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I. INTRODUCTION 

1.1. Description of the Problem 

For several decades, gears have been known to be the simplest and 

most efficient mechanical component in transmitting power. Yet, the 

basic mechanisms which govern the major failure modes in gears, partic- 

ularly those of lubrication origin, are not satisfactorily understood. 

In industrial applications,long life in gears is usually attained by 

overdesign at the sacrifice of cost, material, and compactness. However, 

in aerospace or military applications, where the weight is at a premium, 

gears are often designed under conditions very close to the failure limits 

with considerable uncertain life expectations. From the standpoint of 

material conservation and mechanical reliability, a better understanding 

in gear lubrication, particularly in the light of recent developments in 

elastohydrodynamic lubrication, is badly needed. 

Gear failure can be generally classified into structural failures, 

which include case crushing, flexure fatigue, and tooth breakage, and 

lubrication failures which include abrasive or corrosive wear, surface 

pitting, and scuffing (or scoring). 

Structural failures are usually attributed to poor material, 

improper design or unexpected overloading. These failures are not 

directly related to lubrication and can be circumvented by better geo- 

metrical design and improved material selections. 

Since the basic lubrication process between gear teeth is not fully 

understood, the lubrication failures, in particular surface pitting and 

scuffing, are much more difficult to predict and to prevent. There is 

a general consensus that current gear design practice against lubrication 

failures, based mainly on empiricism, is not satisfactory. Any improvements 
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in design criteria against surface pitting and scuffing must depend on 

a more thorough understanding of the film thickness and surface tempera- 

ture in the gear teeth contact because it has been shown in failure 

tests with rollers that both failure modes are influenced critically by 

these two quantities. 

The present research is concerned mainly with developing a comprehensive 

analysis in predicting the mean film thickness and the surface temperature 

in spur gear teeth contacts under given dynamic loads. The analysis also 

includes, in the first part, a new procedure for determining the dynamic 

load between gear teeth contacts having a contact ratio greater than 

unity, and considering a variable stiffness along the line of action. 

The analysis of transient film thickness and temperature along the line 

of action is based on the most recent theories on film thickness and 

traction in elastohydrodynamic contacts. 

1.2. Previous Study 

1.2.1. Dynamic Load 

One of the main uncertainties in gear lubrication analysis is the 

load imposed on the gear teeth at high speeds where the inertia forces 

of the gear wheels become significant. Dynamic load in gears has received 

continuous attention in the past. Notable contributions in this area 

include Refs. 1 to 4. 

More recent work was contributed by Attia- (Ref..5) and by Houser 

and Seircg (Ref. 6 ) in which the dynamic load variations for a pair of 

spur gears along the action line were analyzed and measured experimentally. 

However, their results were restricted to special sets of gear geometry 

under limited operating conditions, and, therefore, do not have a wide 
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applicability. Hirano (Ref. 7 ), and Ishihawa et al (Ref. 8 ) 

developed analytical models based on the torsional vibrations of two 

gear wheels, and obtained results which agree well with dynamic loads 

measured with strain gages at the root of a gear tooth. The close 

agreement in Refs. 7 and 8 suggests that their analytical approach 

can be refined to give an accurate method in determining the dynamic 

loads for the present lubrication analysis. 

1.2.2. Film Thickness 

Papers concerning the lubricant film thickness in gear teeth'can be 

dated as early as 1916 (Ref. 9 ) when the lubricant film thickness 

estimated by representing the gear teeth contacts with equivalent con- 

tacts between two rigid cylinders. Using the same approach, McEween (Ref. 

lO),in 1952, developed an analysis for the lubricant film between gears 

including both the sliding and rolling motion of contacting surfaces. 

The results of these analyses have served to inspire further activities 

in gear lubrication. However, they failed to yield an accurate model 

for prediction of the film thickness because factors such as the elastic 

deformation of the surface, pressure and temperature viscosity dependence, 

thermal effects from the heat generated in the contact, as well as the 

squeeze film effect along the line of action were all disregarded in 

the analysis. 

In searching for a better approximation, Redzimovsky and his co- 

workers (Refs. 11 and 12 ) have used actual gear tooth profiles and 

motions to solve for the lubricant film thickness variation governed by 

the time-dependent Reynolds Equation. However, their papers suffer from 

the drawback of neglecting the effects of surface deformation and the 
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pressure and temperature dependent viscosity of the lubricant. In a 

more recent paper (Ref. 13 ), they have included the effect of elastic 

deformation in the model, but still ignored the important effect of 

variable viscosity at high pressures. These assumptions seem to limit 

the application of their analyses to a fairly narrow range of lightly 

loaded gears. 

In 196.5, Dowson, and Higginson (Ref. 14 ) applied their isothermal 

elastohydrodynamic lubrication theory and developed design charts to 

predict the film thickness between gear teeth contacts at the pitch 

point. Their procedures remain to date as the best method in estimating 

the lubricant film thickness in.spur gears, provided the bulk surface 

temperatures of the gear teeth are known before hand. Later, Gu (Ref. 15) 

extended Dowson and Higginson's approach to determine the film thickness 

variation along the entire line of action. However, Gu's analyses still 

assumes that the bulk surface temperature is known, and also ignores the 

squeeze film effect. 

1.2.3. Flash Temperature 

The surface temperature increase (or flash temperature) within a 

sliding Hertzian contact is a topic which has been extensively investi- 

gated in the past (Refs. 16 to 18 ). The first successful prediction 

of flash temperature was due to Blok (Ref. 16) based on the heat conduc- 

tion analysis in a semi-infinite body with a uniformly distributed 

moving heat source. 

A refined solution, which includes a local, heat partition function 

between a pair of disks, was derived by Cameron et al (Ref. 19 ). More 

recently Francis (Ref. 20 ) made a further refinement in Blok's calcula- 

tion by considering a variable heat flux in the contact. 
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The above simplified analyses yield a reasonably accurate prediction 

of the flash temperature which can be summed together with the bulk surface 

temperature to yield the total temperature in the contact. It appears 

that the uncertainties of predictions of the failure related total tem- 

peratures are not due to any inaccuracies of the flash temperature 

analyses but rather due to the lack of reliable information on the bulk 

surface temperature and the local coefficient of friction in the contact. 

Thus, the-gear lubrication is really a system problem which requires an 

iterative scheme solving for the bulk surface temperature, flash tempera- 

ture, and heat flux simultaneously. 

1.2.4. Failure Experiments 

Past failure experiments in gears are primarily involved with finding 

the scuffing loads as a function of speed. Among these, the most intriguing 

one is the series of tests performed by Borsoff (Ref. 21). As the speed 

increases initially in the low speed range, the scuffing load shows a 

decreasing trend which confirms the previous results on gear scuffing 

tests. As the speed further increases, the trend reverses itself, and 

the scuffing load tends to rise with speed. This intrigue trend in the 

high speed region has not been observed in previous gear tests, and has 

not been explained satisfactorily by any theory. In a later experiment, 

Ku and Baber (Ref. 22 ) conducted a series of tests with a modified Ryder 

Gear Tester and was able to obtain a similar trend observed by Borsoff. 

However, the increase in scuffing load in the high speed range is 

much less pronounced than that found by Borsoff. 

Gear experiments directly related to surface pitting are quite 

scanty. The effect of lubricant properties on surface pitting in gears 

was investigated by Neiman, G., Rettig, H., and Batsch, H., (Ref. 23 ). 
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More recently, the effects of material properties and tip relief were 

studied by Townsend and Zaretsky (Ref. 24 ). The effects of lubricant 

film thickness as well as the surface temperature on surface pitting 

have not been examined directly by pitting experiments. 

1.3. Present Study 

In the present study, the combined effects of gear kinematics, 

dynamics, frictional heating as well as the elastohydrodynamics on the 

lubrication performance between gear teeth is systematically treated. 

In Chapter II, descriptions are first given to the involute geometry 

and the definition of coordinate systems used in this work, and then to 

the qualitative aspects of gear dynamics, film thickness and thermal 

reactions for a pair of spur gears in operation. 

In Chapter III,the kinematic relations and the coordinates used in 

the analyses are described. They are followed by the analysis of 

the dynamics of two meshing gears and a numerical method for predicting 

the dynamic load. 

Chapter IV, deals with the solution of time-dependent isothermal 

elastohydrodynamic film thickness along the line of action using the 

time-dependent Reynolds equation in which the squeeze-film effect due 

to the change of dynamic load, contact radii and velocity are all con- 

sidered. 

A rheology model proposed by Dyson (Ref. 25 ) based on the concept 

of limiting shear stress is used in Chapter v for the traction analysis. 

The heat generation due to viscous shear and the instantaneous temperature 

rise caused by solid-fluid interaction are analyzed. 
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In Chapter vI,the finite element method is used to develop an algorithm 

for predicting the equilibrium surface temperature distribution along the 

tooth profiles of meshing gears. 

'Ihe entire numerical iterative procedures for the interdependent film 

thickness, and the flash temperature are described in Chapter VII. Results 

in terms of dynamic load, film thickness, and flash temperature for various 

dimensionless design parameters are presented in Chapter VIII. 
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II. PROBLEM FORMUUTION 

2.1. Spur Gear Geometry 

The basic geometry of involute spur gears is briefly reviewed here 

in order to provide the necessary background to formulate the gear 

lubrication analysis. 

Figure 2.1 shows the geometry of a pair of involute gears in contact 

at the pitch point 0. The lower gear is the driving member commonly 

known as the pinion and the upper driven member is referred to as the 

gear. Rl and R2 are the pitch radii of the pinion and the gear. Through 

the pitch point 0 and tangent to two base circles al, a2, one may draw a 

straight line inclined at an angle @ to the common tangent of the pitch 

circles. $I is known as the pressure angle because the force is acting 

at an angle 0 inclined to the common tangent. 

The involute tooth profile of the pinion can be obtained by tracing 

the location of 0 while a taut string a 0 is being unwrapped around 1 

the pinion base circle. The gear tooth profile can be obtained in the 

same manner. It can be readily demonstrated that during the engagement 

of the teeth, the point of contact always lies on the line ala2, which 

is known as the line of action. The engagement begins at bl, where ala2 

intersects with the outer radius R 02 
of the gear, and ends at b 

4’ 
where 

ala2 intersects with R 01' The depth of tooth beyond the pitch point, 

R 01 - Rl, is known as the addendum, and below the pitch point, Rl- R 
rl 

is called the deddendum. The addendum and deddendum are inversely 

proportional to the diametrical pitch D 
P' 

which is defined as the number 

of teeth per inch of diameter. 
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Fig. 2.1. Geometry of Spur Gears 
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2.2. Coordinate Systems 

Since the nature of each individual analysis in the present study 

is different it is difficult to employ a single coordinate throughout 

the entire formulation. The analytical efforts are much reduced if the 

following two separate coordinates are introduced. 

The first set of coordinates, shown as X, Y, and Z in Fig. 2.2, is 

a set of fixed Cartesian coordinates with its origin at the pitch point 

and the X-axis along the path of contact. The coordinate X is the 

distance between the contact point and the pitch point. The teeth are 

engaging when X is negative, and disengaging when it is positive. In the 

analyses, the dynamic load, transient film thickness, and flash tempera- 

ture are all expressed as functions of X instead of functions of time. 

The second set of coordinates, shown as x, y, z, in Fig. 2.2, 

is fixed to one of the gears with its origin at the gear center. The 

y-axis extends radially along the center line of a typical tooth, the 

z-axis is parallel to the shaft, and the x-axis is perpendicular to both. 

This set of axes is used in analyzing the bulk surface temperature of 

the gears. 

2.3. System Characteristics 

As stated earlier, the main objectives in this study are to deter- 

mine the dynamic load, lubricant film thickness, and the flash tempera- 

ture along the line of action between two meshing gear teeth. Before the 

details of each analysis is presented, it is desirable to study the quali- 

tative features of each of the above variables. 
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Fig. 2.2. Coordinate Systems 

11 



2.3.1. Dynamic Load 

When more than one pair of teeth is in contact, the load is 

shared among the pairs. Figure 2.3a illustrates the load sharing charac- 

teristics between two pairs of teeth in contact. Along the line of 

action, the contact points of two pairs of teeth are always spaced at a 

distance equal to cos c times the circular pitch or known as the base 

pitch. As pair 2 begins to contact at bl, it shares a load less than 

half of the total load with the preceeding pair 1. Since at this instant 

the combined stiffness of pair 1 is much greater than the stiffness of 

pair 2, pair 1 takes a larger share of the total load. As the contact 

point of pair 2 moves to b2, pair 1 is out of the contact at b4 and 

the entire load is transferred to pair 2. As pair 2 reaches b3, a new 

pair begins to contact at b 

pairs. 

1 and the load is again shared between two 

Figure 2.3b shows qualitatively a variation of load for a pair of 

teeth as a function of the coordinate along the line of action. This 

is a static load variation because the inertia forces of the gear wheels 

are ignored. If these inertia forces are included, the load variation 

then includes additional oscillations superimposed on the static load 

curve. The frequency and amplitude of these oscillations would depend 

on the speed and the error profile, i.e. the deviation of the tooth 

profile from the true involute profile. A typical variation of the 

dynamic load variation is also shown in Fig. 2.3b. 

The mathematical modelling of the statically indeterminate system 

including two pairs of gear teeth and the inertia of the gears along 

with a numerical solution of the governing equation for the dynamic load 

is the main topic in Chapter III. 

12 
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Fig. 2.3(a&b) Load Sharing Characteristics 
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2.3.2. Film Thickness 

The film thickness between gear teeth at any point along the line 

of action can be predicted from the existing theories of elastohydrodynamic 

lubrication provided the local rolling velocity, maximum Hertzian contact 

stress, relative radius, and the local viscosity corresponding to the 

local surface temperature at that point are known. With these known 

quantities, the film thickness can be estimated from the following general 

formula 

h = C(ol& (k$2(pHz\n3 (2.1) 

where 

a = pressure viscosity coefficient 

WO 
= viscosity at the inlet of the contact. 1-1, is a function of 

-I< 
the local equilibrium surface temperature 

U = rolling velocity 

R = relative radius 

'Hz 
= maximum Hertzian contact pressure 

c,nl,n2,n3 = constant or exponents derived from various EHD theories 

E' = Equivalent Youngs modulus. 

It is important to note that v 
0’ 

U> R, and PHz all vary along the 

line of action. u and R depend only on the kinematics, and can be 

readily derived. pHz depends strictly on the dynamic load which is deter- 

mined from the analysis in Chapter III. p, is strongly dependent upon 

the local static surface temperature which is in turn influenced by the 

local film thickness through the frictional heating. Thus, the film 

thickness and static surface temperature are mutually dependent, and are 

* 
the definition of equilibrium surface temperature is given in section 2.3.3. 

14 



solved as a coupled system in the present work. 

load is assumed not to be influenced by h or p 
0’ 

However, the dynamic 

and therefore, is 

solved separately. 

It should be noted that predictions of h using Eq. (2.1 ) ignore 

the squeeze-film effect due to the rapid change of h along the line of 

action. To include this effect, one must include the term Ah/at in the 

Reynolds equation. In Chapter IV, the extension of present EHD theories 

to include the transient effects for gears is accomplished based on a 

recent analysis by Vichard (Ref. 26 ). 

2.3.3. Equilibrium Surface Temperature 

When a pair of gears is running under a given load, the time-averaged 

surface temperature over one revolution at any point on the facing of a 

tooth gradually increases and finally reaches an equilibrium value after 

many revolutions. This steady state, time-independent temperature distri- 

bution is referred to as the equilibrium surface temperature, which directly 

governs the lubricant film thickness and the maximum surface temperature 

within the Hertzian contact. Figure 2.4 shows typical variations of the 

equilibrium temperature along the profiles of a pair of engaging teeth. These 

curves can be calculated by a finite element numerical method for the 

steady-state heat conduction analysis within a typical wedge of a gear 

wheel. The details of this analysis for the equilibrium temperature distri- 

bution are described in Chapter VI. 

2.3.4. Flash Temperature 

As discussed in Chapter I, the flash temperature is the increment 

in temperature above the equilibrium surface tempe,rature within the Hertzian 

15 



Fig. 2.4. Characteristics of E quilibrium Surface Temperature 
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contact due to the sliding frictional heating. The rising or decaying 

rate of this flash temperature is a function of speed and material 

properties of the solids. For steel gears operating at even fairly 

slow speeds, the decaying rate at any contacting point is still very 

rapid so that it only takes a very small fraction of a full revolution 

for the surface temperature to return to its static value. Figure 2.5 

shows qualitatively the rise and decay of instantaneous surface profiles 

for a pinion at various contacting points along the line of action. 

The flash temperature is most pronounced at the root and tip where the 

sliding speed is the highest. 

The calculation of flash temperature is based on a simplified thermal 

analysis of the lubricant film in the Hertzian contact, and on the Blok- 

Jeager type analysis of 

source. Details of the 

2.3.5. System Solution 

surface temperature for a fast moving heat 

flash temperature analysis are given in Chapter V. 

The solution to the spur gear system in question is accomplished 

numerically in two parts. First, the dynamic load along the line of 

action is assumed to be independent of the lubricant film thickness and 

flash temperature, and it is determined by directly integrating the 

equation of motion with the Runge-Kutta method. The dynamic load is 

then used in the second part to determine the lubricant film thickness 

and flash temperature iteratively based on the analyses given in 

Chapters IV to VI. Details of the numerical procedures and block diagram 

for the computer program are given in Chapter VII. 

17 
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III. DYNAMIC LOAD 

3.1. Gear Kinematics 

In order to develop the analysis of dynamic load and lubricant film 

thickness, it is necessary to use the kinematic relations for the 

local radius and the surface velocities as functions of X, the distance 

between the contact point and the pitch point, along the line of action. 

These relations were given by Gu (Ref. 15) as: 

rl=Rbl tan I$ + X 

r2 = %2 tano - x 

(3.1) 

(3.2) 

u1 =V y+sin@) ( 
1 

u2 
=v - ( y+ sin@) 

2 

From these, the relative radius becomes 

rlr2 
R(X) = r + r 

12 

h, tan6 +xV /I%, tan @ - X'; / 
1 L 

E / \ 

bb.+ 53,) tan QJ 
1 L 

The rolling and sliding velocities 

u(X) = + (ul+ u2) 

=Vsin@+F 

at the contact become 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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u,(X) = ul- u2 

= v cos q5 ( 
%12+ % \ 

%1%2 

',) x (3.7) 

The contact ratio C r is a very useful quantity in spur gear 

kinematics and is defined as the length of contact along the line of 

action blb2 divided by the base pitch pb. Most gears operate at a 

contact ratio between 1 and 2, i.e. the load is sometimes shared by a 

pair of gears during engagement. Referring to Fig. 2.1 , one may define 

the distance between the beginning of contact and the pitch point b10 

as the length of approach Za, and b40 as the length of recess Zr. From 

the geometry, 

- R2 sin @ 

2Y112 
Zr= (R,: - sl,; - l$ sin @ (3.9) 

(3.8) 

By definition of the contact ratio, 

cr= blbg 

pb 

'a+ 'r 
= pccos @ (3.10) 

Typical variations of R, U, and u 
S 

along the line of action are shown 

in Figs. 3.1 to 3.3. 

3.2. Tooth Deflection 

For most gear applications,the contact ratio is greater than one, 

that is, during the engagement there will be, at times, more than one 

20 



I. 

.5 

0 
-1. 

6’2 

r,=l 

0 
CONTACT POSITION X/pb 

Fig. 3.1. Variation of Relative Contact Radius with the Contact Position 



5- 

.4- 

J’ 

P, I 

I- 

I,- 

up=6, %=2 

L 

I I I 

-1. 0 I. 

Fig. 3.2. 

CONTACT POSITION X / pb 

Variation of Rolling Speed with the Contact Position 



.5 

.4 

.3 

.2 

.I 

0 

-.I 

-.2 

73 

-4 

-.5 

I I I I 
-I. I. 

CONTACT POSITION X/ pb 

Fig. 3.3. Variation of Sliding Speed with the Contact Position 



pair of teeth in contact. Under this condition, it can not be assumed 

that the load is equally shared among the pairs of teeth in contact 

because this is a statically indeterminate case. Therefore, one must con- 

sider the tooth deflection under load for each pair in order to deter- 

mine the load sharing characteristics among the pairs. 

Considering a single tooth under a load per unit face width P at 

a point T as shown in Fig. 3.4, the defection 6 is defined as the dis- 

placement of that point in the direction of load and the stiffness Eb 

is defined as the ratio of P to 6. The values of Eb of the tooth as 

it undergoes the engagement are determined by two independent methods. 

The first is a simplified variable cross-section cantilever beam 

analysis developed by Attia (Ref. 27 ) and the second is a numerical 

solution using the finite-element method. Details of these two methods 

are described below. 

3.2.1. Deflection Based on Beam Theory 

The deflection of a single tooth under a load P is approximated by 

treating it as a tapered cantilever beam. Attia considered the equiv- 

alence of virtual work on the tooth to the strain energy from bending 

as well as from shear and arrived at the following expression for the 

deflection. 

8 =; cos2E, :12 
s 

yp (Y,- Y> 
L 0 (2x)3 0 

P =- 
Eb 

In the above, 9 is the horizontal angle of the load and y is the 
P 

ordinate of the intersection point from the load vector and y-axis, as 

shown in Fig. 3.4. The tooth involute profile can be described by a 
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Fig. 3.4. Configuration of a Single Tooth Under Load 
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mathematical function x = f(y). This involute profile can be further 

approximated by a symmetric trapezoid. Substituting values of yp and 

8 during actual contact, one can evaluate this integral. 

3.2.2. Deflection Based on Finite-Element Method 

A more accurate method in determining the deflection of a gear tooth 

under a given load is the finite element method, which has been employed 

recently by Chabert (Ref. 28 >. Unfortunately, his results for gears 

cover only a few cases and cannot be readily used for the present gear 

lubrication analysis. Therefore, it was necessary to generate a set 

of new results by using an existing finite-element computer code for 

the present investigation. 

Figure 3.5 shows a typical quadrilateral element grid pattern for a 

single tooth attached to the rim of a gear wheel. Using these grids as the 

input, one can readily compute the deflection Q under a load P applied 

at any point along the tooth profile. For this analysis, the boundaries 

are considered to be fixed along the inside radius, and free along the 

outside radius. The relation in linear elasticity gives rise to a 

linear relationship between the dimensionless deflection, x = g , and 

the dimensionless load p = & , 
r 

where 
r 

Rr= root radius of gear 

P = load per unit face width 

E = Young' modulus of gear material 

The proportional constant p/T can be called the dimensionless stiff- 

ness i? b' which only depends upon the shape of the configuration in Fig. 3.6, 
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and the loading position, and does not depend upon the size or the 

radius of the gear. Thus, one can represent the dimensionless stiffness 

as a function of the number of teeth, which reflects the change in 

shape, and the loading position. The values of l/Eb are plotted against 

these two variables in Fig. 3.6. 

The results of bending stiffness Eb along the tooth profile computed 

from the finite-element method are compared with that computed from the 

beam theory in Fig. 3.7. The agreement is fair between the two 

methods for gears with small number of teeth. For gears with a larger 

number of teeth, the agreement becomes poor because in the method based 

on beam theory the deformation of the rim is not accounted. For this 

reason, the results based on the finite-element analysis have been 

adopted later in the gear lubrication analysis because they give more 

accurate results through the entire range of variables. 

3.3. Dynamic Load Distribution 

As the contact point of two teeth moves along the line of action, 

the contact load does not stay constant. The load variation is mainly 

caused by the following factors: 

1. The transition from single to double and from double to single 

pair of contacts 

2. The variation of bending stiffness along the line of action 

3. The deviation of tooth profile from the true involute profile 

(This deviation is known as tooth profile error.) 

To determine the variation of contact load as a function of the 

contact position X, it is necessary to derive the equations of motion 

governing the angular displacement g1 and e2 of two gears in mesh as 

shown in Fig. 3-g . Considering the free body diagrams of each gear, 

the equations of motion are 
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Fig. 3.5. Finite Element Mesh for a Single Tooth with Rim 
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. . 
J1el = %lps- %,pd (3.12) 

. . 
J2Q2 = %,'d- %2ps (3.13) 

where Jl and J2 are the polar mass moment of inertia for pinion and 

gear, Ps is a steady state force resulted from the driving torque, and 

Pd is the unknown dynamic load. It is convenient to convert the angular 

coordinate into the coordinate along the line of action X. By virtue 

of the involute geometry, 

(3.14) 

x2= %2e2 (3.15) 

where Xl, X2 represent the displacement of undeformed tooth profiles along 

the line of action. Using the above relations, the equations of motion 

become 

. . 
mX =P-P 11 s d 

.* 
mX =P 22 d- 's 

where m 1 and m 2 are the reduced mass, 

ml = Jl/%2 
1 

(3.16) 

(3.17) 

(3.18) 

m2 = J2/%,2 

Similar to the vibratory system of two masses connecting with a 

spring, the equations of motion can be reduced to a single equation by 

introducing an equivalent mass 
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Yrn2 
M=- 

m+m 12 

and a relative displacement 

XR = x1- x2 

(3.19) 

(3.20) 

The reduced equation of motion, which can also include a viscous damping 

force, takes the following form 

. 

Mzri+ coxR+ Pd= P 
S 

(3.21) 

The total dynamic load Pd is the sum of the forces exerted by all contacting 

pairs of teeth along the line of action. For a single contacting pair with 

true involute profiles, the contacting load is simply the product of 

the combined stiffness and the relative displacement X 
R' 

'd = KxR (3.22) 

where 

K= 
Ebl'Eb2 

Eb + Eb 
(3.23) 

1 2 

Ebl 
and E 

b2 
are the stiffnesses of the pinion and the gear, which vary 

with the contact position X. 

If the tooth profile error is included in the analysis,the dynamic 

load becomes 

'd = K(XR- e) (3.24) 

where e is the sum of profile errors of both teeth, e,(X) and e2(X). 

el is considered to be negative when the profile is extended beyond the 

true involute curve. 
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For double pairs of teeth in contact, the dynamic load becomes the 

sum of the load on each pair. Thus 

pd= y KiCXR- ei> (3.25) 
- 

i=a,b 

where subscripts a and b denote the variable pertaining to either 

the preceding or the following pair of teeth. 

At any instant, if the term XR- e. is less than zero, the teeth 1 

separation is occurred. There should be no load acting on this pair 

of teeth at the time of separation and therefore K has a zero value. 

Given the profile error el and e2 from the measurement and the 

variable bending stiffness E 
bl 

and E 
b2' 

the resultant equation can be 

treated as a second order differential equation with a state dependent 

coefficient. This equation is solved numerically by Runge-Kutta's method. 

The unknown initial conditions XR(0) and X,(O) can be iterated by taking 
. 

the previous calculated X R and X R at the end point of the single pair 

teeth contact as a new trial. The results of this calculated dynamic 

load for cases of different gear geometry and operation conditions are 

discussed in Chapter VIII. 
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Iv. TRANSIENT ISOTHERMAL LUBRICANT FILM THICKNESS 

4.1. Introduction 

The film thickness between gear teeth based on steady 

state EHD theory is questionable since the load P, relative radius 

of curvature R and speed U are all varied along the line of action. An 

improved approach must therefore consider the time-dependent equation 

for the fluid flow between the two contacting surfaces and include the 

time-dependent parameters. 

The generalized theory for predicting the transient effect in the 

lubrication of Hertzian contact was developed by Vichard [Ref. 26 1. 

His analysis is extended and used for gear lubrication in this chapter. 

The result of film thickness from this calculation is also compared with 

that from the quasi-steady state theory. 

4.2. Transient Reynolds' Equation 

The equation governing the local fluid film thickness h and pressure 

p between two contacting surfaces, as shown in Fig. 4.1 , is the well 

known Reynolds' equation, 

(4.1) 

where u 1 and u 2 are the speed of contacting surfaces. The assumptions 

used in deriving this equation are the usual one associated with analysis 

of concentrating contact except the following. 

i> Time dependent term a(ph)/at is retained in order to solve for 

the dynamic response of film to the rapid changes of load and surface 

curvatures. 
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Fig. 4.1. Film Thickness and Pressure Profiles Between Gear Teeth 
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ii) One dimensional approximation is used since the side flow is very 

small compared with the flow in main direction of motion. 

iii) Inertia forces are small compared with the magnitude of viscous 

shearing terms, therefore they can be neglected. It is further assumed 

that the viscosity response of lubricant to pressure change under iso- 

thermal condition can be represented by 

p = pTeap (4.2) 

where p T is the lubricant viscosity based on inlet temperature T at the 

inlet region and o is the pressure viscosity coefficient. 

If the effect of compressibility on lubricant is negligible, then 

the equation becomes 

$ (h3e -oP 2‘; = 12 
ad (4.3) 

where U is the mean rolling velocity and it is defined as u = b,+ u2> /2. 

After normalization, Eq. (4.3) becomes 

where fi + 
i 

Q = ' -Ge 
-oP 

12 
N = clTU 

E'R 

(4.4) 
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UIR =- 
s u 

G =oE' 

'lr2 
R =- 

r+r 12 

'lr2 
Ri = - 

r,+ r, '1 and r 2 evaluated at pitch point 
L L 

r1,r2= local radii of curvature of the two contacting surfaces 

- '\, 
E’ 

,1 - .,J12 1 
= TTP>. 

22 

E1 
+ E2 j 

‘jl’L2 = Poisson ratios of the two material 

El,E2= Young's modulsus of the two material 

u = time base 

E = c/R. 1 

T = wt dimensionless time 

and load 

p=-. - Rn(l - GQ) dE 
G 

(4.5) 

4.3. Solution of Reynolds' Equation with Hertzian Boundary 

For heavily loaded lubricated contacts the surface deformation of 

the solid can be assumed to conform to the Hertzian dry contact. 

Accordingly, the film thickness is equal to the sum of uniform level 

Ho and the Hertzian deformation Hd. Thus 

H&T) = Ho(~) + Hd(id (4.6) 

38 



where 

Hd= 0 for ISI s 2 JET 

and 

(4.7) 

(4.8) 

for 

- 
After integrating Eq. (4,4) twice with boundary conditions 

u-j -0 
-J and 

a5 0,~ 
Q(O,l-1 = $ 

and substituting the relations in Eq. (4.6) to (4.8) for H, one obtains 

s ‘2&l -I * 
- G4= - ’ a ,F,r Gl+ 2pG2 - Ho 

4F3\ ? 
G3' ,03J j 

with 

r1 G1 = ,! o V(l - q2)= p 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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and with 

(4.13) 

(4.14) 

7\ = dummy variable for integration 

The left hand terms in Eq. (4.9) governs the steady state film 

thickness, whereas the right hand terms measure the squeeze film. As 

suggested in Vichard's analysis, the four G. functions in Eq. (4.9) can 
1 

be approximated by the following exponential functions of S 

Gi= a$ 
-bi 

(4.15) 

where the constant a i's and exponent bi 's are taken from Ref. 26 and 

are tabulated in Table 4.1. .I 

4.4. Film Thickness Between Gear Teeth 

When solving Eq. (4.9) f or the dynamic lubricant film thickness 

between a pair of engaging teeth, the kinematic relations derived in 

Chapter III must be used. Defining "x = X/Ri, where X is the position 

of contact in the line of action and R i is the relative radius of curvature 

for the tooth contacting surfaces at the pitch point. The variable 2 becomes 

the natural choice for representing the dimensionless time 7 in Eq. (4.9) 

since all the kinematic variations are defined in terms of this dimension- 

less contact position%. Using the previous obtained kinematic relations 

for R and U, the parameters A, S and $ in Eq. (4.9) become 
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FILM THICKNESS h min (PM) 
- L 

MINIMUN 

MINIMUM FILM THICKNESS hmin (PIN) 



i+ 
(%,- %,) tan 0 - 2X 

bbl+ %,) lzan @ 
(4.16) 

= +E = I+,%& fj = i$SA/(sin @ + LE$. (%,- 
S 

%,) X, 
i i %lRb2 J 

. 
These expressions for i, S and7 in conjunction with known R, U, 

,J,, C, can be substituted into Eq. (4.9) for determining the dynamic 

film thickness. 

In solving Eq. (4.9), the line of action is divided into 100 uni- 

formly spaced grid points. The dynamic load P and load change Lp/Ax is 

obtained from the analysis in Chapter III. The equation is then solved 

numerically by Runge-Kutta method for discrete film thickness at these 

grids. The initial film thickness Ho(O) depends on how the tip of the 

gear and the root of the pinion come in contact. The effect of Ho(O) 

on the subsequent film distribution along the line of action has been 

examined by using three arbitrary chosen Ho(O) for a given run. As shown 

in Fig. 4.2 , it was found that the influence of Ho(O) only penetrates 

into a small region near the entrance of action line. For the most part 

the film thickness is not affected by this choice of Ho(O). For the 

subsequent runs, the value Ho(O) is chosen to be equal to the quasi- 

static value multiplied by a constant factor of 1.5. 

The deviation of dynamic film thickness from the steady film thick- 

ness is shown in Fig. 4.3 for a pair of 28-tooth, 8-pitch gears. In 

this figure, the squeeze film effect only causes a phase shift of the 
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TABLE 4.1 

NUMERICAL VALUES FOR G FUNCTIONS 

-b. 
Gi = aifl ’ 

a4 

$ =c 6.66 0.394 

8 > 6.66 0.4747 

a2 b2 

B< 1 0.181 1.408 

1<8< 20 0.1883 1.52 

20 -c 6 < 220 0.2948 1.667 

6 7 220 0.5135 1.781 

al bl 

!3<1 0.833 1.249 

left< 22 0.799 1.1285 

6 > 22 0.581 1.0224 

i = 1,2,3,4 

b4 a3 b3 

1.387 2.0965 2.247 

1.476 1.378 2.0496 
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minimum film thickness and it has little effect on the level of the 

minimum film thickness. Also, from Eq. (4.9) the squeeze number S is 

independent of the operating speed u. Thus, the squeeze film effect is 

also independent of the operating speed. 
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V. ANALYSIS OF FRICTIONAL HEAT GENERATION AND FLASH TEMPERATURE 

5.1. Introduction 

As discussed earlier, the lubricant film thickness, the equilibrium 

surface temperature and the flash temperature are all mutually dependent 

quantities, and are solved together by an iterative procedure to be given 

in Chapter VII. 

In the last Chapter, the analysis of film thickness for given surface 

temperatures is presented. This Chapter is devoted to the analysis of 

the flash temperature as well as the frictional heat generation in the 

contact. 

The heat generation is assumed to be solely due to the shear of 

lubricant, which is modelled as a non-Newtonian liquid with a limiting 

shear stress under high pressure. 

Equations of heat balance due to conduction are formulated in the 

lubricant film as well as in the two bounding solids at discrete points 

along the contact region. These equations are solved numerically for the 

heat generation and the flash temperature. Details of the liquid model 

and the formulation of heat balance are given in the ensueing sections. 

5.2. A Non-Newtonian Viscosity Model 

It has been demonstrated (Ref. 29 ) that the use of Newtonian 

viscosity model for lubricant flow in high speed, heavily loaded lubri- 

cated contacts can yield friction and heat generation far greater than 

those measured experimentally. It is believed that, under these severe 

conditions, the lubricant ceases to be Newtonian and one must seek a 

suitable non-Newtonian model for a more accurate prediction of friction 

in the contact. 
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The frictional coefficient in EJ3D sliding contacts was investigated 

in detail first by Crook (Ref. 30 ) with a two disk machine. The measured 

frictional coefficient was found to vary with the sliding velocity as 

shown in Fig. 5.1. The same trend has since been observed by many 

other researchers (Refs. 31, 32 ). Dyson (Ref. 25 ) interpreted this 

behavior of sliding friction by dividing the friction curve vs. speed 

into three regions. These are a linear ascending region at low sliding 

speed, a non-linear transitional region till it has passed the peak of 

friction curve, and finally a thermal descending region at very high 

sliding speeds. The level of this frictional curve was found to increase 

with load and to decrease with temperature. 

In an attempt to interpret these features, Dyson (Ref. 25 ) employed 

a fluid viscoelastic model, originally proposed by Barlow and Lamb (Ref. 

33 ), to explain the fluid behavior in the linear and thermal region. 

As a modification of Dyson's analysis, Trachman (Ref. 29 ) used a unified 

theory of transient viscosity and hyperbolic limiting shear models to 

predict the values of frictional coefficient in all three regions on this 

curve. Close correlation between the predicted results and his measured 

values appear to lend considerable credence to these models. 

The descending region of the frictional curve deserves special atten- 

tion since most of the high speed gears operate in this region. The 

model developed by Dyson for predicting the friction at high sliding 

speed is used here in high speed gear analysis. 

Fluids exhibit viscoelastic properties when subject to oscillatory 

shear. When the frequency for applied shear is very high, the ratio of 

shear stress T s to strain cS is called limiting shear modulus G, for 
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oscillatory shear. Extending this modulus for 

application in elastohydrodynamic lubrication, 

continuous shear for 

Dyson found that the 

inclusion of a simplified Oldroyd parameter kS= 7.5, such that Em for 

continuous shear is equal to G,/kS, shows a good correlation with 

Smith's (Ref. 31 ) experimental data at high loads. 

It is hypothesized that similar to the yield stress in solids, the 

liquid can have a ceiling stress when subjected to a high pressure at 

a high strain rate. Dyson suggested that the limiting shear stress 

'Smax. is proportional to the aforementioned limiting shear modulus 

G, by the relation 7Smax = C-E . In evaluating this limiting shear . co 

modulus E co as a function of temperature and pressure, Hutton (Ref. 34 ) 

determined experimentally the variation of E with.temperature at CD 

atmospheric pressure for high viscosity index mineral oil as 

1 : = 2.52 + 0.025 T (5.1) 
G co 

where Em is in GN ,' (101'dyne/cm2) and T is in OC. Since the direct 

measurement of this modulus at high pressure is difficult, Dyson arrived 

at a relation between the modulus and pressure based on frictional meas- 

urements by Smith (Ref. 31 ). He proposed 

'=(P,T) = O-4 2 52 FO 024T [ 1 - lo8 . . 

converting into English units. Equation (5.2) becomes 

z&O) = 
1.2p 

2.52 + .0133(T-492) - 1=45 x lo 
4 

(5.2) 

(5.3) 

where E ' a . aD 1s in psi, p is also in psi, and T is in OR Eq. (5.3) can 

only be used for high pressures. For low pressure the z=(P,T) predicted 
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using this equation can become lower than that calculated from Eq. (5.3). 

Whenever this condition occurs, Em is taken to be that corresponding to 

the atmospheric pressure in the present analysis. 

5.3. Surface Temperature Rise 

Heat is generated by viscous shearing of lubricant between the sliding 

contact surface, This heat is either carried away by the lubricant 

through convection or transferred into the surfaces by conduction; the 

relative importance between these two modes of heat transfer in EHD 

contacts was examined by Trachman (Ref. 29 >. He showed that the con- 

vective mode is only important at extremely high rolling speeds. For 

gears, even for most of the high speed gears current in practice, the 

heat convected by lubricant is still negligible in comparison to the 

heat diffused into the solids. 

If the heat generation at each point along a Hertzian sliding con- 

tact is known, the surface temperature can be readily determined by 

using the one-dimensional transient heat conduction analysis for a semi- 

infinite plane subjected to an arbitrarily distributed fast moving heat 

source. However, the heat generation is dependent upon the lubri- 

cant film temperature which is in turn dependent upon the surface tem- 

perature. The system variables are, therefore, mutually dependent, and 

must be solved as a coupled system. 

The lubricant local velocity profile and temperature profile for 

the very high sliding cases were estimated by Plint (Ref. 35 ) and 

later confirmed by Trachman's analysis (Ref. 29 ). Under this sliding 

condition, their results show a sharp S-shaped velocity profile across 

the film with a large velocity gradient at the mid-plane. The temperature 
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attains a maximum at the same median plane and decreases almost linearly 

to -both surfaces. Since shearing of the lubricant occurs mainly in the 

mid-plane most of the heat is also generated here in this thin 

layer. This results into the S-shaped velocity profile as well as the 

triangular temperature distribution across the profile. 

For gear teeth contacts, the sliding speed is generally high enough 

to warrant the assumption that the shear stress approachas the limiting 

shear stress postulated by Dyson. 

'Smax. = Em/4 (5.4) 

where E m is a function of p and T, given in Eq. (5.3). With this assump- 

tion, the local heat flux generated in the film becomes 

4 = 'Smax. b,- 4 

1 
=- 4 1 1.2p - 2.52 + .0133 (Tmid - 492) 1.45 x 104-j (5.5) . 

where q, 7Smax , p, and T are functions of the contact coordinate 5. The . 

distribution p is assumed to be Hertzian. The heat balance equations 

in the lubricant film based on the assumption that all the heat generated 

is at the mid-film, as shown in the sketch below 
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T 
41= h = 2k mid - T1 

f h 

T.-T2 
q2= (1-h)q = 2kf "';t 

(5.6) 

(5.7) 

where 

A = local heat partition function 

T1'T2 = temperature of the contacting surfaces 

and 

kf = thermal conductivity of the lubricant 

h = plateau film thickness, a constant in the contact region. 

Equations (5.6) and (5.7) can be solved for Tmid and A to yield 

T mid = + (Tl+ T2) + $ 
f 

A 
1 kf =- 
2 + hq - (T2- Tl> 

(5.8) 

(5.9) 

Substituting Eq. (5.8) and Eq. (5.9) into Eq. (5.6) and Eq. (5.7), one obtains 

kf 1 
41 = T;- (T2- T1> + 7’4 (5.10) 

kf = T;- (T1- T2) + 1 
42 F'9 (5.11) 

The surface temperature can be calculated by using the solution of 

one-dimensional transient heat conduction analysis for a semi-infinite 

plane under an arbitrarily distributed, fast-moving heat source (Ref. 36 

1. Thus, 

T1(T)=Tb + l I G/2 kf f” 
1 WICIUlkl’ ?;-J 

T2(y) 
-0) - Tl(S’) + 9132 

(5.12) 
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T2W=Tb + 
2 

T1(S’) - T2(5') +w] "' 
(5-d'2 

(5.13) 

Substituting Eq. (5.8 ) into Eq. (5.5 ), one obtains a relation between 

q(g), Tl(g) and T2({) in the following form. 

SW = + by l-4 t 
1.2p(Z) 

2.52 + .0133 ((-WI(g) + T2(5)) + p) - 492.) 
- 1.42 x 104] 

f 

(5.14) 

Equations (5.12), (%.13), and (5.14) are a non-linear system governing 

q, Tl, and T2 in the contact region. 

Equations (5.12) and (5.13) are recognized as Volterra's integral 

equation of the second kind (Ref. 37 ). These equations can be readily 

integrated numerically by dividing the contact zone into ten uniform 

intervals, The resulting equations for calculating temperatures at the 

grid point i+l becomes 

Tl,i+l 2,i+l- Tl,i+l + K1'qi+l 

T2,i+l = '2+ J2 Tl,i+l- T2,iil ( ) + K2'qi+l 

where 

( f. “‘j w A% + Ti m) 
j=l i+l j 

. 

)1'2( fuj ~ + 41~) + Tb,l 
j=l i+l j 
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(5.16) 

(5.17) 



12= ,,2c:u2kJl'2(>j[ iwj 
j=l 

w 
i+l j 

1 1 1/a - 

+ 7 ( ) ( 
; s-A5 

np2c2d2k2 
Lwj 5 j=l ( i+l- gj)l12 + 

Jl = 

J2 = 

Kl = 

K2 = 

i .$lulkl)1'2& n 

( np2:2u2k2)1'2@~ &- 

1 
T ( np~clulkl~1'2 fi 

u k )112 fi 
2 2 

where As is the grid spacing and u). is the 
3 

integration. 

\ Ag + Ti ~/ 

ni~A5) + Tb 2 , 
(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

quadrature for the numerical 

Equation (5.15)and (5.16) combined with Eq. (5.14) form 

a set of three non-linear algebraic equation which can be solved 

for T 
l;i 

and T 2,i and qi from i equal to 1 to 10. At each grid point, 

the Newton-Raphson procedure is used to find the three roots of these 

three equations. Once Tl, T2 and q are known, the heat flux ql and q2 

into the surfaces can be evaluated using Eqs. (5.lO)and (5.11) respec- 

tively. These numerical calculations are accomplished in a subroutine 

called FLASH which includes a subroutine called SOLN for solving the 

non-linear algebraic equations. 
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VI. HEAT DISSAPATION AND EQUILIBRIUM TEMPERATURE 

6.1. Introduction 

For gear transmissions delivering sizable power the equilibrium 

temperature on the tooth surface can reach intolerable level even under 

ordinary conditions. The analysis for this equilibrium surface tempera- 

ture is important because the dynamic film thickness depends on the 

viscosity of lubricant which in turn, depends strongly on the equilibrium 

surface temperature. In addition, other considerations such as the 

thermal degradation of lubricant, the teeth surface hardness change and 

life of seals are also affected by this equilibrium temperature level. 

This chapter deals mainly with the analysis of the equilibrium 

surface temperature in a typical wedge of a spur gear subjected to an 

arbitrarily distributed heat flow on the tooth. 

A special three-dimensional finite-element analysis, formulated 

specially for a more efficient computation for the gear geometry, was 

developed. 

6.2. Thermal Modeling of The Gear System 

For a pair of gears meshing at high speeds, the main cooling is 

usually provided by a mixture of oil mist surrounding the entire gear 

surface. The whole system is initially at a given reference temperature. 

It is gradually heated by the sliding friction between gear tooth, until 

it reaches a steady state distribution after many cycles of rotation. 

The analysis of the transient temperature history in gears requires a 

complicated three dimensional time-dependent heat conduction problem. 

Since one is primarily concerned with the equilibrium temperature dis- 

tribution, the transient temperature history before the state of equi- 

librium is reached is of no interest to the present study. 
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For each revolution, the tooth working face of every segment is 
. . 

subjected to an identical heat flux when it is in contact with a mating 

tooth. The period of heating within each revolution is extremely small 

compared to the total period of revolution. Thus, at a given point on 

the.tooth facing, the material receives a heat impulse for each revolu- 

tion. This results into a typical temperature fluctuation shown in 

Fig. 2.5, where Tb is the equilibrium temperature, and Tf the flash 

temperature. 

The subsequent sections give a detailed treatment of a steady-state 

heat conduction analysis for a typical wedge subjected to a time-averaged 

heat distribution along the tooth profile.- The similarity of each tooth 

on gears and the same heating and cooling condition that each tooth 

experienced lead to the same repeatable temperature distribution within 

each tooth segment. Therefore, only one tooth segment needs to be con- 

sidered for the equilibrium temperature analysis. 

6.3. Heat Conduction.Equation and Boundary Condition for Gears 

A typical configuration for a single tooth segment along with the 

boundary face number are shown on Fig. 6.1 . Let the equilibrium tem- 

perature in this segment be denoted as Tb, the equation governing this 

temperature distribution is the Fourier heat conduction equation, 

a2Tb a2Tb a2Tb 
-+- + p-0 
ax2 aY2 az2 

(6.1) 
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Fig. 6.1. Code Numbers for Surface Boundary Conditions 
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and the associated boundary conditions referring to the faces on this 

segment are 

Tb)4 = Tbj5 

'Tb\ aTb m =-- 
an i4 ) an 5 

aTb\ 
an/ 2 and 3 = - Y(Tb- Ta) 

= - ycTb- Ta> = 
Tl 

1 - h,/ + qave (x,y,z) . 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

where 

= hs/k 

hS 
= the surface heat transfer coefficient 

k = the thermal conductivity of gear 

n = the period of the gear rotation 

7 = the time interval between the pair of teeth in contact 

Ta = the ambient temperature of the surroundings 

4 ave (x,y,z) = the local heat flux per unit area averaged over the 
0 

period of each revolution 

n = a length coordinate in the direction of the outward 

normal to the surface. 

Since the time scale for the surface temperature to reach equilibrium is 

several decades larger than the period of each revolution, it is reason- 

able to assume a time-average uniform heat flux at each point on the con- 

tacting surface even though the real heat input is actually a cyclic impulse. 

Moreover, since face 1 is exposed to the ambient most of the time except 

for a short instant when it is in contact with the mating tooth, a term 

to account for the heat convected to the surrounding is also needed in 

the boundary condition, Eq. (6.5) 
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Face 4 and face 5 are boundaries connected to the adjacent and tooth 

segments. Since the thermal map in every gear segment must be the same for 

face 4 and face 5, therefore, they must share exactly the same temperature 

and the same temperature slope. These give rise to boundary conditions 

given by Eq. (6.2) and (6.3). The non-dimensional form of Eq. (6.1) can 

be written as 

a"Tb" a'T; aT; 
-+-+c-=o 
aG2 ay2 aY2 

The dimensionless quantity 

* k(Tb- 'a) 
Tb=U P smax.max. 

--- X Y z X,Y,Z = y 3 R ,Ti 
0 0 

C = (D/2 Ro)2 

D = face width 

R. = outside radius 

smax. max. 

and the boundary condition, become 

-2 
- I" RoTb 

- y DT; 

and 

(6.6) 

(6.7) 

(6-8) 

(6.9) 

(6.10) 



6.4. Solution for Equilibrium Temperature by Finite Element Method 

The purpose of introducing the following special finite-element 

formulation is partly because of the unusual boundary conditions required 

and also for the easier connection to other parts of the analysis. 

The discretized regions of a typical tooth segment is shown in 

Fig. 6.2 , where triangular prism elements with plane triangular element 
- - 

in the x, y plane and rectangular element in the T, z plane are used. 
>'; 

Accordingly, the temperature Tb is approximated by a sum of nodal tem- 

peratures weighted by tensor shaping functions Ni %,Y> and Nj2(;). 

Thus 

m n 

1 N,'(&y) Nj2(y) TTj 
i=l j=l 

(6.11) 

where superscript 1 denotes the shaping function N on the T,, plane and 

superscript 2 denotes the function N in the z-direction. N1 is a 

standard linear shaping function in x and y, and N 2 is a quadratic 

function in Z. Subscript i denotes the node number on the T,y plane, 

and j represents the number in the z direction. Similarly, the heating 

input over face 1 is also expressed as functions of nodal heating QT.. 
=J 

m n 

(6.12) 

As shown by Zienkiewicz [381, the Galerkin's approach for forming the 

12 integral of the conduction equation with weighting functions N. N, can 
1 J 

be written as, 
2* 

N a Tb\ + c --2, d:dyd; = 0 
- -- 
Z X¶Y aZ 

(6.13) 
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Fig. 6.2. A Coarse Finite-Element Mesh for the Tooth Segment 
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/ 
i = 1,2,3,..., m 

j = 1,2,3. 

where m is the total number of nodes in the G,y plane. Equation (6.13) 

can be integrated by parts by substituting Eqs. (6.11) for-T: and 

Eqs. (6.7), (6.8), (6.9), and (6.10) for the boundary conditions. 

Equation (6.13) becomes 

+ [*I r *; 
j=2 13 'cTb-f j=3 

= CRSj=l 

rA--! ;T"! 
7$- 

21~ bJ j=l j=2 
+ [*I23 Tb.i 

j=3 
= CRlj=2 

and the coefficient matrices are 

t-41 22= +$ r$+ ; c tn3,+ g YD tn3, (6.21) 

F.*I23= r*Il2, L*331= r-Al,, 3 I*I32' [*I23 

[*I,,= r*lll 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18). 

(6.19) 

(6.20) 

(6.22) 

(6.23) 
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where the iath coefficient of the matrices, [6211, [n12, and [n-j, are 

(0 \ ia)3- j Nil NA1 ds 

(6.24) 

(6.25) 

(‘3 36 > 

The resulting ith coefficient of the vectors [RI in Eq. (6.14) to (6.16) are 

‘\ 
R' iij=l 

= yD c & j Nil NA1 Q; ldS+ 3 $ Nil Nal i;,2dS 
R , 

=9/DC 
a 

Nil NA1 Ql,ldS +g! Ni1 Na ' Q; 2dS , 

& & Nil NA1 Q; 3 dS‘:l 
, 

( 
'i) j=3= cRi) j=l 

(6.27) 

(6.28) 

(6.29) 

The matrices A are known as the global stiffness matrix and they are 

formed by summing the contributions from each non-zero element stiffness 

matrix. The boundary conditions on face 4 and 5 are resolved by adding 

the boundary element stiffness by the corresponding boundary element 

stiffness on the opposite side. 

Since the heat generated in the contact is in general symmetric 

with respect to the mid-plane of the gear, the temperature distribution 

is, therefore, also symmetric. Because of the symmetry, Eqs. (6.14) to (6.16) 

can be further simplified by virtue of the fact that 
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-! 
Jrl 

!.TbJj=3 

,fius Eqs. (6.14) to (6.16) can be reduced to 

[ 'A311+ ‘*3,3] iTt}j=l+ T.A3l2 {bj=2= CR'lj=l 

and finally 

f > 
T ~ j=2= t~3 IR3j,l- ~'i;' CR3j,2 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

and 

Assuming that the heating is uniform across the width, of the tooth, 

then 

CR3 j=l = ~ CR3j=2 

It follows that 

where 

(6.34) 

(6.35) 
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Equation (6.35) represents the solution of the temperature distribu- 

tion at all nodes within a typical tooth segment. However, in the actual 

problem one is concerned with the temperature along the contacting path 

only. Moreover, the heat flux at the nodes is zero everywhere except 

the nodes along the contacting path. Thus, one is only interested in 

the temperature at the nodes along the contacting path due to heating 

at the surface nodes, and it is only necessary to use a subset of the 

inverted solution given by Eq. (6.35). 

Let tT3;c2 denotes a subset of {TtJjC2 and contain all nodal - 

temperatures along the contacting surface. The corresponding set of 

heat flux at the same nodes is denoted by {R]iC2. Thus 

{ (6.36) 

where the matrix [D-J' is a subset of [??j pertaining only to the nodes 

along the contacting surface. Physically, the elements 5 ij in C5-j' can 

be interpreted as the influence coefficient ij, or the temperature at 

ith node1 due to a unit heat flux at jth node. 

The influence coefficients 5 ij were found to be dependent only 

upon the gear geometry, surface convective coefficient, and thermal 

conductivity of the solid. In terms of dimensionless parameters, the 

values of 5 ij were found to be functions of the following parameters: 

NT = number of teeth 

hf = Ro/D = ratio of radius to face width 

Bi = hsRo/k = Biot number 
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A bank of data for the coefficients in the matrix [El' was 

generated to cover the following ranges of the above three parameters. 

50 < NT < 150 

6 < /if < 48 

0.3 < Bi < 3 

It was found that the variations of these coefficients with all three 

parameters are quite well-behaved. The results also exhibit a linear 

relation between D with N T' These trends suggest that one can readily 

use a interpolation routine to obtain the values of the influence 

coefficient matrix for any arbitrary value of NT,Af, and Bi within the 

above listed ranges. Since the coefficients depend almost lineraly on 

NT,the extra-polation can also be made for NT< 50. This interpolation 

procedure was accomplished by using the isoparametric mapping scheme 

suggested by Zienkiawicz (Ref. 38 ) and it is documented in Appendix A. 
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VII. COMPUTATIONAL PROCEDURES 

In the previous chapters it was shown that the problem of elasto- 

hydrodynamic lubrication of spur gears consists essentially of the 

solution of the following quantities along the line of action. 

1. Dynamic load 'd 

2. Film thickness h 

3. Total flash temperature T1,2 

4. Equilibrium surface temperature 
Tbl 2 

Since the dynamic load is practically unaffected by'the film thickness 

or the surface temperature, it can be solved independently. The remain- 

ing three quantities are coupled, and are solved by an iterative 

process. The overall computational scheme can be best described by a 

flow diagram shown in Fig. 7.1. This is used in constructing a computer 

program entitled TELSGE - Thermal Elastohydrodynamic Lubrication of Spur 

Gears. The function of each subroutine is described as follows. 

1. The scheme begins with subroutine INPU which enters all input data 

including gear geometry, material properties, lubricant properties, 

and operating conditions such as speed,load, and ambient temperature. 

2. The program then excutes subroutine PICK and subroutine INVGEN which 

are used to obtain the matrix of influence coefficients, the matrix 

ms in Eq. (6.36), for calculating the equilibrium surface tem- 

perature distribution along the contacting profile. This is achieved 

by interpolation of a stored data bank of influenced coefficients. 

3. After INVGEN, the program executes subroutine COGEN which is used 

to generate the coordinates of a mesh of quadrilateral elements 

in a typical gear segment. 
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4. Subroutine DYNALO is then executed, and it computes the dynamic 

load by integrating Eq. (3.21). 

5. The program then begins the iterative loop to solve for the flash 

temperature, and the equilibrium surface temperature. Subroutines 

FILM is first executed, and it calculates the film thickness by 

integrating Eq. (4.9 ). 

6. The flash temperature on each contacting surface and the heat 

flux distribution are determined in subroutine FLASH by solving 

Eqs. (5.14)) (5.15), and (5.16), at each grid within the Hertzian 

contact. 

7. In subroutine TEMP, the equilibrium temperature distribution on the 

contacting surface is computed by using the influen-ce coefficients 

obtained in subroutine INVGEN for the distribution of the heat flux 

calculated in surboutine FLASH. The newly iterated values of 

equilibrium temperature are compared with the values in the last 

iteration. If the difference at every node on the surface is 

within the allowable error, the iteration is considered to be 

converged. If not, the procedure is repeated at subroutine FILM. 

8. Subroutine OUTPTJ prints out all the output data of the dynamic 

load, film thickness, flash temperature, and the equilibrium 

surface temperature along the contacting path. 
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VIII RESULTS AND DISCUSSIONS 

8.1. Introduction 

An analysis of gear dynamics, lubricant film thickness, equilibrium 

temperature, and flash temperature was developed in Chapters II, III, IV, 

V, and VI. The numerical procedu.res developed for this analysis are 

detailed in Chapter VII. Series of solutions were obtained to simulate' 

gears of different gear ratio,diametral pitch, face width and sub- 

jected to wide ranges of operating conditions, and these results are 

presented here in three parts. The first of these concerns the dynamic 

load only. The dynamic load distribution is plotted as a function of 

the contact position along the line of action for speeds below, near or 

above the resonance frequency of the system. The effect of tip relief 

as well as the effect of profile errors of the teeth on the dynamic 

load distribution were also examined and included in the presentation. 

Dynamic response is expressed by a dynamic load ratio defined as the 

ratio of the maximum dynamic load along the contacting path to the 

static load. Their ratio is plotted as a function of speed with the 

damping ratio and the contact ratio as parameters. 

The second part concerns the lubrication performance, the distribu- 

tion of equilibrium temperature, film thickness, and total flash temperature 

along the contacting path for gears operating at speeds below or above 

the resonance which are shown first. It is then followed by plots of the 

minimum film thickness and the maximum total flash temperature as functions 

of width, outside radius, and diametrial pitch. The effect of tip 

relief on the lubrication performance is also presented. 
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The final part of the results contains two design charts for 

the purpose of estimating the equilibrium temperature on the gear 

facing for a known distribution of heat flux and convective heat 

transfer coefficient. 

8.2. Gear Dynamics 

8.2.1. Dynamic Load Variation 

In general, the dynamic load distribution deviates drastically 

from the static load distribution and is found to change greatly with 

the operating speed. The relationship of dynamic load variation with 

speed as well as with gear geometrical'factors are described in the 

following sections. 

For gears with true involute profiles under normal operating 

conditions, the main excitation to the system originates from the 

periodical change in teeth stiffness due to the alternating engagement 

of single and double pairs of teeth. The resulting mode of vibration is 

therefore dependent on the frequency of this forcing excitation, and 

hence dependent on the operating speed. Figures 8.1 a.b. and c show 

dynamic load variation in three different speed regions for a pair of 

28-tooth and 8 pitch gears. 

In the low speed region where the excitation frequency from the 

change of stiffness is much lower than the resonanting frequency of 

the system, the dynamic load response is basically a static load 

sharing in phase with the stiffness change, superimposed by a oscilla- 

tory load at a frequency corresponding to the system's resonanting 

frequency. 
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AS the speed increases to the neighborhood of the resonance, the 

typical load response as shown in Fig. 8.lb contains load variations so 

abrupt that it sometimes can even produce teeth separation. In this 

speed region, the peak dynamic load is much higher than the input static 

load and is very likely a source of gear noise and early surface fatigue. 

Operating in this region is obviously harmful. As the speed increases 

beyond the frequency of the resonanting frequency, the dynamic load 

becomes out of phase with the stiffness variation, and it has a much 

smoother response. The peak of this load response is much reduced, and 

is smaller than the static load. The shape of this load response, shown 

in Fig. 8.1~ is usually preserved with further speed increase. The 

dynamic load distribution for gears with an exaggerated tip-relief 
(.Ol in.) 
.025 cm at the same speeds are shown in Figs. 8.2a to 8.2~. As 

expected the tip-relief causes a delay in starting of the contact and 

an earlier end of the contact. The results also show that the tip 

relieved gears have a better load response at speeds below or near the 

resonating frequency. For very high speeds however, the tip-relieved 

gears show a peak dynamic load higher than that for gears without tip- 

relief. 

For gears having a sinusoidal profile error with amplitude of 
(.OOOl in.) 
.00025 cm the results of the dynamic load variation are shown in Figs. 8.3a 

to 8.3~ . In these cases, arbitrary errors of the sinusoidal form with 
(.OOOl in.) 

the peak amplitude of .00025 cm are introduced to describe the surface 

of the pinion tooth. The result of the dynamic load pattern deviates 

from the original load pattern with the correct involute under the same 

speed, and the deviation seems to be proportional to the amplitude of 

errors for all speeds. 
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8.2.2 Effect of Speed 

One of the approaches to investigate the effects of various para- 

meters on this dynamic load is through the use of dynamic load factor, 

'f= 'dmax. lp, , where P, is the static load and P 
dmax. is the maximum 

dynamic load along the line of action or the contacting path. The 

effect of speed is examplified by plotting the dynamic load factor P f 

against the frequency ratio wr= u)/wn, defined as the ratio of the 

excitation frequency u) due to the periodical change of tooth stiffness 

to the systems natural frequency u)~. The system natural frequency 

run is taken as the frequency at which the maximum dynamic load 

occurs. 

Figure 8.4 shows a typical curve of the dynamic load factor Pf versus 

frequency ratio u)~. The general trend of the response is similar to that 

of a single-degree of freedom forced vibratory system except that a few 

secondary peaks of the dynamic load ratio exist in the region of U) c 1. r 

When wr approaches unity, the load rises rapidly exhibiting a resonating 

phenomenon. For speeds above the natural frequency, the dynamic load 

decreases steadily in the same manner as the ordinary vibratory system. 

8.2.3. Effect of Damping Ratio F, 

The damping coefficient C 
0 

in Eq. (3.21) governing the dynamic load 

variation depends on the viscous friction of the gear system. It is 

usually an unknown. The damping ratio E_ in the present analysis is 

defined as F Co/2 fi . An arbitrary value between .l and .2 was used 

in the analysis reported by Hirano [Ref. 71 and Ishikawa [Ref. 81 for 

the correlation between their analytical and experimental results. To 

explore the effect of this ratio, arbitrary values of .l, .17, and .2 

were used to generate the dynamic load ratios shown in Fig. 8.5. As 
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observed in this figure, damping ratio 5 has a major influence on the 

load factor Pf when the operating speed is close to the resonating 

frequency. Away from the resonance the damping has little influence on 

8.2.4. Effect of Contact Ratio 

Contact ratio is defined as 

base pitch. This ratio measures 

the ratio of the contact length to the 

the duration of load being shared by 

more than one pair of teeth and it has a considerable effect on the 

dynamic load response. For gears with different diametral pitches, the 

dynamic load response is different because of the change in contact ratio. 

It is expected that an increase in contact ratio would have a beneficial 

effect on the load sharing. To verify this fact, a comparison of the 

dynamic load response is made between gears having 8-pitch and 16-pitch 

under identical operational conditions. The corresponding contact ratios 

for these two sets of gears are 1.64 and 1.78 respectively. As shown in 

Fig. 8.6, the fine pitch gears (16-pitch) having a higher contact ratio 

have a smaller dynamic load factor compared with that calculated for 

coarser gears. 

8.2.5. Effect of Tooth Tip-Relief 

The dynamic load factor Pf is also calculated over a wide range of 

speeds for a pair of 28-tooth, 8-pitch gears both having a maximum of 

.Ol inch removed from the tip of the tooth. Figure 8.7 shows the result 

of the dynamic load factor Pf comparing with those obtained for the same 

gears without the tip-relief. It is seen that the tip-relief tends to 

suppress the peaks over the entire frequency range. The effect is most 

pronounced at speeds near the resonance. However, for speeds above the 
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resonanting frequency the presence of tip-relief ceases to be beneficial. 

In' fact, the dynamic load factor is higher compared to the factor 

obtained without the tip-relief. 

8.3. Lubrication Performance 

8.3.1. Introduction 

The computer program developed for spur gears in Chapter VII, is 

applicable for a wide range of geometric, material, and operating para- 

meters. In this section, typical results were generated for a set of 

gears having a geometry similar to that used by Townsend [Ref. 24 ]. 

These results cover effects of geometrical factors including face width, 

gear size, diametral pitch, gear ratio and tip-relief. In addition, the 

effects of lubricant viscosity, heat transfer coefficient, speed, and 

load on the lubrication performance is also included. 

8.3.2. Distribution of Equilibrium Temperature, Total Flash Temperature, 
and Minimum Film Thickness 

In this section, detailed distributions of the minimum film thickness 

and temperature are plotted against the contact position for a set of 

gears and the lubricant used in Ref. 24. The properties of the lubricant 

as well as the geometry of the gears are listed in Table 8.1. In deter- 

mining the distribution of minimum film thickness, it was assumed that 

the minimum film in a Hertzian contact is 75% of the plateau film thick- 

ness calculated from Eq. (4.9). 

A contour plot for the equilibrium temperature distribution in the 

tooth segment is shown in Fig. 8.8. The temperature is generally higher 

on the contacting tooth surface and gradually decreases towards 
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TABLE 8.1 

GEAR DATA, LUBRICANT DATA, AND STANDARD OPERATING CONDITIONS 

GEAR DATA 

Number of Teeth, NT 28 

Diametral Pitch, D ' 8 
P 

Pressure Angle, @ 2o" 

Pitch Radius, R1' cm(in) 4.445 (1.75) 

Outside Radius, R 
Ol 

,cm(in) 4.7625(1.875) 

LUBRICANT DATA 

Super-Refined, Naphthenic, mineral-oil 

Kinematic Viscosity, cm2/sec (cs), at 

311 K (lOOoF) 0.73 (73) 

372 K (210'F) 0.077 (7.7) 

Density at 289 K (60°F) g/cm3 0.8899 

Thermal Conductivity at 

311 K(lOO'F) J/(m)(sec)(K) (BTU/(hr)(ft)(°F)) 0.04(0.0725) 

Specific Heat at 311 K(lOO'F) 

J/(Kg)(K) (BTU/(lb)(°F) 582(0.450) 

Pressure Viscosity Coefficient, cy, m2/MN(in2/lb) (.00016) 

Temperature Viscosity Coefficient, 8, K(R) 3890(7000) 

STANDARD OPERATING CONDITIONS 

Load Per Unit Width, P, MN/m(lb/in) ,753 (4300) 
Pitch Line Velocity, V, m/sec(in/sec) 46.55 (1832) 

Ambient Temperature, To, C(F) 37.78 (100) 
Surface Heat Transfer Coefficient, W/m2K(B/(ft2)(hr)(R)) 341(60) 
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Fig. 8.8. A Typical Contour Plot of Equilibrium Surface Temperature 
in a Tooth Segment 
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the interior. On the contacting face, the temperature is highest near 

the tip of the tooth, and gradually decreases as it approaches the root. 

The detailed equilibrium surface temperature on both the pinion and gear 

teeth contacting surfaces is shown in Figs. 8.9(a) to (c) in terms of contact 

position X. It is seen that the equilibrium temperature for both the 

pinion and the gear is higher at the tip of the tooth than at the root. 

This results in a pronounced temperature differential between the tooth 

surfaces during the beginning and the ending of the engagement. 

The total flash temperatures as a function of the contacting position are 

plotted in Figs. 8.10(a) to (c) for three different speeds. At speeds below 

or near the resonance, the total flash temperature exhibits local fluctua- 

tions which are caused mainly by the dynamic load variations. Such fluc- 

tuations of total flash temperature are not found at a speed considerably 

above the resonance. 

Figures 8.11(a) to (c) show the surface temperature within the Hertzian 

contact for n = 16,370 rpm at three different contact positions. In the 

beginning of the engagement (Fig. 8.11(a)) the pinion surface velocity, 

u1 is slower and, therefore, shows a greater temperature rise. At the 

end of the contacting path, (Fig. 8.11(c)) the surface velocity of the 

pinion is faster and, therefore, the trend is reversed. 

The corresponding dynamic film thickness for this case is shown in 

Fig. 8.12 as a function of tooth contact position. The squeeze film 

effect is shown to be only important at a very short period after the 

teeth are engaged. Examinations of the film thickness distributions for 

all other runs indicate that the squeeze film effect is indeed not a 

dominant effect on the minimum film thickness. 
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8.3.3. Effect of Gear Geometry 

The results in the previous section show the detailed distributions 

along the contact path. In the following sections, one is concerned with 

the overall performance as affected by the change of geometrical factors. 

The overall performance is represented by three quantities, the maximum 

equilibrium surface temperature, the maximum total flash tem- 

perature, and the minimum of film thickness. They are chosen to 

represent the lubrication performance because of their strong influence 

on the major modes of failure originating from lubrication. 

In investigating the effects of gear geometry, the first case 

considered is the effect of gear face width. Borsoff [Ref. 21 ] 

found experimentally that the increase of face width would reduce the 

specific load carrying capacity (load per unit face width). This phe- 

nomenon does not seem to be explainable by Blok's flash temperature 

theory or by any existing EHD film thickness theory. AS shown in Fig. 8.13, 

the present results indicate that as the face width increases from 0.13 to 

0.51 cm (0.05 to 0.2 in.) under the same load there is a corresponding in- 

crease in the maximum equilibrium surface temperature as well as in the 

total flash temperature. The higher surface temperature results in a much 

reduced minimum film thickness when the face width is increased. This 

suggests that the experimental trend obtained by Borsoff with regard to 

the effect of face width can be at least partially accounted for by the 

present analysis on the basis of its effect on the surface temperature 

and film thickness. 

The effect of gear outside radius is shown in Fig. 8.14. It is 

seen that when the outside-radius is increased from 4.7 to 6.3 cm (1.85 

to 2.35 in.) under a constant load and speed, the total flash tempera- 
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ture as well as the film thickness are considerably improved. However, 

one must keep in mind that the improvement in lubrication performance by 

increasing the size of gears is a rather expensive way to solve the 

lubrication problem. 

The effect of diametral pitch is shown in Fig. 8.15. Since an in- 

crease in diametral pitch tends to reduce the dynamic load and the 

sliding between teeth, the use of gears with a finer pitch yields a 

lower maximum surface temperature as well as a lower total flash tempera- 

ture comparing to the corresponding values for coarser gears. The mini- 

mum film thickness is also found to be much improved as the diametral 

pitch changes from 8 to 12. However, it must be kept in mind that the 

improvement in lubrication performance in this instance can be easily 

offset by the reduction in flexural strength for gears with a finer pitch. 

The effect of a large tip-relief is demonstrated in Figs. 8.16 and 

8.17 for the conditions used by Townsend [Ref. 241. It is seen that 

both the total flash and equilibrium temperature is greatly reduced in 

the high-slip region for gears with the tip-relief. This reduction is 

attributed mainly to the lower heat generation and better load distribu- 

tion produced by the tip-relief. 

Figure 8.18 shows the effect of gear ratio on the lubrication 

performance. The gear ratio is varied from 1 to 2 by increasing the 

gear teeth number from 28 to 56. It is seen that the increase in the 

size tends to improve the cooling effect and hence reduce both the 

equilibrium temperature and the total flash temperature. The effect on 

film thickness is even greater because of a larger effective radius in 

the Hertzian contact. 
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8.3.4. Effect of Lubricant and Operating Parameters 

Aside from the effects of gear geometry, lubricant properties and 

the gear operating conditions are also known to have an influence on 

the gear lubrication performance. The effect of lubricant viscosity 

is shown6in Fig. 8.196 When th lubricant viscosity is increased from 
(9 x 10 to 20 x 10 5 lb.sec/in ) 
.062 to 0.1379 paes. , the film thickness is found to have 

a marked increase, and it is accompanied by a slight decrease in maximum 

equilibrium and flash temperature on the surface. This indicates that the 

reduction in load carrying capacity in practice for gears with low 

viscosity oils is likely caused by the lack of lubricant film in the 

contact. 

The effect of surface convective heat transfer coefficient and the 

effect of ambient temperature on the lubricant performance are shown 

separately in Fig. 8,20 and Fig. 8,2l. Increasing the heat transfer 

coefficient or decreasing the operating ambient temperature is shown 

to have a substantial improvement on the lubrication performance. 

Among the effects of operating parameters, perhaps the most inter- 

esting one is the speed effect. Fig. 8.22 shows the results on the 

effect of speed for the same set of gears considered in the preceding 

sections. It is seen that as the pitch-line speed increases from 21.1 
(830 to 2830 in/set) 

to 72.0 m/set., the minimum film thickness experiences a gradual 

increase which appears to be sustained throughout the high-speed region. 

The corresponding flash temperature also shows a slight improvement 

with speed in spite of a gradual increase in the equilibrium temperature. 

This trend seems to be in accord with the experimental evidence pro- 

vided by Borsoff [Ref. 21 1 and Ku [Ref. 22 1 in which they concurred 
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that the scuffing load capacity increases gradually with speed in the 

high-speed region. 
(4300 lb/in to 6300 lb/in) 

The results by varying the tooth load from .753 MN/m to 1.103 m/m 

are plotted in Fig. 8.23. It is seen that the minimum film decrease 

linearly with the load, and the equilibrium temperature as well as the 

flash temperature increases also linearly with the load. 

8.3.5. -DesignCharts for Equilibrium Surface Temperature 

As illustrated in the preceding sections that the lubrication per- 

formance is characterized mainly by the minimum film thickness and the total 

flash temperature between a pair of teeth throughout the entire cycle of 

the engagement. These quantities can be calculated by means of the com- 

puter program TELSGE. 

However, it was found that at least for the minimum film thickness 

there is a simpler method to estimate it without using the computer 

program. This is accomplished by first determining the equilibrium 

surface temperature through the use of dimensionless charts. The 

minimum film thickness then can be estimated by using the well known 

EHD film thickness formula due to Dowson and Higginson [Ref. 14 1. 

Extensive examination of the results of equilibrium temperature 

reveals that they are essentially governed by a functional relation- 

ship among four dimensionless parameters. These are 

e 
k cTB,max.- TA) 

=u S,max.Pd,max. N - normalized equilibrium temperature 

hSRo Bi= k Biot Number 

RO 
hf= y - face width ratio 

% - gear ratio 

115 



These dimensionless charts are shown in Fig. 8.24 and Fig. 8.25 for 

rG= 1,2 respectively. The accuracy of these charts has been checked 

by using the present computer program to obtain the dimensional surface 

temperature for a wide range of dimensional input data for those 

quantities appeared in the above non-dimensional parameters. 
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IX S-Y OF RESULTS 

An analysis and computer code were developed to predict the variations 

of dynamic load, surface temperature, as well as the lubricant film 

thickness along the contacting path during the engagement of a pair of 

involute spur gears. 

The dynamic load is assumed to be not influenced by the lubricant 

film thickness or by the surface temperature, and, therefore is analyzed 

independently. The analysis of dynamic load includes the effect of gear 

inertia, the effect of load sharing of adjacent teeth, and the effect 

of variable tooth stiffnesses which are obtained by a finite-element 

method. 

The surface temperature at a point along the tooth profile is 

assumed to be an equilibrium value when it is not in contact with the 

mating gear and rises suddenly to a flash temperature during the sliding 

contact. The distribution of the equilibrium temperature is solved by 

a three-dimensional finite-element heat conduction analysis, and the 

flash temperature is solved by a simplified energy equation using a 

limiting shear concept for the heat dissipation. The lubricant film 

thickness is based on a transient EHD analysis which includes the squeeze- 

film effect. These mutually dependent quantities are solved simultaneously 

with an iterative process. 

Results of dynamic load were obtained for a pair of gears with 

dimensions corresponding to that used by Townsend and Zaretsky in their 

gear experiments. The dynamic load distributions along the contacting 

path for various speeds show patterns similar to that observed experi- 

mentally. Effects of damping ratio, contact ratio, tip relief, and 

tooth error on the dynamic load were examined. 
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Gear lubrication performance was evaluated by plotting the maximum 

equilibrium temperature, the maximum flash temperature, and the minimum 

film thickness along the contacting path for various geometric and 

operating parameters. It was found that an increase in diametral pitch 

or a decrease in face width for the same specific load gives a better 

lubrication performance. These trends agree qualitatively with results by 

Borsoff [Ref. 211 and by Baber and Ku [Ref. 221. Among the operating 

variables, the lubrication performance is improved most strongly by 

increasing the inlet lubricant viscosity, by decreasing the ambient 

temperature, or by increasing the convective heat transfer coefficient 

on the gear surface. Increasing the pitch line velocity gives a slight 

improvement in lubrication performance at high speeds. However, the 

trends do not indicate any signs which can account for the dramatic 

increase in scuffing load observed by Borsoff at very high speeds. 

In addition, two dimensionless charts are presented for predicting 

the maximum equilibrium surface temperature, which can be used to 

estimate directly the lubricant film thickness based on well established 

EHD analysis. 
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APPENDIX A 

THREE DIMENSIONAL INTERPOLATION BY ISOPARAMETRIC MAPPING 

The method of isoparametric mapping is widely used in Finite 

Element Method [Ref. 38). This method can be used here to interpolate 

the value of the'coefficients in the matrix [El' as functions of NT, 

l\f' and B.. 
1 

As shown in Fig. A.l, the region covered are bounded by 

50 C NT C 150 

6 c ~~ c 48 

.3 C Bi C 3 

is divided into four subregions I, II, III and IV for better approxi- 

mation of the coefficients in [El". The values used as dividing points 

in this case are 

point a (Af = 6., Bi = 1.) , point b (hf = 12., B. = .3) 1 

point c (A, = 48, Bi = 1.) , and point d (hf = 12., Bi = 3). 

For a given set of NT, Af and Bi, each of the coefficients 5s. can 
iJ 

be approximated by the following procedures. 

1. locate the subregion which contains the given set NT, hf and Bi. 

2, the value of Es ij is approximated by 

20 

; Nk(“, r\, 5) (Eyj) 
k=l 'k 

(A. 1) 

where (5" ) ij k are the coefficients 5' ij calculated for N T' 'f' Bi 

at note 1 to 20. The numbering of these nodes is shown in Fig. A.2. 

E> 1 and 5 are the local coordinates used for N T, nf'and B. such 1 

that the values of c, 17 and < are between -1. and 1. The coordinates 

transformation relationship are simply 
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2N T- (NTIL- (NT>,., 
8 = 

(NT+,- (NTIL 

r\= 
2Af- (hf )f (RF)U 

(hf)f (fqL 

2B 
<= 

i- (Bi&,- (Q, 

(Bi)u- (Bi)L 

(A.21 

(A-3) 

(A.4) 

where ( )v means the upper bound of that variable and 

( )L means the lower bound. 

Nk(s,7\,5) are the shaping functions for the isoparametric mapping 

where k is the nodal number shown in Fig. A.2. The quadratic function 

Nk for a typical corner node, such as node 1, is 

Nk = 0.125 x 0 + so)(i + q,)(i + 50)(do + 7jo + 5, - 2) (A-5) 

for a typical mid-side node such as node 2 

yl=O, yi=*l, si = It 1 

Nk = 0.25 (1 - E2>(1 -I- 7\ow + so) 

where c oY To and To are the generalized variable, for node k 

E 
0 

=BXE k 

(A.6) 

(A.7) 
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Fig. A.2 
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APPENDIX 

SYMBOLS 

a. 1 
= constant in Eq. (4.15), see Table 4.1 

A = R/R i 

IAl = coefficient matrices in Eqs. (6.14) to (6.16) 

b. 

Gl 

Bi 

C 

= constants in Eq. (4.15), see Table 4.1 

= matrix in Eq. (6.33) 

= Biot number = hsRo/k 

= a constant for the film thickness formula Eq. (2.1) 

C = (D/2Ro)2 

cO 
= damping coefficient per unit face width N-sec/in2(lb.sec/in2) 

'I: = contact ratio 

63 = matrix in Eq. (6.33) 

D 
P 

= diametral pitch, l/in. 

D = face width,cm(in.) 

e = profile error,cm(in.) 

E = Youngs modulus of gear material,N/m2(psi) 

Eb = P/6, tooth stiffness per unit tooth width, N/m'(psi) 

E' equivalent Youngs Modulus, N/m 
2 

(psi) 

G1,G2,G3,G4 = see Eqs. (4.10), (4.11), (4.12), (4.13) 

E co = limiting shear modulus, N/m2(psi) 

h = film thickness, cm(in.) 

h 
0 

= plateau film thickness 

h = surface heat transfer coefficient, 2 
S 

W/m-K(B/hr.ft -F) 

H = h/R i 
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--I& 

J 

J1'J2 

kl'k2 

ks 

K 

Kl'K2 

kf 

m 

M 

n 

nlTn2,n3 

N 

N 

NT 

N1 N2 . 9 
1 j 

P 

'b 

PC 

PHz 

P 

7 

'd 

ps 

see Eqs. (5.17), and (5.18) 

polar mass moment of inertia per unit face width, kgm(lb.sec2) 

see Eqs. (5.19), and (5.20) 

thermal conductivity of pinion and gear W/m2K(B/ft.hr.E') 

a parameter used in Ref. 25 to obtain Em for continuous 
shear 

E 
bl b2 1 2 

E /Eb + Eb , combined stiffness per unit face width, 

N/m2(psi) 

see Eqs. (5.21) and (5.22) 

thermal conductivity of the lubricant, W/m2K(B/ft.F.hr) 

J/g, reduced mass per unit face width, kg/m(lb.sec2/m2) 

mm/M+m 12 1 2 

a length coordinate in the direction of the outward normal 
to the surface 

exponents used in Eq. (2.1) 

n/R0 

1214~u/E'R 

number of teeth 

finite element tensor shaping functions 

pressure in the Hertzian contact Pascal (psi) _ - 

base pitch, cm(in.) 

circular pitch, cm(in.) 

maximum Hertzian contact pressure Pascal (psi) 

load per unit face width, N/m(lb/in.) 

_ r an(l-GQ) d< = p/ER 
j G r 

dynamic load per unit face width, N/m(lb/in.) 

= static load, N/m(lb/in.) 
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4 

Q 
+c 

Q 

r 

R 

R1'R2 

% 

Ri 

R. 

Rr 

CR1 

s 

T 

Ta * 
Tb 

* 
T ij 

T mid 

U 

YyU2 

U 
S 

v 

X,Y ,z 

X 

X 

= heat flux 

= (1-e-oP)/G 

=q ave.Ro/(Usmax.Pmax ) . 

= local radius of tooth profile, cm(in.) 

= r r /r + r2 , relative radius, cm(in.) 12 1 

= pitch radius of pinion and gear, cm(in.) 

= base radius, cm(in.) 

= R evaluated at the pitch point, cm(in.) 

= outside radius of pinion and gear, cm(in.) 

= root radius, cm(in.) 

= see Eq. (6.27) to (6.29) 

= wR/u 

= temperature of lubricant, C(F) 

= ambient temperature, C(F) 

= k(Tb- T,)/ (Usmax,Pmax ) . 
-‘- 

= value of T b at the node ij 

= temperature at the mid-film, C(F) 

= rolling velocity, (u,+ u2)/2, m/sec(in/sec) 

= velocity along the tangent of the contact for pinion 
and gear, m/sec(in/sec) 

= sliding velocity of the contact, m/sec(in/sec) 

= pitch line velocity, m/sec(in/sec) 

= coordinates attached to a single tooth segment 

= x/R0 

= distance between the contact point and the pitch point, 
cm(in.) 

= x1- x2, relative displacement, cm(in.) 

= X/Ri 
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*- 
Y 

yP 

‘Z 

'a 

Z r 

Y 

6 

A 

17 

8 

8 

n 

Af 

VT 

PO 

V 

s 
5’ 
5 
P 

Pl'P2 

l- 

7 smax. 

= y/R0 

= intersection of the load vector and the y-axis 
(see Fig. 3.4), cm(in.) 

= z/D 

= length of approach, cm(in.) 

= length of recess, cm(in.) 

= pressure viscosity coefficient, m2/N(in2/lb) 

= Ho/i; 

= hs/k, cm-'(in-') 

= tooth deformation normal to surface, cm(in.) 

= period of each gear rotation, sec. 

= dummy variable for integrals in Eqs. (4.10) to (4.14) 

= angular displacement,degree 

= inclination angle of the load, degree 

= local heat partition function 

= Ro/F = ratio of radius to face width 

= lubricant viscosity at temperature T, Pascal-sec(lb.sec/in2) 

= viscosity at the inlet of the contact, 
2 Pascal-sec(lb.sec/in ) 

= Poisson ratio 

= coordinate along the Hertzian contact, cm(in.) 

= dummy variable for 5, cm(in.) 

= S/Ri 

= density of the lubricant, kg/cm3(lb.sec2/in4) 

= density of pinion and gear, kg/cm3(lb.sec2/in4) 

= IJjt 

= limiting shear stress, N/m2(psi) 
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@ = pressure angle, degree 

ul = time base 

*1sw2 = angular velocity of pinion and gear, radlsec. 

[CAJ~,[S~J~,[QJ$ see Eqs. (6.24) to (6.26) 

Subscripts and Other Abbreviations 

('),C") refer to d/dt Ln Chapter III 

('1 refers to d/dT in Chapter IV 

1 refer to pinion if not specified 

2 refer to gear if not specified 
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