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In these expressions a simplified notation is used to give the
order of the statistical functions, If R were independently dis-
tributed these four expressions would all vanish for all values of
the appropriate independent variables (the r's or ihe u's) or for
all functions di ani for all values of the integer M. There is a
variety of ways cne might choose to estirate the statistical func-
tions in these expressions or to assess the departure of the chosen
expression from zero. Of these many ways of proceeding, different
ones will undoubtedly be suitable for different kinds of problems.
Exteusive experimentation has led to one procedure which has worked
well in a variety uf test cases. This procedure is offered as a
fairly general purpose one, but the reader may wish to consider
other approaches to dependence minimization for his data analysis
problems.

How are the individual and joint probability functions in the
above expressions to be evaluated? First, equation (91) [or, more
generally, eq. (90)] generates A from the sampled data X, as a
function of the model parameters. The .esulting values of A are
then used to estimate the function of interest, in the form of an
average. Assume that 7 is ergodic, so that the desired ensemble

averages can be computed as time averages. For example, to esti-

mate Qz (r1 -_‘, where ¢ stands for P, F, or ¢, evaluate the
aver e
g7l
<92(r”’ r”+1)>” TN- (@ i g+ 1) :E: Qz(rn' Pygr) - (92)
n=p+1
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The way in which the estimators (such as ?2) are calculated is dif-

ferent for each of the four forms (1)-(4) above and will be described
below. Because time averages are used, no distinction can be made
between the various second-order functions, such as Qz(rl, rz),

Qz(rz, ra), e e ey Qz(rk, r ). Such a distinction is unnecessary,

k41
however, because the assumption that R is stationary means that all
of these are equal anyway. The next step would be to consider
third-order functions, such as 03(r1, r,, r3), which are awkward to
deal with numerically. Fortunately (Papoulis 1965), the added
information by going from second to third order is contained in
simpler expressions, such as Qz(rn, rn+2), or in general Qz(rn, rn+m)'

The corresponding time-average is

N-g-m

R 1 o
Qotrne T = T T D T T+ (O
n=r+1

Hence, expressions higher than second order never need be considered.
The final dependence measure is the sum of expressions such as

equation (93), from m = 1 to some maximum value, m* [see, e.g.,

eq. (98) below]. What should this range of values be? Unless

m% << N, the small number of terms ir sums such as equation (93)

will make the estimates ill-determined. Numerical experiments of

the kird described in §V, mostly with cumulative probability

functions, have yiclded the following: For simple models of order

one or two, the single lag m = 1 may be sufficient in the sense

that no further information is added by including larger lags. Buat
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codsorder models oo must be larger than 1 if all of the
inierearits o ghoat the process is to be extracted from the data.
Lo cnodeoe for ok appears to be roughly cqual te the aumber of
e pataiiolers, dhel, % ¥ 004+ 50 A rationale for this empirical
vecslt o is Tacking, although it is not unreasonable.
fae apprvoaches using probability distribution functions (PDF),
cumu bt ive probability functions, and characteristic functiens were
testod on problems with known puls  shapes cad innovations. The
dependence measure based on cumulative probahility functions proved
by far the best (see “Via), and the details of this approach will

now be given. A straightforwoerd estimate of the cumulative proba-
§

bility yunction of o, is [ef. the definition in eq. (7)]:
A
N CO I DA R (94)
S

where % = U - (; 4 ;) and the i have been reindexed as described

below, at the end of Ve. () is the unit step funetion:

0 0
Sy o= . (9%)
! coe 0

dhe s in equation (99) is just the number of 4 which are

L

S toeretere T/UE times the sum is oan estimate of el o b o)

{0 atep fanction, consiating of cqual steps (of amplitude 1/77%)
oot the o0 Simitariy the second-order joint comulative

Vag o is oestimated with

st fSanction for

™
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N*-m
Fzm(:c,y) = _(‘AT*_]::-_M-)— Z H(.’L‘ - Rn)H(y - Rn+m) . (96)
n=1

In this expression the sum is just the number of pairs (7,, Ryy4p)

such that

Rosx and R, <Yy (97)

[see the definition of FN given in eq. (5)]. The dependence mea-

sure is taken to be

m* mx
. 2
DF(A) = E DFm(A) =E fJ"Fzm(x,y) - Fl(x)Fl(y) de dy .
m=1 m=1

(98)
The evaluation and minimization of this expression are described

in §V.
An analog of equation (98) with probability distributions

replacing probability functions is

m*
2
D (4) =Zmpz"’(x,y) - Py (@)P,(y) | dz dy - (99)
m=1

However, numerical tests have shown this dependence measure to be

inferior to DF' The reasons are readily understood. The estimates

of P1 and P2 involve the construction of intervals or bins in both
R
the bins. This procedure has several difficulties. First, the

results are considerably sensitive to the sizes and positions of

- 2
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w— and (R, Rn+m)-space, and then counting the number of points in
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the bins, and there is no obvious way to choose these optimally.
Indeed, it appears that the optimum bins depend on the distribution
of R, which of course is not known a priori. A second difficulty
lies in the quantized nature of bin occupation: A sufficiently
small change in 4 only moves the R points around within the bins,
and leaves the number of points in the bins (and therefore the
estimates of P, and P2) unchanged. Hence the derivative of the
penalty function, Dp, is highly discontinuous. This effect foils
minimization methods which use gradients, and it also appears to
produce a forest of local minima which makes the global minimum very
elusive. The author achieved some success in alleviating these
problems by weighting the points according to their distance from
the bin center (a Gaussian dependence proved superior to exponential
or linear), to remove the quantum effect. Even so, there were still
numerous local minima in typical problems. The expression in equa-
tion (98), because it uses cumulative functions, requires no binning
and is a smoothly varying function of 4. For low~order models it
possesses a single minimum to which the minimizer converges rapidly,
independently of the starting value. This result holds even with
m% = 1. When the order of the model is larger, local minima invari-
ably appear unless m* is increased (see §V).

Another problem with DP concerns the treatment of the points
that spill outside the chosen R-interval. Again some success was

achieved with empirical remedies, namely the application of a
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penalty for such spills (to be added to DP) or defining the edges
of the bins, in an R-dependent way, to include the maximum and
minimum R-values. But these stop-gap remedies were only partially
successful at producing a well-behaved dependence function. It is
also awkward to have so many adjustable parameters (number, size
and location of bins, weighting functions, spill penalties, etc.)
to be chosen arbitrarily or optimized using trial cases. In com-
parison, the function DF’ given in equation (98) and evaluated as
described in §Vd, is very well-behaved and free of undetermined
parameters or functions.

The characteristic function is intrinsically a continuous
function of the Ak, so the method based on these functions also

avoids some of the problems discussed above. The first and second

orders are

6, () = (exp(iury)) (100)
and
8, (uyuy) = (expliu Ry, + u Ryl (101)
The corresponding condition for independence is
Gy (uyouy) = 6, Guystp) = 6 uy)y () = 0 (102)
for m=1, 2, . . . . Since this function must vanish for all U,
and Uy there are various expressions which could be adopted as the

dependence measure, the most obvious being the integral

N .U:

m 2
G¢ (ul,uz)l du1 du2 . (103)

93




This measure, even with weighting functions thrown into the inte-
grand, did not give very promising results and was numerically

awkward. A much simpler procedure comes out of the Taylor series

m

expansion of the function ¢, in equation (102). Write

)
dk¢1(u) uk
4)1(14) = *--—;\-" =T (104)
du nt
k=0 u=t
and
m = 3k+J¢2m(u1,u2) ulku;J
¢, (Upyuy) = T NI
e i, du,” Y
Ky =0 1 2 U =u,=0

(105)
The quantities in square brackets are ikuk and iK+JuZ ;» respec-
e

tively, where the u's ar: the moments

6

M

and

Ve 6Ky (107)

Since all power: of Uy and u., must vanish in ejuation (102),

2
(108)

Um =y, u
k: J. k j
for all k, j, and m. Accordingly, the expression

2
Dyom = E E ’(uk,J - ukuj)w{i,j)} (109)
m ]

k: J

can be taken to represent the degree of dependence of the process R

[(k,]) is a weighting furction]. For simple :odels tihe single

value » = 1, and just a few terms X,/ = 1,2, =eem to suffice. The
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term k¥ = J = 1 corresponds to the autocorrelation function, and the
terms Kk = 1, j = 2, and ¥ = 2, j = 1 are related to the "time skcw-
ness function" of Frenkiel and Klebanoff (1967) applied to a related
problem by Weisskopf, Sutherland, Katz, and Canizares (1978). The
numerical tests showed that moments and characteristic functions
have some merit for this problem, but again local minima were
bothersome and no chouice of weights for the u's or the p's could be
found that yielded consistently satisfactory results.

The author has not experimented with expectations of arbhitrary
functions [method (4) in the list above], mostly because the infi-
nite arbitrariness in choosing the function sets is so imposing.

Finally, while it would not necessarily yield independently
distributed innovations, a procedure based on maximizing the mar-
tingale difference property (§1la) was considered. In fact, the
implementation is straightforward and easy. Select a set of A-bins,

denoted ﬂi’ and then evaluate the conditional expectation value

1 z :
<Raner &Ri) =¥ Ry (110)

n such that R, . 86\,:-

where .# is the number of n such tha: Rn+m‘§“i‘ The "martingaleness"

measure would then be

Pupp = Z' (o) o 665) - (“%,}‘; , (111)
5
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;

G =3) Bn (112)

n=1
is just the (unconditional) expectation value of R. As will be

seen in §VIa this procedure does not appear to be very effective.

d) Predictive Deconvolution of Time Series

Predictive deconvolution (Peacock and Treitel 1969) or predic-
tive decomposition (Robinson 1967b) refer to the use of linear
prediction (Makhoul 1975), usually based on past data only, to
yield information which allows representation of a process in terms
of elementary building blocks (such as white noise processes, MA or
AR filters, and deterministic processes). Since least-squares
methods are almost always used, and these cannot recover phase
information, only a brief sketch will be given. This discussion is
intended to clarify the relation of predictive techniques to the
material presented above, and also to motivate a technique (§IVe)
which is a simple extension of linear least-squares prediction and
which can recover pulse phase information. More details than are
given here can be found in an extensive literature (Kolmogorov 1941;
Mann and Wald 1943; Wiener 1949; Bode and Shannon 1950; Durbin 1959,
1960; Walker 1962; Robinson 1964b; Gersch 1970; Akaike 1971, 1974;
Chow 1972a; Kashyap 1974; Shinners 1974; fstrom and SSderstrém

1974; Gertler and Barryasz 1974; Gersch and Foutch 1974; Graupe,
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Krause, and Moore 1975; Tong 1975, 1976 — to name a few), and
expecially the reviews by Robinson (1967a) and Box and Jenkins
(1970). The reader interested in the new techniques only should
skip to §V at this point.

The basic principle of predictive decomposition is that a
model which gives good predictions of the behavior of a process
undoubtedly is a good representation of the process. Thus one takes
a model with a simple structure and adjusts it (by adjusting the
values of the model parameters) until some measure of the error the
model makes when tested against the available time series data is
minimized. This procedure is called optimizing the model. The
goal is not prediction per se, but representation of the statisti-
cal properties of the process. The hope is that the optimization
will extract all of the information about the process that is con-
tained in the data at hand.

The basics of the predictive approach are as follows. The

term linear prediction used above simply means that the predictor

is taken in the form

g # Bipoy # By ¥ o o o+ BX L (113)

(cf. the autoregressive memory discussed in §IId and in the proof

of the Wold Decomposition theorem in §IVa).++ That is, this

ttThe caret (*) is placed over quantities which are estimated
or predicted, based on data and (usually) a set of parameters such

as the B,. It is to be distinguished from the symbol ( ) for the
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expected value, which is a statistical average, depending on the
whole process (theoretical expectation) or on a realization of it

(sample expectation).

expression is to be used to predict** the value of Xh, based on

$$1t should be emphasized that the word "predict” is not meant
in the literal sense, as it would be, for example, if we were
interested in real-time analysis of a manufacturing process we
wished to control. Rather, we consider 2h to be the guess or esti-
mate we would make for the value of X, if we didn't know it, based
on knowledge of values of X at other times. Conventionally, the
restriction to the use of past data is imposed, but in general use
can be made of past and future. (A two-sided prediction-error

filter is sometimes called an interpolation operator.)

knowledge cf the previous values X,_;, X,_,, . . . only. The num-
bers Bi are related to the AR parameters and are to be determined
by minimizing the prediction errors, in a sense to be defined. The

error in prediction at time n is
k k
By =Xy - X, =X, Z AtXp g = 2 AXpei o (114)
1m) 1=0
where we have taken Ai = 'Bi and Ao = 1. In other words

E = A%X (115)
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is the sequence of prediction errors as a function of time, and for

this reason 4 is sometimes called a prediction-error filter. Sup-

pose we take the sum of the squares of the prediction errors,

that is

E(4) = ZE,} (116)
n

as the measure of the errors which is to be minimized. In practice
the length of the prediction filter is taken to be much less than
the length of data (k << ¥), so that a large number (N - k) of trial
predictions can be evaluated. The minimization equations are

oF

E."‘O (t=1,2,3, . ..), (117)
or
ZAkxn_k X, 1 =0, (118)
k=0

the expectation value of which is

ZAkp(k i) =0 (E=1,2, 3, ..., (119)

Xm0
where p 1s the autocorrelation function. These are the standard
Yule-Walker equations (Ulrych and Bishop 1975). The procedure is
to use the data to compute an estimate of p, then solve equa-
tion (119) for the coefficients Ay Az, +« « + » Ulrych and Bishop

give specifics and FORTRAN programs for carrying out this solution.

99




From the solution for A and the data, it is straightforward to
calculate an estimate of the innovation from the rclation in equa-
tion (115). Indeed, the sequence of prediction errors E, corre-
sponding to the optimum A is an estimate of the innovation R. That
is, R is both the sequence of optimum prediction errors and the
sequence of pulse amplitudes. This equivalence can be understood

by noting that, with the correct A4, there is no prediction error

at time n due to pulses starting before n — the error is totally
due to the new pulse, of amplitude X, hence E, = R,. This esti-
mate, of course, is of the innovation corresponding to the specific
realization of the processes which has been sampled, but

therein is also contained information about averaged quantities,
such as the pulse rate (which for a continuous distribution of
amplitudes is expressible in the distribution function of pulse
amplitudes). The Yule-Walker equations can be generalized to the
case of two-sided filters, but this is a useless exercise providing
no added information.

A procedure for C.cermining A with the minimum delay condition
imposed is due to Burg (1968, 1975) and is discussed by Ulrych and
Bishop (1975), Fahlman and Ulrych (1975), Kanasewich (1975, Ch. 16),
Ulrych and Clayton (1976), and others. The sum of the squares of
the forward and backward prediction errors of & one-sided prediction-

error filter, namely
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5T -py i: aord 2 A0itur ) |2 020
n=p+1 L_\k=0 0

is minimized with respect to 4. The first term inside the braces
corresponds to the error made by the filter in predicting X, based
on the p preceding values Xh_l. Mag? ¢ ¢ s Xh_p. Since least-
squares modeling cannot distinguish one sense of the direction of
time from the other, Burg introduced the idea that one should
include the backwards predictions, which are represented by the
second term in equation (120). This term is the sum of the squares
of the postdiction errors, made by the same filter (reversed) based
on the subsequent values Xn+1' Xn+2. o o ey Xﬁ+p. The terms in the
backward and forvard contributions to E,, when expanded out, are
ideutical except for end effects. Thus burg's idea is most impor-
tant for short segments of data for which end effects are most

importaii. This procedure explicitly assumes that the process X is

intrinsically symmetric, in that forwards and backwards predicticns
need not be distinguished, and of course this is not generally true.
: The limits of the n-sum are chesen such that no datum outside
the sample range, n =1, 2, ., . ., N, 18 ever called for — that is
to say, the estimate is noncommittal about the unsampled data. (In
some formulations of such problems the unsampled data is set to
zero.) Therefore the resulting parameter values are "maximum
entropy" estimates (Burg 1968; Lacoss 1971; Ulrych 1972; Ables

1974). Hence A can be used to compute "n estimate of the power
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spectrum [eq. (69)] of X (Burg 1967; Akaike 1969a,b, 1970b; Parzen
1968, 1969) which is called a maximum entropy method (MEM) spectrum.

The nature of the predictions and the ranges of the summations are

depicted in Figure 18. Details of the method are given by Ulrych

and Bishop (1975) and more completely by Andersen (1974). The first
of these references describes a convenient recursive solution to
this least-squares problem, which imposes the minimum delay condi-
tion explicitly at each step. This is the Levinson (1947) recur-

sion, also discussed by Durbin (1960) und Burg (1975). Ulrych and

Bishop discuss various practical matters, give a FORTRAN program
for the determination of the AR coefficients as well as the spec-
trum, and outline the use of the final-prediction-error (FPE) cri-

terion for the determination of the length of the (one-sided) AR
filter.

This procedure is very efficient at determining the AR coeffi-

cients from time series data generated by simple processes where

there is little noise present. It should probably be used if it is

known a priori that the pulse is minimum delay. In astronomy this

is seldom the case.

e) Predictive Deconvolution with the Absolute Value Norm

The choice of tre sum-of-squares of the errors, in egua-

tions (116) and (120), is not tha only possibility. Least-squares

modeling 1is used becsuse it gives maximm likelihood parameter

estimates (Box and Jenkins 1970). It is also convenient because of
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the simplicity with which the minimization can be expressed in
terms of the autocorrelation function [eq. (119)]. But some other
measure of the errors could be substituted for the mean square
error. The AR parameters could be determined by minimizing the
more general form E(4) = [|E||, where ||E]| denotes an arbitrary

error norm.5% For example, consider the La norm:

§5Random processes can be considered as elements of a normed
linear space (for L2 this is a Hilbert space with the inner product
(X,Y) = (XY)). A norm satisfies the three conditions:

(a) ||X|] = 0 1f and only if X = 0; (b) l|ax|] = |a| [|X]||; and

) JIx+71]| s "X||-b HY“. These are pleasant but not necessary
properties for a measure of the errors or residuals in model fit-
ting. For example, the skew "norm" of Claerbout and Muir (1973)
does not satisfy (b) or (c), but it is still a useful penalty

function for residuals.

1/a

E “) . (121)

n

Ly(E) = (E

n

The mean square error corresponds :vc g = 2, The usefulness of the
choice @ = 1 (Claerbout and Muir 17/2; Scargle 1977) will now be
demonstrated. Consider the MA process X = R*(C, where R is an inde-
pendently distributed process and C is the two~point pulse (1,c);
if |e| < 1 C 1s minimum delay, and if [e| > 1 C is maximum delay.

Introduce a two-point forward prediction-error filter 4 = (1,a):
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By =Xy taky, 3 (122)

i.e., the form of the prediction is simply
X, =-ax, . (123)

The best value of g minimizes L, (E), which is equivalent to

ninimizing
a
L ®)1® = 20 |x, + ax,_, (124)
n
o
= Y| RotoR, ) +al®,., + oR,, ) (125)
n
a
= 2 R, + (@ + c)R,_, + acR,_, (126)

n
This last expression is difficult to deal with because of the pulse
overlap manifested in its three terms. But progress can be made if
the pulse overlap is neglected, because its effects should average
out. The prediction-error due to a single, isolated pulse at time

n is
Eo= [Ry]®C + |a + o]® + |ae|™) . (127)

But also considexr the reversed or backward prediction-error filter

; A = (a,1), vwhich leads to the error
Ey = [Rl®Cla]® + |1 + ac]® + [e]®) . (128)

It happens that Ef = Ep if and only if o = 2. That is, least-
squares prediction is identical in the forward and backward direc~

tions and would yield the same result if the time series were

reversed. The quantities E’f and Ej can be easily minimized if
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a¥l. For a = 1 consider the graph of |a + ¢| + |ac| in Figure 19.
Each of the two terms is a simple absolute value curve with a slope
discontinuity at the point where its argument is zero. Hence the

sum is plecewise linear, with vertices at these zeros. The minimum

must fall at one of the vettices."" and simple comparison of the

""If Icl = ], the line between the vertices is horizontal and
the minimum occurs everywhere along this line. This degenerate
cuse is not important, because such a pulse has no stable AR repre-
sentation anyway. It should be remembered, however, that absolute

value minima are not always unique.

two values shows that

- if le' <1
a - (a=1) . (129)
f.min 0 |e| .1
For a # 1
ap min = e+ 1e®HT itk 82 @ - DT, (130)

and a similar analysis of the backward case gives

—ele|"1(1 + |¢;‘|B'H)-l (a ¥ 1)

a ={ 0 1f Je! <1 . (131)
b,min (@ = 1)
"l if Je] > 1
The values at minimum are related as follows:
- 2 - .
Eplap ngg) =1+ le|? < Eylay, o) =1+ lel  1f Je| <1
(132)
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and é -
Eb(ab,min) = lel™ + lef < Ef(a ,min) =1+ |e] 1f le| > 1. %
(133)

Hence the minimum for either forward or backﬁard prediction is at

{—c if le| <1 ‘
a = (a0 = 1) (134)
RNl 4 e > 1 |

which gives for the optimum 4
@,-c) if e <1
A=
("1, 1)  if Je| > 1

(a0 = 1). (135)

These solutions, for all values of a, are to be compared to the
exact inverse of the pulse from which the process was formed,
@,-c,c%,-e3, . . .) if le| <1
A=C1a . (136)
(. . .,-¢3,072,-c"1,1) if el > 1

The two-term L, solution in equation (135) agrees with the first

two terms of this exact result. For |a| << 1 the filter
Cl,af min) = [1,-a + 0(a?)] is approximately correct for any a > 1,
1]
and similarly for |a| >> 1 the filter (ap . ,1) = [~a~! + 0(a=2),1]
, )

is a good approximation. The inequalities in equations (132)

and (133) hold for 1 < a < 2, but the opposite sense inequalities
hold for o > 2 (with equality for o = 2, as already noted). Thus
any L, norm with 1 g a < 2 makes the correct decision between mini- 3
mum delay and maximum delay, but a 3 2 is unsatisfactory. The best
choice is a = 1, for at least in this example the resulting param-

eter values are then most accurate.
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This demonstration of the phase determining ability of the
absolute value norm is for the simple case of a first order AR
procesé. More general cases are difficult to treat analytically,
but there are many good numerical techniques for absolute value
minimization (Barrodale and Roberts 1973, 1974; Osborne and Watson
1971; Barrodale, Roberts, and Hunt 1970; Barrodale and Young 1966;
Robers and Ben~Israel 1969; Barrodale 1970; Ekblom and Henriksson
1969; Rice and White 1964; Maria and Fahmy 1974; and Claerbout and
Muir 1973). Numerical tests (Scargle 1977, and §VIa) show that the
L, norm does work for more complicated cases, as long as the driv-
ing process R is at least moderately nonnormal. But a difficulty
arises when two-sided filters are introduced, as they must be for
this problem.

In the above example, permitting either forward or backward
prediction was crucial to the phase determination. 1In more compli-
cated cases, for example when the pulse is mixed delay, the obvious
generalization is to allow A to be two-sided. For example, 1if
4 = (a,1,b), the predictor is

X, = -aXpyy - bX,_, » (137)
and the prediction-error sequence is
Eyw Xy = X, makpyy + X, +bX, | (F=4%) . (138)

It 1is here that the liberal interpretation of the word "prediction"
noted above first comes into play. The general forms are

A - (A_q’ ¢ & oy A‘-l' A.. Al, « s a0y Ap) (139)
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and

p
Bu = D Ak - (140)

k=-q

The corresponding mean error in the L, norm is

N-q
1 o
E(4) ol e Z :IE’nl , (141)
n=p+1

where as usual the sum is such that the filter 4 never extends out-
side the sampled data (cf. Fig. 18). The optimization problem is

to find the minimum of this expression with respect to the param-

eters A-q’ o s ey Ap. It seems natural to not regard Ao as a free
parameter, but to fix it at the value 1 because of the special

¥ nature of the prediction point. The condition 4, = 1 can be thought

of as a normalization condition imposed on 4 to avoid the trivial

minimum at Ai = 0, all 2. However, this normalization choice is

inappropriate for two-sided deconvolution problems. Consider the

3

MA process X = R*C', where C is some particular two-sided pulse.

The mean L, prediction error is

b N-q
T E(4) = 3 ; Z Z awee) | s (142)
‘ n-p+1 km=q

and therefore

E@) _ 2 .
Mi N-p-gq Z Zk:Ak(R*C)n-k (R*C)n-i (for < ¥ 0) .
n

(143)
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Now insert the desired solution 4 = ¢~l:

2B (A .2
Ty ] s E R (RYC),,_; (144)
A=c™) n

2 EE :E :
= m R, chn-i-k » (145)
n k

the expectation value of which is

\{a@-] TW- P - QZZG R)Croik (146)

- 20}?20-1: ) (147)

since the R's are mutually uncorrelated. This expression is not
zero unless C_ vanishes. 80 that in general the A which is the
correct inverse pulse, namely "1, does not solve the optimization
problem with the constraint A, = 1. On the other hand, if only
one-sided pulses are allowed C_; = 0 for all 1 > 0, and the desired
A doés make the above derivatives zero; this A does solve the opti-
uizagion problem. The choice A4y = 1 is correct for causal pulses
but not for two-sided ones.

What can be done to ensure that the solution of the minimiza-
tion problem is the correct inverse pulse? If Ao is an arbitrary
function of the other A's, rather than held constant, the above
analysis yields, instead of equation (147), the set of equations

QAO
CitCogm,m0 GO, (148)




which integrates to

?A L£op =1 (149)

as a necessary condition that optimization of A yield the inverse
of C. (Note that for causal filters this reduces to ACy = 1, and
the conventional constraints 4, = Co =1 are correct.) Unfortun-
ately, equation (149) cannot be considered as a simple constraint
on A because it involves the unknowns Ci' An obvious possible
remedy is to compute iteratively, starting with a guess for C,
imposing the constraint in equation (149) on the minimization to
produce a new 4 and a new C = 4~!. The convergence and uniqueness
properties of this iteration have been studied in numerous simple
cases. For low-order processes with little noise it converges
very rapidly to « unique minimum which is very much better than the
solution with 4, = 1. But for more difficult problems there tend
to be oscillations. In some cases these can be damped out very
effectively by adopting a suitable averaging scheme for the update
of 4. But a way has not been found to predict ahead of time which
of several such averaging procedures will succeed on a given set of
data, nor a single procedure that is successful on all data.
[Curiously, although the above derivation is for Lz' the same results
can be demonstrated for L, using the methods of Rice (1964).]

An interesting feature of the above iteration is that, since
none of the A's is constrained to equal 1, the identification of the

prediction point becomes vague. Indeed the very concept of a
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specific point singled out as the prediction point loses much of

its significance. But let us call the element of 4 largest in
absolute value the prediction point, just because it is often true
with the constraiut 4, = 1 that |4.| < 1 for all £ 4 0. It is found
that as the iteration proceeds this point is not fixed but moves
around within the filter and eventually converges to a fixed point.
This is favorable as it eliminates what would otherwise be an arbi-
trary parameter (the location of the prediction point, or MPT in

the terminology in the appendix). The length of 4, however, is

still arbitrary. For least-squares problems Akaike (1970a) has shown
how the length can be determined in an objective, automatic way,

based on the FPE criterion. This technique introduces the quantity

reEy =GR 52 (150)

where €M2 is the sum~of-squares of the residuals (i.e., of the
innovation), ¥ is the number of data points, sud ¥ is the number of
free parameters in the model (including one for the mean value if
this has been subtracted from the data before analysis). Starting
from small values, ¥ is increased until the FPE (for "final pre-

iation error") stops decreasing and begins to increase. Omne can
interpret the factor (N + M)/(N - M) as the statistical penalty
that should be paid for using more free parameters. Without such
a penalty, the residuals would always decrease as the number of
parameters increases, so that the FPE going through a minimum is the
signal that diminishing returns has set in. Other techniques hav.
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been proposed (see especially Gray, Kelley, and McIntire 1977), but
none seems easily generalized to the L1 case. However, empirically
it has proven satisfactory to simply replace QMZ in equation (150)
with JMI, the sum of the absolute value residuals. No theoretical
justification for this procedure has beeu found, and it should be

regarded as an empirical result with quite meagre support in numeri-

cal experiments. Short of using this, the magnitude of the resid-
uals and the values of the model parameters must be inspected as the
complexity of the model increases. It has been said that so much
judgment is necessary in such matters that the procedure should not
be attempted for the first time (Granger and Newbold 1977). This
seems extreme, but some limit must be placed on the order of the

model to avoid the pitfalls of fitting too many parameters.

This section concludes with the one analytical result uncovered

for the L, problem which is as close as possible to showing that
absolute-value optimization of a two-sided AR filter yields the
correct deconvolution of an MA process driven by independently dis-~

tributed noise. First the following lemma is established:

LEMMA: If X and Y are zero-mean, independently distributed

processes, then

(x + 21 2 max((Ixl). (I21)) (1s1)

with equality if X or ¥ is the null process.
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First note that if X and Y are independent

(Ix + r|) - Jde dyP, (x,y) |z + y| -ﬂdx dyPy @)Py () |z + y|(152)

- fd.{-r (x + y)PX(x)Pr(y)dy +f(:c + y)Px(x)Py(y)dJ
- '

(153)

.x
- J' dx[—ZI @ + y)i (@Py(y)dy + [ (= + y)Px(z)Py(y)dgzl
0 )
0 o
+ J' dxl - f (z+ y)Px(z)Py(y)dy-i-zf(x + y)Px(x)Py(y) .
-t - X

(154)

The firat and last of the four terms in this equation can be written

as the integral of a nonnegative quantity, as follows

Q= Z[J‘ dr f | + ylPx(x)Py(y)dy
0
0
+ J- d:cflx + ylPx(x)Pr(x)dy 2 0. (155)
-0 X

In fact this quantity vanighes only in degenerate cases, the most

important ones being Px or Py £ 0. The second and third terms in

equation (154) simplify:
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g|x+r|) - J: dx [P, (z) + (YIPy(x)] +'r dz[-zPy(x) = (1P (x)] +Q

(156)

v = (|x]) + I sign(2)Py(z)dz + @ (157)

= (|x|) + Q (since (¥) = 0) , (158)
and s0 except in the degensrate cases in vhich Q = 0

(x + 2 2 (x1) . (159)

o} Since X and Y are interchangeable in the above analysis the result

stated in the lemma follows.
Turning to the main issue, consider the process X = R*C; we

vish to show that (|A%X|) is minimum if 4 = C~! [subject to the

i M,

condition in eq. (149)]. Write

A=(Cl+ 84, (160)
so that
A%X = (C~1 + BA)RCHR (161)
= B+ (84%C)*R (162)
or
Us), = B, + zaknn_k (163)
X
where
T D Mo s (164)
mn
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and ejuation (149) gives
a, = 0. (165)

Hence

(\(A*ﬂ,,l) - < R, + E Gl ) (166)

kéo
But since R is indepondently distributed, the sum in this equation
is distributed independently of R,, and the lemma applies, to ' ‘e
(la=x|) 2 (I8l) , )
wvith equality if a - 0 for all k, a condition equival-™nt to
84, = 0 for all k. Hence A = ¢! gives a minimum (not necessari.:
unique), and we have established the

THEOREM: If X = R*C, with R independently digtributed
noise, then A = C~! is a solution of the optimization

problea =min(|A*X|) subject to ;: Al p = 1.
y -

It must be cautioned that this minimization problem is not speci-

fied in the usual way, because the constraint explicitly involves

the solution, and the theorem is to be understood in the sense indi-

cated in its proof. The practical value of this result is in the

{terative method which it leads to, as described earlier.
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V. COMPUTATIONAL METHODS

The goal of this section is to provide enough computational
details so that the reader can apply the techniques described above g
to his own data. In outling all of the methods proceed in the same i
way, as follows:

1. Obtain the data.

2. Decide on the form of the model (AR, MA, ARMA, ARIMA, . . .).

3. Provide a way of computing the innovation R as a function

of the model parameters.
4, Choose the property of R to be minimized, and provide a
scheme for evaluating the corresponding norm D(R).

5. Minimize D(R) with respect to the model parameters.

6. Compute tie physically interesting quantities from the

optimim model found in the previous step.

The following subsections explain these steps in turn.

a) Samplirg (Step 1)

Assume that the sampling is in even intervals of the indepen-
dent variable (time, position, wavelength, . . .) so we have a set
of measured numbers Xn' n=1,2, .. ., N. This is not a funda-
mental limitation, however, as the techniques described here can be

readily generalized to data with gaps and/or uneven sampling (5Vg).
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b) Identifioation (Step 8)

Choosing the best form (which is traditionally called identi-
fication) of the model is not always straightforward, and there is
a large and complex literature on this problem (see, e.g., Box and
Jenkins 1970; Parzen 1974; or Granger and Newbold 1977). Summariza-
tion of the ideas in this litorature will not be attempted, but the
following general comments are appropriate. Many astronomical time
series can be well represented as low-order AR processes, and this
digcussion therefore emphasizes AR models. Remember that a given
process can be represented in a variety of ways (§Ile), so identi-
fication should not be viewed as finding the True Model, but as
finding a simple, physically suggestive model which adequately
represents the observations. Also keep in mind that this step is
not irrevocable, once taken. Rather, the results of subsequent

steps often suggest some revision in the form of the model.

o) Computing the Irmcvation R(A) (Step 3)

The relation used depends on the form of the model [eq. (90)].
For an ARIMA model, the data are differenced d times and then an
ARMA model 1s fit. The most direct way of computing R is to carry
out the operation in equation (90) with the discrete Fourier

transform:

- gl FW)EU) -
Re & oy : (168)
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Note that ¢ enters this calculation effectively as its inverse, so
that even here the MA part of the model is converted into an auto-
regressive representation. The only points that are not straight-
forward in implementing this expression with the DFT are: complex
arithmetic must be used in the multiplications and divisions, and
the arrays 4 and ¢ must be zero-extended to the same length as the
data before applying the transformation., It would seem that the
result would be of the same length (i.e., N points), but to avoid
spurious end effects the array R must be truncated somewhat,
depending on the length of A and ¢. These end effects arise
whether the innovation is calculated with the DFT or directly eval-
uated with a summation [cf., eq. (91) for the pure AR case]. In
either case the innovation is defined at slightly fewer than ¥
points. This is the reason for the limits N1D and N2D in the
FORTRAN code provided in the appendix. For the pure AR case, K is
defined at p + ¢ (= the length of the AR filter-1) fewer thun ¥
points. But the values are not NID = p + 1 and N2D = ¥ - g, as
would be expected from equation (91), simply because negative
values of indices are not permitted in FORTRAN. In the code in the
appendix R is computed as outlined above, using the DFT. Alterna-
tively, the sum in equation (91) may be directly evaluated; for
small values of p and q this procedure is faster than the use of
the DFT. However, the evaluation of R is a minor part of the com-

putation of D. For convenience the R, are re~indexed as
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{Ry, n = 1,2, . . ., N*}, where n = 1 corresponds ton = p + 1 in
equation (91), and N* = ¥ - (p + q). It is important that 4 be pro-

hibited from running over the ends of the data (see Fig. 18), to

avoid the numerically harmful end effects (i.e., to preserve the

"maximum entropy" condition, §IVd).

d) The Computation of DF(R) (Step 4)

The choices for the property of R to be minimized include
dependence (§IVc), the martingale difference property (§IVc), the
mean-square prediction error (§IVd), and the mean absolute predic-

tion error (§IVe). Another example is a measure of simplicity

calied the varimax norm (Kaiser 1958; Wiggins 1977; Ooe and Ulrych

1979). In turn there are several ways to implement each of these.

For example, we saw above that dependence could be measured in

terms of differential or cumulative probability distributions,

moments, characteristic functions, or expectations of arbitrary
functions. Since the scheme involving cumulative distribution
o functions proved much the most satisfactory, details of the other

approaches have been omitted. The remarks about them in §IV

should enable the interested reader to construct algorithms imple-

menting the other approaches. Test results with all of the methods
save those using moments (messy) and expectations of arbitrary ;
functions (not tested), will be given in §VI for comparison.

The function to be minimized is defined in equation (98).

Because of the step-function nature of the estimates of F; [eq. (94)]
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and Fzm [eq. (96)], this integral can be evaluated exactly with a
finite double sum, as we shall now see. It is convenient to intro-
duce an ordered version of the R,; i.e., define an index transfor-
A ''- R - !

mation 7 = f(n) such that if Ri Fin) Rh, then the Rz form an
ordered set:

Ri s R; ;‘R; S+ § Rb*_l S Rk* . (169)
As long as Ry, 1s associated with its correct neighbor in the

unordered °*, namely R,, then the integrand in equation (98) is

unchanged by his ordering. The integral may be written as

. %
m = m 2 ' k'%
- v pty 1 ' ' 1 5
DF 4) IFZ (R‘i ,RJ.) Fl (Ri)Fl (RJ) AR?: AR,] » (170)
i=]1 J=] E

! Rt
where ARi Ri+1

spaced) grid of rectangles with area AR% AR} and with edges at the

- Ré. This sum is over a two-dimensional (unevenly

values Ré, i=1, 2, .. ., N* (see Fig. 39 in the appendix). From
definitions (94) and (96) it can be seen that Fz(Ré.Rg), FI(R%),

and Fl(Ré) are all constant over each of these rectangles and

therefore so is the summand, Fzm - Fl . Fl. Hence the sum in equa-

tion (170) is an exact evaluation of equation (98). Of course, the

expressions for F, and Fzm are inexact estimates of the correspond-

i
]

ing quantities. However, they exactly represent all the informa-
tion contained in the given realization of R — this is not true of
the estimates of P1 and Pz’ since there is always some loss of

information in a binned histogram. This is probably the main rea-

son for the superiority of the c.d.f. approach. The advantage of
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R', the ordered version of R, is that the summand can be computed

recursively, for example, with

My p - Moy ) 1 '
(Z)+m
[H is the step function defined in eq. (95).] This relation follows
from the fact that no more than one new step in Fzm begins at a
given value of R%, corresponding to a given row in the matrix

(R%,R&). Further discussion of this recursion is in the appendix.

e) Minimization of DF(A) (Step §)

The minimum of DF’ with respect to the filter elements 4, can
be found with any of several standard numerical techniques; the
simplex method is described here because it is the one the author
happened to use, not because it has been proven to be more suited
to this problem. The following warning should be issued with the
simplex method (Nelder and Mead 1965; Powell 1965): After the con-

vergence criteria have been satisfied, a restart should be made to

check the possibility that the simplex has become degenerate or is
otherwise unable to progress toward the true minimum. A restart

is a reinitiation of the iteration with a new simplex at the point
to which the procedure appears to have converged (see the appendix).
Another caution is that DF may have more than one local minimum.
With numerical techniques it is never possible to be certain that
the global minimum has been achieved. But the expression for D, in

F
equation (98) is far superior in this regard to all of the other
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methods tried and to other ways of estimating the cumulative proba-
bility functions. For data generated by a simple process and fit
by simple models [e.g., AR(1,1)], DF has never been found to have
more than one minimum, and the simplex rapidly converges to the
(global) minimum from essentially any starting ﬁalue. The‘conver-
gence is also very sure in that a restart is never heeded. (Never-
theless it is wise to try a restart in all cases, even if it is
expected that it will not be fruitful.) As the order of the fitted
model is increased three symptoms eventually appear:

(1) local minima abound

(2) restarts are frequently necessary (i.e., false convergence

becomes common)

and, not surprisingly,

(3) convergence is generally slower.
Experiments have shown that the first two of these problems are
eliminated if m* is increased sufficiently, typically to a value
slightly less than p + q. Because the time to evaluate DF is
roughly proportional to m*, the computation time increases as m*
is increased, but the reward in sureness of convergence, elimination
of spurious local minima, and accuracy of the solution 18 certainly
worth the price. For a given data set, the prccedure found to be

best is as follows:
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(A) Fit a very low order model, such as AR(1,1), with

mt'= 1, Unique and sure convergence has always obtained
at this step, but caution suggests that one:
(a) experiment with a variety of starting values,
such as 4 = (0,1,0), (1,1,1), or the (a_,,1,a,)

which gives the L, minimum (i.e., minimum of

};.IR,,I).

(b) try a variety of sizes for the initial simplex, and

(¢) always try restarts, with moderately large simplexes.
Hopefully these steps will not be necessary, and the results
will be the same for all starting solutions and simplexes.
However, since ill-conditioning tends to grow with the
model complexity, confidence in the good behavior of the
procedure at this stage is essential. If there are con-
vergence or uniqueness problems at this early stage, there
are several possibilities:

(1) The process is not stationary, and V should be
applied one or more times before modeling is
attempted,

(i1) an even simpler model should be used to start with,
such as AR(0,1) or AR(1,0),
(111) a totally different form z2hould be tried, such as

MA or ARMA, or

(iv) the value of m* should be increased (see D below).




(B) Increase the order of the model. A good way is to
compare the results for p + p + 1 and for ¢ + q + 1, using
as starting values the solution from step (A) with zero
for the new parameter. Adopt the model which gives the
lower DF or the two. (Remember that restarts and multiple
initial solutions are never out of place. The appearance
of false minima turned up by restarts or multiple minima
turned up by various initial solutions are symptoms that

mk is too swmall and should be increased.)

(C) Step B should be repeated until there is indication

that the correct order has been reached, for example, until

(a) the parameters from the lower order solution do
not change, and the new parameter is relatively
small, or

(b) the residuals stop decreasing with increasing
order — more properly the residuals should decrease
only as much as would be expected from the mere

fact that another parameter is varied.

(D) Increase the value of m* and repeat steps A-C. If the

results do not change significantly with m* it can be

presumed that the value used is large enough.

The format of Tables 4-7 follows this scheme.
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Determining the correct order of the model is important. If
the order is taken too small, there will be residual serial corre-
lation in the estimated innovation, indicating that not all of the
information about the process has been extracted. In spectral
analysis the symptom of too small an order is that the spectrum is
heavily smoothed — the frequency resolution has been degraded by
using too few parameters. In deconvolution the pulse shape is
similarly over-smoothed. In principle, taking the order too large
is not as harmful because the extra parameters will be very small
(provided there is enough data). In practice, however, even a few
too many parameters cause numerical difficulties and add greatly
to the cost of the computations. If the number of parameters
becomes of order N (Heaven forbid!) the estimates all become
unstable because there are too few terms in the corresponding sums.
In general too many parameters show up as large spurious spikes in
the power spectrum, or as wild oscillations or other erratic
behavior in the pulses. There are many approaches to the order
problem in the classical least-squares arena (e.g., Chow 1972a,b;
Anderson 1963; Jenkins and Watts 1969; Akaike 1970a; Gailbraith
1971; Lindberger 1972; Parzen 1974; Jones 1974; Graupe, Krause,
and Moore 1975; and Tong 1975). Also, an innovative approach has
been developed by Gray, Kelly, and McIntire 1977. It is not sur-
prising that the same difficulties confront modeling with indepen-

dently distributed innovations, as the models are identical. The
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steps (A)-(D) above, based on experience with both test cases and
real data, are offered as guidelines only. It is hoped that an
objective technique, such as the FPE (see §IVe) can be developed.
Toward this goal, the quantity FPE, in equation (150), with §M2
replaced by DF' is routinely tabulated (see §VI). In some cases
this quantity can be helpful in deciding when the order is correct,
but it is far from infallible. When using the suggestion given
above [step (B)] for increasing the order of the model, the FPE
will be systematically underestimated, because the smaller of two
values of D, corresponding to the two choices for the location of
the new parameter, is selected. This could cause the quasi-FPE
criterion to overestimate the order of the model, as occurs in the
examples in §VI.

A note about multiple minima: For a given total order [e.g.,
p + q for the model AR(p,q)] there will be distinct minima for each
of the possible choices of p and q. [For example, if p + ¢ = 3,
the four possibilities are AR(0,3), AR(1,2), AR(2,1), and AR(3,0).]
With the current algorithm the prediction point cannot move during
the minimization, so that all of these choices are separate prob~
lems. It would be helpful if a scheme to allow automatic migration
of the prediction point could be developed, as with the L; minimiza-
tion with a pseudo-constraint (§IVe). Then all of these problems
(with a given total order, p + q) could be solved together with a

single minimization. In licu of such a procedure one must simply
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compare the minima for the various choices. Some judgment can be
used here; for example, if a model of the form AR(1,2) yields the
grand minimum for p + ¢ = 3, it i{s unlikely that AR(4,0), or even
AR(3,1), will give the grand minimum for p + ¢ = 4.

All of these matters will be illustrated in the examples in
§VI.

f) Computation of Subsidiary Quantities (Step 6)

The point of this section is that the model parameters esti-
nated in steps (1) to (5) are not necessarily the most interesting
numbers in the physical interpretation of the data. For example,
as already mentioned, the AR parameters are often the most easily
and directly calculated, but the MA pulse shape is the quantity
for which there is a physical theory. (For example, if quasar
light fluctuations are due to supernovas, the pulse shape should
resemble the supernova light curve.) Hence one of the transforma-

tions that is useful is A + C. The direct way to carry this out is
to compute
¢ =4t e 57 55] (172)
FK)

using the discrete Fourier transform, as discussed at length in
SIIIf and explicitly shown in the appendix. But there is another
way of evaluating tbe MA parameters, namely with the relation

C = xak = A#xaX  (with (X) = (R) = 0) (173)

vhere *+ indicates the time reverse of *. Indeed, this is the form
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used in the constructive proof of the (Wold) existence theorem for
the MA pulse [see eq. (78)]. It can be thought of as the "super-
posed epoch" method (e.g., Gosling, Hundhausen, Pizzo, and Ashbridge

1972) decause the convolution in equation (173), re -itten as

Cp = ; Xy o (174)
represents the operation of shifting sach pulse to bring its origin
to 8 common point in time and then averaging with a weight propor-
tional to the pulse amplitude. All of the other, overlapping pulses
are added in, too; their contribution averages to zero because they
are uncorrelated with each other, but the pulse which has been
shifted to the common origin always adds in phase. The cancellation
of the random overlapping pulses requires that the mean of X be
zero, which explains the need for (X) and (R) to be zero in equa-
tion (173). This relation can be proved by noting that if X = Ra(,
then

X*R = CH(R*R) . (175)
But the expectation value of A*7 is a delta function, so that the
expected value of the right-hand side of equation (175) is just C.
Of course the estimate of R*R for sny realization is not exactly
a delta function, but will contain zero-mean noise for nonzero lags.
(One can use the symmetry of R*R to aid in distinguishing this
noise from the tails of the pulse.) The estimate in equation (173)

has several advantages over the simpler form in equation (172):
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A1 is a smoothed estimate, especially if it has a small number of
paramsters, and to some extent it conceals the uncertainties in the
pulse shape. Becauss equation (173) iovokes the data directly, the
resulting pulse is less smoothed than 4~! and thus provides a batter
feeling for the variance of the values of the elements C,,. Another
shortcoming of the direct inversion is that it is nonlinear in 4
and thus is a biased estimate. For example, if X were white noise,
the expected value of A is a delta function (at least for some ways
of determining 1t; cf. §VId). But 4~! contains quadratic and other
even powers of the Ak which do not have sero sxpectation value,
hence (4~1) 1is not a delta function as it should be. In practice
this bias is not iaportant for most problems.

Another interesting quantity is the astimate of the innovation,

£=anx, (176)

vhich 1is computed every time D(R(4)) 1s. Of course £ is a sample
estimate and refers to the pulse amplitudes in the particular
reslization of the data at hand. It is the best (optimum) estimate
of the amplitudes with which the pulses, C, occurred to produce the
observed rezlization. Kote that since R = A%x, 1f C = 4~! 1t fol-
lovs that X = A% exactly. That is, the model has sufficiently
many degrees of freedom to reproduce the sampled data exactly.
There is thus never any question of how well the data is fit. The
questions are: How random (independent) is the estimated pulse

aplitude sequence? How physically reasonable is the estimated
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pulse cshape? The amplitudes may be less interesting than their -
distritution, so it is often useful to construct a histogram which
is an estimate of the amplitude distribution.

One :an also readily compute the autocorrelation function and

power speccrvm of X, directly from 4 [cf. eqs. (65) and (69)].

g) Gaps and Uneven Sampling

Any technique based on prediction-error filters can»be readily
adapted to data which does not have the simple sampling assumed in
§Va, for there are ways of generalizing the concept of the output
of such filters (with the input data unevenly sampled).

Consider first even sampling with one or more gaps. The case
of one gap is easily generalized to an arbitrary number. We
describe one gap in terms of two index sets for the independent
variable:

£ ngsl,nJSz’ : (177)
For example, a gap of length m could be represented with
S;=@Q,2, ..., N)and S,=W,+m+1, Ny +m+2, ..., NZ).
There are two subcases as given in the following two paragraphsf

No coherence across the gap.- There are situations where the
length of the gap is unknown (so that the second segment cannot be
phased relative to the first), the gap is not an integer number of
the sampling intervals, or where it is believed (or assumed) that
the process is not coherent across the gap. For example, in a pure
MA process there is no coherence across a gap wider than the total
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extént of the pulse. Even if the puise is infinite, the coherence
will diminish rapidly aa'the gap exveeds, say, twice the FWHM of the
pulse, The case of no coherence is the easiest to handle. One
simply redefines the function D as a sum over the index sets taken
seﬁarately. That is, if d£(4) is the norm evaluated on the data for
index set 7, treated as if it were the only data available, then

define

pa) » T o) , (178)
1 ) .

where the sum is over all the relevent index sets. The minimiza-
tion of this total D is exactly as before.

Coherence across the gap.- It is rare that information is
coherent across anything but a small gap, the most notable excep-
tion being signals consisting of phase coherent sinusoids or other
deterministic functions. If it is desired to retain such informa-
tion, the technique just outlined cannot be used, as the filters
are never applied to data on both sides of the gap simultaneously.
The basis of a method for such cases has been suggested indepen-
dently by several workers: Use (one-sided) prediction error filters
to fill in the gap(s), and then optimize a new filter on this
interpolated data. There are various choices as to how to merge
the predictions (one from the right and one from the left) at the
center of the gap. The final filter will not contain any informa-

tion not already contained in the optimizations on the individual
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data segments, unless it is longer than the gaps. An example of
this technique is given by Ulrych and Clayton (1976).
Arbitrary samrling.- Consider the case where there are not

just a few gaps in otherwise even sampling, but where the time

points are arbitrary, {t,} (see §I and §II). Discrete AR represen-
tations aré applicable only to the special case where the sampling
times are evenly spaced, because the optimization requires sliding
the filter along the data (see Fig. i8). But the simple generaliza-
tion to continuous filters allows arbitrary sampling. The piedic-

tion error, given in the discrete case by equation (114), is
By = Xy + [X@AGH, - o)ds (179)

and the integral is replaced by a sum, yielding

Ry = Xy + 2 X(8)A(t, = £t . (180)

k#n
Since A(t) is continuous, it does not matter that the intervals
tn - tk are not all the same. To parameterize the function 4 so
that the optimization can be carried out with respect to a set of
discrete parameters rather than a continuous function, introduce
the expansion
A(t) = Zk: Agdr(8) (181) :

where the ¢k(t) are a set of continuous functions which must be

specified. The problem has been reduced to the same form as before —
the innovation defined [by eqs. (180) and (181)] in terms of a i
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discrete set of parameters, {Ak}' The optimization can be carried
out as before, and the pulse shape and amplitude sequence, auto-
correlation function, or power spectrum can be evaluated much as
before. The author has carried out limited experiments with the
choice Atn = 1/2(tn+1 - tn—l) and the expansion [eq. (181)] given
as either a Fourier series or a power series. While encouraging,
the results wiil not be described here as there was moderate depen-
dence on the choice of the functions ¢k(t), the number of terms
kept in equation (181), the length of the operative time interval
[i.e., the number of values over which the %-sum in equation (180)
is evaluated], etc. Good methods of selecting these must be

developed.
VI. NUMERICAL EXPERIMENTS

The best way to evaluate a deconvolution procedure is to try
it out on artificially generated data of known characteristics.
All of the test problems described here are low-order autoregressive
processes, with specific choices for 4. The time series were
actually generated by filtering an innovation R with the inverse
C = 4~! (thus representing the process as a high-order moving aver-
age). The innovations are of the form R = Un; U 1is a sequence of
independent random numbers, distributed uniformly on (0,1), and
" means simply that U is raised to the nth power, term by term.

As seen in Figure 5, a large value of n gives a few large amplitudes
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and approximates the shot noise process. The other limit, small n,
corresponds to much pulse overlap (i.e., many large amplitudes
instead of a few) and takes on the appearance of a normal process.
The higher the value of n, the less pulse overlap there is and the
easier deconvolution should be. In the extreme case of normally
distributed R the overlap is so great (to the point that X = Rx(C

is also normally distributed) that no method can recover phase
information, and the deconvolution problem as meant here (i.e.,
with correct phase) is intrinsically unsolvable. Any technique
should give progressively worse results as n is decreased and should
be completely unable to recognize phase properties as R approaches
normalcy. These expectations are borne out by the experiments
about to be described. White noise with several variances is added
to some of the test data sets, so that the time series is of the
form

X = tea-1 4 op?W (182)

where N is Gaussian noise of unit variance.

a) Experiment 1 — Comparigon of Dependence Measures

The dependence measures introduced in §IVc were tested on the
process defined in equation (182), with 4 = (-0.2,1,-0.3). The
corresponding inverse pulse C = A-1 is a two-sided exponential
which rises somewhat more rapidly than it decays. Table 2 presents

results for a sequence of innovations ranging from » = 40 (highly
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nonnormal, pulses essentially isolated, easy for almost any tech-
nique) to n = 1 (nearly normal, much pulse overlap, difficult for
any technique). No noise was added. Note that L1 optimization

(with Ao = 1) is exact? for large n but degenerates quickly as the

#

This is a general property of L,, and is related to the fact
that the L,-optimum solution of an over-determined set of linear
algebraic equations always solves a subset of the equations exactly,

as was realized by Laplace (see Claerbout and Muir 1973).

pulse overlap increases. The iterative L, procedure (5IVe) degen-
erates much more slowly as n decreases and would have made an ;

impressive entry in Table 2. However, difficulties with convergence

on more difficult problems make this technique, as implemented,

unacceptable as a general-purpose method. Surprisingly the martin-

E gale difference property method fails badly, even for the easy U40
} problem. This failure is unfortunate in view of the simplicity of
the technique. Further development of the MDP approach may be

‘ fruitful.

The results shown for probability distribution functions (PDF)

were calculated with five equally spaced and equal bins in R-space

[25 in (Rn,Rn+m)-space]. chosen to float with the changing values é
of the minimum of F(4) and maximum of R(4), as this was empirically

found to be better than having fixed bins. For some problems it

is preferable to choose the R-bins so that roughly equal numbers of
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TABLE 2

TEST RESULTS
Innovations with Various Distributions: R = Un
Pulse Shape: Two-sided exponential (-0.2, 1, -0.3)"1

Length of Data: N = 100 (Averages of four such realizations)

n  CPF-method* PDF-met hou* MDP-method* L,-optimization

40 -0.200,1,-0.300 -0.195,1,-0.296 -0.194,1,-0.419 -0.200,1,-0.300
9 -0.202,1,-0.309 -0.207,1,-0.294 -0.219,1,-0.251 -0.230,1,-0.306
4 -0.191,1,-0.305 -0.169,1,-0.250 -0.041,1,-0.453 -0.318,1,-0.328

1 _0.201’1,-00348 -0-582,1,-00017 -00257 ’1,-00148 -0¢509’1’-0-503

*Maximum lag, m* = 1.

points fall in them. Gaussian weight functions for the bins were
used to combat the quantization problem outlined in §IVc. The results
are substantially dependent on the number and placement of the bins,
and at best the test answers are less accurate than those obtained with
cumulative probability functions (CPF). In addition, the convergence
properties of DP’ although better than those of the other dependence
measures (based on characteristic functions, moments and the MDP), are
much worse than those of DF‘

Table 3 displays the results of similar tests dealing with the
effects of additive noise or the computations. With R fixed at U9,
various levels of noise were added according to formula (182). In

both comparisons the cumulative probability function method is
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Various amounts of Additive Gaussian Noise: °N = Noise

TABLE 3

TEST RESULTS

Variance (Pulse peak = 1)

Pulse Shape:

Length of Data:

Two-sided exponential (-0.2,1,-0.3)"!

N = 100 (Averages of four such realiza-

tions)
Innovation: R = U9
—— ———— —
oy CPF-method* PDF-method* I, -optimization
0. 00 -00 202,1’-00 309 -00 207 ’1.-00 294 —00230’1’-00 306
0.0r -0.202,1,-0.300 -0.230,1,-0.282 -0.239,1,-0.317
00 05 -0.184'1,-00 261 -0- 130,1,"0. 258

0.10

-00169)1’-0c 200

+0¢ 003,1,"0- 133

_00232’1’—00339 3
-00183 ,1.-00 351

*Maximum lag, m* = 1.

superior to each of the others.

The problem with R = U and only

100 data points is very difficult, and compared to any other

method tested the current one does amazingly well.

Tables 2 and 3

do not represent enough trials to be definitive, but they indicate

trends confirmed by other computations which are not presented here.

b) Experiment 2 — Detatiled Study of an AR(1,1) Process

This experiment is an intensive study of a process similar to

that in Experiment 1.

The aim is to study in detail a relatively

difficult problem, namely deconvolution of the AR(1l,1) process
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X = U4”l & 0,05V , (183)
where 4 = (-0.2,1,-0.3) is thé same as in Experiment 1. This choice
combines a moderately high noise level (cf. Table 3) and a low
value of n (cf. Table 2), and presents a rather difficult problem.
The solid line in Figure 20 is a realization of this process with
N = 100.

Table 4 is a summary of the results of minimizing DF with five
different values of m*, In all cases the starting solution was
(0,1,0), and convergence to the AR(1,1) solution shown in the Table
was rapid — in no case did restarts lead to significant changes in
either of the parameters. The procedure was then to optimize both
AR(1,2) and AR(2,1) filters, using as starting values the AR(1,1)
solution with a zero appended. What is shown in the next line of
the Table is the third-order (M = 3) solution which had the smaller
value of the minimum DF of these two cases. This process is then
reﬁeated. At each step, the filter may grow to the left or to the
right, according to which produces the smaller DF' Let us examine

the convergence in this process, starting with m* = 1. The quantity

tabulated in the second column is

N+M\1
D DF(minimum) (N — M) w0 (184)

by analogy with equation (150), thus including the penalty for the
number of parameters in the model. It is hoped that this quantity
might have the property that makes the FPE useful: As a function

of M (the number of free parameters), a minimum of D indicates that
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FIG. 20.-Realization of the AR(1,1) process given by equa~
tion (183), with U3 innovation and added Gaussian noise. The dashed
line is the estimate of the innovation or pulse amplitude sequence.
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TABLE 4

DECONVOLUTION OF (~0.2,1,~0.3)"1#%y3 + 0.05¥8

(1) 2) (3)
A D(4) M
mk = ]
0,1,0 2.1078
-0.164,1,-0.304 0.1555 2
-0.207,-0.112,1,-0.312 0.1117 3
-0.076,-0.137,-0.105,1,~0.302 0.0810 4
mk = 2
0,1,0 1.2218
-0.166,1,-0.308 0.1444 2
+0.033,-0.183,1,-0.276 0.1437 3

+0-003.-0-177.1,-0-283,‘0.010 001328 4

mk = 3
0,1,0 0.9270
-0.148,1,-0.331 0.1557 2
+0.048,-0.188,1,-0.281 0.1502 3

+0.013.-0.177.1,—0.282,-0.004 001695 4

-0.010,+0. 020’-00145’1"01 292.+00008 0-1339 S

mk o= 4
0,1,0 0.8238
-0.205,1,-0.316 0.1945 2
+0.070,~0.245,1,-0. 283 0.1868 3

+°c 014.-00197’1’-0-302,‘0-00‘ 0-1967 4
-00 010,"'0. 013|-00153|1.-00 295’+0. 024 0018“2 5
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TABLE 4
Concluded

1) (2) 3
A D(A) M

mk = 5

0,1,0 0.7934

-0.235,1,~0.318 0.2126 2
+0.071,-0.264,1,-0.275 0.2069 3
+0.066,+0.076,~0.266,1,~0.256 0.2184 4

-0.002,+0.050,-0.222,1,~0.261,-0.005 0.2228 3

the correct order M has been reached. But for m* = 1 this quantity
keeps on decreasing with M, giving no indication of reaching a
minimum. Also the values of the new parameters are not small, so
there is no indication of convergence at all. This situation is
greatly improved for m* = 2, asg the new parameters (+0.033 and
~0.010) are relatively small. In addition, while D does not reach
a minimum, it decreases quite slowly with ¥. One might guess that
the correct order is AR(1,1) (i.e., M = 2) from the entries in
table 4 for m* = 2. The improvement continues for m* = 3, Starting
at m* = 4 there is a minimum in D, at ¥ = 3 (the correct order is
M = 2), and the value of the extra parameter A_, (which should

be =0) is small, 0.07 in both cases. Starting with m* = 4, and
especially at m* = 5, the values of the parameters change signifi-

cantly from the values they had for lower m*, It appears from this
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experiment that if mt is too low (1 or perhaps 2 in this example)
or too large (5 or perhaps 4) the results are not as good as they
are for an intermediate value. This result is as expected: If m*
is small, some of the information to be gained by reducing the
dependence in R at larger lags is lost. If m® is too large, the
information will be diluted as the minimization will try to reduce
dependencies at large lags vhers there are none to reduce., This
suggests taking m* = 3 ¢ 1 in the presant experiment. Figures 20
to 22 show results for the ¥ = 3, m* = 3 golution (which is very
sinilar to ¥ = 4, m* = 3 gnd to M 2 0r 3, m = 2), The dashed
line {n Figure 20 is the estimated inaovation. Figure 21 compares
this with the exact innovation from which the realization of X was
constructed. This estimate and the corresponding pulse (compared
with the exact one in Fig. 22) are very accurate. Figures 23 and 24
present similar comparisons for the somewhat different solution
corresponding to N » 3, m* = 5 (vhich 1s similar to ¥ = 3, m* = §),
vhich might have been selected from Table 4 if the quasi-FPE cri-
terion were taken seriously. This solution yields slightly poorer
reproductions of the innovation and the pulse shape (although the

latter is difficult to see in comparing Figs. 22 and 24).

o) Experiment 3 — An AR(2,1) Process

The goal of this test is to sse vhat happens if the process is
more complicated. In particular, ve will see to what extent the

quasi-FPE criterion [a minimum in the function (M) given in
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FIG. 21.-Comparison of the estimated (solid line) and exact
(dcshed line) innovations for the process shown in Figure 20.
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FIG. 22.-Comparison of the estimated (solid line) and exact

(dashed line) pulse shapes for the process shown in Fig. 20.

solution shown is 4 = (0.048,-0.188,1,~-0.281) (obtained with
mk = 3),
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FIG. 23.-Comparison of the exact (dashed line) and estimated
(solid line) innovation for the process shown in Figure 20, but
corresponding to a different solution, namely 4 = (0.071,-0.264,1,~0.275)
obtained with m* = 5. This result illustrates that the value of m*
can be too large.
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FIG., 24.-Comparison of the exact pulse (dashed line) with the
pulse derived from the solution mentioned in the caption to
Figure 23.
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eq. (184)] is useful in determining the order of a higher-order
process. The process chosen is again given by the basic form in
equation (182), with 4 = (-0.3,1,-0.2,-0.3), n = 9, and oy = 0.
This should be an easy problem because the innovation (U9) 1s so
highly nonnormal and because there is no noise. This was done
purposely, to minimize the confusion due to noise and excessive
pulse overlap, thus isolating the order-determining problem. The
realization studied here is plotted in Figure 25. Table 5 summar-
izes the minimization, in the same format as in Table 4. Because
the AR filter generating the process is longer, a larger range of
values of m* has been included. As before, the starting solution
was the simple AR(1,1) with 4 = (0,1,0). The results for m* = 1
are very poor, as might be expected, as A ties together values
separated by up to three lags, so a lag of one appears to be inade-
quate. As expected, the results are much improved for m* = 2 and 3.
For mk* = 3 and 4, the result is essentially perfect, in that the
quantity D goes through a minimum at the correct order, the param-
eter values are almost the same for the two values of m*, and the
values of the higher-order parameters (M = 4, 5, . . .) are very
small. For m* = 10 the minimum in D occurs at ¥ = 4, too large by
1, but again the extra parameter is very small, so that this solu-
tion is essentially identical (e.g., in terms of the corresponding
pulse shape) to the solutions for lower values of m* which are of

the correct order. Figure 26 shows the innovation and Figure 27
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FIG. 25.-Realization of the AR(2,1) process described in the
test (U9, no noise). The dasied line is the estimated innovation
corresponding to the solution 4 = (-0.27,1,-0.202,-0.323) obtained
for bothmk = 2 and m* = 3,
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- TABLE 5
DECONVOLUTION OF (-0.3,1,-0.2,-0,3)"1#y9

A D) N
] m w1
’ 0,1,0 4,232
& -0.256,1,~0.336 0.1331 2
i -0|274’1.-0|107"00577 0'0906 3
-0.288,1,+0.017,-0.874,+0.106 0.0747 4
'0-368,-0-207,1,+00119"0.761.+00256 0-0327 5
'0.347,-0‘220,1"‘0-017|‘0n563,%0362)'0.164 000319 6
mk = 2
0,1,0 4.026
-01132’1'-01462 0.5114 2
-Ol 269’1’ -0- 202’-00 323 0. 1002 3
-0.262,1,~0.194,-0.316,~0.060 0.0967 4
-0.260,2,-0.126G,~0.409,-0.128,+0.174 0.0924 5
-0.256,1,-0.138,-0.274,-0.197,-0.101,+0.318 0.0698 6
mt = 3
0,1,0 3.547
-0.170,%1,-0.441 0.3683 2
-0.268,1,-0.202,~0.323 0.0884 3
-00273'1'-0o201,-0|321’-000001 000921 ('
"0-256.1’-0.233’-0-326’"‘0.043,-0-024 000938 5
oy -0.307,-0.226,1,-0.180,-0.261,+0.204,~0.359 0.0686 6
mt = 4
0,1,0 3.168
-0.129’1,‘00482 003565 2
-0.272,1,-0.201,-0,322 0.0749 3
-0.276,1,~0.199,~0.318,-0.002 0.0780 4
i -0.279,1,-0.210,-0.318,+0.019,-0.003 0.0799 5
-'0.237,1'-0-242,-0-376,"’0.127,4‘0-067,"0.192 0'0698 6
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TABLE 5

Concluded
A D(4) M

mk = 10

0,1,0 1.8225

-0.126,1,-0.497 0.2519 2
-0.274,1,-0.201,-0.323 0.0919 3
-0.271,1,-0.202,-0.322,-0.003 0.0869 4
-0.274,1,-0.219,-0.316,+0.016,-0.008 0.0924 5
-0.282,1,-0.224,-0.321,-0.040,+0.002,~-0.029 0.0866 6
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FIG. 26.-Comparison of the estimated (solid line) and exact
(dashed line) innovations for the process shown in Figure 25. The
solution is the one given in the caption for that figure.
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FIG. 27.-Comparison of the estimated (solid line) and exact
(dashed line) pulse shapes for the process shown in Figure 25
(solution as in previous figure).
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the pulse shape estimates from the ¥ = 3 solution for mt = 2 or

mk = 3 (the A's are egssentially identical, and, for example, the
pulse shapes would be indistinguishable in Fig. 27). In each case
the estimate is compared with the exact quantity. Both the pulse
shape and the innovation are reproduced very accurately. Note that
there is a large amplitude pulse which occurred very near the
beginning of the realization. The pulse actually occurred prior to
the first point of the estimated innovation, but it is shown in
Figure 26 to stress the point that pulses very near the end and
beginning of the realization are not represented accurately because
of end effects. Nevertheless the part of any such pulse that
extends into the realization is included in the determination of
the model parameters.

Table 6 and Figures 28, 29, and 30 (for M = 4) present the

deconvolution of the same realization just discussed, but with

TABLE 6
DECONVOLUTION OF (-0.3,1,-0.2,-0.3)"1%y% + 0.058

me =3 b)) M
0,1,0 0.8238

i +0.065,1,-0.695 0.3126 2
| -0.362,1,+0.031,~0.424 0.0872 3

-0.310,1,-0.075,-0.333,-0.088 0.0855 4
-o.&alpwoosgpl'-OQ 231,‘00201'-00015 000761 s
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FIG. 28.-The same realization shown in Figure 25, but with
added noise of variance G.05. The dashed line is the innovation
derived from the solution 4 = (-0.310,1,-0.075,-0.333,~0.088)
(obtained for mk = 3),
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FIG. 29.-Comparison of the estimated (solid line) and exact
(dashed line) innovations for the process shown in the previous
figure.
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FIG. 30.-Compsrison of the estimated (solid line) and exact
(dashed line) pulse shapes for the process shown in Figure 28, with
the solution gquoted in the caption for that figure.




sdded Gaussian noise of variance 0.05. These results show that the
accuracy of the parameters determined above for this third order
process is not due to the absence of noise. The inaovation shows
increased variance, including the appearance of small negative
amplitudes which are not present in the actual innovation. It
appears that the effect of additive noise is to add noise to the
estimated innovation, but it cannot be determined whether the dis-
tribution of the noise in the innovation is also Gaussian. Fig-
ure 30 shows that the basic shape, including the secondary peak, of

the pulse is retained but the tail of the pulse is alteced somewhat.

d) Experiment 4 — Gaussian Noise

One can consider independently distributed noise as the convo-
lution of an independently distributed innovation with a delta func-
tion. When applied to noise, the deconvolution procedure should
produce 4 delta function pulse. This expcriment wcs designed to
teat the procedure on independent Gaussian noise. The solid line
in Figure 31 is the noise analyzed. The minimization was done for
the single value m* = 2, The quasi-FPE did not clearly indicate
convergence, but this hardly matters because all of the solutions
wvere close to delta functions. The dashed line in Figure 31 is the
estimated innovation (plotted with a different scale), and as “esired
is very nearly the same as the data itself. The pulse shape shown

in Pigure 32 is the inverse of the best third-order solution
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FIG. 3l.-Independently distributed Gaussian noise (¥ = 100),
analyzed in the same way as the data shown in the previous figures.
The estimated innovation (dashed line) is essentially identical to

;2 the data (plotted on a different scale).
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FIG. 32.-The pulse shape derived for the data shown in the
previous figure, corresponding to the A given in the text. The ideal
solution would be a delta function. The horizontal scale of this
figure is about three times that in Figure 31.
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A = (-0.061,+0.072,1,+0.134) and is not far from the desired delta

function (|C,| is <0.1 for all n ¢ 0). %

e) Experiment 5 — A Sine Wave

The technique we have been discussing was designed for random
processes, and it could easily break down in the presence of a
deterministic part to the data. This experiment tests this possi-

bility, using a sine wave as an example of a deterministic process.

If a sine wave is considered as a MA pulse (which would be unstalle,
as the coefficients do not converge), the corresponding AR filter

has a zero on the unit circle. [Compare to the case 4 = (1,1), with v

¢=4-1'=qQ,-1,1,-1,1,~1,1, . . .).] When applied to a pure sine

wvave the simplex minimizer had convergence difficulties, and DF
dropped by a factor of 1030 during the minimization. The pulse
shapes that it was leaning toward, however, were more or less
sinusoidal. Since the pure sine wave is a singular case, a small

amount of noise was added, so that the data were given by

X,, = sin(0.57) + 0.0025¥ , (185)

where as before N is unit variance Gaussian noise. This addition
removed the convergence problems, and the solution

A= (~0.419,-0.070,1,-0.813) was obtained with m* = 3. Figure 33
shows the data as a solid line. In this case the interpretation of
the innovation (dashed line in Fig. 33) is not straightforward. A

sine wave is a single pulse, not a randum sequence of pulses. But
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FIG., 33.-A sine wave with small added noise, dnalyzed in the

same way as the moving averages in the previous figures.
mated innovation (dashed line) appears to be random.

The esti-
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this model appears to represent a sine wave as a random sequence of
the pulses shown in Figure 34 (i.e., the inverse of the above solu-
tion for 4), basically a damped sine wave. Remember that because

of the way the innovation is calculated, the data are exactly repro-
duced (except near the ends) by the expression R*4~!, so the inno-
vation in Figure 33, convolved with the pulse in Figure 34 (not all

of which is shown), reproduces the data.

f) Experiment 6 — 3C 273

Data on the optical variation of the Quasar 3C 273 (Kunkel
1967) have been analyzed by a number of workers looking for periodic-
ities and for pulses (the closest in philosophy to the present work
are Fahlman and Ulrych 1975, 1976). A future paper will give the
details of the analysis of these data using the CPF-method, but
preliminary results will be given here to demonstrate the applica-
tion of the technique to real data. In particular the issue of
determining the amount of a possible constant component to the light
curve is raised. The point is that there are two contributions to
tF mean value of the data: (1) a background constant, due for
example to light from a source other than the one which is pulsed;
and (2) the mean value of the (positive only) pulsed component. If
the pulses are sparse enough, there will be a part of the time
series where the contribution from pulses can be neglected, and
then the minimum value of the curve, m%n(Xh). would be a good esti-

mate of the background constant. But in general there can be
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FIG. 34.-The pulse shape obtained in the analysis of the data

shown in Figure 33. Only the first part of this gradually damped
sine wave is shown (scale is as in Fig. I7),

-
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enough pulse overlap at all times that this nrocedure will over-
estimate the constant. Indeed the deconvolution is nontrivial only

when there is much pulse overlap. In such cases it is known only

that the constant lies between 0 and min(Xh). We will see below
n

that this problem in some circumstances can be solved with the cur- ;

k-3

rent technique.

Figure 35 depicts the light curve in linear intensity units,

while Table 6 tabulates the results of the minimizations. This is
a relatively long time series (N = 292 in the original data; the
0 first four points were discarded so that ¥ = 288 because the FFT
algorithm requires that the largest prime factor of N be $23).
Since the number of operations scales as ¥2, the reductions are
4 moderately time consuming. For example, the run with ¥ = 288,
- mk =3, and M = 2,3,4,5,6 took 1,140 CPU seconds on the NASA-Ames
7 CDC 7600. It will be noted that D does not go through a minimum,

although for m* = 3 it is virtually stationary for ¥ = 4 and 5.

P

Also, the parameters 4_, and especlally A+2 are small. This sug-
gests that the M = 4 solution is to be adopted, but further compu-
tations with larger m* will be necessary before this can be made
definite. The pulse shape is shown in Figure 36 and is compared
with the minimum delay pulse determined by Fahlman and Ulrych (1975)
with ¥ = 3 (as determined by a legitimate FPE criterion). The
innovation for this solution is shown in the lower part of Figure 35

and is compared to the innovation from the minimum delay solution
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FIG. 35.-The historical light curve of 3C 273 (top), derived
directly from the magnitudes given by Kunkel (1967). The intensity
is on a linear scale in arbitrary units, and the time covered is
28,800 days. The estimated innovation shown is for
A = (-0.081,0.265,-0.740,1,-0.419) obtained for m* = 3,
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TABLE 7

DECONVOLUTION OF THE LIGHT CURVE OF 3C 273

— e

R

N = 288
A D(4)
mk = 1
0,1,0 1.832
-0.535,1,-0.519 0.001 677
+8.181,-0.696,1,-0.450 0.000 6955
mk = 2
0,1,0 1.321
-0.516,1,-0.500 0.000 2493
-0.503,1,-0.540,+0.028 0.000 2122
-0.495,1,-0.569,+0.078,~0.028 0.000 2108
mk = 3
0,1,0 0.809 5
~0.523,1,-0.528 0.000 6587
+0.146,-0.655,1,-0.462 0.000 3273
-0.081,+0.265,-0.740,1,-0.419 0.000 2883
-0.082,+0.264,-0.741,1,-0.421,+0.002 0.000 2879
-0.029,+4+0,212,-0,713,1,-0.469,+0.081,-0.063 0.000 2683
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FIG. 36.-Comparison of the pulse shape for 3C 273 derived from
the solution given in the caption to Figure 35 (solid line), which
is mixed delay, with the minimum delay pulse as derived by Fahlman
and Ulrych (1975). The mixed delay pulse is nearly symmetric.
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in Figure 37. Both innovations have substantial numbers of nega-
tive amplitudes.

The author has carried out numerical experiments similar to
those discussed by Fahlman and Ulrych (1976), confirming their
contention that such behavior can have two causes: (1) noncon-
stancy of the pulse shape, or (2) use of a minimum delay solution,
if the actual pulse is not minimum delay. The point in (1) is
that “he pulse shape may actually be changing, say in a random but
staticnary way, rather than being constant. The MA representation
is still exactly correct, as long as X is stationary, but it uses
a single pulse shape. This shape is a kind of time average of the
actual pulse shape. (It is not simply representable as a time
average, however; the deconvolution procedure yields some kind of
nonlinear average of 4, then C is the corresponding inverse.) When
a pulse with a shape close to this average is convolved with the
optimum 4, a delta function results, as desired. But if the shage
is somewhat different from the average, this convolution produces
something other than a delta function. Simulations consisting of
two or three distinct pulse shapes occurring randomly and indepen-
Jently show that the resulting amplitude usually consists of a
first-negative-then-positive (or vice versa) spike, li%e the dis-
crete version of the derivative of a delta function. Such spikes
can be seen in the innovations in Figure 37. The form of the spike
appears to be sensitive to the delay character of 4, as the simul-
taneous spikes in the two innovations are sometimes quite different.
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S FIG., 37.-Comparison of the innovations derived from the minimum
delay (top) and mixed delay (bottom) solutions as ir Figure 36.
- Note that the negative spikes are typically associated with nearby

positive spikes; however, the pattern of this association seems to
be different in the two innovations.
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Effect (2) is quite simi’ar, because the optimum minimum delay
A 1is not the correct inverse of a mixed-delay pulse, and its con-
volution with the actual mixed-delay pulse will also produce other
than a delta function. From the fact that the mixed-delay result
shown here contains roughly the same amount of negative amplitude
as the minimum delay result (Fig. 37), it appears that in 3C 273
the pulse shapes are indeed varying, and the negative amplitudes
found by Fahlman and Uly:-.. 1.¥76) are not due to the minimum delay
assumption. (It is pcssible, but unlikely, that there is an addi-
tional source of negative amplitudes.)

There is one facet of the distribution function approach
(either cumulative or differential) which is very useful, namely
that it is completely insensitive to an additive constant in the
data. The only factor that enters into the expressions for DF or
DP is the shape of the 1oint and individual distribution functions.
Adding a constant merely shifts the position of the functions on
the F-axis and does not change their shapes. Hence D is invariant
to a shift in X, a property not shared by other deconvolution
techniques. This invariance is important because it means that it
is possible to estimate the size of the background component . . .
if something is known about the distribution of the amplitudes.
First, note that a constant in the data shows up as a constant in

the estimated innovation — if one has the correct inverse pulse.

For, letting X be the constant unit process:
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K,=1 (n=1,2,3..., M, (186)
we can write
X=RW 4ak, (187)
vhere a is some unknown constant. The estimated innovation is

R = AMX = RR(CHA) + aA®K = R*(C*A) + (a ; Ak)K » (188)

and if A = ¢}

ReR+ (a }E‘, Ak)x ,  Q.E.D. (189)

The second term on the right is a comstant, but it is not yet
obvious how to determine its value (and hence the value of a), v

because we know only (), and not (R). If it was known, or one

wished to assume, that (R) = 0, then

(R)
) >
o

But the case (R) ¢ 0 is of particular importance in astroncmy.

as= (190)

For example, suppose that the actual amplitudes are positive only
(as with light pulses), with a distribution which is either finite
at R = 0 or goes smoothly to zero (so that some pulses have ampli-

tudes close to zero, but none are negative). Then
a(ij Ak) = nin(R,) (191)

could be used to estimate a. However, observational errors produce

a variance in R which would make this estimate biased toward too




small a. This bias could be eliminated if the center of symmetry
of the (presumatly Gaussian) distribution of these observationally
induced errors in R could be recognized. But an even larger prob-
lem with the estimate in equation (191) for the innovation of
3C 273 is the incidence of the large negative amplitude spikes.
One must turn to more qualitative aspects of the distribution of
ﬁh' Specifically, the innovations in Figure 37 appear to have a
definite background level (possibly better seen in the mixed-delay
solution case), indicated in the figure with horizontal lines. This
level corresponds to the peak in the distribution of R (which is
Fig. 38), and is probably best estimated with the median of B (to
avoid the bias in the mean value which the real pulses might pro-
duce). In the case of 3C 273 the mean and median are not very
different, as the entire distribution is nearly symmetric (there is
possibly a slightly significant bias on the positive side of the
distribution shown in Fig. 38). In summary, the mean level for
3C 273 cannot yet be determined unambiguously because of the effect
of the negative amplitudes in the innovaticn, but the levels shown
{.. Figure 37 are reasonable guesses for this background of non-
pulsed light.

In some other deconvolution methods the mean value of X is
removed, and this is an example of a shift which may alter the
deduced pulse shape. In narticular, the opiimum~-prediction-error-

filter method is usually applied to data that has had the mean
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FIG. 38.-Histogram showing the distvibution of the lse
amplitudes shown in Figure 37 (bottom). A CGaussian curve fitting
the central few bins is drawn for comparison. The overall dis-
tributiin is definitely not purely Gaussian., It may have a
Gaussian component, possibly connected with the observational
scatter in the data. There may be a small asymmetry favoring the
positive amplitudes, but the negative amplitudes (which are prob-
ably due to pulse shipe variation) are nearly as numerous — this
prevents the zero 1 1l of the amplitudes .rom being determined
unambiguously., The tesults for the innovation derived from the
minimum delay solution (top curve in Fiyg. 37) are very similar.
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subtracted out, because the form of equation (114) implies that,
since the mean prediction error should vanish, either (X} or Z: A;
must vanish. If the sum of the Ai vanishes, 4(2) has a zero oz

the unit circle, and A itself is not invertible because A~! does
not converge. Indeed, it is found in numerical trials that if the
mean of X is left in, the resulting Ai's sum to zero and 4 cannot
be inverted. But if (X) is 0, A is well behaved. This is prob-
ably the basis on which Fahlman and Ulrych (1976) state that their
analysis ". . . only makes use of the variance in the light curve.
Hence the pulse shape . . . is unaffected by the presence of a

background." However, one is not justified in subtracting out the

mean just because the analysis breaks down otherwise.

g) Discussion

The minimization of DF appears to be a powerful deconvolution
technique for moving average, autoregressive, or shot noise pro-
cesses where the pulses are statistically independent of each
other. An estimate of the pulse shape which is not constrained to
have the minimum delay shape can be obtained, as well as an esti-
mate of the amplitudes which the pulses had in the realization at
hand. ith the latter, the distribution of the pulse amplitudes
can be studied. If a feature in the distribution corresponding to

the zero level of the amplitudes can be recognized, the background

level of nonpulsed sgignal can be determined.
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It is well-known that th: fitting of sums of exponentials with
unknown decay constants, as well as amplitudes, to data (e.g.,
radioactive decay data) is a very ill-conditioned probiem. Since
the exponential is in a sense the elementary pulse shgpe [see
eqs. (21) through (23)] the deconvolution of MA's is not unrelated
to this problem. One of the difficulties is that the data can be
nearly equally well represented by somewhat different models (dif-
ferent in form and in the values of the model parameters). The
search for the best dependence measure (see §IVc and §VIa) was
basically a quest for a procedure which minimizes the indeterminacy
in the model fitting. In this respe-t, the one adopted (DF), is
generally superior to the others considered. It makes full use of
the data at hand and has a well-defined and unique minimum in
sitvations where the cther measures have many shallow minima. The
following points should be considered by anyone using this technique:

(1) As with conventional time-domain modeling, the identifica-
tion of the form of the mwodel (even within the context of ARIMA
models) is an important problem which does not have a precise
general solution.

(2) Since any stationary process has MA, AR, and ARMA repre-
sentations, the successful modeling of time-series data with a
specific model does nct guarantee that the structure of the physi-
cal process has been correctly represented.

(3) Since the data are always exactly reproduced by the

model, the meaning of successful modeling is not based on the
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smallness of the residuals between the sampled and modeled values
of X, but rather on the degree to which the resulting amplitudes

are independently distributed (e.g., as measured by the smallness
of DF)'

(4) As with conventional modeling, including spectral analysis,

trends in the data can affect the results in very significant ways.
There is no totally objective and automatic procedure for removing

trends. There is no dependable way that an apparent trend can be

distinguished from a statistical fluctuation in the underlying

random process. Detrending should be done cautiously, and one

should be suspicious of apparent trends.

(5) The algorithm provided in the appendix is quite time con-
R suming, especially for long data arrays. Only minor efforts to
* speed up the computations have been made. Improvements in the

algorithm can undoubtedly be made. Hopefully there is some approxi-

mation that can be used for large N.
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APPENDIX
THE ALGORITHM

The FORTRAN code given below is a nearly self-contained pro-
gram which will enable the reader to use the deconvolution tech~
nique (based on cumulative probability functions). The only miss-
ing element is the FFT routine, which is a standard one, available
in mest program libraries.

The MAIN program reads the value of m*, the data, the length
of the AR filter (LAC), the position within the filter of the pre-
diction point (MPT), the initial guessed solution (AOLD), and the
number of times the order of the model is to be increased (NUMIT).
The Fourier transform of the data is put in the arrays XR and XI,
for that is the form in which the data will be referenced hence-
forth. The subroutine F2DC carries out the minimization, starting
with a given solution, and returns the resulting minimum value of
DF (RES). This is done first with the input guessed solution, and
then the order is increased in steps of one as indicated. The two
minimum values RES1 {corresponding to A(new) = [A(old),0]} and
RES2 {corresponding to A(new) = [0,A(0ld)]} are compared, and the
smaller is selected. This procedure is terminated arbitrarily by
the value of NUMIT. The correct order must be determined by

inspection of the behavior of DF(minimum) with increasing order,
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E , and inspection of the way in which the values of the parameters

change, as discussed in the text.

Subroutine F2DC carries out the minimization, trying

restarts until the solution settles down. A criterion has been

shown in terms of the minimum DF’ but one could also use criteria
in terms of the changes in the parameters. The program is written
so that if three restarts are not sufficient, "DID NOT SETTLE" is
written and the program continues. The rest of the program, from
statement 3 on, is merely to evaluate the pulse shape C inverse to

the converged 4 (in practice this should be printed or plotted, so

that it can be seen how the pulse shape is changing as the proce-

dure continues to higher orders). Also calculated is the quasi-FPE

quantity ziven in equation (184). This number should also be printed. :

Subroutine F2D sets up some constants that are needed in FUNK,
; computes the initial simplex using formulas given by Jacoby, Kowalik,
and Pizzo (1972), calls the minimization routine, AMOEBA, and
; prints out the resulting AR filter. The program AMOEBA directly

implements the simplex procedure as given in the references cited
in the text. The criterion for convergence is in terms of the
relative magnitudes of the maximum and minimum functional values on
the simplex; this could be experimented with, as there are other
equally valid convergence criteria.

Function FUNK is the guts of the program, as it provides the

values, as a function of the AR parameters, of the measure of
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independence DF which is to be minimized by AMOEBA. The evaluation
of the innovation has been discussed in the text (§Ve). The order-
ing of the innovation is important for an efficient evaluation of
DF and is carred out with sorting (SORT), moving (MOVE), and
merging (MERGE) routines, all controlled by the main ordering
program ORDER. These routines are based on material in the volume
by Knuth (1973) and are such that the number of operations increases
as NlogN. The only part of the procedure which produces an ¥2
dependence is the summation over the two-dimensional grid.

The structure of the recursion for the summand in equation (170)
[see eq. (171)] can be understood by reference to Figure 39. This
figure shows the two-dimensional grid of the reordered values Ré,
with R} = m’izn(Rn) and Ry, = m:x(Rn). A given R} is paired with the
R3 which was its mth removed neighbor in the original (unordered)
set {Ry}:

Ré R,

. (A1)

1 ]
Rj +*'Rn+m

This pairing is indicated by the dots at the grid points in the
figure. In the example shown, Ri is paired with R;, Ré with R;,
and so forth. Each R% is of course paired with no more than one
33. For m = 1, the R% equivalent to RN* has no mate, because RN*+1
is not defined. Similarly for the R} equivalent to Rl’ Hence
there is cne row and one column without a dot. (Similar results

hold for larger values of m.)
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R Ry Ry Ry R RgRyRy Ry Rip
Rq — Rp4m
0 0 0 0 0 ol1] 1 1 1
Ry ¢
0 0 0 0 1 1l2] 2 2 2
R3 -9
0 0 0 0 1 2|3} 3 3 3
R'4 -
) 0 0 0 0 1 2|3] 3 3 3
R5®-
1 1 1 1 2 3la| 4 4 4
29 1 1 1 *fz 3 455 5 'S
R? 1 ¢ 1 2 3 a|6] & 3 6
8
. 1 2 3 4 5/6|] 6 6 7
Rg ) 4
1 2 3 4 5 el7| 7 7 8
R10 \d
y 1 2 3 4 5 6l7| 8 8 9
Rﬂ

FIG. 39.-The two~dimensional grid used in the computation of
the estimate of the joint cumulative distribution function. This
example is for m = 1 and N* = 10. Each of the N* - m (= 9) pairs
(RysRy4m) 1s indicated with a dot at the intersection of the grid
lines for these values (but labeled in terms of the ordered ver-
sion of the innovation, R'). In this example, the original sequence
was (R;,Ré,Ré,Ri,R;,Rio,Ré,R',Ré,R;). The numbers are the counts of
the dots above and to the legt of the box in which the number ap; :ars.
The counts in each row are always 0 or 1 more than the counts in the
row above: 0 for boxes to the left of the dot in the row, and 1
for boxes to the right [cf. eq. (171)]. To get the function F,, the
counts must be normalized by the final count, ¥* - m = 9,
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Now ﬁg(R%,Rz) is 1/{* ~ ~»; times the number of pairs (dots)
above and to the left of the point (Ré,R&) [see eqs. {96) and (97)].
A running count of this number is kept for successive rows in the
grid. Since there is only one (or no) new point per row, this row
count increases by unity for all squares to the right of the new
point in the row. This relation 18 expressed in the recursion
formula (171). The figure shows an example with N¥* = 10, The num-
ber in each box is the number of dots above and to the left of the
bus. The entries in the last row and column of the grid are never
utilized but are shown to indicate how the normalization works:
Fg(x,y) for x 2 R&* and ¥ 2 R&* is equal to the total number of
dots (= N* - 1) divided by ¥* ~ 1. The individual cumulative dis-

tribution is trivial in the system of ordered R's:

oo A
FYBD = g (A2)
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PROGRAM MAIN
COMMON/F2DVEC/XR(1999),X1(1909),RR(1909),R1(1999)
COMMON/ F2DSCA/FACN, FACR, FAC1
COMMON/F2DINT/LDAT, NUMR, NR,MPT, LAC, N1D, N2D,MAXLAG
COMMON/ I NOV/R(1900)

DIMENSION AOLD(20),A1(29),A2(29)
DIMENSION DATA(1900)

DO 1 1=1,1000

XR(1)=0,0

X1(1)=9,9

RR(1)=9,0

RICI)=0,0

READ(8,50 )MAXLAG, LDAT ;|

REAN(8,51) (DATA(1),1=1,LDAT) !

FORMAT(313)

FORMAT(6E12,5)

DO 2 1=1,LDAT

XR(1)=DATA(I)

CALL FFT(XR,X!,LDATLDAT,LDAT,-1)

READ(8,50)LAC,MPT, NUMIT g

READ(8,51)(AOLD(1), =1, LAC) v

CALL F2DC(AOLD,RES)
iF{NUMIT.CQ.0)STOP

DO 29 {T=1,NUMIT

DO 10 1e1,LAC

A2(1+1)=A0LD( 1)

A1(1)=AOLD(1)

A1(LAC+1)=0,9

A2(1)=0,0

LAC=LAC+1

CALL F2DC(A1,RES1)

MPT=MPT+1

CALL F2DnC(A2,RES2)

IFCRES1.LT.RES2)GO TO 12

DO 11 I=1,LAC

AOLD(1)=A2(1)

60 TO 20

DO 13 I=1,LAC

AOLD( 1 )=A1(1)

MPT=MPT-1

CONT INUE

STOP

END
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SUBROUTINE F2DG(A,RES)
COMMON/F2DVEC/XP(1099),X1(1099),RR(1999),R1 (1991)
COMMON/F2NSCA/FACN, FACR, FAC1
COMMOM/F2D1 NT/LDAT, MUMP, NR ,MPT, LAC, N1D,N2D, MAXLAG
DIMENSION A(20)

CALL F2D(A,RES)

RESOLD=RES

D0 1 |=1,3

CALL F2D(A,RES)

DI FRES=(RESOLD~RES)/RESOLD

RESOLD=RES
IF(DIFRES.LT.1.0E-4)GO TO 3

CONT I NUE

PRINT 2

FORMAT(15H DID NOT SETTLE)
CALCULATE, NORMALIZE, AND SHIFT PULSE

DO & I=1,1DAT

RR(1)=9,9

RI(1)=0,0

DO 5 I=1,LAC

RR{1)=ACT)

CALL FFT(RR,RI,LDAT,LDAT,LDAT,=1)

PO 6 I~?.LDAT

TEMaRR(1)-#24R1(1)ww2

RRC1)=RR (1} /TEM

RICI)==RI(1)/TEM

CALL FFT(RR,RI,LDAT,LDAT, LDAT,+1)
IMAX=0

CMAX=1,9

DO 7 1=1,LDAT

TEST=ABS(RR(1))
IF(TEST.GT.CMAX) IMAX=]
IF(TEST.GT,CMAX)CMAY=TEST

CMAX=RR( IMAX)

DO 8 1=1,LDAT

INDEX=1141MAX=LDAT/2
IFCINDEX.LT.1) INDEX=LDAT+1 NDEX

IFCINDEX.GT,LDAT) INDEX=INDEX=LDAT

RIC1)=RRCINDEX) . “thX

CALL PLOT(RI,LDAT)

FPE=RES*FLOAT( LDAT¢LAC)/FLOAT(MAXLAG#(LDAT-LAC))

RETURN

END
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SUBROUTINE F2D(A,RES) : g
COMMON/F2DVEC/XR(1909),X1(1900),RP(1099),11(1999)
COMMON/F2NSCA/FACN,FACR,FAC]
COMMON/F2DINT/LDAT,NUMR,NR,MPT, LAC,N1D, M2l ,MAXLAG § :
DIMENSION P(21,20),Y(21),%(21),A(29) ?
DATA SCALF,IPR/1.0,5/ : !

PRINT 50,CA(1),1=1,LAC) :

NACT=LAC-1

NPOINT=NACT+1

N1D=LAC+1

N2N=LDAT

YUMR=N2N=N1D+1

NR=NUMR=1

FACR=1,0/FLOAT({NUMR*NUMR)

FAC1=1,9/FLOAT(NR)

FACN=1,9/FLOAT(LDAT)

PSUM=1,0

J=9

PO 1 I=1,LAC
IFCI . EQ.MPTIGO TO 1

JaJ+l

TEMP=A(L)

PSUM=PSUM+ABS( TEMP)

P(1,J)=TEMP

CONTIRUE

FNUM=FLOAT(NACT)

TES=ABS(PSUM)
{F(TES.LE,.1.0E-3)PSUM=9,15

QSC==SCALF*PSUM/FNUM

TEMP=SQRT(FNUM+1)~-1,0 }

DEN=FNUM*SNRT(2.) ;

PN=( TEMP+FNUNM)*NSC/NEN %

QN=TEMP+OSC/DEN ;

DO 3 I1=2,NPOINT

PO 2 J=1,NACT

P(1,d)=P(1,J)+ QN

P(l,1=1)aP(l,l=1)+PN=0ON

DO 5 1=1,NPOINT

DO 4 J=1,NACT

X(J)=P(1,J)

Y(1)=sFUNK(X)

P IS NOW THE IMITIAL SIMPLEX

| TER=9
(PRINT=|PR

CALL AMOERA(P,Y,NPOINT,ITER, IPPINT)

Js9

PO 19 1=1,NACT
IF(1 .EO.MPT)JUmJ+]

s+l

ACJ)=P(IPRINT,I)

A(MPT)=1,9

RES=Y (I PRINT)

PRINT £3,(A(1),1=1,LAC)

FORMAT(5G14,6)

RETURN
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SUBROUTINE AMOEBA(P,Y,NPOIN,ITER, IPRIN)
DIMENSION P(21,20),Y(21),PR(29),PPR(29),FBAR(29),PINV(29)
EQUIVALENCE(PINV,PRR), (YPRP,YPINV) 1
DATA ALPHA,BETA,GAMMA,TOL/1,9,9.5,2.9,1,0E-93/ 3
DATA NSTOP/159/ ;
NVARsNPO|N-1
519  CONTINUE
1 1LO=]
IHI=1
INHI =1
DO 10 I=1,NPOIN
YisY(l)
IFCY).GE.Y(ILO)) GO TO 10
ILO=1 A
10 CONTINUE ;
DO 11 1s=1,NPOIN 4
YiaY(l) ”
IFCYI.LE.Y(IHI))GO TO 11 1
IHl =] i
11 CONT I NUE :
IFCIHILENL 1) INHI =2
DO 12 I=1,NPOIN
IFCI . EN.IHI)GO TO 12
Yl-Y(') v
IFCYI . LE.YCINHI))GO TO 12
INHI =]
12 CONTINUE
IF(MODCITZR, I1PRIN) ,NE,N) GO TO 299
ERR=190,«(Y(1H1)=Y(1L0))/Y(ILO)
121  PRINT 205,Y(1L0), EPR
205  FORMAT(1P,G13,.4,F6.3)
296  DIF=Y(IHI)=Y(1LO)
RATsDIF/Y(INHI)
) IF(RAT.LE.TOL)GO TO 89
! IFCITER.GE.NSTOP)GO TO 84
} IFCIGO.NE.T) GO TO 89

209 ITER= | TER+1
DO 21 |=1,NVAR

21 PRAR(1)=9,
DO 23 Is1,NPOIN

’ IF(I,EQ.INI) GO TO 23

N0 22 J=1,NVAR

22 PBAR(J)=PBAR(J)+P(1,J)

23 CONTINUE
DO 2: I=1,NVAR

i PBAR( I )=PBAR{()/HVAR
PO 25 JIs=s1,NVAR

25 PR(J)=(1,+ALPHA)*PBAR(J)-ALPHA*P(IHI,J)
YPRsFUNK(PR)

258 IFCYPR,LE,Y(ILO)) GO TO 39
IF(YPR,GE,Y(IHI)) GO TO 41
IFCYPR,GE.Y(INHI)) GO TO 38
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26
27

30
31

A4t PPN ARATY

319
32

38
39

o 49
: 41

42

59

o B

53

55
69
89

0
4

T

LR

84
841

DO 27 J=1,NVAR
PCIHI,J)=PR(J)

YCIHI)=YPR

GO TO 1

DO 31 J=1,NVAR

PRR(J) =GAMMA®PR(J)+ (1. -GAMMA) *PBAR(J)
YPRR=FUNK( PRR)

YTEST=Y(1L0)
IFCYPRR.GE.YTEST) GO TO 26
DO 32 J=1,NVAR
PCIHI,J)=PRR(J)

YCIHI )=YPRR

GO TO 1

DO 39 J=1,NVAR
PCIHI,J)=PR(J)

YCIHI)=YPR

DO 41 J=1,NVAR
PINV(J)=BETA#P(IHI,J)+(1,-BETA)*PBAR(.)
YPINV=FUNK(PINV)
IFCYPINV.GE.Y(IHI)) GO TO 59
DO 42 J=1,NVAR

PCIHT, J)=PINV(J)

YCIHI )=YPINY

GO TO 1

DO 55 1=1,NPOIN
IF(1,E0,1LO) GO TO 55

NO 53 J=1,NVAP |
PR(J)=9,5%(P(1,J)+P(1L0,J))
P(1,J)=PR(J)

Y(1)=FUNK(PR)

COMT I NUE

G0 TO 1

IPRIN=ILO

RETURN

PRINT 841

FORMAT(' DID NOT CONVERGE')
IPRIN=ILO

RETURN

END
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2

20

[

L9

51

52

54

FUNCTION FUNK(PAR)

Ce* VERSION OF JUNE k.,lQ?Q...CUMULATIYE DISTRIBUTION

DIMENSION PAR(20),11ND(1900)
DIMENSION ROW(1000), IRANK(1090),NP1(1009)
COMMON/F2DVEC/XR(1900),X1(1999),RR(1900),R1(1099)
COMMON/F2DSCA/FACN,FACR,FAC]1
COMMON/F2D1NT/LDAT,NUMR, NR,MPT, LAC,N1D,N2D,NAXLAR
COMMON/ INOV/R(1000) '

DO 2 1=1,LDAT

R(1) =0.0

RR(1)=0.9

RI(1)=9,9

Ce+ PUT FOURIER TRANSFORM OF A INTO (RR,RI)

JuJ=9

DO 20 1=]1,LAC

IF(I.EQ.MPT)GO TO 29

JuaJdJdel

RR({1)=PAR(JJ)

CONTINUE

RR(MPT)=1,0

CALL FFT(RR,RI,LDAT,LDAT,LDAT,-1)

Ce+ DERIVE INNOVATION (=A*X) WITH FOURIER TRANSFORMS

DO 3 1=1,LDAT

QR=XR( 1) *RR(1)=X1(1)=RI(1))
Ql=XRC1)*RIC1)+X) (1) =RR( 1)
RR(1)=QR

RICI)=Q!

CALL FFT(RR,RI,LDAT,LDAT,LDAT,1)
DO 4 1=1,LDAT

RR(1)=RR(1)*FACN

Cee SHIFT, ORDER, AND DIFFFRENCE I1MNOVATIONM

PO 5 1=N1D,N2D
INDX=1=MPT+1

IFCINDX.LE.D)GO TO 49
RCINDX)=RR(1)

CONTINUE

INDX=1-N1D+1

RRCINDX)=RR( 1)

CONT I NUE

DO 51 I=1, NUMR

LINDCI ) =)

CALL ORDER(RR, | 1ND, |RANK, NUMR)
DO 52 |=1,NUMR

INDY=1 INDCI)

R1(1)=RRCINDY)

IRANKC INDY) =]

CONTIN

Cex OLD=1IND\ :W)
Cew NEW=]RANK\OLD)

DO 54 J=1,NUMR
RR(J)=R1(J+1)=R1 ()
CONTINUE




Cen
8.0]
*e
Cee DISTRIBUTION FUNCTION OF (R(1),R(1+1))

Cee

58

59

60
61

62
64

80

MG TN B R

ROW

TEGRATE DRC1)DR(I+1) (F2(RCI),R(141))=F1(R(I)IF1(RC1+1)))ew2
PRESENTING THE CUNULATIVE

IS ROW OF THE MATRIX RE

FUNK=90,0

DO 89 1AG=1,MAXLAG
FACl=1,9/FLOAT{NUMR=-LAG)
DO 58 |=1,LDAT
ROW(1)=0.0

NP1(|)=NUMR

DO 59 J=1,NUMR

INDY=| IND(J)+LAG
IFCINDY,GT.NUMR)GO TO 59
NP1(J)=IRANK(INDY)
CONTINUE

FSUM=0,0

DO 64 J=1,NR

DR=RR(J)

1 JUMP=NP1(J)
FAC2=FLOAT(J)*FACR

DO 60 I=1,NR
IF(1,GE,1JUMP)GO TO 61
FSUMsFSUM+DR*RR( 1 )« (ROW(1)=FAC2«FLOAT(())ex2
CONTINUE

GO TO 64

CONT INUE

DO 62 K=|,NR

ROW(K) =ROW(K)+FAC1
FSUMsFSUM+DR#RR(K)* (ROW(K)=FAC2«FLOAT(K))**2
CONTINUE

CONTINUE

FUNK=FUNK+FSUM

CONTINUE

RETURN

END
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10

15
16

29
25

30

10
15

29
25
30

SUBROUTINE ORDER(D,!!,JJ,N)
gl?ENSION T1EN) ,JJ(N),D(N)
KK=K+K

IF(K.GE.N) RETURN

CALL SORT(D,!,4J,K,KK,N)
K=KK

IF(K.GE.N) GO TO 15

KK=K+K

CALL SORT(D,JJ,11,K,KK,N)
K=KK

GO TO 10

DO 16 I=1,N

e =3J9(1)

RETURN

END

SUBROUTINE SORT(D,1I1,JdJ,K,KK,N)

DIMENSION 11(K,1),JJ(KK,1)

M=N/KK

IF(M,LE.N) GO TO 25

NO 29 J=1,M

led+d

CALL MERGE(D,!11(1,1-1),K,11(1,1),K,Jd(1,4))
LEFT=N-KK*M

IF(LEFT.LE.O) RETURN

Ml=M+]

MM1aMeM]1

IF(LEFT,.LE.K) GO TO 39

LEFT=LEFT-K

MM2 =M1 +M1

CALL MERGE(D,I1(1,MM1),K,11(1,MM2),LEFT,Jd(1,M1))
RETURN

CALL MOVE(II1(1,MM1),JdJ(1,M1),LEFT)

RETURN

END

SUBROUTINE MOVE(X,Y,N)
INTEGER X,Y

DIMENSION X(1),Y(1)

NA=|ABS(N)

IF(NA,LE.O,OR.NA,GT,10099) RETURN

IF(N) 19,39,29

DO 15 1=1,NA

Y(I)==X(1)

RETURN

NG 25 I=1,NA

YCI)=X(1)

RETURN

END
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10

15

17
19
20

25
30

SUBROUTINE MERGE(D,X,N,Y,M,2)
INTEGER X,Y,2
DIMENSION X(N),Y(M),2(1),D(1)
NM=N+M

J=l

l=]

JGO=]

IF(N.EQ.0) JGO=2

DO 30 Ke=]1,NM

JXaX(dJ)

1Y=Y(l)

GO0 TO (10,25,29),J6G0
IF(D(JX).GT.D(1Y)) GO TO 15
Z(K)=JX

IF(J.EQ.N). GO TO 17
JaJe+l

GO TO 39

Z(K)=1Y

IF(1 .EQ.M) GO TO 19
I=]+]

GO TO 30

JGO=2

GO TO 39

JGO=3

GO TO 390

Z(K)=JX

JsJ+l

GO TO 30

Z(K)=|Y

|=]e]

CONTINUE

RETURN

END
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Absolute value (Ll)’ 30, 48, 68, 102-109, 114-117, 121, 128, 137-139
Acausal, 22, 26, 29, 31-33, 50-51, 55-57, 58, 63-67
Advance operator, 52
All pass filter, 83, 84
Autocorrelation (function) 19, 37, 42, 60-62, 68, 72-73, 79-80, 83, 85, 134
Autoregressive (AR) (model, process, representation), 1, 31-38, 40, 41, 43,
73-75, 82, 86-87, 119, 135-159
integrated moving average (ARIMA), 42-43, 87, 119
moving average (ARMA), 40-41, 42, 75-76, 86-87

Bins, 91-93, 122, 137-138

Causal, 26, 28-29, 31, 33, 40, 47-48, 50, 55-58, 63-67, 75, 78-79, 98, 112

Central limit theorem, 23

Characteristic function (see also joint characteristic function), 16, 18,
87, 90, 93, 121, 138

Computation (numerical experiments), 135-176, 178, 179-192

Constant component, 164, 166, 172-176

Convolution, 31, 52-54, 62, 64, 82, 85, 170

Cumulative distribution function (see also jeint cumulative distribution
function), 16, 18, 87, 90, 121-123, 138-139, 180-183, 189-190

Decomposition, see Wbld Decomposition

Deconvolution, 74-75, 85, 96, 135
tables, 138, 139, 142-143, 151-152, 155, 168

Deterministic, 16-17, 20-21, 29, 74-75, 77, 80, 96, 162

Delay character (also phase character), 47, 58-62, 79, 85-86, 109, 136
operator, 52 ‘

Dependence (dependently distributed, dependence measure), 19, 20, 86-95,

121-123, 136-139, 189
Difference operator (W), 42, 43
Dipole (couplet), 55, 58, 82

Discrete Fourier transform (DFT), see Fourier transform
Ergodic, 8, 88

Estimates, statistical, 75-76, 89, 97-98
Expected value, 14, 18, 77, 87, 121
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Pactorization (into dipoles), 55-58, 62, 64
Filter (see also pulse shape), 24, 28, 31, 46-73

continuous, 134-135 )
Final prediction error (FPE), 102, 113-114, 127-128, 159, 143344, 159, 166
Fourier transform, 1, 51, 63, 66-71, 119-121, 129, 166, 179, 184«185, 189
Frequency domain, 37, 51, 58

Gaps, see Sampling
Gaussian noise, see Noise, Gaussian
process (normal process), 8, 85-86, 136

Identically and independently distributad (i:i.d), 19, 23 ] )
Identification (see also order determination), 4, 73, 1i2-114, 119, 177
Impulse, 26, 36, 38, 46
Independent (independently distributed), 14 (random variables), 18 (proceasea)
20-21, 178 : ‘
Independently distributed innovations, 30, 78, 81, 85+96
noise, see Noise, independently distributed
Innovation, 30, 46, 76-77, 78-81, 85-87, 100, 119-121, 131-132, 145, 147,
153, 157, 160, 163, 173, 181
Inverse (convolutional), 49, 62-68, 10-71, 75, 80, 82, 111-112, 116«117, 129, 176
Joint characteristic function, 16, 18, 23, 87
cumulative distribution function, 15, 23, 87, 90«91, 122«123, 189«190, 181-183
probability distribution function, 14-15, 23, 87, 91

Lag (m* = maximum lag), 89-90, 92, 94, 124, 126, 138-156, 184
Least-squares, 6, 68, 85, 96, 102

Linear system, see Filter

Local minimum, 92, 123-124, 126, 177

Martingale difference property (MDP), 15, 81, 95-96, 137138
Maximum delay (or phase), 58-62, 63-65, 79«80
entropy method, 101-102
Mean value, 19, 28, 43
Memory, 28, 31, 32, 74, 97
Minimization (optimization, deconvolution), 86, 88, 91, 97, 99«%90, 104-112,
114-117, 123-129, 133, 135, 140, 142-~143, 151-152, 155, 168, 179+~180
Minimum delay (or phase), 49, 58-62, 63-66, 75, 78-80, 100, 102, 104, 166, 169-170
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Mixed delay, 59, 78-80, 109, 169, 172

Models, 6, 7, 9, 24, 30, 73-117

Moment 24, 94-95, 121, 138
generating function, 16

Moving average (MA) (model, process, representation), 1, 24-31, 32, 38, 40, 41,

43, 46, 72, 73-87, 80, 85-87, 104, 120

Negative amplitude, 159, 170-172, 174-175

Noise, 23, 138-139, 156
Gaussian, 23, 37, 85-86, 136, 139, 159-162
independently distributed, 23, 37, 81, 86, 159
uncorrelated, see Noise, white
uniformly distributed (U), 11, 25, 44, 135-158
white, 23-24, 33, 41, 96, 136

Nonstationary, 42-43

Norm, 102, 104-106

Normalization, pulse, 30-31, 33, 110-113, 185

One-sided (pulses, filters, representations; see also causal), 48, 98, 102, 111

Optimization, see Minimization

Order (of a process), see also Final prediction error, 28-29, 32-33, 113-114,
125-129, 149

Ordering (according to magnitude), 122, 181-182, 191-192

Origin of time, 26, 48, 49 (notation), 59, 67, 69

Parsimony, 41

Partial energy curve, pulse, 59, 60-61

Periodic signals (quasi-periodic signals), 33, 35-36, 37

Phase character, pulse, see delay character

Physically realizable, 48

Poisson process, 44

Prediction (predictive deconvolution, predictive decomposition), 3, 17, 22,
75-77, 96-114, 133

error (see also Innovation), (prediction error filter), 76-77, 98-102,

103, 104-105, 109, 121, 134, 174

Probability distribution (see also Joint probability distribution), 12, 18,
87, 90, 121, 137-139

Process, 3, 9, 10, 11-12, 15

Pulse shapes (see also Filter, Impulse), 30, 44, 46-73, 85, 129-131, 146, 148,
154, 158, 161, 165, 169, 174, 185

---, exponential, 36, 39, 48, 70, 81-83, 136, 177
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amplitude (see also Innovation), 28, 44-45, 46, 85, 100, 175

amplitude distribution, 175
Purely random, 17, 19

Quasar, 3C 273, 164, 166-172, 174-176

Random process (stochastic process), 3, 6-7, 9-23, 12, 17, 20-21, 22, 80
Realization (relaization of a specific process), 10, 11-13, 17, 21, 25, 35,

37, 140-141, 150, 156, 163, 167
Restart, 123, 124, 180, 185
Reverse, time, 60, 62, 80, 82, 101

Sampling, 4, 8, 44, 47, 118, 132-135

Sequential analysis, 10

Shot noise (model, process), 7, 26, 43-46, 136
Simplex, 123-125, 180, 187-188

Sinusoidal signal, 162, 165

Skewness, time skewness function, see Time skewness
Skew-norm, 104

Spectrum, 37, 42, 60, 72-73, 75, 79, 101-102, 135, 178

Stability, filter (convergence), 29, 33, 38, 48, 63, 75, 78, 106, 162

Stationary, 1, 19, 20-22, 42, 74, 79-81, 89
Stochastic process, see Random process

Summation operator (S), 42

Time domain, 3, 9, 52, 58
series (see also Realization), 4, 5, 9-10, 167
skewness (time skewness function), 95, 101, 105-109
Trend (detrending), 11, 43, 75, 178

Two sided filters (see also Acausal), 22, 29, 32, 33, 38, 40, 41, 48, 50,

55, 66, 79, 109-114, 136

Uncorrelated (see also Noise, white), 14, 19, 20-21, 74, 78-81, 85

Uneven sampling, see Sampling

Uniformly distributed noise, see Noise, uniformly distributed

Unstable, see Stability
Varimax norm, 121

Wavelet, 46, 78
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White noise, see Noise, white
| Wold decomposition (Wold theorem and extension), 22, 74-77, 78-83
Wraparound, 67, 69

Yule~Walker equations, 99-100

Zero (of Z transform), 57, 64-66, 68
Z transform, 40, 49-52, 54, 55-57, 62-68, 72, 82
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