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SUMMARY

The success of future permanent space stations depends on the

development of a space shuttle vehicle having aerodynamic maneuvering

capability. The purpose of this technical report is to investigate the

optimum maneuver of such a vehicle reentering a spherical, stationary,

and locally exponential atmosphere. The use of Chapmants modified

variables and a rescaled lift-drag polar leads to the formulation of a

set of dimensionless equations of motion for flightanalysis. The

resulting equations are exact in the sense that they are also valid for

flightin a vacuum. For the vehicle, we only have to specify the most

important performance parameter, namely the maximum lift-to-drag

ratio E _':'_.On the other hand, the planetary atmosphere is characterized

simply by the so-called Chapmanls atmospheric parameter k2 ---'_r.

For planar flight several typical optimum maneuvers are investi-

gated at different altitude ranges, low, moderate and very high. In each

case the characteristics of the optimum liftcontrol are discussed.

For three-dimensional flights the procedure to solve the optimum

trajectory for maximum cross range is discussed in detail. Finally,

using the equilibrium glide condition the maximum cross ranges for

entry from circular speed, for several values of IE_':'_,and the footprint

for E ''_= 1.5 are computed in this reduced problem. A technique of

coordinate rotation is used which makes the iteration procedure for

solving the footprint of a reentry vehicle much more effective and

geometrically meaningful.

xi





CHAPTER 1

INTRODU C TION

The purpose of this report is to investigate the optimum

maneuver of a space vehicle having aerodynamic maneuvering capa-

bility. The present day space shuttle is an example of such a kind of

space vehicle. In the previously published literature, the analyses

are either for constant lift-to-drag ratio [I] , or usually numeri-

cally oriented and confined to the performance of a particular

vehicle [3]. In order to maintain the generality of the results, we

shall introduce a set of dimensionless variables and a rescaled lift-

drag polar, to derive the dimensionless equations of motion for flight

analysis inside a spherical, stationary, and locally exponential

planetary atmosphere. The resulting equations are exact in the sense

"that they are also valid for flightin a vacuum and are almost free

from all the physical quantities of the vehicle and the planetary

atmosphere. For flightat very high altitude with orbital speed, a

Nev_onian, inverse-squared force field is used. By a simple canon-

ical transformation [5,6], the corresponding equations for low

altitude and low speed flightover a flatearth model are obtained.

Two main types of optimum maneuver in a vertical plane will

be investigated at three different altitudes, low, moderate, and very



high. In the pull-up type maneuver we either maximize the final speed

with the final altitude prescribed, or vice versa. At very high

altitude with orbital speed, the maneuver generates the useful skip

trajectory. In the gliding type maneuver we maximize the gliding

range. The three-dimensional gliding maneuver for maximum cross

range will also be discussed and then solved in a reduced problem.

The footprint of a reentry vehicle will be assessed.

The organization of the report is as follows. After this intro-

ductory chapter, the dimensionless equations of motion for three-

dimensional atmospheric flightare derived in Chapter 2. The prob-

lem is then formulated as an optimal control problem with the adjoint

equations and the control law derived in Chapter 3. In Chapter 4, the

equations for planar flightare deduced from the general equations of

Chapter 3. Then in Chapter 5 they are transformed into the equiva-

lent form appropriate to a flat earth model. The numerical applica-

tions are carried out in Chapters 6, 7, and 8. The case of flightover

a flat earth is first analyzed in Chapter 6. The concept of a linear-

ized singular arc [8] is introduced and tested. The case of planar

flightover a spherical earth is discussed in detail in Chapter 7. Then

in Chapter 8 we discuss the procedure to solve the three-dimensional

optimum trajectory. The problem is then simplified and solved with a

footprint obtained. The final chapter, Chapter 9, summarizes the

main results.
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CHAPTER 2

DIMENSIONLESS EQUATIONS OF MOTION

In this chapter, the three-dimensional equations of motion of

a nonthrusting, lifting vehicle entering a stationary spherical plane-

tary atmosphere are introduced. Then by using the modified Chap-

man's variables, a normalized lift coefficient, and a dimensionless

arc length as the independent variable, a set of dimensionless state

equations are obtained for entry analysis. It will be seen that, by

this formulation, the only physical parameter involved is the maxi-

mum lift-to-drag ratio, and the planetary atmosphere is simply

characterized by a value referred to as Chapmanls atmospheric

parameter.

2.1 Three-Dimensional Equations of Motion

The equations of motion of a nonthrusting, liftingvehicle

entering a stationary spherical planetary atmosphere are

dr
- V sin"V

dt

dV p S C D V z
- - g sin_dt 2m

(gd--_-= 2m cos¢ - - cosh'

3



d__@8_ VcosY cos
dt - rcos€ (Z.I)

d_i _ VcosY sin_
dt r

d_ pSCLVZ Vz
V dt - 2mcosY sin_---rcosYcos_ tan

where t is time, (r, V, Y, 8, _, _) are state variables and are defined

in Figllre l, p is density of the atmosphere, S is the reference area

of the vehicle, C D and C L are the drag and liftcoefficients, m is the

mass of the vehicle, g is the magnitude of gravitational acceleration,

and _ is the bank angle. The flightpath angle Y is defined to be

Z

@ V
O y

m

X

Figure l.-State Variables, Control Variables, and Other

Parameters Defined with Respect to Inertial
Coordinate, OXYZ.
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positive when the velocityis directed above the horizontal plane. The

bank angle _is taken to be positive for a bank to the left. For flight

in a Newtonian force fieldof a spherical planet, the magnitude of the

gravitationalacceleration is of the form

g : (2.z)

where _ is the gravitationalconstant. The density of the atmosphere

p is assumed to be locallyexponential, thatis, itobeys the differen-

tiallaw

d__ = _ _ dr (2.3)
P

where the inverse scale height _ is a function of the distance from the

center of the planet r.

There are two control variables, one is the bank angle _ and

the other is either the lift coefficient C L or the drag coefficient C D.

For a given vehicle there is a lift-drag relation; therefore either the

lift coefficient C L or the drag coefficient C D can be used as the con-

trol. We shall use as lift control a normalized lift coefficient k such

that

C L = C L k (2.4)

* is the lift coefficient corresponding to maximum lift-to-where C L

* is the corresponding drag coefficient, thendrag ratio E*. IfC D

*f(x) (2.5)C D = C D

where f(k)is the function specifyingthe chosen drag polar (see

Appendix A). When k = i, the flightis at maximum lift-to-dragratio.

5



Thus we also have f(1)= i. We shallconsider a parabolic drag polar

with the simple function

1

f_)=_ (I+×z) (z.6)

In general, the parameters C_, C D , and E _':'_are functions of Mach

number; but in the hypervelocitufregime they are essentiallyconstant.

Z.2 Dimensionless Equations of Motion

The following dimensionless variables are introduced,

Z- 2m

Vz Vzv - - (z.7)
gr _/r

t
s -- -- cos N dt

r
0

where Z and v are the modified ChapmanWs variables [1]. Z is pro-

portionaI to the atmospheric density p and will replace the altitude,

while the dimensionless kinetic energy v is a measure of the speed.

The remaining dimensionless variable s is the dimensionless arc

length. Itis monotonically increasing and will replace the time as

an independent variable. By using Eqs. (2.4), (2.5), (2.6)and (2.7)

in Eqs. (2.i), we have the dimensionless three-dimensional equations

of motion

dZ kzZ tan_
ds

dv _ _ kZv(l+k z) _ (2-v)tanY
ds E _ cos



dY _ kZkcos_ + (1 _ i)ds cos_

de cos_ (z. 8)
ds cos

d_ = sin
ds

d_ k Z k sin
- cos # tan

ds cosZY

where E* is the maximum lift-to-drag ratio, and kz is the dimension-

less product _r. These equations are exact and hence are valid for

Keplerian motion outside the planetary atmosphere. The only slight

simplification is that in the equation for Z, the exact coefficient of

- Z tan ¥ is

1-T +iT dr

For a strictly exponential atmosphere, _ = constant and

d_ft.= 0 (Z.10)dr

On the other hand, if an isothermal atmosphere is considered,

/g = constant and

I__dO_ 1
2_z dr - - k--f (2.11)

In both cases _z is a function of kz = _r. Chapman has shown that in

the reentry range of the altitude, this product is oscillating about and

near a mean value [i]. Furthermore, its value is much greater than

unity, e.g. , for the earth's atmosphere kZ-----900, thus we take

_z _ kZ (2.12)



The Eqs. (2.8) are the state equations for entry analysis. It

is seen that the only physical parameter of the vehicle involved is the

maximum lift-to-drag ratio E*. Furthermore, any planetary atmo-

sphere is simply characterized by a properly selected value k z. This

mean value will be referred to as Chapman's atmospheric parameter.



CHAPTER 3

VARIATIONAL FORMULATION

With an adjoint vector introduced, we formulate the problem

as an optimal control problem by using the Pontryagin's maximum

principle. The control law is derived. The integrals of the motion

are obtained. Then there is a change in the adjoint variables to have

a better form for the adjoint equations. Finally, the parameters of

the problem under different cases are discussed.

3. 1 Variational Formulation

The Eqs. (2.8) are the state equations with two control

variables, the lift control k and the bank angle _. They are subjected

to the constraints

lxl <xmax

(3.I)

These controls are to be selected to bring the vehicle from a certain

prescribed initial condition to a certain partially prescribed final

condition, such that a certain function of the final state variables is

minimized.

Using the maximum principle, we introduce the adjoint vector

_to form the Hamiltonian

9



kZy(1+k z) + (Z-v)tan_]H = - kz ZpztanY - Pv E'cosy

[ ( i)] COSt p_sinCkZkcos¢ + 1 - + PO cos_ ++ P_ cos ¥

k Z k sin_ ]+ PC cosZ_ - cost tan€ (3.2)

where Px' x = Z, v, Y, 8, €, and %bare the adjoint components corre-

sponding to the six state variables, respectively. They are governed

by the followingadjointequations

kv(l+k z} kkcos0- kksincr
dPZds- kZpztan¥ + Pv E'cosy - Py cosy PC cosZY

[ ]dPv kZ (l+kz) _ tanY -
ds - Pv E'cos Y _-f

1

{ [kZv(l+ kZ)sinY )]dpy kz + Pv + (Z vds - cosZ_ ZPz E # -

- kpyZkcos _sinY - 2kp Zksin0- tanY}
(3.3)

dP 8
_' _ 0

ds

qJcos

[- P8 sin¢ + pc]ds - cos z

dPCds- cosSinC¢[Pc - P_b sine] - p@ cos€

The solution is then obtained by integrating the two sets of state and

adjoint equations, subjected to the end conditions, and at each instant

selecting the liftcontrol k and the bank angle _ such that the Hamil-

tonian is an absolute maximum,

10



The Hamiltonian H will be maximum either at the boundary of

the control set or at an interior, variable point where

8H 8H
-- - 0 (3.4)
8k =0 , 8u

Explicitly, we have

E*py E* p_
kcosu =-- , ksinu = (3.5)

2VPv 2VPvCOSY

3.2 Integrals of the Motion

It is known that the problem has a number of integrals [Z-4].

First of all,

H = CO (3.6)

where COis a constant. Then by solvingthe lastthree equationsof

Eqs. (3.3),we have

Pe = C,

p_ = Czcos @ + C3sine (3.7)

p@ = C, sinl - cos _ (Cz sine - C_cos @)

where C 1, Cz, and C_ are constants of integration.

To simplify the first three equations which are not integrable

analytically in Eqs. (3.3), it is convenient to use the modified adjoint

variables defined as

P = kZZpz

N = VPv (3.8)

Q=Py

II



The corresponding modified adjoint equations are then

Z

)]ds - cosy E* - 4N

dN 1
(Q + 2 NtanY) (3.9)

ds v

z

dQ 1 k Z sinY (2 v) E>"_kZ sinY

ds - cosZY E* _ 4N cosZYJ

Interms of P, N, and Q, theoptimum liftand bank controlsbecome

E*Q
k cos _ -

ZN

E* pqj
k sin _ - (3.i0)

2N cos Y

×z__ a+cosa_]

and the Hamiltonian becomes

kZ (Z-_) ] (l-vlQ-Ptan¥ - N E_cosY + %an_ -v v

)+ 4NcosY (Qz +__cosZ_ + P@--cos@+ pisin_

- p_cos@ tan i = Co (3.Ii)

In summary, the optimal solutions of this problem are

governed by theEqs. (2.8)forthe statevariables,Eqs. (3.7)and

(3.9)fortheadjointvariables,and Eqs. (3.I0)forthe controls. It

requiressixparameters C I, Cz, C 3, P., N., and Q. to satisfythe1 I 1

finaland transversalityconditions,where Pi' N.I and Qi are the

initialvaluesofP, N, and Q, respectively.The Hamiltonianequation,

Eq. (3.11), can be used to check the accuracy of the integration.

12



For themost practicalcases, thearc lengths isnot

prescribedatthe finaltime. Thus H = Co --0 and Eq. (3.ii)becomes

[ kZ (Z-v) ] (l-v)Q-Ptan_ - N E'cosY + tan_v v

E*k Z ! PC \ cos
+ 4Ncos¥ _QZ+ ) + P@-- + P_ sin_cos z _' cos

- pc COS¢ tan€ - 0 (3.12)

Using thisintegral,one ofthe threeequationsin Eqs. (3.9)can be

deleted. But thereare some difficultiesin so doing. First,Eq.

(3.12)isquadraticinboth Q and N. To solveeitherQ or N from

Eq. (3.12)requiresfrequentchange in signinfrontofthe square

rooteach time the quantityunder the square rootpasses throughthe

value zero. Next, inEq. (3.iZ)the coefficientofP istan¥. When-

ever _ goes tozero,P cannotbe determined. Hence, itismore con-

venienttouse Eq. (3.12)solelytodetermineone ofthethreeinitial

values,eitherP'xor N.Ior Qi' and to check theaccuracy oftheinte-

gration. Anyway, itisobviousthatthenumber ofparameters is

reducedby one, thatis, from sixtofive.

13



CHAPTER 4

PLANAR FLIGHT

In this chapter, we deduce the governing equations for the

optimum reentry trajectories confined to the plane of a great circle

from the general three-dimensional equations of Chapter 3. They are

the state equations, the adjoint equations, the control law, and the

Hamiltonian integral. Then by a change of adjoint variables, we

obtain a handy equation for the control variable k, and the number of

parameters is reduced by one.

4.1 Governing Equations

For entry trajectories in the plane of a great circle, we have

o-= _= _ = 0 (4.1)

and the independent variable s is simply the range angle @. The state

equations and the modified adjoint equations are reduced to

dZ - - k zztanY
dO

dv k Z v (I+ kz) - (2-v)tanY (4.2)
dO E _:_cos 3/

+(,±)dO cos _/ v

14



and

dP _ ksZ IN, E'_Q z]de cosY 4N

dN 1
(Q + 2N tanY) (4.3)

d0 v

dQ 1 {p+N [k Z sin_/ ___] E*k Z QZ sin_/}d@ - cosZ_ E* + - 4N

respectively. The optimum lift control is either IX I = kma x or a

variable k such that

E*Q
k - (4.4)2N

The Hamiltonian integral becomes

] E #k Z Qz
kZ + (2-v) tan_ _ + -- Cx (4.5)

-Ptan¥-N E,cos¥ v - v 4Ncos'{

where C1 is the same constant of integration as in Eqs. (3.7).

In general, this is a three-parameter problem, with Pi, Ni,

and Qi as the three parameters. For the special case where the

range angle e is not prescribed at the final time, i. e., @f is free,

C, = 0 and it becomes a two-parameter problem.

4.2 Change of Adjoint Variables

From the expression of Eq. (4.4), it is seen that a simplification

can be made if we use k as a new variable. Another variable which

will be seen to be useful is

P
F - (4.6)N

Using (F, N, k) as a new set of variables to replace the modified

15



adjointvariables(P,N, O), and takingthe derivativeofEqs. (4.4)

and (4.6)with respectto @, we have

dF ksZ (1-kz) + 2F E*
d@ - E*cos_/ _ (k+ tan¥)

dN 2N E*
d@ E*v (k + tang/) (4.7)

d___k k Z (I-kZ) sin_ 2k(k+ tan_/}+ F-I+
d8 - 2cosZ_/ + E*v 2cosZ_/

The Hamiltonianintegral Eq. (4.5) in terms of (F, N, k) becomes

kZ(1-k z} + 2(1-v}k + (F_I+ 2) C__! (4.8)E'cosY E*v v tanY = N

In Eqs. (4.7), it is seen that the first and third equations are inde-

pendent of N. It can be shown that Ni, the initial value of N, is free

whenever the final value of N doesn't appear in the transversality

conditions. Thus the second equation of Eqs. (4.7) can be deleted.

It becomes a two-parameter problem for the general case. For the

special case if 8fis free, C 1 ---0 and it is simply a one-parameter

problem. The Hamiltonian integral for this Special case is, from

Eq. (4.8),

kZ(1-k +2(1-v)k +(S_l+ 2)E*cos_ E*v v tang/ = 0 (4.9)

As has been mentioned in Section 3.2, there are difficultiesin

using Eq. (4.9) to solve for k or F. To solve for k from Eq. (4.9),

we have to determine the sign in front of the square root and change

this sign each time the quantity under the square root passes through

16



zero. At that instant the equation has a double root

(I-v)cos"Y (4.io)kl = k z - kZv

From the third equation of Eqs. (4.2), itis seen that this corresponds

to dy/de = 0. Physically, the flightpath angle passes through a maxi-

mum or a minimum and the trajectory has an inflection point at this

instant. This behavior is typical in an optimal trajectory. Therefore

it is more convenient to obtain the optimum k directly from integra-

tion. On the other hand to solve for F from Eq. (4,9) will become

impractical whenever ¥ is approaching and passing through the value

zero. Hence, Eq. (4.9) will be used solely to compute the initial

value Fi in terms of ki and to check the accuracy of the integration.

17



CHAPTER 5

FLAT PLANET SIMPLIFICATION

The equations we have derived in the preceding chapter are

the optimum equations for the general case of planar flight. They are

to be used when the speed of the vehicle is of the order of orbital

speed, v -_ l, which occurs at high altitude where the value of Z is

small. They are, of course, also valid at low altitude and low speed.

But in this case, without compromising the accuracy, it is simpler to

use the equations within the framework of a flat planet model. These

equations are to be deduced in this chapter.

S. 1 Governing Equations for Flat Planet Model

It is interesting to know that by a proper change of variables

we can deduce the dimensionless equations for the flat planet case

from the general equations of planar flight in the preceding chapter.

At low speed and low altitude, it is more convenient to use the

following dimensionless variables

2m_ V Z

W-psc ' u , y= Y (s. 1)

where w is the dimensionless wing loading which will replace the

altitude, u is the new dimensionless kinetic energy to represent the

18



speed, and y is the dimensionless linear downrange. The relation-

shipsbetween thetwo setsofdimensionlessvariables(Z,v,@)in

Eqs. (2.7) (where s has been replaced by @ in planar flightcase) and

(w,u, y)in Eqs. (5.I)are

k u y
Z=-w ' , (5.z)

Sincethe valueof kz ismuch largerthanu, e.g., forthe earth's

atmosphere kz---900 and u isofthe order ofunityatlow speed, we

have

kz >>u (5.3)

This isthe flatplanetcondition.Upon substitutingEqs. (5.2)into

Eqs. (4.2)and usingEq. (5.3),we have

dw
-- = w tanY
dy

d_uu= _ u(l+k z) - 2tanY (5.4)
dy E _:"w cosy

dY k 1
dy w cosY u

These are the stateequationsfor flatplanetmodel. We willobtain

identicalequationsby startingout from the classicalequationsfor

flightover a flatplanetand using Eqs. (5.I)inthem. Itis seen that,

althoughan exponentialatmosphere is stillused forthiscase, the

characteristicparameter kz oftheatmosphere is removed from the

equations. Hence, the flightbehaviorisindependentofany particular

atmo sphere.
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Again, we can use Eqs. (5.4) to form the Hamiltonian and

derive the optimum equations, as has been done in Chapter 3. Itis

more elegant and informative to use the condition of a canonical trans-

formation as a handy tool to effect the transformation from the old to

the new variables [5,6]. This, coupled with the condition of Eq. (5.3),

will lead directly to the equations for the optimal control of the flat

planet case.

For a transformation from the variables (Z, v, @) with

Hamiltonian H to the new variables (w, u, y) with the Hamiltonian

to be canonical, we have the necessary and sufficient condition that

the quantity

dZ + PvdV - Hd0) - (PwdW+PudU-_dy) = dU (5.5)(Pz

be an exact differential. In particular, for dU = 0, and using Eqs.

(5.2), we have

H = kZ_

wZ Pw

PZ = " k (5.6)

Pv = kz Pu

p¥ remains unchanged. By using Eqs. (5.2) and (5.6) and the con-

dition (5.3) in the Hamiltonian integral (4.8), we get the Harniltonian

integral for the flatplanet case

(E* + E* - G u tan¥- (5.7)
w cos Y u UPu

where again Cl = -_ is a constant of integration with CI = 0 for the
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free range case. The variable G in Eq. (5.7) is the analogue of the

variable F in Eq. (4.8), and is defined as

w Pw
G - (5.8)

u Pu

Similarly,performing the same transformationand usingthe same

conditionon thefirstand thirdequationsofEqs. (4.7),we have

dG (I-kz) + ZG
dy E*wcosY _ (k+ E;:_tanY)

(5.9)

d_ _i_}tanY+ 2_ E_:_( 2)dy - 2w cosY _ (k + E_:"tanY) - 2cosZY G- u

Again, this is a two-parameter problem in general. Itwill be

reduced to a one-parameter problem whenyfis free and C I = 0. The

Harniltonianintegralfor this special case is

l-k z 2k . (G-2)tanY = 0 (5. 10)E" w cos y + E*u
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CHAPTER 6

OPTIMAL TRAJECTORIES FOR FLAT EARTH

In this chapter, two categories of optimum trajectories are

computed numerically using the equations derived in the preceding

chapter for a flat planet model. The first category of optimum tra-

jectories is for the pull-up maneuver. We either maximize the final

speed with a prescribed final altitude or vice versa. The final flight

path angle can be either prescribed or free. We consider both cases

of unconstrained X and constrained X. The second category is for the

glide trajectory which maximizes the final range with prescribed final

altitude, final speed, and/or final flight path angle. Since the equations

used are independent of the planet and its atmosphere, so are the

results. But to have some idea about the physical quantities of the

flight, we use the flat earth model and its atmosphere as an example

to get dimensional quantities from the dimensionless results. In the

last section of this chapter, the linearized singular control technique

is introduced and tested. It is shown to be useful in reducing

computational work.
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6.I Maximum Final Speed or Maximum Final Altitude

In this case, itis proposed to findthe optimum liftcontrol to

bring the vehicle from the initialcondition

y=yi= 0 , w=w.l ' u=u.l ' _ =Yi (6.1)

to the condition atthefinalinstantyfsuch that either

w = wf , u = uf = maximum (6.2)

or, u = uf , w = wf= maximum (6.3)

We callthisthe pull-up type maneuver. A sketch of this type of

trajectory is presented in Figure 2. The conditionof Eq. (6.2)is to

maximize the finalspeed with a prescribed finalaltitude,while the

uf

wf

u

W.
l

W

ui

h

Y

0

Figure 2.- Geometry of a Pull-Up Maneuver.
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conditionof Eq. (6.3)is to maximize the finalaltitudewith a pre-

scribed finalspeed. They are equivalent, and itwill be shown that

their solutionsare obtained through a single formulation. We shall

assume that the finalrange is free, thus C x = 0. Since thisis a one

parameter problem, we can use Eq. (5.10).

As has been explained before, to avoid the difficultiesin using

Eq. (5.]0)to solve for either k or G, we shallintegrateboth of theEqs.

(5.9)along with the stateequations, Eqs. (5.4). For the fiveinitial

values required, since the initialstate (wi, ui, Yi)is given, we need

only the two initialvalues ki and G i to startthe integration. We set

ki to be the only parameter of thisproblem, and obtain G i from Eq.

(5.I0). This can be done except when Yi = 0. The case with _i = 0

willbe discussed later in this section.

For the numerical computation, we shalluse the initialstate

(wi, ui, ¥i } = (.5, .5, - _,) (6.4)

Although a specificset of values has been used, it is found thatthe

optimum liftcontrol has a general typicalbehavior. For the maxi-

mum lift-to-dragratio E*, we shalluse E ;:'_= i0 which is typicalfor

a fighteraircraft, and E* = 4.5 which is somewhat higher than the

value of a shuttlevehicle at low speed. To maximize the finalspeed

with a prescribed finalaltitude,we start the integrationwith a

guessed ki, and stop itat w = wf. Ifthe finalflightpath angle _f is

prescribed, this value is used to adjust ki untilthe conditionis met.
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The resulting trajectory is the optimal for maximizing uf with the

prescribed wf and ¥.f satisfied. If _f is free, then by the transvers-

ality condition, = 0. From the first equation of Eqs. (3.5), after
PYf

being transformed to the form for the flat planet case, we have at the

final instant

E* pyf
×f - - 0 (6.5)

2 ufPuf

This condition is used to adjust k.1for the free yf case. The result is

the overall best since the finalflightpath angle is also optimized.

A similar procedure is used to findthe optimum trajectory for

the case of maximum finalaltitudewith a prescribed finalspeed.

Since the problem has one arbitrary parameter, namely the

initialvalue k.lsthe family of optimum trajectoriesis generated by

simply integratingthe Eqs. (5.4)and (5.9)for differentvalues of k.
1

untilkf = 0. The results for E* = i0 and 4.5 are presented in Figure

3, which is plottedin the ratio w/w. Versus the ratio V/V i. The1

solid linesare the differentoptimum trajectoriesleading to the

terminal boundary represented by the dashed line. From the defini-

tion of w in Eq. (5.I)_if an exponential atmosphere is used, the

actual al_itudechange is simply

- 1 = _" log wf

For any prescribed change in altitude, we can evaluate the corre-

sponding minimum speed reduction along the dashed line. Conversely_
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we can evaluate the maximum altitude gain if wf/w i > i, or the

minimum altitude loss if wf/w i < I, for any prescribed speed

reduction.

Although the figure is plotted for a specific initial state given

in Eq. (6.4), the use of dimensionless variables allows a general

discussion of the influence of different physical characteristics of the

vehicle on its performance. For a numerical example, with u. = .5
1

and taking g = 9.81 m/sec z, i/_= 7162 m, the initial speed is 187.43

m/sec or 674.7 krn/hr. Assume a prescribed reduction in the speed,

say Vf/V i = .7. Then flying optimally, the maximum final altitude

is identified in Figure 3 along the dashed line of E ':_= 10 to be

wf/w i = 1.07. From Eq. (6.6) this represents an altitude gain of

484.57 meters. The initialaltitude with w i = .5 is

which is a function of the wing loading m/SCIOn. For a higher wing load-

ing, the same gain in the altitude can only be achieved at a lower alti-

rude. In other words, sinai1 wing loading favors the puli-up maneuver.

Figure 4 presents the variation of the normalized liftcoefficient

k as a function of the flightpath angle _ for several optimal trajec-

tories. Higher values ofk. correspond to smaller speed reductions.1

Itis interesting to notice that when _ = 0, that is, when the vehicle is

at the lowest point (or bottom) of the trajectory, the k for different
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Figure 4.-Variation of the Optimal Lift Coefficient in Terms of the Flight
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trajectories with the same E* have nearly the same value kb. From

the Hamiltonian integral Eq. (5.I0) with _ = 0, we have

- a 1 (6.8)
b kb -

On the other hand, from the definition of u and w in Eqs. (5.i), we

have

w g

Therefore, ifk b is nearly the same for all trajectories, the corre-

sponding dynamic pressure (½ p VZ)b is nearly the same, which in turn

means that the indicated speed at the lowest point is nearly the same.

Furthermore, at the lowest point, the normal acceleration as feltby

the pilot is the opposite of the acceleration due to the liftforce, which

in terms of kb is

aN u kb z _ (6.I0)
b Wb =Xb-

Thus it is also nearly the same for all trajectories regardless of the

final condition achieved.

It is possible to obtain an approximate analytical expression

for kb by considering a particular trajectory in Figure 4 which shows

a near constant value ofk from _ = _. to _ = 0. From the second
I

equation of Eqs. (5.9), since dk/dy --0 at _ = 0, we have

E* (uG - Z)b - E* (6.11)

Secondly, from the Harniltonian integral Eq. (5.10) at the initial
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instant,

uiCl-× l
E _'(uG - 2)itan_. - + 2k (6.12)

I w icosYi i

Itis confirmed by the numerical results that the product uG also

varies slowly. Thus

k.l_kb , (uG- 2) i- (uG-2) b (6.13)

Combining Eqs. (6.11), (6.12), and (6.13) gives the quadratic

equation for evaluating k b

u i+ _-_sin_ kbZ_ 2kb cos_.1- = 0 (6.14)

The values of kb obtained from this equation is in excellent agreement

with the numerical results, as shown in Table 1.

Table 1. Comparison of Approximate kb and Actual k b
$

(u/w) i variable, Yi = - 1/E

(u/w) i .6 .8 I.0 I.2 i.4

E $ = I0 Approx. kb 3.833 2.972 2.491 2.188 1.982

Actual kb 3. 825 2. 964 2.487 2. 186 1.981

(u/w)i .6 .8 I.0 I.2 I.4

E _'=4.5 Approx. kb - 3.598 2.861 2.434 2.159

Actual kb - 3.635 2.879 2.456 2.172
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To assess the influenceof the initialspeed, we use the same

values w i = .5 and ¥i = -I/E*, and generate several families of opti-

mum trajectoriesusing ui = .3, .4, .5, .6, and .7. The solutions,

thatis, the terminal boundaries of differentfamilies, are presented

in Figure 5. Itis obvious that higher altitudegain is obtained with

higher initialspeed.

Figure 5.- Influenceof InitialSpeed on Optimum Solution.
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Finally, using the same values w. = 5 and u. = 5, we varyI • 1 °

the _i to analyze its effect on performance. The solutions are pre-

sented in Figure 6. Obviously, the performance improves as Y.
i

increases and becomes positive• One interesting observation is that

when ¥i = 0, that is when the maneuver starts horizontally, hi can be

solved from Eq. (5.10),

_=(w)+,+w _6,5>]. • •
i I

Figure 6. - Influence of InitialFlight Path Angle

on Optimum Solution.
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Thus it is solely a function of the initial dynamic pressure (u/w)i

(or the initial indicated speed), and has the same value for all tra-

jectories. In the example here its value is 2. 4142. This also means

that k i can no longer be a parameter in this case. To generate the

family of optimum trajectories, we have to use either Gi or (dk/dY)i

as a parameter.

6.2 Pull-Up Maneuver withBounded k

Intheprecedingsection,todisplaythebehaviorofthelift

coefficientalong an optimum trajectory,we put no restrictionon its

upper limit.This isofno problem forvehicleswithhighmaximum lift-

to-dragratiosincetheoptimum k iswithina reasonablelimit. But

forvehicleswithlow maximum lift-to-dragratio,as inthe case of

thereentryvehicle,the optimum k may be unacceptablesinceitcan

exceed the stallingliftcoefficientkmax"

To discussthebehaviorofthe optimum trajectoryinthe case

ofbounded k, we referto Figure 7 which plotsdifferentoptimum tra-

jectoriesinthe (w,y)space forE* = I0. Trajectoriesforhigher

finalaltitude(lowerfinalspeed)are startedwithlower k.. The vari-1

ationofk has been presentedin Figure 4. Let us assume thatthe

upper bound ofk iskma x = 2.75. Then from Figure 4, alltrajecto-

rieswithk i< 2.75 are pure variablek trajectoriessincethe condition

k = kma x isnever reached. On theotherhand, to generatethe

remaining optimum trajectories,we must startwithk = kma x fora
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Figure 7.-Optimum Trajectories for Pull-Up Maneuver.

certaindistanceand then switchto variablek. The integration

starts with the state equations only using k = kma x, then at a certain

point called the switching point with the state (Ws, Us, Ys ), we use

the variational equations, that is the state equations and the equations

for k and G, as before and continue the integration until kf = 0. We

notice that in this example k > kb, the initial derivative of kmax

(dk/dy) i with ki = kma x is negative. To generate the family of opti-

mum trajectories, we can switch at any point where dk/dy is negative.

But to solve a particular problem with a prescribed wf or uf, the

switching point has to be found such that the final condition w = wf or

u = uf is satisfied.
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Next, we considerthe same case ofFigure 4 withE* = 10,

butnow we have kma x = Z.0. Then alltrajectoriesmust startwith

k = kma x. Sincekma x < kb inthisexample, dk/dy ispositive

initially.The constantk = kma x subarc must continuefora certain

distanceuntildk/dy < 0, which occurs afterpassage throughthe

lowestpointinthisexample. Thus allthe switchesoccur alongthe

ascendingarc, withtheconstantk subarc longerforhigheraltitude

gain (smaller finalspeed) trajectory.

To give an explicitexample, we solve the problem for the

following initialand end conditions,

w. =.5 , ui = .5 , ¥. = -I/E* with E* = I0;
I x (6.16)

Vf/V i = .7 , wf = maximum , _f = free

The physicaltrajectoriesare plottedin Figure 8. For the trajectory

withoutliftconstraint,itis foundthatki = 2.628314 leadingtoa

finalvaluewf = 0.53457 correspondingtoa gainin altitudeofhf - h.1

= 478.81 meters. Iftheconstraintkma x = 2.55 >k b is enforced,

untilw = 49935, and switchesthe trajectorystartswithk = kma x s "

tovariablek. The switchoccurs duringthe descendingphase. The

final altitude is wf = 0. 53450 and corresponding to a gain in altitude

of hf - hi = 477.87 meters. On the other hand, with the constraint

kmax = 2.0 < kb, the switch occurs at Ws = .50877, at a point along

the ascending arc. We obtain wf = .53402 which corresponds to a

gain in altitude of hf - hi = 471.44 meters. The variation of the
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normalized liftcoefficientk for these three trajectoriesis also

presented in Figure 8.

6.3 Maximum Range

In this case, it is proposed to find the optimum liftcontrol k

to glide the vehicle from the initialcondition until the final condition

w = wf , u = uf , Y = Yf (6.17)

such that the final range yf is maximized. Since yf is not free,

C I # 0, and the Hamiltonian integral Eq. (5.7) is inoperative in our

formulation. We stillhave the same differential system, that is,

Eqs. (5.4) and (5.9), the difference here is that we have two arbi-

trary parameters k. and G.. The differential system is integratedI 1

with a set of guessed values k. and G. until the prescribed final
1 I

altitude w = wf is reached. The other two prescribed final values uf

and Yf are used to adjust the values of k. and G.. If the final angle is1 1

free, the condition on Yf is replaced by the transversality condition

kf=0.

The advantage of using the variables k and G to replace the

adjoint variables is that their numerical values are nearly constant.

This is because in glide for maximum range, both _ and u vary

slowly so that dT/dy --_0 and du/dy --_0, and we have

w cos Y
k-

u (6.18)

U (I+ Xz)-tan ¥ =
2E*wcos¥
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Hence
1+kz

- tanY - 2E*k (6.19)

In this so-called steady state approximation, the range is maximized

by selectingthe liftcoefficientk to minimize the glideangle -_.

This leads to the selectionk = I, thatis, to glide at maximum lift-

to-drag ratio. Then we have the minimum glideangle

I
- tang/- (6.20)

E*

Of course, this solutionis only approximate. The real optimum

solutionis obtained by a liftmodulation. Nevertheless, the steady

state solutionprovides an educated guess for the behavior of k and G.

First, using k = 1 and Eq. (6.20)in the firstequation of Eqs. (5.9),

we deduce that dG/dy _ 0. This means that G is nearly constant

during the glide. Furthermore, using k = 1 and Eq. (6.20)in the

second equation of Eqs. (5.9)and noticingthat dk/dy _ 0, we have

G-- 4 since u-- ui = .5. In summary, the range of values for ki is

close to 1 and the range of values for G i is close to 4. In other

words, the optimum trajectoriesare very sensitiveto the initial

values ki and G., especiallywhen E* is large.i

The results are presented in Figures 9, I0, and ii for the

case of fighteraircraftwith E* = i0. Each figure presents several

optimum trajectorieswith differentfinalaltitude. To restrictthe

plot to a one-parameter family of trajectories,we impose the

conditionuf = wf at the finalinstant. For each trajectory, that is,
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for each prescribedfinalaltitudewf, thecorrespondinginitialvalue

ofthenormalized liftcoefficientk.isalsolabelledin thefigures.i

For comparison, in each figurewe plotin a dashed linethe steady

statetrajectory,thatis,the trajectorygeneratedby usingk = i.

Figure 9 givesthe variationofk as a functionofy for

differentaltitudedrops. Itis seen that,forlargealtitudedrop,

optimum glideiseffectedatnear maximum lift-to-dragratio,i.e.,

k _--i, exceptfortheinitialphase and thefinalphase. Also, we

assume that_fis free,thuskf = 0.

Figure i0 givesthe variationof -_ as a functionof y. For

largealtitudedrop, itis steadilyincreasingata very slow rate

exceptfortheinitialand the finalphases. Hence, as an approxima-

tion,alongthisportionoftheoptimum trajectory_ isnearlyconstant.

Figure II givesthe variationofthedimensionlessdynamic

pressure _1= u/w. For largealtitudedrop, itisnearlyconstantand

slightlylessthanunityduringthe main portionoftheglide. To find

thisnear constantvalue,we takek = 1 inEqs. (6.18)and have

E*
n- (6.21)

_/i+ E *z

For E _ = I0, thisvalueis _1= .99504 and is slightlylessthanthe

optimum valueof_1which is near _]= .9965.

Concerning the actualperformance, namely themaximized

range, thek = 1 trajectorygivesa good approximationforlarge
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altitude drop. Its range is within 1% of the optimum range. A better

approximation is to use constant dynamic pressure glide. This also

has the advantage of flying with constant indicated speed. The value

of _3is given approximately by Eq. (6.21), and is purely a function of

the maximum lift-to-drag ratio E _:'.

In contrast with long range glide, the optimum glide for small

altitude drop is not close to the glide with k = 1. This is shown in

Figure 12 where again the dashed line represents the k = 1 trajectory.

The short range problem is closely related to the problem of a pull-up

maneuver with prescribed range. In this respect, we have the final

.5

=1 5 X.=I. lC k.= k.=l 01 ki=l 03i " 1 1 1 " "

G.= 4.58 G.=4.00 z 3.991 =4.024 Gi= 4.0341 1 1

wf=. 4768 wf = .4581 =.444 c, =. 4287 wf=. 4072
I I I I y0

.2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Figure 1Z. - Variation of the Optimum Lift Coefficient for
Short Range (Small Altitude Drop) Glide.
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condition either

wf, _f, yf = prescribed, uf = maximum (6.ZZ)

or

uf, Yf, yf = prescribed, wf = maximum (6.23)

We terminate the integration at y = yf, and use the other two pre-

scribed final values to find the two initialvalues k. and G.. IfYf isl l

free, the final condition in Y is replaced by the condition kf = 0.

6.4 Linearized Singular Lift Control for Maximum Range

An inspection of the data presented in Figure 9 clearly shows

the difficulty encountered in the numerical computation. More

explicitly, for large altitude drop, the initialvalue k. has to be foundi

with great accuracy for the final condition to be identically satisfied.

It is seen that, except for the initialmaneuver and the final maneuver,

the liftcontrol nearly follows the same line. This line can be con-

sidered as a singular arc familiar to the problem in which the control

is linear. To reduce the computation work, if this singular arc can

be found, one can follow the line until near the end and then compute

separately the last arc where again, the control undergoes drastic

change.

In general, let us consider an optimum control problem with

the Hamiltonian

H = H u,t) (6.Z4)
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where u is a scalar control subject to the constraint

< u _<u (6.Z5)Umin - max

To maximize the Hamiltonian, we either use u = u or u = u
rain max '

or an interior variable u such that

8H

0u = 0 (6.z6)

In general, the solution of Eq. (6.26) provides the optimum control

u =u (_',k',t) (6.ZT)

This control is of the Euler-Lagrange type and u* can be expressed

explicitly in terms of the state vector _-_and possibly the time t and

some constants of integration provided that the adjoint vector _ can be

expressed in terms of the same variables. This, in turn, requires

the analytical integration of the equations for the adjoint vector p-_.

But,unfortunately, for most realistic cases it is not possible.

Now, let us assume that we know an approximate law for the

optimum control, say

u*__u0(k',t) (6.z8)

Then by Taylor's series, we can expand the maximized Hamiltonian

near the value u = u0 to have

(OH) (u*-uo)+ "." (6.29)H*=H(_,_,u0,t)+ _0

Ifu0 is near the optimum value, the difference _ = u* - u0 is small

and, by retaining only the first order we have the approximate H*

which is now linear in u. Again, for this linearized problem, the
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optimum solutionis either u = Umi n or u = u or a variable u whenmax

the coefficientof the linear control, called the switching function,

vanishes identically. That is

--0 (6.30)

Here, since we have assumed that u is not on the boundary, it is of

the variable type. We have Eq. (6.30) which provides a relation

between the state variables and the adjoint variables. This relation

is exact in the linearized problem, but is approximate in the original

non-linear problem. The accuracy of this approximation is of the

order of _. In the linearized problem, the Eq. (6.30) is valid as long

as the control is of the interior type. Hence, we can take its deriva-

tive with respect to the independent variable t, to generate another

relation between x and _ It is known that we can take the derivative

successively until the linear control appears for the first time, with

an even derivative. The linear control can then be deduced explicitly.

Then in the case where it can be expressed explicitly in terms of the

state variables by using the additionai reIations obtained, we have an

approximate but explicit law for the optimum control.

As an example for our present case here, from the steady

state and the numerical analyses we have found a good approximation

for the lift control k. It is k 0 = 1o We shali call this the zeroth order

solution. By applying the linearizingtechnique on thisproblem, we

can obtain the approximate law for the control
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wcos'l
X1 - (6.31)u

We call this the first order solution. Then if we apply the Iinearizing

technique once again, based on the first order solution which is a

better approximation than the zeroth order, we finally have

wcosY A
×z - (6.32)u B

where

A = E *z u z [ 6tanZ'/ - 4u (1 - tanZ_/) + 2uZtanZ¥ + (1 +u) C]

- 2E*u(3+u) (2+C) wsin¥ + 2C (2+C) wZcosZ_ '

(6.33)

B = E *au a [g(l+u) tana_/ - 4u- C] - 2E*u(4+C)wsin_/

+ 8 wz cos z¥

with
u z

(6.34)C = 1 - wZcosZ3{

Eq. (6.32) gives the explicit second order solution for the lift control.

The details of the derivation of kl and k z will be given in Appendix B.

For the first order solution, from the third equation of (5.4) we see

that using the near optimum law (6.31), the flight path angle is

maintained constant, a fact which can be observed in Figure 10. It

is an improved approximation as long as the zeroth order solution

k0 = 1 is accurate. Then for the second order solution (6.32), we

have tested it numerically, and it gives excellent results. Using the

initialvalues of the No. 2 trajectory in Figures 9, 10, and I1, we

start the integration optimally. Then at y = 2.4 it is switched to the
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explicit control law (6.32). The integration keeps on going, and the

trajectory is generated by using this approximate control law. As

compared with the nearly linear portion of the optimum trajectory

No. 4 in Figures 9, 10, and Ii, the two liftcoefficients, approximate

and optimum9 agree to four significant digits, and the two trajec-

tories generated are identical.
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CHAPTER 7

OPTIMAL TRAJECTORIES FOR SPHERICAL EARTH

As in the case of the flat earth, we shall consider two types

of optimum maneuvers. The first type is the pull-up maneuver,

and the second one is of the gliding type. The optimum trajectory

can be initiated from the top of the atmosphere. In some cases the

pull-up maneuver gives the skip trajectory. Since the state equations

we have derived for the spherical planet case, the Eqs. (4.2), are

exact, they are also valid for the Keplerian motion of the vehicle

after skipping out of the planetaryatmosphere. In the other cases,

the vehicle may reenter the planetary atmosphere after a coasting

flightto initiate a new skip trajectory until effective entry at low

speed. We shall consider both cases. The computation is done with

the value kz = 900 for the earth atmosphere. For the maximum lift-

to-drag ratio,a reasonable value E* = 3 is considered since the flight

is effected at high speed. Again, the maximum lift-to-drag ratio

trajectory, that is,the k = 1 trajectory, is used for comparison in

the gliding type optimum trajectory.
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7.1 Pull-Up Maneuver atModerate Altitude

This is the same problem as discussed in Section 6.I. The

differentialsystemconsistsoftheEqs. (4.2)andtheEqs. (4.7).

The initialconditionis

@ = 0, Z = Z., v= v., _ = ¥. (7.1)i i 1

It is proposed to find the optimum lift control to bring the vehicle

from this initial condition to the final instant @f such that either

Z = Zf, v = vf = maximum (7.2)

or

v = vf , Z = Zf = minimum (7.3)

The final range @f is assumed to be free and hence C I = 0. Since

the second equation of Eqs. (4, 7) can be deleted, the only arbitrary

parameter is k. and F. can be obtained from Eq. (4.9). If the finalI 1

flightpath angle N£ is prescribed, it is used to find the required

initialvalue k..x If Yf is free, we have the transversality condition

kf=O.

The problem considered here involves relatively low speed

and altitude, and we shall take the initial values as

1
Z = 5, v. = 15, ¥. = - -- (7.4)i " 1 " 1 ZE ;:"

At high altitude where Z. _ 0, and v. is of the order of orbital speed,
1 1

v. _-- 1, this type of maneuver leads the vehicle to skip out of thex

atmosphere. This case will be analyzed in detail later.
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The problem is solved by the same routine as discussed in

the case of the flat earth. The results are summarized in Figure 13.

It is plotted as _(h-h i ) versus V/Vi, where h is the actual altitude

and V is the actual speed. By the definition of Eqs. (2.7) for Z, if

an exponential atmosphere is used, the actual altitude change is

Ah = hf h. 1 _Z__i_
- I =_ log \_'f/ (7.5)

4 p (h - hi)

1.3
2

Terminal Boundary

1 1.5

\

\ v/v.
1

0 I I
.8 .9 0

-1

Figure 13.-Solution for the Optimum Pull-Up Maneuver

at Low Speed over a Spherical Earth.
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Again, the different solid lines are the optimum trajectories leading

to the final boundary plotted in dashed line.

The variation of the normalized lift coefficient k as a function

of the flight path angle _ for different trajectories is presented in

Figure 14. The behavior is the same as in the flat earth case, but

the values of k at the lowest point, _ = 0, are not so nearly the same.

The difference is more due to the fact that the value of the maximum

lift-to-drag ratio E* used is relatively low rather than due to the

additional centrifugal acceleration term which is included in the

spherical planet equations.

7.2 Keplerian Motion Following a Skip Maneuver

In a skip trajectory, the vehicle enters the atmosphere at

very high altitude with a speed at orbital magnitude and uses its

Y(rad)
t l I I

-.2 -.I 0 .I .2 .3

Figure 14.-Variation of the Optimum Lift Coefficient for Pull-Up

Maneuver at Low Speed over a Spherical Earth.
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liftingcapability to negotiate a turn. It is then ejected from the

atmosphere. This maneuver is depicted in Figure 15.

The skip maneuver is an important maneuver. It can be used to

achieve maximum range or to assist a climb to orbital altitude with

maximum residual speed, hence minimizing the required character-

istic velocity for orbit insertion. In the three-dimensional maneuver,

V a

Vf

@f- 6i

@

I

Figure 15.-Geometry of a Skip Trajectory.
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it can be used to change the orbital plane. The first order solution

for constant lift-to-drag ratio with the centrifugal and gravity accel-

erations neglected has been obtained in the classical literature [I] .

An accurate second order solution for open loop guidance of

skip trajectory has also been obtained [7]. In this chapter, we shall

analyze the optimum solution with liftmodulation using the exact

equations.

The equations we have derived are valid for flightin the

vacuum by taking the limit Z -* 0. But to initiate atmospheric flight

we must start with some nonzero initialvalue Z i. We shall adopt

the convention that atmospheric entry is initiated when the accelera-

tion due to atmospheric liftis equal to a certain small fraction of the

gravity acceleration. From the definitions of Z and v in (2.7), the

dimensionless acceleration due to a liftforce with C L = C_, is

a _-_ (7.6)--= By
g

For the earth atmosphere, _r = 900. Taking a/g = .015, i.e., 1.5%,

with an initial speed equal to the orbital speed, v i = I, we have

Z. = .0005. We shall use this value as the value of Z at the top ofi

the sensible atmosphere. For higher altitude with Z < Zi, the flight

is considered as in the vacuum and Keplerian motion applies.

As shown in Figure 15, the initial point (ri, V i, _i ) is con-

sidered as the entry point, and the final point (rf = ri, Vf, _f) is
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considered as the exit point. Between the two points is the

atmospheric skip trajectory, while beyond the exit point the flight

is in the vacuum. Once in the vacuum, the vehicle climbs to the

highest point (ra, Va, _a = 0), the apogee of the Keplerian orbit.

Because of the obvious symmetry, the range angle _ between the

exit point and the apogee is half of the range angle for the coasting

portion of the trajectory in vacuum. We shall be concerned with

the maximizing of either the apogee distance r or the apogee speeda'

Va, or the coasting range angle 2_. Hence, it is necessary to express

these elements in terms of the variables at the exit point where

atmospheric flightterminates. These relations can easily be

obtained by using the classical Keplerian equations. However, we

shall derive the pertinent equations from the general equations (4.2).

With Z -* 0, and using the equation for the variation of the

radial distance to replace the first equation of (4.2) since it is

inoperative, we have

dr
- r tan Y

dO

dv
d-'@= - (2-v) tanY (7.7)

dY _
de v

From the second and third equations of (7.7),

dr_ v(2-v I tan_ (7.8)d_/ 1 - v
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Upon integrating this equation, we have

v(2- v) cosZY = (1- ez) (7.9)

where the right hand side represents a constant of integration.

Next, from the first and second equations of (7.7),

dr -r
- (7. lO)dv 2 -v

Its integration gives

r

- =Z-v (7.II)a

where a is anotherconstantofintegration.Returningtothe defini-

tionofv, v = r vZ/_ , itiseasilyseen thatEq. (7.II)expressesthe

conservationofenergy and a isthe semimajor axisoftheKeplerian

orbit. Furthermore, combiningthe two integrals(7.9)and (7.11)

and againusingthe definitionofv, we have

rZVZcosZ7 = _p (7.12)

where

p = a (i-ez) (7.13)

Equation (7.12)expresses the conservationofangularmomentum,

and itisnow clearthate isthe eccentricityofthe orbitwhile p is

the sernilatusrectum. Now, considerthe derivative

where we have used thefirstequationof (7.7). By takingthe
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derivative again and simplifying,we have

vcosZ_

Using the definitionof v and the integral (7.iZ) in Eq. (7.15),we

finallyhave the differentialequation for the orbit

dz

The general solutionof this equation is

P = I + Acos @ + Bsin6 (7.17)r

where A and B are constants of integration. Startingthe angular

variable at the perigee, @ = 0, dr/d0 = 0, r = a (I- e), and we obtain

the polar equation of the orbit

P = 1 + ecosO (7.18)r

Hence, we have derived the classicalequations for Keplerian motion

from our general equations (4.2). With these equations, we can

deduce the performance indices for optimization in the following

sections.

7.3 Skip Trajectory for Maximum Final Speed

Again, we assume that 8f is free. Thus C 1 = 0, and we can

use Eq. (4.9). Itis a one-parameter problem. Referring to Figure

15, the vehicle enters the atmosphere at the initialpoint with the
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initial condition

(Zi, vi, _/i)= (.0005, 1.0, variable) (7.19)

Itis proposed to find the optimum liftmodulation such that at the

exit point

Zf = Z i , Yf = free , vf = maximum (7.Z0)

Since _f is free, we again have Xf = 0. We integrate the Eqs. (4.Z)

and the first and third equations of (4.7), from the initialstate, with

a guessed ki and a F. solved from Eq. (4.9). Then we use the con-I

dition kf = 0 to find the correct value of k.1.

The variation of the optimum liftcoefficient as a function of

the speed ratio V/V i is presented in Figure 16 for several initial

flightpath angles _/i" Itis clear that less negative 3('igives higher

finalspeed. For allthe trajectoriescomputed, the optimum lift

coefficientslightlyincreases at the beginning and then decreases

continuously to the final value kf = O.

7.4 Skip Trajectory for Maximum Apogee Altitude

In this problem, it is proposed to use optimum liftmodulation

to bring the vehicle to the exitpoint such that subsequent climb

in the vacuum leads to a maximum height. Since Of is free, CI = 0,

and therefore the only parameter is k.. From Eq. (7.11) we havei

r 2-v

a _ a (7.21)

rf 2 - vf
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k 1.8-
Z. = .0005

1.6 v. = 1.O

1.4 _/i = variable

.2

v/vi
0
.88 .90 .92 .94 .96 .98 1.00

Figure 16. -Variation of the Optimum k as a Function of the

Speed Ratio for Skip Trajectories with Maximum

Final Speed

As rf = ri , maximizing ra is equivalent to maximizing ra/r f or, to

minimizing -ra/r f. On the other hand, from Eq. (7.9),

Va(2-Va)= vf(2-vf)cosZ_f (7.22)

Solving for va from this equation and substitutinginto Eq. (7.21),we

have

ra 1 [ _ J[i+.i _ (2_vf)vfcosZYf]J rf - vf- 2
(7.23)

Equivalent expression in terms of the energy was given in [I0].

59



Since J is a function of vf and _f, we have at the final time

8J 8J

pvf= . p f=  7z41
Upon using the relationofEq. (6.5),we have the followingtrans-

versalitycondition

E _',"(2-vf)zsin_fcosyf (7.z5)
×f=z[l-(Z-vf)cosZ_f+-_i-(Z-vf)vfcosZyf]

This conditionisused to findtheinitialvaluek. forthe optimum1

trajectory.Finally,thecorrespondingmax (ra/rf)can be obtained

from Eq. (7.Z3).

This problem has been solved,and we have thefollo_-ing

results

Z. = .0005 , v.= 1.0 , _. = -8 °
1 1 1

Zf = .0005 , vf = .377 , _f= 43.36°

k. = - °70ZZ5 , kf = 2.04406 , max = 1.1_.3081

In this flight program, the initial lift coefficient is negative. It

appears that the optimum trajectory starts with a plunge toward the

dense atmosphere with a slight increase in the speed, and then uses

the lift to rotate the velocity vector upward with a relatively high exit

angle, to achieve the absolute maximum apogee height. This

maneuver is purely an academic exercise. It incurs excessively

high acceleration. The value of Z at the bottom of the flight path is
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Z b = 4. 7795. This represents a dip into the atmosphere with a

distance Ah = (i/F)log (Zb/Zi) = 65,641.5 meters. In practice, we

shallhave the followingproblem.

7.5-Skip Trajectory for Maximum Apogee Altitude with Prescribed
Apogee Speed.

This is a more realistic formulation of the previous problem.

Specifically, we seek to maximize the apogee altitude while prescrib-

ing a residual apogee speed V a.

Let

r V z

R a -- a- , v - (7.z6)
rf a _/rf

Hence, we minimize J = I/R with a prescribed_ . From Eqsa

(7.21) and (7.26), we have

1 l+½Va- vf  7.z71II

From this relation it is obvious that to minimize I/R we simply

maximize the final speed yr. But this time, besides maximizing vf ,

the prescribed Va {or--va) must also be achieved. Since Va = raVaZ/_

= ll_a , by using this relation and Eq. (7.27) for I/R in Eq. (7.22),

we have

v

a - (I + _ va - _ vf)z = 0 (7.28)
vfcosZYf

This is the final condition to be satisfied so that the prescribed
a

can be achieved. The procedure to solve this problem is the same
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as that in the preceding section, but here we use Eq. (7.28) to

search forthe correctinitialvaluek..i

As thisis a one-parameter problem, we can obtainthe

totalityof solutions simply by varying the parameter k.. Then at the1

end of the integration where Zf = Z.,1 Eq. (7.28) is used to solve for

and Eq. (7.27)forR. Figure 17presentsthe solutionforseverala

valuesof¥.. For each valueof¥.thereisan absolutemaximum
1 i

apogee distance corresponding to the problem solved in the preceding

section. For any other prescribed _ which is different from thisa

point, the maximized apogee distance is lower. The case of V = 0a

corresponds to vertical ascent in a vacuum, and hence for a tra-

jectoryleading to Yf = _/2. Of course, this case is unrealistic.

7.6-Skip Trajectory for Maximum Apogee Speed with Prescribed

Apogee Altitude

This is a trajectorywithpracticalimportance. Itis

proposed touse optimum liftmodulationtobringthe vehicleto the

exitpointsuch thatthe subsequentascentinthe vacuum willlead

the vehicletoa prescribedapogee altitudera witha maximized

residualspeed V . Clearly,thisleadstominimizing-thecharacter-a

fsticvelocityAV fororbitinsertion.

By eliminatingvq between Eqs. (7.27)and (7.28)we have

Rz(Z-vf)- 2R+ vfcosZYf= 0 (7.29)
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Figure 17.-Maximum Apogee Distance for a Prescribed Apogee
Speed, or Maximum Apogee Speed for a Prescribed
Apogee Distance.
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For a prescribed ra, the ratio Ris specified. The procedure to

obtain the optimum solution is the same as in Section 7.4, except

that in here Eq. (7.29) is used to adjust the initialvalue X.. ForI

the totality of the solutions, itisexactly the same as has been plotted

in Figure 17. But this time, the value ra/r f is prescribed while the

corresponding value _a is maximized. We notice that there exists a

range of ra/r f that gives two trajectories both satisfying the neces-

sary condition for optimality. The optimum trajectory is the one

corresponding to higher value of va.

7.7 Skip Trajectory for Maximum Coasting Range

Again, we refer to Figure 15. For the initialcondition we

are stillusing Eq. (7.19). In this problem, it is proposed to find

the optimum liftcontrol to negotiate a skip trajectory such that after

its exit from the atmosphere, the vehicle coasts ballistically in the

vacuum to achieve a maximum coasting range 2_. We first solve

this problem by assuming that the final value ef at the exit point is

free, hence CI = 0. This is suggested by the fact that at orbital

speed with small value of Yi' the coasting range 2_ is significantly

larger and more sensitive to change than the atmospheric skip range

(@f - 6i). The next case to be addressed is the maximization of the

total range from the initialpoint, (@f - @i) + 2_.

From Figure 15, it is seen that _ = _ - el. Therefore, we

obtain from Eq. (7.18)
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ill" ) (7.30)

_ _P_
cos_ = e rf

By writing the Eq. (7.9) at the exit point and solving for e, we have

e = _I - (2-vf)vfcosZYf (7.31)

Then by using Eq. (7.31)and the Eq. (7.ii) at the exitpoint in the

relation (7.13),it gives

P = rfvfcosZYf (7.32)

Upon substitutingEqs. (7.31)and (7.32)intoEq. (7.30),itbecomes

1 - vfcosZyf

cos= %/1_(z-vf)v cos yf (7.33)

For the firstcase we maximize 26. Itis equivalenttominimizing

cos _ and thusJ = cos_. Since J isa functionofthe two final

variablesvfand Yf, we againhave the relations(7.24). The trans-

versalityconditionisthen

E _:"[I - vf - tanZyf]

kf = 2tanYf (7.34)

This isthe conditionused to search forthe exactvaluek.. The
I

initialstateused and the resultsobtainedare

Z. = .0005 , v.= 1.0 , ¥. =-4 °
1 l I

Zf = .0005 , --v_= .87475 , Yf = 6.02°
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k. =. Z925
I

@f- @i= "17646

Z_max = 1.18958

To show the optimality character ofthistrajectory, we integrate the

stateequations(4.Z)usinga constantliftcoefficient,k = constant.

The bestconstantk which givesthe maximum coastingrange isfound

tobe k = 1.024, and the resultsare

Zf = .0005 , vf= .90876 , ¥f = 3.58°

8f- @i= "20633

2_max = 1.07743

Itshows thatusingoptimum liftmodulationwe have an improvement

of I0.41_ inthe coastingrange as compared tothebest solution

obtainedwitha constantliftcoefficient.

We now solvethe second case, inwhich we maximize the

totalrange from the initialpointtothe end ofthe coastingflight.

That is,we maximize thefollowingperformance index

I - vfcosZ_/f ]

J = (Of- 0i)+ Zcos-I ........ j (7.35)
V1 - (2-vf)vfcosZ_/f

This time, thefinalrange isnot freeand hence C1 # 0. There are

two parameters tobe found,k.1and F..IActuallyCIis equaltoPof'
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and from Eq. (7.35) we have, for a maximization problem,

8J

Per - 8@f 1 (7.36)

Thus C I = I. Furthermore, we also have

8J 8J

Pvf- 8vf ' PYf- 8Yf (7.37)

Upon using the relations (7.37) in Eq. (6.5), it gives exactly the

same kf as given by Eq. (7.34). Therefore, Eq. (7.34) is also a

transversality condition for this case. We need one more transvers-

ality condition because this case has two parameters. It comes from

the Hamiltonian integral (4.8) at the final time. With C I = 1 and the

Pvf given in Eq. (7.37), we finally have

k Zfvf (l-k;) (l- vf)kf (l vf )
E*cosYf + E* + -'_- + vfFf tanYf = 0 (7.38)

The problem is solved and this time it is found that

Zf = .0005 , vf = .88101 , Yf = 5.63 °

k. = .57921 , F. = 3. 6873
1 1

@f- 8. = .181731

2_ = 1.18692

The total range obtained is J = (@f- 8.) + 2_ = 1.36865 which is

slightly higher than the total range J = i. 36604 of the first case

where only the coasting range 2_ is maximized.
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For all the skip trajectories solved above, it has been

assumed that beyond the altitude Z = . 0005, the flight is in a

vacuum. The corresponding altitude is given, through the atmos-

pheric density, by

_m = .0005 (7.39)

For most vehicle characteristics, the resultingaltitudeis generally

high enough such thatbeyond this altitudethe subsequent trajectory

is practicallyKeplerian. For better accuracy, one can take a

smaller Z. The computational procedure remains unchanged.

7.8 Glide with Maximum Range

The maximum range obtained previously concerns the range

with one skip. We now generate the optimum control to maximize

the totalrange for a descent from an initialaltitudeZ. to a finalI

altitudeZf. The problem is firstsolved for the case of a relatively

low initialaltitude. A reasonable set of initialvalues is

1

(Zi, vi, yi) = (.5, .15, - _) (7.40)

with again E ;:_= 3. This can be considered as the gliding flight

following a ballistic entry of a shuttle vehicle. The vehicle enters

r,J
the earth atmosphere at the reentry altitude Z e 0, with a speed

ve _- 1 and a certain reentry angle Ye" Then at the end of the

ballistic phase, the vehicle rotates to reduce the angle of attack,
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hence generating a liftingforce and using liftmodulation to glide to

a final altitude with a maximum range. The case of gliding from

the entry point will be analyzed in the last part of this section.

The numerical computation is carried out exactly as in the

flat earth case. We integrate the state equations, Eqs. (4.2), the

first equation of (4.7) for F, and the third equation of (4.7) for k,

from the initial state (7.40) and two guessed values F. and k.. At a
1 i

prescribed final altitude the integration is terminated, and the other

two prescribed final values vf and Yf are used for adjusting the Fi

and k.1" If yf is not prescribed, then the condition on Yf is replaced

by the condition kf = 0. In order to generate a one-parameter family

of optimum trajectories, we impose the final condition

_-_ Zf vf = 1 (7.41)

Physically, this means that the final acceleration due to a liftforce

= * is equal to the gravity acceleration. For each pre-with C L C Z

scribed Zf, the corresponding vf is obtained from this condition.

Figure 18 presents the variation of the optimum lift

coefficient. Itis seen that k oscillates about the value of unity and

tends to this value near the end of a long range glide which corre-

sponds to a large altitude drop. Figure 19 presents the variation of

the flightpath angle while the variations of the altitude and the speed

are depicted in Figure 20.

69



-4
o k

1.6
1

Z i = .5 vi = .15 Yi =- ZE ;:_ A

1.4

I.Z

1.0

.8

.6

....._:' @I ®
®

I I \ I I0 (tad)

0 .05 .I0 .15 .Z0 .Z5

Figure 18. -Variation of the Optimum k for Low Altitude Maximum Range Glide
over a Spherical Earth.



Figure 19.-Variation of "Yfor Low Altitude Maximum Range Glide over a

-_ SphericalEarth.
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For the case ofglidestartingfrom theentrypoint,a typical

initialcondition is

(zi,vi,Yi)=(.0005,1.0,-4°) (7.4z)

The finalcondition1obe satisfiedis

Z = Zf, v = vf, _f = free (7.43)

The variationofthe altitudeas a functionofthe range forthe optimal

trajectoryisplottedinFigure 21 as a solidline. The variationof

the flightpathangleis plottedin Figure 22. Finally,Figure 23

presentsthevariationsoftheoptimum liftcontroland the speed.

Again, theoptimum liftcontroloscillatesand tendstothe liftcontrol

for maximum lift-to-dragratio,k = I.

Inboth cases above,the trajectorygeneratedby using

maximum lift-to-dragratio,k = i, isplottedinthe dashed linefor

comparison. Besides an improvement inthe range of about2%, the

oscillationinaltitudealongtheoptimum trajectoryis lesssevere.

We can alsosee a more desirablebehaviorofthe flightpathangle

alongtheoptimum trajectory.Italsoyieldsa more smooth variation

in thedeceleration.The oscillationoftheoptimum trajectoryresults

from an exchange between the kinetic energy and the potential energy.

At high speed, a skiptonear vacuum contributessignificantlytothe

range.
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CHAPTER 8

THREE-DIMENSIONAL FLIGHT

Two elements are of interest in three-dimensional flight;one

is the maximum cross range, the other is the footprint. In this

chapter, we shall discuss the procedure to solve the absolute maxi-

mum cross range. We will see that it is a three-parameter problem.

Then by using the equilibrium glide condition as a simplifying device,

we shall compute the footprint of a gliding entry vehicle on the surface

of a planet. A technique of coordinate rotation is used to make

the iteration much more effective.

8.1 Maximum Cross Range

Itis proposed to find the liftand bank modulation to maximize

the final latitude if while the final longitudinal range @f is free. For

an initiallycircular orbit, if the position of departure is free, the

reachable domain will then be a zone between the latitudes -Imax

and +Imax" If @max = w/2, the reachable domain is the entire

surface of the planet.

Since the final arc length sf is free, we have C O = 0 in Eq.

(3.6). The final condition in the state variables will be
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Z = Zf, v = vf, Y = yf = free, @ = @f = free,

(8.1)

= _f = free , _ = _f = maximum

The Eqs. (3.7) at the final time then can be written as

p@ " CI = 0

plf= - cos¢f(Czsin@f- C3cos@f)= 0 (8.Z)

plf= Czcos@f+ G3sin@f= 1

Solving for the constants of integration Gz and C_ we obtain the

solutions for p_ and p_,

p_ = cos _ sin(@f-8)
(8.3)

P_b= cos (el- e)

We also have, since Yfis free,

Qf = 0 (8.4)
= Pyf

The Hamiltonian integral (3.II) becomes

-PtanY-N[E,kZcosY + (2-V)vtanY] - (l-v)Qv

z

(+ 4NcosY QZ + cosZ_/ + p_sin_ - p_cos _tan_ = 0 (8.5)

Thus for the specified final condition (8.1), the procedure to obtain

the optimum solution is as follows. Starting from a certain initial

state, say
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(Zi,vi,Ni, Oi,d_i,_i)= (.0005,1.0, -4°, 0, 0, 0) (8.6)

E _witha givenvalueof ,we integratethe stateequations(2.8)along

withthe adjointequations(3.9),usingthe controllaw (3.I0)and

%he Eqs. (8.3)forp_ and p@. There are threeparameters, namely,

thefinallongitudinalrange Ofand two ofthethreeinitialvalues P'I'

N., and Q. sinceone ofthem can be obtainedfrom the Hamiltonian
1 1

integral(8.5). These parameters are tobe selectedsuch thatwhen

%he integrationis stoppedatO = Of,the two prescribedfinalvalues

Zf and vfand one transversalitycondition(8.4)are allsatisfied.

The resultingtrajectorywillbe the optimum trajectoryformaximum

cross range.

A simplificationcan be made by using%he so-calledequilib-

rium glidecondition,assuming thatthe glideangleis small and

staysnearlyconstant. This isexpressed as

d¥, (8.7)ds

By substitutingintotheequationfor_/in (2.8),we have

l-v (8.8)kZ- kvcos o-

This equationisused toevaluatethealtitudeZ. Thus we have the

followingreduced setofstateequations
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dv (l+Xz)(l-v)
ds E*X cos u

d8 cos
ds cos

(8.9)

d__!= sin_ds

d___= (l-v) tanu- cos_ tands v

The Hamiltonian of the reduced problem is

[(i+kz)(I-vl] roost]+
H = - PvL E*Xcos 0- J+ P@[cos _J p_sin_

+ p_ [_ tanu- cos_ tan_] (8.10)

Then, itis clearthatthe optimum liftcontrolis

k = +_ 1 (8.11)

that is the glide is effected at maximum lift-to-drag ratio. For the

bank control, we either have

0- I = 0-max

or an interior bank control such that

E*p_
sin0-- (8.12)

2 VPv

We notice that the integrals (3.7) are still valid for this case. Hence,

with C1 = 0, C O = 0, we can write the Hamiltonian integral of (8.10) in
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the form

2Pv(l- v) [ _]- + p@sin_ + p@ !I-v)tano-
- cos_ tan = 0 (8.13)E* cos o v

Using the optimal law (8.12) to eliminate Pv and the Eqs. (8.3) for

p_ and p@, we have the explicit law for the bank angle

cos _ sin(ef- e)(i-vltano -
v cos (Of- @)sinl - cos i sin i sin (@f- @) (8.14)

The problem is thus reduced to a one-parameter problem in the

parameter @f. In this formulation the stopping condition is no longer

Zf but the final speed vf.

For numerical computation, we use the control law (8.14) to

integratethe fullset of exact state equations (2.8)with a guessed

value for the finallongitudinalrange @f. This value is to be adjusted

such that, at the finaltime when @ = @f,the prescribed finalcondition

v = vf = .001 is satisfied. The initialstateused is (8.6) except that

the initialspeed is 0.99 instead of I.0. The purpose of this change

is to give a defined _ value at the initialinstant. The maximum

value of the bank angle is selected to be 85 °. Figure Z4 presents

the maximum cross range solved by using the reduced control law

(8.14),as a function of the maximum lift-to-drag ratio E*. The

dashed lines represent the results of the glidingtrajectorywith k = 1

and _ = 45° where the bank angle is switched to 0° when the heading

angle # reaches the limitingvalue 90°. The improvement in the
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cross range is easily seen. We can also see that for vehicles with a

maximum lift-to-drag ratio E* greater than the value 3.5, the maxi-

mum cross range is larger than 90 ° and the reachable domain of the

vehicle is the whole surface of the earth if it has an initially circular
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orbit and the point of departure is not specified. For all the trajec-

tories, the final altitudes are about the same with Zf --- 30, which

corresponds to an altitude drop of about 80 km from the initial

point. The final flight path angles vary with E*, with larger E* giving

flatter flight path angles. For example, for E* = 1.5 the final flight

path angle is _/f = -23.5 ° for both control laws Eq. (8.14) and _= 45 °

and 0°; for E;:" = 3.5, it is _/f = - 11.0 °. Figure 25 presents the

variation of the altitude and the speed of the trajectory generated by

the lift control k = 1 and the bank control (8.14) while Figure 26

presents the variation of the flight path angle and the bank angle, for

the maximum lift-to-drag ratio E* = 1.5.

8.2 The Footprint

As has been mentioned before, if the reentry vehicle is

initially in a circular orbit and the position for leaving the orbit is

not prescribed, then the reachable domain on the surface of the earth

will be a zone between the latitude -_max and qSmax. The footprint of

a reentry vehicle is defined as the curve limiting the reachable

domain on the surface of the earth if the reentry point is specified.

This problem is even more complicated since we have to find the

maximum cross range for each prescribed final longitudinal range

Of. As the final longitudinal range is no longer free, P0 = C1 _ 0.

In Eqs. (3.7), if we divide all the equations with C1 , they become
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P0 -1
ci

P_ = Ca cos@ + C__ sin@ (8 15)CI CI CI

PJ# C3 ) os0

Similarly, Eqs. (3.9)can be rewritten in the form

d-_ = cos----'_ - 4 (NICI) + cosZY

- 4(N/C1) + cos z Y

In terms of the new variables p@/CI , etc., the Hamiltonian integral

(3.II) becomes

- _cos'" +- tanY -V V

+ 4(N/C1)cosY + +-- + sin_cosZy \C1/ J cos@ CI

- cos# tan@ = 0 (8.17)

where again C o = 0 since the final arc length is always free. The

control law is, from Eqs. (3.5),
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E*
E*(Q/C,) k sin_- Z (N/Cl)cos_k cos_= Z(N/C,) ' (8.18)

The Eqs. (8.15)- (8.18)combined withthe stateequations(2.8)are

the equationsfor solvingthe exactfootprintofa reentryvehiclefrom

a specifieddeparturepoint. There are fourparameters inthis

problem; theyare (Cz/C,),(Cs/C,),and two ofthe threeinitialvalues

(P/C1)i, (N/CI)i, and (Q/C,)i sinceone ofthem can be obtainedfrom

theHamiltonianintegral(8.17). Among them, one can be used as a

scanningparameter sincewe want to solvethewhole footprint.

Hence, itis a three-parameterproblem. For a typicalexample, a

vehicleisinitiallyatthe specifiedpoint(8.6). To findthe exact

footprintwe picka scanningparameter and guess the otherthree

parameters, and starttheintegrationofEqs. (2.8)and (8.16)along

v_ththe usingofEqs. (8.15)and (8.18). The threeguessed

parameters are tobe adjustedsuch thatwhen theintegrationis

stoppedatthe finaltime with v = vf,theprescribedZ = Zf and y = yf

and thetransversalitycondition

=0 (8.19)Nf

are all satisfied. Then by varying the scanning parameter the foot-

print can be solved. If the final flight path angle is not prescribed,

the condition _/ = _/f will be replaced by another transversality condi-

tion, namely (Q/C1)f = 0.
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In the preceding section we have obtained _max by using the

equilibrium glide simplification. We shall use the same device in

this section again. The control law (8.12)is stillvalidin this case.

By using itin the Harniltonian integral (8.I0), an explicit law for the

bank angle is found to be

A
tan_=-- (8.20)B

whet e

1 - v P%0

(8.21)

B cos %0 _ sin %0 P--_ sin %0tan
- cos _ + CI - C1

From the second and third equations of (3.7) since C 1 # 0, we have

P%0
CI - sin_> - cosi(k Isin@ - kzcos@)

(8.22)

P_ = kI cos@ + kz sin@
CI

where

Cz _ (8.23)
kl =_1 ' kz = CI

Hence, there are two parameters kl andkzinthe problem. However

this is a one-parameter problem since either k, or kz can be a

scanning parameter. For the transversality condition since the final

heading angle %0fis stillfree in this case, we have p%0f= 0 or from

the first equation of (8.22),
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sin_f - cos _f (k,sin @f - kzcos 8f) = 0 (8.24)

The procedure to solve the footprint is as follows. Using the explicit

control law (8.20) in the full set of exact state equations (2.8), the

integration is started from the initialstate (8.6) with vi = .99 instead

of i.0. For the two parameters kI and kz we pick kl as the scanning

parameter and adjust kz such that when the specified value v = vf is

reached, the transversality condition (8.24) is also satisfied. By

varying kI and doing the same adjustment on kz for each value of kl ,

the whole footprint is solved. Although in this reduced problem the

final altitude is not specified, according to the numerical results it

is acceptable in general.

A technique of coordinate rotation has been introduced by

Fare [9] for a flatplanet model. Its application in the spherical

planet model enables us to use the control law (8.14) which corre-

sponds to CI = 0 for solving the footprint. We shall illustrate the

technique in the flat earth case at first, and then use it in the

spherical earth case. In Figure 27 let M. y z be the initialcoordi-

nate axes and M.1Mf be an optimal trajectory leading to the final

point Mf on the footprint C for a given longitudinal range yr. Let

M. y' z' be the rotated coordinate system with the axis M. y' parallel
1 1

to the tangent of the footprint C at the point Mr. Since the footprint

is the same if the initialcondition is maintained, if we use the new

89



z C

Mf

Figure 27.- Rotation of the Coordinate Axes,
Flat Planet Case.

axes M.lyt z_to find the point Mf on the footprint, we have the problem

of maximizing z' while y' is free. As the axis My t is not known a

priori, we have a new parameter, namely the initial heading angle

%b.'with respect to the new axes Besides the new parameter 4.' we
1 " 1'

i
also have another parameter yf on the new axes. These two new

parameters correspond totheparameters k, and kz inEqs. (8.22),

but they are geometrical quantities on the rotated axes. The

parameter 4; is the initial heading angle with respect to the rotated

axes. It will be clear later on that, if we consider the upper half of

the footprint and translate the rotated axes to the points on the foot-

print, we will see that the maximum longitudinal range point

corresponds to the value %b.t = 90 °. Then, as the new axes are moving1
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along the footprint, the 4.1angle is decreasing from 90 ° to 0° andi

then to -90 °. The 4.'= 0° corresponds to the maximum lateral range1

point of the footprint, and the 4.'=-90 ° is the point where the slope of
1

the footprint fails to be continuous. On the other hand, the other new

'is the value of y' where the maximization of z' occurs.parameter yf

Hence, for the two new parameters we can pick 4.'as the scanning
i

parameter. For each value of _.tlfrom +90 ° to -90 °, the yf

adjusted such that the final condition is satisfied. Then, from the

w
')and the angle _i ' we can compute the coordinatesvalues (y_, zf

(yf, zf) of the resulting point on the original axes M. y z by using the1

relations

yf = yftcos_.tl+ z; sin_.Wl

= 'sin_.' + 'cos '
zf - Yf 1 zf _i

By varying the _.l from +90 ° to -90 °, the footprint can be obtained
1

very systematically and effectively.

For the spherical earth model, the rotation of the coordinate

axes must be performed on the surface of a sphere, since all the

coordinate axes must lie along a great circle. The equations for

coordinate transformation are not apparent and their derivation is

more elaborate. Again, in Figure _-8_ M i @_ is the original coordi-

nate system and M.1Mf is an optimal trajectory leading to a point Mf

on the footprint C for a given longitudinal range el. There is a

tangent of the footprint C at the point Mf. At point M i and parallel
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Figure 28.- Rotation of the Coordinate Axes,

Spherical Planet Case.

to this line we can draw a straight line which , together with the

center of the sphere,determines the great circle plane for the rotated

axis M. @' The rotated axis M. €' is then on a great circle passing1 l

through the point M. and perpendicular to the great circle of axis1

M.@'. Hence, M. @let is the rotated coordinate system for the point
1 l

Mf on the footprint. Referring to this new axes system, the optimal
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trajectory MiMf has an initial heading angle _"'1 but the point Mf is

the absolute maximum lateral range point. Thus, with respect to

the new axes M. @' €' we are maximizing €' with @' free, and the
1

explicit control law (8. 14) canbe used. For convenience, Eq. (8. 14)

is rewritten on the new axes M. 9' _' as follows
l

tan_ = (l-v) cos@' sin(@_-@') (8.z5)
v cos(@;-@')sin_'- cos_'sin@'sin(0_-0')

'and integrateFor each value of _"Ifrom +90 ° to -90°, we guess @f

the stateequations (2.8)from the initialcondition (8.6)with v.= .99
1

instead of 1.0 by using the explicitcontrol law (8.25). Then we

adjust @f' such that when the integration is stopped at 8' = @f' the

final speed vf = . 001 is satisfied. The results (@7' 4p_) obtained from

this iteration are the values on the rotated axes M. @l@,. The1

formulas to translate them to the values referring to the original axes

are

tan _; sin qJ"l= 'cos_.'+
tan @f tan Of i I

cos@f
(8.26)

= ' _.' sin@; cos _fI sin_.'sinCf sin_f cos -I I

These formulas are derived in Appendix C, using the spherical

trigonometricalrela_ons. To construct the footprint,we start from

the value 4.'= 90° which corresponds to the maximum longitudinali

range point of the footprint. As d#.,is decreasing from 90° to 0°,I
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which corresponds to the global maximum cross range point, the

portion of the footprint to the right of the global Imax point is

obtained. The portion to the leftis constructed by 4.'ranging from1

0° to -90 °. Figure 29 shows the footprint for the maximum lift-to-

drag ratio E* = I.5. The trajectories leading to the points on the

footprint are also depicted with the corresponding values of _b.sand1

' given. This technique of rotating the coordinates is not applicable@f

to the short arc to the left end of the footprint beyond 4.'= - 90o • ForI

all trajectories from _' = 90° to -90 °, the bank angle is alwaysi

positive, that is, to the left, or zero. But for the short arc beyond

4.1 = - 90o we have to bank the vehicle to the right at first, and then to
I

the leftata certain switching point. Figure 30 presents the bank con-

trol as a function of the longitudinal range @ for the trajectories. The

maximum bank angle is _ = 85° . For trajectories with long longi-max

tudinal ranges, the bank angle is near zero initially. Itincreases to

certain value and then decreases to zero finally. For trajectories

with short longit-udinalranges, the bank control hits the _max for a

while and then decreases to zero finally. Again, the final altitude is

not considered. But for all the trajectories the final altitudes are

very close to the value Zf = 30 which is a reasonably low altitude.
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CHAPTER 9

CONC LUSIONS

A general solution for optimum reentry trajectories in a

vertical plane has been presented. The three-dimensional optimal

trajectories leading to a maximum cross range and the footprint are

solved in a reduced problem. Unlike previous numerical studies in

the published literature where physical data have to be specified

numerically, here we only have to specify the most important perfor-

mance parameter, namely the maximum lift-to-drag ratio E _'_.The

numerical results obtained are valid for all vehicles having the same

maximum lift-to-drag ratio. For the other vehicles with the values

of E ':_around the value we have used for computation, the behavior

of the optimum liftcontrol and the trajectory variables such as

altitude, speed, and flightpath angle are essentially the same.

This very general study is made possible by the use of the

modified Chapman's variables and a normalized liftcoefficient.

The planetary atmosphere is assumed to be spherical and at rest,

withlocallyexponentialvariationinitsdensity. Itisfound thatthe

characteristicforany atmosphere can be specifiedby theaverage

valueofthedimensionlessquantitykz = Dr. For the numerical
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computation, we take kz = 900 for the earth's atmosphere. The

equations retain the generalityand are also valid for flightin a

vacuum. Hence, the totalityof the optimum trajectory, from entry

to landing, can be followed continuously even ifat the beginning the

vehicle skips out of the atmosphere repeatedly before effectiveentry

at lower speed.

For the planar flightcase, several optimum problems for

flightover a spherical earth are solved and the results analyzed in

detail,especiallythe skip trajectory. At low altitudeand low speed,it

is more convenient to use a flatearth model. This has been achieved

by using a canonical transformation applied to the spherical equations

followed by a flatearth simplification. Optimum problems for flight

over a flatearth are solved using the simplified equations. The

optimum glidingtrajectory for maximum finalrange, as compared to

the maximum lift-to-dragratio glidingtrajectory, has better range

and smaller peak deceleration and is less oscillatory.

In three-dimensional flight,we have two more state variables,

namely the latitudeand the heading, one more control, namely the

bank angle, and two more adjointequations. But at the same time,

we have two additionalintegrals. Hence, the real difficultyin three-

dimensional analysislies not in the analyticalformulation but in the

practical computation of a two-point boundary value problem con-

rainingthree parameters instead of two as in the planar case. A
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simplification is thus introduced by using the so-called equilibrium

glide condition, assuming that the glide angle is small and stays

nearly constant. Then, by using this simplification, the footprint of

a reentry vehicle is calculated. A technique of coordinate system

rotation has been used, which makes the iteration much more

effective and geometrically meaningful.

A distinctive feature of the present formulation is that the

equations of motion and their variational derivations are valid

uniformly for flightin the dense layer of the atmosphere where the

aerodynamic force is predominant and for flightin the near vacuum

where the Newtonian gravitational force is predominant. Hence we

can use the same equations for the investigation of the effectiveness

of the optimum aerodynamic control at very high altitude. Itis

expected that this tenuous aerodynamic control, coupled with a thrust

control with small magnitude, will be sufficient as optimum controls

for the guidance of skip trajectories.
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APPENDIX A

Normalized Drag Polar

Consider a generalized drag polar of the form

n

C D = CDo + K C L (A. 1)

where at very high Mach number, the zero-lift drag coefficient

CD0, the induced drag factor K, and the exponent n are assumed to

have their constant asymptotic values. IfE = CL/C D is the lift-to-

drag ratio, then

l CD0 n- 1

E - C + K C L (A. 2)
L

Hence, E is a maximum when

CDo n- Z

- _- + (n- I) K C L = 0 (A. 3)
C L

This corresponds to the liftand drag coefficients

, = CDo , n (A. 4)
CL n-_'K ' CD - n- 1 CD o

The maximum lift-to-drag ratio E* is, of course,

* (A.5)E* = CL"/C D

If we define the normalized lift coefficient k as
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C
L

× - c* (A.6)L

then it is clear that when k = i, C L = CL" and the operating point is

at the point of maximum lift-to-drag ratio. Using (A. 4) and (A. 6) in

(A.1), we have

CD 0
[(n-l) + kn] (A.7)

CD - (n- I)

Considering (A. 5) we obtain

= CD" f(X) (A. 8)C D

where

f(k) .(n,-i) + kn= (A.9)
n

For the case of a parabolic drag polar, n=2, we have

CL = k CL* , = CD -- , E* = C /C (A.10)
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APPENDIX B

Derivation of the Equations (6.31) and (6.32)

The exact Hamiltonian for the flatplanet case is

u Pu (1+ kz) py k p¥

_= WPwtany - E_l"wcosY 2PutanY + wcosY - u (B.I)

We use the approximate solution

k 0 = 1 (B. 2)

to linearize J_. Then

jg: I+-_- (× - ×0) + -" (B. 3)
k =k 0 k =k0

By retaining only the first order term, we have

PY k _
_= WPwtany-ZPutanY ---u + E*wcosY (E' py - 2UPu) (B.4)

From the linearized Hamiltonian (B.4), we can derive the corre-

sponding linearized state and adjoint equations. They are

dw
- wtanY

dy

du 2 uk
2 tan y (B. 5)

dy E* w cos Y

dY k 1

dy wcos y u

10z



and

dPw X

_'" - 2 UPu )dy - - Pw tan_ + E_wZcos¥ (E p¥

dPu 2Puk py
_ m (B.6)

dy - E*wcosY uz

dp¥ w Pw 2Pu k sinY
dy cosaY + cosa_ - E*wcosZy (E*p¥-ZuPu)

respectively. Now, to maximize the Hamiltonian (B.4), we consider

the switching function

= E* p¥ - 2UPu (B.7)

Then, for _to be maximum withrespecttoX, we use h = h ifmax

> 0, and we use k = kmi n if@ < 0. Inthefinitetime intervalduring

which _ = 0, we have k = variable. Sinceformaximum range glide,

in the plot for h in Figure 9 there is an interval in which the optimum

h is variable and near unity, we have the approximate singular

relation

= E_p_ - ZUPu = 0 (B.8)

By taking its derivative, using Eqs. (B.5), (B.6), and (B.8) itself,

we have

WPw 2Pu [I + 2c°sZ_ ]= E_:._z(i+ E* tan_) (B.9)

As the linear control does not appear in this first derivative, take
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the derivative again. This time the linear control appears and is

found to be

w cos ¥
x, = (B.10)

u

This is the approximate but explicit control law in Eq. (6.31).

Now, let us use kI as an approximate solution to linearize the

Hamiltonian (B. i). Then

Ik = kx 8k Ik = k I

py(wcos y u - 2 tan¥ ---
= WPwtanY + Pu\ E_:_u E*wcos_ u

+ (w PY 2 Pucosy - E*) k (B.II)

The corresponding linearized state and adjoint equations are

dw
- wtanY

dy

du w cos Y u 2k

dy E*u E*wcosY - 2tanY _-_ (B.12)

dY k 1

dy w cos ¥ u

and

py k

dPw (cos Y u ) + w zdy'" = - Pw tanY - Pu',_ + E*wZcosY cosy

dPu (wcosY 1 ) P¥dy - Pu E,uZ + E_;,wcosy - _ (B.13)

dpy WPw (wsinY + + )_

usinY 2 pyksin¥

dy cosZY + Pu E"_u E*w cosZY cosZY wcosZY
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respectively. Again, by putting the switching function equal to zero,

we have

E_;=py- 2WPu cosy = 0 (B. 14)

By taking the derivative of Eq. (B. 14), it gives

E':"WPw = Pu [2E* - 2c°sZYE_:" + 2wZc°s4YE':_uz

(i + 2 u) sZ u ]- wco Y sinY +-- sinY (B. 15)
u w 3

Then ifwe take the derivative of Eq. (B. 15), we can finally obtain a

new explicit control law which is the one that is given in Eq. (6.32) .
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APPENDIX C

Derivation of Formula (8.26)

M.
1

B
b

0_ al

A

Figure C. 1.- (O_, _p_) and (Of , +f).

We have _.' and (OI '1 ' _f )' and we want (Of, _f). By considering

the right spherical triangle M. AI, we immediately have
1

tan O_

tana - cosqJ.I (C.1)
1

and

!

tana 1 = sinO_ tan _i (C.Z)

Since b 1 = @_ - as , taking the tangent orb I and using (C.Z) in it, we

have
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' tan J2.'
tan¢_ - sinef I

'tan ' tan_.' (C.3)
tanb, = 1 + sinef ¢f 1

Now, from the right spherical triangle M. AI,
l

cosI = cos8_ sin_.'l (C.4)

On the other hand from the other right spherical triangleMfB I,

cos I = tanb cot bI (C. 5)

Solving for (tanb) from (C.4) and (C.5) and using (C. 3),

' sine.'(tan ' - sin J2i')cos @f 1 Cf @_ tan

' tan 'tan€.' (C.6)tanb = 1 + sin@f Cf I

As @f = a+b, again taking the tangent and using (C. i) and (C.6), we

finally have

tan €_ sin€"I

tan@f= cos@f' + tan8f'cos ¢.'i (C.7)

This is the firstformula in (8.26).

For the second formula, from the right spherical triangle

MfB I,

sinCf = sinbl sinI (C.8)

and from the right spherical triangle M. A I,
1

cos€.'= cosaI sinI (C.9)1

Hence,
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sinb I cos @.'
1

sin _f = cos aI (C. i0)

Now, taking the sine on both sides of bl = _fv_ al and then using

(C.2), we have

sin@f--sin¢_cos_.'1- sinOf'cosif'sinJJiv (C.ii)

This is the second formula in (8.26).
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