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ON THE PERFORMANCE OF THE MARTIN DIGITAL FILTER FOR
HIGH- AND LOW-PASS APPLICATIONS

Charles R. McClain

Harvey Walden

ABSTRACT

The Martin digital filter is a nonrecursive numerical filter in which the weighting sequence is
optimized by minimizing the excursion from the idrnl rectangular filter in a least-squares sense over
the entire domain of normalized frequency. Additional corrections to the weights in order to reduce
overshoot oscillations (Gibbs phenomenon) and to insure unity gain at zero frequency for the low-
pass filter are incorporated. The filter is characterized by a zero phase shift for all frequencies (due
to a symmetric weighting sequence), a finite memory and stability, and it may readily be transformed
to a high-pass filter. Equations for the filter weights and the fiequency response function are pre-
sented, and applications to high- and low-pass filtering are examined. A discussion of cptimization
of high-pass filter parameters for a rather stringent response requirement is given, in an application
to the removal of aircraft low-frequency oscillations superimposed on remotely-sensed ocean surface
srofiles. Several frequency response functions are displayed, both in normalized frequency space and
in period space. A comparison of the performance of the Martin filter with some other commonly

used low-pass digital filters is provided in an application to oceanographic data.
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ON THE PERFORMANCE OF THE MARTIN DIGITAL FILTER FOR
HIGH- AND LOW-PASS APPLICATIONS

INTRODUCTION

With the development of high-speed -igital computers, many concepts in analogue electronic
signal processing have been adapted fo- sppication 1o .ime series of discretely-sampled data, usually
equally spaced. During the past twenty years, a great deal of literature has been generated on such
topics as digital or numerical filters [Gold and Rader, 1969; Cadzow, 19731 and on spectral analysis
of discrete finite-duration time series [Jenkins and Watts, 1968; Brillinger, 1975; Harris, 1978].
Spectral analysis is the most powerful tool available for scrutinizing physical processes, and pre-
filtering or prewhitening the raw data prior to the analysis is often required for trend removal or for
handling so-called *“red noise” [Davis, 1974]. Failure to prewhiten can cause severe distortion of
the computed spectra because of spectral leakage via the sidelobes of the window function. In this
paper, we will discuss a particular digital filter which we feel has many merits and will provide ex-
amples of its use for both high~-pass and low-pass applications. The filter was developed by Martin
[1957;1959] and is discussed by Linnette [1961] and briefly by Kaiser [Kuo and Kaiser, 1966},
and is applied by Davis [1974].

Before proceeding to a discussion of the Martin filter, a few remarks regarding filters in general
are in order. Linear numerical filters such as the Martin filter and most commonly used discrete sys-

rems are mathematically implemented by deriving output values via a linear difference equation,

! ’

M

N
yT) = D b x(T + KD) + 3 py yT - k), M
k=-M k=1

where hy and py are the filter (constant) coefficients and n, M, M, and N’ .re all non-negative inte-
gers. Equation (1) reflects the fact that the output y can be a linear function of future, present, and
past inputs x, as well as past outputs. Usually only causal systems (where M’ = 0) are considered,

but there is no analytical reason for this restriction. The first term on the right side of Equation (1)

represents the convolution of a weighting sequence hy, with the input sequence, while the second



term determines whether the filter is recursive or nonrecursive. For a nonrecursive system (py = 0
for all k), the sum (M + M') can be quite large in order to obtain a sharp filter response with mini-
mum oscillation (this latter property is known as the Gibbs phenomenon). The sequence hy for a
nonrecursive filter is called the impulse response function, while the impulse response function for a
recursive filter is the inverse z-transform of the transfer function of system (1). The design of re-
cursive systems relies heavily on the z-transform and complex analysis, as discussed in detail by

Cadzow [1973].

The existence of feedback allows the realization of a desired filter respense which requires
fewer calculations per output value. This savings in computational time does have its price, however.
Using feedback, the filter must be designed so as to insure stability, and the phasing between com-
ponent frequencies is not preserved. Also, such a filter has “infinite memory,” which means that its
impulse response spans the entire data set, and each data input influences all subsequent outputs.

On the other hand, nonrecursive filters have a finite memory (M + M’ + 1 points), are necessarily
stable, and, if hy is a symmetric sequence about k = 0 with an odd number of points, phas- is pre-
served. Therefore, the best reason for applying recursive filters is for processing efficiency. However,
techniques for implementing nonrecursive filters via fast Fourier transforms can make them competi-
tive [Gold and Rader, 1969, Chapter 7]. An additicnal comment is that the transfer function for
the Martin filter is not particularly simple mathematically. In some situations, great care must be
taken in determining the filter parameter values which produce a particular desired response, and
optimization of these parameters may be a trial and error procedure. Indeed, it appears to the au-

thors that this fact has not always been appreciated, and this will be indicated later in this paper.

THE MARTIN FILTER

For discrete svstems, the time lag T between samples is naturally quite important. Since we are
primarily concerned with the frequency response of a system, the constant quantity fg = 1/T as-
sumes a very significani role. The sampling frequency fj is used as the factor for frequency scaling,

and the normalized frequency ¥ = f/f; becoines the independent variable. The sampling theorem
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for the time domain [Goldman, 1953, pp. 67-71] states that if a function g(t) contains no frequency
components higher than f_,, then g(t) can be completely determined by sampling at a rate of 2 f,_,;

otherwise, high frequency components are not uniquely determined and Nyquist tfolding occurs.

Therefor:, the range of normalized frequency 7 is [~0.5, 0.5].

The Martin filter incorporates the following features:

(1) The phase shift for all frequencies is zero, i.e., hy is a symmetric sequence, where hy = h_j.

(2) The weights are optimized by minimizing the error in a least-squares sense between the

realizable gain function and an ideal gain function (a step fuiction of unit amplitude at

the desired cut-off ;) over the entire range of 7.
(3) The weights are corrected to minimize the overshoot cscillations (Gibbs phenomenon) in
the gain function associated with sharp cut-off.

(4) The weights are corrected to insure unity gain at zero frequency.

‘the width of this termination is adjustable and associated with the parameter b, the “slope of weights.
The smaller b is chosen, the steeper the gain function will become and the more pronounced the over-

shoot. With the corrections to the gain function, the filter weights are given by:

The third feature above is accomplished by inserting a sine termination to the gain function.

hy = Ly + /(2N + 1),fork = 0,1,2,...,N, (2)
where
r .
cos (2rkb) sin [27k (Y. + b)]
- ],fork=l,2,...,N
1-16k21b2 nk
Lk —ﬁ
2(7, + b),fork = 0
.
and

N
a=1-(Lo+2ZLk). '
k=1




The transfer or gain function (also called the frequency response function) is
N |
HO) = hy + 2 E\: hy cos (21k7). 3) |
=1 |
Fork = (4b)! or b = (4k)!, the indeterminacy in Ly is resolved by L'HGmtal’s rule as: ‘
L2 [
Ly = beos {-—] = — cos (27kY,). “4)
2b 4k
In order to transform from low-pass (Ip} filter weights to high-pass (hp), or vice versa:
hl(<hp) = hﬂ(‘P) = _hf(lp) = ..hfLP) fork =1,2,...,N )
g :
[ and
(hp) =  _ 1(p)
y ho 1 h0 ,
where the filter weights given by Equation (2) are those for the low-pass case. Thus, the Martin filter
: is determined by three parameters: an integer N defined by the total number of weights (2N + 1)
in the weighting function, a parameter b which allows variation in the slope of the sine termination
EA
E in the gain function, and Y, = f,/f5, the normalized cut-off frequency for the ideal filter. “
4 APPLICATIONS ‘
E A. High-pass Filters |
The example selected to illustrate a high-pass filter application is the removal of relatively low-
3 frequency oscillations (due to aircraft motion) superimposed on remotely-sensed profiles of the
ocean surface. The application of numerical filters to this problem is discussed in Barnett and '
Wilkerson [ 1967], Ross et al. [19701, and McClain et al, [1979]. This problem is very similar to
that of “‘red noise” presented in Davis [1974]. There are some subtleties. however, which, if not appre-
ciated, can cause severe difficultics. In order to sample the surface adequately at the relatively high
speed of an aircraft (75 to 140m/sec), a sampling rate of 45 to 90 Hz is normally used. Horizontal
sampling every two to threc meters allows the resoluticn of wave components over the entire equi-
librium range. This avoids Nyquist folding problems, because there is little energy at such wave- ’

lengths. Usual aircraft motion periodicities are of the order of 30 seconds or more, but during

A2
L . e bimms . O DS ORPPRRIE WP



flights at low altitudes and high winds, significant noise may be present at higher frequencies. In
such cases, vertical acceleration should be monitored and included in th; analysis. Also, many situ-
ations arise where the flight track mnay not be perpendicular to major wave components. This will
occur when wind waves and swell superimpose or when tracks arc determined from cther considera-
tions. In these situations, the aliased surface wavelengths may merge monotonically into the air-
craft motion’s frequency domain, and any filtering is detrimental. Und. - this circumstance, only
vertical acceleration may be used to reinove the aircraft motion in the time domain. An algorithm
such as that presented by McClain et al. [ 1979] cannot deal with this situation, since it utilizes fre-

quency domain techniques after time domain filtering.

With these considerations in mind, the design of the filter is attempted. The filter must allow
all feasible aliased ocean wave components to pass, at least for reasonable angles of encounter, i.c.,
0 to 60 degrees [ Hammond and McClaiu, 1979], yet remove the more energetic aircraft-motion
components. If we assume an aircraft speed of 100m/sec, then a filter with a gain which begins to
attenuate at about 6 or 7 seconds aliows wavelengths of encounter up tc 600 or 700 meters to pass.
Using the P-M spectrum [Pierson and Moskowitz, 1964] to approximate the range of wavclengths
we expect to sample, this length should be adegnate. Of course, at high angles of encounter, it may
not be possible to derive meaningful power spectra unless the wave field is highly directional with a
known heading. However, the significant wave height H;; and higher statistical moments, which
do not require Doppler shifting for their determination, may be obtainable. Using the values of
cut-off frec,uency f, and fg 2 90Hz implied above, the value of 7 is approximately 0.002. The
aircraft motion under smooth conditions would begin aronnd 7, = 0.004. Needless to say, these are
quite small values of 7, and very close attention must be given to the filter design, since the actual
irequency response is more sensitive to the parameters b and N than to 7, over such a narrow range

of 7.

As an aid to visualizing the problem of optimizing the filter parameters, graphs of the frequency

response function are plotted in both Y-space and period r~space (for fg = 90Hz, the period 7 in
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seconds is given by 7 = (907)-1.). The utility of r-space is that by multiplying 7 by the aircraft speed,
one can see the attenuation in terms of distance or wavelength. Figure 1 provides a parametric study
of the effects of various values o1 ¥, (with corresponding ideal cut-off periods 7 of 5, 10, 20, and
100 seconds) on the response function H(r). Figures 2 and 3 illustrate the effects of varying the

parametric values of N and b, respectively, on the response function in r-space. The digital fil‘er

used in McClain et al. {1979] is given in Figures 4 and §, plotted as a function of 7 and 7, respectively.

In order to display the characteristics of the frequency response function in Y-space adequately, it is
necessary to expand the graphical scale substantially, as in Figures 6 and 7, which demonstrate the
initial rapid rise in the gain and the high-frequency Gibbs oscillaticns about unity, respectively, for
the same filter as in Figures 4 and 5. The nature of the Gibbs phenomenon, as a function of N, is
illustrated further in Figure 8, which utilizes, in Y-space, the same parameter values as in Figure 2.

In particular, note how the value of N influences the effective cut-off and the frequency of the Gibbs
oscillations. By further experimentation in the choice of filter parametcrs, an improved filter has
been developed (Figure 9). This filter exhibits the desirable characteristics of a smaller amplitude
overshoot, a sharper cut-off, and near~zero gain over almost all of the aircraft motion domain, with

a slight compromise on the effective cut-off (which can be defined quantitatively as the point at

which 0.9 gain is achieved).

B. Low-pass Filters

As an example of the performance of the Martin filter in the low~pass mode, a comparison with
the results presented in Roberts and Roberts [1978] will be offered. In that work, the Butterworth,
cosine-Lanczos, Gaussian, and ideal (or rectangular) filters were applied to sea level data sampled
each hour at two points in the Gulf of Alaska. The data recerd consisted of 512 points, and the
objective of the low-pass filtering was 10 examine long-period fluctuaiions in a signal dominated
by diurnal and semi-diurnal tides. Figure 10 provides the superpesition of the Martin filter response
onto their power gain functions for the four low-pass filters enumerated above { Roberts and Roberts,

1978, p. 5511, Figure 1] Note that the power gains shown are the squares of the frequency response

SUSHPCUE_SP).
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Figure 10. Power gain functions for five low-pass filiers with ideal cut-off frequency at
1/(40 hours). The cosine~Lanczos and Gaussian filters each were given 60 weights, and the

number of weights parameter N = 60 for the Martin filter
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function, because of the fact that since the Butterworth filter is recursive, the sngnnl must be filtered
forward and then backward in time through the same filter in order to eliminate the phase shift that
would otherwise result. The ideal cut-off frequency is taken as k40hr}'1 = 0.025 cycles/hr ‘for all the
filters, and for the Martin filter, the slope variation parameter b = 0.0001. Since the sampling fre-
quency f; = L hr-l, the frequency f in cycles per hour is equivale;lt numerically to the normalized
frequency 7. For proper comparisons, the number of terms in the weighting sequence hg must be
determined, but it is not clear from the Roberts and Roberts paper what value for (2N + 1) should
be chosen. That paper states that “60 weights were used for both the cosine-Lanczos ‘and the
Gaussian filters,” in which case hy might be presumed to consist of 60 terms (i.e., N 2 30); however,
the first and last 60 hours of the data output from the Butterworth filter are discarded ‘“‘for ease of
comparison with other low-pass filters,” indicating that hy contains 121 terms (i.e., N = 60). It
should be noted that the first and last N points of a set of input data cannot be pr<;cessed by the
Martin filter (or any similar nonrecursive and phase-preserving filter), since, for these “boundary”

data points, N past input or N future input points are not available.

In order to demonstrate the efficacy of the Martin filter, a comparison is presented in Figure 11
in which the superposed Martin filter assumes N = 30, or one-half the number of weights that the
other filters presumably incorporate, with the par:.aeters 7, and b unchanged from the previous
figure. Note that the Gibbs oscillations about unity for the Martin filter are greatly diminished,
and, although the response attenuation is not quite as sharp as for the N = 60 case, the gain remains
comparatively superior to the other filters displayed. For the sake of completeness, the impulse re-
sponse function, or the weighting sequence hy, for the Martin filter of Figure 10 where N = 60 is
given in Figure 12. The impulse response function for the Martin filter of Figure 11 where N = 30

would virtually coincide with this curve but, of course, be truncated at k = £30.

CONCLUSIONS
Many disciplines utilize time series analysis and associated data processing operations for the

interpretation of data and the validation of theoretical models. As an example, the use of digital
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Figure 11. Power gain functions for five low--pass filters with ideal cut-off frequency at 1/(40
hours). The cosine-Lanczos and Gaussian filters each were given 60 weights, and the number
of weights parameter N = 30 for the Martin filter
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filters for pre~whitening data is central to the problem of deriving valid spectra. In general, filtering
techniques are useful to effect the efficient separation of various frequencies imbedded in .thc sam-
pled data, thereby separating the physical phenomenon of interest from measurement and transmis-
sion errors. Furthermore, the application of filtering offers a systematic and efficient means of per-
forming this separation of frequencies on large volumes of similar data by digital computers, A single
simple computer program may perform both high-pass and low=pass filtering; only the proper filter
parameters must be chosen for a given application. As has been indicated in this paper, the selection
of the proper filter parameters can require considerable and careful effort in the optimization of the

response function.

The Marti~ filter has been shown to possess many desirable characteristics, including stability,
finite memory, and phase preservation. In addition, it can perform competitively with some of the
most commonly uscd low-pass digital filters, in terms of providing a sharp response function with
minimal oscillations and requiring fewer computations when a decreased number of weights will
suffice. With the steep response function attained with the Martin low-pass filter, an adjustment
in the value of the ideal normalized cut-off frequency 7, can yield a response nearly coincident with
that of the idcal filter over most of the ordinate values. To¢ decrease the magnitude of the overshoot
or Gibbs phenomenon, an appropriate combination of decreasing the number of weights parameter
N or increasing the slope variation parameter b is generally effective. Of course, there are trade-offs
in the selection of the proper filter parameters. For instance, by increasing the value of b, the shurp-
ness of the desired cut-off is diminished, and by decreasing the va,::: of N, the maximum absolute
error in the gain (as compared to the ideal filter) is increased. Onc additional parameter that influ-
ences the filter performance is the sampling frequency f;, inasmuch us this is used as a normalization
factor in defining the independent frequency variable Y. Forinsta. ., if the value of fy is decreased
from the nominal value of 90 Hz assumed in this paper, then the effective cut-off in 7-space is more
sensitive to the value of 7, and a sharp cut-off is more difficult fo achieve with an acceptable

overshoot.




e T

In sum, the investigator has considerable flex:ioility through the choice of filter parameters in
the design of a Martin digital filter appropriate for a given application. It is felt that the benefits of-
fered by the Martin filter more than compensate for the expenditure required to design it properly,
especially in light of the common availability of small calculators with peripheral plotters which

readily permit one to adjust the filter parameters until the desired response is obtained.
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