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ABSTRACT

Large amplitude second-sound shock waves have been generated

and the experimental results compared to the theory of nonlinear

second-sound. The structure and thickness of second-sound shock

fronts is calculated and compared to experimental data. Theoretically

it is shown that at T = 1.88 0K, where the nonlinear wave steepening

vanishes, the thickness of a very weak shock must diverge. In a

region near this temperature, a finite-amplitude shock pulse will

evolve into an unusual double-shock configuration consisting of a front

steepened, temperature raising shock followed by a temperature lowering

shock. Double-shocks are experimentally verified. The theoretical

dependence of the shock-induced temperature jump on the Mach number

is successfully verified for large amplitudes (ow/a < .15) after

the response of a thin-film su perconducting temperature sensor is

analyzed.

The ability of second-sound shock waves to simultaneously produce

and measure very large relative velocities in regions away from the

disruptive influence of walls makes them an invaluable tool in the

study of critical velocities intrinsic to the fluid. It was experi-

mentally discovered that very large second-sound shock waves initiate

a breakdown in the superfluidity of helium II, which is dramatically

displayed as a limit to the maximum attainable shock strength.

Although the observed breakdown could not be definitely attributed

to a critical velocity, the value of the maximum shock-induced relative

velocity represents a significant lower bound to the intrinsic

critical velocity of helium II. The observed limits within which

V
 ,,

V
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superfluidity was still maintained (w n 3.67 m/sec at T- 1.450K. and

w = 3.20 m/sec at T o 1.85
0
K) are the largest counterflow velocities ever

obtained outside of restricted geometries.
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Chapter 1. INTRODUCTION

Amongst a host of peculiar phenomena, the reversible transfer

of heat by temperature or entropy waves, known as second-sound, can

certainly be singled out as one of the most scientifically interesting

and technologically useful properties of liquid helium II. The

current exploitation of helium II as a refrigerant for superconducting

technologies alone warrants a thorough study into the generation and

propagation of nonlinear second-sound. However the properties of

second-sound can be pit to an even more important task: that of

probing the nonlinear as pects of two-fluid mechanics.

Landau's version of the two-fluid model has led to a very good

understanding of many diverse phenomena exhibited by helium II; for

example, second-sound was actually predicted by the theory. Using

this theory it becomes clear that the fluid mechanical phenomena

unique to helium II are most apparent when there exists a relative

velocity between the two fluid components. When the components dove

together liquid helium formally behaves like an ordinary fluid. Thus,

the ability of second-sound to produce large relative velocities is

of singular importance when used as a probe of two-fluid mechanics.

The most important unsolved problem in two-fluid mechanics is

the mechanism of critical velocities. At flow velocities less than

the critical velocity, helium II exhibits "superfluidity" in a wide

variety of ways -- that is, under a certain set of conditions, the

superfluid component can flow without viscosity as a perfect potential

fluid. The reversible transfer of heat via second-sound and the

existence of persistent currents in toroidal geometries are two

I

k
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important examples of superfluidity.

There are actu311y many critical velocities in liquid helium

which signal the breakdown of superfluidity as a sudden onset of

extra dissipation in the flow. Interactions between the normal fluid

and walls, between the superfluid and walls, and between the normal

and superfluid components can all trigger transitions describable in

terms of critical velocities. Of these the mutual interaction between

the normal fluid and superfluid, which should be expressed in terms

of a relative critical velocity, is the most fundamental to the two-

*
fluid model. Mutual interactions will destroy the superfluidity of

the liquid even in the absence of walls or viscous interactions.

These interactions are not recognized by the present two-fluid model,

and thus they represent the limit of its validity.

The "fundamental critical velocity" describing the mutual inter-

actions between the two fluids has been long sought. However, in all

previous experiments, large critical velocities have only been

realized in highly restricted geometries -- capillary tubes or powder

packed containers. The walls containing the fluid restrict the types

of possible flow states of helium II; thus they allow superfluidity

to be expressed at the expense of inducing fluid-wall interactions.

In fact, all of the critical velocities observed have been manifes-

tations of fluid-wall interactions except for possibly one: the

Destruction of superfluidity	 es not imply that the helium II phase

is transformed to helium I; rati,er, the normal and superfluid compo-

nents both exist, but they no longer move independent of one another.

Thus the manifestations of superfiuidity -- persistent currents,

second-sound, etc. -- are inhibited or ohl°terated by the preponder-

ance of dissipative interactions occurring in the flowing liquid.
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"intrinsic" critical velocity, which is independent of channel size.

Unfortunately, this critical velocity is observed only in the smallest

geometries -- submicron pores and intersticies between particles.

Since second-sound induces large relative velocities in the

fluid independent of walls, it should be a very useful tool for

investigating the fundamental critical velocity in helium II due to

mutual interactions. In particular, the dual role of shock waves to

both produce and measure a flow state is invaluable: second-sound

shock waves can be used to generate large regions of high relative

velocity away from the walls, and simultaneously, they can unobtru-

sively measure the shock-induced flow state. This measurement is

accomplished by accurately determining one parameter -- either the

shock Mach number or the shock temperature jump.

Of course, the above procedure relies on the accuracy of the

theory describing second-soiind which was originally g iven by Temperley

(1951), who derived a theory of reversible nonlinear second-sound,

and Khalatnikov (1952b), who solved the shock jump conditions for

first- and second-sound. Both these theories are only second-order

approximations which are valid only for "weak" shocks; therefore the

validity of the theory must ble tested experimentally.

The generation of nonlinear- second-sound including shock waves

has been accomplished several times in the past thirty years. Osborne

(1951) was the first to experimentally observe the nonsteady propaga-

tion of second-sound brought about by nonlinearity. He noticed that

a positive temperature pulse would either steepen in the front or

the back depending on the initial equilibrium temperature of the
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fluid. These observations were qualitatively explained by the second-

order theories. Further experimental verification of the predicted

phenomena was obtained by Oessler and Fairbank (1956), who measured

the increment in characteristic velocity produced by large amplitude

second-sound pulses.

The preliminary work conducted for this thesis showed a dramatic

departure of the experimental results from second-order theory and a

breakdown in the superfluidity of helium II. It was found that as

the heater power which generated the shock pulse was increased, the

amplitude of the shock increased, but only to a limit. Any further

increase in heater power would not increase the amplitude of the

shock front, and in many cases, it tended to decrease it.

The same type of "shock-limited" second-sound pulses were

observed contemporaneously by Wise (1979), who produced both first-

and second-sound shock waves by reflecting a gasdynamic shock off a

helium II liquid-vapor interface. Cummings, Schmidt, and Wagner (1978)

observed that over the temperature range from 1.61 0 K to 2.090 K the

Mach number of large amplitude second-sound shocks was limited by

some unknown process, and the profile of such a limited shock was

substantially modified from the rectangle heat pulse input by the

heater. Similar "wave modification" was observed earlier with

Schlieren photography by Gulyaev (1970) who also reported boiling

at the heater for large input heat pulses.

Although observed by many experimentalists, the breakdown of

superfluidity with large amplitude second-sound has not been

thorougly investigated nor has the mechanism responsible been
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illuminated. The .main goal of the present thesis is to fill this gap

and to determine whether or not the observed breakdown is a manifesta-

tion of the "fundamental critical velocity". In order to accomplish

this task it will also be necessary to determine the validity of

second-order theory for the large amplitude second-sound shock waves

generated experimentally.
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Chapter 2. CONCEPTS OF THE TWO-FLUID MODEL

The two-fluid model conceives of liquid helium II as consisting

of two independent fluids -- the normal fluid and the superfluid. Each

fluid has associated with it a momentum density which can be described

quantitatively by a fluid velocity and a mass density. In an ordinary

fluid, like air, water, or liquid helium I, all three quantities --

momentum density, fluid velocity, and mass density -- can be measured

independently and therefore have real physical significance. For

helium II much of the physical significance of the velocities and mass

densities of the two separate components is lost. The reason for this

is that individual helium molecules cannot at any instant be classified

as being part of a superfluid or normal fluid phase, but instead each

helium molecule simultaneously participates in two types of motion,

separately classified as superfluid or normal fluid motion. With

this idea in mind, the mass densities can be understood as a quantifi-

cation of the extent to which helium molecules partake in each motion,

rather than being the number of molecules that participate. The fact

that helium II can be accurately described by a two-fluid model is a

consequence of the fact that these two collective motions are qualita-

tively different and independent of one another.

The difference between the super and normal fluid motions can be

understood by first viewing helium II as its temperature approaches

absolute zero. At temperatures above absolute zero every macroscopic

system continually proceeds through a range of accessible microscopic

microscopic in the sense that the motion of the individual atoms is
quantified.

_	 `
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states; the thermodynamic state is a macroscopic average of these

states,and the thermodynamic fluctuations are the deviations that

occur from the average. At absolute zero, thermal fluctuations in all

substances must cease, which means that the thermodynamic macrostate

of a system is equivalent to a single microstate -- the ground state.

Another way of saying this is embodied by the Nernst postulate which

states t;iat the entropy of a system vanishes at absolute zero.

Liquid helium is the only substance that does not solidify under

its own vapor pressure. The reason for this is quantum mechanical in

that the zero point energy is sufficient to overcome the weak binding

potential between helium atoms. Thus, as absolute zero is approached,

helium II remains a liquid, but at the same time it possesses thermo-

dynamic features similar to dielectric solids. Specifically the

specific heat of helium II approaches the temperature cubed Debye law,

and the entropy of the liquid similarly decreases until it vanishes

at absolute zero.

At this limiting temperature helium II is totally superfluid,

that is, only superfluid motions are present. This motion is one

devoid of thermal fluctuations, and can be described as a single

microscopic state. This ground state can be altered into another,

that is liquid helium can be made to flow by changing the boundary

conditions. However, no matter what the macroscopic flow state of the

liquid, there will always be only one microscopic state associated

with it.

Compare this behavior to an ordinary fluid. On the macroscopic

scale, a fluid moves with some definite velocity which varies
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continuously from point-to-point. Going beyond this scal p of observa-

tion into the microscopic domain reveals molecules moving randomly

with velocities distributed over a wide range. Only the average of

all the molecular velocities constitutes the fluid velocity observed

macroscopically. The microscopic deviations from the mean flow show

up as viscosity and thermal conductivity,and thus their effect is to

make the fluid imperfect.

In contrast to ordinary fluids, a superfluid flows like a perfect

fluid at both the macroscopic and microscopic levels. There is an

apparent coherence between the molecular motions which inhibits the

degrees of freedom in the superfluid that are ordinarily expressed as

random molecular motion. Although the cause of this coherence is

unclear, it is certainly due to the quantum mechanical nature of the

fluid.

Consider the de Broglie wavelength of a free particle having energy,

E = k 
B 
T :

a = h =	 h	 (2.1)

p2 B

where h = Planck's constant

p = particle momentum

m = particle mass

k  - Boltzmann constant

This length is a measure of the physical extent of the quantum mechan-

ical wavefunction, ^(x), which describes the motion of the particle.

A perfect fluid is one having no viscosity or thermal conductivity.
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A system of particles must be described quantum mechanically if the

natural length scale --the average interparticle distance -- is small

compared to the de Broglie wavelength (see Landau and Lifshitz, 1977,

chapter 7). This occurs when the thermal momentum or temperature is

low and the density of particles is large. Ordinary liquids at room

temperature behave classically even though their particle density is

large, because their thermal de Broglie wavelength is very small

(for H2O at 3000K, a = .28 9). At the temperatures where liquid helium

II exists, the low thermal energy gives rise to single particle wave-

functions which would extend over many molecules in a many particle

system (fo ,̂  He" at 2.00K, a - 11 9). Therefore liquid helium is

properly a quantum fluid.

The wavefunction of a quantum liquid having N particles must in

general be a function of N vector coordinates and time-- 'Y(z l , x_, ...

zN ,	 . This wavefunction, completely describes the microscopic state

of the fluid as a probability amplitude in configuration space. Now

it has been expressed that the superfluid has essentially one degree

of freedom since the other degrees of freedom are in effect inhibited

or are expressed only in the normal fluid component,which vanishes

anyway at absolute zero. Therefore it is reasonable to formulate a

pseudo-wavefunction describing the coherent motion of the superfluid,

which is a function of a single vector coordinate-- ^ s (r,t). If this

function is normalized so that

fos * o  
dr = M	 as T ; 0	 (2.2)

V
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a 0v s	 m (2.6)

10

where M and V are the mass and volume of the system, then V+ s (r,t) can

in general be written as the following complex function:

ws (I ,t )	ps('r ,t ) ei^(r,t)	 (2.3)

where the superfluid density, a s , can be identified as:

a s s 1P ^' s	(2.4)

The phase, ^(r,t),has special significance which can be elucidated by

calculating the quantum mec; , anical current density of 
y s ':

^s(ysv^	 ^S Cis
	

(2.5)

When a s (r,t) is a slowly varying function of r, the superfluid velocity

can be ascertained by identifying i s as osys:

From this result it is evident that the superfluid is a potential or

irrotational fluid, and the phase of the wavefunction is the velocity

Ipotential. If v s is integrated on a closed contour,in order to calcu-

late the circulation,the result will always be zero in a simply

connected domain. If the domain is multiply connected, the circulation

need not be zero. For example:

I' s =	 vs • dt = m	 ^S) • dl =	 2,n	 (2.7)

where n is an integer. Since the wave function must be continuous,

the phase change around a closed path must be a multiple of 2,. This

condition translates into quantization of circulation in units of K.



K - m - 0.991 x 10-3 cm2/sec
	

(2.8)

Although vorticity in the superfluid is forbidden, this inter-

estingly enough does not rule out the existence of superfluid vortex

lines. First imagined by Onsager, a superfluid 'vortex can form

around a singularity where I*sli 0 as long as the circulation is

quantized. These peculiar quantized vortices have been experimentally

verified in the form of vortex rings (Rayfield and Reif, 1963 and

1964) and vortex lines trapped on a minute wire (Vinen, 1961; Whitmore

and Zimmermann, 1965 and 1968).

At temperatures exceeding absolute zero,liquid helium deviates

from a purely microscopic ground state and begins to possess thermal

fluctuations. It was shown by landau that the excited states of

Helium II can be represented by a system of basically non-interacting

excitations superimposed on a background sea of molecules collectively

participating in the ground state. The excitation gas comprises the

normal fluid and the collective ground state is the superfluid. This

separation cf thennodynamically excited helium II into two distin-

guishable parts leads to some interesting consequences. The excited

or normal fluid obviously has entropy,and it also interacts viscously

with itself and the vesse l,, wt•ici , contains it. The superfluid, on the

other hand, has zero entropy because it is the manifestation of a

single microscope state, which is maintained even at nonzero tempera--

tures.

The excitations which comprise the norma'i fluid are described

by the dispersion curve of energy versus momentum presented in Figure

"W tee
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2.1. There are two regions of specific interest on this curve: 1)

the low momentum range, where the curve is linear, represents phonons;

and 2) the high momentum valley in the energy spectrum represents

0 Z- 1 	 ,	 I	 ,	 I	 I	 1	 L	 .I	 1
.8	 1.6	 2.4	 3.2	 p/1f (^ )

Figure 2.1. EXCITATION ENERGY SPECTRUM FOR HELIUM II

excitations ta p ed rotons. The energy spectra of these two groups

of excitations are usually expressed by the following simple analytical

expressions:

PHONONS: c ' cp

( p - Pr)
ROTONS : c r + —T--

(2.9)

(2.10)

where c and p are the energy and momentum of the excitation, c is

the speea of first-sound, and A r , p r and 
w  

are parameters.

At fairly low temperatures -- T< 0.6 0K -- phonons, which are sim-

ply sound waves of quantized amplitude, are excited almost to the exclusion

of all the other higher energy excitations. Phonons, as their name
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signifies, are analogous to excitations occurring in solids. Thus

their exclusive presence is why helium II characteristically exhibits

solid-like thermodynamic behavior at low temperatures. At warmer

temperatures the liquid begins to be inhabited by rotons, which may

be vortex rings whose diameter has been shrunk to atomic dimensions

(Ferman, 1955); or they may be simply an extension of the phonon

branch to half wavelengths shorter than the average interatomic

spacing (Dimotakis, 1979). Plane-wave excitations at these wavelengths

are allowable in a liquid, because it lacks the long range periodicity

which generates the Brillouin zones found in crystalline solids

(see Kittei, 1971, Chapter 5).

As the temperature increases the population of rotons increases

very rapidly -- due to its large density of states -- so that above

1.2 0 K the thermodynamics of helium II is completely dominated by them.

This is illustrated by the change in behavior of the specific heat,

which goes from a Debye-like temperature dependence to an exponential

temperature dependence, characterisitic of a thermodynamic system with

essentially one excited energy level of large degeneracy.

Since the density of excitations in he;ium II changes dramatically

with temperature, the character of the normal fluid is highly tempera-

tuna dependent. At low temperatures the excitation gas is so tenuous

that the normal fluid behaves like a rarefied gas. For example, below

0.6
0
K, the flow of heat in helium II is very similar to low temperature

heat transport in a pure dielectric crystal; experiments by Fairbank

and Wilks (1955) verified that phonons can behave like molecules in

a rarefied gas: their mean free path, and hence thermal conductivity,
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limited only by collisions with the container walls. Also, the shear

viscosity derived from Poiseuille flow in round capillaries was found

to depend on the capillary diameter (d = 52 um and 107.6 um) for

temperatures below 1.3 0K (Brewer and Edwards, 1959). This behavior

is indicative of slip between the fluid and capillary walls which

occurs when the mean free path between collisions is the same order

as the capillary diameter.

At higher temperatures the irreversible thermal conductivity

and shear viscosity decrease as the phonon mean free path is limited

by the exponentially increasing population of rotons. This mean free

path, 4pr , which has been evaluated by Khalatnikov (see Table 2.1 and

Wilks, 1967, p. 176), is equal to the mean time between collisions

of phonons with rotons, multiplied by the phonon velocity. c. There

are many other collisional processes in the normal fluid -- roton-

roton, phonon-phonon, and various inelastic scattering processes;

therefore, more than one mean free path ran be defined. However, the

slowest collisional frequency is due to elastic scattering of phonons

by rotons; thus e pr is the longest mean free path and is the one that

determines the viscosity and irreversible thermal conductivity of the

liquid (Khalatnikov and Chernikova, 1966a).

At temperatures exceeding 1.9 0 K the excitations are so numerous

that interactions between them cannot be treated as collisions.

When the lifetimes of phonons and rotons, become shorter than the

mean time between collisions. the concept of an elementary excitation

interacting only via collisions is invalid. Thus, the normal fluid

in this temperature regime can only be viewed as a dense gas or
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Table 2.1. MEAN FREE PATH OF PHONONS SCATTERED BY ROTONS

T_P.r,_

.940 K 1 mm

1.16 100 um

1.48 10 um

1.89 1	 um

2.0 0.6 um

liquid.

T-- It is remarkable that the shear viscosity increases with temperature
for 1 .9oK,< T,< TA' This behavior is similar to ordinary liquids.
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THE TWO-FLUID EQUATIONS

Once the concepts or postulates of a two-fluid model are set down,

a consistent mathematical formalism can then be derived with an appeal

to the conservation laws of mass, momentum, and energy, and to the

*
invariance of these laws under a Galilean transformation 	 The prin-

ciple of Galilean invariance is of special significance in a two-fluid

model since there is in general no frame of reference that can follow

a small volume of fluid having two simultaneous velocities. Because

of this, the thermodynamics of helium II can never be separated from

the fluid velocity dependence as is done with an ordinary isotropic

fluid. In other words,the thermodynamic description of helium II

depends on two ordinary variables, like pressure, p, and temperature,

T, and the magnitude of the relative velocity between the normal and

superfluid, w. Ramifications of this intrinsic velocity dependence in

the thermodynamics are elucidated in Appendix A.

The postulates sufficient to derive a self-consistent two-fluid

model in the approximation of no dissipation are:

1.	 The two fluid proposition:

P = an + P 	 (2.11)

j = p nvn + p sys	 (2.12)

Where p, j are the mass density and flux of the fluid, and p n , vn,

p s,vs are the mass densities and velocities of the normal and superfluid

*A transformation between two frames of reference is called Galilean if
the two frames differ only by a non-relativistic velocity, uniform in
space and time.
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components respectively;

2. Entropy is associated only with the normal fluid:

at 
PS + v • (pSvn ) = 0
	

(2.13)

where S is the specific entropy of the fluid;

3. Superfluid is irrotational and can be described by a velocity

potential, u, such that:

at vs + v(u + ^vs 2 ) = 0
	

(2.14)

The results of the derivation,originally accomplished by Landau,show

that the velocity potential driving the superfluid can be identified

with the chemical potential of the liquid.

The derived two-fluid equations, listed in Table 2.2 are written

in terms of the bulk fluid velocity, v, and the relative velocity, w:

a	 p
v =_ _	 v + S v	 (2.15)

P	 p	 n	 p	 s

w =_ vn - vs	(2.16)

I
Formulating the equations in this manner reveals similarities and

differences between the two-fluid equations and those for an ordinary

fluid, since v is analogous to the ordinary fluid velocity, and w,

which represents an internal countercurrent, is not present at all in

an ordinary fluid. It should be noted that when either w or p  vanish,

the two-fluid equations are equivalent to the equations describing an

ordinary fluid. Thus, the remarkable properties attributed uniquely

to helium II will manifest themselves with a nonzero relative velocity.

^r
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Table 2.? THE TWO-FLUID EQUATIONS

MASS CONSERVATION:

at P + V - Pv = 0

MOMENTUM CONSERVATION:

aPP

at P v + v ' Pvv + a 
s 

w .} p  + -	 = 0

ENERGY CONSERVATION:

P P

3t	
Pe + ^ OV A. + i2 p s w2

+ 7.
V
 Pe + p + '^o v2 + . P Ps W2

+	
S

P
 w P nw • vn - PST ) + Q* l = 0

(	 ^

SUPERFLUID EQUATION:

Ll

at v
s + v u + :`vs2 + h* 

I 
= 0

where
I = identity tensor

T ,Q ,h are the dissipative fluxes

e= ST - p +u+ L2 —w_
o	 P

NOTE: All thermodynamic variables have an intrinsic dependence on w,
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Table 2.3 DISSIPATIVE TERMS OF THE TWO-FLUID EQUATIONS

*	 avniavnk _ 2
T ik = - n	 ax k 	+ ax i 	 I aik 

v 
• vn

- d
ik zl 

v 
• (J - pvn ) + ^2 v 

• vn

KvT + h* (J - pvn ) + T * - vn

From the Onsager symmetry principle C4 = ^,; also the requirement

that entropy production be positive-definite ensures that n, ^ 2 , ^3,

and K are positive and X12< ^2^3-
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With this set of equations in hand, the complete equations in-

cluding dissipation can be determined by initially inserting arbitrary

terms representing the kinectic fluxes with the one restriction -- the

superfluid equation contains no shear viscosity. The form of these

terms is self-consistently determined by forming the energy equation

(which is conservative), from the mass, momentum, and superfluid

equations, and by noting that the left over terms in the entropy

equation must represent positive-definite entropy production (Khalatni-

kov, 1965). The results of these calculations are given in Table 2.3.

It is remarkable that even though shear viscosity is absent in

the superfluid, second viscosities are not. These second viscosities

are a result of the fluid relaxing to its equilibrium state after

sudden expansions or contractions of the normal fluid (div vn large)

or of the normal fluid with respect to the superfluid (div w large).

When such changes are made in the fluid they instantaneously shift the

equilibrium pressure and temperature which requires a redistribution

of excitations among the phonon and roton energy levels. Redistribu-

tion cannot occur infinitely fast, and therefore there is a relaxation

into the equilibrium state on a time scale proportional to the

coefficients of second viscosity.

The presence of second viscosity terms in the superfluid equation

means that the superfluid can be perturbed by thermodynamic relaxation

processes occurring exclusively in the normal fluid. In addition,

thermodynamic fluctuations of pressure and temperature also perturb

the superfluid through its velocity potential, which has been identi-

fied as the chemical potential of the fluid. These perturbations do
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not alter the concept that the superfluid is a manifestation of the

ground state, which in itself can have no thermal fluctuations.

Instead,fluctuations in the normal fluid perturb the superfluid flow

state in the same manner that time-dependent boundary conditions

change the state: at all times the superfluid retains its coherence

and flows as a potential or irrotational fluid.
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BOUNDARY CONDITIONS

In order to solve any problem in two-fluid mechanics the equations

of motion must be supplemented by the appropriate boundary conditions.

Some of these conditions are obvious, while others are still unclear.

First, since mays cannot flow into or out of a solid wall, the

component of bulk velocity perpendicular to the wall, v1 , must be Zero

at the wall. Second, excitations comprising the normal fluid behave

analogously to molecules in a viscous fluid; colliding with the wall,

excitations will exchange momentum and end up travelling with the

wall. Thus the tangential component of v  must equal the wall

velocity. Third, there can be no similar restriction on the tangential

component of vs , because imposing one might violate the irrotationality

condition.

An ordinary fluid requires two boundary conditions -- one for

each component perpendicular and tangential to a wall. In a two-fluid,

four boundary conditions must be necessary, but traditionally only

three conditions on the velocity components v1 , vn l,, and vs j, are

given. Obviously one more boundary condition on a velocity component

perpendicular to the wall is needed. As will be shown, one can be

derived from the boundary condition imposed on the superfluid mass

fraction, Ps/P.

Recall that the superfluid density is best pictured as the square

modulus of the wave function describing the superfluid state. Since

this state cannot penetrate the wall, it is logical to assume that

the wavefunction, and hence p s/p, both vanish at the wall. This
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boundary condition, first proposed by Ginzburg and Pitaevskii (1958),

has been justified by many experimental observations. For example,

the speed of third sound -- surface waves on helium II films -- is

highly dependent on boundary conditions imposed on p $ at the wall and

the free surface of the film (Putterman, 1974, p. 222). Comparison

of the experimentally determined velocities with the theoretical

analysis shows that the superfluid component of the liquid must begin

to decrease within a few angstroms of the film boundaries.

The boundary layer in which p s/p vanishes, theoretically of the

form tanh2 ( x/ wheal) -- (Ginzburg and Pitaevskii, 1958), has a temper-

ature dependent "healing length", 
Aheal, 

which becomes macroscopically

large near T,. Accurate values of this length have been obtained

using gyroscopic techniques to measure the angular momentum of

persistent superfluid currents set up in thin helium 11 films (Henkel,

Smith, and Reppy, 1969). The experimentally determined temperature

dependence is in agreement with the phenomenological theory as

extended by Mamaladze (1967), although the theoretical layer thickness

is half the experimental -jalue:

(T/Tx )	
8

heat 
Y 4 p

sj k 10 cm

The boundary condition imposed on the fluid velocities at a wall

can be determined by examining the velocity identity for vn , which

follows directly from equations (2-15) and (2.16):
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As the wall is approached p s/p vanishes, and the normal fluid and

bulk velocities become identical -- as long as w, or equivalently vs,

remains finite:

vn = v at the wall
	

(2.18)

Condition (2.18) summarizes all the boundary conditions in helium II

which are the same as those for an ordinary fluid; at a wall -- or

any other interface where the superfluid state disappears -- the fluid

is entirely normal, and therefore it interacts with the boundary just

as any ordinary fluid would.

Attempting to find a boundary condition on the superfluid

velocity (or w) using condition (2.18) always results in the indeter-

minate form 0/0. This simply reinforces the fact that the superfluid

cannot be constrained by boundary conditions typical of ordinary

fluids.

1

_	 s
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CONSEQUENCES OF THE TWO-FLUID MODEL

The major phenomenon which -inspired the two-fluid approach was

the observed superconductivity of heat, which manifests itself most

obviously as a sudden cessation of boiling when initially passing

through the a-transition into the helium II state. According to two-

fluid mechanics, heat can be reversibly transported by internal

counterflow. If an object in helium II is hot, heat is convected

away from it by the normal fluid, while superfluid flows in the opposite

direction balancing the net mass flux. Near the surface, intoning

zero-entropy superfluid is transformed into normal fluid excitations.

This counterflow process is so effective that temperature gradients

are as difficult to achieve in helium II as pressure gradients in an

ordinary fluid.

Steady temperature gradients do not appear in the bulk fluid,

but only in nozzles where the counterflow is being accelerated, or in

steady pipe flow where a temperature gradient is required to balance

the retarding viscous forces. This latter case is important experi-

mentally, and it is easily analyzed if the flow is laminar and there-

fore one-dimensional. In that case the steady superfluid equation

yields:

v(u + iv s 2 ) = 0
	

(2.19)

If the velocities are small enough that terms involving their square

can be neglected, the "London relation" results:

VT =	 vp	 (2.20)
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The pressure gradient is of course balanced by the shear stress

acting on the channel wail.

Another method of producing temperature or pressure gradients

is by nonsteady motion, or waves. Nonsteady flow in ordinary fluids

is initiated by pressure or sound waves. Similarily, counterflow in

helium 11 is initiated by temperature waves, which are called second-

sound (first-sound in helium II terminology refers to ordinary

pressure waves familiar to all substances.) Second-sound waves were

one of the major predictions offered by Tisza as a test of the two-

fluid theory. When Peshkov, in 1944, first attempted to verify this

prediction, he obtained a negative result because he tried to generate

second-sound with a vihrating piezo-electric crystal. This motion

generates pressure disturbances which propagate chiefly as first-

sound. Although there are pressure fluctuations in second-sound

waves, they are very weak when compared to the temperature fluctua-

tions (these pressure fluctuations are proportional to the coefficient

of thermal expansion, which is exceedingly small in liquid helium).

When this was realized, a second successful attempt was made to

excite second-sound by periodically heating an electrically resistive

wire.

First- and second-sound waves can oe derived from the two-fluid

model by linearizing the equations with respect to the rest state of

the fluid. This has been done in detail and is included for reference

as Appendix B. The results snow that second-sound is a temperature

wave, accompanied by variations of the same order in relative velocity,

normal mass fraction (o n/p ), and entropy. Variations of pressure,

I

I
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density, and bulk fluid velocity are significantly smaller and vanish

to first order as the coefficient of thermal expansion goes to zero.

For first-sound the situation is reversed -- the first order variations

being in p, p, and v.

One of the most dramatic consequences of the two-fluid model and

the one which best illustrates the reversible nature of flowing super-

fluid is the phe-*.,menvn of persistent currents established in annular

geometries. Persistent currents have been achieved in thin helium

films adhering to glass cylinders as well as in the bulk fluid. In

the latter case the container holding the liquid is typically packed

with fine powder or closely spaced mica disks; these act to clamp the

normal fluid component and therefore inhibit dissipation interactions

between it and the walls. The persistent current is set up by rotating

the container while it is above the a-temperature; after the container

is cooled to the desired temperature, its rotation is halted. The

superfluid, however, does not stop, but retains the initial velocity

imparted to the fluid above the a-transition. The magnitude of this

current can be measured by doppler-shifted fourth sound or gyroscopic

precession.

When this was originally done, it was found that the angular

momentum attributed to the superfluid was not constant, but varied as

the temperature was changed in such a way that the superfluid velocity

remained unaltered. For example, decreasing the temperature requires

that some normal fluid, initially having zero angular momentum, be

Fourth sound is wave propagation occurring in helium II when the
normal fluid is held stationary.
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converted into superfluid, which is coherently participating in a

state of quantized circulation. This state is not changed by the

addition of extra superfluid; thus, the total angular momentum of

the superfluid is increased at the expense of the container and

normal fluid. Increasing the temperature exactly reverses this

process as long as the X-temperature is not exceeded.
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A SHORT REVIEW OF CRITICAL VELOCITIES

The phenomena of counterflow, persistent currents, as well as

other consequences of the two-fluid model, are manifestations of

superfluidity -- defined as the reversible and irrotaticnal flow of

the superfluid component. This means that the superfluid can flow

through the normal fluid and next to boundaries without suffering

dissipative interactions which would otherwise change the superfluid

state. Unfortunately, all the manifestations of superfluidity occur

only within a limited range of flow velocities. As long as the fluid

velocities are smaller than some unspecified critical velocity, the

two-fluid model can very accurately describe the mechanics of helium

II. Beyond this critical velocity, there appear additional interac-

tions between the two fluids and their boundaries which lead to extra

dissipation in the flow, and signal the end of superfluidity.

Critical velocities are not unique to liquid helium; they are,

in fact, a ubiquitous phenomenon common to all fluids. Solving the

equations of motion for a fluid constrained by steady boundary condi-

tions generally results in a time independent flow which is physically

valid only for low enough velocities. If the flow velocity is

increased beyond some critical velocity -- for Newtonian fluids some

critical Reynolds number -- this steady solution develops instabilities

making the flow nonsteady. The laminar-to-turbulent transition and

initiation of secondary flows (e.g., Taylor vortices in rotating

Couette flow) are two general examples of transitional phenomena

characterized by critical velocities.

Since helium II is a fluid, it must exhibit the transitional
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phenomena common to all fluids, but, because this liquid is essentially

two fluids in one, it should be no surprise that additional critical

velocities appear which are unique to liquid helium. A simple experi-

ment that illustrates this behavior considered the damping of fluid

mechanical oscillations induced in a U-tube (Donnelly and Penrose,

1956). If the logarithmic decrement of the oscillations (the logarithm

of the ratio of two successive maxima) is plotted against the

oscillation amplitude, the result for helium I is a constant curve

independent of amplitude, h, from h = 0 to h = h t . Amplitudes

exceeding h t show a gradual but steady increase in logarithmic decre-

ment. This excessive damping was attributed to a laminar-turbulent

transition which occurs at the critical velocity associated with ht.

When this experiment was repeated below T X , the transition at h t was

accompanied by two additional transitions, identified as breakpoints

in the logarithmic decrement plot, occurring at lower amplitudes.

The three critical velocities associated with these transitions all

show different temperature dependences and are presumably initiated

by different mechanisms, some of which do not occur in ordinary fluids,

like helium I.

There are two points to be made by examining this experiment and

others like it that show qualitatively the same behavior (for example,

oscillating disks and spheres). First, the fact that helium II

exhibits a variety of transitions between flow states is obvious,

but also, it should be apparent that the sum of these transitions adds

a complexity to critical velocity experiments making interpretation

unusually difficult.
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For example, consider the transition found in the U-tube experi-

ment at the amplitude ht . Attempting to turn pipe flow through an 1800

angle is a very efficient way to generate secondary flows, which are

unrelated to turbulence, but which would nevertheless manifest them-

selves as extra resistance to the oscillatory flow. There is definite

evidence of this occurring in a different type of critical velocity

experiment having the same U-tube configuration, which showed that

the onset of secondary flow is directly related to the severity of

the bend and can occur at velocities considerably below the actual

laminar-to-turbulent transition (Staas, Taconis, and Van Alphen, 1962).

With this in mind, it is useful to set a primary criterion when

examining and designing critical velocity experiments: an experiment

should be sufficiently simple in configuration that undesirable fluid

mechanical effects will not be excited ^r at least be separable from

the effect under study. Even though the generalization of this prin-

ciple is one of the basic tenets of the scientific method, its appli-

cation to critical velocity experiments has often been ignored, because

it is usually very difficult to realize in practice.

The use of persistent currents to investigate critical velocities

in the superfluid has become a very valuable technique which for the

most part satisfies the above criterion. As explained in the last

section, persistent currents can be set up and then measured unobtru-

sively by precessing the container, and measuring the gyroscopic torque

which results (Clow, Weaver, Depatie, and Reppy, 1964). This directly

yields the tctal angular momentum of the superfluid state, which

together with the initial angular velocity of the container, determines

,r
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both the mean velocity and mass density of the superfluid flowing

within the pores of the superleak packed container. The persistent

superfluid velocity at a particular temperature is linearly proportional

to the initial angular velocity of the container as long as the criti-

cal velocity is not exceeded. The final steady state of the superfluid

is always limited by this velocity since if it is initially exceeded

dissipative interactian.s will cause the superfluid velocity to decay

to the critical velocity limit.

Measuring the critical velocity in this way is much more straight-

forward than trying to ascertain the onset of extra dissipation

encountered when driving helium II through a small channel. The

ambiguity of not knowing the exact velocity of the normal fluid during

a measurement is also removed by using the persistent velocity techni-

que.

Even with all these advantages there are a couple of problems

associated with this technique, which also plague many other experi-

ments. First, the velocity measured is only an average of the fluid

velocities actually occurring within the irregular interstices of the

superleak packed container. Second, one may question whether the

critical velocity measured is actually a superfluid critical velocity

or a relative critical velocity. Since the normal fluid in this

experiment is immobile, and therefore -v s = w, it may not seem worth-

while to try to distinguish one from the other. However, there is a

significant, although subtle, difference between the two which

requires elaboration.

Fluid velocities such as v s and v  are not absolute but are fixed
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only with respect to a chosen reference frame. This reference frame

is nearly always fixed with respect to the experiment or in this

instance the persistent current container. This means the velocities

vn and vs are measured with respect to the walls bounding the fluid.

On the other hand, the relative velocity, w, is always the velocity of

the normal fluid relative with respect to the superfluid, and it is

independent of reference frame.

When the normal fluid is clamped there are two fundamental modes

of interaction which could cause the observed critical velocity

transitions: 1) a direct interaction between the walls and the super-

fluid; or 2) an interaction between the normal and superfluid components

of the liquid. In both modes of interaction momentum and energy are

eventually transferred from the superfluid to the container, but in

the latter case this transfer is mediated by the normal fluid.

There is always a causal relationship between the critical velocity

and the resulting transition mediated by the responsible interaction;

therefore, a description of the direct interaction between the super-

fluid and its boundaries must involve the superfluid velocity, whereas

the interaction between the two individual fluid components of helium

II necessarily involves the relative velocity. A logic diagram

illustrating the causal relations for three interactions that occur

in helium II is presented as Figure 2.2.

The interaction of the normal fluid flowing next to a wall is

analogous to similar boundary layer interactions occurring in an

ordinary fluid. The parameter which determines the resulting critical

transition in an ordinary incompressible fluid is the Reynolds

0
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number, which involves not only the fluid velocity, but also the

kinematic viscosity of the liquid, as well as a natural length scale.

Similarly the interactions in helium II must involve other unknown

parameters besides the associated velocity. Furthermore, the three

interactions shown are not necessarily independent nor do they form

a complete set. The aforementioned diagram is therefore adequate only

to illustrate the following simple point: a fluid mechanical inter-

action occurring in helium II is reciprocally associated with a

particular fluid velocity.

Thus, if a critical transition is found to depend on w instead

of vs the responsible interaction must be operative between the two

fluids. Conversely, if an interaction between the superfluid and its

boundaries is supposed, the proper critical velocity must be in terms

of vs and not w.

Having completed the discussion presenting the philosophies of

critical velocities, attention can now be directed towards the few

specific triumphs, in theory and experiment. achieved over the last

forty years.

In the monumental paper advancing the theory of superfluidity

(Landau, 1941), the reversible flow of the superfluid was attributed

to the impossibility of exciting thermal excitations in a particular

velocity range. Landau's analysis considered helium II at absolute

zero (so interactions due to the normal fluid could be ignored) as

it flowed past a wall or physical object of mass, M. A detailed

balance of momentum and energy during an interaction showed that an

excitation of energy, c, and momentum, p, could only be generated if:

r
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• Vs s E t p2/2M
	

(2.21)

For a massive object (M-. -P) this means that excitation generating

interactions occur only if the superfluid velocity is larger t'ian the

minimum value of (e/p). This result, known as Landau's criterion,

yields a superfluid critical velocity of:

vsc _ ( P )mi nimum

r
	(2.22)

From the excitation spectrum of helium II, (see Figure 2.1), a

minimum in e/p around the roton valley is apparent which yields a

very large critical velocity approaching 60 m/sec. This was several

orders of magnitude larger than critical flow velocities in channels

experimentally observed in Landau's time; although more modern experi-

ments, utilizing accelerated ions to probe the superfluid at rest,

display an upper velocity apparently limited by the excitation of

single rotons (Reif and Meyer, 1960; Meyer and Reif, 1961). Another

problem with Landau's critical velocity was its independence of a

fundamental length scale; even the earliest experiments noted that

critical velocities depended dramatically on the width of the

channel -- the smaller the channel, the larger the velocity.

Inspired by Onsager's suggestion of quantized circulation,

Feynman (1955) proposed that another type of excitation was possible

in liquid helium -- the quantized superfluid vortex ring. Such an

excitation would not participate significantly in the thermodynamics

(their population is very _carce compared to the phonon and roton

populations), but it would be effective in reducing the critical

r'
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velocity of superfluid flow. Feynman deduced that the critical

velocity required to produce free vortex rings in the superfluid

having a single quantum of circulation is:

V W K tog 2ds  717r (2.23)

where r is the vortex core radius. This result not only predicted

the correct order of magnitude of the observed critical velocities,

but it also included a dependence on the channel size,d,which closely

matched the experimental data of the time.

Generation of thermal excitations and superfluid vortexes represent

the two modes in which superfluidity of helium II can be destroyed.

Creation of excitations destroys the reversibility of the flow, while

the creation and multiplication of vortex lines impairs the irrota-

tionality of the fluid (although on the microscopic level the superfluid

is always irrotation, a macroscopic view, averaging over many vortexes,

leads to an "average vorticity" in the superfluid).

Although the generation of quantum superfluid vortexes in itself

absorbs energy from the flow, an additional source of dissipation

arises from the interaction of the normal fluid excitations with the

superfluid vortex cores. This occurs because the energy of phonon

and roton excitations depends on the velocity of the background

superfluid:

E - e ( p ) + p • vs	 (2.24)

Here e(p) and p are the energy and momentum of an excitation viewed

in the superfluid rest frame (the function e(p) is the energy spectrum



presented as Figure 2.1). The rapid superfluid nation near a vortex

core produces a central energy potential effective in scattering the

normal fluid excitations. Since quantum vortexes move with the super-

fluid, this interaction produces a momentum exchange between the two

fluids, which to lowest order is proportional to the relative velocity

(see Goodman, 1971). Thus, when quantum vortexes are present a mutual

interaction arises whenever the re is an average relative velocity

between the two fluids. 	 The energy dissiprted by the mutual inter-

actions is converted into thermally generated normal fluid excitations.

Although well received at first, Feynman's theory eventually

found disfavor as additional experiments yielded critical velocities

whose dependence on channel size was at variance with the concept of

"free" vortex ring generation. As pointed out initially by Feynmann

himself, the image vortices caused by the ever present channel walls

will greatly affect the generation process; so in order to better

fit the experimental data, various authors have included these

complications into the model as well as those arising from the vortex

Scattering of excitations by quantum vortexes is believed to be the
mechanism responsible for the Gorter-Mellink force of mutual friction.
This body force, appended to the superfluid equation, was originally
proposed by Gorter and Mellink (1949) to explain the details of super-
critical counterflow. Taking the curl of the modified superfluid
equations shows that the presence of the Gorter-Mellink term is enough
to invalidate the irrotationality of the superfluid. However, on the
microscopic level the superfluid motion is always irrotational; there-
fore the superfluid velocity described by this modified equation is
interpreted as a macroscopic average over many quantum vortexes.

The presence of the Gorter-Mellink term always implies the exis-
tence of superfluid vortexes; therefore it is reasonable to assume
that the G-M force is "switched-on" when quantum vortexes appear, and
it is inoperative when no quantum vortexes are present. Notice that
if the G-M force were always present persistent currents would not
exist: the G-M force would dissipate energy from the flow until the
relative velocity and superfluid velocity vanished.

# r`
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core. The extra theoretical complexities, however, have not produced

a decisively favorable result, possibly because the irregularities

in the channel walls, which are usually on the order of the mean

channel width, add mathematically intractable complications to the

real life process.

Eventually as the complications inherent to the critical velocity

problem were recognized, careful experiments were constructed which

attempted to isolate the various interactions from one another. An

experiment by Staas, Taconis, and Van Alphen (1962), which allowed

only the normal fluid to flow through round capillaries (d = 173 um

and 255 um), conclusively identified a laminar-turbulent trans'lition

at a Reynold's number, Re - 1200:

vll

Re = P 
\nn d-	 (2.25),►

In the turbulent region the pressure drop followed the ordinary

Blasius law: ap - (vn
n)'* 

7S

This identification was able to clear up many previous critical

velocity measurements. Van Alphen, Van Haasteren, Ouboter, and

Taconis (1966) found that many of the transitions in channels larger

than d -.10  um, which were attributed to a superfluid critical

velocity, were actually caused by normal f'iuid turbulence. Elimination

of these data showed that the superfluid critical velocity has only a

weak dependence on channel size:

It is interesting that although Re is a function of the normal fluid
velocity, the mass density involved includes both the normal fluid
and superfluid components.
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vsc a d-h
	

(2.26)

and is independent of temperature (this last feature is consistent

with a theoretical explanation based on the creation of superfluid

vortices).

Experiments with persistent currents (Clow and Reppy, 1967)

revealed a new superfluid critical velocity which was temperature

dependent -- near T A it was proportional to the superfluid mass
fraction -- but was independent of channel size. This critical

velocity has been named the "intrinsic superfluid critical velocity",

due to its independence of channel size, in contrast to the "extrinsic

superfluid critical velocity" which has a length scale dependence

given by equation (2.26). In order to see the intrinsic critical

velocity the channel size had to be made very small -- less than 1 um.

Otherwise the extrinsic critical velocity dominated the flow.

Inspired by these experiments. Langer and Fisher (1967) proposed

that the intrinsic superfluid critical velocity is caused by hor ►o-

geneous nucleation of superfluid vortex rings. These rings are

supposed to occur spontaneously within the fluid, generated by normal

fluid thermal fluctuations. Depending cn the velocity of the super-

fluid, there is a critical ring size which determines the critical

velocity of the fluid. If a vortex ring is cr?ated which is larger

than the critical size it will tend to expand and in the process

absorb energy from the flow. Smaller rings tend to collapse and

therefore will not cause the flow to decay.

According to the Langer-Fisher theory the temperature dependence

L

a
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of the intrinsic critical velocity should be given by:

pS

vs c pT
(2.27)

This dependence was observed by Clow and Reppy and has been further

verified by pressure driven superflow through microscopic pores (d ti 100

to 800 R), etched in thin mica sheets (Notarys, 1969). The constant

of proportionality, making (2.27) an equation, was determined by

Notarys to be 4.6 m/sec which is ten times smaller than the theoretical

value. This slight embarrassment to the theory is consistently

obtained in all experiments designed to observe the intrinsic critical

velocity.

Ignoring the large discrepancy in the predicted magnitude of the

critical velocity, there are two criticisms that can be made about

the thermal-fluctuation theory. First, if the critical velocity is

truly intrinsic to the fluid -- that is, if it is due to mutual inter-

actions instead of superfluid-wall interactions -- then it must be a

relative critical velocity. Changing the vsc to a we is not a problem

in either experiment or theory since the normal fluid is always

clamped by viscous interactions with the walls. Thus, it will be

assumed that the thermal-fluctuation theory yields a critical relative

velocity.

Second, the fact that the intrinsic critical velocity is observed

in only the smallest available channels is more than ironic. If a

large relative velocity is produced in helium II far away from the

walls containing the fluid, then its magnitude should be limited

only by the intrinsic critical velocity, since all other critical
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velocities discovered experimentally are fundamentally related to

fluid-wall interactions. The fact that these latter critical velocities

always dominate large geometries has led experimentalists into

smaller and smaller geometries until Vie -.i'ow is so confined that the

extrinsic critical velocities are inhibited. The hope is that the true

intrinsic critical velocity, due only to mutual interactions between

the two fluids, can still be observed even in these confined geometries.

However, when the fluid is so confined that transitions due to wall

interactions are inhibited, it is difficult to believe that the two

fluid components are still allowed to freely interact one with the

other. As a case in point, Notarys has shown that the ring vortices,

hypothesized by Langer and Fisher to be the agents mediating the mutual

interaction, are actually larger than the channels in which the intrin-

sic critical velocity has been observed.

This inconsistency cannot be resolved by more work in restricted

geometries. Instead the mutual interaction must be identified in

the fluid away from all walls. As proposed in the introduction, second-

sound shock waves are the ideal tool to produce and observe mutual

interactions. Since the plane shocks produced are not infinite in

extent, there certainly will be wall interactions. However, during

the time interval necessary to generate and observe second-sound

shock waves these efFects will be confined to a thin layer near the

shock tube sidewall.
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Chapter 3. APPARATUS FOR THE GENERATION AND DETECTION OF

SECOND-SOUND SHOCK WAVES

The present study concentrated exclusively on large-amplitude

second-sound waves in one-dimension. Unfortunately, perfect plane

waves, unencumbered by three-dimensional secondary wave fields, can

only be approached in finite geometries. Edge effects due to a

finite source are traditionally negated by propagating the wave down

a tube having cylindrical geometry. Propagating perpendicular to

the shock tube walls, the wave fronts are inhibited from three-

dimensional spreading, but at the same time wall-induced boundary

layers extract momentum from the flow and eventually destroy the

unadulterated one-dimensional motion on the interior. Since the

normal viscosity is remarkably small in liquid helium, laminar

boundary layers are very thin compared to the shock tube diameter, and

thus wall-induced three-dimensional effects are insignificant.

Second-sound is primarily a temperature wave; therefore, heat

extracted through the shock tube walls will lead to three-dimensional

effects similar to those generated by the viscous boundary layers.

Fortunately this effect is also very small due to the negligible

heat capacity of common materials at cryogenic temperatures compared

to liquid helium (see Table 3.1); also, heat transfer to or from

helium !I is severely limited by temperature discontinuities propor-

tional to the penetrating heat flux appearing at all liquid-solid

interfaces (the constant of proportionality is known as the Kapitza

resistance).

0
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TABLE 3.1. HEAT CAPACITIES OF COMMON MATERIALS

Material

Helium II @ 1 bar

Steel

Copper

Aluminum

Teflon

(10
-3 

J/cm3 -OK)

@1.20 K 	@2.00 K

	

46.2	 748.5

	

.8	 1.4

	

.13	 .25

	

.16	 .29

	.07	 .33

The non-steady evolution of a second-sound shock pulse is most

clearly observed when the generating heat pulse possesses a rectangular

power-versus-time profile. To approach a step response a very fast

rise time heating element is required. A thin-film heater, 1000 R
thick nichrome vacuum deposited on a quartz or glass substrate, has

adequate response and has proven very durable. Electrical contact

is made with either pressed or soldered indium to 2000 R thick copper

leads which extend over part of the nichrome film.

The only significant problem attributed to the heater was the

inability to perfectly seal the heater face to the end of the shock

tube. The superfluidity of liquid helium makes leak proof or "super-

leak" proof seals very difficult to obtain since traditional cryogenic

seals of metallic indium could not be used as they would electrically

short-circuit the heater. To date, the best seal has been made against

a teflon collar having sharp edges machined in a circular pattern

(see Figure 0.5); but even this seal was never perfect, as evident
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from the existence of small secondary waves, originating at the heater

and generated by heat leaks through the seal.

Due to imperfectly sealed heaters, three-dimensional waves always

I[	 accompanied the main one-dimensional pulse. Since these secondary

waves could not be successfully eliminated, it was essential to

accurately predict their arrival so that they could be identified

separately from features germane to the one-dimension pulse. Accurate

prediction was accomplished and is discussed in detail in Appendix D.

To accurately determine the arrival of shock waves having small

temperature amplitudes requires very fast rise time sensors with

high sensitivity. Both of these requirements are met by supercon-

ducting thin-films vacuum deposited on glass substrates. Layered

films of superconducting tin on normal conducting gold were constructed

following procedures developed by Notarys (1964), who used them to

detect high frequency second-sound up to 25 MHz, and Laguna (1975 and

1976). The sensor is operated in the middle of its superconducting

transition where the resistance changes appreciably with temperature.

Sensor resistance is monitored by passing a fixed current, usually 1

mA, through the sensor and observing the voltage drop. The overall sensi-

tivity of a typical sensor usually can be made to exceed 1 V /0K.

Different operating temperatures were achieved by two methods:

1) magnetic fields were used to depress the transition temperature

of the sensor; and 2) the zero-field transition temperature was set

by varying the tin-gold composition. The zero-field t-ansition

teraperature for these layered films can be calculated with the following

formula (see Joynson, 1970):
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Tc	
Tc JSn V T+ vz
	 (3.1)

where	
MAu	 PAu 'Au

M S 
n
	 PSn dSn

V = . 8- .9	 ( T
c
	= 3.720K
Sn

d - film thickness

The thickness of the gold layer was always between 200 to 250 9, and

the entire sensor was about 1000 R thick.

Electrical contact was made to the sensing element with vacuum

deposited copper leads 1000 to 2000 9 thick, and the electrical circuit

was completed with thin copper wires indium soldered to the copper

films. The copper film leads were a significant improvement over

the superconducting tin leads used by previous investigators since

wires could be directly soldered to the copper films -- a procedure

which greatly increased the reliability of the sensor.

In addition to the intrinsic sensor response, the observable

rise time depends on the orientation of the sensor with respect to

the approaching wave front, because the finite size of the temperature

sensing element precludes a point measurement. The resistance of the

element material is about .5 n/square (at 4 0K); therefore, to achieve

a suitable sensor resistance of one or two hundred ohms, a long, narrow

sensing element is manditory. The two sensor configurations employed,

endwall and sidewall, are shown in Figure 3.1. The sidewall sensor

consists of a single long strip aligned parallel to the approaching
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Figure 3.1 INSTRUMENTED ENDWALL OF THE VARIABLE
LENGTH SHOCK TUBE

,.



48

wave fronts, while the endwall sensing strip is folded back-and-forth

into a pattern which minimizes the overall projected length.

The rise time of a sensor due to geometric constraints is the

distance traversed by a wave front until the entire sensor is acti-

vated, divided by the propagation speed of the wave. This geometric

distance, referred to as the "equivalent sensor depth" (ESD), can be

made much smaller for an endwall mounted sensor than for a sidewall

sensor; hence, the former is preferred in most applications.

The endwall sensor pattern was scratched into the film with a

razor blade mounted onathree-axis micrometer. With this technique

a square sensing element as small as .60 mm on a side and having a

normal resistance of 75 ohms (at 4 0K) was achieved. Its estimated

ESD due to unavoidable misalignment was only 3 um.

The basic parts of a one-dimensional shock tube --the heater, a

parallel-sided tube, and the detecting sensors-- can be configured in an

infinite variety of ways. The present study utilized five separate

and distinct shock tubes whose pertinent dimensions and specifica-

tions are compared in Table 3.2. The shock tubes in which the shock

limit was first discovered (I and II) were made out of plexiglass and

had rectangular cross sections. From these initial experiments an

advanced shock tube was designed which incorporated variable length

and a circular cross section-- a change desirable to eliminate the

possibility of secondary flow originating in the corners.

1
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VARIABLE LENGTH SHOCK TUBE

Nonlinear second-sound waves are nonsteady -- that is they change

shape as they propagate; therefore, it is useful to observe them at

various distances from the heater. Instead of aligning a plethora of

sensors along the entire length of the shock tube, which exceeds 20

cm, it seemed more reasonable to place a few sensors on a movable

endwall. Besides the obvious advantage of simplicity offered by this

configuration, it also allowed the use of endwall sensors whose

superiority was previously noted.

Temperature sensors instrumenting the movable endwall are

depicted in Figure 3.1; they include one sidewall and two endwall

versions. Two iron-core magnets, wound with superconducting Nb-Ti

wire, were provided to bias and align the transition temperatures of

the three sensors in pairs; this enabled temperature measurements to

be obtained simultaneously at two distinct locations.

The instrumented endwall can be positioned anywhere along the

shock tube axis via external commands, even in cryogen-- environments

(immersed in liquid helium or liquid nitrogen) as well as at room

temperature. The components comprising the positioning system are

fourfold: 1) an A.C. driving motor; 2) a mechanical transmission;

3) a linear position indicator; and 4) a wire feed mechanism, which

keeps the signal cables from tangling (see Figure 3.2).

An A.C. motor was chosen over a D.C. one, because the former does

not require commutating brushes for operation. Brushed commutation,

besides being dirty, produces a lot of electrical arcing which would
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Figure 3.2 THE VARIABLE LENGTH SHOCK TUBE
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be greatly enhanced in a helium environment (the arcing potential

in helium gas or liquid is much lower than in air at STP). A two

phase, split-series field, 400 Hz motor was readily available (General

Design, Inc.; Sun Valley, Calif.), and was placed in a housing machined

from 430F stainless steel. The thermal expansions of this material and

the motor shaft material, 420F, very closely match that of the

bearing material, 440C. This choice of materials minimizes the

differential contraction at cryogenic temperatures that would other-

wise jam the bearings.

The motor shaft is hollow and threaded at one end to accommodate

a 35 cm long screw (6-32 thread). As the motor shaft rotates, the

screw, which is constrained against rotation, executes linear motion

and ultimately positions the instrumented endwall attached at the

lower end. The screw was prevented from rotating by two tiny wheels,

­ .e to roll up or down in a rectangular track located in the tube

extending vertically from the main bulkhead. All the moving parts

were dry lubricated by a thin layer of tungsten disulfide permanently

bounded to the metallic surfaces (Dicronite DL-5; Rotary Component,

Inc.; Covina, Calif.). Since all foreign substances freeze solid in

liquid helium, the exclusive use of dry lubricants is essential. The

bearings employed--also dry lubricated--were designed for high temper-

atures but work equally well at absolute zero as long as care is

taken to preclude the presence of water vapor that would form ice

particles during cool down (Bartemp bearings, Barden).

Driving the screw directly by the motor greatly simplified the

mechanical transmission, but it also caused the mechanism to be driven
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ten times faster than was practical. This problem was solved by

electronically controlling the motor speed with pulse length modula-

tion. A block diagram illustrating the electronic control and

position sensing mechanism is presented in Figure 3.3. The speed

controller turns the motor on or off depending cn its speed, which is

derived from the position indicator tAchometer signal.

The position sensing system, which must operate at any motor

speed and all accessible temperatures, consists of two pairs of coils

separated by a slotted aluminum disk. A 1.3 MHz frequency is input

to the coils below the disk,and the output, modulated by the disk

rotation, is picked up by the two upper coils. These signals. when

demodulated, represent two overlapping position signals which specify

the rate and direction of the shaft rotation. An electronic up/down

counter keeps track of the net number of shaft ro''* inns in 450

increments. This number corresponds to the linear position of the

instrumented endwall (one count equalling .0099 cm at 2.00K).
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SETTING THE EQUILIBRIUM PRESSURE AND TEMPERATURE

The equilibrium pressure and temperature of liquid helium filling

the test section is controlled by the sy;;tem illustrated in Figure 3.4.

Constant temperature is maintained by a pressure-regulated external

bath of liquid helium in equilibrium with its apor; the saturated

vapor pressure is monitored by a sensitive Barocel, and subsequently

converted into absolute temperature with the 1958 He `' temperature

scale.

In order to set the test section pressure significantly above the

saturated vapor pressure it was necessary to enclose the variable

length shock tube in a 50 mm diameter copper tube. A radial indium

seal was provided between this tube and the main bulkhead into which

twenty-four electrical feedthru terminals (Hermmetic Seal Corp.;

Rosemead, Calif.) had been soldered. This pressure vessel was filled

and pressurized through a 3 mm diameter, thin wall, stainless steel

tube, which extended out of the dewar to a helium gas cylinder and

associated plumbing. Maintaining the pressure at liquid helium

temperatures was not an easy task since the absence of viscosity allows

the superfluid to quickly flow through any hole no matter how small;

this was a problem that plagued the radially sealed pressure vessel

and is at the moment unresolved.

After a shock wave is fired, a significant length of time is

required before the fluid in the test section regains equilibrium. In

order to moniter this recovery time, as well as any constant temperature

differential between, the test section and the outside bath (due to

} ,
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trical dissipation or very small superleaks), two

rbon resistors, connected in a bridge circuit, were

d sensitive lock-in amplifier. Using this system the

ecovery time constant at T = 1.60
0
K was determined to

S.
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THE OPTICAL SHOCK TUBE

Boiling in a region near the heater was found to accompany the

breakdown of superfluidity. This encouraged the construction of an

optical shock tube in which shock generation could be visually

observed. Figure 3.5 is a photograph of this device.

Two quartz windows were sealed to a brass housing with axial

indium seals, each spring loaded by two 400 lb thrust Belleville

washers. These axial seals have proven reliable in helium II up to

5 bar, which is over twice the critical pressure of liquid helium.

Shock waves, generated by a thin-film heater on the bottom, are

detected by an endwall sensor at the top of the cavity. No magnet

is employed to bias the superconducitng transition, because its

proximity to the heater would enable the magnetic field to distort

the heater current distribution, resulting in a spatially nonuniform

heat pulse. The walls of the shock tube are formed by the windows

and two teflon spacers, also used to hold the sensor and heater slides

in place. The resulting test section has a 25.4 mm square cross

section and is 15.0 mm long.

Pressure and temperature were maintained by the same system

developed for the variable length shock tube and adapted for use with

a Janis research dewar having an optical tail.
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AUXILIARY EQUIPMENT

The primary measurements taken in a typical shock wave experiment

include: 1) shock front time of flight; 2) the shock temperature

amplitude; 3) the temperature profile of the shock pulse; and 4) the

power delivered to the heater. Figure 3.6 is a schematic representation

of the electronic system responsible for obtaining these data. Most

of the setup is self-explanatory except for a few points.

The pulse power driver generates the high-power voltage pulse

used to produce the shock pulses. The output of this device rises

quickly (rise time = 1 usec) to an internal voltage level (monitored

by an external digital voltmeter) and is held there for a time

interval determined by the H.P. pulse generator. This results in

voltage and power pulses having nearly rectangle profiles.

The signals from the superconducting sensors are amplified by a

low noise, broad band amplifier: usually a Princeton Applied Research

Model 113;	 when shock structure is being recorded a high frequency

preamp is included. This preamp, which employed a common base input

stage, was optimally designed for high sensitivity, low noise, and a

sufficient frequency range. Its input impedance was set to 5062 to

achieve optimal high frequency coupling with miniature coaxial

cables. The clean oscillograph traces of second-sound shock waves are

a result of improved electronics and increased sensor sensitivity

(achieved by increasing the overall sensor resistance).

The temperature amplitude of the shock front is measured by a

fast 12-bit analog-to-digital converter. The measured voltage is

r
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maintained during conversion by a track-and-hold circuit triggered,

after a suitable delay (usually 5 usec), by the Hewlett-Packard time

interval counter.

In order to accurately deduce the temperature amplitude it is

necessary to record the nonlinear temperature-resistance transfer

function of each sensor. Computer analysis can later invert

resistance changes to temperature jumps if the bias voltage of the

sensor prior to each shock wave firing is known. 	 This measurement

is made with a OMV and recorded just prior to each run.
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Chapter 4.	 NONLINEAR SECOND-SOUND

A wave supporting medium in motion convects any wave field

which is impressed upon it. Consider, for instance, an ordinary fluid

flowing with velocity, v, in which sound waves have been excited. When

the fluid is at rest,waves propagate at velocity c, whose magnitude is

a function of direction only if the fluid is anisotropic. In a moving

fluid this velocity must be supplemented by the convection velocity,

which according to the principle of Galilean relativity equals the

fluid velocity. Of course, use of a Galilean transformation presup-

poses that all velocities under consideration, including the wave

velocity, are non-relativistic. Thus, the convection of liyht cannot

be so simply ascertained, but must be calculated using the relativistic

Lorentz transformation. In any case the principle is the same: waves

are convected by the medium in which they propagate. For the present

example, the propagation velocity of sound in a moving fluid denoted

uc , may be written as:

u  = c + v
	

(4.1)

The principle of convection may be applied to second-sound in

helium II, but in this case a problem arises due to the two-fluid

nature of the medium. The convection due to the independent velocity

fields, v  and v s , cannot be deduced from simple arguments using

Galilean relativity; however, the convection due to the bulk velocity,

v, can be so determined. For example, take any combination of v n and

vs and increment both velocities by the same vector amount. :(yen
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Galilean relativity ensures that the wave velocity is incremented by

the same amount. Since this increment corresponds to a change in v

while w remains unaltered, one can deduce that wave velocities in

helium II are always convected with velocity V. The convection due

to the relative velocity must be calculated from the two-fluid model,

but in general the velocity of second-sound in moving helium II can

be written as:

ua = a+v+f(w)w
	

(4.2)

where a is the speed of second-sound in the liquid at rest and f(w)

is a convection coefficient to be determined. In order to differentiate

between the two wave velocities, u a and a, the former will be called

the "characteristic velocity" -- in reference to the formulation of

hyperbolic equations in terms of characteristic curves -- while the

latter will be simply termed "second-sound velocity".

Second-sound is akin to ordinary sound in that they both consist

of nondispersive, longitudinal, nonlinear waves. The longitudinal

character of these waves -- that is, the induced wave motion lying

parallel to the direction of propagation -- leads to their essential

nonlinearity; as a wavefront advances into the fluid it induces a

fluid velocity which in turn convects the wavefront and alters its

speed. Since the magnitude of the induced velocity increases with

the wave amplitude, the propagation velocity or characteristic velocity

of the wave must also depend on the wave amplitude -- a feature

essential to nonlinear waves.

Wave convection is not the only process leading to an amplitude-
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dependent characteristic velocity: pressure and temperature dependencies

of the wave speed are also important and may add to or detract from

the overall magnitude of the amplitude dependence.

In contrast to nonlinear waves, the characteristic velocities of

linear waves are always independent of the wave amplitude. When

deriving the expressions for linear first and second-sound (see

Appendix B), all terms quadratic or higher in the wave-induced or

perturbation quantities, that might lead to an amplitude-dependent

velocity, are assumed so small that they can properly be neglected.

The resulting linear wave equations are known to possess very simple

solutions. In the one-dimensional or plane-wave case, any disturbance

can be described by a linear superposition of four simple waves -- two

for first-sound and two for second-sound -- travelling in opposite

directions. Each simple wave has a single profile in space and time

which totally specifies the wave-induced quantities: changes in

pressure temperature, velocity, etc.	 Finally, as a consequence of

the amplitude independence of the characteristic velocity, this profile

propagates without changing size or shape -- it is steady in the

reference frame moving with the wave.

Since v and w are linearly proportional to the temperature pertur-

bation, the convection present in a second-sound wave will always

produce an amplitude-dependent propagation velocity except in the limit

of vanishing amplitude. Only in this limit do .second-sound waves

behave linearly.

^Av its
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SECOND-ORDER THEORY

The theory of nonlinear waves in helium II can be developed using

the method of characteristics originally invented by Riemann for appli-

cation to nonlinear sound waves in ordinary substances (see Courant

and Friedrichs, 1948 or Whitham, 1974). In the development which fol-

lows three assumptions are prerequisite: 1) the wave-induced motion is

one-dimensional; 2) the resulting flow is thermodynamically reversible;

and 3) the relative velocity is small, but nevertheless significant.

The final assumption is somewhat contradictory to a fully non-

linear theory of waves, since as has been pointed out, a full accounting

of wave convection is a primary criterion in a nonlinear theory. The

small velocity restriction is required in an analytic theory, since

the functional form of the thermodynamics of helium II with respect to

w2 is unknown except for a linear expansion around the state w = 0.

This expansion is valid only when w 2 is small. Thus from the beginning,

it is apparent that an exact analytic theory is unobtainable. Instead

a second-order theory will be advanced which is one step beyond the

linear limit: it is applicable to second-sound waves having small, but

finite, amplitude. It will be shown that this theory, which ignores

all terms in the wave-induced perturbations higher than second order,

accurately describes the nonlinear behavior of second-sound.

Four variables are required to specify the state of a fluid

Oirticle in liquid helium II: two velocities, v and w, and two thermo-

dynamic variables, of which p and T will be used. The four equations

necessary to determine these variables are presented as Table 4.1.

First, the continuity equation is a simple restatement of conservation
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Table 4.1 THE EXACT TWO-FLUID EQUATIONS FOR ONE-DIMENSIONAL

REVERSIBLE FLOW

CONTINUITY EQUATION:

ak + ti av + vap
at	 ° ax	 ax	

O

BULK VELOCITY EQUATION:

titi

av	 1 a	 av	 aw

at + C ax + v a x +
 ( 2pn'os 

p2 " x

	

+ (

PnPs 
	 2 1	 + ` ps - p n 	 w2 2

	 pn) 
= 0

	

p2 w 0 aX	 p	 ax ( p

RELATIVE VELOCITY EQUATION:

	

ti	 ti
paw + w o	 a	 n	 + S	 psaT + 3waw

at	
Ynn 

at p ) Fnn ax	 p ax
l	

^ 

+	 1 - 3 O n w2 + vw	 'pC"	
a	 °n

p 	 aXP	
`

^	 \ n	
p

1

ti

	

+ v LW 	 w av + ( ps
ax	

w2 1 ap . 0

	

ax	 p	 p aX

ENTROPY CONSERVATION:

as + v + p s	 as + ^s g aw - Sw a	
on

p w } ax	
P 

aX	 ax p

ti ( 

p
+ tis Sw 

o 
a 0

p
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Table 4.2 SECOND-ORDER TWO-FLUID EQUATIONS FOR OUE- DIMENSIONAL,

REVERSIBLE FLOW

CONTINUITY EQUATION:

+02Cp w at +o 
ax+y^ = 0

BULK VELOCITY EQUATION:

a  + 1 ap + v av + 2 Ys w aw	
C

at	 p 3x	 3x	 02	 ax

RELATIVE VELOCITY EQUATION:

aw
+w^^—	 aT+o	

ate) 

+ oSaT + , o s aw
at	 on CT 3t o n 

^p at	 on ax	 p w ax

+ v 3x + w 3z
= 	 0

ENTROPY CONSERVATION:

P	 0
aw

T + CTw at + (v + o s w ) ax + o s S ax

S
aT +	 iE) + s _ a - Sw C T ax E	

o

p ax 1	 02 w ax	 0
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of mass. The next two, the bulk velocity and relative velocity equa-

tions, are forms of two-fluid momentum conservation with the superfluid

equation or continuity equation or both substrated out: the thermo-

dynamic identity has also been employed to simplify the relative

velocity equation. The final equation, which replaces energy conser-

vation, is a statement of entropy conservation, which is valid since

the flow is assumed reversible. All four equations are written in

only one spatial dimension, but they are otherwise exact.

These equations are rewritten in Table 4.2 as expansions from

the w = 0 state using thermodynamic relations for entropy and density

in teems of w2 , which are derived in Appendix A. Only terms up to

second-order in the perturbations are now included.

In principle, these four equations can be put in characteristic

form to yield four coupled ordinary differential equations, occurring

along four separate sets of characteristics. These characteristics

represent first- and second-sound, each propagating in both directions

as in the linear plane wave case presented in Appendix B. However,

in the nonlinear case the algebra is so overwhelming -- a quartic

equation would have to be solved -- that a simplified analytic

approach is more valuable. Fortunately, the coefficient of thermal

expansion of liquid helium II, S, is very small. Thus the temperature

and pressure variations that actually occur in both first- and

second-sound will uncouple in the limit of vanishing a and small w;

the result is that second-sound will appear to cause perturbations in

T and w, but not p or v, while the opposite will occur for first-sound.

For thermodynamics having no dependence on the relative velocity,
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the differentials of density and entropy can always be written in

terms of pressure and temperature:

dp = XT dp - pS dT	 (4.3)
c

C
dS = ^R dT - s dp	 (4.4)

where y = Cp/Cv

Note that as the coefficient of thermal expansion goes to zero,

density becomes only a function of pressure and entropy only a function

of temperature. This totally uncouples pressure and temperature

perturbations occurring in linear waves (see Appendix B). Finite-

amplitude waves, on the other hand, can still be coupled through the

relative velocity dependence implicit in two-fluid thermodynamics.

Thus second-sound waves produce p and v variations proportional to w2

in addition to those proportional to sw. However with this under-

standing, if terms higher than second-order are neglected, then the

continuity and bulk velocity equations conveniently uncouple from the

relative velocity and entropy equations. The latter two, written

presuming only second-sound waves are present, are:

Pn aw	 aT	 aT	 PnPs	 3w

P at + w^T at + S ax 
+ 3 Pr w TX

= 0	 (4.5)
P`

at + &Tw DT
LW 
	

ps TT - SS T 1 w ax + PS S aX	 (4.6)
C	 J

These two equations can be put in characteristic form by multiplying

the first by an arbitrary constant,a,and then adding it to the second

Ar '	 ---_—
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(it is convenient first to divide (4.5) by S and multiply (4.6) by T/Cp

so that a will be in units of velocity):

a 
Pn 

+ T w
	 aw + 3a P nPs w + Ps TS aw

P
P S	 ^T C ) at	

-^	

P
S	 P C ) ax

P
+ {a S ET + 1) at + \ + 

P
S w - TET r-- w) az = 0	 (4.7)

P /

To be in characteristic form the derivatives of w and T must lie in

the same direction in the x-t plane. That is, there must be a charact-

eristic velocity,u, which is real and identical for variations of w

and T:

+ 
Ps 

w - T S w	 3a P n P s w + Ps TS
P	 ^T	 P2 S P C

U =	 P	 =	 P	 (4.8)

^ S ^T + 1 	 PS + TAT C
P

Solving (4.8) for a leads to a quadratic equation:

C
P n _ 3 P nP s w?	 1 A2 _ (2 P nP s w ) , _ P s TS
PS	 P 2

 S2 T J	 P2 S	 P CP

+C
P S - TE T C )TAT C? = 0	 (4.9)

P	 P

To be consistent with the procedure of neglecting terms higher than

order w 2 , it will only be necessary to find the characteristic velocities,

and hence a,to order w. The solution of (4.9) is therefore:

P
a+ _ ±a + P S w + 0(w2 )

where a2	 Ps S21
a n 

C 

(4.10)
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Substituting this into the equation for u we have:

u + _ ±a + 2s- a T^TI	 w + o(w2 )	 (4.11)
n	 // p

This equation contains the sought-after coefficient for the convection

of second-sound by w -- f(w) in equation (4.2). To lowest order,

f(w) is independent of w:

f = 2 ps - (Pn E T ) ^
P

(4.12)

It is interesting to note that in the temperature range where the roton

population dominates the thermodynamics -- above 1.2
0
K -- the groups

an
TT and Cp/S are both almost independent of temperature and numeri-

cally equal. Thus the convection coefficient is very nearly:

f = 
as 

pn	 for T > 1.20KP

This is the resuit obtained by Temperley (1951) in his analysis of

finite-amplitude second-sound which parallels the present theory.

However, Temperley based his analysis on a set of two-fluid equations

which differ slightly from the set derived by Landau. Interestingly

enough, it is apparently not the difference in equations which

results in the discrepancy, but the thermodynamic "Tisza approximation"

used by Temperley, namely:

S =	 n Sp	 n

where S  is assumed constant. Invoking this assumption implies that:
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ITT

Pn

which is all that is required to recover Temperley's result.

At the pressure and temperature where p  equals P s -- T = 1.970K

for p = SVP -- second-sound is not convected by the relative velocity.

At lower temperatures convection occurs in the direction of w, while

at higher temperatures it is oppositely directed. This temperature

dependent convection coefficient has profound effects on the behavior

of nonlinear second-sound as will be shown in succeeding sections.

The convection coefficient derived in the present analysis

(equation, 4.12) was obtained originally by Khalatnikov (1956), who

solved the full set of linear equations for first- and second-sound

propagating in a moving medium. Experimental verification of his

result has been obtained over the temperature range from 1.30K to

1.950 K by measuring the time of flight of a second-sound pulse

propagating through a steady-state counterflow (Johnson and Hilde-

brandt, 1969). Earlier ex periments by Dessler and Fairbank (1956),

using second-sound shock waves, confirmed Khalatnikov's form of the

convection coefficient for temperatures as low as 1.00K.

The results obtained so far can be used to rewrite the equations

for w and T in a more transparent form:

w raw
at + u ± a'x ± ( P Sa ) at + u ± ax	

= 0	 (4.13)

n

It is useful to introduce two new functions of w and T, known as

Riemann invariants:
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R+ = w + fpn dT	 (4.14)

R = w -	 - a dT	 (4.15)

	

-	
pn

The equation :et (4.13) can now be written in terms of R+ and R_:

a	
+ (v + fw + a)	 R+ = 0	 (4.16)

	

L at	 ax

at + (
v + fw - a) 3X R_ = 0	 (4.17)

The name Riemann invariant stems from the fact that these quantities

are constant along associated characteristic curves in the x-t plane,

C+ and C_:

C+: dt =u+ = v+fw+a
	

(4.18)

C_	 dt = u_ - v + fw - a	 (4.19)

The preceding nonlinear theory of second-sound bears more than a

superficial resemblance to the Riemann theory of ordinary sound. It

should therefore be no surprise that the beh,./ior of nonlinear second-

sound includes nonsteady wave profiles, shock and expansion waves --

all typical of nonlinear, nondispersive wave motion in general. It

should be remembered, however, that this theory of second-sound is

only approximate, although it usually is a very good approximation.
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SIMPLE WAVES

Even though the Rie—mann invariants are constant along their

respective characteristics, they are not necessarily constant from

characteristic to characteristic. If a particular Riemann nvariant is

constant throughout a region in the x-t plane then there are no waves

propagating along the associated set of characteristics in that region.

When all the Riemann invariants, except one, are constant everywhere --

recall there must also be two additional sets of characterist i cs and

Riemann invariants for first-sound --wave propagation will be in the

form of a "simple wave" along a single set of characteristics.

In this section we will consider a simple second-sound wave

travelling along the positive x-axis. Since no first-sound is

present p, v, and p will be uniform; also v will be taken equal to

zero. By definition, the Riemann invariant, R - , is constant every-

where, which immediately yields a relation for w in terms of T:

w = T 
psa 

dT	 (4.20)
n

To

where T = To has been taken as the rest state w = 0. When comparing

this result to the case of linear second-sound --

w = p'	 )
n o

it is obvious that the amplitudes predicted by second-order theory

differ only slightly from linear theory as long as T - To is small,

which is usually the case. Large corrections are encountered only

r'
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near the a-line where the speed of second-sound is a strong function

of temperature.

The one-to-one correspondence between w and T shows that only

one independent variable is required to specify fully the conditions

produced by a simple wave. For example, the Riemann invariant R+

can be written as:

R+ = w +
p 5 9 

dT
n

T

	

= 2w = 2	
as

 dT	 (4.21)

0T n

Plugging R+ into equation (4.16) results in an equation for either w

or T, the latter one being:

at + (fw 
+ a)T = 0
	

(4.22)

where the characteristic velocity, u = fw + a, is a function only of

temperature. Also note that temperature is constant along a C+

characteristic. These two facts imply that the characteristic velocity

is constant on a C+ characteristic, or in other words, all C + character-

istics trace out straight lines in the x-t plane.

It will be useful to calculate the characteristic velocity in

terms of the fluid temperature. To do this, u will be calculated as

an expansion in temperature from the rest state:

u	 uo + `aw
	 w +	 aT	

(T-To) + ...

0	 0
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where	 (aw )	 f
	 2 a s - (L-a CTT 

/ 

C

	

 n	 J p

au\ = ja
a T A	 a'

dw = 
PS  

dT
P 

The characteristic velocity to first order in the temperature perturba-

tion can be written as:

u = ao(1 + boa)	 (4.23)

where	 e a (T- To)/To

b = T ( LS f+ aal
a	 v n a	 aT J

The thermodynamic function 5(p,T), which will be called the steepening

coefficient, can be algebraically reduced to the following form:

C
b(p,T) = T	 log ( a 3 2	 (4.24)

Finally with these results, the temperature perturbation in a simple

second-sound wave can be written as:

ae
at 

+ ao(1 + boa) aX = 0
	

(4.25)

where it is understood that the temperature perturbation is always

measured from the rest state w = 0--otherwise uo would not be simply

ao.

The application of (4.25) illustrates how second-sound waves evolve

LZ	 &-'



)8

as they propagate. When ba is positive-definite, a temperature raising

wave front -- that is ae/ax > 0 -- will steepen as it propagates because

the characteristic velocity increases with e. Similarily a temperature

lowering part of the proffl a will unsteepen or expand.

The evolution of a positive temperature pulse -- drawn initially

trapezoidal in shape for convenience -- is shown in the x-t diagram

of Figure 4.1. The solid straight lines are C + characteristics (C_

characteristics are suppressed since they contain no information)

and the dashed lines are temperature (or w) profiles at several

instants in time. The front of the pulse can be seen to steepen until

it is vertical, at which point the characteristics would begin to

cross and produce a physically unreal, multivalued temperature profile.

To eliminate this problem a shock discontinuity must be fitted in;

its trajectory is shown by the heavy line. While the shock is

forming at the front, the back of the pulse is expanding. Note that

the leading edge of this expansion fan is propagating faster than the

shock, so that the two will eventually coincide. The speed of the

shock is for the moment unknown, except that it obviously is greater

than the characteristic speed in the undisturbed region, ao; that is,

the Mach number, MS , is greater than unity:

IJ
MS =_ aS
	

(4.26)

where US = shock velocity.

Figure 4.1, recall, is for a positive steepenin g coefficient, but

this function can also be negative depending on the initial temperature

and pressure (see Figure 4.2). When b(p,T) is negative, a positive
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temperature pulse evolves in the reverse direction: the front expands

and the back steepens into a temperature lowering shock having a Mach

number lass than one (see Figure 4.3). This peculiar behavior is not

reall y extraordinary because a negative pressure pulse in an ordinary

substance will also evolve a back steepened shock with M < 1. In helium

II, however, both temperature raising and temperature lowering shocks

are possible depending on the sign of b(p,T), while in ordinary sub-

stances only pressure raising or compressional shocks are permissible.

(Rarefaction pressure shocks can occur in exceptional substances --

fluids near their critical point ind solids undergoing shock-induced

phase transitions.)

An interesting property of simple waves is that the area under the

wave profile is conserved even as the wave evolves. To see why this

happens, consider a wave profile having a single positive hump of

finite extent. Now define a length, X(T), which for some fixed time

is the distance between front and back edge points of the profile

having temperature, T (see Figure 4.4).

;V 
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The temperature-area under this profile is just the following integral

of X(T):

00

f
X (T)  dT

To

As has been shown, the characteristic velocity of a particular point

on a simple wave profile depends only on a single variable (T, w, or S)

and not on the local shape of-the-profile (slope, curvature, etc). As

long as this is true,X(T) will be a function only of T, unaltered by time

as the wave propagates and evolves. The integral of X(T) must therefore

be constant. Obviously, the concept of temperature-area invariance can

easily be extended to an arbitrary wave profile having both positive

and negative temperature excursions.

Since the temperature in a simple wave can be written as a function

of w or S, similar velocity-areas and entropy-areas can be calculated

and found to be invariant. Multiplying the latter by the area of the

plane wave and the fluid density, which is constant to this approximation,

yields the total excess entropy in the wave. Thus the total entropy

carried by a simple wave must be conserved;this is no surprise since

thermodynamic reversibility was one of the prerequisite assumptions

used to derive the second-order theory.

The validity of entropy conservation only becomes a concern when

the temperature and velocity gradients become very large,as in a shock

discontinuity. In such a region the velocity of a point on the wave

profile will depend not only on the local temperature, but also on its

gradient. As a consequence of this, the lengths X(T) which intersect
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a shock will not be constant in time or space, and therefore the

temperature-area will not necessarily be invariant. Fortunately, the

principle of profile-area invariance can be rescued after discovering

the properties of the shock discontinuity in the next section.



In the preceding two sections, one-dimensional nonlinear waves,

treated as thermodynamically reversible, were examined and found to

display nonsteady evolution which naturally developed discontinuities

between equilibrium states. As a second-sound wave front gradually

steepens, the gradients in temperature and velocity will begin to

generate appreciable entropy at the expense of some of the mechanical

energy in the wave. The ever increasing dissipation in the steepening

wave front tends to smooth out the large gradients and slow the steepen-

ing process. Eventually, equilibrium between nonlinear steepening and

irreversible dissipation will be attained yielding a steady profile:

typically two equilibrium states, where the gradients vanish,

connected by a sharp transit i on known as the shock front or shock layer.

The most useful property of shock waves is that the jump conditions

connecting the two equilibrium states can be determined without

reference to the exact nature of the transition layer, as long as it

is steady. This property is significantly advantageous, because

within the shock layer non-equilibrium thermodynamics are the rule

rather than the exception, making shock structure very difficult to

calculate in general. The conservation laws for mass, momentum, and

energy always hold; therefore, they must still apply across a shock

layer of unknown description. These relations, which are the only

ones required to specify the jump conditions for a plane shock front

in an ordinary substance, must be supplemented by the superfluid

equation in liquid helium II, because the extra velocity field requires

an additional connecting relation.

re.
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Table 4.3 RESULTS OF SECOND-ORDER SHOCK THEORY ( SECOND-SOUND)

SHOCK MACH NUMBER:

MS = 1 + hbou

	

RELATIVE VELOCITY JUMP:	 ,

	

C	 C 2

ow = as (Ps
	

ae 1 + T _5Tlog a ^ _7 de
 0	 OS

0

SHOCK STRUCTURE:

TW = To + ^(T 1 - T O ) ^ 1 + tanh ax 1

SHOCK THICKNESS:

a	
4D	 1	 _	 20	 1

0
( a b9 oe	 ( a 0 0 MS-I

IRREVERSIBLE ENTROPY JUMP:

(6S)irreversibler
	 lb(6e)31CP

i
P
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If the shock wave is viewed in the frame of reference travelling

with the shock, these relations will be time-independent or steady.

They may then be spatially integrated perpendicular to the shock

front and evaluated in the equilibrium regions fore and aft of the

shock front. The result is a set of algebraic "shock equations"

solvable for the jump conditions and shock velocity. This prescrip-

tion, originally carried out by Khalatnikov (1952b), is detailed in

Appendix C which also contains new results including the theoretical

structure of a weak second-sound shock front.

Table 4.3 summarizes the results of "second-order shock theory"

discussed in the aforementioned appendix. This theory of second-

sound shocks represents the same approximation to the two-fluid model

as second-order theory of the preceding sections does for nonsteady,

reversible second-sound waves. The distinction between the two

variations is a consequence of the irreversibility of a shock front.

The dissipation that must occur to make the front steady invalidates

the concept of entropy conservation, which was a basic assumption in

the theory as applied to nonsteady waves. Instead of using an entropy

equation which allows for production, the equation for energy conserva-

tion is more conveniently employed in the shock theory.

The velocity of the shock front, US , can be written in terms of

the characteristic velocities ahead and behind the shock. Using the

definition of the shock Mach number and its relation to the shock

strength, together with the equation for the characteristic velocities

in a simple wave (equation 4.23), the following ensues:

i

A*
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US s Vu 0 + u l )	 (4.27)

The shock velocity is therefore the average of the characteristic

velocities fore and aft -- a result in common with all weak shock

waves.

It happens that this is exactly the condition required to maintain

the principle of profile-area invariance in the presence of shock fronts

(see Whitham, 1974, pg. 42). This principle is graphically illustrated

by four temperature-time profiles of an initially rectangular heat

pulse which were measured at various distances from the heater (Figure

4.5). As the shock pulse propagates down the shock tube, the shape of

the wave profile changes dramatically, but its total area remains

unaltered.

With this invariance principle intact, one is forced to conclude

that, according to second-order theory, the entropy carried by a

second-sound shock wave is conserved! Obviously, since entropy is

always produced in the shock front, this last statement is not exactly

correct and its validity relies on the fact that for weak shock waves,

the entropy generated is proportional to the cube of the shock

strength -- a quantity neglected by the present theory.

The actual entropy jump of a fluid particle processed by a

second-sound shock wave is proportional to the temperature jump and

may therefore be positive or negative depending on the type of shock

w
	 wave. This happens because entropy can be transported reversibly in

helium II. The entropy irreversibly generated within the shock

front is consistently positive and must be proportional to (6e)3

as long as the shock wave is weak.
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SHOCK STRUCTURE

The structure of a steady shock front, maintained by a balance of

nonlinear steepening with dissipative smoothing, can be ascertained

by solving the shock equations including the irreverW le terms.

The solution of these equations to second-order is a hyperbolic

tangent profile, typical of weak shock fronts in general:

T(x) - To + -̂ (T 1 -TO ) (1 + tanh 2x 16 )
	

(4.28)

The shock layer is scaled by a thickness, 6, defined by the maximum

slope of profile; its theoretical value is:

(4a0) bee - ( ate) MS-T
	

(4.29)

where h is the steepening coefficient and D is the damping factor of

second-sound. This latter coefficient is proportional to the attenua-

tion of second-sou nd per frequency squared and is defined in Appendix C

where calculations jeading to the above results are presented in detail.

Figure 4.6 displays some experimental results obtained with very

weak second-sound shocks at 1.450K. The oscillograph shows a shock

profile as detected with an endwall sensor positioned 8.89 cm away

from the heater. The thickness of this weak shock (M S = 1.00125)

was measured to be 37 um.

According to equation (4.29), the shock thickness is inversely

proportional to the shock strength, oe, or MS - 1, which is a result

generally true for weak shocks in any substance. Experimental values

of d and (MS - 1) -1 , plotted in figure 4.6, verify this relation and

6 -
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yield an experimental damping factor of 4.5 x 10 -3 cm2/sec. This is

about thirty-five percent smaller than the value of D obtained by

measuring the attenuation of second-sound directly (Hanson and Pellam,

1954). Although in this particular instance the shock data have a

relative accuracy of no more than t15%, this is not a fundamental

limit of the method. Ultimately, the attenuation coefficient can be

measured much more easily and accurately with shock fronts compared

to more conventional methods.

The dotted line on the graph (Figure 4.6b) atd -8 um represents

an experimentally determined limit obtained with stronger shock

waves. Shock thicknesses smaller than 8 um were not observed. There

are two possible explanations of this result. First, since geometric

constraints ultimately determine the sensor response, an equivalent

sensor depth of 8 um, instead of the estimated 5 um, would produce

the observed artifact. However, it is possible that the result is

genuine. Recall that at this low temperature, the excitations are

so scarce that the phonon mean free path is about 10 um (Table 2.1).

Since dispersion of second-sound should begin when the wavelength

is on the order of the phonon mean free path (Khalatnikov and Cherni-

kova, 1966a and 1966b), a limit to the shock thickness of this order

should be expected. It appears that low temperature second-sound

provides a unique opportunity to observe non-equilibrium kinetics with

relatively weak shock waves.

None of the second-sound shock fronts observed in the present

study have displayed any peculiarity in the profile attributable to

relaxation effects. Thus it can be concluded that relaxation effects
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longer than one microsecond are not significant, if present at all.

Wien the shock thickness, normalized by the relative velocity

Jump, is plotted against temperature a very interesting result is

obtained (this normalization is a natural choice since a shock is

generated by controlling the heat flux or equivalently ew). At

T - 1.88
0
K, where the steepening coefficient gc*: tc zero, the relative

thickness diverges (Figure 4.7). The meaning of this divergence is

simple: when b - 0, any wave front no matter how weak will be nonsteady

until it has unsteeperLj to the point where the gradients vanish. Thus

at T = 1.88
0
K, an infinitesimally weak shock front will have an

infinite thickness. Finite-amplitude shock waves which span this

divergence display more extraordinary behavior to be examined in the

next section.
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DOUBLE-SHOCKS

Denote the temperature where the steepening coefficient passes

through zero as Tb . Mear this point b(p,T) can be approximated by a

linear function:

b( p ,T) _ -B(T - Tb ) / Tb
	

(4.30)

where the slope, B, is a nondimensional function mly of pressure.

If this expansion is substituted into the equation for the character-

istic velocity of a simple wave:

then in the region near T = T b , the chara:teristic velocity is a

quadratic function of T:

u 	 T-T^
1 -B	 T	 (^^	 (4.32)a

o	 b	 )^	 0

This function is illustrated by Figure 4.8 for a positive temperature

pulse spanning the shock thickness divergence at T = Tb.

For temperatures where ( u/3T)> 0 the front edge will steepen

to form a temperature raising shock. For slightly larger temperatures

the wave front would tend to unsteepen except that the characteristic

velocity is still larger than the shock velocity, U S . When the

temperature has increased to the point where u < U S the expansion

wave will begin. The result is a shock front and an expansion fan

both originating from the leading edge of the heat pulse: The trailing

edge of ',he heat pulse similarly evolves a temperature lowering

L	
40, f:
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shock followed by another expansion fan.

This double-shock configuration 	 one temperature lowering and

the other temperature raising -- is an unusual phenomenon only

occurring in helium II when the steepening coefficient chan ges sign.

Interestingly, double-shock configurations are not limited to second-

sourd shock waves, but they also occur with ordinary pressure shock

waves in solids. Ultra strong shocks, having pressure jumps in the

hundreds of kilobars, can compress metals sufficient to cause a poly-

morphic transition from one solid phase to another. When this occurs

the initial shock front vill split at the phase transition pressure

into two shock compressions. Shock splitting, first observed in

iron (Bancroft, Peterson, and Minshall, 1956), occurs in many metals

and dielectric crystals. It has also been discovered that rarefactions

spanning the polymorphic transition pressure will steepen into pressure

lowering shock waves and form double-shock configurations, similar in

appearance to those that occur with second-sound (Ivanov, Novikov,

and Tarasov, 1962).

Anomalous shock behavior can also occur in a real gas near its

critical point. In this region isentropes plotted in the p-V plane

possess an inflection point where () 2 p/ 3V = ) S changes sign. For

pressure shock waves this quantity is completely analogous to the

steepening coefficient of second-sound. Thus, complex ,-c.ifigurations,

containing both compression and rarefaction shock waves, are found

when (3 2p/4= ) S changes sign (see Zel'dovich and Raizer, 1966,

p. 67).

Double-shocks in liquid helium can occur near the shock thickness
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divergence even if the divergence itself is not spanned. Figure 4.9

illustrates the type of double-shock which occurs when

0 < T 1 - (To + Tb ) < ^ (Tb - To)

In this case there is no expansion wave between the temperature

raising and temperature lowering shocks. Instead the back steepened

shock propagates faster than the one at the front and will eventually

overtake it.

The evolution and decay of the double-shock structure is unique

and quite interesting. For example, suppose a large amplitude shock

pulse is generated which crosses the shock thickness divergence;

this initially evolves into a double-shock having an expansion wave

between the temperature raising and temperature lowering shocks.

Relative to the front shock, the expansion wave will propagate towards

the back shock, eventually overtake it, and in the process cause its

decay. The back shock, which was initially propagating slower than

the front shock causing the double-shock to spread, will actually

increase in velocity as it decays. By the time the amplitude of the

double-shock has decayed to the point where the in between expansion

wave disappears, the back shock will be travelling faster than the

front shock. The double-shock will now decay by decreasing in width,

instead of amplitude, until it disappears altogether. The remnant

is a simple shock-expansion pulse which then decays naturally.

The various versions of double-shocks in helium II are usually

very difficult to observe experimentally because the Mach numbers

of these Shocks are very small, making the formation time very large.
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However, double-shocks have been consistently observed when the

heater power is sufficient to cause a breakdown in superfluidity.

When the initial temperature, To, is slightly less than T b , the

shock which emerges from the breakdown region always displays a

double-shock profile. The implications of this will be explored in

Chapter 6.

^L
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GENERATION OF SECOND-SOUND

Second-sound waves in helium II are obviously generated by

dumping in heat which turns on the counterflow mechanism and effects

the reversible transport of heat away from the source. How counter-

flow is turned on at the interface between the liquid and heat source

is not so obvious.

The boundary condition at a heater wall, that v and therefore v 

are zero (see Chapter 2), implies that heat transfer by counterflow

must cease at the wall. Thus, there must be a thermal boundary layer

in which heat transfer by pure counterflow far from the wall is

smoothly converted into irreversible thermal conduction at the wall.

Within this layer incoming superfluid is gradually converted into

outgoing normal fluid. If the layer does not exist, conversion would

have to occur infinitely fast at the liquid-wall interface, which

would require an infinite chemical potential gradient to instantaneously

stop the superfluid and start the normal fluid -- a process lacking

physical reality.

In Appendix E. the boundary layer is calculated assuming equili-

brium thermodynamics. This results in an exponential layer of

thickness a which is illustrated by Figure 4.10. The temperature

amplitude of the thermal boundary layer is relatively large:

approximately half the temperature jump in the generated shock wave.

This means it plays a significant role in the generation of second-

sound shock waves strong enough to break down superfluidity in a

region near the heater.

Unfortunately the theoretical conclusions reached in Appendix E,

.r ,r
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detailing the size and shape of the thermal boundary layer, are

suspect: the assumption of complete thermodynamic equilibrium may

not be valid since the evaluated layer thickness is on the order of

100 R, while the phonon mean free path, t pr , is over a hundred times

longer.

Since the boundary layer temperature jump is probably a signifi-

cant fraction of the shock wave temperature jump, its magnitude might

be experimentally determined. Unfortunately, the thermal Kapitza

discontinuity at the liquid-solid interface is much larger and tends

to mask the effects of the thermal boundary layer. However, a similar

boundary layer must be generated at the liquid-vapor interface when

heat is exchanged, and therefore, second-sound shock interactions

with this interface might be employed to measure the boundary layer

temperature jump.

Generation of a second-sound shock pulse -is always accompanied

by a much weaker first-sound wave. A temperature raising second-

sound shock wave initiates a small mass flow, having a bulk velocity

jump proportional to the coefficient of thermal expansion, a (see

Table B.1):

av = - gTo	 c2	 ao .1e + 0(.10 2 )	 ( 4.33)
(C2 - a 2 0

Since a is small and negative in helium II for temperatures exceeding

1.20 0K, the shock-induced mass flux is small and in the direction of

the wave propagation.

The boundary condition at the heater wall, v= 0, demands that

a negative pressure first-sound wave also be generated to initially
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balance the mass flux to zero. The temperature amplitude of this first-

sound wave is always positive and is equal to:

To- = (
s T )o ( 2 c2	 (0	

/ ae
	 (4.34)

\c	 a
2 
o`P o

The thermodynamic function multiplying oe in this equation is exceed-

ingly small -- never larger than .001 except near the a -line -- so

that these waves are not usually observable. However, when the

temperature near the heater becomes so large that boiling is nucleated,

the situation will be reversed. In this case the expanding bubbles

will act like pistons to produce relatively large, positive pressure,

first-sound waves. Since a in the normal operating range is negative,

the resulting temperature amplitude will be negative.
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Chapter 5. SHOCK AMPLITUDE MEASUREMENT

Since the main goal of this thesis, stated in the introduction,

depends on the ability of second-order theory to accurately predict

the shock jump conditions, it is useful to summarize its success.

There are three testable predictions made by the theory, namely:

1. US = ^( uo + ul)

2. MS 2 1 + bone

3. Shock structure

The first prediction -- the shock velocity is the average of the

characteristic velocities ahead and behind the shock front -- is equi-

valently a statement of conservation of temperature or entropy within

the shock pulse. The experimental fact that the integral of T with

time is constant at any station observing the shock is thus a verifi-

cation of this prediction. More refined tests of this prediction were

obtained by observing the shock-expansion wave coincidence (Appendix

G) and the arrival of the initial secondary waves generated at the

heater seal (Appendix D). In both cases the measurable relative

errors were within the acceptable tolerance: (w/a)'.

The third prediction, dealing with the shock structure, is

quantified by the shock thickness which was shown to compare reasonably

well with experimental results obtained at a single temperature. The

change in behavior of a shock pulse when the steepening coefficient

changes sign, including the d+ouhle-shock phenomena occurring near

T = 1.880 K, can also be viewea as further verification of this
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prediction.

The second prediction, relating the Mach number to the shock

strength, is the topic of this chapter. The usu 1 procedure used to

experimentally obtain this relation was to fit a straight line to the

points specifying the measured shock strength versus (at A ) -1 , where

to is the arrival time of the shock front as timed from the initial

generation of the heat pulse. As 6 e-i-0, the fitted line intercepts

the axis at t 
A 
a = L, where L is the distance traversed by the shock

from the heater to the detecting sensor. The average Mach number of

the shock front can :ien be calculated as M S = (L/atA ) and plotted

against the shock strength. The slope of the resulting curve can

then be identified as I2b(p,T).

Before elaborating on the results an additional point must be

made concerning shock formation. The initial heat pulse generated

by the heater has a finite rise time, t r , on the order of 1 vsec.

Thus, except for very weak pulses, the wave front will propagate as

an unsteady wave until it has fully steepened into a steady shock

profile. As can be seen on the x-t diagram of Figure 5.1, the fully

developed shock front appears to originate at the heater at a time

'qt r later than initiation of the heat pulse. Actually, the apparent

origin depends somewhat on the shape of the initial temperature rise,

but as long as the shock is fully formed before it reaches the sensor,

the correction to M S required to account for its formation is on the

order (tr/tA ), which in every case was very small.

Early experiments showed that the experimental value of the
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steepening coefficient, b(p,T;, was always significantly smaller than

its predicted value. Soon it was also found that the magnitude of

this discrepancy was strongly dependent on the type of sensor used to

measure the temperature. Thus the problem had to be associated with

the response of the temperature sensor itself.

A typical sensor consisted of a thin superconducting film

physically supported on a glass substrate. The sensor was mounted on

an endwall, aligned perpendicular to the longitudinal axis of the

;hock tube as des,-ribed in Chapter 3. In this attitude, the measured

temperature profile is always a superposition of the incoming wave

with its simultaneous rtfle e.-t on from the endwall. Therefore the

measured temperature jump must exceed tha of the initial shock, AT,

by an amount calculable from second-order Lheory.

Consider the temperature T Z which is realized a long time after

reflection. This temperature remains constant if the initial incoming

wave temperature, T 1 , is constant for as long as the boundary



109

conditions remain constant. This being the case, the initial wave

front which produces the temperature jump is arbitrary and may be

taken as one rising slow enough to be thermodynamically reversible.

Then second-order theory may be employed to calculate R + on the

^`:aracteristic C+1 in Figure 5.2 to yield:

T2	T1

w2 + f
,
LS— dT - 2 fO dT	 ( 5.1)
a na	 ona

To	 To

If the wall is adiabatic, then w 2 must be zero, and the preceding

equation shows that for small amplitude temperature waves the reflected

temperature jump is twice the initial jump. This do0ling upon

reflection is dramatically displayed in Figure 5.3, where a small

t

T = T2

I

W = w 2

T=T1

C+i —^

T=To
W=	

x

Figure 5.2	 SECOND-SOUND WAVE REFLECTION
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amplitude, long duration wave was generated in a shock tube barely

19.3 mm long (Shock Tube IV). The time for the initial wave front

to reach the endwall sensor was 0.959 msec, while the duration of the

pulse exceeded 10.0 msec. During this heat pulse, the wave front

reflected five times to produce a temporal, stairstep temperature

profile.

In reality the wall cannot be completely adiabatic, since if

there was no heat flux into it, the temperature sensor would not even

register. This heat flux can be written in terms of w 2 as:

q2 = p s STw2	(5.2)

where positive q represents heat flowing into the wall. From equation

(5.1) this will reduce the final temperature T, somewhat, but in

practice this effect is unmeasurable because q is so small -- being

limited by the Kapitza resistance and to a much lesser extent the

thermal boundary layer resistance discussed in the preceding chapter.

In Appendix F the response of a thin-film sensor is analyzed and

shown to be limited by the thermal response of the supporting substrate.

It is also shown that the sensor can be accurately modelled as two

temperature discontinuities occurring at the liquid-solid and metal-

dielectric interfaces (which are proportional to the heat flux pene-

trating the interfaces), superimposed on the boundary of a semi-infinite

substrate. The theoretical response at the substrate boundary to a

step in the liquid temperature from T = To to T = T 2 is displayed

graphically as Figure 5.4a. The substrate temperature rises very

quickly at first and then very much slower resulting in a characteristic
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hook-shaped profile.

The temperature actually measured by the sensor is the thin-film

temperature, T3 (refer to notation of Figure F.1), since it is the

thin-film resistance which is monitored. Applying the simple model

shows that the thin-film temperature must initially jump from T = To

to:

RC
T 3 = To + RC + RK (T2 - To) (5.3)

where R  is essentially the Kapitza resistance, and R C is a similar

contact resistance between the film and substrate. After this initial

temperature jump, the temperature rises similarly to the substrate

boundary temperature, T 4 (t), finally asymptoting to T = T 2 . Figures

5.4 b,c are oscillographs displaying the characteristic hook profile

following the shock front typical of a thin-film sensor.

For the tin-on-gold sensors deposited on glass, the contact

resistance is much greater than the Kapitza resistance. This results

in a large temperature jump to 85-90 1% of the asymptotic limit. Previous

sensors consisting of layered tantalium and titanium films deposited

on silicon displayed much smaller temperature jumps on the order of

10%. This can now be explained by a combination of decreased contact

resistance -- the film adheres very well to the silicon substrate -- and

an increased liquid-solid resistance; when the film surface is annodized,

in order to set the transition temperature, the resulting oxide layer

very effectively supplements the Kapitza resistance.

There are two reasons why tin-on-gold films on glass make

excellent temperature sensors. First, the high contact resistance
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due to poor adherence of the film to glass allows the film to initially

register 90% of the actual temperature jump in the liquid. (This

property also makes the sensors very fragile -- a good sensor won't

last long, but a durable sensor won't work.) Second, since the time

constant of the substrate is proportional to its thermal conductivity

(see appendix F) which for glass is exceedingly small, the substrate

time constant is also small -- about 5 to 20 us. Compare this to a

silicon substrate whose thermal conductivity can be a thousand times

that of glass (Berman, 1976); the response time could be enormously

slow -- at least for measuring shock waves.

With a clear understanding of the temperature sensor response,

the apparent discrepancy between the predicted and measured shock

strengths can now be resolved. The typical procedure for measuring

the shock strength, or equivalently the temperature jump, utilizes

an electronic pulse amplitude DVM triggered to record the sensor

temperature 5 usec after the shock front is detected. After this

much delay the sensor temperature is on a plateau -- the temperature

is steadily rising, but very slowly. The temperature measurement

taken at this time is very repeatable but slightly less than the real

equilibrium value. A few time constants later the measured temperature

will be much closer to the real value. This can be clearly seen in

the results of an experiment where measurements were taken with both

a 5 usec and a 30 usec delay (Table 5.1). After 30 usec the thin-

film temperature has come much closer to the theoretical doubled value

caused by an endwall reflection. This and similar measurements

verify the second relation predicted by second-order shock theory,
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Table 5.1	 NORMALIZED TEMPERATURE JUMP OF A THIN-FILM

SENSOR (ENDWALL MLUNTED)

°esensor
2(M S  - /bo

	

5 us delay	 1.89

	

30 us delay	 1.99

theoretical value	 2.00

experiment C3, SEQ 1 and SEQ 1A.

stated at the beginning of the chapter.

In conclusion to this chapter, it may be stated that second-order

theory accurately describes second-sound shock waves generated in the

present experiments. Errors caused by neglecting higher order terms

are immeasurable for the shock strengths which can be generated.

Before higher order terms become important second-sound shock waves

are limited in strength by a breakdown in the superfluidity of helium

II to be discussed in the next chapter.

o`



Chapter 6. THE SHOCK LIMIT AND BREAKDOWN OF SUPERFLUIDITY

The preceding two chapters have demonstrated the overwhelming

agreement between nonlinear second-sound theory and experiment. This

chapter will concentrate on behavior that is not predicted by second-

order theory and which dramatically displays a breakdown in the super-

fluidity of helium II.

When a rectangular heat pulse is generated by the heater, the

size and shape of the resulting second-sound shock pulse can be

accurately predicted as long as the input power does not exceed a

certain critical limit. When this limit is exceeded the flat top of

the predicted trapezoidal waveform (see Figure 4.11) will begin to

tilt; that is, the temperature following a front steepened, temperature

raising shock will decrease instead of remaining constant at T 1 =

T o + AT. This tilt is not due to a shock-expansion coincidence, but

it is a result of a breakdown in the superfluidity of helium II. As

the power is increased further the amplitude of the shock front will

eventually reach a maximum value -- more power will only decrease its

size -- and the shape of the initially rectangular shock pulse will

asymptote to a triangular or exponential-like profile, possessing

a long warm tail.

This peculiar behavior is illustrated by a shock strength versus

Mach number diagram (Figure 6.1) and two sets of multiple exposure

oscillographs showing how the shock pulse profiles are modified

with increasing heater power (Figures 6.2 and 6.3). The nomenclature

applied to the oe versus M S diagram, illustrated by Figure 6.4, will

be defined as follows:

L
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1) The Simple Formation Branch applies to shock pulses whose formation

and propagation conform to predictions made by second-order theory.

2) The Breakpoint occurs when the shock pulse profile begins to tilt

(see Figure 6.2b). This event is also the dividing point between

the simple formation and wave modification regions.

3) The Wave Modification Region contains the scatter of (M S , ne) data

points which diverge from the breakpoint and display an apparent

departure from second-order theory. In this region wave profiles

are distorted from the simply formed trapezoidal waveform towards

the limiting exponential profile. The extent of modification is

directly related to the input heater power.

4) The Shock Limit is the n.aximum attainable shock strength.

oe

Breakpoint
Shock
Limit

Wave Modification Region

Simple Formation Branch

Ms-1 (Beater to Station)

Figure 6.4 NOMENCLATURE APPLIED TO THE
A8 VERSUS MS-I DIAGRAM
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SUPERCRITICAL VERSUS SUBCRITICAL SHOCK WAVES

Whether or not the observed breakdown of superfluidity is caused

by an intrinsic critical velocity is an important question which

demands resolution. In an endeavor to do so, the concept of subcritical

and supercritical shock waves will be elucidated.

A "supercritical shock wave" will be defined as one that generates

a relative velocity larger than any intrinsic critical velocity of

the liquid. Conversely, a "subcritical shock wave" is one whose

maximum relative velocity is less than all excitable intrinsic critical

velocities.

By definition, a subcritical shock wave cannot cause any mutual

interaction between the normal and superfluid components leading to

extra dissipation in the flow; dissipation occurs exclusively in the

shock front where the gradients in T and w are very large. If the

initial shock pulse has a rectangular temperature profile, the shock

strength and Mach number will be constant until the leading edge of

the expansion wave overtakes the shock front. From this time on, the

triangular shaped shock pulse will decrease in amplitude and velocity

as the expansion wave propagates further into the shock front.

There is one important characteristic that distinguishes a

subcritical shock pulse: dissipation, and thus amplitude decay, occur

exclusively at the shock front. The amplitude of a point on the

expansion wave remains constant until it coincides with the shock

front (This is illustrated by the "marker" on a decaying subcritical

shock pulse -- Figure 6.5. A marker can be any distinguishable

feature in the wave profile which propagates at the characteristic
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velocity at that point -- for example, a kink or slope discontinuity.).

Subcritical shock decay is common to ordinary pressure shock pulses

and can be calculated for second-sound by the second-order theory

derived in Chapter 4 (for example, see Appendix H).

A supercritical shock wave, on the other hand, excites dissipation

producing interactions in all regions where the relative velocity is

large. Consider a front steepened supercritical shock wive propagating

into undisturbed fluid. The mechanism producing the extra dissipation

in the flow, turned-on by the shock front passage, will cause an

initially rectangular waveform to decrease in amplitude even before

the leading edge of the expansion wave can overtake the shock front.

This occurs becat+se mutual interactions produce "bulk dissipation",

monotonically related not to the gradient of w, but to its magnitude.

A hypothetical illustration of supercritical decay of an initially

triangular shock pulse is shown in Figure 6.5. Suppose at time ta,

mutual interactions are suddenly turned on. For example, superfluid

quantum vortices might be generated at the shock front leading to a

Gorter-Mellink type body force in the fluid arising between the quantum

vortices and the normal fluid excitations. Whatever tho-- origin,

mutual interactions will rapidly dissipate the wave energy and tran rl-

form it into heat. The result i.; a steadily decreasing shock pulse

whose dissipated energy is left beh'nd to form a warm wake as the shock

ware propagates farther into undisturbed fluid.

Whether or not the wave modified shock pulse emerging from the

heater is a result of critical velocities cannot yet be a,iswered with

certainty. However, there is sufficient evidence to prove that:

11



124

'I

(1) the observed breakdown of superfluidity occurs in a region near

the heater; and (2) the emerging second-sound shock pulse is sub-

criticG^^.

There are three possible locations where breakdown could occur:

1) in a formation zone near the heater; 2) at the endwall where the

shock strength is doubled; and 3) between the heater and endwall via

supercritical pt:,-;gation. The third possibility can be eliminated

because wave modif i ed shock pulses have been observed to propagate

and decay subcritically. Figure 6 . 6 shows the propagation of a typical

wave modified shock pulse in which the heater power exceeded the value

necessary to reach the shock limit. The arrows point to the remnant

of the expansion fan leading edge as observed from four different

locations, ranging from 5.9 to 11.9 cm from the heater. Notice that

as this feature propagates its temperature amplitude does not decay.

This is typical of reversible wave propagation, but would not occur

if the shock pulse was supercritical. The temperature amplitude of

the shock front does decrease as the wave propagates, but this is due

to the normal confluence of the expansion fan with the shock front.

Since the shock pulse obviously propagates subcritically one

might suspect that breakdown actually occurs at the endwalls where

reflection doubles the temperature amplitude of the wave. However,

identical breakdown phenomena, occurring at equivalent power levels,

were observed with both endwall and sidewall mounted sensors. Thus,

the observed breakdown had to occur before the shock pulse reached the

endwall.

This fact, however, does not exclude the possibility of a
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secondary breakdown occurring upon endwall reflection (no such break-

down was observed, but it was not searched for either). Yet, if

breakdown is truly a critical velocity phenomenon, breakdown upon

reflection should not occur. This is because although the temperature

amplitude is doubled during reflection, the relative velocity is

essentially zero, being dictated by the "boundary condition" at the

wall -- q= 0.

Breakdown does not occur upon reflection or during the propagation

from heater to endwall; therefore, it must occur at, or very near, the

heater. Additional evidence proving this proposition, as well as the

subcritical nature of the emerging shock pulse, can be gleaned from the

ae versus MS diagrams. The Mach number in these diagrams is actually

the average Mach number between two fixed points. The shock propaga-

tion time used to calculate the Mach numbers in Figure 6.1 was the

arrival time at the sensor location measured from the initiation of

the heat pulse. Therefore, this Mach number is an average from the

heater to the sensor station, which necessarily includes delays or

advances primarily associated with the initial formation of the wave.

In fact, for heater powers exceeding the breakpoint, the

departure of the observed (M S , AO) points from second-order theory

always displays a definite advance meaning that a wave modified shock

pulse propagates faster than demanded by simple theoretical consider-

ations. If, on the other hand, the Mach number is calculated from

one sensor station to another, both substantially displaced from the

heater, the resulting Ae versus MS diagram does not depart from

second-order theory even for heater powers exceeding one shock limit.
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This fact has two implications: First, propagation of the shock pulse

between sensor stations is describable by second-order theory, as it

must be if the shock pulse is subcritical. Second, the wave advance,

which is one clear indication of breakdown, occurs between the heater

and the first sensor. The mechanisms responsible for the wave advance

are revealed in a subsequent section.

.off' ,•^	 .,	 _	 =._^.,,,a_.. -	 _	 - --
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WAVE MODIFICATION AND BOILING

There are three distinct phenomena that commence at the break-

point heater power: 1) wave modification; 2) arrival time jitter;

and 3) boiling. The occurrence of boiling was obvious at heater powers

greatly exceeding the breakpoint since the sound generated by the

nucleating bubbles was heard as a sharp "ping". Boiling could also

be visually observed in the optical shock tube as a thin sheath

covering the heater, which appeared every time a shock was fired.

Using a stethoscope applied to the outside dewar, these pings were

audible until the heater power was reduced to the breakpoint; a5 this

limit was crossed into the simple formation region the pings suddenly

stopped.

The effects of boiling were also observed with the superconducting

temperature sensors. Recall that the heater boundary condition

requires that a simply formed, positive temperature, second-sound

shock pulse be accompanied by a negative pressure, first-sound wave

(see Generation of Second-Sound, Chapter 4). The temperature excursion

of this first-sound wave is positive and exceedingly small -- so small

in fact,that it v ,as not observable within the noise limits of the

sensor. However, after the breakpoint power was exceeded a first-

sound wave was observed, but it initially produced a negative tempera-

ture excursion (see Figure 6.7). Thus the pressure perturbation in

this wave was positive, which can only be explained by boiling. As

the nucleating bubbles expand they act like pistons pushing the fluid

away from the heater, and in the process, they generate relatively

large, positive pressure, first-sound waves.
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Arrival time jitter is a measure of the randomness in the forma-

tion process that began at the breakpoint and increased steadily with

heater power. In the simple formation region the repeatability of the

arrival time between shock pulses of equal amplitude was about 10 parts

per million, but as soon as the break point was exceeded the repeat-

ability dropped to one part in ten thousand,or one part in one thousand.

This randomness in the formation process must be attributed to nucleate

boiling.

With the information presented so far, a couple of scenarios

describing the observed breakdown of superfluidity can be hypothesized.

The presence of boiling, concurrent with the other phenomena

signalling the breakdown, strongly suggests that boiling initiates

the entire process. All the experimental data comprising the present

thesis were obtained when the equilibrium pressure was slightly above

the saturated vapor pressure of the liquid. The pressure increment

was maintained by a head of liquid helium ranging from 5 to 50 centi-

meters high. At 1.85 0  the corresponding temperature increment
necessary to cross the equilibrium saturated vapor pressure curve

ranges from 10.7 mK to 107 mK, while the experimentally determined

shock limit at this temperature was eT = 36 ±2 mK. It is possible

that this temperature jump, supplemented by the temperature increase

in the thermal boundary layer, could nucleate bubbles that would

quickly form an insulating layer over the heater surface. The heat

flux, which generates the shock pulse,has to penetrate this layer,

and thus it would decrease with time as the layer grows. In this

mannerthe rectangular heat pulse profile would be modified into the

r`
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observed triangular waveforms.

A second scenario would have the breakdown initiated by an

intrinsic critical velocity transition. The resulting supercritical

shock pulse would decay quickly near the heater until the relative

velocity within the pulse was subcritical. The energy dissipated

from the supercritical shock wave would form a hot layer near the

heater which in turn would nucleate boiling.

The evidence obtained so far is not sufficient to determine the

mechanism responsible for the observed breakdown of superfluidity.

However, it is interesting that the experimental shock limit did

not change when the equilibrium temperature differential from the SVP

curve varied by a factor of two or three, due to evaporation of the

head of liquid helium during the course of the experiment. This poses

a problem for the boiling triggered hypothesis; the initiation

of boiling should occur at a fixed temperature jump, not with respect

to the equilibrium temperature, To, but relative to the SVP curve.

Also, the observation that some shock limited pulses may have super-

heated the liquid is rat a problem; superheating has been observed

even in steady counterflows dominated by porter-Mellink dissipation

(Childers and Tough, 1912). These facts make the critical velocity

triggered scenario a better bet. However, a final conclusion must

await the results of forthcoming experiments conducted at pressures

exceeding the critical point of liquid helium.

L__
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THE SHOCK LIMITED RELATIVE VELOCITY

Whether the breakdown of superfluidity is critical velocity

triggered or otherwise, the maximum relative velocity, produced by

the subcritical shock pulse which emerges from the breakdown region,

represents a lower limit to the long sought fundamental critical velocity.

This makes the maximum relative velocity a very important quantity to

determine.

Since the emerging shocks are always subcritical,second-order

theory can be confidently applied. The trick is to determine either

the Mach number or shock strength of the shock wave just as it emerges

from the formation zone. This is complicated by the fact that shock

limited pulses are highly modified into triangular shock pulses

which decay as they propagate. That is, as the expansion fan merges

with the shock front, it continually reduces the shock amplitude and

velocity.

If the modified shock pulse can be well approximated by an

initially triangular profile, then its trajectory and decay in

amplitude will be proportional to the square root of the propagation

time (see appendix H). By measuring the shock limit at different

positions from the heater, the rate of decay can be deduced and the

original formation temperature amplitude of the subcritical shock

pulse can be determined. The relation connecting the formation

shock strength, 16 F , to the measured shock strength, zie, is:

	1 	 _	 1	 t	
(6.1)

	

aA	 63F	
+
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where t is the propagation time of the shock pulse. Note that the

data in Figure 6.1 definitely display a larger shock strength limit

for measurements made closer to the heater. If the shock limited data

are plotted against arrival time, then from equation (6.1) the decay

time, z, and the formation strength can be extrapolated. The results

of this determination yield a relative velocity limit of 3.67 m/sec

for T = 1.458 0 K. Compare this to the lower limit, 3.10 m/sec, which

is the result obtained for the maximum observed shock strength.

Values of the shock limited relative velocity can also be deter-

mined from measurements of the Mach number. The maximum observed

Mach number, which recall is an average value, yields a relative

velocity slightly larger than the value associated with the extra-

polated shock strength; it is 3.82 m/sec. The initial formation Mach

number must be larger than the measured average value, ^M S ) , again

due to the decay of the triangular shock pulse. Using the theory

developed in Appendix N, the decay in the shock strength can be

calculated from the measured shock strength and Mach number as:

oe b/2	 _ 1 * 1 oe	
(6.2)7 ^ 2 2 66F

With this method the calculated limiting relative velocity is found

to range from 4.4 to 8.3 m/sec with decays from (ae F/es) = 1.5 to 4.2.

The larger the decay, the larger the wave advance, and the larger the

apparent initial relative velocity.

The fact that the calculated relative velocity limit depends on

the decay means that other mechanisms must also be responsible for

♦t
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the wave advance rather than just the natural decay of a triangular

shock pulse. One that is obvious is a result of boiling. Boiling-

induced, positive pressure, first-sound waves convect the shock pulse

forward, resulting in a larger apparent Mach number without affecting

the shock amplitude. Substitution of these data into equation (6.2)

results in an artificially large decay and an inflated value of the

shock limited relative velocity.

Another factor that contributes to the difficulty of determining

the true shock limit is the sensitivity of the breakdown to

disturbances already present in the fluid before a shock is fired.

This effect is clearly illustrated by Figure 6.8 which shows the

effect of repetition rate on shock pulse profiles. The two oscillo-

graph traces are shock pulse profiles generated by equivalent input

power pulses. The only difference in the two cases is the time

between shock firings. If one waits about 200 seconds between firings,

the resulting shock pulse is simply formed, but if the heat pulse is

applied every second, the resulting shock pulse degenerates to a

typical wave modified profile.

One reason why there is so much scatter in the wave modification

region of Figure 6.1 is due to the fact that the duration between

shots was not precisely the same each time -- varying from 100 to 300

seconds. The repeatability of the shock pulse profiles was much

greater in the data presented as Figures 6.2 and 6.3 where shocks

were periodically generated one per second.

When breakdown occurs, slowly decaying disturbances are generated

which nucleate the breakdown mechanism. If breakdown is due to an
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intrinsic critical velocity via homogeneous nucleation of superfluid

vortices, then the observed facts are not difficult to Explain.

For example, the sensitivity to repetition rate is explained by the

slow decay rate of these vortices. A supercritical shock initiating

breakdown would multiply the superfluid vortices which in turn would

dissipate energy from the wave by a Gorter-Mellink type interaction.

Since these vortices move with the superfluid they would be pushed

back near the heater resulting in an insulating layer whose temperature

would very quickly become hot enough to nucleate boiling.

The shock limited relative velocities presented in this chapter

and the concluding graph, Fiyure 7.1, do not include data obtained

at rapid repetition rates. The shock limit of the latter (one shock

per second) is only 25 or 30% of the limit obtained by low repetition

shock generation.
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SHOCK LIMITED DOUBLE-SHOCKS AND BACK STEEPENED SHOCKS

The problems encountered when determining the shock limit of

front steepened shocks do not appear for double-shocks. At T = 1.850K,

the breakdown of superfluidity modifies the input heat pulse into a

double-shock whose profile does not change appreciably as it propa-

gates. The reason for this is that the steepening coefficient is very

small; therefore, the nonsteady wave evolution brought on by nonlin-

earity is very slow.

Figure: 6.9c shows the profiles of double-shocks as the heater

power is increased and the shock limit is attained. Notice that

after a limiting temperature is reached a further increase in heater

power mcy lengthen the double-shock pulse, but it will not increase

its amplitude. Figure 6.9d shows the limiting profile which resulted

when the heat pulse power was fixed, but its duration was varied over

a range from 10 usec to 1 msec. The amplitude of the initial pulse

again remained shock limited; the duration of the double-shock varied

slightly, but only over a range from 4 to 7 usec.

From the temperature amplitude limit of the double-shocks shown

in Figure 6.9 abc, a limiting relative velocity of 3.20 m/sec can be

deduced for the initial temperature, To = 1.8520K.

Figure 6.10 displays the profiles of some back steepened shock

pulses produced when To = 1.951 0 K. As the heater power is increased

the shock limit is attained, but the shock limited profiles are very

much different than those observed for front steepened shocks. The

leading expansion wave, whose profile is convex shaped, does not
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possess any steep gradients before the temperature lowering shock

is encountered. Because of this shape, the natural decay of the

emerging shock pulse is slow and an accurate value of the maximum

temperature amplitude can be obtained. From this the maximum relative

velocity was calculated to be 1.60 m/sec.

The first signals of breakdown, clearly visible for the front

steepened shocks, are masked by the leading expansion wave in the

present case. However,the convex shape of shock limited profiles

indicates that breakdown began slowly at a temperature amplitude below

the shock limit (recall that the profile of a simply formed expansion

fan would be triangular).

Finally, note that the thickness of the temperature lowering

shock appears to grow when the shock limit is attained. Since these

results are only preliminary, one can only speculate as to their

meaning. However, could it be that superfluid vortices, generated in

the temperature raising expansion wave at some critical velocity, are

causing the shock front to ripple? Whether or not these shock pulses

were supercritical could not be ascertained since they were not

generated in the variable length shock tube. Further research should

prove interesting.
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Chapter 7.	 CONCLUSIONS

The ability of second-sound shock waves to produce and measure

large relative velocities away from walls has been successfully

demonstrated. The fact that second-order theory has been verified

up to the maximum temperature amplitudes generated allows one to

accurately and unobtrusively obtain the shock-induced relative velocity

by measuring either the shock Mach number or shock strength. The

problems originally encountered when measuring the temperature ampli-

tude with superconducting thin-films have been resolved, and techniques

allowing one to calibrate these sensors and to measure the shock

velocity to five significant figures have been developed and demon-

strated.

The breakdown of superfluidity was found to occur upon formation

in a region close to the heater. Many of the processes involved,

including boiling and wave modification, have been identified, and

the causes of amplitude decay and wave advance with increasing heater

power have been found. Unfortunately, the mechanism triggering the

breakdown could not be positively identified; it may be an intrinsic

critical velocity, or it may be related to nucleate boiling on the

heater face, or even some other unidentified mechanism.

However, not being able to positively identify the observed

breakdown of superfluidity as a critical velocity triggered phenomena

does not detract from the significance of the results obtained:

the maximum shock-induced relative velocity is as large as those

formerly obtained only in highly restricted geometries. Figure 7.1

shows the maximum obtained shock-induced relative velocity with
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respect to the initial fluid temperature. Also plotted is the intrin-

sic relative velocity measured by Notarys (1969) in 200 to 800 R wide

pures. The present results, which represent a lower bound to the

fundamental or true intrinsic critical velocity, show a temperature

dependent decline as T X is approached, and they are somewhat larger

than the critical velocities reported in microscopic pores.

Pressurized experiments now underway should be able to determine

if the breakdown is triggered by boiling. If it is, then pressurizing

the test section above the critical pressure of liquid helium (2.29

bar) will eliminate its interference so that the fundamental critical

velocity can be identified. However even when this is done the

breakdown will still occur near the heater where the shock is formed.

Ultimately this problem can be eliminated by strengthening the shock

wave in converging channels-- a process which will move the spatial

location of breakdown away from the heater.

In conclusion, it is evident that second-sound shock waves, used

as a tool to probe the mutual interactions between the two-fluid

components of helium II, can provide the clearest picture of the

fundamental critical velocity phenomenon that has ever been obtained.
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Appendix A. THE EQUILIBRIUM THERMODYNAMICS OF LIQUID HELIUM II

The state of a system consisting of an ordinary homogeneous fluid

in thermodynamic equilibrium can be described by three variables: the

total mass of the system, M; the total volume, V; and the total entropy

S. The change in total internal energy, E = E(S,V,M), can then be

written as:

dE =	 aE)	 d  + { E1 dV + (2—E)S dM	 (A.1

V,M	 S,M	 ,V

The partial derivatives in this statement can be identified with the

temperature, T, negative of the pressure, p, and the chemical potential,

U. With these substitutions the fundamental thermodynamic identity

results:

dE = TdS - pdV + udM
	

(A.2)

The three variables, S, V, and M, which have been chosen to

describe the system are not independent, because they are all propor-

tional to the mass of the system (that is, they are extensive

variables). Thus a homogeneous fluid system can be described by

two independent variables--for example the specific entropy, s = S/M,

and the density, p = M/V. Also since the internal energy is an

extensive quantity, the thermodynamic identity can be easily integrated

as follows:

aE(S,V,M) = E(aS, 4, aM)

d(aE) = T d(aS) - pd(aV) + Ud(aM)

xdE + Eda = (TdS - pdV + udM)a + (TS - pV + uM)da
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Since a is arbitrary this last equation implies:

E=TS - pV+uM
	

(A.3)

It is often convenient to express the thermodynamic state of a

system in variables other than the entropy, volume, and mass. This

is simply done by forming a new thermodynamic potential from the

internal energy via a Legendre transformation. For helium II it

will be convenient to take the temperature and pressure as independent

variables. To do this, the Gibb's free energy, defined as

G=E-TS+pV = uM
	

(A.4)

becomes the thermodynamic potential describing the system. The thermo-

dynamic identity written in terms of this potential becomes:

dG = dE - TdS - SdT + pdV + Up

dG = Up - SdT + udM
	

(A.5)

Written in terms of specific variables and cancelling the udM terms

results in the Gibbs-Duhem relation:

du = p dp - sdT	 (A.6)

The thermodynamic principles which have been applied to an

ordinary fluid can equally well be ap;)lied to helium II. The major

difference between the two systems is that for an ordinary homogeneous

fluid there is always a coordinate frame in which the macroscopic

velocity of the fluid is zero, whereas for helium II no such frame

^r`
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exists. This fluid, in general, executes two distinct simultaneous

motions, corresponding to the superfluid and normal fluid velocities;

this means that there will always be a velocity dependence intrinsic

in the thermodynamic functions. The velocity which naturally appears

is the relative velocity, w, because it is the difference between

two velocity fields (w =vn - vs ) and therefore it is an invariant

quantity with respect to a Galilean transformation. Liquid helium

is isotropic; therefore, the the nnodynamic state of a fluid particle

cannot depend on the direction of w, but only on its magnitude.

This means that the velocity parameter which enters into the thermo-

dynamics is actually the scalar product of the relative velocity

with itself, w2.

The coordinate frame in which the motions of helium II are the

simplest is the frame in which the superfluid component is at rest,

called the "superfluid frame". In this frame only the excitations

comprising the normal fluid component are in motion. The macroscopic

average of these motions is the normal fluid velocity, which in this

frame is W. The frame of reference in which one customarily views

helium II is the "laboratory frame" where the superfluid velocity

is vs and the normal fluid velocity is w + v s = vn.

In the superfluid frame the total energy, Eo, is a function of

entropy, volume, mass, and the internal momentum due to the macroscopic

normal fluid motion: Eo = E O (S, V, M, Jo). A change in the internal

energy can be expanded in terms of these variables just as was done

for an ordinary fluid:



-* IEo = TS - pV + uM +w- Jo (A.8)
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dEo = US	 - pdV + UdM + w • dJo
	

(A.7)

where	 T = 
(aE

	

1i as	 -.
JO

p = - av^
S,M,JO

	

U = 
(D E }	 i

S,V,JO

w = ^aj

a ° S,V,M

Since the internal momentum, Jo, is an extensive variable like, S, V,

M, and Eo, equation (A.7) can easily be integrated to the following

form:

It is usually more convenient to work with the energy density, C O =

Eo/V. Equation (A.8) divided by the volume and written in terms of

specific quantities becomes:

co = psT - p +Up +w•J O	(A.9)

Equation (A.7) can also be rewritten in this form by writing the

extensive variables as densities times the volume and then expanding

the differentials:

deo = T d(ps) + udp + 'W-  dJp
	

(A. 10)

The internal momentum density, as seen in the superfluid frame,

can be identified as the product of the normal fluid velocity with a

4W



t
Jp= p nw (A.11)

148

normal fluid density:

which is simply the defining relationship for the normal fluid mass

density, pn.

In order to transform the thermodynamics into the laboratory

frame a Galilean transformation is required,and the transformation for

energy density is (Landau and Lifshitz, 1959, chapter 16):

C = e Q + lip v52 + VS • ^0
	

(A.12)

t
Substituting in for co and Jo, expanding, and then collecting terms,

yields the following result for total energy density in the laboratory

frame:

c = psT - p + up + ^p nw2 + ^p s ys 2 + ^pnvn2	 (A.13)

If a specific internal energy, e, is defined by the following equation:

pe = psT - p + up + l ip nw2
	

(A.14)

then the total energy density may be written in a more familiar form:

c = pe + lip, s ys 2 + ;10 n vn 2
	

(A.15)

As stated earlier, it is convenient to write the fundamental

thermodynamic identity in terms of the chemical potential. This can

be done with the equations written for the superfluid frame by taking

the differential of equation (A.9) and then using (A.10) to eliminate

terms. The result is a relationship which happens to be valid in any



Pn	 au
= a
	

- 2 a w

p,T

(A.17c)
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coordinate frame, since all the variables are frame invariant

quantities:

a
du	

a d
p -sdT-.Lndw2 (A.16)

This last equation expresses the fact that the comolete thermo-

dynamics of helium II are known if the chemical potential is known as

a function of pressure, temperature and relative velocity squared.

Other thermodynamic variables are identified in the usual way as

derivatives of the chemical potential:

s	 -
a
^a

p ,w2

(A.17a)

o = 4 3p )T,W2
(A.17b)

The major problem that remains is to determine the chemical

potential as a function of w2 . Experimentally u has only been deter-

mined as a function of pressure and temperature with w equal to zero,

because it has not been possible to measure the dependence on w 2 con-

sistently. This is because moving the fluid to get the required w

inevitably introduces hydrodynamic effects, such as turbulence, which

mask the thermodynamic effects. Using seccnd-sound shock waves to

generate uniform relative velocities may be the one way to experi-

mentally determine the thermodynamic dependence on w 2 , but this

endeavor must be left for the future.
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The relative velocity dependence in the limit of vanishing w,

can be deduced theoretically by expanding the chemical potential in

terms of w2:

v(P,T,w 2 )	 u(P,T) yY=0 + aw )p,T,woO
w2	 (A.18)

Using previous results to identify the coefficient of the w 2 term

leads to the following equation:

u(P,T,w2 ) = u(P,T) - '1&(P, T )w2 + 0( w4 )
	

(A.19)

In this expansion, and those to follow, there needs ti be a distinction

between the quantities which show the full dependence on p, T, and w2,

and those that are evaluated at w = 0. The former type will be

accompanied by a tilde, whereas the latter, which are the quantities

that are measured experimentally, will be left unadorned. The expan-

sions for the entropy and density proceed in the same manner with the

partial derivatives being evaluated by "Maxwell relations":

( 3=^ _ - a
2
T--a=) 	 ( -'iE) _ 'SE T 	(A.20)

1	 P	 P

^

31/p	 _ ( a Z U	 _ a
@7w=1 ap-- w-	 3P (-'^ ) = - 3z^ p	(A.21)

T	 T

The equations for entropy and density expanded to first order in w2

are therefore:

s(P,T ,w2 ) =	 s(P, T )	 +'z&T(P,T)w2 + G(w') (A.22)

1

Pc	 ,	 ,w`
1

o	 P, T
- & (P,T)w2

P
+ 0(wl ) (A.23)
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Finally it is usually assumed, with some experimental verification,

that the normal fluid fraction is independent of the relative velocity

to lowest order:

ti

on (p,T,w2)	 on ( p ,T) + 0(w`')	 (A.24) )
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Appendix B. LINEAR WAVES IN HELIUM II

The properties of reversible first-and second-sound, in the

limit of infinitesimal amplitude, can be calculated from the linearized,

dissipationless, two-fluid equations. Linearization is accomplished

by a perturbation expansion from the stead ,, rest state of the fluid,

with terms higher than second order in the perturbation quantities

ignored. These quantities will be denoted by primes while steady

state values are left unadorned. The resulting four equations are

shown below (note that the energy equation is replaced by conservation

of entropy since all processes are assumed reversible):

a	
+ pv • v' = 0	 (B.1)

ate	

a
+	 vp' = 0	 (B.2)

awe + P vT' = 0	 (B.3)
at	 Pn

P at' + 
ps S 7 • w' = 0	 (B.4)

Now consider the important case of one-dimensional or plane wave

motion. The set of linear equations can be solved to get four char-

acteristic velocities, which are the propagation velocities of linear

waves. Two velocities are for first-sound waves traveling parallel

or anti-parallel to the x-axis, which is defined normal to the wave

front. The remaining two velocities relate to the propagation of

second-sound.

It is well known that a complex plane wave field can be described

AV
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by a superposition of simple waves. Each simple wave is characterized

by motion occurring only along one set of characteristics which can

be completely described by a single dependent variable. To see how

this occurs, examine the motion of an arbitrary dependent variable,

f. The perturbation to f propagates at the wave velocity, u, so

that its functional form in space and time can be written as:

f'(x,t) = f'(x - ut) = f'(^)

The partial derivatives of this perturbation quantity are:

at f' - - uf^	 (B.5)

3	
f' - f '	 (8.6)

Applying these results to the basic differential equations results

in relations between dependent variables. For example, an application

to the momentum equation (B.2) results in:

-uv_ +^ p
5
 =0:,	 P 

Integrate this with respect to y and note that the integration constant

is zero since p' and v' are, by definition, perturbations from an

equilibrium rest state. The final result is:

V. _ L

This technique can be applied to each of the basic four equations

stated previously, and to two additional relations in which the depen-

dence of velocities v' and w' is eliminated (see Equations B.1 and
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B.8). It should be noted from these results, presented in Table

B.1, that positive pressure and temperature excursions produce per-

turbation velocities, v' and w', which always head in the direction

of the wave propagation for both first- and second -sound. If the

excursions are negative the fluid and propagation velocities are

oppositely directed.

a^ - v2p' = 0	 (B.7)

a 2S 	 ps
a--tom— - p	 S 2 v2T' = 0	 (B.8)

n

With the aid of the thermodynamic relations below, equation B.7

and B . 8 can be reexpressed as a set of two coupled wave equations

(B.12 and B.13).

dp =	 Y 2 dp - psdT	 (B.9)
CO

C

dS = ^ dT - p dp	 (B.10)

Y = 1 + 
T62 

co t	(B.11)

P

where Y =_ Cp/Cv

	

s =	
(iv 
	 V = volume

P

	

co -	 ( ap ^S

.t
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Y aat 1 - asco t a	 - C Ot v2p' = 0	 (6.12)

a 2T'	 a2aC	
PC

sT at7' - at 	 - sTP a
02 72T' = 0	 (6.13)

where ao=;
Tn

s S2T

 CR

Note that coupling is achieved srlely via the coefficient of

thermal expansion, which approaches zero at very low temperatures.

Therefore, in many instances, the coupling between pressure and

temperature may be neglected. In this case first-sound is purely a

pressure and density wave traveling at the speed co. Similarily

second-sound is an unadulterated temperature and entropy wave propa-

gating with speed ao.

For now however, the coefficient of thermal expansion will be

asssumed not zero, brit small. Thus, first-sound waves will also

produce temperature and entropy variations, while second-sound waves

will correspondingly display pressure and density perturbations. The

wave speeds, which are altered slightly by this coupling, may be

calculated by the method of characteristics applied to the last equa-

tion set. To do this the first equation is multiplied by an arbitrary

constant parameter and added to the second. For convenience, the

constant parameter will be chosen ale, where c is small (e =Y - 1 =

0(6 2 1) and x is to be determined.
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E (ay - e) as
cola

- aY _ E 72
 P (B.14)

PC	 a	
ao2

+ LR	 T = 0

This equation can be put in characteristic form if the propagation

velocities for both p' and T' are real and equal, namely:

CO 2 A	 ao2

U2 =	 =
ay-e	 1-a

This can be solved for the parameter A to get two solutions:

ao2	 a 0 a0
a+ = l - O+ e c02 c02- a02 + 0(E2)

ed02
^ az0 + 0(E2)

0	 0

(B.15)

When these results are substituted back into (B.15) the wave speeds

to first order in E are obtained (recall that E- Y-1):

o

U2 =	 ao	 1 -E — a 022	 + 0(E 2 )	 (B.16)
co	 ao

ao2

u+ =	 co	 1 +E c--
z
--a 0	 + 0(E Z )	 (B.17)

Finally to complete the analysis, it is necessary to calculate the

relationship between the pressure and temperature perturbations for

both first- and second-sound waves. This is done by eliminating p'

and S' in the thermodynamic expansions ( B.9 and B.10), with the previous

results already tabulated, to obtain:
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X02

Y - :r— p ' = psc02T,

a02
_ LT	 ,1 - = T - 

PC  p

(B.18)

(B.19)

Inserting the wave velocities to order e, the p':T' relations can be

calculated to the same order. These results are compiled with those

obtained previously, in Table B.1, which provides a convenient summary

of this section.

It is interesting to note that a positive pressure first-sound

wave generates a negative temperature excursion for temperatures

above 1.20K which occurs because the coefficient of thermal expansion

of liquid helium is negative. This also accounts for the fact that a

positive temperature second-sound wave generates a positive pressure

perturbation.
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Table B.1 SIMPLE LINEAR PLANE WAVES IN HELIUM II AT REST

PERTURBATION QUANTITIES:

^ I 	_ ^ w,	 = p S T

pu pn u

C ao2

`	
_ S'	 _ T'p

p2" u2

2

T' = g 
C	

Co	 21 + O(a2 )	 (first sound)

P	 Co t
 _ a 0 2	 p

Co2dG2

pt 
_ -sp	

2 _	 2 , 
T' + 0(0 2 )	 (second sound)

Co	 ao

WAVE VELOCITIES:

First-sound:	 u = c
Second-sound: u = a

ao2where:	 c2 = co I 1 + ( y - 1)( 2	 2 11 + 0(Y - 
1)2

1	 I
E	 l	 co - ao	 )

ao2

( 2 _	 2

	

l	 co	 a 0
2)o

	

r aP l 	-	 as S2Tco =	
ap!	

ao =	 pn T—

S	 p

Y = C p/Cv = 1 +- T^2 Cot

P

.e
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Appendix C. THEORETICAL STRUCTURE OF WEAK SECOND-SOUND SHOCK WAVES

Calculation of shock waves in a complex medium such as helium II

can be done using techniques from singular perturbation theory. The

solution sought is one consisting of two equilibrium states which are

connected by a thin shock layer or shock front. The jump conditions

between the two equilibrium states form the outer solution, which is

gotten by neglecting all the dissipative terms. These terms are zero

in the outer solution since there are no gradients in any of the

dependent variables in the equilibrium states. Gradients do exist and

are important in the shock layer. In fact, it is the balance between

the dissipative terms and the nonlinear steepening terms which governs

the shock structure.

The model of helium II, which serves as a starting point for the

following calculations, is the two-fluid theory as set down by Landau

(1941). The derivation begins by integrating the steady, one-dimen-

sional equations for a superfluid and then evaluating the constants

of integration using values for one of the equilibrium states. This

results in the shock equations presented in Tables C.2 and C.3. Next

the shock equations, in the linearized dissipationless approximation,

are solved to obtain solutions for steady, first-and second-sound

waves. These results are used to simplify the solution of the second-

order equations which eventually yield the shock velocity and the

jump conditions to second order.

In the shock layer the gradients become so large that even

though the kinetic coefficients are small, their products are dominant
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terms in the equations. These dissipative terms are of order (T') 2 ti w2;

that is they are second order in the characterizing variables for

second-sound. Therefor-:, to balance these terms, the shock equations

must be solved with all the other second order terms being retained.

The order of the dissipative terms depends on the fact that for weak

shock waves, the shock thickness is inversely proportional to the

shock strength, oe, which will be taken as the temperature jump

normalized by an equilibrium state temperature. The shock layer must

therefore be scaled by 1/oe, which means the derivative with respect

to the spatial dimension, x, must be order ae. Since the temperature

and velocity perturbations are also of this order their derivatives

must be order (oe ) 2a w2 . Although these relations are true for weak

shock waves in any substance, there validity for second-sound shock

waves will be reaffirmed by direct calculation.

W
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DERIVING THE SHOCK EQUATIONS

Calculation of shock wave jump conditions traditionally makes use

[%	 of conservation equations for mass, momentum, and energy; these

quantities are conserved from one equilibrium state to the other across

the shock, even though the details within the shock itself may be

unknown. The same approach is applicable to temperature shocks in

helium II, except in this case an additional equation describing the

superfluid velocity field must be included.

The major problem arising when calculating the shock conditions

in helium II is caused by the thermodynamics of the liquid, which are

not completely known due to their intrinsic dependence on the relative

velocity between th-- two fluids. The only recourse to date has been

to expand the thermodynamics in terms of the relative velocity, which

must be assumed small in some sense. This was done by Landau and is

reproduced in Appendix A. It should be noted that the thermodynamics

are expansions in the square of the relative velocity and that only

the coefficients for the terms second order in w are known. This

makes it possible to solve the shock equations to third order in w,

but no higher. Since w is a first order quantity in a second-sound

shock wave, this necessarily means that the results to be obtained are

valid only for weak temperature shocks.

The following derivations are done in the reference frame which

travels along with the shock wave -- the shock-stationary frame. In

this reference frame the shock profile is assumed steady. In the

laboratory frame, where the undisturbed fluid is at rest, the shock

le`
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will be traveling in the positive x-direction. In the shock-stationary

t
frame the mass flux, j, therefore will be in the negative x-direction.

Temperature

x

Figure C.1.	 SECOND-SOUND SHOCK LAYER PROFILES

The shock profiles for two types of temperature shocks possible in

helium II are shown in Figure C.I. The front steepened one is a

temperature raising shock in which the entropy density following the

shock is greater, than before it. The back steepened one is a tempera-

ture lowering shock; in this case the entropy density is decreased

following passage of the shock front.

In the chosen reference frame the applicable equations describing

a plane shock wave are the steady, one-dimensional form of the conser-

vation equations previously mentioned. This set of equations is

reproduced as Table C.1. The dissipative effects are included so that

a shock profile and thickness can be calculated. The form of the

dissipative terms follows from a consistent derivation made by
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Table C.I.	 THE STEADY, ONE-DIMENSIONAL FORM OF THE

TWO-FLUID EQUATIONS INCLUDING DISSIPATION

MASS:	 dx j = 0

titi
P P

MOMENTUM:	 dx ["^V2 + ti s w2 + p + T*	 0

A

SUPERFLUID:	 d	 u+ l v 2+ h * = 0
dX	 I 5

ENERGY:	 dx j(-,, + T v s 2)+ PSTvn + an vn 2w + Q*	0

where:	 j	 av - 
pn vn + psys

w=_v n -vs

*	 4dvn	
d ti

T - 
-^3^+ 

{2 ^dx	 + ^ 1 dx ^osw'

*	 d ti	 dvn

h = ^3 dx °sw)	 ' 1 dx

*	 dv	 dv

Q = - K dz - 's +^ z ^ vn U + C10sw dx̂

+ {lvn dx (p
SW) - {3pSW dx (as W)

{r
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Khalatnikov (1965, chapter 9) which requires the assumption that the

superfluid is free of vorticity; this is no restriction in the analysis

which follows.

The one-dimensional equations are eisily integrated and the con-

stants of integration are evaluated for the equilibrium state where

the relative velocity is zero. This state will be indicated by a

subscript zero. The other equilibrium state will be denoted by a

subscript one. Unsubscripted variables will be considered as a function

of x. For example, the integrated equation for mass conservation is:

i	 P V	 PO S

This can be solved for the bulk velocity, v, to get:

PO	 PO
V	

o U

S	- — US + ^Po U Sw2 tp + 0(w4 )	 (C.2)
P

where the last step was to expand the density in terms of w2 . The

thermodynamic variables without the tilde are functions only of

pressure and temperature. The other three equations can be integrated

and expanded in terms of w 2 ; then the bulk velocity, v, can be

eliminated by use of the previous formula. The resulting "shock

equations" can be found in Table C.2. Two equations which are linear

combinations of the three original shock equations and which are

useful when calculating second-sound shock waves are presented in

Table C.3.

The same procedure of expanding in the relative velocity and

then eliminating any bulk velocity dependence must also be applied

to the dissipative terms, T * , h* , and Q* . From the definition of V 
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we have:

ti

By using equation (C.2), the normal fluid velocity can be expanded in

terms of w and the shock velocity with the result:

Pp	 Ps
vn = - p U S + o w + ^PD USw7 &p + 0(w4 )	 (C.3)

When calcu l ating the derivatives, use will be made of the fact

that the shock thickness is inversely proportional to the shock

strength. For second-sound shocks this means that the spatial dimen-

sion, x, is scaled by w -1.

d
dX " 

w

With this simplification, the norms' velocity gradient written out to

third order in w is:

dx v  - (Psw 	 0US ) dx P + p dx P s w + ^jPO US dx ^pw2 + O(W4) (C.4)

The product of the normal velocity with equation (CA) is:

Pp

vn x^	 p US(PUS 
2PSw 

dx p + p ( P sw PoU S } dx Psw

Pp

A PO U S 2 ) o dx { pw2 + O ( W4 )	 (C.5)

These results allow for further expansion and simplification of

the kinetic fluxes which are valid for second-sound shocks. These

expansions are reproduced in Table CA.
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p—po	 /
=

Po	 Po
1	 -	 -

PnPS	 Po

- p ( '-.P O U$2^P )
w	

2

(
T*

-	 + 0^w4)
U 2 P	 P P2

U
U 2

SUPERFLUID

u-;1O = 	 2	 Pn Pp	
w	

PnPS	 pQ	
2	 w _2

U 2 
= 2 l— 

P	
- p p ( ^ + Z 

_P= + p ^ p OU $ ^p / 
U !1	^S

I

	

+ 2 p n 1, P0US 21p 	 U$ 3	 U 2 + U ( w ^
 )	 S

TOTAL ENERGY

ST — S T0 0_	 Po 1	 + p 	 ST	 p n w	 _ 2 Ps { ,, p T	 Pn ^w 12

u 2	 P	 Pn U 2	 Po US	 P	 Pn ^T) P	 USS	 S
[^!S)
2PPO	 P3

+P 	
+ z ps (TIT + pSTIp) - p (poU^2I 	 n \U 

1

	

n	 po ` S

+ — Q	 + h	 + 0(w4)
p OUS 3
	 U S 2

Since these equations make use of the expanded thermodynamic
functions, they are strictly valid only when the relative velocity
is small.
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Table C.3.	 SHOCK EQUATIONS USEFUL FOR SECOND-SOUND SHOCK WAVES

"W" EQUATION

u - uo	 P - Po _	 po 2 _ °n P 	 w	 3 p np s 	 w z1	 +
U Z	 U Z 	^

	
a	 p p (U $ 	2	 U$

 [
$	

P $

+ n ( PoUS2&P ( W !3 
+ T* -

 h * 2 + 0(w`')

	

S !	
PUS`	 US

MODIFIED ENERGY EQUATION

(u - uo)	 ST - S o T o 	 P - Po	 Po 2	 P s ST

U	

w_1
+	 -	

=21_ 
P — +	 J`	 pU 2	 Po 	 U S

$2	
U 
$	 $	 $

Ps 

+ 

(P 

T	

Pn w 
)

2

a	 Pn AT) a C 1i S /

+
 p

(( ll

2 	 3

	

o \a s l + 2 a^ (T`T + wST 
P ) - 2 ho ("SU S =gi p )	 ^^ 1

L	 S

+ _Q 	 T	 + O (W4)
aoUS3	 IOU S2
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Table C.4. DISSIPATIVE TERMS FOR SECOND-SOUND SHOCKS

( 4
 n + C2 PC1)p dX PSw

z 3 n + ^2 POU S dx ^pw2 + O(w4)

h* _ - C1( p s w - POUS ) dx p

(; 1 - PC3) p dx P Sw

e;l POUS dx & pw2 + O(w4)

Q* _ - K dX - 3 n + ^2) PO (Pp^s 2 > ^X p

4	 Po
+ 2( 3 n + ^2 - i1PCl p (PSwUS) d}	 X a

POU
+ (3 n + ^2 - PC1) 2 S dX PSw

P

P w
^ 3 n + ^^	 2pc 1 + P 2 ^3^ 2 dX PSw

P

+
 ^

4	 PO /	 d
3 n + C 2 p l ^P 0 US2^ dx ^ W2 + O(W4)

These equations, besides being expansions in the relative velocity,
make use of the fact that d/dx is of order w. Thus these equations
are strictly valid only for weak second-sound shock waves.
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LINEARIZED SOLUTIONS

Now since the shock waves under consideration are assumed small,

the thermodynamic functions may be expanded further in terms of pressure

and temperature perturbations, p' and T', defined by:

n = Po+P,

T=To +TI

For liquid helium the coefficient of thermal expansion is very

small,and it will be neglected in the calculations to follow. The

assumption that the coefficient of thermal expansion is zero is equi-

valent to assuming that the entropy is a function only of temperature

and that density is a function only of pressure. Also, the specific

heat at constant pressure and volume are equivalent and will be

denoted by C p . Table C.5 lists a set of thermodynamic perturbation

expansions when this assumption is invoked.

In order to see the role the various thermodynamic variables play

in the two forms of shock wave motion occurring in helium II, a

solution to the linearized equations will be sought first. To do this

the shock equations of Table C.3 will be expanded in terms of the

pressure and temperature perturbations with only linear terms being

retained. Now to solve for the jump conditions, the perturbations p',

and T', and w, will become the differences between the two equilibrium

states:

P, Pi - Po AP

T' T 1 - To - nT

W W - ow

4W 1'
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Table C.5. THERMODYNAMIC PERTURBATION EXPANSIONS

'	 Independent variables:

p=po+p'	 T=To+T'

where P << 1	 and	 L<< 1
Po	 To

Expansions of dependent variables:

 (
u(P,T) = u o - S OT + I	

C

p' - -k (T')2 -	 1	 (	 2 +	 .
po	 -T )o Z	 pzcz o

S(T) = So +( ^) T' + T 

d
dCp + Cp	 T2 2 +	 .

o	 T2
0

P(P) = po + p--+ (d2p) 2^n +C

02 	p2 0

ST- S O T O = (S + C p )o
T' + [(dlp) +
	 o (T)2  +	 .

J

1 110 ) 	+
P	 PoCo2

Pn	
C 

P n 10 + yTT' + app' +	 .

ps	 \ P /o - E
TT' -app' +	 .

where	 Cp - T (L)
	

= specific heat
P

	

c - F
P)	

= speed of first-sound

9 P n_ a Pn

	

^T - TT P	 Ep - a p p

The coefficient of thermal expansion is assuR,ed to be negligible,

which implies that entropy is a function only of temperature, density

is a function only of pressure, and Cv=Cp.
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When this is done, all the dissipative terms will disappear

because they depend only on derivatives, which are zero in the equili-

brium states. Carrying out this procedure on the momentum, superfluid

and total energy shock equations, yields the following set:

U2

	

1 - 
S	

op	 = 0	 (C.6)
X02

^	 U 2
P

po	
1-	 S2	 ap - S ORT + 

PO
US ow	 = 0	 (C.1)

C0

	

(S O + Cp° )AT - P S ° S OT O + US 2 pn° 
Uw = 0
	 (C.8)

	

no	 °	 S

For a nontrivial solution to exist the determinate of the coefficients

Of op, AT, and ow must vanish. This requirement yields the following

characteristic equation:

1- U
S 2 1 PSO S02T°	 U	 = 0

	

I	 C PO
	 S2
	 (C.9)

	

X 0 2 	 Pn0	 p0
	

)

therefore:

US=±c°

or	 US = ±au

where the second-sound speed has been defined as:

P s S2T
a =	 —	 (C.10)

	

Pn	 Cp

The result of this linearized analysis is simply to find steady

first-and second-sound waves. Thus the propagation velocity, U S , is

independent of amplitude, since nonlinear terms have not been included.

However, the jumps in the thermodynamic variables--AT, op, aw, etc.--
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are those occurring in shock waves to lowest order.

Substituting the second-sound speed in equation (C.8) yields the

following relation:

ip

AT = ( ps	 US ow , for US = ao	 (C.11)

which can also be written as:

ow = o C

(Ps ^ 
ae, for US = ao	 (C.12)

S 	 o

where oe = AT
To

Substituting this result into equation (C.7) reveals that the pressure

jump, op, is zero to this level of approximation. Thus the pressure

jump in a second-sound wave must be of order w = or higher.	 The only

first order quantities in second-sound waves will therefore be fluctu-

ations of entropy, temperature, relative velocity, and normal fluid

fraction (pn/a).

This statement must be modified when the coefficient of thermal

expansion cannot be neglected. In that case the pressure ji ,mn will
be of order w times the coefficient of thermal expansion -hich is still

small, although not negligible. See Appendix R.
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SOLVING FOR THE JUMP CONDITIONS AND SHOCK VELOCITY

When solving the shock equations to order w 2 for second-sound it

is useful to use the equations of Table C.3, since terms involving

pressure and density are order w 3 . These equations expanded in terms

of T' and w are:

(L) U
Sw - S j' _ 3

. (Pn's	
w2 - ITT' US w	 ( C.13)

0	 P2	 0

+( ^^ T ^ 	 + T* - h* + O(w3)
\	 0	 P

C po 1 -
C

PS 
ST^o 	_ - 'Z ^	 ) o (T' ) 2 + QS ( S + Cp ) - STET T U

S	
o	

S

2 P
S +	 /P TAT o \Pn	 w2 + PQU + P* + O(w3)n	 o	 oS

(C.14)

The dissipative terms similarity expanded but restricted to second-

sound shocks are:

^Z	
1	 P

T 

*	 *

- h = - 
3 n 

+ — - 2^ + P^3	 ( 5) dx + O(w 3 ) (C.15)
P	 P	 P	 0	 P 0

*	 *
Q	 + T	 = _ K	 dT + O(w 3 )	 (C.16)

PODS	 P	 PODS dx

From the first order solutions for second-sound (see Eq. C.12):

Pps0
W =

	

	 T' + O(TI)2

PnoUS

This expression may be substituted into the second order terms of

equations (C.13) thru (C.16) to eliminate w, since t'ie error involved

will be of third order. This suhstitution may not be made into the

-1
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first order terms however, so there will still be a linear dependence

of w in the two shock equations. The result of this simplification

is the following set of four equations:

*	 *

( Pn I US  - S OT' _ (Sr 
^O 

2 .S.P - a TAT ) (T' ) 2 + p - h	 (C.17)
on	 ^

z

C T'	
PS Sq w 

= C a0	
1 +	 - 1 T 8C
	

(C.18
pO	 - (P 	 U	 T O	 2	 2	 S	 2 (C	 ))	 )

S	 US	 p

(	
P	 2	 Q*	 *

- \2 Pn + 2
) (2-
 P n TET / 

0 (T' ) + POU + p

	

s	 S

*	 *	 ;2	
1

 /P SS ) dT
P - h = - 3 p + G - 2c 1 + P^3I0 Pn'S dX	

(C.19)J	 °
Q + r*	 _ K dT

(C.20)
PO DS	 P	 PODS dX

Finally w can be eliminated by multiply;ng equation (C.17) by

(T/S) and equation (C.18) by (T/C p ) 0 ( U
S 
/a ° ) 2 , and adding. The

result is:

2

	

US - 1 T O T' =	 1 + 3 ^ _ 1 T	 2^ - 
3 Pn +1! P T	 (T')2a

°	 p	 s
?	 2	 S	 2 (C	 3T )	 2 `,a	 /^P

n
	T) o

L 

	

T 	
( C

+ 	 PU + p*+ 1p*- hJ	 (C.21)
p °° S	 °

Note when writing down the dissipative terms use was made of the fact

that these terms are of order w 2 and that U 
S 
2 equals a 0 2 plus a

correction of order w.

From this point the jump equations can be simply solved by

I etting T'-iAT and by noting that the dissipative terms disappear
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because two equilibrium states are being used.

U,2	
_ 1	

C1 LC
al 3 pn 	 pT

2	 ^+ 3	 ^(C aT 1 ^0 +1)(2p AT)T	 To
a o	 P	 s	 n	 o

T a log (a3 
C

C ) ne	 (C.22)
0

This yields Khalatnikov's well known second-sound shock velocity

formula (see Khalatnikov, 1965, chapter 13):

US 	±a	 1 + 2' boos
	

(C.23)

where b(p,T) is the steepening coefficient of second-sound defined by:

C

b(p,T) - T 
L
T 1o9 \ a3 TR )

(C.24)

This solution to shock velocity can be substituted into equation (C.17)

to yield a second -order result for the relative velocity jump.

Equation ( C.17) rewritten as a jump equation and solving for Aw is:

a o	 \ a /o doa o	1 + \ 2	- p T^T)oee
	 (C.25)

n	 S	 n

but from equation (C.22):

b0
U
S	

ao 1 2 ve )

which substituted into equation (C.25) yields:

C	 C	 aC	 p

p

ao
= °— ^ oe 1 + T 2 SP + 7 4 + (3 pS - 1)(p T&T) - 1 ooe

p s 	 o	 p	 s	 \ n

ea 1 + 2 ToaT [log a SE 
(o	

Le	 (C.26)
P S	 c	 \ s^

r
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SHOCK STRUCTURE SOLUTION

The shock structure can now be solved directly from equation (C.21)

which is rewritten below:

[

US2 - 1] T

OT' = bo(T')2
a O2

O
['^^LT

+ POao 	 + on	
3 n + ;2 - 2P;i + P2;3^
	 dx	

(C.27)

P

This equation can be rearranged with the aid of the shock velocity

result to the following nondimensional form:

dT = 
oeT - T2	 (C.28)

dy

_ T-TO

where T —To

Y_^pIx
P

C(P, T ) = p	 C + O
n	

3 n + ^ 2 - 2P c 1 
+ Q2^31	

(C.29)

P	 n	 /

The remaining question that needs to be answered before solving

equation (C.28) concerns whether quadratic or just linear terms are

required to balance the differential term. The shock layer is a very

narrow part of the entire shock solution when expressed in the non-

dimensional variable y; therefore it is useful to rewrite the equation

in stretched coordinates as follows:

Set	 y
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Define f(.! such that:

T (.Y, - T(y m(oe) ) = oef (y')

Note that O(De), which is a measure of the shock thickness, is some

unknown function of the shock strength. Also note that the new

dependent variable is magnified by some function of the shock strength

which in this case must be ee itself. With these substitutions equation

(C.28) becomes:

df

O 
Ae dy' 

= Ae 2 f - ne 2 f2 (C.30)

Clearly in order to baiance the differential term, both the linear

and quadratic terms are required since they are of the same order in

the small parameter oe. Also, the shock thickness must be inversely

proportional to the shock strength:

J8	 (C.31)

Finally equation (C.30) can be solved for f(y—) to yield:

f(y') - 2 + 2 tanh 2	 (C.32)

When the original variables are resubstituted the shock structure is

found to be:

T(x) =	 (T 1 + To) +	 (T 1 - To) tanh 
^X	

(C.33)

_	 4D	 _ 20	 1
abee	 a MS -I (C.34)

The profit, of a second-sound shock wave given by equation (C.33)
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D=2`Ya3
W2

(C.36)
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has the same shape as an ordinary pressure shock profile for weak

shock wdves. Also the form of the shock thickness, d, is totally

analogous to the ordinary weak shock case (Landau and Lifshitz, 1959).

In both cases the shock thickness is inversely proportional to the

shock strength; in the second-sound shock case this parameter is the

temperature jump divided by the temperature of the initial rest state.

Also in both cases the shock thickness includes a thermodynamic

coefficient whose sign determines whether the shock is a compression

or expansion. For ordinary pressure shocks this coefficient is the

"fundamental derivative of gas dynamics", (3 2 p/3V 2 ) S , (where V is

specific volume). For the second-sound case this coefficient is the

steepening coefficient b(p,T) defined by equation (C.24).

The analogy is maze complete by the constant terms of proportion-

ality which are equal to the absorption of sound per frequency squared.

Khalatnikov (1965, Chapterl2) has shown that the absorption of second-

sound is given by:

P	 1
2 W21	 K + 5	

3
 n+ ;2 - 2p; 1 + p 2 ^ 3 11	 (C.35)

Pa3 	 Pn	 /J

At first thought such a complete analogy between ordinary pressure

shock waves and tc :nerature shock waves in a superfluid may seem

surprising since the basic e;uations of motion as well as the thermo-

dynamics of helium II are very different from those of an ordinary

fluid. This analogy however is not a coincidence, but is due to the

fact that in both cases the steady profile of a shock wave is due to a
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balance of the nonlinear steepening effects by dissipativemechanisms.

Furthermore it can be shown quite generally for weak shocks, that

when a steady wave front is formed by balancing nonlinear steepening

with some dissipative process -- whether it be heat conduction,

viscosity, or diffusion -- the result will be a shock wave front whose

thickness is inversely proportional to the shock strength.
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IRREVERSIBLE ENTROPY JUMP

Like an ordinary pressure shock wave, weak second-sound shock

waves generate entropy in proportion to the third power of the shock

strength. However, the total entropy jump caused by the passage of

a second-sound shock front can be either positive or negative, since

the entropy jump to lowest order is proportional to the shock-induced

temperature jump. This happens, of course, because entropy can be

reversibly transported by second-sound. Thus, it is necessary to

distinguish between the entropy reversibly transported and the entropy

irreversibly generated.

The irreversible entropy may be calculated by integrating the

rate of entropy production over time as the shock front passes a

fixed point. This production rate is proportional to the square of

the temperature and velocity gradients (Khalatnikov, 1965), and

therefore, the irreversible entropy jump is always a positive-definite

function of the shock strength. For one-dimensional second-sound

(where the fluid density is assumed constant to first order in the

temperature perturbation) the entropy production rate can be written

as follows:

_	 C a v ^22

Olt,)	 T T (ax) + ^3 n + ^2 - Zp^l + pZC3	 axn
irreversible

(C.37)

An integration over distance in the shock steady frame is equivalent

to an integration over all time at a fixed point: dx = dt/US.

From the last section, the temperature and velocity gradients produced

in the shock front are known to be:
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aT 	
AT sech2 2x

TX	 a	 a	
(C.38)

av

Tx—n - 
fan 

sech2 dx
	

(C.39)

Integration and substitution of previous results shows that the

total entropy generated is indeed proportional to (6e)3:

(	 6 I b( ^e)3 1 p + 0(a^ ) 4	 (C.40)(AS)irreversible 

It is also remarkable that the total entropy jump is independent of

the dissipative coefficients. This again is analogous to the result

obtained for weak pressure shocks in ordinary substances.
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Appendix D. SECONDARY WAVES ORIGINATING FROM AN UNSEALED HEATER

Any open space between the heater and the sidewalls of the shock

tube will create a secondary wave field which will perturb the other-

wise one-dimensional shock pulse generated by the heater. In general

the open space can act as a source or sink of heat flux depending on

the configuration of the heating element and the sidewall.

.)ivawaII

Figure D.1 SECONDARY WAVE FIELD PRODUCED BY AN OPEN HEATER

The first figure shows a typical configuration where the heating

element does not overlap the end of the sidewall. In this case, when

a shock pulse is being generated, some heat flux leaks out through the

opening which acts as a heat sink. Therefore, the secondary wave

which results will display an initially negative temperature excursion.

An open heater can also act as a source of heat flux if the

heating element overlaps the end of the sidewall. This happens

because the temperature is amplified within the opening by multiple

reflections of the heat pulse occurring between the heater and the

end of the sidewall. In this case the initial temperature excursion

k
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t=	
L

acos^ (D.2)
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will be positive.

Secondary waves of both types, which resulted from an open heater,

have been observed during experiments which employed a square cross

section shock tube (Shock Tube I). Since the walls of this shock

tube are flat and parallel to one another, the position of the

secondary waves can be calculated without difficulty as they travel

down the shock tube, reflecting from sidewall to sidewall. The angle

of propagation of the portion of the secondary wave front which

eventually encounters the temperature sensor depends on the location

of the sensor and the number of reflections made during the passage

of the wave. For the configuration under consideration, which is

shown in Figure D.2, the propagation angle is given by:

tan ^ = d nL 1	 (D.1)

where n is the number of reflections.

In the linear approximation the wave velocity is independent of

amplitude and the arrival time of the secondary wave front can be

where a is the velocity of second-sound. Table D.1 gives the theoret-

ically calculated values of propagation angle and arrival times for

experiments conducted at 1.65 0 K. Figure D.3a is an oscilloscope

trace of temperature versus time for both sensors #1 and #2. The

experimental results and the theoretical predict,,,ns agree exactly

to within the experimental precision which was about 0.1 msec. A



Sensor # 2 (L/a = 3.87 ms)

1^ tLmsec

17.6 4.1

32.3 4.6

43.5 5.3
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Figure D.2.	 GEOMETRY OF SHOCK TUBE I

L = 79 mm

L=52 mm

d = 25 mm

Heater

Propagation angle:	 tan 01 
= do+1

L

where n is the number of reflections.

Table D.l.	 PREDICTED ARRIVAL TIMES OF THE SECONDARY WAVES

Sensor #1 (L/a = 2.55 ms)

n 0 t cosec

0 25.7 2.8

1 43.8 3.6

2 55.3 4.5

3 62.5 5.5

4 67.4 6.6
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(a) I m sec/division

(b) 1Mu. sec/di vision

Figure D.3 SECONDARY WAVES IN SHOCK
TUBE I

L	 +y it 
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number of interesting results can be obtained from this oscilloscope

trace. First note that both source and sink generated waves appear

alternately. This can easily be explained if the heater was displaced

with respect to the end of the shock tube. On the side opposite the

sensors the heating element overlapped the sidewall sufficiently to

produce a heat flux source, while the other side acted as a heat flux

sink.

The shape of a typical secondary wave is characteristic of an N-

wave, but it should be emphasized that it is not an N-wave in the

sense of the asymtotic limiting form, shock-expansion-shock, brought

about by nonlinearity. Instead the wave shape is a consequence of

the complex generating mechanism at the open heater. The length of

the first triangular portion is equal to the length of the generating

heat pulse as might be expected. The second half of the wave form

does not have the same duration or amplitude as the first half, but

it is always opposite in sign. Apparently the heat sink became a

source and the source became a sink for a short while after the heat

pulse was terminated.

The theoretical ideas for predicting the arrival times of

secondary waves, which have been discussed so far, are valid only for

linear waves since the convection by the shock pulse was ignored.

To calculate the arrival time of the initial secondary wave front it is

usually imperative to take into account the change in characteristic

velocity caused by the shock pulse. This is because the direct propa-

gating secondary wave always resides within the shock pulse as they

both travel down the shock tube (except for large angles of propagation

^r



t	 ^
UW cos 7

(D.3)

u = 2(MS-1)
0

(DA)
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where the sensor is located close to the heater). Now assuming that

the secondary wave has a small amplitude so that it can be treated

as linear, and assuming it always resides within the unexpanded region

of the shock pulse, the arrival time is simply:

where u is the characteristic velocity behind the shock front. This

velocity of propagation is a function of the propagation angle, 0,

since the fluid within the shock pulse forms an anisotropic medium.

The jump in characteristic velocity at the shock front, denoted by du,

is in the direction of the shock propagation for T< 1.88 0K and for

weak shock waves its magnitude is given by:

where as is the secor,d-sound velocity in the undisturbed fluid (w=0)

and MS y	
Mach number of the shock wave. Referring to Figure D.4,

a wave which originates at point A at time t=0 appears to have

radiated from point B at a later time, t B . From this diagram the

actual wave velocity can be deduced as:

^.	 2
a l	 ai cosh +	 1 - (al} sin2 o	 (D.5)

where a l is the velocity of second-sound in the equilibrium region

following the shock front.

During the initial experiments, employing the Shock Tube I, no

real effort was made to seal the heater. In later experiments, using

the variable length shock tube, a serious attempt was made to seal
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Figure L.4	 WAVE PROPAGATION IN AN ANISOTROPIC MEDIUM

the heater with a machined teflon gasket. The heater is held tight

against a sharp edged teflon seal, spring loaded with a force of about

10 pounds. Figure D.5 shows the basic configuration of this seal.

Unfortunately this seal was not totally successful as can be seen

in the oscilloscope traces of Figure D.6. These traces were made by

an endwaII sensor located on the centerline of the cylindrical shock tube,

and they represent time histories for the same strength shock wave

(MS = 1.0054) at different distances from the heater.

Heater element

Test Section
--— Spring loading

Teflon seal

Figure D.5	 TEFLON SEALED HEATER
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(a) L= I.99 cm
	

(b) L= 3.12cm

200 ^L sec/division

(c) L = 5.59 cm	 (d) L = 8.10 cm

Figure D.6 SECONDARY WAVES FOCUSING ON THE AXIS
OF A CYLINDRICAL SHOCK TUBE

UhIGINAL PAGE IS
OF POOR QUALFTY

.
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The arrival of the secondary wave front propagating directly and

its first two reflections can be picked out as large amplitude, high

fregoency, oscillations. Their arrival times were measured quite

accurately (at least for the n- 0 or nonreflecting wave) by locating

the point when the slope of the trace changed abruptly with respect

to the shock front. Results of these measurements and the comparison

with theory is shown as Figure D.7. The theoretical calculations took

into account the convection of the secondary waves, equations (0.3)

and (D.5), where the angle of propagr.tion was determined from:

tanm = d (n + 112)
	

(D.6)

As is evident, the theory can predict the arrival times very accurately

as long as the characteristic velocity jump across the shock front

is taken into account (the difference in arrival time due to convection

is as much as 60 usec for the n = 0 wave). Arrival times for all the

secondary waves through the fourth reflection were predicted quite

accurately using this simple theory. The largest discrepancy appears

with the n- 1 reflection and is probably due to incorrect interpreta-

tion of the oscillations when trying to choose the initial arrival.

This problem does not arise for the first wave, since the wavelets

preceding it are very small and can be easily differentiated from

the arrival of the secondary wave front.

It is interesting to note the difference in shape between these

secondary waves and the ones described earlier occurring in Shock Tube

1. Apparently the teflon seal did work partially,because disturbances

were produced only at the beginning and end of the heat pulse. Recall

L
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Figure D.7 ARRIVAL TIMES OF SECONDARY WAVEFRONTS
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that the disturbance made in the Shock Tube I appeared continuously

during the heat pulse generation and even for a short time after its

termination.

One final observation concerning the amplitude of the secondary

waves is interesting. When using an endwall sensor mounted off the

Shock tube axis, only very small secondary wavelets were detected. The

observed large amplitude oscillations were lroduced by amplification

of these radial mode secondary waves focusing on the axis of the

cylindrical shock tube.
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Appendix E. THE THERMAL BOUNDARY LAYER

The heat from a hot object immersed in helium II is quickly carried

away by internal counterflow. On the liquid side, very close to the

solid-liquid interface, incoming superfluid must be quickly converted

into outgoing normal fluid in order to sustain the process. If con-

version takes place exactly at the interface then it must occur infinitely

fast,and it would require an infinite gradient in the chemical potential

to instantaneously stop the superfluid and start the normal fluid.

Such an unnatural process must in reality be smoothed out into a thermal

boundary layer where conversion takes place over a small, but neverthe-

less finite, distance.

In order to discover this boundary layer,the two-fluid equations

will be solved for a steady flux of heat passin g perpendicularly through

a solid-liquid helium II interface. The flow will be assumed laminar,

one-dimensional, and steady. From the conservation of mass, the mass

rlux,pv,must be constant everywhere and equal to zero,since at the

wall v = 0. The applicable form of the equations for momentum, energy,

and superfluid flow, including dissipation,are given below:

ti ti

d	 pnps_
dx	

w2 + p + T *	 = 0	 (E.1)

ti
	pnvnw + Q*	 = 0	 (E.2)pSTvn + 

dx u + 2 v5 + h*	 = 0	 (E.3)

_r
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These equations are integrated and the constants of integration evaluated

in the liquid far from the interface. At this location, denoted by ( )m ,

pure counterflow will have been established, all gradients will have

vanished,and hence,the dissipative terms will be zero. Written out

to second-order in the normal fluid velocity, the results are:

us Pvn
	

P
+	 p + 

T	 P*	
S Pv2 +p ^ 	 (E.4)

PSTvn + Q* = ( P STv n )m 	(t.5)

1 P n	 * _

S	 5

These second-order equations will be useful later, but first in

order to obtain a solution, only a linearized set is required. Thus,

all the thermodynamics can be expanded in terms of pressure and

temperature perturbations:

P, =p - pm	 , P , <<

T' = T - TC,	 , T' << T

i	 A normal velocity variation from equilibrium, vn, will also be used,

but it is noteworthy that the equilibrium value,v nm ,will be assumed

the same order as T' or p'. In the resulting set of equations, the

momentum equation can be used to eliminate p',which reduces the problem

to two variables, T' and vn,and two equations:
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dv
(PS)j _ T n+ C2 - 2pc l + p2S3 U —	 (E.7)

dT
(PST).vn'	 UX	 (E.8)

The solution of these two coupled ordinary differential equations

is an exponential layer of thickness a:

vn I = vn8 a-x/a	
(E.9)

P	 l

= pa	 C	 pn ^ n + ^Z - 2p^ 1 + p 2 { 31	 (E.10)
P	 //

where vnB is the normal velocity variation from v
no*
 in the fluid at

the boundary.

This exponential layer solution has been obtained by many authors

(see Atkins, 1959,pg. 202, and Putterman, 1974), but there has always

been a question about how to fix the constant vn B . As pointed out in

the text, the boundary condition p s -j-0  implies that the component of

vn perpendicular to a solid wall must be zero as well as its tangential

component. Therefore vn B = -vn..

Since v
n 
--0 at the boundary at least as fast as p 

s 
4 0, then the

nonlinear terms -- all are of order v2 /p s -- also go to zero. Thus,

they were properly neglected. Now, after the boundary conditions

have been set, it is convenient to write the final solution in terms

of the relative velocity:

w(x) = w.0 - e-x/A )	 (E.11)

T(x) = T. + (pP na
 ) 

wmge -x/x	 (E.12)

Of
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=	

( n+ 
C2 - 2pc l + p2C3)

where g	
K	

(E.13)

P

The coefficient g has a value of about 0.5 and is not strongly temper-

ature dependent (see Wilks, 1961, Chapter 8, Figure 16). The layer

thickness, a, can be evaluated in terms of g and the damping coefficient

of second-sound, D (see Appendix C):

-I

_9 , D_	 is
a = 1+g2 a	 g 

R

(E.14)

Plugging in the numbers shows that the thermal boundary layer has a

thickness rarely exceeding 100 R (at T = 1.600 K, x= 60 R). This

thickness is much larger than the length scaling the abrupt change

in the superfluid density at the wall. Thus, although the existence

of the p s boundary layer sets the boundary condition which in turn

causes the thermal boundary layer, the scale of the former does not

set the scale of the latter. The normal fluid velocity cannot change

abruptly; it is limited by the collisional rates between excitations

constituting the normal fluid.

It is remarkable that the thermal boundary layer thickness, a,

is much shorter than the mean free path of phonons scattered by rotons,

Xpr . This scattering mi

for maintaining thermal

phonons ano rotons (Kha

appears that within the

achanism is the one principally responsible

equilibrium between the relative number of

, tnikov and Chernikova, 1966x). Thus, it

thermal boundary layer, the phonon and roton

gases, separately in equilibrium, may not be in equilibrium with one

another. A more accurate calculation of the thermal boundary layer
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must therefore treat the phonon and roton gases separately.
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Appendix F. RESPONSE OF A THIN-FILM TEMPERATURE SENSOR

When the boundary temperature of a thin-film sensor jumps

instantaneously from To to T2 , the temperature registered by the

sensing element will asymptote to T 2 after a finite length of time.

If a measurement of the temperature is attempted before final equili-

brium is attained the resulting value will always be less than the

actual temperature ,dump. In order to obtain a correct temperature

measurement, the theoretical response of a thin-film sensor must be

known.

A typical temperature sensor consists of a metallic superconduct-

ing thin-film -- about 1000 9 thick -- vacuum deposited on a dielectric
substrate, usually glass or fused quartz. Figure F.1 shows a snapshot

of the nonsteady temperature profile in such a temperature sensor,

Temperature

SUPERCONDUCTING
T2	 THIN-FILM

T3(t)

DIELECTRIC SUBSTRATE

LIQUID HELIUM
T4(t)

To ---------- 00.: -------

X
0

Figure F.1 MODEL OF A THIN-FILM SENSOR
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which was initiated by a temperature jump in the liquid helium from

To to T2.

In general, the interface betwee! any two dissimilar materials

will be the site of a temperature discontinuity whose magnitude, to

lowest order, is proportional to the penetrating heat flux. If the

impedance match of the thermal excitations in both materials were

perfect, heat could flow reversibly across the interface without

producing a temperature jump, but such a coincidence never occurs in

practice.

The temperature jump occurring at the liquid-solid interface is

proportional to the Kapitza resistance, RK. Khalatnikov (1952a) has

shown that if the heat flux penetrating the interface is due solely to

phonon exchange, then the Kapitza resistance will be inversely

proportional to T 3 -- that is, the effect becomes dominate only at

low temperatures. The experimentally determined temperature

dependence of R K for copper is reported by Challis (1961) to be:

RK ( OK - cm2/w) = 15 T
-2.5

This is only a small fraction of the theoretical value; apparently

other mechanisms aid the transfer of energy across the liquid-solid

interface (Possible transfer mechanisms, involving rotons in helium II

and electrons in the metal film, should be severely limited by the

improbability of achieving a detailed balance of momentum and energy

for other types of interface interactions between rotons, electrons

and phonons).

At the metal-dielectric interface a similar temperature jump
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will appear, again due to phonon impedance mismatch. However, for

this type of interface the measured contact resistance, R0 , is a

few times larger than the value predicted by the phonon transfer theory

(Little, 1959). Thus, although the phonon or acoustic impedance

mismatch is largest at the liquid-solid interface, the anomalously

small Kapitza resistance results in R C > R K . For example, both lead

and indium films vacuum deposited on sapphire substrates have

experimental contact resistances ranging 30-33 oK-cm2 /W at T - 1.450K

(Wolfineyer, Fox, and Dillinger, 1970), while R  is typically 4

OK-cm2/W

Obviousl y the processes generating the observed temperature

discontinuities are not well understood. Fortunately this deficiency

will not present an obstacle in the following analysis where R  and

R
C
 will be taken as phenomenological constants of proportionality

to be determined experimentally.

T2 - T3 - R  q23	 (F.1)

T 3 - T4 - RC q 34	 (F.2)

(Note that the temperature jump at the liquid-solid interface,

T2 - T 3 , includes the actual Kapitza discontinuity together with the

thermal boundary layer temperature jump occurring in the liquid

(Appendix E); both effects are lumped together into the interface

resistance, RK.)

The temperature distribution within the thin-film element itself

is assumed to be spatially uniform. This assumption is valid because

the film is so thin that any arbitrary temperature distribution must
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quickly relax to a constant gradient; then the temperature rise across

the film due to its finite thermal conductivity can be absorbed into

the two boundary discontinuities. The relaxation time for this process

is on the order of

2
T internal 2	 % 0.006 nsec	 (F.3)

f

where Xf per_
ff

pf - film density

Cf - film specific heat

"f - film thermal conductivity

This time, which has been evaluated for a 1250 R thick tin-on-gold

film, is at least one million times faster than the observed relaxation

time!

The average film temperature, T 3 (t), can therefore be calculated

as the integral over time of the net heat flux entering the film:

J^j3  - q 34
T 3 (t) - To +

	

	 dt	 (F.4)
Of

_ao

Now for the moment, if the influence of the substrate is ignored --

g 34( t ) = 0 -- then a step input in the helium temperature will result

^-	 in an exponential rise of the film temperature asymptoting to T2;

the rise time of this process is:

(F.5)T f z R  Pf Cf d ti 14 nsec

E

.r
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which is still very short. Thus it must be concluded that the rise

time actually observed for a complete thin-film temperature sensor

is almost exclusively due to the thermal inertia of the substrate.

In every situation the temperature actually measured by the

sensor is the thin-film temperature, T 3 (t), via the element's total

resistance. When the film is calibrated the temperature is varied so

slowly that the film is always in equilibrium with the liquid helium

bath, but when the film is used to measure the amplitude of a second-

sound shock front full equilibrium is never attained because of the

long time required to heat up the substrate.

It is useful to calculate the response of the substrate to a

step input in temperature including the influence of the temperature

discontinuities at the two interfaces. In this analysis the thermal

inertia of the film can be ignored because of the great disparity in

time constants of the film by itself and the substrate; consequently

q23 - q 34 - q . The substrate will be assumed semi-finite in extent

and describable by the linear heat equation (the temperature excursions

must therefore be small compared to temperature dependence of C s and

Ks):

aT -	 a 2 T	 on 0< x< p	 (F.6)
at	 Xs 

axe

Ks
where 

Xs = 
P . -

The boundary condition at x - 0 is derivable from the initial

temperature jump in the liquid, T 2 - To, and equations (F.1) and

(F.2):
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T(x,t) n To	 for t < 0	 (F.7)

T(O,t) ' T2 - ( RK + R)q

	

' T2+Ls T
	 for t>0
X-0

where Ls 
s (RK + RC)"s

The length, L s . should be identified as the thickness of a slab of

substrate material required to reproduce the temperature differential

actually present as discontinuities at the interfaces. As long as Ls

is much shorter than the actual substrate thickness, then the latter

may be properly assumed semi-infinite in extent.

The problem defined by equation (F.6) and boundary conditions

(F.7) can be conveniently solved with Laplace transforms. The solution

at the boundary x n 0 is:

T4 (t) = To + (T 2 - To)	 1 + e t
/TS

erfc 
AT-r—s 	

(F.8)

w

where erfc x = 
2
	 e- 

&2 
dt

x

T S = L2/X$

The substrate boundary temperature rises initially very quickly from

the equilibrium temperature To, but for times longer than t = TS,

- .	 the final rise to its asymptotic value, T 2 , is very slow (T 3 (t) attains

98% of its equilibrium temperature after t s 948 T S ; compare this to

an exponential decay which would reach the same level after only 4

I
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time constants). This behavior is graphically illustrated in Figure

5.4a and can also be deduced from the following asymptotic expansions

for small and large time:

	

2477	 for E « 1

1 + ec erfc T ti

	

1 -1/4—c 	 for C» 1	 (F.9)

Under the assumptions required for calculating the substrate

boundary temperature, T 4 -- the time constant i s is much larger than

all other time constants -- the average film temperature, T 3 , must

be a linear interpolation between T2 and T4:

R
T 3 (t) - T4 (t) + 

CR  C	 ( T2 - T4 (t) (F.10)

This means that the sensor, which actually measures the film tempera-

Lure, will initially register a fraction of the temperature jump

actually occurring in the liquid equal to:

RC

RC + RK

Since RC is usually larger than R K , the initial jump is a sizable

fraction of T2 - To.

err	-	 --- _-
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Appendix G. SHOCK-EXPANSION WAVE COINCIDENCE

A rectangular heat pulse of duration of results in a second-sound

shock pulse having a leading shock front and a trailing expansion fan

when the steepening coefficient, b(p,T), is positive. For temperatures

where b(p,T) is negative, this configuration is reversed in that the

expansion fan leads the shock front. In the first case the leading

edge of the expansion fan travels faster than the shock front which

allows the expansion wave to overtake the shock after the shock pulse

has traversed at distance, L. The coincidence of these waves, which

can be calculated from the x-t diagram of Figure G.1, provides an

additional opportunity to compare second-order theory with experiment.

t

I^ Expansion fan leading

I	 characteristic

Uy - u i - all + beep

Shock front trajectory

I	 ^ - US - a (1 + bee)I
sm-x

Figure G.I.	 COINCIDENCE OF A FRONT STEEPENED SHOCK WITH THE

EXPANSION FAN

of

0
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The distance propagated by the shock by the time the expansion fan

catches up to it can be written as:

L = tc Us = (tc - at)ui
	 (G.1)

where t  is the coincidence time to be determined.

The velocities US and u l written in terms of the shock Mach

number are:

Us = a MS	 (G.2)

u l a a(2MS - 1)	 (G.3)

where a = speed of second-sound

The relation for the characteristic velocity u i follows from the

second-order shock theory which is valid only for shock waves.

From equation (G.1) the time of coincidence can be solved for:

(2MS - 1)
tc	 of — S - 1)	 for MS > 1	 (G.4)

S

It is clear from the x-t diagram that the expansion wave will eventually

overtake the shock front no matter how weak the shock (as long is

Ms f 1). Now consider shock pulses of varying amplitude, but constant

duration. What is the Mach number of the shock pulse whose expansion

wave will gust catch up to the shock front at a specified distance

from the heater, L? Note that tc _ Wa MS ) and solve equation (G.4)

for MS to get:

. 1+a ^ 1MS _T_ _ T	 u + 1
	

for MS > 1
	

(G.5)

where a s aet
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This solution is plotted as Figure G.2. It is remarkable that for a

dimensionless distance a < 3 + 2 3'f a 5.828, the expansion wave never

catches up to a front steepened shock. When a exceeds this limit

there are two solutions. For example suppose a = 10 and arriving

shock pulses of increasing amplitude are observed. For very weak

pulses the nonlinearity is small and the shock pulse propagates

without moeifying its shape appreciably. As M S increases the expansion

wave gradually overtakes the shock front until they coincide at MS =

1.15. The observed waveform is now triangular which persists as the

amplitude of the shock pulse increases until M S = 4.35 which is the

strong shock coincidence solution. Increasing the amplitude further

results in a trapezoidal waveform since the shock front is again

ahead of expansion wave by the time the shock pulse propagates the

distance L. It should be noted that the strong shock branch of the

coincidence diagram is only qualitatively correct since the weak shock

assumptions, used in the derivation, are invalid.

Many shock-expansion coincidences were observed on the weak shock

branch. For example, at To = 1.65
0
K a family of front steepened shock

pulses experienced a shock-expansion coincidence at the sensor station

when the shock Mach number reached M S = 1.023 ±.001 (experiment A10).

Knowing the station location, L = 10.04 cm and the heat pulse duration,

of = 100 usec, the distance parameter can be calculated as a = 49.2.

The theoretical coincidence Mach number is 1.022,easily within the

experimental error (the greatest error is in the heat pulse duration).

The fact that shock-expansion coincidences can be accurately calculated

by this simple theory means that the following relation between the

A11:21,1: 	 ..	 -	 exY!_r _: [IDS-3--::fir' tmA Ie 	 __., `..	
:=.A



0	 10
Dimensionless Distance a	

20

Figure G. 2 MACH NUMBER OF THE SHOCK -
EXPANSION COINCIDENCE
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shock velocity and characteristic velocities is valid within present

experimental precision:

US=VUa+ui}

To conclude this section, the coincidence Mach number of a back

steepened shock will be presented. Similar calculations yield:

MS	 + ;ot2 + 6a + T	 for MS < 1	 (G.6)

This solution, which is plotted in Figure G.2, is the weak shock

branch. The strong shock branch always has Mach number less than

zero. That is,the shock is so strong that it would propagate

back into the heater.



Mel

210

Appendix H. PROPAGATION OF A TRIANGULAR SHOCK PULSE

Consider a front steepened shock pulse having a triangular

profile at time t- 0: the shock front is located at x = 0, the shock

strength is oe F , and the physical length of the triangular tail is

AX F (see Figure H.1). As the shock pulse propagates, the temperature

lowering expansion will move into the shock front and reduce its

amplitude. This in turn causes the shock velocity to steadily

decrease with time.

ae

t)

x

AX F	AX(t)

xS(t)

Figure H.l. PROPAGATION OF A TRIANGULAR SHOCK PULSE

In order to analyze the trajectory of such a shock pulse the

concept of profile- area invariance will be utilized. This means that

as the shock pulse evolves its temperature-area will remain constant:

Area = ^ AXFee F = ^ AX ee
	

(H.1)
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To deduce how AX or ne changes with time it is useful to calculate

how the slope of the expansion profile changes with time. At t o 0

the slope is simply (oe F/oX F ). At a later time t, this profile, which

expands at a rate proportional to the characteristic velocity jump,

eu, will have the following slope:

Oa—Ota°eF
	

(H.2)
 AX + a oeFtt

which is also equal to:

(

2—e)t= oe t	 (H.3)
x 	 aX t 

These three results allows one to calculate the change in shock

strength with time, which turns out to be:

oeFt	 AX
 AX( t

) 
=	

1 + (AeF
?2 T	 (H.4)

F

_ AXoe	
AXF°eF

where	 T 
= ab	 ab	

(H.5)

The time constant, T, is a measure of the decay time of the shock

pulse, and it is an invariant quantity.

Since the trailing edge of the expansion fan propagates at

the undisturbed second-sound velocity, a, the trajectory of the

shock front can easily be deduced as:

xS (t) - at + AX - AX 

or substituting in Equation (H.4):
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2
xS W = at + oX F 1 + keF) t - 1	 (H.6)

)w, tike shock Mach number is experimentally calculated by timing

to shock front between two points. This always introduces some

rror since the shock front is continually slowing down, but the

:tual instantaneous Ma ,:h number can be calculated since its theoreti-

il trajectory in the x-t plane is known. For example the average

Mach number minus unity, (MS -1^, normalized by the initial formation

value, (MS-1)F =	 bae F , is:

x
S

CMS - 1	 _ (—at	 1 _	 2n8TMS ---1)F - - eeF - - oeF+ ae < 1	 (H.7)

where the averaging was over the time interval beginning with t = 0

when x S = 0. This ratio is always less than one since oe < oeF

(except when -r-► - which is the infinite length, rectangle pulse

profile limit).

I

L-- -	
f
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