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ABSTRACT
 

The results of an analysis of the effects of spur gear size, pitch,
 

width and'ratio~on total mesh power loss for a wide range of speeds,
 

torqdes' and Oil viicoslties are presented. The axalysis-uses simple alge

braic expressions to determine gear sliding, rolling and windage losses and
 

also incorporates an approximate ball bearing power loss expression. The
 

analysis shows good agreement with published data. -Large diameter and fine

pitched gears had higher'peak effliciencies but lower part-load efficiency.
 

Gear efficiencies were generally greater than -98 percent except at very 

low torque levels. Tare (no-load) losses are generally a significant per

centage of the full-load loss excepd at low speeds.-' 

INTRODUCTION
 

With today's emphasis on minimizing ,energy consumption of rotating
 

machinery, methods to accurately predict drive train power losses have
 

taken on renewed importance. A significant source of power-loss in many
 

drive systems is due to 'the'g&aring. Many methods have been proposed to
 

calculate gear power load [1-5].'-Most of these methods utilize a friction
 

coefficient to calculate the'gear power loss: Few consider the losses
 

Member ASIDE.
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associated with forming an elastohydrodynamic film (rolling traction), gear
 

windage or those associated with the support bearings. These later power
 

loss terms contribute significantly to the power loss occurring under part

load operation. Consideration of these speed-dependent loss terms becomes
 

important in determining the cumulative power consumption of machines that
 

spend much of their operating lives at less than full-power levels.
 

Furthermore, most of these earlier methods do not conveniently account
 

for the effects of gear mesh geometry, such as diametral pitch, tooth num

ber, width, ratio, and operating conditions on gear power loss. An excep

tion to this is the spur gear efficiency analysis of [5]. In this inves

tigation instantaneous values of sliding and rolling power loss were inte

grated-over .the path of contact and averaged. The effect of'gear geometry
 

is incorporated into this analysis.
 

In [6] this approach was extended to include windage and support bear

ing loss terms and improved expressions for sliding and rolling traction
 

loss components.. This method showed good agreement with power loss data
 

generated on a back-to-back spur gear test rig reported in [7]. The work
 

of [6] concluded that the rolling traction, support bearings and, to a
 

-lesser extent, windage power losses comprise a significant portion-of the
 

total mesh loss;
 

The predictive technique of [6] makes an excellent tool for studying
 

the effects of gear geometry and operating conditions on spur gear power
 

loss and efficiency. Accordingly, the objectives of the present study are
 

to use the method of [6] to investigate the effects of spur gear size, dia

metral pitch, ratio, width, lubricant viscosity, pitch line velocity and
 

pinion torque on full- and part-load gear performance.
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SYMBOlS 

C a 5 support bearing basic static capacity, N (lbf) 

CI to C8 constants of proportionality 

D pitch circle diameter, m (in.) 

D bearing pitch diameter, m (in.)m 

FST static equivalent bearing load, N (ibf)
 

5- face width of tooth, m (in.)
 

f coefficient of friction
 

f ball bearing lubrication factor
 o 

h central film thickness, m (in.)
 

K gear capacity factor 

I to 16 path of contact distances, m (in.) 

M bearing friction torque, N-m (in Ibf) 

ML load-dependent part of bearing friction torque, N-m (in-lbf) 

MV viscous part of bearing friction torque, N-m (in lbf) 

mg gear ratio, D2/D 

n rotational speed, rpm 

PBRG total power loss in support bearings, kW (hp) 

PR power loss due to rolling traction, kW (hp) 

P S power loss due to tooth sliding, kW (hp) 

PW power loss due to windage, kW (hp)
 

R pitch circle radius, m (in.)
 

Vs sliding velocity, V1 '-V2. m/sec (in/sec)
 

VT rolling velocity, V I + V2, m/sec (in/see)
 

w gear contact normal load, N (lbf)
 

XP distance along path of contact from initial contact to pitch
 

point, m (in.)
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x distance along path of contact, m (in.) 

L lubricant absolute viscosity, cp (reyns) 

v lubricant kinematic viscosity, cs (ft2/sec) 

Nt thermal reduction factor 

Subscripts:
 

R rolling
 

S sliding
 

I refers to pinion
 

2 refers to gear
 

Superscript:
 

simplified
 

ANALYSIS
 

Part- and full-load gear efficiency for a wide range of operating con

ditions 'and gear geometries were analyzed by the method of [6]. This method
 

is applicable to a jet lubricated spur gear set in which the gears do not
 

contact oil in the sump thus eliminating churning loss. In addition to the
 

gear mesh losses, gear windage and support bearing losses were also con

sidered.
 

The gear mesh losses, which account for a major portion of the system
 

loss, consist of a sliding component and a rolling traction or pumping com

ponent. Sliding losses arise from the friction forces developed as two
 

gear teeth move across each other. Rolling losses are caused by the hydro

dynamic pressure forces acting on the gear teeth as an elastohydrodynamic,
 

ElD, film is formed. These pressure forces, generated by the relative mo

tion of the gear teeth, retard the motion of the two rotating gears and
 

thus absorb power.
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In [6] the mesh losses were calculated by numerically integrating the
 

sliding and rolling losses over the path of contact. A simple tooth load

ing diagram shown in Fig. I was assumed. The effect of tooth load sharing
 

was included. The frictional'sliding loss was based on disc machine data
 

generated by Benedict and Kelley [8]. This friction coefficient expression
 

is considered to be applicable to gear sliding loss calculations in the ERD
 

lubrication regime where some asperity contact occurs for )\ ratios less
 

than 2 (2\ = ratio of minimum EHD film thickness to composite surface rough

ness). In [6) rolling losses were based on disc machine data generated by
 

Crook in [9]. Crook found that the rolling loss was'simply a constant value
 

multiplied by the EHD central film thickness. Gear tooth film thickness was
 

calculated by the method of Hamrock [i0] and adjusted for thermal effects
 

using Cheng!s thermal reduction factor [11]. At high pitch line velocities
 

the isothermal equations such as Hamrock's will predict an abnormally high
 

film thickness since inlet shear heating of the lubricant is not considered.
 

Cheng's thermal reduction factor will account for the inlet shear heating
 

and reduce the film thickness accordingly. Inlet starvation effects at high
 

speeds were not considered, however.
 

In Fig. 2 a typical distribution of instantaneous sliding and rolling
 

power loss across the path of contact is shown. A simpson's rule integra

tion was used to obtain an average power loss over the path of contact. The
 

relatively simple shape of the instantaneous loss curves suggested that a
 

simplified expression might be utilized to approximate this integration
 

without the use of numerical methods. In [6] such an expression was devel

oped and the results were found to be within 1 percent of the numerical in

tegrated value for a large number of cases. The simplified expression for
 

rolling and sliding losses are repeated here:
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s 4 2( (1)
P[P(z ) + P (I2 )] 3 + 

PS - 1 S 26 32(i)
 

^ R(1I) + PR(12)]13 + [pR(x)]z 5 

PR R2 6 (2) 

where 

Ps = cVsfw (3) 

P=C 2v h t (4) 

-3 -4
'C= IXIO (SI units) CI = 1.515X10 (English units)
 

= 8.96X10 (SI units) C2 = 1.970 (English units)2 


In addition to the mesh losses, an expression for gear windage loss was also
 

developed in [6] from experimental data on turbine disc windage losses. To
 

account for the oily atmosphere within the gearbox the density and viscosity
 

of the gearbox atmosphere were corrected to reflect a 34.25 part air to I
 

part oil combination as in [12]. Constant values for air density and vis

cosity at 339 K (150 F) and oil specific gravity of 0.9 were assumed. The
 

expression for pinion and gear windage were found to be:
 

4p =03 (i + 2.3 ± i 6 (0.028 g + (5 

)2
= C3 (1+2.3 g R.(0.028 + C4) (6) 

703 = 2.82XI0 " (SI units) 4.05X10"1 3 (English units) 

04 = 0.019 (SI units) 2.86X10 - 9 (English units)
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Support bearing lobs was 'also included in [6]'. An approximate method
 

described by Harris in [13] was used. A straddle mounted deep groove ball
 

bearing arrangement was assumed for comparison purposes. The deep groove
 

ball bearing losses are a function of the bearing pitch diameter, static
 

capacity, lubricant viscosity; shaft speed and bearing load. These equa

tions are:
 

PBRG C5 (M n + M2n 2 ) (7) 

o = 2.10I0 (SI units) C5 = 3.18XIO (English units) 

X is'a torque loss consisting of a load-dependent and a viscous' term. For
 

a deep groove ball bearing:
 

- 1.55 

ML = 0.0009 05 (8) 

C6fo n)2/3D for &n) 5 2000 

M= (9)
for (vn) < 2000)7V o 

o~~~~9.91mS 0nt-


C6 -9.79XI0 2.91XIO-2 (SI units) C6 2 (English units)
 

-
C7 = 24.1 (SI units) C7 = 3.49X10 3 (English units) 

COMPARISON WITH DATA 

To test the accuracy of this power loss method, calculated.power loss
 

values were compared with the data of [7]. These data were generated on a
 

back-to-back test stand for a gearset described in Table 1. Power loss was
 

measured as a function of speed, torque, oil flow rate, oil jet location,
 

gear width, and lubricant viscosity. The results of this comparison are
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shown in Fig. 3 where gear power loss (including bearing loss) is plotted
 

as a function of torque.
 

The theory of [6] shows good agreement with the data especially for
 

the most inefficient method of gearset lubrication (11.4 I/min (3 gpm) oil
 

flow rate with the oil jet directed into the gear mesh). At all three test
 

speeds shown in Fig. 3 the theory of [6] follows the trends shown by the
 

data.
 

Figure 3 also presents the power loss prediction ,of [5]. This method
 

[5] predicts a power loss which is greater than either that measured or pre

dicted by the theory of [6]. The reason for this difference is primarily
 

due to the less accurate expression chosen for predicting the friction co

efficient.
 

DISCUSSION OF RESULTS
 

Power loss calculations utilizing the method of [6] were performed -for
 

,a wide range of gear geometry and operating variables. These variables in

cluded diametral pitch, pitch diameter, lubricant viscosity, gear ratio,
 

pitch line velocity, pinion torque, and pinion width/diameter ratio. The
 

results are presented in Figs. 4 through 11.
 

Effect of Speed, Size, and Pitch
 

In Fig. 4 the gear power loss (excluding bearing loss) of gearsets
 

-which have pinion pitch diameters of 10 cm (4.0 in.) and 41 cm (16.0 in.),
 

respectively, are shown as a function of pinion torque for three operating
 

surface speeds. Pitch line velocity is used to compare the performance of
 

the two gearsets since there is a great difference in their size. The
 

torque levels shown may be far greater than the capacity of any 10 cm pin

ion but the power loss is calculated for comparison purposes nonetheless.
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For this figure, the lubricant viscosity was held at 30 cp, the pinion
 

width/diameter ratio was 0.5 and the gear ratio was 1.0.
 

For a given-gearset at constant surface speed the windage loss is con

stant. The variation in power loss with torque shown in Fig. 4 is due to
 

changes in the mesh rolling and sliding loss. Rolling power loss will de

crease slightly with increasing torque (or load) since the film thickness
 

theoretically decreases with load to the -0.07 power.
 

Sliding loss increases nearly in direct proportion to load. At-very
 

low torque levels the gear power loss is essentially the tare (no-load),
 

loss '6f the gearset at that speed. Since the sliding loss is near zero at
 

low torque levels, the loss is made up of just windage and rolling losses.-


The film thickness and, thus, the rolling loss is not a strong function
 

of load. As a result, the power loss remains constant for a wide range of
 

low torque values.
 

At high torque values the power loss curves form nearly a 45 degree
 

angle with the torque axis (slope = 1). This indicates that the power loss
 

is directly proportional to the torque being transmitted. This is due to
 

the stronger influence of sliding loss on the total loss at higher torque
 

levels. At intermediate torque levels there is a cross-over between de

creasing rolling and windage loss, and increasing sliding loss as torque
 

is increased. Figure 4 shows that this cross-over occurs at lower torque
 

levels fdr the smaller gears.
 

The data of Fig. 4 can be analyzed in terms of gearset efficiency. In
 

Fig. 5 the power loss data of Fig. 4 has been replotted and combined with
 

data for gears of 4 to 32 diametral pitch. Data for a 20-cm (8.0-in.) di

ameter pinion has also been included. The efficiency of all three size
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gears reach 99 percent at relatively low torque levels. Efficiency is gen

erally greater than 98 percent at a pinion torque level that is only 5 per

cent of the torque transmitted at peak efficiency.
 

Pitch diameter has a strong effect on gearset efficiency at low torque
 

levels but less of an effect as torque is increased. Peak efficiencies for
 

all gearsets ranged from approximately 99.3 to 99.9 percent. It should be
 

kept in mind that these small differences in efficiency can cause substan

tial changes in the power loss and consequently in cooling considerations.
 

At high torque levels the larger gear is more efficient. This is because
 

the teeth of a large diameter gear are subjected to lower loads than the
 

teeth on a smaller gear at the same torque level. This reduces the coeffi

cient of friction and the sliding loss.
 

Also shown in Fig. 5 is the effect of diametral pitch At low torques
 

the coarse-pitched gears are more efficient. At higher torques the trend
 

is reversed and the fine-pitched gears become more efficient. The reason,
 

is that at high torques, the sliding loss becomes a dominant factor in the
 

gear loss. Since fine-pitch gearing reduces the length of the path of con

tact and the magnitude of the sliding velocity, the sliding power loss is
 

also reduced. This results in a more efficient gearset under these high
 

torque conditions.
 

To normalize the data of Fig. 5 in terms of gear capacity, the effi

ciency data for the 10- and 41-cm gears have been replotted in Fig. 6 ver

sus a gear capacity factor K as described in [I]:
 

Ksw(m + 1) 

r (lO) 

where
 



C= 1.45XI0 "4 (SI units) C8 = 1.0 (English units) 

The K-factor provides an estimate of the required gear face width and 

diameter for a given torque level that the gearset must carry. 

The K-factors for helical and spur gears tabularized in [1] generally
 

range from a value of about 100 for low hardness-generated-steel-gears to
 

about 1000 for aircraft quality, case hardened and ground, high-speed gear

ing. A nominal K-rating for a general-purpose industrial drive, with 300
 

BHN steel gears, carrying a uniform load at a pitch line velocity of
 

15 m/sec (3000 fpm) or less would typically range from 275 to 375. It is
 

apparent from Fig. 6 that gear sets with pinions ranging in size from 10 to
 

41 cm and diametral pitch from 4 to 32 generally reach their peak effi

ciency at K-factors from approximatesly 150 to 400. Above these ratings
 

the efficiency remains relatively constant or in the case of coarse-pitched
 

gears, falls off slightly.
 

In comparing Figs. 5 and 6, it is apparent that the effect of gear
 

size on gear efficiency is less at an equivalent K-factor than at an equiva

lent torque level. However, it is still true that large gears have a slight
 

efficiency advantage, particularly for coarse-pitched gears, at an equiva

lent percent of rated capacity.
 

Effect of Pitch Line Velocity and Pitch
 

In Fig. 7 the effect of pitch line velocity on efficiency is shown for
 

a 20-cm (8.0-in.) pitch diameter pinion mesh with a gear ratio of 1.0, a
 

pinion width/diameter ratio of 0.5 for diametral pitch values of 4 to 32,
 

and a lubricant having a viscosity of 30 cp. Pitch line velocities from
 

1.27 m/sec (250 ft/min) to 40.6 M/sec (8000 ft/min) do not alter the effect
 

that diametral pitch has on efficiency shown in Fig. 5. The coarse-pitched
 



gears have better part-load efficiency but lower peak efficiencies.
 

Pitch line velocity has a stronger effect on part-load gear-efficiency
 

than it does on peak efficiency due to its strong influence on rolling trac

tion and windage losses. Figure 7 shows that an increase in speed generally
 

benefits peak efficiency levels, particularly for coarse-pitched gears. This
 

efficiency improvement with speed is caused by a trade-off of rolling and
 

sliding losses. At high speeds the rolling loss increases due to the in

crease in film thickness. This increase in rolling loss, however, is more
 

than offset by a reduction in the coefficient of friction and consequently
 

sliding loss. This results in an overall higher efficiency for the higher
 

speed gearset.
 

Effect of Lubricant Viscosity and Size
 

Figure 8 shows the effect of lubricant viscosity on efficiency of
 

gearsets with 10 and 41 cm pitch diameter pinions. The gear ratio is held
 

constant at 1.0 and the pinion width/diameter ratio is 0.5. This compari

son is made at a pitch line velocity of 20.3 m/sec (4000 ft/mn) for an oil
 

whose viscosity ranges from 2 to 500 cp. This variation in viscosity rep

resents a temperature range of 289 K (600 F) to 489 K (4200 F) for an SAE
 

30 oil. For a MIL-L-23699 oil, this viscosity range represents a tempera

ture range of 267 K (20 F) to 436 K (3250 F).
 

The viscosity variation has a great effect on efficiency for either
 

gearset at low torque conditions. Efficiency is less sensitive to oil vis

cosity at higher torque levels. The 10-cm diameter pinion has a cross-over
 

torque level at which the gearset efficiency becomes greater with the more
 

viscous oil. This is due to the nature of the friction coefficient.
 

The Benedict and Kelley coefficient of friction model [8] predicts
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that for steel rollers or gears under heavy loads, a more viscous oil will
 

cause a greater separation of the two surfaces and less asperity contact,
 

resulting in less friction. A less viscous oil may allow greater asperity
 

contact which increases the coefficient of friction and, thus, the power
 

loss. This crossrover effect is not shown for the larger gear in Fig. 8
 

because the peak efficiency of the'41-cm (16-in.) gear-has not yet been
 

reached at the maximum torque of 11 300 N-m (100 000 in-lbf).
 

Effect of Face Width and Size
 

.Theeffect of pinion face width/diameter ratio 
(BID) is shown in
 

Fig. 9 for the 10- and 41-cm diameter pinion gearset at a'pitch flne veloc

ity of 20'.3 msec (4000 ft/min), diametral pitch = 8, ratio'= 1.0, and
 

lubricant viscosity of 30 cp. As with pitch diameter and pitch line veloc

ity, F/D ratio has a great effect on efficiency at low-torque levels but a
 

lesser effect at high,torque values. The 0.5 and 1.0 F/D curves converge to
 

within 6.4 percentage points at high torque levels for both the 10- and
 

41-cm diameter pinions. Rolling loss is directly proportional to gear width
 

while sliding loss will decrease for wider gears since the unit loading is
 

decreased. At low torques the increased rolling loss of the wider gear pro

duces a lower gearset efficiency. At high torques the sliding loss becomes
 

more significant and offsets the increased rolling loss produced by the
 

wider gear.
 

The data of Fig. 9 is replotted against the K-factor in Fig. 10. When
 

plotted in this manner the F/D ratio does not affect gearset efficiency.
 

The band of values shown in Fig. 9 reduces to a single line for both the
 

10- and 41-cm diameter pinion gearsets. This is due to the normalizing
 

effect the K-factor has on gearset efficiency.
 



14 

.Effect of Ratio
 

In Fig. 11 the effect of ratio is shown for the 10- and 41-cm diameter 

pinions at a pitch line velocity of 20.3 m/sec (4000 ft/min), diametral 

pitch = 8, F/D = 0.5, and lubricant viscosity of 30 cp. Since the pinion 

diameter is held constant, an increase in reduction ratio means an increase 

in gear diameter. Also, since the pinion F/D ratio is held constant at
 

0.5, the width of the gearset is held constant. The effect of changing.
 

ratio from 1 to 8 has an effect similar to that of changing the F/D ratio
 

from 0.5 to 1.0 as shown in Fig. 9. As might be anticipated, the gearset
 

with the larger reduction ratio (or larger gear diameter) is less efficient
 

at low torque levels. However, the 10-cm pinion at a ratio of 8 becomes 

more efficient that the same pinion at a ratio of 1 at torques above 339 

N-m (3000 in-lbf). This effect is caused by the higher rolling velocities 

generated by the larger gear diameter which tend to decrease the friction 

coefficient and, thus, the sliding power loss. A similar effect would be
 

anticpated for the 41-cm pinion at higher torque levels.
 

Effect of Support Bearing Loss
 

The efficiency data presented in Figs. 4 through 11 represent only the
 

power loss due to gear sliding, rolling, and windage. Gear system'effi

ciency must include the support bearing losses as well. For comparison pur

poses a deep-groove ball bearing system was selected for the 10- and 41-cm
 

pinion diameter gearsets. The bearings selected are described in Table 2.
 

The effect of adding the rolling-element bearing loss to the gear loss is
 

shown in Fig. 12 for a pitch line velocity of 20.3 n/sec (4000 ft/min);
 

ratio of 1.0, F/D of 0.5, and a lubricant viscosity of 30 cp. A signifi

cant loss in efficiency results when the bearing loss is included.
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Breakdown of Gear System Losses
 

To gain further insight into the effects of the various component
 

losses on the system efficiency, a breakdown of the losses relative to the
 

full-load loss (loss at peak efficiency) for each speed is shown in Fig. 13
 

for the 10-cm diameter pinion gearset and in Fig. 14 for the 41-cm diameter
 

pinion set. In each case the diametral pitch was 8, the gear ratio was 1.0,
 

the F/D ratio was 0.5, and the lubricant viscosity was 30 cp. It should be
 

noted that the pinion torque scales are different in Figs. 13 and 14. The'
 

maximum torque levels correspond approximately to the torque levels at peak
 

efficiency of each system.
 

The trends shown in Figs. 13 and 14 are similar. At low pitch line
 

velocity (1.27 m/sec (250 ft/min)), the sliding loss dominates at all con

ditions except for very low loads as this loss approaches zero. At higher
 

speeds, the rolling and bearing losses become significant. At the maximum
 

speed and torque condition, the sliding loss drops to approximately 37 per

cent of the total losses for the 10-cm diameter pinion and to 25 percent
 

for the 41-cm diameter pinion set. The bearing losses account for nearly
 

50 percent of the system loss for either gearset at this operating condi

tion.
 

Windage reaches a maximum of 8 percent of the system loss at maximum
 

speed for the 10-cm pinion and 18 percent for the 41-cm pinion. Thus, wind

age also becomes important for the larger gearset.
 

Also shown in Figs. 13 and 14 are the no-load or tare loss at each
 

pitch line velocity. At 1.27 m/sec (250 ft/min) the tare loss is less than
 

10 percent of the full-load loss. At 40.6 m/sec (8000 ft/min) the tare
 

loss increases to approximately 60 percent of the full-load loss. This is
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due to the fact that most of the losses at high pitch line velocity are
 

speed-dependent and remain as a tare loss when the load is removed from the
 

gearset.
 

SUMMARY
 

Spur gear efficiency was calculated using the method reported in [6]
 

for a wide range of gear geometries and operating conditions. This method
 

algebraically accounts for gear sliding, rolling, and windage loss compo

nents and also incorporates an approximate ball bearing power loss expres

sion to estimate the loss of a ball bearing support system. A theoretical
 

breakdown of the total spur gear system loss into individual components was
 

performed to show their respective contributions to the total system loss.
 

The range of gear geometry and operating variables included the following:
 

- Pinion pitch diameters from 10 cm (4.0 in.) to 41 cm (16.0 in.)
 

- Diametral pitch values from 4 to 32
 

- Pinion width/diameter ratios from 0.5 to 1.0
 

- Gear reduction ratios from I to 8
 

- Pinion torques from 0.113 N-m (1.0 in-lbf) to 11 300 N-m
 

(100 000 in-lbf)
 

- Pitch line velocities from 1.27 m/sec (250 ft/min) to 40.6 m/sec
 

(8000 ft/min)
 

- Lubricant viscosities from 2 to 500 cp
 

The torque and speed limits associated with the above gear geometry
 

variables were not defined in this study. However, some of the results
 

were presented in terms of gear capacity by introcuing a K-factor as an
 

independent variable. The following results were obtained:
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1. Gear efficiency was mildly dependent on the amount of torque being
 

transmitted above some minimum torque value. At torques greater than 5 per

cent of the torque transmitted at maximum efficiency, gear efficiency (bear

ing losses excluded) ranged from 98.6 to 99.9 percent.
 

.2. Under high loads, fine-pitched gears were generally more efficient
 

than coarse-pitched gears. This advantage diminished, however, with in

creases in gear size or pitch line velocity.
 

3. Peak gear efficiency generally improved with an increase in pitch
 

line velocity while part-load efficiency diminished due to increased tare
 

power losses. Caorser-pitched gears enhanced this effect.
 

4. Large gears generally had highet peak efficiencies than small gears.
 

This efficiency advantage was more marked for coarse-pitched gears.
 

5. Gear ratio and pinion width/diameter ratio had relatively'minor
 

effects on gear efficiency with higher ratio, wider gears showing slightly
 

higher peak efficiencies but lower part-load efficiencies. An increase in
 

lubricant viscosity showed a similar but slightly stronger effect. Pinion
 

width/diameter ratio had no effect on efficiency when the K-factor was held
 

constant.
 

6. Support ball bearing losses can be a significant part of spur gear
 

system power loss. At pitch line velocities greater than 20 m/sec bearing
 

losses accounted for more than 35 percent of the full-load system loss.
 

7. Tare (no-load) losses of a gearset are significant except at low
 

speeds. At pitch line velocities greater than 20 m/sec the power loss -of
 

an unloaded gearset was more than 35 percent of the full-load loss.
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TABLE 1. - GEAR GEOMETRY AND OPERATING PARAMETERS 

FOR TEST GEARS OF [7]
 

Pinion Gear 

Pitch diameter, cm (in.) 15.2 (6) 25.4 (10) 

Number of teeth 48 80 

Diametral pitch 8 

Pressure angle (deg) 20
 

Width, cm (in.) 4.0 (1.56) 

Lubricant Mineral oil with anti
oxidant additive 

Viscosity at oil jet 60 cs 
temperature = 333 K 
(1400 F) 

TABLE 2. - BALL BEARING DATA USED IN FIGS. 13 THROUGH 14
 

Pinion pitch diameter
 

10 cm (4.0 in.) 41 cm (16.0 in.)
 

Bore 40 mm (1.58 in.) 150 mm (5.91 in.)
 

Qutside 90 mm (3.54 in.) 320 mm (12.59 in.)
 
diameter
 

Width 23 mm (0.91 in.) 65 mm (2.56 in.)
 

Pitch 65 mm (2.56 in.) 235 mm (9.25 in.)
 
diameter
 

Static 22 330 N (5020 ibf) 240 100 N (56 000 lbf)
 
capacity
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