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Abstract
 

The intensity, brightness temperature (T]1), of the microwave emission from the soil is 

determined primarily by its dielectric properties. The large difference between the dielectric 

constant of water (-80) and that of dry soil (3-5) produces a strong dependence of the soil's 

dielectric constant on its moisture content. This dependence is effected by the texture of the soil 

because the water molecules close to the particle surface are tightly bound and do not contribute 

significantly to the dielectric properties. Since this surface area is a function of the particle size 

distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy 

soils with larger particles, the dielectric properties will depend on soil texture. This dependence 

has been demonstrated by laboratory measurements of the dielectric constant for soils which are 

briefly summarized in this paper. The dependence of the microwave emission on textureis dem

onstrated by measurements of TB from an aircraft platform for a wide range of soil textures. The 

main conclusion of the paper is that the effect of soil texture differences on the observed TB val

ues can be normalized by expressing the soil moisture values as a % of Field Capacity (FC) for the 

soil. 
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In an earlier paper (Schmugge et al., 1974) studying the use of microwave radiometers for 

soil moisture sensing a dependence of the emission on soil type or texture was observed. This 

dependence was studied more thoroughly in subsequent experiments. These experiments have 

indicated that the effects of soil texture can be accounted for by expressing the measured soil mois

ture as a percent of field capacity for the soil In this paper we will present the basis for this con

clusion and the data supporting it. 

The use of microwave radiometers for the remote sensing of soil moisture has been studied 

extensively from aircraft and field platforms. These radiometers measure the thermal emission from 

the soils in the frequency range 1- 30 GHz (wavelength region between 1 and 30 cm). The magni

tude of this emission depends on the temperature of soil and on the dielectric or emissive properties 

of the soil. It is this latter quantity which contains the dependence on soil texture. The dielectric 

properties of a soil are strongly dependent on its moisture content because of the large contrast 

between the dielectric constant (e) of liquid water (- 80 at X= 21 cm) and that of the soil minerals. 

The large value of e for water results from the ability of the electric dipole moment of the water 

molecule to align itself along an applied field If the dipolar molecular rotation is prevented as 

it is in ice (e= 3.5) or hindered by being tightly bound to a soil particle the value of e will be 

reduced. It is this latter fact that causes the dependence of e for soils on their texture, clay soils 

with a larger effective surface area can hold more water in this tightly bound state than sandy soils. 

(Bauer, et al., 1972). This relationship between texture and dielectric constant will be quantified. 



Dependence of Soil-Water Parameters on Texture 

The binding of the water to soil particle can be described in terms of the pressure potential. 

At low moisture levels, the pressure potential is the tension with which water is held by soil parti

cles. In the intermediate range, the pressure potential is determined largely by the radii of curvature 

of water films between soil particles. In Figure 1, representative plots of the relation between 

volumetric water content and pressure potential are presented (Idso et al, 1975) The zero poten

tial level is the saturated soil situation. The locations of the -1/3-bar and -15-bar pressure levels 

are indicated because they are frequently taken to be the pressure levels for the field capacity (FC) 

and wilting point (WP) conditions of the soil. This convention will be followed here. The amount 

of water in the soil at field capacity is that which remains in a soil two or three days after having 

been saturated and after free drainage has practically ceased. As the name implies, the wilting 

ppimt is the moisture level at which plants experience difficulty drawing water from the soil. Thus, 

the FC and WP soil-moisture values give a quantitative measure of the water-holding capacity of a 

soil The difference between the two is the available water capacity in the soil. As the curves in 

Figure 1 indicate, FC and WP depend on soil type. The values for the four soils are presented in 

Table 1. 
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Table 1
 
Moisture Content of Selected Soils at WP, FC, and Saturated Conditions
 

WP at -15 bar FC at-l/3 bar Saturation at 0 bar 
(cm 3/cm 3 )Soil (cm3 /cm3 ) (cm 3 /cm 3 ) 

Navajo Clay 0 22 0.55 0.70 

Cashion Silty Clay 0.22 0.33 0.50 

Avondale Loam 0.11 0.25 0.44 

Gran Sandy Loam 0.06 0.15 0.36. 

Thus, the available water capacity of the silty clay is no greater than that of the Avondale Lo~m, 

even though the magnitudes are much greater 

In the later sections of the paper we will attempt to show that the value of WP determines the 

transition value for the dielectric behaviour of the water in the soil from the bound condition to 

the free condition. Since it would be very difficult to obtain curves like those in Figure 1 for the 

soils in all the sampled fields, we attempted to relate FC and WP to the soil textures of the sampled 

fields. This was based on the work of Salter and Williams (1969) who used regression analysis to 

relate particle-size composition (soil texture) to the available water capacity for a soil. They con

cluded that the moisture characteristics could be calculated from texture information with reason

able accuracy, that is, the upper and lower limits of available water capacity could be estimated to 

within 10 or 20 percent of the measured values Therefore, a multiple linear regression and corre

lation analysis were made on 100 sets of soil textures and moisture characteristics, that is, the 

moisture contents at the -1/3-bar (FC) and -15-bar (WP) potentials These measurements were 

made on soils from the Phoenix area (Private communication, Phoenix Soil Conservation Office, 

1974) and from the Rio Grande Valley of Texas (Heilman et al., 1969). The range of textures 

included in the regression is indicated on a texture triangle in Figure 2 which is a scatter plot of 

the soils used. 

The results of the correlation analysis for the texture and the moisture parameters presented 

in Table 2. It is seen that WP and FC are highly correlated (negatively) with the sand fraction and 
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Figure 2. Soil texture triangle showing the soils used in denying the FC and WP relationships 
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(positively) with the clay fraction. The correlation with the silt fraction is poor for both param

eters. Since only two of the texture parameters will be independent variables, the choice of clay 

and sand is obvious 

Table 2 

Correlation Matrix Between Texture and Soil Water Parameters 

Gravimetric Values Volumetric Values 

FC WP FC WP 

SAND -0.86 -0.82 -0.84 -0.77 

SILT 0.49 0.32 0.38 '0.23 

CLAY 081 0.93 0.90 0.95 

The results of the regression for WP, expressed in weight percent, were 

WP = 7.2 - 0.07 X SAND + 0.24 X CLAY (1) 

where SAND and CLAY represent their respective soil fractions in percent The multiple cor

relation coefficient for this regression was 0.945. The regression results for FC are 

FC = 25.1 - 0.21 X SAND + 0 22 X CLAY (2) 

with a multiple correlation coefficient of 0.904. The coefficient ofvariation (standard estinfate 

of error divided by the mean) was 0.15 for both of these regressions. 

Since the density values for the soils used in this analysis were available, a regression analysis 

was performed to obtain WP and FC in terms of volumetric water content (Wang & Schmugge, 1979). 

The results are: 

WP = 0.068 - 0.00064 X SAND + 0.0048 X CLAY (3) 

with a multiple correlation coefficient of 0.96 and 

FC = 0.30- 0.0023 X SAND + 0.005 X CLAY (4) 

with a multiple correlation of 0.94. The coefficients of variations are 0.13 for these regressions. 

The moisture characteristics of a soil depend on many factors in addition to soil texture, such as 

bulk density of the undisturbed soil and percent organic matter, but texture (sand, silt, and clay 
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fractions) was the only parameter that could easily be determined for all of the soils involved It 

is presumed that basing the regression on the actual field soils used in the soil surveys adequately 

takes these factors into account These regressions for FC and WP on a volumetric yield slightly 

higher correlation and lower coefficient of variation than those based on gravimetric moisture 

content. 

Dependence of the Dielectric Constant of Soil Texture 

As notefd in the introduction it is the large dielectric constant for water as compared to those 

for the soil minerals which makes the microwave approaches useful for soil moisture sensing. The 

frequency dependence of the dielectncproperties of water are described by a Debye relaxation 

spectrum given by 

e(-O) + (5) 
1+iY 

were i =V'T, e, is the low frequency (wr 4 1) value of c, and r, the relaxation time, is a measure 

of the time required for the water molecule it align itself with an applied field. This expression is 

plotted for liquid and solid (ice) water in Figure 3. For liquid water 1/r-10 i 0 Hz while for ice 

1/r=10. Thus if the fiequency of the electric field oscillation is too high the dipole moment 

of the H2 0 molecule will not become aligned and its dielectric contribution will be reduced to the 

high frequency value, e_ . 

Wien water is first added to a soil it will be tightly bound to the particle surface and will 

not be able to rotate freely. As more water is added the molecules are further away from the 

particle surface and are more free to rotate, after about 8 or 9 layers the molecules behave as free 

water and contribute significantly to the dielectric properties of the soil. In measurements of the 

dielectrc properties of soils Hoekstra and Delaney (1974) observed a frequency dependence similar 

to that presented in Figure 3 with the exception that the soil water has a range of relaxation times 

longer than that of liquid H2 0. 
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Laboratory measurements of the dielectric constant for three soils ranging from,a sandy loam 

to a heavy clay at a wavelength of 21 cm are presented in Figure 4. The characteristics of the 3 

soils are given in Table 3 along with calculated values of emissivity. For all three soils there is a 

region at low moisture levels where there is a slow increase in e and above this region there is much 

steeper increase in e with moisture content. It can be seen that the region of slowly increasing e 

is greater for the clay soils than for the sandy loam. This is due to the greater surface area present 

in the clay sodls 

The curves in Figure 4 are the results from an empirical model to develop an analytical ex

pression fore of soils as a function of moisture content (Wang & Schmugge, 1979) As Hoekstra 

& Delaney (1974) point out in their paper the dielectnc behaviour of water in soils is different from 

that in the bulk liquid phase, i e. the tightly bound water has dielectric properties similar to those of 

ice while the loosely bound water has dielectric properties similar to those of the liquid statb. 

Therefore to obtain the dielectric properties of the moist soil a simple mixing formula is used in 

'which the components are the soil mineral (or rock), air and water (e.) with e. being a function 

=of the water content, W,, in the soil At zero water content e, eiee and it increases linearly until 

the transition moisture wt is reached at which point e. has a value approaching that for the liquid. 

The equations are: 

e = We + (P -Wc) ea + (1 - P) er, for W. < Wt (6) 

with 
We 

ex = e1 + (e w - el)---- *y (7)
Wt 

and 

e =Wte. +(W. -W t ) ew +(P-W) Ca + (1 -P) er, forW >Wt (8) 

with 

ex = el + (ew - e)T (9) 

where P is the pososity of the dry soil, Ca, Cw, er and e, are the dielectric constants of air, water, 

rock and ice respectively, and e. stands for the dielectric constant of the initially absorbed water. 
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Table 3 
Characteristics of Soils Represented mnFigure 4 

Sand 
Texture 

Silt Clay 
Moisture Properties 

WP* FC** Wt 

in cm 3 / cm 3 
Wc =0 

Soil Emissivties*** at 
0.1 0.2 0.3 

cm 3/cm3 
0.4 

Yuma Sand 100 0 0 .007 .07 .17 .92 .83 .69 .59 .53 

Vernon Clay Loam 16 56 28 .19 .42 .28 .92 .86 75 64 .56 

Miller Clay 3 35 62 .36 .63 .33 .92 .88 .81 73 .63 

* Calculated from Eq. 4 
Calculated from Eq. 5 

"Calculated using the Fresnel Equations for reflectivity at a smooth surface. 



In Wang & Schmugge (1979) the values of Wt andy were determined for 18 soils by a least squares 

fit to the data. These values of Wt and 7are compared with values of WP calculated from the 

known soil textures using equation (4) in Figure 5. The correlation coefficient for Wt = 0.9 and 

for -yit is 0.7 indicating that there is a strong dependence of both on WP and that texture data can 

be used to estimate the value of Wt for a soil. 

The values of the emissivity presented in Table 3 give an indication of the brightness temper

ature (TB) to be expected for these soils. For example at W. = 0.3 the range in emissivity is 0.14 

or about a 45K range in TB, this difference in the emission for wet soils should be easily observable. 

The conclusion of this section is that reasonable estimates of the dielectric constant for soils 

can be made both as a function of moisture content and microwave frequency if the knowledge of 

the soil texture or moisture characteristic is available. The frequency dependence is contained in 

the dielectric constant for water which is well understood (Stogryn, 1971). It is assumed that there 

is no frequency dependence of Wt within the microwave spectral region 

Microwave Brightness Temperature Measurements 

The use of microwave radiometer data obtained from aircraft platforms is well suited for 

verifying the dependence of microwave emissions from soils on texture because of the ability to 

obtain data over a large number of fields which can encompass a wide range of soil texture. The 

aircraft results were obtained during flights with NASA aircraft over irrigated agricultural areas 

around Phoenix, Arizona and in the Imperial Valley of California during March 1972 and February 

1973 (Schmugge et al., 1976a) and during March 1975 over only the Phoenix area (Sohimugge, 

1976b) The aircraft altitude for these flights were 600 m in 1972 and 1973 and 300 m in 1975. 

On board the aircraft were microwave radiometers covering the wavelength range of 0 8 to 2f cm. 

In this paper only the results at the 21 cm and 1.55 cm wavelengths will be presented. The 21 cm 

radiometer was nadir viewing with a 150 (-'1/4 radian) beamwidth, therefore, its spatial resolution 

was approximately 1/4 the aircraft altitude. The 1.55 cm radiometer is a scanning radiometer 

which has an angular beam width of 2.8' (-1/20 radian). This sensor was only used on the 1972 

and 1973 missions 
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The aircraft flew along flight lines centered on the agricultural fields winch were at least 16 

hectares (40 acres) in area. These fields generally had uniform surface and moistur6 conditions 

over their total area All the radiometer data obtained over each field were used t6.obtain the 

average brightness temperature (TB ) for the field The soil moisture measurements were made at 

4 locations and for several depths in each field. The values presented here are the averages for each 

field. For the 1975 flights soil temperature profiles were also measured. Soil,textures determi

nation were also made for the sampled fields. 

The use of a 4 point sampling pattern to obtain the average soil moisture for each field jntro

duces a considerable level of uncertainty or error into what will be the independent var able of the 

regression analyses. In an analysis of intensively sampled fields, i.e. fields where 20 or more samples 

were taken, Bell et al. (1979) found that there was an upper limit of about 4% for tl-standard 

deviation at moisture levels above 10% by weight. If it assumed that this is the populatin standard 

deviation tins implies that the level of uncertainty of the mean value for the 4 sawples is approxi

mately 4% at moisture levels above 10%. This level of uncertainty will inhibit our ability to draw 

quantitative conclusions from these data. 

The range of soil textures encountered in these aircraft experiments is presented on a soil 

texture triangle in Figure 6. The region of the triangle covered by the aircraft data is similar to 

that for the data used in the regression analysis with the exception that aircraft data set had more 

fields with heavy clay soils (e.g clay content about 50%). Using Eq. 2 values of the moisture 

content in weight percent at field capacity (FC) were calculated for these soil textures and tl~e 

results are presented in Figure 7 which is a histogram plot of the distribution of FC values. The 

range is from 10 to 38 with the distnbution skewed toward the higher moisture values, thus half 

of the fields had FC values between 28 and 38% 
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1.55 cm Results 

The values of the 1.55 cm TB for each field were obtained by averaging over all the i'ndividual 

values that fell within the field boundary. In Figure 8 these values of TB are compared with the 

ground measurements of soil moisture in the surface cm for the light soils (sandy loam and loam) 

and heavy s6ils (clay loam and clay). These texture determinations were made by the agricultural 

consultants of the Salt River Project who were doing the ground sampling In many cases the values 

plotted are the averages of the two passes over each field. The results for the two passes agreed 

within 2 or 3K for the dry fields and 5 or 6K for the wet fields. The standard deviations W-ere 3 

to 4K for the dry, and 8 to OK for the wet, reflecting the greater variation in soil moisture ex

pected for aNwet field. The large amount of scatter in the data for the dry fields is the result of 

the range ofsurface temperature observed during the different flights. The range of brightness 

temperature is the same for both soil types and there is a clear linear decrease of brightness temper

ature with soil moisture The slope is less steep for the heavier soils because of the greater range 

of soil moistures that is possible for them. If the soil moisture is expressed as the percent of FC, 

this difference can be accounted for as shown in Figure 9. Visually, the scatter in the data is 

somewhat smaller, and quantitatively, the correlation coefficient for these data is slightly greater 

than for the light and heavy soils separately. The horizontal error bars are estimates of the un

certainties in the surface soil moisture determinations. 

These results gave the first indication of a soil texture effect and of a way to normalize for it. 

The scanning nature of the 1.55 cm radiometer made possible the acquisition of data for a large 

number of fields with only a few flights. Unfortunately, it became apparent that a radiometer 

operating at this short a wavelength had a very limited sampling depth in the soil and was also 

limited to essentially bare soil situations. Thus the prime focus in later experiments was on longer 

wavelength systems, especially 21 cm. 

21 cm Results 

A preliminary analysis of the results at the 21 cm wavelength indicated a dependence on soil 

texture similar to that shown at the 1.55 cm wavelength. In order to quantify this dependence, 
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the 21 cm data were divided into 3 soil classes having approximately equal populations using the 

histogram information given in Figure 6. They were: light soils FC < 23%, medium soils FC 23% 

< FC < 30% and heavy soils 30% < FC. Even though the populations of each group w~re approxi

mately the same there are some differences. The light soil class covers a wider range of values for 

FC, 10 to 23%, compared to only 7 or 8% for the medium and heavy classes. The moisture distn

butions were not the same in the three classes, in particular there were fewer dry'bases (SM < 

10% & high TB) for the heavy soils class compared to the numbers of dry cases for the other two 

groups. This latter fact will have an effect on the values of the intercepts derived in the regression 

analyses on these data. 

Regression analysis of TB versus the soil moisture in the surface cm layer were performned on 

each group separately and on the total population. The surface cm layer was chosen because 

theoretical calculations of TB vs soil moisture in this layer indicated a linear response (Schiugge, 

et al., 1976, Choudhury, et al., 1979). Comparisons with the moisture in thicker layers indi cated 

a bi-linear behaviour similar to that observed for the dielectric constants, Figure 4. The soil 

moisture values were expressed in 3 ways: weight percent, percent of FC, and percent of WP (the 

wilting point). The results of TB plotted versus weight percent are in Figure 10 and versuspercent 

of FC are in Figure 11 The parameters of the regressions are summarized in Tables 4-6. 

As would be expected the slopes in Figure 10 decrease as the soils become heavier due to the 

greater moisture range observed for the heavier soils and the larger values of the transition moisture, 

Wt, that would be expected for the heavier soils In this figure it is clear that there is a definite 

difference in the behaviour of the three soil classes. Part of the difference in slope between the 

medium and heavy soil classes is due to the decrease in the intercept for the heavy soil class resulting 

from the small number of dry cases (high TB) in this class. When the same data are plotted versus 

percent of FC, Figure 11, the slopes of the three classes are in better agreement with each other, 

e g the probable errors of the slopes overlap even for the two extreme cases which was not true 

when plotted versus weight percent. The regression results ofTB versus WP, given in Table 6, 

show an even greater degree of agreement of the slopes for the three soil classes. However in spite 
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Table 4
 
Regression Results TB vs weight percent
 

N 

Lfght Soils 41 
FC < 23% 

Medium Soils 41 
23.-< FC < 30% 

Heavy Soils 40 
30% < FC 

All Soils 122 

N 

Light Soils 41 
FC < 23% 

Medium Soils 4-1 
23<1FC<30% 

Heavy Soils 40 
30 1PC 

All Soils 122 

N 

Light Soils 41 
FC < 23% 

Medium Soils 41 
23 <FC<30% 

Heavy Soils 40 
30< FC 

All Sods 122 

Intercept 

280 

278 

269 

275 

Table 5 

Regression Results TB 

Intercept 

282 

277 

270 

278 

Table 6 
Regression Results: TB 

Intercept 

282 

277 

271 

278 
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Slope 

3.08±.26 

Correlation 
Coefficient, r 

0.88± 03 

2.16±.19 0.87±.04 

1.82±.15 0.98±.03 

2.10±.09 0.89±.02 

vs %of FC 

Slope 

0.65±.06 

Correlation 
Coefficient, r 

0.87±.04 

0.56±.05 0.85±.04 

0 60±.05 0.88±.04 

0.64±.03 0.88±.02 

vs %of WP 

Slope 

0.30±.03 

Correlation 
Coefficient, r 

0.87±.04 

0.29±.03 0.84±.04 

0.33±.03 0.86±.04 

0.33±.02 0.85±.02 



of the better correlation obtained between WP and texture given by equations 1 and 3 the cor

relations between TB and soil moisture expressed as a percent of WP are no better than those 

obtained using percent of FC as the independent variable. 

In Figure 12 the data from all three soil classes are plotted together versus weight percent in 

12a and versus percent of FC in 12b In Figure 12a the lighter soils (0's) are predominantly to the 

left of the medium and heavy soils However when plotted versus percent of FC there is a greater 

degree intermixing of the three soil classes. In spite of this qualitative observation of the improve

ment afforded by using percent of FC as the independent variable, there was no quantitative im

provement in the correlation coefficient for the regressions This I believe is due to the uncertainties 

that are inherent in both the TB and soil moisture values. 

DISCUSSION 

The results presented here show that there is a clear dependence of the microwave emission 

from general agricultural fields on their soil texture. This was obvious qualitatively, but not quanti

tatively since the results presented in Figure 12 do not show an improved correlation when ex

pressing soil moisture as a percent of FC compared to weight percent. However, the fact that the 

correlation did not decrease when the uncertainty of the independent variable increased by dividing 

one noisy variable, soil moisture, by another, FC, with an equal level of uncertainty indicates that 

there must be some physical significance to the approach. The reason is due to the noise, or un

certainty, that is inherent in the data used here both with the dependent variable, TB, and the 

independent variable, soil moisture. As was discussed earlier the uncertainty in the ground measure

ments of soil moisture was estimated to be 3 to 4% for soil moisture (SM) values above 10% for a 

ASM/SM = 0.2 at moisture levels of 15 to 20% Similarly the regression for FC yielded a AFC/FC 

of 0.2, the resultant uncertainty in the ratio, Z = SM/FC, then would be: 

ZC L2 I Z0.3 (10) 
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As a result a decrease would be expected in the correlation between TB and the ratio SM/FC if 

there were no significance to it, which was not the case. Thus we conclude there is some signifi

cance to using the value of FC for a soil to normalize for soil differences. 

The uncertainties ma the values of TB can be attributed to a number of causes one of which 

is the fact that the experiments were done over a several year period and involved t\¢o NASA'aircraft 

(the CV-990 in 1972&73 and the P-3A in 1975) with different instruments. In each, experiment 

the radiometers were calibrated by taking data over water targets whose TB value can be accurately 

calculated. As a result the estimated uncertainty in the TB is ±5K at the low TB range ('200K) 

and less than ±2K at the high TB range (-280K). 

A greater source of uncertainty in TB anses from the variations in the surface roughr1 0ss of 

the fields studied. Choudhury et al (1979) have shown that the effect of surface roughness 

is to increase the emissivity of the soil surface by an amount 

Ae = r. (1- exp (-h)) (11) 

where r. is the reflectivity for the smooth surface and h is an empirically determined 'dulness 

parameter which is proportional to the rms height variations of the surface, h = 0 for a smoot 1 

surface For dry fields fields, r < 0 1, the effect will be small, for wet fields 4 = 0.4, the effect, 

correspondingly larger. The data presented here were for bare fields which had surface rough

nesses determined by the agricultural practices of the two areas The dominant method of irr

gation is the flooded furrow with a furrow separation of about one meter and furrow height of 

about 20 meter. Superimposed on these corrugations were soil clods, which were generally less 

than 5 cm. For these fields the range of the parameter h, which yielded the best fit to the data was 

0.45 to 0 6. The effect of this range on the observed values of TB is given in Table 7. The range of 

Ae is less than, but still comparable, to that expected for the difference between the Yuma Sand 

and Miller Clay soils presented in Table 3, 1e. Ae = 12 Recall that this result is for an extreme range of 

soil textures, the range of textures for the fields observed ma aircraft data is perhaps, only about 2/3 

as great, so that the range of emissivity difference expected for soil textures differences is about 

the same as that expected for the uncertainity in surface roughness. As a result it is surprising that 
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the aircraft data was able to detect any soil texture dependencies and this probably was due to the, 

large amount of data that was available covering a good range of textures. 

Table 7 
Estimated effect of Roughness Variations 

h 1  exp (-h) Ae for ATB for 
r =.4 T = 300K 

0.45 .36 .14 43K 

0.60 .45 .22 66K 

It may be possible to get around this problem in field experiments in which it should'be 

possible to make the microwave measurements for fields with controlled roughnesses but different 

textures. This has been done to a certain extent in active microwave or radar experiments Pilaby, 

et al., 1979; Dobson and Ulaby, 1979) at the University of Kansas Measurements of the back

scatter coefficient uo display a similar dependence on soil texture to that presented in Figure 10. 

The slope of the ao versus soil moisture curve was greater for a loam soil than for a heavy clay 

soil but the slopes essentially agreed when the soil moistures were expressed in percent of FC. 

The fact that the regressions were performed versus the soil moisture in a 0 - 1 cm layer 

should not be taken to infer that the radiometer only responds to the moisture in this layer. The 

observed and calculated linear relationships result from the comparison of the moisture in a 

thinner layer for our ground measurements than the layer which the microwave radiometer is 

actually measuring (Barton, 1978). If the two layers were in consonnance the TB vs SM curve 

would be similar to the dielectric constant curve, i.e. approximately bi-linear behaviour with a 

region slow change in TB at low moisture levels followed by a more rapid change of TB at the 

higher moisture levels. This behaviour is observed when TB is compared with the soil moisture in 

the 2 5 and 5 cm layers of the soil (Choudhury, et at., 1979) 

The next step in this analysis will be to test the possibility that the pressure potential of the 

soil water can be inferred directly from the microwave observations. Relationships such as those 

developed by Clapp and Hoomberger (1978) can be used to estimate the pressure potential from 
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the measured soil moisture content using the known textural class of the soil This approach has 

been tied with the active microwave backscatter data obtained by the University of Kansas with 

results comparable to those obtained percent of FC for normalizing the moisture content (Dobson 

& Ulaby, 1979) 

The ability to express the moisture content in terms of a percent of FC for a soil means that 

it is not necessary to know the soil type to determine the state of the soil water from remotely 

sensed observables. An example of how this may be used directly is given in the paper by Davies 

and Allen (1973) in which they parameterized the evapotranspiration from the soil in terms of 

the percent of FC for the moisture in the 0 - 5 cm layer of the soil for either bare soil of shallow 

rooted vegetation. This analysis was extended by Barton (1979) using soil moisture data obtained 

with an airborne microwave radiometer. 

CONCLUSIONS 

Due to the differing amounts of water that can be tightly bound to soil particles there is a 

dependence of a soil's dielectric properties on its texture. Tis dependence has been observed in 

laboratory measurements of the dielectric constant of soils and in both active and passive micro

wave observations of soil moisture directly. Therefore to obtain an absolute measurement of the 

soils moisture content with a microwave remote sensor some knowledge of the moisture char

actenstics for the soil will be required. Alternatively it has been shown that the state of the 

moisture in the surface layer of the soil, expressed as a percent of FC, can be measured directly. 

This latter information may, in some applications, be more important than the absolute content. 
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