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STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS:

MODELING RANDOM PROCESSTS IN THE TIME DOMAIN

JEFFREY D. SCARGLB

Ames Research Center, NASA, Moffett Field, California 94035

Received

ABSTRACT

This discussion of time series data produced by random physi-

cal processes emphasizes astrophysical data analysis. Several ran-

dom process models phrased in the time domain are defined and dis-

cussed. The moving average (MA) model represents the data as a

sequence of pulses occurring randomly in time, with random ampli-

tudes. The autoregressive (AR) model represents the correlations

in the process in terms of a linear function of its past values

and is closely related to the differential equation describing the

dynamics of the system. A given stationary process always has both

a MA and an AR representation, and one can easily be transformed

into the other using the discrete Fourier transform. The moving

average form is usually more suitable for interpretation, as the

pulses and pulse amplitudes often have direct physical significance.

But the AR parameters are easier to determine from the time series

data. Hence the procedure is to determine the best AR model from

the sampled data, and then transform it to a MA for interpretation

and comparison with theory. The technique for determining the AR
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Parameters is based on interpreting the AR model as a filter which,

when applied to the data, yields the sequence of pulse amplitudes.

The parameters are adjusted to maximize the randomness of the pulse

amplitudes — that is, to make them as statistically independent as

possible. (It is not enough to make the amplitudes uncorrelated,

or white.) This maximization is implemented by specifying that the

joint cumulative probability function of the pulse amplitudes be as

close as possible to the product of the individual cumulative dis-

tri'oution functions. A procedure for carrying this out is presented

as a FORTRAN algorithm which has proven to be relatively stable

I.	 numerically. Results of test cases are given to study the effects

of adding noise and of different distributions for the pulse ampli-

tudes. A preliminary analysis of the optical light curve of the

quasar 3C 273 is given.

I. INTRODUCTION: ASTRONOMICAL TIME SERIES

This mcstly self-contained introduction to time domain models

of intrinsically random physical processes is directed toward

astronomers and scientists in related fields, particularly those

involved in the analysis and interpretation of data. The goals are

to develop an intuitive understanding for this view of random pro-

cesses and to give specific numerical techniques for the analysis

of time series data. Many of the concepts presented here have been

developed in other literatures, especially those of geophysics,

7



economics, and speecn analysis. Appropriate references will be

given; although the terminology and basic philosophy will be some-

what different, the reader is urged to consult these references.

Of particular value are the following reviews, which parallel the

present work in their viewpoint and emphasis on applications to

data analysis: Wold (1964) (especially the two chapters by E. A.

Robinson), Robinson (1962, 1967b), Box and Jenkins (1970),

Kanasewich (1975), Claerbout (1976), and Granger and Newbold (1977).

Reviews of stochastic processes in astronomy are given by Deeming

V	 (1970), Rothschild (1977), and Press (1978). A pioneering paper in

n .
the application of time domain models of random processes in astron-

omy is Fahlman and Ulrych's (1975) analysis of the optical light

curve of 3C 273 [see also Ulrych and Clayton (1976) and Ulrych and

Bishop (1975)]. There are several books devoted to explicit com-

puter codes for some of the operations discussed here (Simpson

1966; Robinson 1967a; and Enochson and Otnes 1968). Texts are

available on the following related topics: time series analysis

(Hannan 1970; Anderson 1 0'1), stochastic processes (boob 1953;

Parzen 1962; Bailey 1964; Papoulis 1965), prediction and optimiza-

tion theory (Wiener 1949; Whittle 1963; Luenberger 1969), and

probability theory (Feller 1957; Parzen 1960). There are also

several interesting collections of related papers (Wax 1954;

Rosenblatt 1963; Parzen 1967; and Krishnaiah 1969). The December

1974 issue of the IEEE Transactions on Automatic Control was devoted

4
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to system identification and time-series analysis [see the papers

by Hannan (1975), Akalke(1975), and Parzen (1975); see also Kailath

(1974)]. For an extensive bibliography (roughly 10,000 entries)

on time series and stochastic processes, complete through 1959, as

well as an interesting "graphic introduction to stochastic processes"

see Wold (1965).

Data from astronomy as well as from other physical and biologi-

cal sciences often consist of a sequence of numbers,

{X 1 0 X29 X 31	 ., XN), obtained by measurement of quantity X at a

set of times, {t l , t 2 , t 3 , . . ., tN}. Such a sequence is a time

series, and the data are time series data. The sample time series 	 3

in Figure 1(a) illustrates a feature common in astronomical obser-

vations, brought about by practical consideratijns such as observ-

ing schedules, weather, equipment malfunction, etc.: the time

points t2 are not evenly spaced. (It is then said that the sampling

is uneven.) Several ways of graphically indicating to what degree

the sampling is uneven are demonstrated in parts (b), (c), and (d)

of the figure. Sometimes it is assumed that X is actually constant,

and the repeated measurements are made to reduce-the uncertainty

due to observational errors — such data are not really time series

data, because the serial or sequential nature of the observations

is irrelevant (i.e., the time-ordering contains no useful informa-

tion). This paper deals only with the situation where X may undergo

real variations with time, and the sequential nature of the

4
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observations is crucial to the elucidation of the variations. The

goal of the analysis — once the existen e of such variations has

been established — is th a extraction of information about the physi.-

cal process which gives rise to the variations.

This goal is usually approached by identifying a pattern in

the observed variations and then trying to uncover the cause or

explanation of the pattern, often in terms of a physical model. For

example, the pattern may consist of a definite functional d.^dendence

of X on t, such as a linear variation or a harmonic oscillation

partially hidden behind noise. One then attempts to fit to the data

a function (or model), the form of which is usually suggested by

prior knowledge, physical understanding or guesswork. This fitting

is usually carried out by minimizing, with respect to the model

parameters, a measure of the difference between the model and the

observations. This neasure is usually defined as the sum of some

positive-definite function of the point -by-point difference between

the model and the data. The most common such measure is the sum-

of-squares of the X-differences, and the result is the ubiquitous

least-squares procedure.

But what if there is no consistent pattern to the data'? It may

be, for example, that the data come from a physical system that is

random. In >,)me cases the process is intrinsically random because

of quantum mechanical effects — for example, a radioactive decay

process. In ethers, c,ne should perhaps say the process is

6



effectively random, because detailed knowledge of the initial con-

ditions and of the governing physical laws might yield predictabil-

ity (nonrandomness) for the system, but such knowledge may be

virtually impossible or simply not practical. This situation is

increasingly important in astrophysics, and examples could be cited

from many areas, especially X-ray and radio astronomy. Is there

any physical iaformation to be extracted from such random data?

The answer is yes, and the basic subject of this paper is the

modeling of random processes to obtain concise and useful descrip-

tions of the underlying physical processes. The discussion of the

fundamental concept of random process in III is oriented toward

astrophysical data analysis and description in the time domain.

Just as with deterministic processes, there is an infinite variety

of possible forms or models which can be used to describe random

processes. Familiar examples are shot noise models (Terrell and

Olsen 1970; Terrell 1972), random walks (Wax 1954), diffusion models

(Wax 1954), Markov chains (Doob 1953), discrete branching processes,

birth and death processes, competition and predation, queueing pro-

cesses (Bailey 1964), and other special 4 - d techniques (e.g.,
r

Chandrasekhar and Munch 1951). In "s IT	 a descriptions of several

types of models which are less familiar to astroaomers, though

ironically the models originated long ago in an astrophysical con-

text (Yule 1927), namely the analysis of sunspot data. These models

are emphasizes; here because of their direct physical interpretations

7



[e.g., in terms of randomly occurring pulses (§III)] and because of

their very general applicability (§IV). A common feature of these

models is their simple and explicit separation of the nonrandom

from the random parts of the process; this feature is responsible

for their usefulness, because such a separation usually has a clear

physical basis — i.e., the random and nonrandom parts correspond to

fundamentally different aspects of the process. Such a separation

is assured only for stationary processes (defined in §IIa). We

shill almost always assume that we are dealing with physical pro-

cesses that satisfy the stationarity condition. For practical

reasons we shall always assume that the time sampling is discrete

(see §IIa) rather than continuous. All processes will be assumed

ergodic — i.e., such that time averages (determined from one

realization) are the same as statistical averages (determined from

an ensemble of realizations). In addition, non-Gaussian processes

will play an important role, because Gaussian processes cannot be

unambiguously modeled in the way mentioned (see §IV). Model con-

struction procedures are outlined in §IV; computational details

appear in §V, and examples of the computations are presented in

§VI. The Appendix contains a description of the algorithm, together

with FORTRAN code, for the deconvolution of time series using cumu-

lative distribution functions.

8



II. MODELING RANDOM PROCESSES IN THE TIME DOMAIN

This section begins with a brief account of the theory of

random processes. Rather than a rigorous mathematical treatment,

it is an informal heuristic discussion emphasizing a particular

context — namely the interpretation of time series data pro duced by

a physical process which is at least partly random. This situation

is common in astrophysics as well as nearly all other quantitative

, .ieaces. Interpretation often means the construction of a model

Of the physical process. This section will discuss several ways of

mathematically modeling a random process in the time domain. Fre-

quency domain techniques, such as power spectrum analysis, are most

useful when harmonic variations are present but are less suited to

random variations. Two goals of this paper are to demonstrate the

richness and usefulness of time domain analysis, and to indicate

the type of problem for which it is superior to frequency domain

analysis. The text by Box and Jenkins (1970) provides a good over-

view of this subject. The paper by Shinners (1974) is an interest-

ing and practical discussion of the application of modeling tech-

niques to human behavior.

a) Timt• Series and R;ntdc)m Pr-ocesses

Consider a physical variable X that can be measured as a func-

tion of time t. In practice the values of t are not continuous but

discrete because data recording equipment is capable of sampling

9



the observed quantity only at a finite number of times, separated

by some minimum time interval. There is thus a finite series of

values of t, {ti}, i = 1, 2, 3, . . ., .7. The corresponding values

of X form the set {Xi = X(ti)}, i = 1, 2, 3, . . ., N. Often the

values of t can be chosen to be evenly spaced, so that ti = iAt,

where At is the constant interval between the times of observation.

In any case the set of numbers {Xi} is called a time series.

Figure 2 shows an example of a discrete, evenly spaced time series.

Despite the name, time series are not limited to functions of time,

I' which here stands for any independent variable of interest. Other
111111 	 t-

examples are: position in space (three-dimensional), position on

the sky (two-dimensional), and wavelength (one-dimensional). Because

the term time series is used in all cases, it should be kept in

mind that t may stand for a variable other than time, possibly of

multiple dimensionality. Sometimes the term sequential analysis

is used in place of time series analysis to emphasize the key

property that the numbers Xi are sequentially related to each other.

The dependent variable X may also be of multiple dimensionality.

A process is a rule or procedure that generates time series.

That is, it is a prescription for determining the values of X for

a given set of values of t and may or may not include a random

element. Each such time series is called a realization of the

process, and it is important to distinguish the process from a spe-

cific realization. The process can be identified with the set of

10
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FIG. 2.-This artificial time series consists of a sequence of
decaying exponential pulses occurring randomly in time in the sense

that the amplitude of the pulse starting at any given time is a
random variable. The sequence of pulse amplitudes was obtained by

raising a sequence of random variables uniformly distributed on
(0,1) to the ninth power. The horizontal axis represents time,
which is discrete and evenly spaced, although straight 1,,les have
been drawn through the data points to give the curve more uf the

appearance of a continuous function. The apparent trend of dimin-
ishing amplitude with increasing time is spurious — the process

generating these data is completely stationary.
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all. possible realizations of it. Figure 3 shows two more realiza-

tions of the same process which generated the time series in

Figure 2.

The most interesting processes are those for which the rule

generating the time series specifies probability distributions of

the X,-, rather than specific values that are the same at every

realization. In this case we have a random process, which can be

thought of as a set of random variables, t X,-) . For precise defini-

tions and discussions of random variables the reader is referred to

any text oil 	 or stochastic processes (e.g., Feller 1957;

Parzen 1960, 1962). It is merely stated that a random variable,

,,-, can be specified by giving its probability distribution, 1'X.

defined such that

F h. (x)dx = Pig{x, < 'V < x + ,?r)	 (1)

in the usual limiting sense.* In many cases two random variables

stands for the probabil it v of event • . In these defi-

nitions and elsewhere we shA l use capital letters for the process

(X) or random variable (.;r), and lower case for specific values of

the random variable (e.g., x).

are related to each other, e.g., knowledge of the value of one may

provide information about the other. There are two important

definitions concerning the degree of such relatedness: two random

variables, X and Y, are said to be

12
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INDEPENDENT (of each other) if their joint probability dis-

tribution function equals the product of their individual

probability distribution functions:

PXY (x,y) - PX(x)PY (y), for all x and y

and

UNCORRELATED if the expected value of their product equals

the product of their expected values:

(XY) = W(Y)

The joint probability distribution PXY is defined by

PXY (x,y)dxdy = Prix ^. X S x + dx and y = Y a y + dy} . (2)

The notation (0 ) is used for the expected value of -.o quantity •:

(q) = f FX (x)q(x)dx	 (3)

The more familiar definition of uncorrelation is for the case where

the processes are assumed (or made) to be zero-mean, so that (XY)

also vanishes. Note that independence is the stronger of the two

properties; it is easy to show that independence implies uncorrela-

tion, but not vice versa. This is a key fact, and later we shall

deal with variables that are uncorrelated with each other, but are

not independently distributed. :;,ere is a third property, inter-

mediate between independence and uncorrelation:

L
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X has the MARTINGALE DIFFERENCE PROPERTY (MDP) with respect

to Y if the conditional expectation value of X (given the

value of Y) is the same as the unconditional expectation

value of X: Qj y ) -	 (X).

The name Martingal Difference Proper,.; (Segall 1976), is based on

the fact that this kind of process is to a martingale as an indepen-

dently distributed process is to a process with independent incre-

ments. (Martingales and processes with independent or uncorrelated

increments are defined in continuous time and will be of no concern

here.) It can be shown that if X and Y are independent, they each

have the MDP with respect to the other; in turn, if X has the MDP

with respect to 1', then X and Y are uncorrelated.

Let us now be more precise with the definition of a process,

which was already defined as a set of random variables. Take the

set to be finite, with P; members. The process is completely speci-

fied by giving any one of the following functions:

(1) The complete joint probability distribution function

P	 (X I , x ` ,	 xN) dx lix	 cix^^.,X V 	I

Prfx. l S X1 S x l + dx 1 and x2 < X2 a x2 + dx^

and . . . and xN g XN S x  + dxN )	 (4)

(2) The joint cumulative distribution function

(x l , :i „	 . , :t ) = Pr{ X 1 s x l and .Y, s x
N

ud	 and XN _ xN 1	 (5)

15
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(3) The joint characteristic function

OX 11X2,...,XN(lilt u
2 , . . . , UN)

_ (exP "(u
l X l + u2 X1 

+	 + uNXN)>	 (6)

Equations (5) and (6) are straightforward generalizations of the

individual cumulative distribution function

FX(x) = Pr{X < x}	 (7)

and the characteristic function

ox
 
(u) _ (exp(i.uX))	 (8)

of a single random variable X. One can define what is called the

moment-generating function by dropping the i in the definition of

the characteristic function, but it does not always exist and is

therefore of less theoretical importance. Nevertheless, it is of

some practical use because of the concise way the nature of a

variable can be expressed in terms of its moments.

We shall now distinguish several degrees of randomness. It is

convenient to define these categories in terms of predictability.

A process is said to be deterministic if, based on past observations,

the future of the process can be predicted exactly (i.e., with zero

error). An example of such a process is one with no probabilistic

element at all, such as the sinusoid Xi = sin(wt i + m); in this

case all realizations are the same. However, there are purely

deterministic procesFes for which each realization is different.

The above sinusoid would be an example if the phase 	 were a random

16



variable, fixed during each realization but chosen randomly each

time — each realization would be exactly predictable once the phase

had been determined by observation. An example of a deterministic

process from astronomy would be a perfectly regular variable star.

A random process, on the other hand, is not perfectly predict-

able. Even if the rule generating the time series is known com-

pletely, it has a stochastic nature. Different realizations are

therefore different and share only statistical properties (cf.

Figs. 2 and 3). Discussions of the concept of prediction of time

..	 series can be found in texts by Whittle (1963), Robinson (1964b),

to

Hannan (1970), and Granger and Newbold (1977). For the present

purposes the important point is that while past observations may

provide useful predictive information, for a random process there

is nevertheless always some uncertainty or error in the predictions,

even in the limit that the available data extend infinitely into

the past. A case of particular importance is that in which, past

data provide no information about present or future values. (This

must be made precise, because observations of the past provide some

statistical information no matter how random the process: Because

of stationarity, the mean value derived from past data is the best

prediction for Xn ). In such cases there is no deterministic ele-

ment, so the process can be caned purely random. As with individ-

ual random variables there ar,.^ three degrees of lack of determinism

which it is crucial. to distinguish.

17



The first is independence. A process is independently distrib-

uted (i.d.) if all of the random variables are independent of each

other. Then the past provides no information about the present.

There are four equivalent conditions which are necessary and suffi-

cient that X 1 , X,. . . ., Xy are independent; i.e., that the pro-

cess X is independently distributed (Parzen 1962):

(1) In terms of probability distributions: for all real

numbers x , .1„ .	 . , x1	 ,.	 j5j

F'	 (x1, x^,	 -c11) a F'k.1(x1)F'^'(x`)	 .'Y (xh1)	 (9)
.l' 1 ,X^,	 ,X1,

,.	 r,

(2) In terms of cumulative distribution functions: for all

real numbers x 1 , x ' , . .	 xM

F'	 (x, x,	 ., r)
X1,X^,...,.1"Al	 1	 h1

= F (x 1 )Fl (x,)	 pX (xr^).	 (10)

1	 ,tl

(3) In terms of characteristic functions: for all real num-

bers N 1 , U." . . . , :4„

X1,.k'^,...,1"F,

.1" 0 1 )m	 (u,) . . . Qx 04	 (11)
1	 1!

(4) In terms of expectations: for all functions

(.1(.11)>^::(.1"^)}	 :..(1.,,)>,	 (12)

18



provided all of the expectations indicated in this equation exist.

These relationships must hold for M - 2, 3, . . ., N. If, in addi-

tion, the X,L all have the same individual distributions, then X is

said to be identically and independently distributed (i.i.d.).

Independence is the strongest form of tack of relation and absence

of predictability. The term purely random will be reserved for

independently distributed processes.

A second and weaker description of a process is that it is

uncorrelated. For a process with zero mean value, this means that

I .	 the autocorrelation function vanishes for all except zero lag;

that is,

o (X'j' Xm) = QnXm) = 026 ?I m	 (13)

(bn,m is the Kronecker delta, which vanishes if n # M, and is unity

for n - m; a 2 = (Xn 2).) Since (XnXm
) 

is zero if Xn and Xm are

independent of each other and can be nonzero otherwise, the auto-

correlation function contains some information about dependence.

Its vanishing implies a degree of lack of mutual dependence — but,

as we shall see, not total

We will d—il almost excl-sively with stationary processes.

Most discussions of stationary random processes assume that the

mean value of all processes is zero — because if it is not, the

constant mean can be subtracted. If

Xn = Xn - ^Xn) ,	 (14)

L
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the new process V has zero mean. However, this will not be done

because there are cases where the positive definite nature of a

signal is crucial (e.g., the examples in Figs. 2 and 3). This

matter will be discussed further in 4VIf.

Figure 4 shows examples of four types of processes: determinis-

tic, random, uncorrelated, and independently distributed. Note

particularly the process depicted in part (c), which is uncorrelated

but not independently distributed. (This ;	 !ss will be examined

in detail in 4IVb.) Another example of an uncorrelated but depen-

dent process can be constructed as icllows: Li t	be any zero-

mean random variable. Define X2 8 2X 1 , where s 2 is randomly +1 or
4

-1 with equal probability (1) - 1/2). In general let Xn - snXl,

where the sn are defined similarly to a 2 , but are independent of

each other and of s 2 . It is easy to show that QnXm ) - 0 for m # n,

because P 2 (Xn ,Xm) is an even function of at least one of its argu-

ments. >,it the Xn are most definitely not independent, as

1Xn1 - 
1X

1 I for all n > 1. on the other hand, it is straightfot-ward

to show that if a process is independently distributed, then it is

uncorrelated. Most data arise from a process which has a random

aspect to tt but is neither uncorrelated nor independently distrib-

uted; such is called a partially random process. In general a

process can contain both deterministic and random components. Lideed,

it can be shown that any stationary process t contains only these

to stationary process is one whose statistical properties do

not depend on time. Strict stationarity means that a y ', of the joint

20
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(al) DETERMINISTIC

1

PURELY NON-DETERMINISTIC,
(bl) WITH CORRELATIONS

(a2)

(b2)

UNCORRELATED,
(d) BUT DEPENDENTLY DISTRIBUTED

v

I'
1

(dl) INDEPENDENTLY DISTRIBUTED
	

(d2)

ÎI	 ^

i

I

FIG. 4.-Time ~cries produced by fo , ir different types of pro-

cesses (left) and the corresponding autocorrelations (right). The
dashed line is the theoretical autocorrelation, and the solid line
is the estimate from the realization shown. The proce:;ses are:
(a) a sine wave, (b) a moving average, (c) a moving avcragc with the
uncorrelated pulse shape shown In Figure. 17, and (d) independently

distributed noise with a highly nonnormal distribution. [The auto-
correlation of the sine wave in part (a) is damped because a finite

realization was used to compute it.]
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probability distributions are Invariant to a translation of time.

Thera are other kind:: of stationarity that are less restrictive,

but we will not need to distinguish between them.

two components, and the separation between them can lie written in a

surprisingly simple and explicit form. Thts separat ion, called the

Wold decomposition. will be discussed In detall in

It mzly seem strange. especially to the reader unfamiliar with

tile econometric approach to time series analvsis (Wald 199."), that

so much emphasis is put oil 	 ion. But the rrlat ionship bett.OV11

t	
prediction and statistical description is clear: .t good prediction

Of tilt` value:: of a process depends on good knowledge of its stilt is-

e_ical propertles.	 It will he st`en that tilt` concept of predict ion

must he extended to include the use tit future data (i.e.. estimation

of .1,, ba,ctt on .1,_+1, .1',;+^, . . .) as well a, past data.	 That i,,

one pretends that X,, Is unkiimm and tries to estimate or predict its

value based on knowledge of the neighboring value's .1 	 \ 4 . . . . .

This approach leads to tilt` concept of a two-sided (acausal) prediction-

rrror fIIter. which form, the basis of tilt` tvchnItlut` to he descrihrd

in -M' for the extraction of infornlatioll from tinlr series -1at.l.

file ability to know whoa two random processes, sav A and Y. art`

rtally the S;mly Is Important. This does not me:m that specifit-

reali at tons of the proces,e, are equal point-by-point (i.e..

A1: a Y, : for al t r.) b•,c.ut,t` even (titferent real1.;tt ion, of the s.une



random process are not equal point-by-point. What is meant is that

the probabilistic rules for X and F are the same. Specifically,

the joint probability functions listed in H must be identical.

L')	 i1., i	 No s t , ; rt . i^^?c )!i(c'Iii 7 / L^: t-2^CI ? i1tcd N- St'-

Of special importance is the class of random processes F which

satisfy all three of the following conditions:

(1) (,) = 0 (zero mean value)

(2) (H"2) = o ' 	 v (finite variance), and

(3) (i^.h„.> = 0 for m # n (uncorrelated) .

Such a process is called white noise. Nothing is said in this 	 t-

definition about the probability distribution of Ti. There are many

different kinds of white noise. according to the probability dis-

tribution. Gaussian, or normally distributed noise is ver y common,

hc'Cat1SC of the fact expressed in the Central Limit Theorem.# It is

The sum of independent random variables with any distributik—s

tends to be normallv distributed as the number of variables

increases (Claerbout 1976, x4.5).

also net necessaril y true that the ?, be independently distributed,

i.e., that ,'i C . be statistically independent of R for n # !	 White

noise may he inde endently distributed noise or just uncorrelated

noise. Both are "white” because the power spectrum of an uncorre-

lated process (and therefore of any Independently distributed

?3
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process) is constant with frequency. Figure 5 and Figures 4(c)

and 4(d) are examples of white noise with various distributions.

Note further that only the second moment of R has been specified.

The third and higher moments ^(R^.RT,rRL), etc., are not determined,

although they are not completely arbitrary either, as they must

conform to conditions (1) through (3) above.

o) he	 Ava2°aw OM) K-,deZ

A model of a random process is an explicit mathematical descrip-

tion which is usuall y an attempt to describe a physical process in
n 	

l-

simple terms. It often involves a relativel y small number of param-

eters, the values of which are to be determined by some procedure

using the observed time series data (i.o., one or more realizations

of the process). An extremely useful model is the moving average$

$ Unfortunately this term is also sometimes used for the proce-

dure of smoothing data with a running mean, formally similar to the

summation involved in the MA.

(MA). An MA is a process in the form I (',n 	 where :; is a
h	 h li-K

white noise process and the Ck are constants. The array of con-

stants c7 = {L'..
h } 

is called a fil ter or linear system. The reason for

this terminology is that the above expression describes the output

of an electrical filter into which is put a random sequence 1; of

impulses (noise). That is, C  regarded as a function of discrete

24
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time h describes the shape of a pulse that would result from an

impulsive or delta-function input; i' k is the impulse response of

the filter. This is easily seen by letting 51,1 be set equal to a

delta function at ?2 = n' (i.e., F;2 = 8 Y1 ^ 1 ► ), which then yields

X12 = ;'^._^., — that is the pulse W) with its origin, 1 = 0, shifted

to time W. It is easil y seen that if there are several or many

non-zero values of , 	 each one produces a pulse at time n, of

amplitude 1l . The net result is a sequence of overlapping pulses.

The interpretation of the MA as filtered noise is illustrated in

Figure 6. The time series in Figures 2 and 3 are also MA's. The

closely related shot noise process will be discussed below, in SIIh.

In most discussions c: the MA the restriction is made that

t1n = 0 for r: < 0. This condition is called causality, and such a

filter is said to be causal because a nonzero value at a negative

time would correspond to a response of the filter at a time prior

to the input. (The point n. = 0 will be called the origin of time

for the pulse.) In some contexts this acausality would be unphysi-

cal, and it is convenient to restrict filters to respond only at

and after the input, i.e., the filter can possess a memory but not

premonition. However, for a number of reasons it is frequently

useful or even necessary to relax this restriction. One reason is

that it is often convenient to identify the origin of time for a

pulse with a point near the peak rather than with the time of the

cause of the pulse. For time series in whlch the independent

26
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variable is not time the concept of causality is obviously of

limited value. There is no Arrow of Space, or Arrow of Wavelength,

as there is an Arrow of Time. Other reasons for dispensing with

causality will be mentioned as they arise below. For the present,

it should be simply noted that a filter is a set of numbers {C,}

where n may take on negative as well as positive values. In prac-

tical computations, of course, n takes on a finite number of values,

say -q, -q + 1, -q + 2, . . ., -2 9 -1, 0, 1, 2, . . ., p - 1, p.

The case q = 0 is the conventional one-sided or causal pulse and

r

F i	 corresponds to a MA process of order p, abbreviated MA(p). The

general case will be called a two-sided MA of order p, q, or MA(p,q).

An interpretation of the MA of interest in the economic appli-

cations (Wold 1964) is that the. pulses represent the reaction or

response of some system to news or information which arrives in

discrete impulses. The effect of the news persists for some time

(memory) but eventually dies out. This suggests a condition that

the Cyj get smaller as n gets large. In addition, it is convenient

to allow the mean value of the input process R to be nonzero. For

example, in some cases the pulse amplitudes must be positive because

of their physical significance, as when the pulses are outbursts of

radiation. If the mean value of the input is positive and the

pulse shape has a positive "area" or total strength, the mean of

the output is also positive, since (X) _ (i*C) _ (R	 C .
K
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The above statements are summarized in the following

DEFINITION: A MOVING AVERAGE (MA) is a process X which

can be written in the form:

(.1' = O*R)	 (15)
)1— 

where R is an uncorrelated white noise process, possibly

with nonzero mean:

and the i' are constants satisfying E C! 2 < w (called

stability of the filter	 if the c': are zero for all

negative (positive) values of 	 this is a causal

(acausal) moving average

called a two-sided MA.

If neither is true, it is

An MA is said to be of order

(p,q) if the range of i for which C: is nonzero is from

-,I to p.

The stability condition assures that the pulse dies out at infinity,

and is written in the form given because ^c';` is the total energy

output of an electrical filter if the input :: represents the ampli-

tude of the electric field at the input of the filter. The range

Of i may he finite or infinite. A finite MA is obviousl y stable.

It is important to note that :: is random and	 if considered

as a time series itself. is deterministic. That is, the process X

'19



(1)	 111 0
 = 1

(3)	 C'	 = 1

(5)	 cj = 1
i

(z) c--T"2 
= ^R?;) = 1

(4)	 CI = 1

(b) max c'. = 1
i

has its random and its predictable aspects explicitly separated in

the MA representation. Since R represents the new information

arriving at the input of the system, it is called the innovation.

We will be particularly interested in the class of MA's in which R

is independently distributed, but it should be remembered that the

definition requires only that R be uncorrelated. Sometimes the

terms "MA process" and "MA model" are used ncarly interchangeably,

but this is a loose usage. An MA process exactly satisfies the

definition given above. An MA model is a representation or model

which can be used to attempt a description of any process, whether

or not it is actually an MA. For example, one can use a low-order

MA model to approximate a process which is a higher-order (or
	 t-

infinite) MA or not an M at all. The pulse shape {c,. } is also

assumed to be constant (independent of time, n). This will be seen

below (in 6IVa) to be less restrictive than it seems at first. A

final point concerns normalization. If the switch C - aC, :i > a l:fi

is made, then Y obviously remains unchanged. Hence, in comparing

different moving averages, it is convenient to remove this ambiguity

by specifying in some sense the "size" of either R or C. Several

possible choices are:

(7) max Ic;j =1.i`
30



For causal filters the conventional choice is (1). However, for

acausal filters this choice would render the size of C dependent on

the location of the time origin, which is to some extent arbitrary.

(We will see another reason why this choice is poor in Me.) The

other six choices make the size of C invariant to a shift of the

origin of time. The best choice of normalization seems to depend

on the particular context.

To summarize: the moving average represents the deterministic

part of a process with a constant filter, C, and the random part

with an uncorrelated noise process, R. The process is the convolu-

tion of C with R, and can be viewed as a random sequence of pulses. 	 Ie

The MA model expresses the correlations in a process X in terms

of memory — in the sense that the filter C remembers, for a while

at least, the previous inputs ;,;. There is another way of express-

ing such memory — by saying that the process remembers its own

behavior at previous times, that is, .l"
N

remembers, or can be partially

represented in terms of 1^., .k",	 If it is assumed that

this representation involves a linear relationship, the memory -an

be represented by an expression of the form F 1 .Y^._ 1 + F,.Y^._ : + F ^.T?t _ a + .

This suggests writing

+t

h X	 (17)
kn- Ih

31



where RBI is a random noise process just as before, and the B's are

constant coefficients. The first term on the right-hand side of

this equation represents the immediate response of the system to the

random input, while the others are the memory. The conventional

notation is to write "k = -B k , so that equation (17) becomes (with

A O - 1)

a

i 
rt	

A
k 
X
n-k	

(18)

k-0

or ii _ A*X. If this sum is finite, say from	 to	 the process is

called a (one-sided) AR process of order 1 • , or AR( , ). Note the

symmetry of this relation with that for the MA (eq. (15)), namely,

X - L'kl% The AR is the inverse of the MA in the sense that the

filters C and 4 are convolutional inverses of each other. By analogy

with the acausal or two-sided MA, the sum in the last equation may

be extended to negative k; this gives the two-sided AR

«, X	 (19)):	 h ):- k

The concept of a process's memory of its own future may seem unusual,

but we are dealing with post-real-time data analysis or with cases

in which the independent variable is not time, so that causalit y is

not relevant. Also, this extension is necessary for consistency

with the two-sided MA in equation (15). The name autoregressive

arises because the expression just above equation (17) is in the

32



form of a regression of Xn on itself evaluated at different times,

so that equation (17) is a self- or auto-regression.

A schematic electric circuit representation of the AR process

is shown in Figure 7. This circuit assumes a causal model, because

there is no physical circuit that can generate future values. The

discussion of normalization given above for MA's applies as well to

AR models. Corventionally Ao is Set equal to 1; this will be done

for some examples (such as the one to follow) but not generally.

DEFINITION: AN AUTOREGRESSIVE (AR) PROCESS is one which

can be written

AoXn - Rn - F, A.X	 (20)

i0o z n-i

or R - A*X, where R is an uncorrelated white noise process

(as in the definition of the MA) and the A i are constants

satisfying

	

	 Air < m (stability of A). The autoregres-
i

sive filter A is purely causal, pur ply acausal, or two-

sided depending on whether Ai is nonzero for only i Z 0,

for only i 1 0, or for bosh i i 0 and i 1 0. An AR is of

order (p,q, ) if the range of i is from -q to p.

An example of a second-order AR process is shown in Figure 8.

Note that it has a sinusoidal appearance (and would probably be

called "quasi-periodic") even though it has no harmonic component

33
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I

AR PROCESS
e=n an

GAUSSIAN NOISE

SPECTRUM OF AR PROCESS

FIG. 8.-A realization of the second-order AR process
Xn = Rn + 0.8Xn-1 •. 0.75Xn-2 (top). The middle curve is the
realization of the Gaussian noise which drove the . k R process. Since
X is purely nondeterministic the spectrum (bottom) is continuous,
but it has a narrow peak corresponding to the quasi-sinusoidal
appearance of the process.
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nor any deterministic component. Figure 9 gives further examples

of AR processes with quasi-harmonic appearance.

Actual physical random processes can often be well representt:!

by an AR model with a small number of parameters A1. Equation (20)

is a difference equation which is the discrete version of the dif-

ferential equation which describes the dynamics of the system (i.e.,

the equation of motion). Thus, the AR parameters can be interpreted

as the coefficients of the linear differential equation of the

system. The moving average pulse is the impulse response of this

differential equation.

	

In fact AR models can generally be rewritten in the form of 	 I'

moving averages. As an example, consider the simplest .nontrivial.

AR process, namel y the one-parameter process defined by:

YC z = i^ t + aX
?z-1	

(21)

This corresponds to the AR filter (1, -a). Recursive substitution

of the left-hand side of equation (21) into the right-hand side

gives all 	 solution in the form of an infinite MA:

t,	
n	

22
k=p	 tt-i^

Thus an input impulse -t time rt*, of amplitude i,'rt* , gives rise to

the output pulse	 0, 0, 1, n, (1 2 , c1-1 , . . . (multiplied by

list* ).	 For 
I

,,,
I < 1 this is 

all 	 decaying pulse:

0	 )t < tt*

rr s
	

t^(>r- ► r. *) art a	
rr	 rt*	

(23)
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AUTO -
TIME SERIES CORRELATION SPECTRUM

PARAMETERS

cli 02

(a) 0.95 -0.01

1.75 -0.85

( c )

II	

fI'V^ 1^ 0.75 -0.50

(d)
^t	 ,,,,,^, I 	^, ^.,.,^^ i	 ,,	 .

0.90 -0.88

(e) -0.25 -0.50

-1.75 -0.85

INPUT PROCESS: GAUSSIAN WHITE NOISE

(g)	 ^'^ '	 ' ^

Iya Vl

I ^,

FIG. ').-A series of AR processes of the form

X';	 I;^ N + a I X, I + ,z ,X,._. whore ,' ;' is independent G,'lLl8.';iilll noise
. 111d the value:: i)f	 and	 are shown at the right. viv pro-

cesses were C110SVII to t'Xilit)it VIHOUS spectral peaks, b , ' none has
.1 deterministic oarnimllC Component. 	 The middle colunill ..,.ows the

(toil ) and civoret ical (bottom) m1tocol-rolat ioll'; for vach

Pl*0CV8S .



Note that we have converted this one-parameter AR process into an

infinite but stable MA (n -► 0 fast enough that the sum _ Cn2

It=Q

converges). If Jul > 1 the pulse given above is not stable, and

further Cn	 exponentially as n	 To avoid this difficulty,

let n -; n + 1 and rewrite equation (21) as

	

XZ = a-1 n+1 - a 1Rn+Z
	

(24)

Recursive substitution with this equation leads to

Xn = - 	 ak
n+k '	 (15)

k 1

The effect of a single impulse at time n* is thus a growing expo-

nential pulse of amplitude -a-i n* and grrv.!th constant a, terminat-

ing at time n* - 1 (see Fig. 10). Thus, equation (21) has a stable

solution for any a, unless jai = 1; in one case the pulse extends

forward in time (i.e., is purely causal) and in the other it extends

backwards (is purely acausal).

e) The Relationship Between the AR and MA Models

In the example given in the previous section a simple AR model

was converted into an MA. This is a general feature: any AR model

can be converted into an MA and vice versa. Iu the standard treat-

ments of this subject special restrictions must be placed on the

models for this to be true, and some otherwise well-behaved AR

models, for example, are not convertible into (stable) MA's. But

with the generalization to two-sided representations, convertibil-

ity holds without restriction. The fundamental reason for this is

I
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evident from the example in equations (21) through (25): Jul > 1

led to a causal MA representation that diverged, and the restric-

tion Jul < 1 is usually imposed. But if two-sided representations

are allowed, this restriction is unnecessary because there is a

convergent acausal representation. The MA corresponding to an

arbitrary AR process is usually two-sided. Unfortunately the direct

approach of recursive substitution of the AR representation into

itself is extremely awkward in the general case, because at each

step there are choices to be made concerning the form of the sub-

stitution which have a complex dependence on the specific values of

the AR parameters. However, the demonstration of how AR and MA

models can be converted into each other, including the computation

of the coefficients, is rendered simple by the introduction of

Z-transforms, as will be shown in §IIIf.

f) Autoregressive-& ving Average (ARMA) ModeZs

An obvious generalization is to allow the current value of the

output, Xn , to depend explicitly on (i.e., to remember) values of

both the output X and the input R at other times:

Xn E Bk Xn-k + E CkRn-k	 (26)kO	 k

or A*X = C*R, where A has the same relationship to the Bk as before.

This is called a mixed autoregressive-moving average model, or an

ARMA model. If the processes involved are finite and causal [e.g.,

AR(p) and MA(q)) the mixed process is denoted ARMA (p,q,).

s
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(Generalization of this notation to the two-sided case is cumber-

some and is not necessary here.) Physically one can think of an

ARMA process as representing a system, described by the AR param-

eters A, which is driven by an input which is itself a moving aver-

age process, rather than white noise. But as was indicated in the

previous section, the distinction between system response as

described by MA and AR models is merely a matter of interpretation.

Hence there is no rigid distinction between what portion of a

process is AR and what part is MA. In fact the AR part of an ARMA

can be converted to an MA, yielding a pure MA. Similarly, an ARMA

can also be converted to a pure AR. Furthermore, one could convert	
t-

only part of the ARMA to MA (or AR), sc that there is a great range

of possible ARMA combinations to represent a given process.

It may be asked "What is the use of mixed representations at

all, since they can all be converted to pure AR or MA?" The answer

lies in a concept called parsimony  of representation. The point is

that some processes may be representable as an infinite-order AR or

MA, but as a finite ARMA. The latter would then be a more compact

or parsimonious representation. Parsimony can be of great impor-

tance in computing, where one is often searching for models involv-

ing the smallest number of parameters. But it should be stressed

that parsimony is not necessarily of significance in the interpre-

tation of the results of modeling. A good example is that given at

the end of Md, which has the most parsimonious representation as

AR(1), but might well be most simply inter preted as MA(-).
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There are several discussions of the form of the autocorrela-

tion functions and power spectra of low-order AR, MA, and ARMA

processes which should be consulted by the reader interested in

such functions (Box and Jenkins 1970; Stralkowski, Wu and DeVor

1970, 1974).

g) AR Integrated MA (ARIAW 1bdeZs and Nonstationarities

The discussion so far has assumed that the process under dis-

cussion is stationary. This is an important restriction, for non-

stationary processes do not have representations of the kind dis-

cussed up to this point. But a very special kind of nonstationarity

can be incorporated in a simple modification of the AR, MA, or

ARMA models. The general form is

A*(vdX) = C*R ,	 (27)

where p represents the difference operator:

"77Z = Xn - Xn- 1 ,	 (28)

and 
V  

stands for the dth difference operator, equivalent to oper-

ating with 0 d times. If we let W = OdX (so that W is an ARMA

process) X can be obtained by integrating W d times. That is,

X = SdW, where S is the summation operator:

n

EX!	 (19)

t =_C,

Thus X is said to be an autoregressive-integrated-moving average,

or ARIMA, process.
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Consider the simple case d - 1. While X is not stationary,

its first difference is (Box and Jenkins 1970). The nonstationarity

which this gives to X has the character of a floating mean value —

the mean of the process is not constant with time but drifts.

Similarly, a second-order (d = 2) ARIMA process is such that both

the mean value and average slope wander as time goes on.

Finally, it is interesting to add a further generality in the

form of a constant term in the equation:

A*(vdX) = C*R + Do 	(30)

It can be seen that the meaning of the constant term Do is to allow

the process X to have a deterministic trend in the form of a poly-

nomial of order d.

The ARMA and ARIMA representations can be quite useful in some

specific applications. The current discussion will center on the

less complex AR and MA models for simplicity and because they seem

to be sufficiently general for most astrophysical applications.

The reader should consult Box and Jenkins (1970) for more details

on ARMA and ARIMA models.

h) The Shot Noise ModoZ

As already mentioned, the MA is closely related to the shot

noise model, which is usually defined in continuous time as follows

X(t) _	 C(t - t t )	 (31)
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where C(t) is a given function of time (a continuous pulse shape)

and the ti are random points in time which are Poisson distributed.

This process can be viewed as the output of a continuous linear

system, with impulse response C(t.), resulting from an input con-

sisting of a Poisson sequence of constant amplitude impulses

R(t) =	 d(t - ti )	 (32)
Z

The Poisson distribution results from randomly and independently

placing the time points ti . The probability of having k impulses

1 1	 in an interval At is

F
-Ut	 k

Pk (At) = e	
k; 

At)	
9	 (33)

where a is a constant giving the mean rate of occurrence of the

inmulses, which here all have the same amplitude. If At is identi-

fied with the time interval in discrete time (see §IIa) then equa-

tion (33) gives the probability distribution of pulse amplitudes,

where k is to be identified with the amplitude. (The amplitudes are

quantized in unit steps.) If time is sliced finely enough so that

XAt << 1, then we have

1 - A At	 k = 0 (no pulse)

Pk	 a At	 k = 1 (one unit amplitude pulse)	 (34)

0	 k = 2 (multiple pulses)

that is, most of the time a pulse does not occu r , but occasionally

a single pulse occurs, always with the same amplitude. It can be

seen that the noise processes (1n , with large values of n, shown in

44



Figure 5 have approximately these properties (except that they are

zero-mean processes and the amplitudes of the pulses are not always

the same). Thus, an MA with pulse shape given by the discrete

version of CM and with the quantized probability distribution of

the input R given by equation (33) (or in the limit a At - ► 0 by

equation (34)), with k ; R, is the discrete version of the shot

noise model.

Some useful relations for the moving average, easily derived

from the defining equations, are:

(X) = (R)	 C)
\k	 J

and

a X 2 = ((X - (X)) 2) = aR2(E Ck
)
	 (36)

k

These are somewhat different in form from the relations for the

usual definition of the shot noise process. For example, if

a R 2 = 0 in a moving average, pulses of uniform amplitude are occur-

ring at every time, and X is constant (a X2 = 0); this is not true

for a Poisson distributed shot noise process where the variance of

the amplitudes of the pulses is often taken to be zero. A related

difference is that the concept mean pulse rate loses significance

for an MA because it is automatically 1 per unit At. That is,

pulses occur at every point of (discrete) time. The incidence of

zero amplitude pulses is expressed in the distribution function of

(35)
L_
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the innovation [as in eq. (34)] and is absorbed into the mean

pulse amplitude.

For a good discussion of the shot noise model see Papoulis

(1965). Terrell (Terrell and Olsen 1970, 1972; Terrell 1972) has

applied this model, with exponential pulse shapes, to several

astrophysical problems.

III. THE STRUCTURE OF PULSES

The separation of a process into a ran-'cam part and a purely

deterministic part, as exhibited in the moving average, is often

of direct physical significance. The pulse may represent the

unfolding of some process for which there is a physical theory.

Knowledge of the pulse shape ll may provide interesting numbers such

II The terms pulse shape, pulse, (moving average) filter, wave-

let, impulse response, moving average representation, and moving

average parameters are all used in the literature to convey approxi-

mately the same meaning, and are interchangeable in many contexts.

Here the term impulse will be reserved for a pulse, usually taken

as the input to a filter, which is a delta function in time.

as pulse width, rise and decay times, etc. Tht innovation, or

random noise process R, represents the pulse amplitudes and con-

tains information about pulse rates and the distribution of pulse

amplitudes. To develop a feeling for the structure of pulses,

le
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this section discusses the representation of physical pulse shapes

as filters, the algebra of filters, and a concept called thehp ase

character (or sometimes delay character) of filters. These subjects

are discussed extensively in various mathematical works (Robinson

1964a, 1967a,b; Treitel and Robinson 1966; Box and Jenkins 1970;

Anderson 1971), which should be consulted for more details. The

discussion here will be oriented toward the analysis and interpre-

tation of astrophysical time series data and will emphasize two-sided

filters, which have been neglected in much of the standard

literature.

ff.

a) The Discrete Representation of PuZse Shapes
	 4

Suppose that a physical pulse is described by a continuous

fu ction of time, C(t). An example would be the light curve pro-

duced by a nova or supernova. Let the values of C be specified

(or "sampled") at evenly spaced points in time, say to - n At, for

some set of values of n; it is presumed that the points are close

enough that the interesting structure in the pulse is resolved.

Then the set of numbers or filter elements, Wn) - {C(t n)), is a

discrete representation of the pulse shape C(t).

One-sided pulses.- In many situations there is a moment before

which C is identically zero. The classical example is the pulse

which comes out of an electrical filter in response to an impulse

at tine t.; in accordance with causality this output must be
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exactly zero at all previous times t < to . By identifying the

origin of discrete time, n - 0, with this moment, the filter ele-

ments need only be given explicitly for nonnegative indices,

n - 0, 1, 2,	 Such a filter is said to be causal or one-sided. The

sum F, Cn 2 can sometimes be ass- dated with a physical quantity,

n=o
such as the total energy in an electrical pit.-!; if so

LC 
n 2 <	 (37)

n=o

must hold for any physical filter. This condition is called

stability or convergence. In some cases, other stability condi-
CO

tions such as E 1;2 1 < - are relevant (Robinson 196". §1.1). A
n-0

filter which is both stable and causal is said to be physically

realizable. We shall now see that some perfectly useful physical

pulses are not causal.

Two-sided puZses.- Consider the following scenario: a small

signal grows with time, slowly at first, then more rapidly; reaching

a peak, the signal. begins to decay and eventually disappears. For

example, take the specific form

eat	 t < 0 (exponential growth)
C(t) - CO	

-bt	
(j8)

e	 t > 0 (exponential decay)

or in discrete time:

can	 n	 ., -3, -2, -1, 0
Cn	 -t n	

(39)
e 	 0, 1, 2, 3,
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In this case it is not convenient to take the origin of time at the

beginning of the pulse, which strictly speaking lies at n = -W.

[Of course, it would always be possible to take the origin at some

early time before which C(t) is effectively zero, say to within the

measurement accuracy. In the same sense almost all pulses can be

taken to be of finite length.] A more important reason for con-

sidering noncausal filters is that, among causal filters, only the

members of a very special class (called minimum delay, a term to be

defined below) have stable, causal convolutional inverses. Since

our methods for determining pulse shapes from time series data

depend on first determining the inverse pulse shape, restriction to

causal filters would imply the unnecessarily limiting restriction

to minimul delay filters.

In many cases when a filter is written explicitly as an array

of filter elements, such as (. . 	 C_2, C_1, 
CO' C1' C2' .	 -)'

the location of the origin of time is obvious (C o in this eyample).

But in some cases it is not obvious from the indexing or from the

context, and a boldface symbol will be used to locate the origin

[e.g., (1, -a) denotes C O = 1, C 1 = -a). Figure 11 illustrates

the basic difference between one- and two-sided pulses.

b) Z-Trans forms

We now introduce a powerful tool for the analysis of pulses,

the Z-transform. It is a tremendous time saver in the manipulation

of filters as well as in the proofs of certain relationships between

filters. Consider a pulse or filter C = {C01
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+ 1, . . ., -2, -1, 0, 1, 2)	 containing

1' + q + 1 elements. The	 transform of	 is defined as the follow-

ing function of the dummy complex variable z:

c'(^)	 Lt, c'rt rr	 (40)

This is simply a polynomia, or power series in positive and nega-

tive powers of z. In the case F , or q =	 we assume that the

`	 series converges on the complex plane within some annulus including

the unit ciccle.

The coefficients determine the filter (and vice versa); that

`	 is, C(.) determines the c'r. and vice versa. The transform will some-
4

'	 tines be denoted with e operator	 thus: C(.) _ "(c'). The

inverse transform will be denoted '7 1 , and can be thought of as the

operation of identif ying the coefficients in :i series expansion of

I

4	 c'(.). The	 transform has the following alternative interpretations:

(1) A representation of tilt , time behavior of pulses in which

represt,nts tilt , unit delay operator (and : -1 repres(Ints the unit

advance operator).

(?) A discrete analog of the Laplace transform: if ,'(t) is

replaced by	 J^(t,t)S(r - t rt ), where t r , = u At . then the Laplace

transform of J' becomes the	 transform (z = e	 where . is tilt,

Laplace transform variable).

(3) Similarly a version of the discrete Fourier transform (hFT)

with	 _ C u.
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(4) A generating function for the filter C.

The Z-transform maps from the time domain to a transform domain.

The operations of shifting in time are denoted with the unit delay

operator, D, and the unit advance operator A:

D(Xn) = Xn- 1 ;	 Dj(Xn) = Xn_^

(41)
A(Xn) = Xn+1 ;	 Ai (Xn ) = Xn+j

In the transform domain Dj corresponds to multiplication by zi and

Ai corresponds to division by zi . The definitions, theorems, and

proofs involved in the use of the Z-transform closely parallel

those for integral transformations (such as the Laplace and Fourier

transforms) of continuous functions. The Z-transform will be	 L

demonstrated in applications in the rest of this paper. Further

details can be found in various sources (e.g., Jury 1964; Gold and

Rader 1969; Oppenheim and Schafer 1975; Rabiner and Gold 1975).

c) Convolution

Consider the effect of putting a signal R into a filter. C and

connecting the output (say Y) into a second filter D. That is,

C and D are placed in series (see Fig. 12). By definition:

Yn = E CkRn-k	 (42)k

so

Xn 
F, DkYn- k E D 	 CQRn-k-R F_ D  F- Cm- kRn-m
k,	 k	 k	 m

F, BmRn-m
	 (43)

ni

-I,
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41

where

B  = E DkCP?-k	
(44)

k

which is easily shown to be the same as

Bm =	
CkDrrk	

(45)

Thus, the action of two filters in succession (series) can be com-

pletely represented by a single filter, called the convolution of

the two, written as

	

B = C'*D .	 (46)

It is readily verified that the 	 transform of the convolution of--	 - - -	 Z,

two filters is the product -of- their Z-transforms:

B(ti)	 G(u)D(:)	 (47)

This is the most important reason for the utility of the N-transform.

Furthermore, convolution is commutative and associative:

`	 A*B = B*A	 (48)

^1*(B*C) = (A*fi)*C .	 (49)

It should be noted that the output of the MA is formally the

convolution between the input noise process and the pulse shape,

although the physical interpretation is somewhat different in this

case (convolution of a process with a filter instead of two filters

with each other).
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d1 Factoryiwatior

As will be demonstrated shortly, any finite filter with more

than two nonzero elements can be broken down into the convolution

of a number of shorter filters. In particular, a filter of length

n + 1 can be written as the convolution of n filters of length 2.

Such filters have two and only two successive elements nonzero and

are called couplets or dipoles: (C70 C,2+i ). Since many of the

important properties of pulses are invariant to a shift in time,

it is convenient to take n = 0, and denote the dipole as (Co, C1).

This is acceptable if all pulses are shifted so that their first

nonzero element is at n = 0 (i.e., causality), but to allow factor-	 1V_

ization of two-sided filters acausal dipoles of the form ( C-19 CO)

must also be introduced. Figvre 13 depicts causal and acausal

dipoles, and shows how convolutions generate longer filters.

Now consider the filter {Cl}, rt = -q, . . . 1 p, where q and p

are nonnegative integers. [This is not the most general case, as

the index set might contain only positive terms (e.g.,	 ., 0,

0, C ' , C 30 0, 0, . . .), but such cases can be handled with the

same methods.] The function

1'(-) = ZgC (a)	 (50)

(where C(w) is the :'-transform of {t:rt }) is a polvnomial of degree

p + q, with nonnegative powers of M only. Hence by the fundamental

theorem of algebra it can be written

11+1
i'(-) = C-	 n ^1 - =. 	 (51)

t.
^.=1	 up
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CAUSAL DIPOLE

►
I

I

►

t
ORIGIN

ACAUSAL DIPOLE

I
I

ORIGIN

( I, a)	 (I,b)	 _	 (I,a+b,ab)

(I+az)	 x	 (I+bz)	 =	 I+(a+b)z+abz2

^	 ,	 I

(I,a)	 (b, 1)	 _	 (b,I+ab,a)

(I+az)	 x	 (bz'I+I)	 =	 bz"1 + (I+ab)+az

(a, I)	 (b,1)	 _	 (ab, a+b, 1)

(az' l +I)	 x	 (bz'1,1)	 =	 abz'2+(a+b)z-1+I

FIG. 13.-Graphical representation of causal and accusal dipoles

(top) and their convolutions in various combinations. Shown with

the filter convolution equations are the corresponding 	 transform

relations.

^	 I	 I
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where the zoZ are the com

it can be shown from this

P`}q
C(z)	 C	 R (-z i)-10

-qiP+1

plex zeros of P(z). With a little algebra

expression thatp
	 1p+"
	 z i

R 1- z
	

R 1-	 (52)
i = 1	 zoz	 i-P+1	 z

q

With the definition

1, 2,	 p
ai -	 (53)

-zoZ 	 i = p + 1, p + 2,	 ., p +q

the inverse Z-transform of this equation gives

C = ( (1,a1)*(1,a2)*. .. *(1,a,))*[(a,+1,1) *. .. *(ap+, ]L) 1

(54)

where h is the quantity in square brackets in equation (52). The

first p dipole factors are causal and the last q are accusal. Since

Ethe ordering of the zoZ has not yet been specified, there are many

possible distinct factorizations of this form, depending on which

zoZ are assigned to the causal factors and which to the acausal

1	 factors. As will be shown in the next two sections, among the many

choices possible for the origin of time in the original filter and

for the assignment of the z.i , there is a single choice which has

the property that each causal (acausal) dipole has a convergent

causal (acausal) inverse. It is obtained simply by making la k l < 1

for all k, which can be achieved unless 1^0ki - 1 for some k. This

can be considered as the unique factorization of the original fil-

ter C, although it really represents merely the simplest of many

G
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possible factorizations. If the original filter is causal, then

q = 0 and the above analysis shows that there is only one factor-

ization into causal dipoles — and this is the "unique" factoriza-

tion which is usually discussed.

e) Delany (or Phase) Character

In electrical engineering the frequency response of a filter

describes the degree to which an AC signal at a given frequency

will be attenuated on passing through the filter. Another effect

of a filter is to cause frequency-dependent phase shifts of signals.

It'
	

For the present applications, rather than view these effects in the	 4

frequency domain, it is more convenient to use the time domain.

Consider first a causal dipole (CO3 C 1 ) as in the previous

section. This filter is defined to be minimum delay (or minimum

phase) if I C11 < col; it is maximum delay (or maximum p' ,nse) if

IC11 > JC O J. These names are derived from the way in which energy

is delayed at the output of the filter, as will be detailed below.

Since delay properties are not affected by an overall shift in

time, an acausal dipole (C_ 1 , C.) is minimum delay if JC O 1 < IC-11

and maximum delay with the opposite inequality. The case

Ic o l _ 1C, 1 I is somewhat singular in that the inverse does not

converge (see below); hence this case must be handled separately.

Now consider a filter C = {C1 } of arbitrary length, say n + 1.

Again because of time-shift invariance only the causal case need

be considered. That is, if the filter is not causal, its causal

58



equivalent should be used. The causal equivalent of a filter is

simply the filter shifted so as to bring its first nonzero element

(which may not exist if the filter is infinit I to i - 0. From the

previous section we know that there is a unique factorization into

n causal dipoles. Each dipole is either minimum delay or maximum

delay. If all the dipole factors are the former, the entire pulse

is said to be a minimum delay pulse; if the factors are all maximum

delay, so is the entire pulse. If there are some of each, we have

a mixed delay pulse. Thus, the delay character of the pulse is

1 .
specified by the delay character of the dipole factors of its causal t-
equivalent. The physical meaning of these concepts is as follows.

Introduce the quantity

i
Pi =	 rk2	 (55)

this is the integrated energy — the energy which has come out of

the filter up to and including time i — due to a delta function

input at time 0 [for electromagnetic signals energy = (ampli.tude.)21.

This function rises from zero for i < 0 (since by assumption

Ci = 0 for i < 0), monotonically, to its final maximum at i = n + 1,

and thereafter remains constant at a value PW - Pn+1 = .^ Ci,2,
2=-^

'	 which corresponds to the total energy output of the filter. Corre-

sponding to filter C there is a family of filters (all of length

n + 1) which is generated by reversing all possible subsets of the

dipole factors of C. The reverse of (C O , C 1 ) is (('1, CO), where
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represents complex conjugation of the possibly complex filter ele-

ments. Correspondingly, the reverse of any filter is obtained by

reflection about the origin of time and by complex conjugation of

all of the filter elements. The (time) reverse of any array

X - {X d wiil be denoted X - fX*n }. Since there are n such factors,
this family has 21Z members, including the original filter itself,

although they are not all necessarily distinct. It will be evident

from the discussion in 4IIIg that the power spectra and autocorre-

lations of the members of the family are all identical. In fact,

the family may be defined as the set of pulses of length n + 1 with

the same autocorrelation and spectrum as C. Further, the total

energy P. of all these filters is the same, so the partial energy

curves of th ,.se filters all begin and end at the same points (see

Fig. 14). Between these points the curves are quite different and

even cross each other. But it can be shoini that there is one curve

which everywhere lies above all the others — and it corresponds to

the single minimum-delay member of the family of pulses. That is,

the energy output of the minimum delay filter is delayed as little

as possible, among all possible filters with the same spectrum, in

that at each moment of time the integrated energy is maximum.

Similarly the unique maximum delay pulse has a partial energy output

which lies below all the other curves and corresponds to delaying

the energy as much as possible.

Minimum delay pulses begin suddenl y and decline slowly. In

fact the minimum delay pulse rises as sharply and declines as

I
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FIG. 14.-The concepts of minimum and maximum delay. (a) A
short autocorrelation function. (b) The set of eight pulses which
share this autocorrelation. (c) A plot of the eight corresponding
partial energy curves: the uppermost curve corresponds to the mini-

mum delay pulse [dashed line, topmost part of (b)] and the lowest
curve corresponds to the maximum delay pulse [solid line, topmost
part of (b)].

61



i

9
l

gradually as possible, consistent with the given autocorrelation.

The maximum delay pulse is the time reverse of the minimum delay

and has the reverse of these properties. Further discussions of

the physical and mathematical meaning of minimum delay are in the

geophysical literature (Robinson 1962, 1963, 1964a, 1966, 1967b;

Smylie, Clarke, and Ulrych 1973; Berkhout 1973; Schoenberger 1974).

P Inverse Fi t r:-

The filter which assumes the role of unit y for convolution is

the delta function,

d - {dn, d - (. . . , 0, 0, 1, 0, 0, . . . ) f	 (56)

since convolution with it leaves any filter unchanged. Then given

any filter C we can ask whether there is an inverse, C-1 , such that

C*C-1 - d. The answer is obtained by Z-transforming this equation:

C(a)C-'(ti) = 1	 :57)

so

1	 ^:-1 r 1	 (58)^:	
LC(a) ,

where Z-1 denotes the inverse Z-transform. Hence finding the

inverse of C is reduced to finding the coefficients in the series

expansion of the reciprocal of the "-transform of C. Such expan-

sions always involve choices as to whether to use positive or nega-

tive powers of N. The choice is made on the basis that the result-

ing inverse filter should converge, as will now be explained.

Consider the dipole factorization given in STIId. It is easily

62



seen that the inverse of the filter is the convolution of the

inverses of its dipole factors, so the problem is reduced to find-

ing the inverse of a dipole. Consider fit. causal dipoles which,

except for a constant factor, can be written (1, -a). The

Z-transform is (1 - az). Which expansion of (1 - az) -1 converges#

#Convergence at z = 1 is implied, because we are really inter-

ested in the convergence of the coefficients of zn in the expansion

of the Z-transform. This allows use of the DFT, because

(zj _ lexp(-iw)l = 1 on the unit circle.

depends on the magnitude of a:

1 + az + (az) 2 + (az) 3 +	 if al < 1
(1 - az)

-1 =	 .

-[(az) -1 + (az) -2 + (az) -3 +	 .] if jal > 1

(59)

Thus the Z-transform of the inverse of a minimum (maximum) delay

causal dipole must be expanded in positive (negative) powers of z

if the result is to converge. If C = (1, -a)

I(. . ., -a 3 , -a 2 , -a, 0, 0, 0, . . .) 	 jal > 1

(Cf. Fig. 10 and the associated discussion in Me.) Similarly, a

maximum (minimum) delay acausal dipole gives a convergent expansion

in negative (positive) powers of z. It is easy to prove (e.g., with

Z-transforms) that a minimum delay causal dipole has the special

simplifying property that its inverse is also minimum delay and
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causal. The same holds for the convolution of ;arbitrarily many

such dipoles. Similarl y the inverse of a maximum dela y _accusal

pulse is maximum delay and acausai (see Table 1). Because of this,

it is convenient to arrange the factorization so that all factors

;are in one of these. form~. This can alwa ys be accomplished :as

follows: suppose P of the zeros of ,'(:;) sat isf_y I= 	 I ` 1 and the

remaining ,,' zero, satisfy 1-11 c ' ! I . 1 (a',::11111c all k: , ," I j i).	 Then

shift the time origin of	 so that in the notation of 4111d	 = P

and ,,, = ;,'.	 Then ;assign the	 zeros which 1 ie outside the unit

circle in the complex plane to the p causal dipoles in the factor-

'	 izatiou (eel. (52)) — these will be minimum delay. The •,' zeros

inside the unit circle are assigned to the c? ,causal dipoles, which

are then maximum dela y . this factorization represent, the filter

as the convolution of two factors:

factors. minimum dela y , causal)	 (61)

^; _ (x,;•+1.1)*(.:',+' .1)*	 *(^;,,•^,.11
r

factors, maximum delay, acausal) 	 (62)

so that 	 and C-1 = (n' 1 )(: '- *i; - '). where K is as defined

above. Note that -1 and 4-1 have tho same dela y and causality

properties as do F and d, respectivel y . It can be shown that the

Laurent series thus generated for -'(;:) converges within an

annulus in the complex plane which includes the unit c'.rcle, and it

is the coefficients of the various power:; O ., in this soriv-.

Which rive the elena,nt;. of

t=
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In many of the standard treatments of this subject only causal

filters are allowed. It then results that a filter has a convergent

inverse if and only if the zeros of its 2-transf, 	 lie outside

the anit circle — otherwise the forward expansic	 -ges and the

accusal backward expansion is not permitted. L. 	 : words, only

minimum delay (causal) pulses have (causal) inverses, and then the

inverse is also minimum delay. This problem was apparently first

discussed by Wold (1938b). Two-sided filters always have a con--

vergent inverse (unless a zero lies exactly on the unit circle).

fIn practice, a very convenient way to evaluate inverses is to

replace the	 transforms in equatlin (58) with the discrete Fourier

transform (DFT). A code for this procedure is contained in the

Appendix. Specifically, given a set of filter elements {('t), one

evaluates the DFT of i', takes the reciprocal term-by-term, and then

obtains the inverse DFT. This procedure automatically provides the

correct convergent expansion of a two-sided filter — without explicit

evaluation of the zeros of the	 transform of the pulse! For

example, consider the pulse C _ (l, -,z). The DFT procedure yields

the inverse (1, „ z 2 , 'I", .	 .). If Jal < 1 this is obviously the

correct inverse, interpreted as a causal pulse.. Many terms may be

necessary to get a good representation of the pulse shape, espe-

ciall y if I;z, is close to 1.	 If Ja ( . 1, the above inverse,

interpreted as a causal pulse, is divergent (or "unstable"). The

trick is to note that for any finite number of terms,
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(1, a, a 2 , . . ., an), there will be one largest term, an. The

inverse should then be renormalized to make this element unity:

(a-', . . ., a-2 , a- ', 1), and then interpreted as an expansion

backward in time, (a-n , . .	 a-2,  a-1 , 1). This is the correct

(acausal) inverse if lai > 1. The same procedure works in the

general case, in which the inverse pulse extends both forward and

backward in time. ** In general some zeros must be appended to the

**In this case the time origin does not appear at a fixed

place in the inve7_se and must be identified by some other means.

This inability to pinpoint the origin of time in the calculated

inverse is the price paid for not having to determine the zeros of 	 ti

C(z). Specifically, if we knew how many zeros lie inside and out-

side of the unit circle, we could then locate the origin. Fre-

quently, but not always, the origin is located at the peak of the

inverse pulse.

original pulse before applying the DFT inverse because the inverse

is almost always longer than the filter itself. For two-sided

pulses this is also needed to ensure that the backward and forward

tails o`	 -_ inverse pulse do not overlap, due to the wraparound

feature of the DFT. (Envision the arrays pasted on the surface of a

cylinder, with the righthand and lef thand ends abutting. Any set

of entries on the right end can be transferred to the left end

67



without affecting the DFT. This is illustrated in Figure 15.)

Examples of inverses calculated in this way are shown in Figure 16.

While the inverse as defined here is unique, there are other

inverses which can be defined. Noting, for example, that the exact

inverse of most filters will be infinitely long, one can ask: What

finite filter, of fixed length, is closest to being an inverse to

C in the sense that the sum of the residuals from the delta

function,

2

(C*c-1 ) -d
q

is minimum? The solution to this problem is the truncated approxi- 	 f,

mate (least squares) inverse of C, and is discussed extensively by

Robinson (1964a, 1967; see also Treitel and Robinson 1966). One

could just as well ask for the truncated inverse which minimizes

the absolute value residuals [see Claerbout and Muir (1973) for an

interesting discussion of some of the properties of this inverse).

Inverses may also be evaluated by various techniques which involve

determination of the zeros of the Z-transform of the filter (see,

e.g., Steiglitz 1974), but this approach is computationally quite

laborious compared to the DFT method.

:0	 CC rrclatiOn z'201,'tl ( . a nt, an:l

The autocorrelation function of a process .1' is defined its

").1.(n'm)	 C(. 71 - -V) url - .C)) ,	 (63)

9

68



1

CN-7

CN-6

CN-5

CN-4

CN-3

CN-2

CN-1

FIG. 15.-The wraparound feature of pulse shapes. All the

pulses shown are equivalent in the sense that their inverses (and
DFT's) are identical, except that they are similarly rotated with
respect to each other.

W
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FIG. 16.-A sample zoo of pulse shapes (left) and the corre-
sponding inverses (right) as determined with the discrete Fourier
transform.
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where Y - (Xn ). Section IIa outlined its significance. The power

spectrum is the Fourier transform of the autocorrelation and also

is equal to the squared magnitude cf the Fourier transform of the

time series itself. We shall give, without proof, expressions

which are readily derived from the definitions.

	

For a moving average h =	 ', where R is assumed stationary

and with spectrum PR (w) = 1, we have

p l (n,m) - p k (n - m) - aR2 p C (n - m) - X2 	(64)

where oR2 = ( Rn 2 ) is the variance of the innovation and P C is the

autocorrelation of the pulse, defined by

	

PC ( n - m)	 CkCk+n-m
	 (65)

	
t_ 11

It can be seen that the autocorrelation is the convolution of the

pulse with its reverse. For zero-mean processes (e.g., with (Rn )- 0)

the autocorrelation of the MA is proportional to the autocorrelation

of the pulse shape. Similarly, for this case the spectrum of the

process is equal to the spectrum of the pulse shape:

S
X
(w) _ lC(w)l 2	(66)

where i'(w) is the Fourier transform of the pulse:

	

CM =	 C  e	 (67)
is

and the normalization of R is such that YR (w) - 1. In terms of

:-transforms we have

"X(w) _	 (:; = e Zw ) .	 ( 58)
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For an AR process, R = A*X, it is easy to show that

Sx (w) -	 1	 (69)
IA (w) 12

where A(w) is the Fourier transform of the AR filter:

A M _

	

	 A  eikw	 (70)

k

Finally, for an ARMA process, A*X R*C,

2
P (w)	

C w 

2	
(71)

A (w)

It is readily verified from these formulas (or directly from the

definitions) that both the spectrum and autocorrelation of X are

unchanged by time reversal of C, a result alluded to in §IIIe.

IV. MODEL CONSTRUCTION

The tools are now at hand to construct stochastic models from

time series data. In outline the procedure is: (1) obtain data

from one or more realizations of the process of interest; (2) decide

on the form of the model to be fit to these data; (3) use the data

to generate estimates of the model parameters; and (4) if necessary,

1	 transform the resulting model to a form more easily interpreted

physi,.ally. (The last step recognizes that the form most suited

to computations may not be the most suitable for comparison with

physical models. 'typically a low-order AR model is easiest to com-

pute, and the corresponding MA has the simplest physical Interpre-

tation. See §Vf.) The stage will be set by presenting an

L
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existence theorem which justifies the concern in §II and §III for

the MA and AR models, by asserting that any stationary process can

be represented with these models. Then explicit methods for the

estimation of the parameters in these models will be developed. We

assume that all processes of interest are stationary.

A?l	 Wolc! Pecorm,00itior

Moving average models were introduced in §II as a rather arbi.-

trary way of representing "memory" or correlations. The question

arises as to what processes can be represented in this seemingly

very special. form. The surprising answer, first demonstrated in

1938 by the econometrician Herman Wold (1938a), is that any station-

ary process can be so represented. The simple explicit form, known

as the Wold Decomposition, is given in the following theorem.

THE WOLD DECOMPOSITION THEOREM: Given an y stationary

process, X, there exist:

(1) a purely deterministic process P,

(2) an uncorrelated zero-mean noise process H, and

(3) a moving average filter C,

such that X - H*C + ".

Thi3 is a decomposition of .1' into a deterministic part (P) and a

random part (;*t'). The random part may contain correlations and

can in turn be deconvolved into a moving average, in which the

correlations are represented by the deterministic filter C and the
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purely random part is contained in the white noise process R. If

the MA is restricted to be causal, this decomposition/deconvolution

is unique (except for a constant factor which can be exchanged

between R and C). It is not unique without the causality condition,

because there are other noncausal MA representations. This non-

uniqueness is the subject of the following subsection. If, in

addition, X has an absolutely continuous spectral distribution

function (i.e., X is itse` .,oc aeterministic), then C is minimum

delay, and therefore has a convergent, causal, minimum delay

inverse A. This fact assures the existence of a unique autoregres-

sive representation of the detrended process X - D, in the form

A*(X - D) - R, where A - C-1 . Thus the Wold theorem establishes

that any stationary process, with its deterministic part (including

the mean value) removed, can be represented as an MA, AR, or a

!nixed ARMA process (see §IIf).

For a thorough discussion and proof of this theorem see Hannan

(1970, p. 137) or Robinson (1964b, p. 126). The following informal

proof conveys the spirit of these rigorous works. Consider a given

stationary process X, which for simplicity will be taken to have

zero mean. The forward predictor of order p is defined as

f
(c )

B X	
(72)

Xn	 =	 kn-k ,

k =1

far any set of numbers Bk , k - 1, 2, - .	 r. This linear expres-

sion is designed to forecast the value of Xy2 , based on the previous
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values Y71-1 1 ki2-2• . . ., X??-j,.

course depends on the values of

the best predi.-tions form the o

specifically, the optimum least

The quality of the prediction of

the Pk . Those values which give

pt 1mum predictor of order r , . Mc re

-squares predictor of order	 is

defined as that which minimizes the mean square prediction error,

k?

with respect to the parameters In F. The optimum predictor is the

limit as	 A very important process is that defined by

the error made by the optimum predictor at time r. This random

process is to be identified with the white noise process h in the

definitions of AF, MA, and AIIMA process ^ (4II) and is ca_	 the

innovation of the process "1" kl:ailath 1968; s'arzen 1969). The error

at time r, is due to the new p ,llse starting; at that time, because

the effects of pulses starting at previous times are completely

incorporated into the optimum prediction. That (.4', : )  = 0 follows

immediately from the vanishing of (A',.) and the definition of :;. It

can be shown (Wold, 1938a) that

0	 for all n	 0	 (75)\ >: - k ti,

Intuitively this is so because :' is the error made at time 	 by a

predictor optimized on all prior data (i.e., Y„_ 1 , 1, -:'	 )'

so there ran be no correlation of !i with these data, otherwise the
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correlations could be used to improve the already optimum predictor.

It follows that (RnRm ) = 0 for all m # n; for, taking rrr > n without

loss of generality,

\RmR^ =
	 hC _m(Z - )>	 RmXn -	

BkRmXn-k = 0
	 (76)

71
k

because all of the terms are of the form in equation (75). This

makes the Rn a kind of orthogonal set, and the process X can be

expanded in the series

Xn	 nkRn-k + D 	
(77)

k=1

where D is a residual process, orthogonal to R. By the usual

technique of multiplying this equation by Rm and taking expectation

values, the expansion coefficients can be found:

C 	 \XnR'_) .	 (78)

(This formula is an alternate way of computing the MA parameters

and has some advantages over the direct inversion C = A -1 .) The

final step, that D is deterministic, is a consequence of the van-

ishing of the prediction error for D. The details of this proof

can t.; found in the abrve references. Caines and Sethi (1979) give

an interesting discussion of causality and the Wold theorem.
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I? A 1100s 	 Theorem

The moving average filter of the Wold representation is

(1) convergent (or stable): F C k 2 < «,

(2) causal: C  = 0 for h < 0,

(3) minimum delay (see 4IIIe),

and

(4) constant (Ck independent of time).

Extending Robinson's (1962) terminology, we call any filter with

these properties a minimum dela}' wavelet. It is indeed a curious

feature of the Wold theorem that an arbitrary stationary process 	 t`

can be represented in such a special form. What about an

process with a pulse that does not have these properties? The Wold

decomposition exactly represents such a process with an MA model

which DOES have these pr perties. For example, it represents a

mixed-delay MA in terms of minimum delay wavelets. It would seem

that such representations are misrepresentative. Some processes

seem to have better representations than the one provided by the

Wold theorem. But how can this be? The ar 	 r. lies in the fact

that, while too restrictive with the pulse C, the Wold decomposi-

tion is too liberal with regard to the innovation. It would be

preferable, at least for physical processes consisting of indepen-

dent pr' es, to restrict the -Lrnovation to be independently dis-

tributed — not just uncorrelate_d — and to allow the pulse to be

rni yed-delay and accusal, rather than assuming causality.

78
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The proof i., simple. Since 1'.is stationary, the Wold theorem

applies and assures the existence of a unique, causal, moving-

average representation,

where	 i& a minimum delay wavelet. It was sl,own above (§IIId;

see also Robinson 1964b; and Smylie, Clarke, and Ulrych 1973) that

there is a family of filters which share a given autocorrelation

and which can be obtained from each other by all possible combina-

tions of time-reversal of the dipole factors. lie define the family

{('
M

l as the set of all filters which have the same autocorrela-

tion as C' . If 
4. 

is finite, of length N + 1, then there are 2'V

(not necessarily distinct) members of this set. One is minimum

delay (C itself), one is maximum delay (the reverse of ( 1"), and the

rest are mixed delay. For each (' (1) define A (`) _ [C (`) ] -1 and

R (`' ) = A (`) *U - P). Then

c"'(`)*R(t) = C (`) *:1 ( ' )*(\' - P) = V -	 (80)

establishing the desired representation. A direct calculation of

the autocorrelation of r,' ( '' ) shows that it is the same as that of

h"0 , namely a 2 6,,,1V and this completes the proof. The uniqueness of

this family is also readily demonstrated. Note that the represen-

tations in this theorem are not ,just similar, they are exactly

equivalent. They differ only in the way in which the ra,idom and

deterministic parts are assigned to the innovation and to the pulse.

80



It is possible that a theorem stating that one and only one

of the R (2) is always independently distributed can be proved.

I do not know whether this theorem is true. There are theorems

dealing with the existence of nonlinear representations with inde-

pendently distributed innovations (Rosenblatt 1971) or innovations

with the martingale difference property (Segall 1976). Therefore,

it seems likely that further restrictions beyond stationarity must

be imposed on a process to ensure the existence of a linear MA with

an independently distributed innovation. Our point of view will be

to assume the independence of the noise driving the observed pro-
,

cess. Then one of the family of representations will certainly be

independently distributed; this one will be regarded as the correct

one, as it most completely and faithfully separates the random and

nonrandom parts of the process. It is easily seen that the innova-

tions of the other representations can be written as linear combina-

tions of the i.d. one at different lags [cf. eq. (86) below] and

are therefore dependently distributed. Although exactly equivalent

to the correct one, these will be considered incorrect representa-

tions because their innovations are not purely random.

A concrete example will help clarify these matters. Consider

the exponential pulse

0	 k < 0
C„ =	 (81)
k	 e -bk	 k , 0	

(h > 0)
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which has been invoked in astronomical shot noise models (e.g.,

Terrell and Olsen 1970). This minimum delay wavelet is the inverse

of the simplest possible nontrivial AR filter, that is, the one-

parameter model used as an example in §IIIf, with a = e b . Let F

be an i.d. noise process, and consider the moving average i" = R*C.

The inverse of C is the dipole (1,--a). Hence the family of KA,

filters for this process has only two members, namely

a, a 2 , Q 3 ,	 .) 	 (82)

and

,

The corresp _e nding inverses are (1,-a) and (-,z,l} . The MA represen-

tations are .i" _	 *R (precisely the form used to define Y) and

.t" _	 *_^' , where

R' = (-(z,l)*1' = (-r,l)*(1,-a) -1 *Ft = F*F ,	 (84)

with

The pulse F is fundamental in the algebra of dipoles: convolution

with c of a filter that has the dipole factor (1,-a) reverses that

factor. With the aid of	 transforms the following explicit forms

can be derived:

tV

1

h=c

(85)
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and

1(	 - LI`)(I	 N ;^ 0

P = -	 n = 1 .

01

It might be surmised from inspection of equation (86) that R' and

RIZ+1 are correlated because they have many terms in P in common.

However, a straightforward calculation yields

o s""' = (R %t' )	 (88)
12 I'

and

(` *: ),. 	 0, 0, 1, 0, 0,	 .) ]	 (89)

Figure 4 shows an example of processes related in this way: that

in Figure 4(d)' is independently distributed, and Figure 4(c1) is

the same process (same realization) filtered with P. The pulse F'

is graphed in Figure 17. It is perhaps surprising to find a pulse

other than the delta function itself which has a delta function

autocorrelation. There are mane such pulses. They are sometimes

called all-pass filters. The filter '`y.'*:1-i, for arbitrar y A of

order V or less, has this property [" is the unit delay operator

defined in eq. (41)]. [Radar design is one application where

unautocorrelated pulses are sought (Boehmer, 167).] Note that our

process, constructed as randomly .occurring, decaying exponential

pulses, can also be represented as randomly occurring, growi ng

exponviltials! These rep resent a t. 	 :iii' iii.tthematicall y equivalent,

as (^ *:i - , rt:i^.	 But , }t*;t is a better representation because  it is

(87)
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Pn

n

FIG. 17.-The pulse P - iP,_,}, described in the text, which has
a delta-function autocorrelation. This was the pulse in the moving

average shown in Figure 4(c).
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ti same one used to construct the process in the first place. It

is better in the sense that its innovation is independently dis-

tributed and not merely uncorrelated, as is the innovation R'.

o) nceonUolution via Indepcnd,ntZil Distributed Innovations

The previous subsection assures that a MA representation

.exists. While it is not automatic that this linear superposition

of constant pulse shapes is physically significant, it frequently

is. That is, random processes which occur in nature often consist

of the summation of independent pulses. Since the moving average

model represents a process as the convolution of a pulse shape C

with an innovation R, the process of deduc ig the model (C',R) from
	 V

time series data is called deconvolution. The goal is to disen-

tangle the overlapping pulses from each other, revealing the under-

lying pulse shape and information about the amplitudes of the

pulses.

Most of the standard deconvolution techniques (§IVd) are based

on least-squares modeling or the autocorrelation function and are

therefore insensitive to the information needed to determine the

phase character of the pulses. Such techniques cannot distinguish

among the representa t ions it the extended decomposition theorem.

Further, if the driving process R is normally distributed (Gaussian)

noise., it can be shown (Parzen 1962, 93.4) that the process X = R*C

is also normal and therefore completely characterized by its mean

value and its autocorrelation function. In this case no technique
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can recover t- ,e phase information. The pulses in an MA driven by

Gaussian noise overlap so much that the phase information is irre-

trievably lost. However, many physical processes are not normally

distributed, and for these the problem arises as to how to deter-

mine the pulse shape with the correct phase property. This is the

FUNDAPENTAL PROBLEM: Given data sampled from the moving

average process X - R*C, where R is independently dis-

tributed noise and C is a (not necessarily minimum delay)

pulse, find estimates of the pulse shape C and amplitude

sequence R.

The standard techniques determine the minimum delay pulse which has

the same autocorrelation as C. But if .7 is not Gaussian. the cor-

rect F , ilse shape can be recovered. The key fact is that the inno-

vation corresponding to the correct pulse is independently diGrrib-

uted, while the other members of the family of innovations in tale

extended decomposition are not independent.

The procedure to be described here is a direct search for an

independently distributed innovation. We seek the model (AR, MA,

or ARMA) which, of all models consistent with the sampled data, has

the least dependence in the distribution of the innovation. Begin

by writing, in terms of the data X, tale innovation as a function of

the model parameters [eqs. (15), (19), (26). and (27)1:
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A*X	 (AR mode:)

C-1 *X	 (MA model)

	

R -	 (90)
A*C- '*X	 (ARMA model)

A*C-'*(VdX)	 (ARIMA model)

Because of its simplicity and practicality the AR model is the

prototype in this discussion, but the others can be treated in

much the same way. The explicit form of R in this case is

P

	

"y+ - 
E AkXn-k	

(n = p + 1, p + 2,	 N - q)	 (91)

k=-q

where A is of order (p,q) : A = (A_q , . . . , .1_ 1 , A O , A 1 , . . . , AP) .

Then construct a measure of the dependence of the process R, and

minimize it with respect to the model para ,eters. There is no one

correct way of defining a suitable dependence measure. Correspond-

ing to each of the definitions of independence given in Ma there

is the following quantity which could be used as a measure of the

dependence of the process R:

(1) rM (r 1 , r2 , . . ., rM) - P 1 (r 1 )P 1 (r 2 ) .	 P1(rM)

using probability distributions

(2)FIr 1 , r 2 ,	 . ., rM) - F1(r1)F1(r2) 	 . . F1(rM)

using cumulative probability functions

(3) ^M (u 1 , u 2 , . . ., 3M) - ^1(u1"1(u2) . . . ^1(uV)

using characteristic functions

(4) ^1(R1)g,(R2) . . . a (R )) - (g1(R1)^^g2 (R2)^

4q„(R„)) using expectations
M PI I

L
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In these expressions a simplified notation is used to give the

order of the statistical functions. If R were independently dis-

tributed these four expressions would all vanish for all values of

the appropriate independent variables (the is ur iiic u'a)' us' for

all functions ;;j , an-i for all values of the integer M. There is a

variety of ways one might choose to estimate the statistical func-

tions in these expressions or to assess the departure of the chosen

expression from zero. Of these many ways of proceeding, different

ones will undoubtedly be suitable for different kinds of problems.

Extensive experimentation has led to one procedure which has worked

well in a variety 6f test cases. This procedure is offered as a
L

fairly general purpose one, but the rea&er may wish to consider

other approaches to dependence minimization for his data analysis

problems.

How are the individual and ,joint probability functions in the

above expressions to be evaluated? First, equation (91) for, more

generally, eq. (90)j generates R from the sampled data X, as a

functioni of the model parameters. The .esulting values of R are

then used to estimate the function of interest, in the form of an

average. Assume that R is ergodic, so that the desired ensemble

averages can be computed as time averages. For example, to esti-

mate 
4,2 

(r l	where ^ stands for P, ;, or	 evaluate the

aver e

N-y- 1
1	 ^,	 ^

2 (rn r' t+1 ))11 = N - (t' + q + 1)	 t 2 ('':' r^:+1 )	 (9_)

rt=f'+1

88

k__



The way in which the estimators (such as P 2 ) are calculated is dif-

ferent for each of the four forms (1)-(4) above and will be described

below. Because time averages are used, no distinction can be made

between the various second-order functions, such as Q 2 (r i , r2),

'1
'2 (r., r3 	

Q 2 (rk' rk+1 	
Such a distinction is unnecessary,

however, because the assumption that R is stationary means that all

of these are equal anyway. The next step would be to consider

third-order functions, such as Q 3 (r l , r2 , r 3 ), which are awkward to

deal with numerically. Fortunately (Papoulis 1965), the added

information by going from second to third order is contained in

simpler expressions, such as )	 ^P	 P	 ^;2(rn, rn+2)' 
or in general Q 2 (rn^ rn++n)'

The corresponding time-average is

1N-q-m

2 (rn' rn+^n)>r = N - (^ + q + rr)	
Q2(rn, rn+m)	 (93)

np+1

Hence, expressions higher than second order never need be considered.

The final dependence measure is the sum of expressions such as

equation (93), from m = 1 to some maximum value, m* [see, e.g.,

eq. (98) below]. What should this range of values be? Unless

m*	 Y, the small number of terms in sums such as equation (93)

will make the estimates ill-determined. Numerical experiments of

the kir:d described in 9V, mostly with cumulative probability

functions, have yielded the following: For simple models of order

one or two, the single lag n = 1 may be sufficient in the sense

that no further information is added by including larger lags. B!it
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—'I'dcr modc I.,-; %* riust he I ar^l.1er than I if all. of the

the	 i - to be extracted from the data.

	

i, , , f or	 if)	 to he roui, I i I \ equal to the  number of

+ ;. A rationale for this empirical

It :11thotigh it i ,; not unreasonable.

probability distribution functions (PDF),

ivt• prubabilit , ,- f unctions, and characteristic 4 unctions were

on pro M (2ilts with  kn()Vn pule 	 Sil;tpt?-,' Lind innovations.	 The

measure 1),ISCLI on cumulative probability functions proved

by f :ir ', l ie hest ( sec ; V I zi) , ;In(] the details of this approach will

A ,Arai^!htforw^lrd L'Stim,-Ae ofnow he given.	 the cumulative proba-

hilit-, )linction of	 is 1cf. the definition in eq. (7)].

(94'

	

+	 ;IIICi tItIL' !",, have been rt. , 'iidCXVd as describe]

bkAt)w, at the end of	 is the unit step f 1 , nct ion:

10

	

(9,))

	

11 (^( ! Uat i nn	 i	 j U	 the IIIIIIIII)CI Ot	 wh i ch 	 1- C

t

	

t	 1,1(	 t	 I I , ;	 i " all k . !,t illlat e of

coll!, ,;I	 of	 k'(1 11:11	 s t ein; 	 ( o f " Imp I i t t I (I c
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N*-m

F2m (X,Y)	 (N* 1 m)	 H(x - Rn ) H(y - R,,+m)	 (96)
n=1

In this expression the sum is just the number of pairs (Rn , Rn.m)

such that

Rn s x and Rn+m S y	 ( 97)

[see the definition of FN given in eq. (S)]. The dependence mea-

sure is taken to be

	

m*	 rr* r`	 2
DF(A) - L..r Di (A) 2:f I 

F2m (x,y) - F 1 (x)F 1 (y) I dx dy

	

M=1	 m=1

(98)

The evaluation and minimization of this expression are described

in 5IT.

An analog of equation (98) with probability distributions

replacing probability functions is

m* I	 2

	

DP (A) -F111 P2m (x,y) - P 1 (x)P 1 (y) dx dy .	 ( 99)
M=1

However, numerical tests have shown this dependence measure to be

inferior to DF. The reasons are readily understood. The estimates

of P 1 and P2 involve the construction of intervals or bins in both

R,,- and (Rn , Rn+m)-space, and then counting the number of points in

the bins. This procedure has several difficulties. First, t!,e

results are considerably sensitive to the sizes and positions of
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the bins, and there is no obvious way to choose these optimally.

Indeed, it appears that the optimum bins depend on the distribution

of R, which of course is not known a priori. A second difficulty

lies in the quantized nature of bin occupation: A sufficiently

small change in A only moves the R points around within the bins,

and leaves the number of points in the bins (and therefore the

estimates of P 1 and P2) unchanged. Hence the derivative of the

penalty function, DP, is highly discontinuous. This effect foils

minimization methods which use gradients, and it also appears to

produce a forest of local minima which makes the global minimum very

elusive. The author achieved some success in alleviating these

problems by weighting the points according to their distance from

the bin center (a Gaussian dependence proved superior to exponential

or linear), to remove the quantum effect. Even so, there were still

numerous local minima in typical problems. The expression in equa-

tion (98), because it uses cumulative functions, requires no binning

and is a smoothly varying function of A. For low-order models it

possesses a single minimum to which the minimizer converges rapidly,

independently of the starting value. This result holds even with

m* = 1. When the order of the model is larger, local minima invari-

ably appear unless m* is increased (see §V).

Another problem with DP concerns the treatment of the points

that spill outside the chosen R-interval. Again some success was

achieved with empirical remedies, namely the application of a
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penalty for such spills ( to be added to DP) or defining the edges

of the bins, in an R-dependent way, to include the maximum and

minimum R-values. But these stop-gap remedies were only partially

successful at producing a well-behaved dependence function. It is

also awkward to have so many adjustable parameters (number, size

and location of bins, weighting functions, spill penalties, etc.)

to be chosen arbitrarily or optimized using trial cases. In com-

parison, the function DF , given in equation (98) and evaluated as

described in §Vd, is very well -behaved and free of undetermined

parameters or functions.

The. characteristic function is intrinsically a continuous

function of the A k , so the method based on these functions also

avoids some of the problems discussed above. The first and second

orders are

¢1(u) = ^exp(iuRd)	 (100)

and

^2m(ul, u2) = ^exp[i(u lRn + u2Rn+m)]/ .	 (101)

The corresponding condition for independence is

G^m (u l ,u 2 ) - ^ 2m (u l ► u 2 ) - ^ (u l )^ l (u 2 ) = 0	 (102)

for m = 1, 2, . . . . Since this function must vanish for all u 

and u 2 , there are various expressions which could be adopted as the

dependence measure, the most obvious being the integral

 1I2
Dom	

ff*D 

iG0M (u l ,u 2 )I du l du e	 (103)
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This measure, even with weighting functions thrown into the inte-

grand, did not give very promising results and was numerically

awkward. A much simpler procedure comes out of the Taylor series

expansion of the function GSM in equation (102). Write

CO

,`^l (,l)	 k
(u) _^	

k	
u'	 (104)

k=0	
du
	 u=i

i^

and

°D	 k+j nt	 k
IP.	

02 (2.411 212)
Q 2 (ul,u2)

	

k	 j.
'	 k,J=0	

3t11 3t12	
u1=u2=0

(105)

The quantities in square brackets are ik uk and 
i`+ju^	

respec-t

tively, where the ^,'s ar= the moments

uk = (n 
k	 (106)

and

Fim	 =	 k^ \	 (107)
k, j	 n n

Since all. power:; of u l and u 2 must vanish in equation (102),

uk,^i	
uk uj	 (108)

for all k, j, and m. Accordingly, the expression

2

nmom - l(uk,c%	 u kuj )tc , f c7)i	 (107)

M k, j
can be taken to represent the degree of dependence of the process R

(t.^(k,j) is a weighting furr-tion]. For simple ;.odels t::e single

value. r; = 1, and just a few terms k $ = 1,2, seem to suffice. The
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term k j = 1 corresponds to the autocorrelation function, and the

terms k = 1, j = 2, and k = 2, j = 1 are related to the "time skew-

ness function" of Frenkiel and Klebanoff (1967) applied to a related

problem by Weisskopf, Sutherland, Katz, and Canizares (1978). The

numerical tests showed that moments and characteristic functions

have some merit for this problem, but again local minima were

bothersome and no choice of weights for the u's or the it's c-uld be

found that yielded consistently satisfactory results.

The author has not experimented with expectations of arbitrary

functions [method (4) in the list above], mostly because the infi-

nite arbitrariness in choosing the function sets is so imposing.

Finally, while it would not necessarily yield independently

distributed innovations, a procedure based on maximizing the mar-

tingale difference property (§Ila) was considered. In fact, the

implementation is straightforward and easy. Select a set of fi-bins,

denoted 6 j , and then evaluate the conditional expectation value

CI{rtrt+mlR6^^ 	 !;17	 (110)

n such that Rn+m

where . I is the number of n such tha : Hn+n edt a, . The "mart ingaleness"

measure would then be

PhfPP R 1.../I R̀n I 
Rn+r" get .'^ - 'r^! (	 (111)
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where

of = wt Rn
	 (112)

n=i

is just the (unconditional) expectation value of R. As will be

seen in 4VIa this procedure does not appear to be very effective.

d) Predictive Deoonvolution of Time Series

Predictive deconvolution (Peacock and Treitel 1969) or rp edic-

tive decomposition (Robinson 1967b) refer to the use of linear

prediction (Makhoul 1975), usually based on past data only, to

yield information which allows representation of a process in terms

of elementary building blocks (such as white noise processes, MA or

AR filters, and deterministic processes). Since least-squares

methods are almost always used, and these cannot recover phase

information, only a brief sketch will be given. This discussion is

intended to clarify the relation of predictive techniques to the

material presented above, and also to motivate a technique (SIVe)

which is a simple extension of linear least-squares prediction and

which can recover pulse phase information. More details than are

given here can be found in an extensive literature (Kolmogorov 1941;

Mann and Wald 1943; Wiener 1949; Bode and Shannon 1950; Durbin 1959,

1960; Walker 1962; Robinson 1964b; Gersch 1970; Akaike 1971, 1974;

Chow 1972a; Kashyap 1974; Shinners 1974; Istrom and Sbderstrbm

1974; Gertler and Barryasz 1974; Gersch and Foutch 1974; Graupe,
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Krause, and Moore 1975; Tong 1975, 1976 — to name a few), and

expecially the reviews by Robinson (1967a) and Sox and Jenkins

(1970). The reader interested in the new techniques only should

skip to 4V at this point.

The basic principle of predictive decomposition is that a

model which gives good predictions of the behavior of a process

undoubtedly is a good representation of the process. Thus one takes

a model with a simple structure and adjusts it (by adjusting the

values of the model parameters) until some measure of the error the

model makes when tested against the available time series data is

minimized. This procedure is called optimizing the model. The

goal is not prediction Rer se, but representation of the statisti-

cal properties of the process. The hope is that the optimization

will extract all of the information about the process that is con-

tained in the data at hand.

The basics of the predictive approach are as follows. The

term linear prediction used above simply means that the predictor

is taken in the form

Xn . B IXn-1 + B2Xn-2 +	 + BkXn-k	
(113)

(cf. the autoregressive memory discussed in 1IId and in the proof

of the Wold Decomposition theorem in ilVa). tt That is, this

"The caret C) is placed over quantities which are estimated

or predicted, based on data and (usually) a set of parameters such

as the B 1 . It is to be distinguished from the symbol ( ) for the
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expected value, which is a statistical average, depending on the

whole process (theoretical expectation) or on a realization of it

(sample expectation).

expression is to be used to predict;t the value of Xn, based on

44It should be emphasized that the word "predict" is not meant

in the literal sense, as it would be, for example, if we were

interested in real-time analysis of a manufacturing process we

wished to control. Rather, we consider Xn to be the guess or esti-

mate we would make for the value of Xn if we didn ' t know it, based

on knowledge of values of X at other times. Conventionally, the

restriction to the use of past data is imposed, but in general use

can be made of past and future. (A two-sided prediction-error

{	 filter is sometimes called an interpolation operator.)

knowledge of the previous values Xn_1 , Xn-2- . . . only. The num-

bers B.
71 
are related to the AR parameters and are to be determined

by minimizing the prediction errors, in a sense to be defined. The

error in prediction at time n is

k	
[r
k
'^

En - Xn - in - Xn +	 AiXn_i !.r AiXn_ Z	 (114)

2=1	 Z-0

where we have taken A.71 - -Bi and A . = 1. In other words

E - A*X	 (115)
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is the sequence of prediction errors as a function of time, and for

this reason A is sometimes called a prediction-error filter. Sup-

pose we take the sum of the squares of the prediction errors,

that is

E(A) - L Ent	(116)
n

as the measure of the errors which is to be minimized. In practice

the length of the prediction filter is taken to be much less than

the length of data (k << N), so that a large number (N - k) of trial

predictions can be evaluated. The minimization equations are

8A - 0	 (i - 1, 2, 3, . . .)	 (117)

or

^	 m

AkXn-

)

Xn-i - 0
	 (118)

k-o

the expectation value of which is

Co

EA
kp(k - i) - 0	 (i - 1, 2, 3.	 .)	 (119)

k-o

where p is the autocorrelation function. These are the standard

Yule-Walker equations (Ulrych and Bishop 1975). The procedure is

to use the data to compute an estimate of p, then solve equa-

tion (119) for the coefficients A 1 , A 2 , . . . . Ulrych and Bishop

give specifics and FORTRAN programs for carrying out this solution.
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From the solution for A and the data, it is straightforward to

calculate an estimate of the innovation from the relation in equa-

tion (115). Indeed, the sequence of prediction errors F. corre-

sponding to the optimum A is an estimate of the innovation R. That

is, R is both the sequence of optimum prediction errors and the

sequence of pulse amplitudes. This equivalence can be understood

by noting that, with the correct A, there is no prediction error

at time n due to pulses starting before n — the error is totally

due to the new pulse, of amplitude Rn, hence En • Rn. This esti-

mate, of course, is of the innovation corresponding to the specific

realization of the processes which has been sampled, but

therein is also contained information about averaged quantities,

such as the pulse rate (which for a continuous distribution of

amplitudes is expressible in the distribution function of pulse

amplitudes). The Yule-Walker equations can be generalized to the

case of two-sided filters, but this is a useless exercise providing

no added information.

A procedure for C.,cermining A with the minimum delay condition

imposed is due to Burg (1968, 1975) and is discussed by Ulrych and

Bishop (1975), Fahlman and Ulrych (1975), Karasewich (1975, Ch. 16),

Ulrych and Clayton (1976), and others. The sum of the squares of

the forward and backward prediction errors of s one-sided prediction-

error filter, namely
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(120)
8PEp - 2(N p)	 AkXn-k +	 Ap-k n-k

n -p+1 k-o	 o

is minimized with respect to A. The first term inside the braces

corresponds to the error made by the filter in predicting Xn based

on the p preceding values Xn-19 Xn-29 . . ., Xn-p . Since least-

squares modeling cannot distinguish one sense of the direction of

time from the other, Burg introduced the idea that one should

include the backwards predictions, which are represented by the

second term in equation (120). This term is the sum of the squares

of the postdiction errors, made by the same filter (reversed) based

on the subsequent values Xn+1' Xn+2'	 •, Xn+,p . The terms in the

backward and forward contributions to Ep , when expanded out, are

identical except for end effects. Thus burg's idea is most impor-

tant for short segments of data for which end effects are most

imports:;:. This procedure explicitly assumes that the process X is

intrinsically symmetric, in that forwards and backwards predictions

need not be distinguished, and of course this is not generally true.

The limits of the n-sum are chosen such that no datum outside

the sample range, n • 1, 2, . . ., N, is ever called for — that is

to say, the estimate is noncommittal about the unsampled data. (In

some formulations of such problems the unsampled data is set to

zero.) Therefore the resulting parameter values are "maxim

entropy" estimates (Burg 1968; Lacoss 1971; Ulrych 1972; Ables

1974). Hence A can be used to compute -n estimate of the power
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spectrum [eq. (69)] of X (Burg 1967; Akaiks 1969a,b, 1970b; Person

1968, 1969) which is called a maximum entropy method (MBM) spectrum.

The nature of the predictions and the ranges of the summations are

depicted in Figure 18. Details of the method are given by Ulrych

and Bishop (1975) and more completely by Andersen (1974). The first

of these references describes a convenient recursive solution to

this least-squares problem, which imposes the minim delay. condi-

tion explicitly at each step. This is the Levinson (1947) recur-

sion, also discussed by Durbin (1960) tend Burg (1975). Ulrych and

Bishop discuss various practical matters, give a FORTRAN program

for the determination of the AR coefficients as well as the spec-

trum, and outline the use of the final-prediction-error (FPB) cri-

terion for the determination of the length of the (one-sided) AR

filter.

This procedure is very efficient at determining the AR coeffi-

cients from time series data generated by simple processes where

there is little noise present. It should probably be used if it is

known a priori that the pulse is minimum delay. In astronomy this

is seldom the case.

e) Prediotiae Deaanvotution with the Absolute Value Norm

The choice of the suss-of-squares of the errors, in equa-

tions (lib) and (120), is not tha only possibility. Least-squares

modeling is used because it gives maximum likelihood parameter

estimates (Box and Jenkins 1970). It is also convenient because of
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- the simplicity with which the minimization can be expressed in

terms of the autocorrelation function [eq. (119)]. 	 But some other

= measure of the errors could be substituted for the mean square

error.	 The AR parameters could be determined by minimizing the

more general form E(A)	 JJEJJ, where JJEJJ denotes an arbitrary

error norm. §§	For example, consider the La norm:

"Random processes can be considered as elements of a normed

linear space (for L 2 this is a Hilbert space with the inner product

(X,Y) _ (XY)).	 A norm satisfies the three conditions:

(a)	 JJXJJ	 = 0 if and ' only if X = 0;	 (b)	 JJaXJJ =	 (aJ	 JJXJJ; and

(c)	 JJX + YJJ ij JJXJJ + JJYJJ.	 These are pleasant but not necessary

properties for a measure of the errors or residuals in model fit-

ting.	 For example, the skew "norm" of Claerbout and Muir (1973)

does not satisfy (b) or (c), but it is still a useful penalty

function for residuals.

1/a

L
a
 (E)_	 EnCn

The mean square error corresponds to a 	 2.	 The usefulness of the

choice a - 1 (Claerbout and Muir ."W2; Scargle 1977) will now be

demonstrated.	 Consider the MA process X = R*C, where R is an inde-

pendently distributed process and C is the two-point pulse (l,e);

if JeJ < 1 C is minimum delay, and if JeJ > 1 C is maximum delay.

Introduce a two-point forward prediction-error filter A	 (1,a):
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En - Xn + aXn-1 '	 (122)

i.e., the form of the prediction is simply

Xn - -aXn-1	 (123)

The best value of a minimizes La (E), which is equivalent to

minimizing

[La(E)la
	 I Xn + aXn-11a	 (124)

a

	r I (Rn + oRn-1) + a (Rrt-1 + cRn_ 	 2 )	 (125)

a
	^1Rn + (a + a)Rn-1 + aoRn- 21 	(126)

This last expression is difficult to deal with because of the pulse

overlap manifested in its three terms. But progress can be made if

the pulse overlap is neglected, because its effects should average

out. The prediction-error due to a single, isolated pulse at time

n is

	

Ef - JRnj a (1 + ja + ol a + (ael a) .	 (127)

But also consider the reversed or backward prediction-error filter

A = (a,l), which leads to the error

	

Eb - ,Rn1 a (Ja, a + 11 + aal a + ,ol a )	 (128)

It happens that Ef - Eb if and only if a - 2. That is, least-

squares prediction is identical in the forward and backward direc-

tions and would yield the same result if the time series were

reversed. The quantities Ef and Eb can be easily minimized if

105



a 0 1. For a = 1 consider the graph of (a + al + jael in Figure 19.

Each of the two terms is a simple absolute value curve with a slope

discontinuity at the point where its argument is zero. Hence the

sum is piecewise linear, with vertices at these zeros. The minimum

must fall at one of the vertices, 1111 and simple comparison of the
11"If (oj - 1, the line between the vertices is horizontal and

the minimum occurs everywhere along this line. This degenerate

case is not important, because such a pulse has no stable AR repre-

sentation anyway. It should be remembered, however, that absolute

value minima are not always unique.

two values shows that

_C	 if	 1C. 1 < 1

af,min =
0	 10-1 > 1	

(a - 1)	 (129)

For a f 1

c f 
,min _ -c1(1 + jols+1)-1
	

[with 0 r (a - 1) -1 ]	 (130)

and a similar analysis of the backward case gives

-cjcj -1 (1 + Ia10+1) -1 	 (a 
f 

1)a,b,min =	 0	 if (G! < 1	 (131)
(a = 1)I-C 1 	 if ICI > 1

The values at minimum are related as follows:

E(af,min ) = 1 + (ol2 < Et?(ab,min) 	
1 + ICI	 if (cl < 1

(132)
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and

Eb (ab,min)
 _ 'C'- 1 + ' C ' < Ef(af,min) = 1 + 'CI	 if ICI > 1 .

(133)

Hence the minimum for either forward or backward prediction is at

-C	 if ICI < 1

amin =	 (a = 1),	 (134)

-c 1	 if 'C' > 1

which gives for the optimum A

(1^-^')	 if ( C i < 1
A =	 (a	 1).	 (135)

(-c 1 110	 if (CI > 1

These solutions, for all values of a, are to be compared to the

exact inverse of the pulse from which the process was formed,

(	 ^	 3 .	 .)	 if ICI < 1
A = C-1 a	 • (136)

(.	 ., -c' 3'C-2'-c 1 110	 if 'C) > 1

The two-term L 1 solution in equation ( 135) agrees with the first

two terms of this exact result. For Ja i « 1 the filter

(3 ' af,min)
 _ [1,-a + o(a 2)] is approximately correct for any a > 1,

and similarly for jai >> 1 the filter (ab,min'1)	 [-a-1 
+ o(a-2),1]

is a good approximation. The inequalities in equations (132)

and (133) hold for 1 < a < 2, but the opposite sense inequalities

hold for a > 2 (with equality for a = 2, as already noted). Thus

any La norm with 1 1 a < 2 makes the correct decision between mini-

mum delay and maximum delay, but a 1 2 is unsatisfactory. The best

choice is a = 1, for at least in this example the resulting param-

eter values are then most accurate.
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This demonstration of the phase determining ability of

absolute value norm is for the simple case of a first order

process. More general cases are difficult to treat analytt

but there are many good numerical techniques for absolute vi

minimization (Barrodale and Roberts 1973, 1974; Osborne and

1971; Barrodale, Roberts, and Hunt 1970; Barrodale and Youn;

Robers and Ben-Israel 1969; Barrodale 1970; Ekblom and Henr

1969; Rice and White 1964; Maria and Fahmy 1974; and Claerbi

Muir 1973). Numerical tests (Scargle 1977, and IVIa) show

L 1 norm does work for more complicated cases, as long as th,

ing process 'R is at least moderately nonnormal. But a diff

arises when two-sided filters are introduced, as they must

this problem.

In the above example, permitting either forward or backward

prediction was crucial to the phase determination. In more compli-

cated cases, for example when the pulse is mixed delay, the obvious

generalization is to allow A to be two-sided. For example, if

A - (a,l,b), the predictor is

Xn - -aXn+l - bXn-1	 (137)

and the prediction-error sequence is

'En - Xn - In - aX,+l + Xn + bXn-1 (E - A*X)	 (138)

It is here that the liberal interpretation of the word "prediction"

noted above first comes into play. The general forms are

A - (A_Q , . . . , A_,, AS , A 1 , . . . , Ag)	 (139)
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[C

and

P
(140)	En	 Ak n-k '

k--q

The corresponding mean error in the L a norm is

N-q

E(A) N - P - q 
E 

lEn^ a 	 (141)

n-p+1

where as usual the sum is such that the filter A never extends out-

side the sampled data (cf. Fig. 18). The optimization problem is

to find the minimum of this expression with respect to the param-

eters A-q , . . ., Ap. It seems natural to not regard A Q as a free

parameter, but to fix it at the value 1 because of the special

nature of the prediction point. The condition A, - 1 can be thought

of as a normalization condition imposed on A to avoid the trivial

minimum at A i - 0, all i. However, this normalization choice is

inappropriate for two-sided deconvolution problems. Consider the

MA process X - R*C, where C is some particular two-sided pulse.

The mean L2 prediction error is

N-q	 P	 2

E(A) N- p- q Ed E Ak (R*C) n-k '	
(142)

n-p+1Ik--q

and therefore

3E (A) -	 2	
A (R*C)(R*C)	 (f or i 0 0) .

3Ai	 N- p- q	 k	 n-k	 n-i
n	 k

(143)
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Now insert the desired solution A - C-1:

aTs A	 -2
	

ERn (R*C)n_i	(144)

	

aAi ,	 N - p - q
A-C- 1 	n

2(145)
N - p - q ERn 

ERkCn_i-k

	

n	 k

the expectation value of which is

^/21 I A^	 2	 R C	 (146)

	

aA , i	 N - p - gEEk n-i-k

	

Z J	 1
Al	 n k

- 
20R 2Ci '
	

(147)

since the R ' s are mutually uncorrelated. This expression is not

zero unless C i vanishes, so that in general the A which is the

correct inverse pulse, namely C -1 , does not solve the optimization

problem with the constraint A 0 - 1. On the other hand, if only

one-sided pulses are allowed C-i - 0 for all i > 0, and the desired

A does make the above derivatives zero; this A does solve the opti-

mization problem. The choice A 0 - 1 is correct for causal pulses

but not for two-sided ones.

What can be done to ensure that the solution of the minimize-

tion problem is the correct inverse pulse? If A 0 is an arbitrary

function of the other A's, rather than held constant, the above

analysis yields, instead of equation (147), the set of equations

	

C i + C 

3A

0 aA0 - 0	 a  0)	
(148)o
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which integrates to

4rAiC-j - 1	 (149)
Z

as a necessary condition that optimization of A yield the inverse

of C. (Note that for causal filters this reduces to A OCO - 1, and

the conventional constraints A O - CO - 1 are correct.) Unfortun-

ately, equation (149) cannot be considered as a simple constraint

on A because it involves the unknowns C.. An obvious possible

remedy is to compute iteratively, starting with a guess for C,

imposing the constraint in equation (149) on the minimization to

produce a new A and a new C - A -1 . The convergence and uniqueness

properties of this iteration have been studied in numerous simple

cases. For low-order processes with little noise it converges

very rapidly to d unique minimum which is very much better than the

solution with A O - 1. But for more difficult problems there tend

to be osci l lations. In some cases these can be damped out very

effectively by adopting a suitable averaging scheme for the update

of A. But a way has not been found to predict ahead of time which

of several such averaging procedures will succeed on a given set of

data, nor a single procedure that is successful on all data.

(Curiously, although the above derivation is for L Z , the same results

can be demonstrated for L 1 using the methods of Rice (1964).)

An interesting feature of the above iteration is that, since

none of the A's is constrained to equal 1, the identification of the

prediction point becomes vague. Indeed the very concept of a
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specific point singled out as the prediction point loses much of

its significance. But let us call the element of A largest in

absolute value the prediction point, just because it is often true

with the constraint A Q - 1 that JAiI < 1 for all i f 0. It is found

that as the itoRration proceeds this point is not fixed but moves

around within the filter and eventually converges to a fixed point.

This is favorable as it eliminates what would otherwise be an arbi-

trary parameter (the location of the prediction point, or MPT in

the terminology in the appendix). The length of A, however, is

still arbitrary. For least-squares problems Akaike (1970x) has shown

how the length can be determined in an objective, automatic way,

based on the FPE criterion. This technique introduces the quantity

N 
+ 2 	 (150)

FPEM - N - M) S 

where SM2 is the sum-of-squares of the residuals (i.e., of the

innovation), N is the number of data points, and M is the number of

free parameters in the model (including one for the mean value if

this has been subtracted from the data before analysis). Starting

from small values, M is increased until the FPS (for "final pre-

V ation error") stops decreasing and begins to increase. One can

Interpret the factor (N + M)/(N - M) as the statistical penalty

that should be paid for using more free parameters. Without such

a penalty, the residuals would always decrease as the number of

parameters increases, so that the FPE going through a minimum is the

signal that diminishing returns has set in. Other techniques havc
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been proposed (see especially Gray, Kelley, and McIntire 1977), but

none seems easily generalized to the L 1 case. However, empirically

it has proven satisfactory to simply replace SM2 in equation (150)

with JMI , the sum of the absol+ite value residuals. No theoretical

justification for this procedure has been found, and it should be

regarded as an empirical result with quite meagre support in numeri-

cal experiments. Short of using this, the magnitude of the resid-

uals and the values of the model parameters must be inspected as the

complexity of the model increases. It has been said that so much

judgment is necessary in such matters that the procedure should not

be attempted for the first time (Granger and Newbold 1977). This

seems extreme, but some limit must be placed on the order of the

model to avoid the pitfalls of fitting too many parameters.

This section concludes with the one analytical result uncovered

for the L 1 problem which is as close as possible to showing that

absolute-value optimization of a two-aided AR filter yields the

correct deconvolution of an MA process driven by independently dis-

tributed noise. First the following lemma is established:

LEMMA: If X and Y are zero-me=an, independently distributed

processes, then

(IX + YI) L max((jXj), (jYj), , 	 (151)

with equality if X or Y is the null process.
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First note that if X and Y are independent

(Ix + YI) - ff dx dyP2(x.y)Ix + 
Y I - 

ff dx dyPX (x)PY (y)Ix + y 1(1 32)

fi-r. (x + y)PX(x)PY(y)dy + F-x (x + y)Px(x)PY(y)
(153)

-x

dx -2	 (x + y); ,x(x)PY(y)dy +	 (x + y)PX(x)PY(y)dy
OF	 e

^	 w

+	 dx -	 (x+ y)PX(x)PY(y)dy + Z (x + y)PX(x)PY(y)

(154)

The, first and last of the four terms in this equation can be written

as the integral of a nonnegative quantity, as follows

w

Q - 2	 dx	 Ix + yIPX(x)Py(y)dy

Ifo

0

+ f dx	 Ix + yIPX(x)PY(x)dy 2 0	 (155)

^.	 x

In fact this quantity vanishes only in degenerate cases, the most

important ones being PX or Py = 0. The second and third terms in

equation ( 154) simplify:
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(IX+ YI) -dxtxPX(x)+ (Y)PX(x)I +	 dr[-eXW - (Y)PX(x)I+ Q
o 	 F-0

(156)

i
- (IXI) + (Y)	 sip(x)PX(x)dx + Q	 (157)

- (IXI) + Q (since (Y)	 0) .	 (158)

and so except in the degenerate cases in Which Q 0

(IX + Y I) 2 (IXI) .	 (159)

Since X and Y are interchangeable in the above analysis the result

stated in the lemia follows.

Turning to the main issue, consider the process X • R*C; we

wish to show that (IA*XI) is minimms if A - C- 1 [subject to the

condition in eq. (149)I. Write

	

A-C' 1 +6A .	 (160)

so that

A*X - (C' 1 + 6A)*C*R	 (161)

- R + (6A*C)*R	 (162)

or

(4*'0n - Rn + ^aVRn-k	
(163)

k

where

ak -	 6AmCk_m	 (164)

m
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and e;uation (144) gives

ao-0.	 (165)

Hance

(A*X)n 
^^ '	 Rn + L akRn-k	 (166)

kfo

But since R is indepenedently distributed, the sum in this equation

is distributed independently of Rn , and the lemma applies, to 	 ►e

(JA*XJ) _ (JRJ) ,	 t;:,r)

with equality if a  - 0 for all k, a condition equival-nt to

6A  - 0 for all k. Hance A - C" 1 gives a minim (not necessarL

unique), and we have established the

TRWR M: If X - R*C, with R independently distributed

noise, then A - C" 1 is a solution of the optimization

problem min (IA *Xl) subject to ^ AkC k - I.
It must be cautioned that this minimization problem is not speci-

fied in the usual way, because the constraint explicitly involves

the solution, and the theorem is to be understood in the sense indi-

cated in its proof. The practical value of this result is in the

Iterative method which it leads to, as described earlier.
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V. COMPTNATIONAL ME1'fiODS

gal of this section is to provide enough computational

that the reader can apply the techniques described above

data. In outline all of the methods proceed in the same

lows:

ktain the dtta.

:cide on the form of the model (AR, MA, ARMA, ARIMA, . . .).

-ovide a way of computing the innovation R as a function

' the model parameters.

loose the property of R to be minimized, and provide a

theme for evaluating the corresponding norm D(R).

.nimize D(R) with respect to the model parameters.

impute t.ie physically interesting quantities from the

itimum model found in the previous step.

.ng subsections explain these steps in turn.

a) Sampling (Step 1)

Assume that the sampling is in even intervals of the indepen-

dent variable (time, position, wavelength, . . .) so we have a set

of measured numbers Xn , n s 1, 2, . . ., N. This is not a funda-

mental limitation, however, as the techniques described here can be

readily generalized to data with gaps and/or uneven sampling (§Vg).
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b) Identification (Step 2)

Choosing the best form (which is traditionally called identi-

fication) of the model is not always straightforward, and there is

a large and complex literature on this problem (see, e.g., Box and

Jenkins 1970; Farzen 1974; or Granger and Newbold 1977). Summariza-

tion of the ideas in this literature will not be attempted, but the

following general comments are appropriate. Many astronomical time

series can be well represented as low-order AR processes, and this

discussion therefore emphasizes AR models. Remember that a given

process can be represented in a variety of ways (Rle), so identi-

fication should not be viewed as finding the True Model, but as

finding s simple, physically suggestive model which adequately

represents the observations. Also keep in mind that this step is

not irrevocable, once taken. Rather, the results of subsequent

steps often suggest some revision in the form of the model.

e) Congluting the Irnt+tvtion R(A) (.Step 3)

The relation used depends on the form of the model [eq. (90)].

For an ARIMA model, the data are differenced d times and then an

ARMA model is fit. The most direct way of computing li is to carry

out the operation in equation (90) with the discrete Fourier

transform:

,()

c
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Note that C enters this calculation effectively as its inverse, so

that even here the MA part of the model is converted into an auto-

regressive representation. The only points that are not straight-

forward in implementing this expression with the DFT are: complex

arithmetic must be used in the multiplications and divisions, and

the arrays A and C must be zero-extended to the same length as the

data before applying the transformation. It would seem that the

result would be of the same length (i.e., N points), but to avoid

spurious end effects the array R must be truncated somewhat,

depending on the length of A and C. These end effects arise

whether the innovation is calculated with the DFT or directly eval-

uated with a summation (cf., eq. (91) for the pure AR case]. In

either case the innovation is defined at slightly fewer than N

points. This is the reason for the limits N1D and N21) in the

FORTRAN code provided in the appendix. For the pure AR case, R is

defined at p + q (- the length of the AR filter-1) fewer th-in N

points. But the values are not N1D . p + 1 and N2D . N - q, as

would be expected from equation (91), simply because negative

values of indices are not permitted in FORTRAN. In the code in the

appendix R is computed as outlined above, using the DFT. Alterna-

tively, the sum in equation (91) may be directly evaluated; for

small values of p and q this procedure 3s faster than the use of

the DFT. However, the evaluation of R is a minor part of the com-

putation of D. For convenience the R. are re-indexed as
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{Rn, n - 1,2, . . ., N*), where n - 1 corresponds to n - p + 1 in

equation (91), and N* - N - (p + q). It is important that A be pro-

hibited from running over the ends of the data (see Fig. 18), to

avoid the numerically harmful end effects (i.e., to preserve the

"maximum entropy" condition, §IVd).

d) The Computation of DF (R) (Step 4)

The choices for the property of R to be minimized include

dependence (§IVc), the martingale difference property (§IVc), the

mean-square prediction error (§IVd), and the mean absolute predic-

tion error (§IVe). Another example is a measure of simplicity

called the varimax norm (Kaiser 1958; Wiggins 1977; Ooe and Ulrych

1979). In turn there are several ways to implement each of these.

For example, we saw above that dependence could be measured in

terms of differential or cumulative probability distributions,

moments, characteristic functions, or expectations of arbitrary

functions. Since the scheme involving cumulative distribution

functions proved much the most satisfactory, details of the other

approaches have been omitted. The remarks about them in §IV

should enable the interested reader to construct algorithms imple-

menting the other approaches. Test results with all of the methods

save those using moments (messy) and expectations of arbitrary

functions (not tested), will be given in §VI for comparison.

The function to be minimized is defined in equation (98).

Because of the step-function nature of the estimates of F, [eq. (901
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and 
F2m 

[eq. (96)], this integral can be evaluated exactly with a

finite double sun, as we shall now see. It is convenient to intro-

duce an ordered version of the Rn; i.e., define an index transfor-

mation i f(n) such that if Rt - Rf(n) Rn, then the Rt form an

ordered set:

Ri 6 R2 S R3 1 .	 RN*- 1 RN*	 (169)

As long as Rn+M is associated with its correct neighbor in the

unordered *. namely Rn, then the integrand in equation (98) is

unchanged by ! pis ordering. The integral may be written as

2
Di (A)	 ZIF2m (RZ,R') - F 1 (R'.)F 1 (R

j
)1AR' ARC , (170)

where AR I. - Rt - R.. This sum is over a two-dimensional (unevenly

spaced) grid of rectangles with area AR I. ARC and with edges at the

values Rt, i - 1, 2,	 ., N* (see Fig. 39 in the appendix). From

definitions (94) and (96) it can be seen that F2 (R.,R.), F1(R.),

and F 1 (RI) are all constant over each of these rectangles and

therefore so is the summand, 
F2m - F 1 - F 1 . Hence the sum in equa-

tion (170) is an exact evaluation of equation (98). Of course, the

expressions for F1 and 
P2  

are inexact estimates of the correspond-

ing quantities. However, they exactly represent all the informa-

tion contained in the given realization of R — this is not true_ of

the estimates of P 1 and P„ since there is always some loss of

information in a binned histogram. This is probably the main rea-

son for the superiority of the c.d.f. approach. The advantage of
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R', the ordered version of R, is that the summand can be computed

recursively, for example, with

F2m(Ri,Rj) - F2m(R1-1'R') + (N* 1 m) X Rj - R 1 +mJ . 	 (171)
1,

[H is the step function defined in eq. (95) . j This relation follows

from the fact that no more than one new step in 
F2  begins at a

given value of R'., corresponding to a given row in the matrix

(Rt,R^). Further discussion of this recursion is in the appendix.

e) Minimisation of DF (A) (Step 5)

The minimum of D.„ with respect to the filter elements A, can

be found with any of several standard numerical techniques; the

simplex method is described here because it is the one the author

happened to use, not because it has been proven to be more suited

to this problem. The following warning should be issued with the

simplex method (Nelder and Mead 1965; Powell 1965): After the con-

vergence criteria have been satisfied, a restart should be made to

check the possibility that the simplex has become degenerate or is

otherwise unable to progress toward the true minimum. A restart

is a reinitiation of the iteration with a new simplex at the point

to which the procedure appears to have converged (see the appendix).

Another caution is that D  may have more than one local minimum.

With numerical techniques it is never possible to be certain that

the global minimum has been achieved. But the expression for D  in

equation (98) is far superior in this regard to all of the other

[c
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methods tried and to other ways of estimating the cumulative proba-

bility functions. For data generated by a simple process and fit

by simple models [e.g., AR(1,1)], D  has never been found to have

more than one minimum, and the simplex rapidly converges to the

(global) minimum from essentially any starting value. The conver-

gence is also very sure in that a restart is never needed. (Never-

theless it is wise to try a restart in all cases, even if it is

expected that it will not be fruitful.) As the order of the fitted

model is increased three symptoms eventually appear:

(1)local minims abound

(2)restarts are frequently necessary (i.e., false convergence

becomes common)

and, not surprisingly,

(3)convergence is generally slower.

Experiments have shown that the first two of these problems are

eliminated if m* is . increased sufficiently, typically to a value

slightly less than p + q. Because the time to evaluate D  is

roughly proportional to m*, the computation time increases as m*

is increased, but the reward in sureness of convergence, elimination

of spurious local minima, and accuracy of the solution is certainly

worth the price. For a given data set, the prccedure found to be

best is as follows:
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(A) Fit a very low order model, such as AR(1,1), with

m* 1. Unique and sure convergence has always obtained

at this step, but caution suggests that one:

(a) experiment with a variety of starting values,

such as A - MAO), (1,1,1), or the (a_i,l,a,)

which gives the L i minimum (i.e., minimum of

L{Rnl),
n

(b) try a variety of sizes for the initial simplex, and

(c) always try restarts, with moderately large simplexes.

Hopefully these steps will not be necessary, and the results

will be the same for all starting solutions and simplexes.

However, since ill-conditioning tends to grow with the

model complexity, confidence in the good behavior of the

procedure at this stage is essential. If there are con-

vergence or uniqueness problems at this early stage, there

are several possibilities:

(i) The process is not stationary, and G should be

applied one or more times before modeling is

attempted,

(ii) an even simpler model should be used to start with,

such as AR(0,1) or AR(1,0),

(iii) a totally different form _should be tried, such as

MA or ARMA, or

(iv) the value of m* should be increased (see D below).
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(B) Increase the order of the model. A good way is to

compare the results for p ♦ p + 1 and for q ♦ q + 1 0 using

as starting values the solution from step (A) with zero

for the new parameter. Adopt the model which gives the

lower DF or the two. (Remember that restarts and multiple

initial solutions are never out of place. The appearance

of false minima turned up by restarts or multiple minima

turned up by various initial solutions are symptoms that

m* is too small and should be-increased.)

(C)Step B should be repeated until there is indication

that the correct order has been reached, for example, until

(a) the parameters from the lower order solution do

not change, and the new parameter is relatively

small, or

(b) the residuals stop decreasing with increasing

order — more properly the residuals should decrease

only as much as would be expected from the mere

fact that another parameter is varied.

(A) Increase the value of m* and repeat steps A-C. If the

results do not change significantly with m* it can be

presumed that the value used is large enough.

The format of Tables 4-7 follows this scheme.

nC
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Determining the correct order of the model is important. If

the order is taken too small, there will be residual serial corre-

lation in the estimated innovation, indicating that not all of the

information about the process has been extracted. In spectral

analysis the symptom of too small an order is that the spectrum is

heavily smoothed — the frequency resolution has been degraded by

using too few parameters. In deconvolution the pulse shape is

similarly over-smoothed. In principle, taking the order too large

is not as harmful because the extra parameters will be very small

(provided there is enough data). In practice, however, even a few

too many parameters cause numerical difficulties and add greatly

to the cost of the computations. If the number of parameters

becomes of order N (Heaven forbid!) the estimates all become

unstable because there are too few terms in the corresponding sums.

In general too many parameters show up as large spurious spikes in

the power spectrum, or as wild oscillations or other erratic

behavior in the pulses. There are many approaches to the order

problem in the classical least-squares arena (e.g., Chow 1972a,b;

Anderson 1963; Jenkins and Batts 1969; Akaike 1970x; Gailbraith

1971; Lindberger 1972; Parzen 1974; Jones 1974; Graupe, Krause,

and Moore 1975; and Tong 1975). Also, an innovative approach has

been developed by Gray, Kelly, and McIntire 1977. It is not sur-

prising that the same difficulties confront modeling with indepen-

dently distributed innovations, as the models are identical. The
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steps (A)-(D) above, based on experience with both test cases and

real data, are offered as guidelines only. It is hoped that an

objective technique, such as the FPE (see 1IVe) can be developed.

Toward this goal, the quantity FPE'
M
 in equation (150), With SM2

replaced by DF, is routinely tabulated (see IVI). In some cases

this quantity can be helpful in deciding when the order is correct,

but it is far from infallible. When using the suggestion given

above [step (B)l for increasing the order of the model, the FPE

will be systematically underestimated, because the smaller of two

C	 values of D, corresponding to the two choices for the location of

the new parameter, is selected. This could cause the quasi-FPE

criterion to overestimate the order of the model, as occurs in the

examples in iVI.

A note about multiple minima: For a given total order [e.g.,

p + q for the model AR(p,q)) there will be distinct minima for each

of the possible choices of p and q. [For example, if p + q - 3,

the four possibilities are AR(0,3), AR(1,2), AR(2,1), and AR(3,0).]

With the current algorithm the prediction point cannot move during

the minimization, so that all of these choices are separate prob-

lems. It would be helpful if a scheme to allow automatic migration

of the prediction point coula be developed, as with the L 1 minimiza-

tion with a pseudo-constraint (IlVe). Then all of these problems

(with a given total order, p + q) could be solved together with a

single minimization. In lieu of such a procedure one must simply
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compare the minima for the various choices. Some judgment can be

used here; for example, if a model of the form AR(1,2) yields the

grand minimum for p + q - 3, it is unlikely that AR(4,0), or even

AR(3,1), will give the grand minimum for p + q - d.

All of these matters will be illustrated in the examples in

OVI.

f) Computation of Subsidiary Quantities (Step 6)

The point of this section is that the model parameters esti-

mated in steps (1) to (5) are not necessarily the most interesting

numbers in the physical interpretation of the data. For example,

as already mentioned, the AR parameters are often the most easily

and directly calculated, but the MA pulse shape is the quantity

for which there is a physical theory. (For example, if quasar

light fluctuations are due to supernovas, the pulse shape should

resemble the supernova light curve.) Hence one of the transforma-

tions that is useful is A ♦ C. The direct way to carry this out is

to compute

C - A-1 - 
Jr-1^^{A)J
	 (172)

using the discrete Fourier transform, as discussed at length in

iIIIf and explicitly shown in the appendix. But there is another

way of evaluating the NA parameters, namely with the relation

C - X*fit - A*X*X (with (X) - (R) - 0)	 (173)

where : indicates the time reverse of -. Indeed, this is the form

129



F

used in the constructive proof of the (hold) existence theorem for

the MA pulse [see eq. (78)). It can be thought of as the "super-

posed epoch" method (e.g., Gosling, Mundhousen, Pizzo, and Ashbridge

1972) because the convolution in equation (173), rr :itten as

Cn s / X-ek '	
(174)

represents the operation of shifting each pulse to bring its origin

to a common point in time and then averaging With a weight propor-

tional to the pulse amplitude. All of the other, overlapping pulses

are added in, too; their contribution averages to zero because they

are uncorrelated with each other, but the pulse which has been

shifted to the common origin always adds in phase. The cancellation

of the random overlapping pulses requires that the mean of X be

zero, which explains the need for (X) and (R) to be zero in equa-

tion (173). This relation can be proved by noting that if X a R*C,

then

X*R - C*(R*R)	 (17S)

But the expectatiou value of R*R is a delta function, so that the

expected value of the right-hand side of equation (175) is ,just C.

Of course the estimate of R*R for any realization is not exactly

a delta function, but will contain zero-mean noise for nonzero lags.

(One can use the symmetry of R*fit to aid in distinguishing this

noise from the tails of the pulse.) The estimate in equation (173)

has several advantages over the simpler form in equation (172):
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A-1 is a smoothed estimate, especially if it has a small amber of

parameters, and to some extent it conceals the uncertainties in the

Pulse shops. because equation (173) invokes the data directly, the

resulting pulse is less smoothed than A-1 and thus provides a better

feeling for the variance of the values of the efts C ri . Another

shortcoming of the direct inversion is that it is nonlinear in A

and thus is a biased estimate. For example, if X were white noise,

the expected value of A is a delta function tat least for some ways

of determining it; cf. iVld). but A -1 contains quadratic and other

even powers of the A  which do not have zero expectation value,

hones (4- 1 ) is not a delta function as it should be. In practice

this bias is not 'important for most problems.

Another interesting quantity is the estimate of the innovation,

A • A*X ,	 (176)

which is computed every time D(R(A)) is. Of course k is a sample

estimate and refers to the pulse amplitudes in the particular

realization of the data at hand. It is the beat (optimum) estimate

of the amplitudes with which the pulses, C. occurred to produce the

observed rvlization. rote that since • A*X, if C • A-1 it fol-

low that X	 exactly. That is, the model has sufficiently

many degrees of freedom to reproduce the sampled data exactly.

There is thus never any question of how well the data is fit. The

questions are: How random (independent) is the estimated pulse

a-plitude sequence? Now physically reasonable is the estimated
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pulse shape? The amplitudes may be less interesting than their

distribution, so it is often useful to construct a histogram which

is an estimate of the amplitude distribution.

One _an also readily compute.the autocorrelation function and

power speecrrm of X, directly from A [cf. eqs. (65) and (69)).

g) Gaps and Uneven SampZing

Any technique based on prediction-error filters can be readily

adapted to data which does not have the simple sampling assumed in

§Va, for there are ways of generalizing the concept of the output

of such filters (with the input data unevenly sampled).

Consider first even sampling with one or more gaps. The case

of one gap is easily generalized to an arbitrary number. We

describe one gap in terms of two index sets for the independent

variable:

j
Xn; n8S 1 , n8S2 I 	(177)

For example, a gap of length m could be represented with

S1 = (1, 2,	 . , Ni ) and S2= (N 1 + m + 1, N1 + m + 2,	 . , N2)'

There are two subcases as given in the following two paragraphs.

No coherence across the gap.- There are situations where the

length of the gap is unknown (so that the second segment cannot be

phased relative to the first), the gap is not an integer number of

the sampling intervals, or where it is believed (or assumed) that

the process is not coherent across the gap. For example, in a pure

MA process there is no coherence across a gap wider than the total
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extent of the pulse. Even if the pulse is infinite, the coherence

will diminish rapidly as the gap exceeds, say, twice the F'WHM of the

pulse. The case of no coherence is the easiest to handle. One

simply redefines the function D as a sum over the index sets taken

separately. That is, if Z t W is the norm evaluated on the data for
index set i, treated as if it were the only data available, then

define

D(A)	 Dz(A)	 (178)
L

where the sum is over all the relevant index sets. The minimiza-

tion of this total D is exactly as before.

Coherence across the gap.- It is rare that information is

coherent across anything but a small gap, the most notable excep-

tion being signals consisting of phase coherent sinusoids or other

deterministic functions. If it is desired to retain such informs-

Lion, the technique just outlined cannot be used, as the filters

are never applied to data on both sides of the gap simultaneously.

The basis of a method for such cases has been suggested indepen-

dently by several workers: Use (one-sided) prediction error filters

to fill in the gap(s), and then optimize a new filter on this

interpolated data. There are various choices as to how to merge

the predictions (one from the right and one from the left) at the

center of the gap. The final filter will not contain any informa-

tion not already contained in the optimizations on the individual
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A(t) - E Akok(t)
k

(181)

data segments, unless it is longer than the gaps. An example of

this technique is given by Ulrych and Clayton (1976).

Arbitrary sampling.- Consider the case where there are not

just a few gaps in otherwise even sampling, but where the time

points are arbitrary, ftn) (see §I and 511). Discrete AR represen-

tations are applicable only to the special case where the sampling

times are evenly spaced, because the optimization requires sliding

the filter along the data (see Fig. 18). But the simple generaliza-

tion to continuous filters allows arbitrary sampling. The p:edic-

tion error, given in the discrete case by equation (114), is

Rn = Xn +P(s)A(tn - s)ds	 (179)

and the integral is replaced by a sum, yielding

Rn s Xn + E X(tk)A(tn - tk)etk 	 (180)

On

Since A(t) is continuous, it does not matter that the intervals

to - tk are not all the same. To parameterize the function A so

that the optimization can be carried out with respect to a set of

discrete parameters rather than a continuous function, introduce

the expansion

where the ^k (t) are a set of continuous functions which must be

specified. The problem has been reduced to the same form as before —

the innovation defined [by eqs. (180) and (181)] in terms of a
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discrete set of parameters, (Ak). The optimization can be carried

out as before, and the pulse shape and amplitude sequence, auto-

correlation function, or power spectrum can be evaluated such as

before. The author has carried out limited experiments with the

choice At  - 1/2(t n+1 - tn-1 ) and the expansion [ eq. (181)] given

as either a Fourier series or a power series. While encouraging,

the results will not be described here as there was moderate depen-

dence on the choice of the functions 4k (t), the number of terms

kept in equation (181), the length of the operative time interval

[i.e., the number of values over which the k-sum in equation (180)

is evaluated], etc. Good methods of selecting these must be

developed.

VI. NUMERICAL EXPERIMENTS

The best way to evaluate a deconvolution procedure is to try

it out on artificially generated data of known characteristics.

All of the test problems described here are low-order autoregressive

processes, with specific choices for A. The time series were

actually generated by filtering an innovation R with the inverse

C - A-1 (thus representing the process as a high-order moving aver-

age). The innovations are of the form R - 0; U is a sequence of

independent random numbers, distributed uniformly on (0,1), and

U^ means simply that U is raised to the nth power, term by term.



and approximates the shot noise process. The other limit, small n,

corresponds to much pulse overlap (i.e., many large amplitudes

instead of a few) and takes on the appearance of a normal process.

The higher the value of n, the less pulse overlap there is and the

easier deconvolution should be. In the extreme case of normally

distributed R the overlap is so great (to the point that X - R*C

is also normally distributed) that no method can recover phase

information, and the deconvolution problem as meant here (i.e.,

with correct phase) is intrinsically unsolvable. Any technique
C

should give progressively worse results as n is decreased and should

be completely unable to recognize phase properties as R approaches

normalcy. These expectations are borne out by the experiments

about to be described. White noise with several variances is added

to some of the test data sets, so that the time series is of the

form

X - (P*A-1 + oN2N ,	 (182)

where N is Gaussian noise of unit variance.

a) Experiment 1 — Comparison of Dependence Measures

The dependence measures introduced in §IVc were tested on the

process defined in equation (182), with A - (-0.2,1,-0.3). The

corresponding inverse pulse C - A- 1 is a two-sided exponential

which rises somewhat more rapidly than it decays. Table 2 presents

results for a sequence of innovations ranging from n - 40 (highly
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nonnormal, pulses essentially isolated, easy for almost any tech-

nique) to n - 1 (nearly normal, much pulse overlap, difficult for

any technique). No noise was added. Note that L 1 optimization

(with A O - 1) is exact" for large n but degenerates quickly as the

This is a general property of L 1 , and is related to the fact

that the L 1-optimum solution of an over-determined set of linear

algebraic equations always solves a subset of the equations exactly,

as was realized by Laplace (see Claerbout and Muir 1973).

pulse overlap increases. The iterative L 1 procedure (4IVe) degen-

erates much more slowly as n decreases and would have made an

impressive entry in Table 2. However, difficulties with convergence

on more difficult problems make this technique, as implemented,

unacceptable as a general-purpose method. Surprisingly the martin-

gale difference property method fails badly, even for the easy U40

problem. This failure is unfortunate in view of the simplicity of

the technique. Further development of the MDP approach may be

fruitful.

The results shown for probability distribution functions (PDF)

were calculated with five equally spaced and equal bins in R-space

[25 in (Rn,Rn+r ) -space], chosen to float with the changing values

of the minimum of R(A) and maximum of R(A), as this was empirically

found to be better than having fixed bins. For some problems it

is preferable to choose the R-bins so that roughly equal numbers of

I
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TEST RESULTS

Innovations with Various Distributions: R - Un

Pulse Shape: Two-sided exponential (-0.2, 1, -0.3) -1

Length of Data: N - 100 (Averages of four such realizations)

n CPF-method* 	 PDF-methou*	 MDP-method*	 L1-optimization

40 -0.200,1, -0.300 -0.195 9,1,-0.296 -0.194,1,-0.419 -0.200,1, -0.300

9 -0.202,1,-0.309 -0.207,1,-0.294 -0.219,1,-0.251 -0.230,1,-0.306

4 -0.191,1,-0.305 -0.169,1,-0.250 -0.041,1,-0.453 -0.318,1,-0.328

1 -0.201,1,-0.348 -0.582,1,-0.017 -0.257,1,-0.148 -0.509,1,-0.503

*Maximum lag, m* - 1.

points fall in them. Gaussian weight functions for the bins were

used to combat the quantization problem outlined in §IVc. The results

are substantially dependent on the number and placement of the bins,

and at best the test answers are less accurate than those obtained with

cumulative probability functions (CPF). In addition, the convergence

properties of DP , although better than those of the other dependence

measures (based on characteristic functions, moments and the MDP), are

much worse than those of D..

Table 3 displays the results of similar tests dealing with the

effects of additive noise or the computations. With R fixed at U9,

various levels of noise were added according to formula (182). In

both comparisons the cumulative probability function method is
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TABLE 3

TEST RESULTS

Various amounts of Additive Gaussian Noise:
aN
 Noise

Variance (Pulse peak - 1)

Pulse Shape: Two-sided exponential (-0.2,1,-0.3)-1

Length of Data: N - 100 (Averages of four such realiza-

tions)

Innovation: R - V9

aN	
CPF-method*	 PDF-method*	 L1-optimization

0.00 -0.202,1,-0.309 -0.207,1,-0.294 -0.230,1,-0.306

0.01 -0.202,1,-0.300 -0.230,1,-0.282 -0.239,1,-0.317

0.05 -0.184,1,-0.261 -0.130,1,-0.258 -0.232,1,-0.339

0.10 -0.169,1,-0.200 +0.003,1,-0.133 -0.183,1,-0.351

*Maximum lag, m* - 1.

superior to each of the others. The problem with R - U4 and only

100 data points is very difficult, and compared to any other

method tested the current one does amazingly well. Tables 2 and 3

do not represent enough trials to be definitive, but they indicate

trends confirmed by other computations which are not presented here.

b) Experiment 2 — DetaiZed Study of an AR(1,1) Process

This experiment is an intensive study of a process similar to

that in Experiment 1. The aim is to study in detail a relatively

difficult problem, namely deconvolution of the AR(l,l) process
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X - U3*A-1 + 0.05N ,	 (183)

where A - (-0.2,1,-0.3) is the same as in Experiment 1. This choice

combines a moderately high noise level (cf. Table 3) and a low

value of n (cf. Table 2), and presents a rather difficult problem.

The solid line in Figure 20 is a realization of this process with

N - 100.

Table 4 is a summary of the results of minimizing D  with five

different values of m*. In all cases the starting solution was

(0,1,0), and convergence to the AR(1,1) solution shown in the Table
Q

was rapid — in no case did restarts lead to significant changes in

either of the parameters. The procedure was then to optimize both

AR(1,2) and AR(2,1) filters, using as starting values the AR(1,1)

solution with a zero appended. What is shown in the next line of

the Table is the third-order (M - 3) solution which had the smaller

value of the minimum D  of these two cases. This process is then

repeated. At each step, the filter may grow to the left or to the

right, according to which produces the smaller DF. Let us examine

the convergence in this process, starting with m* - 1. The quantity

tabulated in the second column is

D - DF	
\	 !

(minimum) 
N ± M m* '

	 (184)

by analogy with equation (150), thus including the penalty for the

number of parameters in the model. It is hoped that this quantity

might have the property that makes the FPE useful: As a function

of M (the number of free parameters), a minimum of D indicates that
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FIG. 20.-Realization of the AR(l,l) process given by equa-
tion (183), with U3 innovation and added Gaussian noise. The dashed
line is the estimate of the innovation or pulse amplitude sequence.
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TABLE 4

DECONVOLUTION OF (-0.2,1,-0.3) -1 *U 3 + 0.05N

(1)	 (2)	 (3)

A	 D(A)	 M

m*=1

	

0,1,0	 2.1078

	

-0.164,1,-0.304	 0.1555	 2

	

-0.207,-0.112,1,-0.312	 0.1117	 3

	

-0.076,-0.137,-0.105,1,-0.302	 0.0810	 4

m* = 2

	

0,1,0	 1.2218

	

-0.166,1,-0.308	 0.1444	 2

	

+0.033,-0.183,1,-0.276 	 0.1437	 3

+0.003,-0.177,1,-0.283,-0.010	 0.1328	 4

m*=3

0 1 1 1 0 0.9270

-0.148,1,-0.331 0.1557 2

+0.048,-0.188,1,-0.281 0.1502 3

+0.013,-0.177,1,-0.282,-0.004 0.1495 4

-0.010,+0.020,-0.145,1,-0.292,+0.008 0.1339 5

m*=4

0,1,0 0.8238

-0.205,1,-0.316 0.1945 2

+0.070,-0.245,1,-0.283 0.1868 3

+0.014,-0.197,1,-0.302,-0.004 0.1967 4

-0.010,+0.013,-0.153,1,-0.295,+0.024 0.1842 5
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TABLE 4

Concluded

(1)	 (2)	 (3)

A

	

	 D(A)	 M

m*-5

0,1, 0	 0.7934

	

-0.235,1,-0.318	 0.2126	 2

	

+0.071,-0.264,1 9 -0.275	 0.2069	 3

	

+0.066,+0.076,-0.266.1,-0.256 	 0.2184	 4

-0.002,+0.050,-0.222,1,-0.261,-0.005 	 0.2228	 5

the correct order M has been reached. But for m* - 1 this quantity

keeps on decreasing with M, giving no indication of reaching a

minimum. Also the values of the new parameters are not small, so

there is no indication of convergence at all. This ;situation is

greatly improved for m* - 2, as the new parameters (+0.033 and

-0.010) are relatively small. In addition, while D does not reach

a minimum, it decreases quite slowly with M. One might guess that

the correct order is AR(l,l) (i.e., M - 2) from the entries in

table 4 for m* - 2. The improvement continues for m* - 3. Starting

at m* - 4 there is a minimum in D, at M - 3 (the correct order is

M - 2), and the value of the extra parameter A -2 (which should

t

be -0) is small, 0.07 in both cases. Starting with m* - 4, and

especially at m* - 5, the values of the parameters change signifi-

cantly from the values they had for lower m*. It appears from this
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experiment that if m* is too low (1 or perhaps 2 in this example)

or too large (S or perhaps 4) the results are not as good as they

are for an Intermediate value. This result is as expected: If m*

is small, some of the information to be gained by reducing the

dependence in R at larger lags is lost. If m* is too large, the

Information will be diluted as the minimisation will try to reduce

dependencies at large lags where there are none to reduce. This

suggests taking m* a 3 t 1 in the present experiment. Figures 20

to 22 show results for the M - 3, m* - 3 solution (which is very

similar to M - 4, m* - 3 and to M • 2 or 3, m* - 2). The dashed

line in Figure 20 is the estimated innovation. Figure 21 compares

this with the enact innovation from which the realisation of X was

constructed. This estimate and the corresponding pulse (compared

with the exact one In Fig. 22) are very accurate. Figures 23 and 24

present similar comparisons for the somewhat different solution

corresponding to M v 3, m* a S (which is similar to M - 3, m* - 4),

which might have been selected from Table 4 if the quasi-FPE cri-

terion were taken seriously. This solution yields slightly poorer

reproductions of the innovation and the pulse shape (although the

latter is difficult to see in comparing Figs. 22 and 24).

oI LVer ment 3 — An AR(2,1) Proosse

The goai of this test is to see what happens if the process is

sore complicated. In particular, we will see to what extent the

quasi-FPE criterion (a minimum in the function .(M) given in
s
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FIG. 21.-Comparison of the estimated (solid line) and exact
(dashed line) innovations for the process shown in Figure 20.

145



0

1.0

0	 30
TIME

FIG. 22.-Comparison of the estimated (solid line) and exact
(dashed line) pulse shapes for the process shown in Fig. 20. The
solution shown is A - (0.048,-0.188,1,-0.281) (obtained with
m* . 3) .
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FIG. 23.-Comparison of the exact (dashed line) and estimated
(solid line) innovation for the process shown in Figure 20, but
corresponding to a different solution, namely A - (0.071,-0.264,1,- 0.275)
obtained with m* - 5. This result illustrates that the value of m*
can be too large.
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FIG. 24.-Comparison of the exact pulse (dashed line) with the
pulse derived from the solution mentioned in the caption to
Figure 23.
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eq. (184)j is useful in determining the order of a higher-order

process. The process chosen is again given by the basic form in

equation (182), with A - (-0.3,1,-0.2,-0.3), n - 9, and aN - 0.

This should be an easy problem because the innovation (0) is so

highly nonnormal and because there is no noise. This was done

purposely, to minimize the confusion due to noise and excessive

pulse overlap, thus isolating the order-determining problem. The

realization. studied here is plotted in Figure 25. Table 5 summar-

izes the minimization, in the same format as in Table 4. Because

the AR filter generating the process is longer, a larger range of

values of m* has been included. As before, the starting solution

was the simple AR(1,1) with A - (0,1,0). The results for m* - 1

are very poor, as might be expected, as A ties together values

separated by up to three lags, so a lag of one appears to be inade-

quate. As expected, the results are much improved for m* - 2 and 3.

For m* - 3 and 4, the result is essentially perfect, in that the

quantity D goes through a minimum at the correct order, the param-

eter values are almost the same for the two values of m*, and the

values of the higher-order parameters (M - 4, 5, . . .) are very

small. For m* - 10 the minimum in D occurs at M - 4, too large by

1, but again the extra parameter is very small, so that this solu-

tion is essentially identical (e.g., in terms of the corresponding

pulse shape) to the solutions for lower values of m* which are of

the correct order. Figure 26 shows the innovation and Figure 27
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FIG. 25.-Realization of the AR(2,1) process described in the
test (U9 , no noise). The dasYed line is the estimated innovation
corresponding to the solution.4 - (-0.27,1,-0.202,-0.323) obtained
for both m* - 2 and m* - 3.
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TABLE 5

DECOUVOLUTION OF (-0.3,1,-0.2,-0.3)-1*U9

A D(A) M

m*=1

0,1,0 4.232

—0.256,14-0.336 0.1331 2
s

—0.274,1,-0.107,-0.577 0.0906 3

—0.288,1,+0.017,-0.874,+0.106 0.0747 4

—0.368,-0.207,1,+0.119,-0.761,+0.256 0.0327 5

i —0.347,-0.220,1, -0.017,-0.563,+0.362,-0.164 0.0319 6

m* = 2

0,1,0 4.026

—0.132,1,-0.462 0.5114 2	 k

—0.269,1,-0.202,-0.323 0.1002 3

—0.262,1,-0.194,-0.316,-0.060 0.0967 4

—0.260,1,-0.120,-0.409,-0.128,+0.174 0.0924 5

—0.256,1,-0.138,-0.274,-0.197,-0.101,+0.318 0.0698 6

M*a3

011 1 0 3.547

—0.170,1,-0.441 0.3683 2

—0.268,1,-0.202,-0.323 0.0884 3

—0.273,1,-0.201,-0.321,-0.0001 0.0921 4

—0.256,1,-0.233,-0.324 9+0.043 9 -0.024 0.0938 5

—0.307,-0.226,1,-0.180,-0.261,+0.204,-0.359 0.0686 6

m* . 4

0,1,0 3.168

—0.129,1,-0.482 0.3565 2

—0.272,1,-0.201,-0.322 0.0749 3

—0.276,1, -0.199,-0.318 9 -0.002 0.0780 4

—0.279,1, -0.210,-0.318,+0.019,-0.003 0.0799 5

= —0.237,1,-0.142,-0.3?6,+0.127,+0.067,-0.192 0.0698 6
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TABLE 5

Concluded

A	 D(A)	 M

m*-10

0,1, 0

-0.126,1,-0.497

-0.274,1,-0.201,-0.323

-0.271,1,-0.202,-0.322,-0.003

-0.274,1,-0.219,-0.316,+0.016,-0.008

-0.282,1,-0.224,-0.321,-0.040,+0.002,-0.029

1.8225

	

0.2519	 2

	

0.0919	 3

	

0.0869	 4

	

0.0924	 5

	

0.0866	 6
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_	 FIG. 26.-Comparison of the estimated (solid line) and exact
(dashed line) innovations for the process shown in Figure 25. The
solution is the one given in the caption for that figure.
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-	 -- -	 -	 -	 -	 -	 - - d e3xac t
(dashed line) pulse shapes for the process shown in FiSure 25
(solution as in previous figure).
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the pulse shape estimates from the M - 3 solution for m* - 2 or

m* - 3 (the A's are essentially identical, and, for example, the

pulse shapes would be indistinguishable in Fig. 27). In each case

the estimate is compared with the exact quantity. Both the pulse

shape and the innovation are reproduced very accurately. Note that

there is a large amplitude pulse which occurred very near the

beginning of the realization. The pulse actually occurred prior to

the first point of the estimated innovation, but it is shown in

Figure 26 to stress the point that pulses very near the end and

beginning of the realization are not represented accurately because

of end effects. Nevertheless the part of any such pulse that

extends into the realization is included in the determination of

the model parameters.

Table 6 and Figures 28, 29, and 30 (for M - 4) present the

deconvolution of the same realization just discussed, but with

TABLE 6

DECONVOLCTION OF (-0.3,1,-0.2,-0.3) -1 *1/9 + O.05N

A

m* - 3	 D(A)	 M

011 1 0	 0.8238

+0.065,1, -0.695 	 0.3124	 2

-0.362,1,+0.031,-0.424	 0.0872 3

-0.310,1, -0.075, -0.333, -0.088 	 0.0855 4

-0.441,+0.059,1,-0.231,- 0.201, -0.015	 0.0761	 5
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FIG. 28.-The same realization shown in Figure 25, but with
added noise of variance 0.05. The dashed line is the innovation
derived from the solution A - (-0.310,1,-0.075,-0.333,-0.088)
(obtained for m* - 3).
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FIG. 29.-Comparison of the estimated (solid line) and enact
(dashed line) innovations for the process shown in the previous
figure.
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FIG, 30.-Comparison of the estimated (solid line) and exact
(dashed line) pulse shapes for the process shove in Figure 28, vith
the solution quoted in the caption for that figure.
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added Gaussian noise of variance 0.05. These results show that the

accuracy of the parameters determined above for this third order

process is not due to the absence of noise. The innovation shows

increased variance, including the appearance of small negative

amplitudes which are not present in the actual innovation. It

appears that the effect of additive noise is to add noise to the

estimated innovation, but it cannot be determined whether the d:!s-

tribution of the noise in the innovation is also Gaussian. Fig-

ure 30 shows that the basic shape, including the secondary peak, of

the pulse is retained but the tail of the pulse is altered somewhat.

d) E perlmnt d — Gau8vian Noise

One can consider independently distributed noise as the convo-

lution of an independently distributed innovation with a delta func-

tion. When applied to noise, the deconvolution procedure should

produce a delta function pulse. This experiment =a designed to

test the procedure on independent Gaussian noise. The solid line

in Figure 31 is the noise analyzed. The minimization was done for

the single value m* - 2. The quasi-FPS did not clearly indicate

convergence, but this hardly matters because all of the solutions

were close to delta functions. The dashed line in Figure 31 is the

estimated innovation (plotted with a different scale), and as !esirod

Is very nearly the same as the data itself. The pulse shape shown

in Figure 32 is the inveroe of the best third-order solution

n G
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FIG. 31.-Independently distributed Gaussian noise (N - 100),
analyzed in the same way as the data shown in the previous figures.
The estimated innovation (dashed line) is essentially identical to
the data (plotted on a different scale).
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FIG. 32.-The pulse shape derived for the data shown in the
previous figure, corresponding to the A given in the text. The ideal
solution would be a delta function. The horizontal scale of this
figure is about three times that in Figure 31.
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A - (-0.061,+0.072,1,+0.134) and is not far from the desired delta

function O Cn 4 is <0.1 for all n # 0).

e) Experiment 5 — A.Sine Wave

The technique we have been discussing was designed for random

processes, and it could easily break down in the presence of a

deterministic part to the data. This experiment tests this possi-

bility, using a sine wave as an example of a deterministic process.

If a sine wave is considered as a MA pulse (which would be unstaale,

t^
	 as the coefficients do not converge), the corresponding AR filter

has a zero on the unit circle. [Compare to the case A - (1,1), with

C - A- 1 - (1,-1,1,-1,1,-1,1, .	 .).) When applied to a pure sine

wave the simplex minimizer had convergence difficulties, and 
D 

dropped by a factor of 10 30 during the minimization. The pulse

shapes that it was leaning toward, however, were more or less

sinusoidal. Since the pure sine wave is a singular case, a small

amount of noise was added, so that the data were given by

Xn - sin(0.5n) + 0.0025N , 	 (185)

where as before N is unit variance Gaussian noise. This addition

removed the convergence problems, and the solution

A - (-0.419,-0.070,1,-0.813) was obtained with m* - 3. Figure 33

shows the data as a solid line. In this case the interpretation of

the innovation (dashed line in Fig. 33) is not straightforward. A

sine wave is a single pulse, not a random sequence of pulses. But
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FIG. 33.-A sine wave with small added noise, analyzed in the
same way as the moving averages in the previous figures. The esti-
mated innovation (dashed line) appears to be random.
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this model appears to represent a sine wave as a random sequence of

the pulses shown in Figure 34 (i.e., the inverse of the above solu-

tion for A), basically a damped sine wave. Remember that because
i

of the way the innovation is calculated, the data are exactly repro-

duced (except near the ends) by the expression R*A -1 , so the inno-

vation in Figure 33, convolved with the pulse in Figure 34 (not all

of which is shown), reproduces the data.

f) Experiment 6 -- 3C 273

Data on the optical variation of the Quasar 3C 273 (Kunkel

1967) have been analyzed by a number of workers looking for periodic-

ities and for pulses (the closest in philosophy to the present work

are Fahlman and Ulrych 1975, 1976). A future paper will give the

details of the analysis of these data using the CPF-method, but

preliminary results will be given here to demonstrate the applica-

tion of the technique to real data. In particular the issue of

determining the amount of a possible constant component to the light

curve is raised. The point is that there are two contributions to

tr mean value of the data: (1) a background constant, due for

example to light from a source other than the one which is pulsed;

and (2) the mean value of the (positive only) pulsed component. If

the pulses are sparse enough, there will be a part of the time

series where the contribution from pulses can be neglected, and

f	 then the minimum value of the curve, min(Xn), would be a good esti.-
n

mate of the background constant. But in general there can be

164



-1.0 L
0 30

TIME

1.0

0

FIG. 34.-The pulse shape obtained in the analysis of the data
shown in Figure 33. Only the first part of this gradually damped
sine wave is shown (scale is as in Fig. 3").
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enough pulse overlap at all times that this procedure will over-

estimate the constant. Indeed the deconvolution is nontrivial only

when there is much pulse overlap. In such cases it is known only

that the constant lies between 0 and min(Xn). We will see below
n

that this problem in some circumstances can be solved with the cur-

rent technique.

Figure 35 depicts the light curve in linear intensity units,

while Table 6 tabulates the results of the minimizations. This is

a relatively long time series (N - 292 in the original data; the

first four points were discarded so that N - 288 because the FFT

algorithm requires that the largest prime factor of N be S23).

Since the number of operations scales as N2 , the reductions are

moderately time consuming. For example, the run with N - 288,

m* - 3, and M - 2,3,4,5,6 took 1,140 CPU seconds on the NASA-Ames

CDC 7600. It will be noted that D does not go through a minimum,

although for m* - 3 it is virtually stationary for M - 4 and 5.

Also, the parameters A_ 3 and especially A+2 are small. This sug-

gests that the M - 4 solution is to be adopted, but further compu-

tations with larger m* will be necessary before this can be made

definite. The pulse shape is shown in Figure 36 and is compared

with the minimum delay pulse determined by Fahlman and Ulrych (1975)

with M - 3 (as determined by a legitimate PPE criterion). The

innovation for this solution is shown in the lower part of Figure 35

and is compared to the innovation from the minimum delay volution
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FIG. 35.-The historical light curve of 3C 273 (top), derived
directly from the magnitudes given by Kunkel (1967). The intensity
is on a linear scale in arbitrary units, and the time covered is
28,800 days. The estimated innovation shown is for
A - (-0.081,0.265,-0.740,1,-0.419) obtained for m* . 3.
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TABLE 7

DECONVOLUTION OF THE LIGHT CURVE OF 3C 273

N - 288

A	 D(A)	 M

m*-1

0,1,0	 1.832

	

-0.535,1,-0.519	 0.001 677	 2

	

+8.181,-0.696,1,-0.450	 0.000 6955	 3

m* -2

0,1,0 1.321

-0.516,1, -0.500 0.000 2493	 2

-0.503,1,-0.540,+0.028 0.000 2122	 3

-0.495,1, -0.569,+0.078,-0.028 0.000 2108	 4

m*-3

0,1,0 0.809 5

-0.523,1,-0.528 0.000 6587	 2

+0.146,-0.655,1,-0.462 0.000 3273	 3

-0.081,+0.265,-0.740,1,-0.419 0.000 2883	 4

-0.082,+0.264,-0.741,1,-0.421,+0.002 0.000 2879	 5

-0.029,+0.212,-0.713,1,-0.469,+0.081,-0.063 0.000 2683	 6
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FIG. 36.-Comparison of the pulse shape for 3C 273 derived from
the solution given in the caption to Figure 35 (solid line), which
is mixed delay, with the minimum delay pulse as derived by Fahlman
and Ulrych (1975). The mixed delay pulse is nearly symmetric.
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in Figure 37. Both innovations have substantial numbers of nega-

tive amplitudes.

The author has carried out numerical experiments similar to

those discussed by Fahlman and Ulrych (1976), confirming their

contention that such behavior can have two causes: (1) noncon-

stancy of the pulse shape, or (2) use of a minimum delay solution,

if the actual pulse is not minimum delay. The point in (1) is

that '_he pulse shape may actually be changing, say in a random but

stationary way, rather than being constant. The MA representation

is still exactly correct, as long as X is stationary, but it uses

a single pulse shape. This shape is a kind of time average of the

actual pulse shape. (It is not simply representable as a time

average, however; the deconvolution procedure yields some kind of

nonlinear average of A, then C is the corresponding inverse.) When

a pulse with a shape close to this average is convolved with the

optimum A, a delta function results, as desired. But if the shape

is somewhat different from the average, this convolution produces

something other than a delta function. Simulations consisting of

two or three distinct pulse shapes occurring randomly and indepen-

jently show that the resulting amplitude usually consists of a

first-negative-then-positive (or vice versa) spike, li';e the dis-

crete version of the derivative of a delta function. Such spikes

can be seen in the innovations in Figure 37. The form of the spike

appears to be sensitive to the delay character of A, as the simul-

taneous spikes in the two innovations are sometimes quite different.
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FIG. 37.-Comparison of the innovations derived from the minimum
delay (top) and mixed delay (bottom) solutions as in Figure 36.
Note that the negative spikes are typically associated with nearby
positive spikes; however, the pattern of this association seems to
be different in the two innovations.
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Effect (2) is quite similar, because the optimum minimum delay

A is not the correct inverse of a mixed-delay pulse; and its con-

volution with the actual mixed-delay pulse will also produce other

than a delta function. From the fact that the mixed -delay result

shown here contains roughly the same amount of negative amplitude

as the minimum delay result (Fig. 37), it appears that in 3C 273

the pulse shapes are indeed varying, and the negative amplitudes

found by Fahlman and Ulx^ ,t,., t+y76) are not due to the minimum delay

assumption. (It is possible, but unlikely, that : :here is an addi-

tional source of negative amplitudes.)

There is one facet of the distribution function approach

(either cumulative or differential) which is very useful, namely

that it is completely insensitive to an additive constant in the

data. The only factor that enters into the expressions for D  or

D  is the shape of the j oint and individual distribution functions.

Adding a constant merely shifts the position of the functions on

the R-axis and does not change their shapes. Hence D is invariant

to a shift in X, a property not shared by other deconvolution

techniques. This invariance is important because it means that it

is possible to estimate the size of the background component . . .

if something is known about the distribution of the amplitudes.

First, note that a constant in the data shows up as a constant in

the estimated innovation — if one has the correct inverse pulse.

For, letting l be the constant unit process:
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Xn a 1	 (n a 1 9 2, 3, . . op N) ,	 (186)

we can write

X n R*C + aX ,	 (187)

where a is some unknown constant. The estimated innovation is

R a A*X . R*(C*A) + aA*X - R*(C*A) + (a 
^ A

k)X , (188)

and if A • C-1

R - R + (a 
^ 

Ak)X ,	 Q. E. D.	 (189)

The second term on the right is a constant, but it is not yet

obvious tow to determine its value (and hence the value of a),

because we know only (R), and not M. If it was known, or one

wished to assume, that (R) 0,. then

a	 (R)	 (190)
E Ak
k

But the case (R) f 0 is of particular importance in astronomy.

For example, suppose that the actual amplitudes are positive only

(as with light pulses), with a distribution which is either finite

at R - 0 or goes smoothly to zero (so that some pulses have ampli-

tudes close to zero, but none are negative). Then

a(E A 	 (191)
k

could be used to estimate a. However, observational errors produce

a variance in R which would sake this estimate biased toward too
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small a. This bias could be eliminated if the center of symmetry

of the (presumably Gaussian) distribution of these observationally

induced errors in R could be recognized. But an even larger prob-

lem with the estimate in equation (191) for the innovation of

3C 273 is the incidence of the large negative amplitude spikes.

One must turn to more qualitative aspects of the distribution of

Rn. Specifically, the innovations in Figure 37 appear to have a

definite background level (possibly better seen in the mixed-delay

solution case), indicated in the figure with horizontal lines. This

level corresponds to the peak in the distribution of R (which is

Fig. 38), and is probably best estimated with the median of R (to

avoid the bias in the mean value which the real pulses might pro-

duce). In the case of 3C 273 the mean and median are not very

different, as the entire distribution is nearly symmetric (there is

possibly a slightly significant bias on the positive side of the

distribution shown in Fig. 38). In summary, the mean level for

3C 273 cannot yet be determined unambigLously because of the effect

of the negative amplitudes in the innovation, but the levels shown

!.t Figure 37 are reasonable guesses for this background of non-

pulsed light.

In some other deconvolution methods the mean value of X is

removed, and this is an example of a shift which may alter the

deduced pulse shape. In narticular, the optimum-prediction-error-

filter method is usually applied to data that has had the mean

I .
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FIG. 38.411stogram showing the distribution of the: Ise
amplitudes shown in Figure 37 (bottom). A Gaussian curve fitting
the central few bins is drawn for comparison. The overall dts-
tributi, r ► is definitely not purely Gaussian. It may have a
Gaussian component, possibly connected with the observational
scatter in the data. There may be a small asymmetry favoring the
positive amplitudes, but the negative amplitudes (which are prob-
ably due to pulses s'— pe variation) are nearly as numerous — this
prevents the zero 1 , I of the amplitudes ;rom being; determined
unambiguousiv. The iesul-ts for the inno , ation derived from the
minimum delay solution (top curves in F14. 37) are ve-r y similar.
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subtracted out, because the form of equation (114) implies that,

since the mean prediction error should vanish, either (X) or

	

	 Ai
Z

must vanish. If the sum of the Ai vanishes, A(a) has a zero on

the unit circle, and A itself is not invertible because A -1 does

not converge. Indeed, it is found in numerical trials that if the

mean of X is left in, the resulting Ai 's sum to zero and A cannot

be inverted. But if (X) is 0, A is well behaved. This is prob-

ably the basis on which Fahlman and Ulrych (1976) state that their

analysis ". . . only makes use of the variance in the light curvE.

Hence the pulse shape . . . is unaffected by the presence of a

Cbackground." However, one is not justified in subtracting out the

mean just because the analysis breaks down otherwise.

g) Discussion

The minimization of D  appears to be a powerful deconvolution

technique for moving average, autoregressive, or shot noise pro-

cesses where the pulses are statistically independent of each

other. An estimate of the pulse shape which is not constrained to

have the minimum delay shape can be obtained, as well as an esti-

mate of the amplitudes which the pulses had in the realization at

hand.	 ith the latter, the distribution of the pulse amplitudes

can be studied. If a feature in the distribution corresponding to

the zero level of the amplitudes can be recognized, the background

level of nonpulsed signal can be determined.
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It is well-known that thi fitting of sums of exponentials with

unknown decay constants, as well as amplitudes, to data (e.g.,

radioactive decay data) is a very ill-conditioned problem. Since

the exponential is in a sense the elementary pulse shape [see

eqs. (21) through (23)] the deconvolution of MA's is not unrelated

to this problem. One of the difficulties is that the data can be

nearly equally well represented by somewhat different models (dif-

ferent in form and in the values of the model parameters). The

search for the best dependence measure (see §IVc and §VIa) was

basically a quest for a procedure which minimizes the indeterminacy

in the model fitting. In this respe,t, the one adopted (D F), is

generally superior to the others considered. It makes full use of

the data at hand and has a well-defined and unique minimum in

situations where the other measures have many shallow minima. The

following points should be considered by anyone using this technique:

(1) As with conventional time-domain modeling, the identifica-

tion of the form of the model (even within the context of ARIMA

models) is an important problem which does not have a precise

general solution.

(2) Since any stationary process has MA, AR, and ARMA repre-

sentations, the successful modeling of time-series data with a

specific model does not guarantee that the structure of the physi-

cal process has been correctly represented.

(3) Since the data are always exactly reproduced by the

model, the meaning of successful modeling is not based on the
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smallness of the residuals between the sampled and modeled values

of X, but rather on the degree to which the resulting amplitudes

are independently distributed (e.g., as measured by the smallness

of DF) .

(4)As with conventional modeling, including spectral analysis,

trends in the data can affect the results in very significant ways.

There is no totally objective and automatic procedure for removing

trends. There is no dependable way that an apparent trend can be

distinguished from a statistical fluctuation in the underlying

random process. Detrending should be done cautiously, and one

should be suspicious of apparent trends.

(5)The algorithm provided in the appendix is quite time con-

suming, especially for long data arrays. Only minor efforts to

speed up the computations have been made. Improvements in the

algorithm can undoubtedly be made. Hopefully there is some approxi-

mation that can be used for large N.

t-
r
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APPENDIX

THE ALGORITHM

The FORTRAN code given below is a nearly self-contained pro-

gram which will enable the reader to use the deconvolution tech-

nique (based on cumulative probability functions). The only miss-

ing element is the FFT routine, which is a standard one, available

in mist program libraries.

The MAIN program reads the value of m*, the data, the length

of the AR filter (LAC), the position within the filter of the pre-

diction point (MPT), the initial guessed solution (AOLD), and the

number of times the order of the model is to be increased (NUMIT).

The Fourier transform of the data is put in the arrays XR and XI,

for that is the form in which the data will be referenced hence-

forth. The subroutine F2DC carries out the minimization, starting

with a given solution, and returns the resulting minimum value of

D  (RES). This is done first with the input guessed solution, and

then the order is increased in steps of one as indicated. The two

minimum values RES1 {corresponding to A(new) _ [A(old),0]} and

RES2 {corresponding to A(new) _ [0,A(old)]} are compared, and the

smaller is selected. This procedure is terminated arbitrarily by

the value of NUMIT. The correct order must be determined by

inspection of the behavior of DF(minimum) with increasing order,
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and inspection of the way in which the values of the parameters

change, as discussed in the text.

Subroutine F2DC carries out the minimization, trying

restarts until the solution settles down. A criterion has been

shown in terms of the minimum DF , but one could also use criteria

in terms of the changes in the parameters. The program is written

so that if three restarts are not sufficient, "DID NOT SETTLE" is

written and the program continues. The rest of the program, from

statement 3 on, is merely to evaluate the pulse shape C inverse to

the converged A (in practice this should be printed or plotted, so

that it can be seen how the pulse shape is changing as the proce-

dure continues to higher orders). Also calculated is the quasi-FPE

quantity given in equation (184). This number should also be printed.

Subroutine F2D sets up some constants that are needed in FUNK,

computes the initial simplex using formulas given by Jacoby, Kowalik,

and Pizzo (1972), calls the minimization routine, AMOEBA, and

prints out the resulting AR filter. The program AMOEBA directly

implements the simplex procedure as given in the references cited

In the text. The criterion for convergence is in terms of the

relative magnitudes of the maximum and minimum functional values on

the simplex; this could be experimented with, as there are other

equally valid convergence criteria.

Function FUNK is the guts of the program, as it provides the

values, as a function of the AR parameters, of the measure of

^do

_^



independence D  which is to be minimized by AMOEBA. The evaluation

of the innovation has been discussed in the text (§Vc). The order-

ing of the innovation is important for an efficient evaluation of

DF and is carred out with sorting (SORT), moving (MOVE), and

merging (MERGE) routines, all controlled by the main ordering

program ORDER. These routines are based on material in the volume

by Knuth ( 1973) and are such that the number of operations increases

as N1ogN. The only part of the procedure which produces an N2

dependence is the summation over the two-dimensional grid.

The structure of the recursion for the summand in equation (170)

[see eq. (171)] can be understood by reference to Figure 39. This

figure shows the two-dimensional grid of the reordered values Rn,

with Ri mnn(Rn} and RN* max(R0 . A given Rt is paired with the

R^ which was its mth removed neighbor in the original (unordered)

set {Rn}:

	

R'.	 Rn

(Al)

	

R '
	

Rn+m

This pairing is indicated by the dots at the grid points in the

	

figure. In the example shown,	 Ri is paired with R7, R 1
2

	RI

and so forth. Each R'71 is of course paired with no more than one

R^. For m - 1, the Ri equivalent to RN* has no mate, because 
RN*+1

is not defined. Similarly for the Ri equivalent to R 1 . Hence

there is one row and one column without a dot. (Similar results

1	 hold for larger values of m.)
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M 3

	

•	 •	 s	 r	 •	 r	 r	 r	 •	 •

	

R 1	 R2 R3	 R4 R5	 R6 R7 Rg Rg R10

	

R 1	 Rn+m

0	 0	 0	 0	 0	 0 1	 1	 1	 1

R7
0	 0	 0	 0	 1	 1 2 2	 2	 2

R3

0	 0	 0	 0	 1	 2 3 3	 3	 3

R4
0	 0	 0	 0	 1	 2 3 3	 3	 3

Rr

1	 1	 1	 1	 2	 3 4 4	 4	 4

	

R6	 1	 1	 1	 2	 3	 4151 5	 5	 5

	

R7	
1	 1	 1	 2	 3	 4 5	 5	 5

A 11

8
1	 2	 3	 4	 5 6 6	 6	 7

Rg
1	 2	 3	 4	 5	 6 7 7	 7	 8

R10
1	 2	 3	 4	 5	 6 7 8	 8	 9

Rn

FIG. 39.-The two-dimensional grid used in the computation of
the estimate of the joint cumulative distribution function. This
example is for m - 1 and N* - 10. Each of the N* - m (- 9) pairs
(Rn,Rn+m) is indicated with a dot at the intersection of the grid
lines for these values (but labeled in terms of the ordered ver-
sion of the inno 3ation, R'). In this example, the original sequence
was (RI R2, R5,Ri,R',Rio,RR,R',R;,R4). The numbers are the counts of
the dots above and to the lest of the box in which the number apj*.!ars.
The counts in each row are always 0 or 1 more than the counts in the
row above: 0 for boxes to the left of the dot in the row, and 1
for boxes to the right [cf. eq. (171)]. To get the function F21 the
counts must be normalized by the final count, N* - m - 9.

182



Now F.2(R I R I ) is 11(N* - w) times the number of pairs (dots)

above and to the left of the point W ,R') [see eqs. (96) and (97)].

A running count of this number is kept for successive rows in the

grid. Since there is only one (or no) new point per row, this row

count increases by unity for all squares to the right of the new

point in the row. This relation is expressed in the recursion

formula (171). The figure shows an example with N* - 10. The num-

ber in each box is the number of dots above and to the left of the

uui.. T*P entries in the last row and column of the grid are never

utilized but are shown to indicate how the normalization works:

Fz(x,y) for x : RN* and y 4 RN* is equal to the total number of

dots (- N* - 1) divided by N* - 1. The individual cumulative dis-

tribution is trivial in the system of ordered R's:

	

F (R'.) - 
2	

(A2)
1 z	 N*
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PROGRAM MAIN
COMMON/ F2DVEC/XR(IODO),XI(3000),RR(1009),RI(2999 )
COMflON/F2DSCA/FACN,FACR,FAC1
COMt4ON/F2DINT/LDAT,NUMR,NR,MPT,LAC,NID,N2D,M/'XLAG
COMMON/ I NOV/R( 1900)
DIMENSION AOLn(20),A1(20),A2(20)
DIMENSION DATA(1000)

DO 1	 I -1,1000
XR( 0-0.0
XI(1) n0.0
RR( 0 0.0

1 RI(1)-0.9
READ(8,50)MAXLAG,LDAT
READ(8,51)(DATA(I),I-1,LDAT)

50 FORMAT(313)
51 FORMAT W12.5)

DO 2	 I n 1,LDAT
2 XR( I ) &DATA( I )

CALL FFT(XR,XI,LDAT. LDAT,LDAT,-1)

C
READ (8, 50) LAC,I-IPT, NUM 1 T
READ(8,51)(AOLD(1),1-1,LAC)
CALL F2DC(AOLD,RES)
iF%' NUM IT.€R.0)STOP
DO 20	 iT-10NUMIT
DO 10	 1-1, LAC
A2(1+1)-AOLD(I)

10 A1(I)-AOLD(1)
A1(LAC+1)-0.0

f- A20)-0.0
LAC-LAC+1
CALL F2DC(A1,RES1)
MPT-MPT+1
CALL F2DC(A2,R`ES2)
IF(RESI.LT .RES2)GO TO 12
DO 11	 1-1, LAC

11 AOLD(1)-A2(1;
GO TO 2&

12 DO 13	 1 n 1, LAC
13 AOLD(I)-AI(I)

MPT-MPT-1
20 CONTINUE

STOP
r END
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SUP.P.OUTINE F2DC(A,RES)
COh1HO1f/F2nVEC/XR(1+1!10 ), X I (10!10 ), RR (1!19i ), RI owl)

COMMON/F2nSCA/FACN,FACR,FAC1
COIIMON/F21) I NT/ LDAT, NUMP, NP,MPT, LAC, Nln, N2D,MAXLAG
DIMENSION A(20)

CALL F2n(A,RES)
RESOLn nRES
DO 1 1 =1, 3
CALL F2n(A,RES)
DIFRES=(RESOLD-RES)/RESOLD
RESOLD nRES
IF(DIFRES.LT.1.0E-4)G0 TO 3

1	 CONTINUE
PRINT 2

2	 FORMAT(15H Din NOT SETTLE)
C**	 CALCULATE, NORMALIZE, AND SHIFT PULSE
3	 DO 4 1=1, I,DAT

RR(I)-q.9
4	 RIM-9.q

DO 5 I =1, LAC
5	 RR(I)=A(I)

CALL FFT(RR,RI,LnAT,LDAT,LDAT,-I)
nO 6 W , LDAT
TEv­RR(I)-,,*2+1I(I)**2
RR(I)=RR(li/TFV

6	 RI(I)=-RI(I)/TEV
CALL FFT(RR,RI,LDAT,LDAT,LnAT,+1)
IMAX=0
CMAX=9.0
DO 7 I=1,LnAT
TEST=ARS(RR(1))
IF(TEST. GT . CMAX)IMAX =I

7	 IF(TEST.GT .CMAX)CMAX=TEST
CMAX=RR(IMAX)
DO 8 I =1, LnAT
INDEXal-1+IMAX-LnAT/2
IF(INDEX.LT .1)INnEX=LnAT+INDEX
IF(INDEX.GT.LnAT)INDEX=INDEX-Ln'T

8	 RI (1)=RR((NDEX):l "AX
C*	 CALL PLOT(RI,LDAT)

FPE=RES*FLOAT(LnAT+LAC)/FLOPAT(11AXLAG*(LDAT-LAC))
RETURN
END
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SUBROUTINE F2D(A,RES)
COMMON/F2DVEC/XR(1?09),X1(1900),RP(1001)
COMMON/F2nSCA/FACN,FACR,FAC1
COMMON/ F 2D 1 NT/ LDAT, NUMR, NR,'•1PT, LAC, N1D, P
DIMENSION P(21,20),Y(21),X(21),A(20)
DATA SCALF,IPR/1.0,5/
PRINT 50,(A(i),I-I,LAC)
NACT nLAC-1
NPOINTnNACT+1
NlDnLAC+1
N2nn LDAT
4UMR-N2D-N1D+1
NR-tdUMR-1
FACR-1.0/FLOAT(NUM.R*Nt1MR )
FAC1-1.0/FLOAT(NR)
FACN-1.9/FLOAT(LDAT)
PSUMn9.0
J-0
DO 1 I m 1, LAC
IF(I.EQ.MPT)GO TO 1
JnJ+1
TEMP-A(1)
PSUMn PSUM+ABS(TEMP)
P(1, J) nTEMP

1	 CONTINUE
FNUMnFLOAT(NACT)
TES-ABS(PSUM)
IF(TES.LE.1.OE-3)PSUM-9.15
QSC--SCALF* PSUt1/FNt1M
TEMP nSQRT(FNUM+1)-l.0
DENnFNUM*SRRT(2.)
PNn (TEMP+F NUt!) *RSC/ DEN
QN nTEMP*RSC/DEN
DO 3 I n 2, NPO I NT
DO 2 J-1, NACT

2	 P(I,J)-P(1,J)+ (IN

no 5 I -1, N PO I NT
DO 4 J-10NACT

4	 X(J)-P(I,J)
5	 Y( i ) nFl1NK(X)
C**	 P IS NnW THE INITIAL SitlPLEX

ITER-0
PR 1 NT n i PR

:'ALL AMOERA(p,Y,NPOINT,ITER,IPPI`+T)
Jn 0
DO 19 1-1,NACT
IF(I.EQ.MPT)J-J+l
JnJ+l

10	 A(J)-P(IPRINT,i)
A(MPT)-1.1
RES-Y( I PR  NT)
PRINT 50, (AM.. 1-1, LAC)

50	 FORMATOG14.6 )
RETURN
END	 186



SUBROUTINE AMOEBA(P,Y0NP01N,1TEP,IPRIN)
DIMENSION P(21,20),Y(21),PR(20),PPR(20),FB4R(20),PINV(20)
EQUIVALENCE(PINV,PRR),(YPRP,YPINV)
DATA ALPHAoBETA,GAMMA,TOL/l.Oo0.S,2.a#1.OE-93/

DATA NSTOP/150/
NVAR nN POIN-1

519	 CONTINUE
1	 ILO.1

IHI-1
i NH I n l
DO 10 I-1,NPOIN
YI-Y(I)
IF(YI.GE.Y(ILO)) GO TO 1n
ILO-i

10	 CONTINUE
DO 11 I .1, NPO I N
YI nY(I)
IF(YI.LE.Y(IHI))GO TO 11
1HInI

11	 rONT I NUE
IF(IHI.EQ.1)INI11 n 2
DO 12 1 . 1, FIP01 N
IF(I.ER.IHI)GO TO 12
YI-Ytil)
IF(YI.LE.Y(INHI))GO TO 12
INHI-I

12	 CONTINUE
IF(MOD(ITER,lPRIN).NE.0) GO TO 109
ERR-100.•(Y(IHI)-Y(ILO))/Y(ILO)

121	 PRINT 105,Y(ILO),EPR
295	 FARMAMP,al3.4,F6.3)
206	 DlFwY(lHI)-Y(ILO)

RAT-DIF/Y(1NHI)
IF(RAT.LE.TOL)GO TO 80
IF(ITER.GE.NSTOP)GO TO 84
IF(IGO.NE. q ) GO TO 80

209	 I TER n I TER+1
DO 21 1 -1, NVAR

21	 PRARM-0.
00 23 1-1,NPOIN
IF(I.EQ.1141) GO TO 23
DO 22 J-1,NVAR

22	 PBAR(J)-PBAR(J)+P(I,J)
23	 CONTINUE

DO 2k 1-1,NVAR
24	 PBAR(1) -PRAR O NVAR

DO 15 .I n 1, NVAR
25	 PR(J)w(l.+ALPHA)*PBAR(J)-ALPHA+P(IHI,J)

YPR nFUNK(PR)
258 IF(YPR.LE.Y(ILO)) GO TO 3n

IF(YPR.GE .Y(IHI)) GO TO 41
IF(YPR.GE .Y(INIII)) GO TO 38
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26	 DO 27 J=1, NVAR
27	 P(IHI,J)=PR(J)

Y(IHI)=YPR
GO TO 1

30	 DO 31 J=1, NVAR
31	 PRR(J)=GAIIMA*PR(J)+(1.-GAMMA)*PSAR(J)

YPRR=FUNK(PRR)
YTEST=Y(ILO)
IF(YPRR.GE .YTEST) GO TO 26

319	 DO 32 J=1,NVAR
32	 P(IHI,J)-PRR(J)

Y(IHI)=YPRR
GO TO 1

38	 DO 39 J-1, NVAR
39	 P(IHI,J)=PR(J)

Y(IHI)=YPR
49	 DO 41 J-1, NVAR
41	 PINV(J)-BETA*P(IHI,J)+(1.-BETA)*PBAR(,))

YPINV-FUNK(PINV)
IF(YPINV.GE .Y(IHI)) GO TO 51
DO 42 J=1,NVAR

42	 P(IHI,J)-PINV(J)
Y(IHI)=YPINIV
GO TO 1

50	 DO 55 1-1,NPOIN
IF(I.EQ.ILO) CO Tn 55
DO 53 J=1,NVAR
PR(J)-9.5*(P(I,J)+P(I LO,J))

53	 P(I,J)-PR(J)
Y(I)=FI1NK(PR)

55	 CONTIMUE
6i	 GO TO 1
87	 IPR1M -ILO

RETURN
84	 PRINT 841
841	 FORMAT(' RID NOT CONVERGE')

IPRIN=ILO
RETURN
END
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FUNCTION FUNK(PAR)
C** VERSION OF JUNE 4, 1979... CUMULATIVE DISTRIBUTION

DIMENSION PAR(20),IIND(1000)
DIMENSION ROW(1000 ), 1 RANK(1000 ), NP1(1099 )
COt4MQN/F"&i)VEC/XR(1900), XI (1a'J9),RR(1000 ),RI (1!1n't)
COMMON/F2DSCA/FACN,FACR,FACI

I COMMON/F2D I NT/ LDAT, NUMR, NR,MPT, LAC, NID, N2D,h AXLAO
COMMON/1NOV/R(19io)

DO 2 1-l,LDAT
R(I)	 -0.0
RR(1)-0.9

2 RI(I)w9.9
C** PUT FOURIER TRANSFORM OF A INTO (RR,RI)

JJ -'J
DO 20 lal,LAC
IF(I.EQ.MPT)GO TO 29
JJ-JJ+1
RR(i)-PAR(JJ)

20 CONTINUE
RR(MPT)-1.11

C CALL FFT(RR,RI,LDAT,LDAT,LDAT,-1)
C** DERIVE INNOVATION ( -A*X) WITH FOURIER TRANSFORMS

DO 3 1-1, LDAT
QR-XR(I)*RR(l)-XI(l) *Rl(l)
QI-XR(i)*Rl(l)+Xl(I) *RR(l)
RR(i)-QR

3 RI(I)-QI
CALL FFT(RR*RloLDAT,LDAT,LDAT*l)
DO 4 I-1,LDAT

4 RR(I) -RR(I)*FACN
C** SHIFT, ORDER,	 AND DIFFFl<ENCE INNOVATION

__- DO 5	 I -N1D, N2D
INDX-I-MPT+1
IF(INnX.LE.9)CO TO 49
R(1NDX)-RR(1)

49 CONTINUE
INDX-i-N1D+1
RR(INDX)-RR(I)

5 CONTINUE
DO 51	 1-10NUHR

51 IIND(I)-I
CALL ORnERMR. I I NO. I RANK, NIIHR )
DO 52	 I- 1,NUMR
INDY n IIND(I)
RI(I) n RR(INDY)
IRANK(INDY)-I

52 CONTIN
C** OLD -IIND%	 iW)
C** NEW-IRANK%0LD)

-	 = DO 54 J n 1, tJUMR
RR(J)-RI(J+1)-RI(A

54 CONTINUE
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C**

C
**I0TEGRATE DR(I)DR(1+1)(F2(R(l) R(1+1))-F1tRt!))F1tR{i+1)))**2
** ROW IS ROW OF THE MATRIX REPRESENTING THE CUMATIYE

C** DISTRIBUTION FUNCTION OF (R(1),R(1+1))
C**

FUNK-0.0
DO 80 IAG-1,hAXLAG
FAC1-1.9/FLOAT(NU?lR-LAG)
DO 58 I -1, LDAT
ROW(I)w0.0

58	 NP1(I)-NUMR
DO 59 J-1,NUMR
INDY-I1ND(J)+LAG
IF(INDY.GT .NUMR)GO TO 59
NP1(J)-IRANK(INDY)

59	 CONTINUE
FSUM-0.0
DO 64 J-1,NR
DR nRR(J)
(JUMP-NP1(J)
FAC2-FLOAT(J)*FACR
DO 60 I-1,NR
IF(I.GE.IJUMP)GO TO 61
FSUM-FSUM+DR*RR(I)*(ROW(!)-FAC2*FLOAT(l))**2

60	 CONTINUE
GO TO 64

61	 CONTINUE
DO 62 K-1,NR
ROW(K)-ROW(K)+FAC1
FSUMnFSUM+DR*RR(K)*(ROW(K)-FAC2*FLOAT(K))**2

62	 CONTINUE
64	 CONTINUE

FUNKnFUNK+FSUM
80	 CONTINUE

RETURN
END
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SUBROUTINE ORDER(D,II,JJ,N
DIMENSION 11(N),JJ(N),D(N)
K=1

10	 KK=K+K
IF(K.GE.N) RETURN
CALL SORT(D,11,JJ,K,KK,N)
K=KK
IF(K.GE.N) GO TO 15
KK=K+K
CALL SORT(D,JJ,II,K,KK,N)
K=KK
GO TO 10

15	 DO 16 1-1,N
16	 II(0=JJ(1)

RETURN
END

SUBRO(iTI NE SORT(D, I 1 , JJ, K, KK, N)
DIMENSION II(K,1),JJ(KK,l)
M=NJKK

	

IO
	

IF(M.LF.0) GO TO 25
DO 29 J=1,M
I=J+J

20	 CALL MERGE(D,,11(1,1-1),K,11(1,1),KJJ(IJ))
25

	

	 LEFT-N-KK*M
IF(LEFT.LE.0) RETURN
t,ll-M+l
MM 1=11+M 1
IF(LEFT.LE.K) GO TO 30
LEFT=LEFT-K
MM 2 =h110.11
CALL HFRGE(n, I I (1,M1 4 1),K, 11 (1,MF12),LEFT,,1J(1,111))

RETURN
30	 CALL HOVE( II(1,M111),JJ(l,fll),LEFT)

RETURN
END

SUBROUTINE MOVE(X,Y,N)
INTEGER X,Y

DIMENSION X(1),Y(1)
NA-IABS(N)
IF(NA.LE.O.OR.NA.GT .10001) RETURN
IF(N) 10,30,20

10	 DO 15 1-1,NA
15

	

	 Y(1) --X(1 )
RETURN

20	 DO 25 1=1,NA
25	 Y(I)-X(I)
30	 RETURN

	

k
	

END
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15

25

30

SUBROUTINE MERGE(D.X,N,Y,M.Z)
INTEGER X,Y,Z
DIMENSION X(N),Y(M),Z(l),D(1)
NM •N+M
Jul
Iml
JGO.1
IF(M.EQ.0) JGOn3
IF(N.EQ.0) JGOn 2
DO 30 Ku l, NM
JXnX(J)
IY nY(I)
GO TO (10,25,20),JGO
IF(D(JX).GT.D(IY)) GO TO 15
Z(K)uJX
IF(J.EQ.N). GO TO 17
J-J+1
GO TO 30
Z(K)=IY
IF(I.EQ.M) GO TO 19
1-1+1
GO TO 30
JG0=2
GO TO 39
JGOn3
GO TO 30
Z(K)nJX
JnJ+1
GO TO 30
Z(K) n IY
101+1
CONTINUE
RETURN
END

17

19

20
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INDEX

Absolute value (L1 ), 30, 48, 68, 102-109, 114-117, 121, 128, 137-139

Acausal, 22, 26, 29, 31-33, 50-51, 55-57, 58, 63-67

Advance operator, 52

All pass filter, 83, 84

Autocorrelation (function) 19, 37, 42, 60-62, 68, 72-73, 79-80, 83, 85, 134

Autoregressive (AR) (model, process, representation), 1, 31-38, 40, 41, 43,

73-75, 82, 86-87, 119, 135-159

integrated moving average (ARIMA), 42-43, 87, 119

moving average (ARMA), 40-41, 42, 75-76, 86-87

Bins, 91-93, 122, 137-138

Causal, 26, 28-29, 31, 33, 4b, 47-48, 50, 55-58, 63-67, 75, 78-79, 98, 112

Central limit theorem, 23

Characteristic function (see also joint characteristic function), 16, 18,

87, 90, 93, 121, 138

Computation (numerical experiments), 135-176, 178, 179-192

Constant component, 164, 166, 172-176

Convolution, 31, 52-54, 62, 64, 82, 85, 170

Cumulative distribution function (see also joint cumulative distribution

function), 16, 18, 87, 90, 121-123, 138-139, 180-183, 189-190

Decomposition, see Wold Decomposition

Deconvolution, 74-75, 85, 96, 135

tables, 138, 139, 142-143, 151-152, 155, 168

Deterministic, 16-17, 20-21, 29, 74-75, 77, 80, 96, 162

Delay character (also phase character), 47, 58-62, 79, 85-86, 109, 136

operator, 52

Dependence (dependently distributed, dependence measure),.19, 20, 86-95,

121-123, 136-139, 189

Difference operator ( V ), 42, 43

Dipole (couplet), 55, 58, 82

Discrete Fourier transform (DFT), see Fourier transform

Ergodic, 8, 88

Estimates, statistical, 75-76, 89, 97-98

Expected value, 14, 18, 77, 87, 121
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Factorization (into dipoles), 55-58, 62, 64

Filter (see also pulse shape), 26, 28, 31, 4643

continuous, 134-135

Final prediction error (FPB), 102, 113 . 114, 127.128, 140 1 143444, 152s-166

Fourier transform, 1, 51, 63, 6671, 119-121 t 129, 166 0 179, 184485 0 189

Frequency domain, 37, 51, 58

Gaps, see Sampling

Gaussian noise, see Noise, Gaussian

process (normal process), 8, 85-86, 136	 1

Identically and independently distributed (i;i.d,), 19 1, 23	 3

Identification (see also order determination), 4, 73, 1121 14 1 1,19, 177

Impulse, 26, 36, 38, 46

Independent (independently distributed), 14 (random variables), 18 (processes)

20-21, 178	 -

Independently distributed innovations, 30, 78 0 81 0 85.46

noise, see Noise, independently distributed

Innovation, 30, 46, 76-77, 78-81, 85-87 0 100 1, 1191.121, 131132 1 145, 147?

153, 157, 160, 163, 173, 181

Inverse (convolutional), 49, 62-•68, 70-71, 75, 80, 82, 111,112 # 11 61.17, 129, 176

Joint characteristic function, 16, 1811 23, 87

cumulative distribution function, 15, 23, 87, 9091, 122123, .189..190 ? 181183

probability distribution function, 14-15, 23, 87, 91

Lag (m* - maximum lag), 89-90, 92, 94, 124 1 126, 138-156, 184

Least-squares, 6, 68, 85, 96, 102

Linear system, see Filter

Local minimum, 92, 123-124, 126, 177

Martingale difference property (MDP), 15, 81, 95-96 t 137,138

Maximum delay (or phase), 58-62, 63-65, 79•,80

entropy method, 101-102

Mean value, 19, 28, 43

Memory, 28, 31, 32, 74, 97

Minimization (optimization, deconvolution), 86, 88, 91, 97, 99%-100.  1Or 4 112,

114-117, 123-129, 133, 135,•140, 142-143 0 151-152, 155, 168, 179.480

Minimum delay (or phase), 49, 58-62, 63-66, 75, 78-80, 100, 102, 104, 166, 169-170
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Mixed delay, 59, 78-80, 109, 169, 172

Models, 6, 7, 9, 24, 30, 73-117

Moment 24, 94-95, 121, 138

generating function, 16

Moving average (MA) (model, process, representation), 1, 24-31, 32, 38, 40, 41,

43, 46, 72, 73-87, 80, 85-87, 104, 120

Negative amplitude, 159, 170-172, 174-175

Noise, 23, 138-139, 156

Gaussian, 23, 37, 85-86, 136, 139, 159-162

independently distributed, 23, 37, 81, 86, 159

uncorrelated, see Noise, white

uniformly distributed (U), 11, 25, 44, 135-158

white, 23-24, 33, 41, 96, 136

Nonstationary, 42-43

Norm, 102, 104-106

Normalization, pulse, 30-31, 33, 110-113, 185

One-sided (pulses, filters, representations; see also causal), 48, 98, 102, 111

Optimization, see Minimization

Order (of a process), see also Final prediction error, 28-29, 32-33, 113-114,

125-129, 149

Ordering (according to magnitude), 122, 181-182, 191-192

Origin of time, 26, 48, 49 (notation), 59, 67, 69

Parsimony, 41

Partial energy curve, pulse, 59, 60-61

Periodic signals (quasi-periodic signals), 33, 35-36, 37

Phase character, pulse, see delay character

Physically realizable, 48

Poisson process, 44

Prediction (predictive deconvolution, predictive decomposition), 3, 17, 22,

75-77, 96-114, 133

error (see also Innovation), (prediction error filter), 76-77, 98-102,

103, 104-105, 109, 121, 134, 174

Probability distribution (see also Joint probability distribution), 12, 18,

87, 90, 121, 137-139

Process, 3, 9, 10, 11-12, 15

Pulse shapes (see also Filter, Impulse), 30, 44, 46-73, 85, 129-131, 146, 148,

154, 158, 161, 165, 169, 174, 185

---, exponential, 36, 39, 48, 70, 81-83, 136, 177

g
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Pulse rate, 44-45, 100

amplitude (see also Innovation), 28, 44-45, 46, 85, 100,

amplitude distribution, 175

Purely random, 17, 19

Quasar, 3C 273, 164, 166-172, 174-176

Random process (stochastic process), 3, 6-7, 9-23, 12, 17, 2(

Realization (relaization of a specific process), 10, 11-13, l

37, 140-141, 150, 156, 163, 167

Restart, 123, 124, 180, 185

Reverse, time, 60, 62, 80, 82, 101

Sampling, 4, 8, 44, 47, 118, 132-135

Sequential analysis, 10

Shot noise (model, process), 7, 26, 43-46, 136

Simplex, 123-125, 180, 187-188

Sinusoidal signal, 162, 165

Skewness, time skewness function, see Time skewness

Skew-norm, 104

Spectrum, 37, 42, 60, 72-73, 75, 79, 101-102, 135, 178

Stability, filter (convergence), 29, 33, 38, 48, 63, 75, 78, 106, 162

Stationary, 1, 19, 20-22, 42, 74, 79-81, 89

Stochastic process, see Random process

Summation operator (S), 42

Time domain, 3, 9, 52, 58

series (see also Realization), 4, 5, 9-10, 167

skewness (time skewness function), 95, 101, 105-109

Trend (detrending), 11, 43, 75, 178

Two sided filters (see also Acausal), 22, 29, 32, 33, 38, 40, 41, 48, 50,

55, 66, 79, 109-114, 136

Uncorrelated (see also Noise, white), 14, 19, 20-21, 74, 78-81, 85

Uneven sampling, see Sampling

Uniformly distributed noise, see Noise, uniformly distributed

Unstable, see Stability

Varimax norm, 121

Wavelet, 46, 78
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Zero (of Z transform), 57, 64-66, 68

Z transform, 40, 49-52, 54, 55-57, 62-68, 72, 82
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