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SUMMARY 

A numerically  generated  orthogonal  coordinate  system  (with  the  body  surface 
and  shock  wave  as  opposite  boundaries)  has  been  applied  with  a  time  asymptotic 
method  to  obtain  steady-flow  solutions  for  axisymmetric  inviscid  flow  over 
several  blunt  bodies  including  spheres,  paraboloids,  ellipsoids,  hyperboloids, 
hemisphere  cylinders,  spherically  blunted  cones,  and  a  body  with  a  concavity 
in  the  stagnation  region.  Canparisons  with  experimental  data  and  the  results 
of  other  computational  methods  have  demonstrated  that  accurate  solutions  can 
be obtained  with  this  approach.  The  numerically  generated  orthogonal  coordinate 
system  used  in  the  present  paper  should  prove  useful  for  applications  to  complex 
body  shapes,  particularly  those  with  concave  regions. In addition,  the  use  of 
the  present  orthogonal  coordinate  system  simplifies  the  form  of  the  governing 
equations  and  simplifies  the  application  of  boundary  conditions  at  the  body  sur- 
face  and  shock  wave. 

INTRODUCTION 

Previous  investigations of the  direct  blunt-body  problem  have  demonstrated 
the  utility  of  treating  the  bow  shock  wave  as a  discrete  discontinuity.  (See, 
for  example,  refs. 1 to 5 . )  In  each  of  these  studies,  some  form  of  coordinate 
transformation  was  used  to  map  the  physical  space  within  the  shock  layer  into  a 
rectangular  computational  domain,  with  the  bow  shock  wave  as  one  boundary  and 
the  body  surface  as  the  opposite  boundary.  These  transformations  generally  pro- 
duce  a  nonorthogonal  coordinate  system  in  the  physical  space  which  complicates 
the  form  of  the  equations  of  motion.  However,  they  usually  produce  a  uniform 
grid  system  for  calculating  the  flow-field  solution  and  simplify  the  application 
of  the  boundary  conditions  at  the  shock  wave  and  the  body  surface. 

Recently,  Graves  (ref. 6) applied  a  method  for  numerically  generating  an 
orthogonal  coordinate  system  between  two  arbitrary  continuous  curves.  By  allow- 
ing one of the  curves  to  be  the  body  surface  and  the  other  to  be  the  bow  shock 
wave  (which  can  move  with  time),  this  method  can be used to  construct  an  orthog- 
onal  coordinate  for  solving  the  blunt-body  problem.  An  orthogonal  coordinate 
system  of  this  type  leads  to  a  much  simpler  form  of  the  equations  of  motion 
and  further  simplifies  the  application  of  boundary  conditions  at  the  body  sur- 
face  and  the  shock  wave. In addition,  this  type  of  coordinate  system  can be 
applied  to  complex  body  shapes,  including  bodies  with  concave  regions. 

The  purpose  of  the  present  paper  is  to  explore  the  application  of  the 
numerically  generated  orthogonal  coordinate  system  presented  in  reference 6 to 
flaw-field  problems.  For  this  purpose,  the  inviscid,  axisymmetric  supersonic 
flow  over  a  blunt-nose  body  will  be  investigated. 



SYMBOLS 

speed  of  sound, ;/Vm ; also  length  of  Z-axis  for  ellipse - 2  a 

Bb 
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cP 

CV 
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h3 
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Rb 
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VS 

Vn 

Vt 

bluntness  parameter 

length  of  r-axis  for  ellipse 

specific  heat  at  constant  pressure 

specific  heat  at  constant  volume 

diameter of  cylinder, i/i 
metric  coefficients  in 6- and  rl-directions, ;1/i and h z / i ,  
respectively 

metric  coefficient  in  circumferential  direction, i 3 / i  

static  enthalpy, ;/ern 
index  for  <-direction, 5 = (i - 1 ) A 5  

2 

index  in  n-direction, n = (j - 1) An 

dimensional  characteristic  length,  m 

Mach  number 

pressure, $ / E ~ G ~ ~  
body.  nose  radius, &,/i 
radius  defined  in  figure 1 , $/i 
coordinate  arc  length, g& 

time , &Ji 
velocity  component  in  [-direction, G//voD 

shock  velocity, cs/cm 
free-stream  velocity, ia/G, = 1 

dimensional  free-stream  velocity,  m/sec 

component  of  velocity  normal  to  shock  wave,  Vn/c, 

component  of  velocity  tangent  to  shock  wave,  Vt/C, 

A 

A 
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V 

Y 

AR 

velocity  component  in  n-direction, 

Cartesian  coordinate  system  (see  fig. 1 1 ,  i/i, i?/i 
location  of  pole  for I$ coordinate  (see  fig. 1) , !&/; 
shock  wave  angle 

ratio of specific  heats  cp/cv 

shock-layer  thickness  in  polar  coordinates, 

time  increment 

increment  in vcoordinate 

increment  in  <-coordinate 

<,n orthogonal  coordinate  system  (see  fig. 

P dens  it  y , fi/Ca 

0 angular  coordinate  defined  in  figure 1 

Superscripts: 

( 3  dimensional  quantity 

(-1 predicted  quantity 

Subscripts : 

max  maximum 

0 stagnation 

S shock 

00 free  stream 

METHOD OF SOLUTION 

The  problem is to  compute  the  inviscid,  axisymmetric  supersonic  flow  over 
a  blunt-nose  body.  Solutions  are  to  be  obtained  throughout  the  subsonic  region 
and  downstream  into  the  supersonic  region  (fig. 1 ) .  
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Coordinate  System 

Using  the  method  described  in  reference 6 ,  a  general  orthogonal  coordinate 
system  was  numerically  constructed  between  the  body  surface ( n  = 0) and  the  bow 
shock  wave (n = 1) extending  from  the  stagnation  streamline ( 5  = 0)  to  a  down- 
stream  outflow  boundary (5 = 1 )  located  within  the  supersonic  portion  of  the 
shock  layer  (fig. 2). The  line  element  for  this  orthogonal  coordinate  system 
(5,n) is given  by  the  equation 

where h1  is  the metric  coefficient  in  the  5-direction  and  h2 is the  metric 
coefficient  in  the  ?l-direction. 

The  5-coordinates  can  be  chosen so that  grid  points  are  equally  spaced 
along  the  body  surface  in  the  physical  plane or so that  they  may  be  concentrated 
in  regions of  large  gradients.  Similarly,  the  ?I-coordinates  can  be  chosen so 
that  grid  points  are  equally  spaced  between  the  body  and  the  shock  wave  or so 
that  they  may  be  concentrated  in  any  desired  region. However, in  both  cases 
the  grid  system is uniform  in  both  the 5- and  rl-directions  in  the  computational 
plane  (fig. 3 ) .  Any  nonuniformity  in  the  physical  plane is taken  care  of  by  the 
metric  coefficients h1 and  h2,  which  are  calculated  each  time  the  coordinate 
system  is  calculated. 

Flow-Field  Equations 

The  partial  diffedential  equations  governing  the  axisymmetric  compressi- 
ble  flow  of  an  inviscid  nonconducting  fluid  in  general  orthogonal  coordinates 
are 

Continuity: 
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6-momentum: 

pmomentum: 

The  preceding  system of equations  in  general  orthogonal  coordinates is 
much  simpler  than  the  system of equations  that is obtained if the  space  between 
the  body  and  the  shock  wave is mapped  into  a  rectangular  computational  domain 
(refs. 1 to 3 ) ,  where  the  resulting  coordinate  system  in  physical  space  is 
nonor  thogonal. 

In order  to  close  this  system  of  equations,  the  integrated  form  of  the 
steady-flow  energy  equation 

u2 + "2 
100 + 

= Io 
2 

is  used  along  with  the  ideal  gas  equation  of  state 

p = p - I  r; '> 
Steady-flow  solutions  are  obtained  by  integrating  the  system  of  equa- 

tions  (2) to (6) in time,  from  an  assumed  set of initial  conditions,  until 
steady  state  is  reached.  Since  the  integrated  form of the  energy  equation 
(eq. (5)) is  being  used,  the  results are  not  accurate  during  the  transient 
phase of the  solution.  However,  equation ( 5 )  becomes  more  accurate as the 
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steady  state  is  approached  and  the  correct  converged  steady-flow  solution is 
obtained..  Using  the  energy  equation  in  this  form  speeds  up  the  computational 
procedure. 

Along  the  stagnation  streamlines  u = h3 = 0 and ah,/ag = hl; thus  the 
u  ah3 V ah3 

h2h3 an terms - - and - - appearing  in  equation (2 )  are of the  indefinite 

form (O/O). Taking  the  limit of these  terms  as 6 -+ 0 by  using  L'H6pital's 
rule 

h1h3 35 

Thus  on  the  stagnation  line (5 = 0), the  limiting  form  of  the  continuity  equa- 
tion  (2)  becomes 
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Equations  (2)  to (9) are  written  in  nondimensional  form  using  the  following 
definition  for  the  nondimensional  variables: 

Finite-Difference  Scheme 

The  solution of the  flow  field  is  obtained  by  integrating  the  compressible, 
time-dependent  Euler  equations  described  in  the  previous  section.  The  integra- 
tion  is  carried out using  the  explicit  finite-difference  scheme of Brailovskaya 
(ref. 7)  . 

Using  the  following  computational  module 

i -  1 i i + l  

T"-t"-t j + l  
I I I 
I I I 

. 

this  two-step  difference  scheme  can  be  represented  as  follows: 
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Predictor  step: 

Corrector  step: 

t+At 
Fi,j 

where  F  can  represent p ,  u, or v. The time  derivatives  appearing  in  equa- 
tions (1 l a)  and (1 l b)  are  obtained  from  equations  (2)  to ( 4 )  . The spatial  deriv- 
atives  in  equations  (2)  to ( 4 )  are  evaluated  using  central  difference  formulas 
except  at  the  boundaries  where  three-point,  one-sided  difference  formulas  are 
used. 

The  numerical  stability  limit  for  this  difference  scheme  is  the  well-known 
CFL  condition  given  by  the  equation  (ref. 8) 

The  local  maximum  time  step  at  each  grid  point is calculated  by  using  equa- 
tion  (12),  and  then  a  fraction of the local  value  (usually 50 to 80 percent) 
is  applied  at  each  grid  point  to  advance  the  solution  in  time.  This  leads to 
an  inaccurate  representation  of  the  time-dependent  nature  of  the  .solution,  but 
it  has  been  found  to  accelerate  convergence  by  a  factor  of  approximately  1.5 
to 2 when  compared  with  using  the  minimum  global  time  step. 

Boundary  and  Initial  Conditions 

The boundary  condition  of  no  flow  normal  to  the  body  surface  is 

since  the  body  surface  is  the  inner  boundary of an  orthogonal  coordinate  system. 
The  remaining  properties  at  the  surface  are  computed  using  three-point  forward 
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differences  to  calculate  the  spatial  derivatives  in  both  the  predictor  and cor- 
rector  steps  of  the  finite-difference  scheme  described  in  the  previous  section. 

At the  outflow  boundary (5 = 1) and  the  shock  wave (n = 11, three-point 
backward  differences  (away  from  the  boundary)  are  used. At the  shock  wave,  the 
pressure  thus  calculated  is  used  with  the  shock-wave  relations  (described  in 
the  next  section)  to  calculate  the  shock  velocity  and  then  to  update  all  other 
properties  at  the  shock  wave. 

Along  the  stagnation  streamline (5 = 01, the  following  conditions  are  set: 

u = o  

and  the  remaining  derivatives  are  computed  by  taking  into  account  the  asymmetry 
in  the  u-component  of  velocity. 

To start  the  solution,  a  shock-wave  shape is assumed  and  the  shock-wave 
velocities  are  set  equal  to  zero.  Properties  at  the  shock  wave  are  computed 
from  the  shock-wave  relations.  Properties on the  body  surface  are  computed 
from  modified  Newtonian  theory,  assuming  that  the  entropy  is  constant on the 
surface.  Properties  at  a  constant  value of 5 across  the  shock  layer  are 
approximated  by  linearly  interpolating  between  the  values  at  the  shock  wave 
and  the  body  surface. 

Solution  for  Shock  Wave 

A method  similar to  that  used  by  Weilmuenster  and  Hamilton  (ref. 9) has 
been  used  to  track  the  movement  of  the  shock  wave  during  the  transient  portion 
of  the  solution. The method  can  be  summarized as follows  (details  are  given 
in  the  appendix). First  the  pressure  is  computed on the  downstream  side  of 
the  shock  wave  by  using  the  two-step  difference scheme  described  previously. 
With  the  pressure  at  the  shock  wave  ps  known,  the  density  is  computed  from 
the  equation 

1 

1 2 
Im + -(Ps - PJ 
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and  then  the  shock  velocity  is  computed  with the equation 

where V, and (Vn)oo are  defined  in  the sketches  in  the  appendix.  Next, 
the  movement  of  the  shock  wave  is  computed  from  the  following  differential 
equations: 

dZS - = V, sin Bs 
dt 

dr S 
" - -vs cos Bs 
dt 

where 

Bs = tan'l (drs/dZ) 

by using  the  following  two-step  finite-difference  approximations: 

Predictor  step: 

- 
(~,)t+~~ = z: + At (vS sin Bs) 

(rs)t+At = r k  - At(vs cos 6,) 
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Corrector  step: 

The coordinate  system  generator  is  used  to  update  the  shock  wave  after 
the  predictor step  and  the  entire  coordinate  system  after  the  corrector  step. 
AS the  solution  approaches  convergence,  the  shock  velocity  approaches  zero 
and  the  shock  wave  remains  essentially  fixed  in  space.  The  shock  velocities 
at  convergence  are  generally  less  than  in  magnitude. 

Convergence  and  Computational Time 

The average  change  in  density  from  one  time  step  to  the  next  was  used  to 
determine  convergence.  Based on the  results  of  several  test  cases,  it  was  found 
that  the  solution  was  converged  when  the  average  change  in  density  was  less  than 
2 x 1 Om5. For  the  cases  presented  in  the  present  paper,  this  generally  required 
from 400 to 600 time  steps. 

From  timing  studies on the  Control  Data  CYBER 175 computer  system,  it  has 
been  found  that  approximately 3.4 x 1 0-4 sec/point/step  were  required to  compute 
the  flow  field  and  approximately 7.8 x 1 0-4 sec/point/step  were  required to  com- 
pute  the  coordinate  system. Thus, in  the  present  nonoptimized  computer code, 
approximately 70 percent  of  the  time  is  spent  computing  the  coordinate  system. 
One obvious  method  of  improving  the  overall  efficiency  is  to  update  the  coordi- 
nate  system  less  frequently.  For  example,  it  is  possible  to  update  the  shock 
wave  after  each  time  step  and  hold  the  remainder  of  the  coordinate  system  fixed 
for  several  time  steps  before  recomputing. This would  greatly  reduce  the  per- 
centage  of  computational  time  spent on generating  the  coordinate  system. 

Body  Geometry 

Most  of  the  body  geometrics  that  are  considered  in  the  present  paper 
have  a  projection  in  the 2,? plane  that  is  described  by  the  equation  for 
a  general  conic  section 
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where Rb 
eter . The 
section. 

I\ 

generates 

is  the  radius of curvature  at z  ̂ = 0 and Bb is  a  bluntness  param- 
I bluntness  parameter  Bb  characterizes  the  eccentricity  of  the  conic 
Its  significance  is  better  understood  if  it  is  noted  that  Bb < 0 
a  hyperbola, Bb = o generates  a  parabola,  and Bb > o generates  an 

ellipse  (with  Bb = 1 for  the  special  case  of  a  circle).  For  an  ellipse, Bb 
is related  to  the  ratio  of  major  to  minor  axis (b/a)  by  the  relation 

Some  of  the  body  shapes  considered  in  the  present  paper  were  spherically  blunted 
cones.  These  body  shapes  were  generated  using  equation (20 )  for  the  nose,  with 
Bb = 1 ,  followed  by  a  straight-line  segment  tangent  to  the  nose  at  the  appro- 
pr  iate  cone  angle. 

One  body  shape  considered  had  a  reverse  curvature  at  the  nose  matched 
to  a 30° conical  afterbody  at  the  point 9 = 0 and r = 1 and  defined  by 
the  equation 

0 

RESULTS AND DISCUSSION 

In  this  section,  results  of  computation  by  the  present  method  are  compared 
with  experimental  data  and  with  the  results  of  other  computational  methods to 
demonstrate  the  applicability of the  numerically  generated  orthogonal  coordi- 
nate  system  of  reference 6 for  flow-field  calculations. 

Sphere 

Pressure  distributions  over  a  sphere  for y = 1.4  are  presented  in  fig- 
ure 4 for  free-stream  Mach  numbers  of 2, 3, 4, 6.05, and 8.06. Experimental 
data  from  reference 10 and  computed  results  from  reference 3 are  presented  for 
comparison.  The  surface  pressures  calculated  by  the  present  method  agree  well 
with  the  other  results  for  each  Mach  number  considered. 

The  shock-layer  thickness  for  these  conditions  is  presented  in  figure 5. 
The  agreement  with  the  other  results is excellent  except  at M, = 2 where  the 
experimental  data  fall  slightly  below  the  calculated  results.  Since  shock-layer 
thickness  changes  rapidly  at  low  Mach  numbers,  this  behavior  could  easily  be  due 
to  a  small  change  in  the  effective  Mach  number  for  the  experimental  tests  which 
would  change  the  shock-layer  thickness  but  would  have  little  effect  on  the  mea- 
sured  pressure  distribution. 
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The calculated  shock-wave  shape  and  sonic-line  location  about  a  sphere at 
y = 1 . 4  are  presented  in  figure 6 for  free-stream  Mach  numbers of 6 . 8  and 4.76.  
Experimental  data  from  references 11 and 1 2  are  presented  for  comparison. For 
both  conditions,  the  agreement  with  the  experimental  data  is  very  good. 

Paraboloid 

The calculated  surface  pressure  distributions  over  a  paraboloid  at 
y = 1 . 4  are  presented  in  figure 7 for  Mach  numbers of 3 and 10.  Calculated 
results  from  references 3 and 1 3  are  included  for  comparison. The results 
of the  present  calculation  are  in  very  good  agreement  with  the  other  calcu- 
lated  results . 

The  shock-layer  thicknesses  for  these  conditions  are  compared  in  figure 8 
where,  again,  excellent  agreement  with  the  results of references 3 and 13 will 
be  noted. 

Ellipsoid 

Pressure  distributions  for  an  ellipsoid  with b/a = 0 . 5  and y = 1.4  are 
presented  in  figure 9 for  Mach  numbers of 4,   6 .05,  and 8.06.  Experimental  data 
from  reference 1 0  and  calculated  results  from  reference 3 are  presented for com- 
parison.  The  present  calculated  results  agree  closely  with  the  other  data  for 
each  Mach  number. 

Pressure  distributions  for  an  ellipsoid  with b/a = 1 . 5  and y = 1 . 4  are 
presented  in  figure 1 0  for  Mach  numbers of 3 ,  4,   6 .05,  and 8.06. Experimental 
data  from  reference 1 0  and  calculated  results  from  reference 3 are  presented 
for comparison. The  present  calculated  results  agree  closely  with  the  other 
data  for  each  Mach  number. 

Shock-layer  thickness  for  these  conditions  is  presented  in  figure 11 for 
Mach  numbers of 3 and 8.06 .  For each  Mach  number,  the  present  calculated 
results  agree  closely  with  the  other  data. 

The shock-wave  shape  and  sonic-line  location  about  an  ellipsoid  with 
b/a = 112 are  presented  in  figure 1 2  for y = 1 . 4  and M, = 6 . 8 .  Experi- 
mental  results  from  reference 11 are  included  for  a  comparison. The present 
computed  results  are  in  excellent  agreement  with  the  experimental  results 
of reference 11 . 

Hyperboloid 

The shock-wave  shape  and  sonic-line  location  about  a 39,37O hyperboloid 
at M, = 6.8  and y = 1 . 4  are  compared  with  experimental  data  from  refer- 
ence 11 (fig. 1 3 ) .  The  present  calculated  results  are  in  very  good  agreement 
with  the  experimental  data. 
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Hemisphere  Cylinder 

Pressure d i s t r i b u t i o n s  on a hemisphere  cyl inder   for  y = 1 . 4  are presented  
i n   f i g u r e  14  for free-stream Mach numbers of 3,  4.03, 5.06,  and 6.03. Experi- 
mental  results from  reference 1 4  are presented  for   comparison.  The c a l c u l a t e d  
results are in   exce l len t   agreement   wi th   the   exper imenta l   da ta   except  a t  t h e  
h ighes t  Mach number (M, = 6 .03 )  where  the results tend  to d e v i a t e   s l i g h t l y  a t  
t h e  downstream l o c a t i o n s .  The r e a s o n   f o r   t h i s   d e v i a t i o n  is not  known; however, 
a similar t r end  was no ted   i n   r e f e rence  14.  

Shock-wave shapes   for   these   condi t ions  are p r e s e n t e d   i n   f i g u r e  15  where 
excel lent   agreement   with  the  experimental  data is shown. 

Spher ica l ly   Blunted  Cone 

The ca l cu la t ed  shock-wave shape  about a s p h e r i c a l l y   b l u n t e d  30° half-angle  
cone in   he l ium (y = 5/3) a t  M, = 20.3 is p r e s e n t e d   i n   f i g u r e  16 and is com- 
pared  with  experimental   data  from  reference 15. The agreement  between  the cal- 
culated  and  experimental   data  is exce l l en t .  The c a l c u l a t e d   d r a g   c o e f f i c i e n t   f o r  
t h i s  case is 0.5589, which  compares  favorably  with  the  measured  value  of 0.5540. 

The next  case considered is a s p h e r i c a l l y   b l u n t e d ,  60° half-angle   cone  in  
a i r  (y = 1 .4 )  a t  a free-s t ream Mach number of 4.63. For t h i s   l a r g e   h a l f - a n g l e  
cone ,   son ic   cond i t ions   ex i s t  on the   cone   sur face  a t  t h e  downstream  corner. 
These  conditions were imposed  simply by f i x i n g   t h e   c o r n e r   s u r f a c e   p r e s s u r e  a t  
the   sonic   va lue   and   car ry ing   ou t   the   remainder   o f   the   ca lcu la t ion   in   the  u s u a l  
manner. The results f o r   t h i s  case are p r e s e n t e d   i n   f i g u r e s  1 7  and 1 8 ,  along 
with  experimental  data from  reference 16 for  comparison. As i l l u s t r a t e d   i n  
f i g u r e  17 ,  t h e   s o n i c   l i n e   f o r   t h i s  case extends  beyond t h e  l a s t  g r i d   l i n e  so 
t h a t   t h e   e n t i r e   s u b s o n i c   r e g i o n  is not   enclosed  within  the  computat ional   space.  
Al though  th i s   can   l ead  to c o m p u t a t i o n a l   d i f f i c u l t i e s ,  it d i d   n o t   i n   t h e   p r e s e n t  
case, and  the resul ts  obta ined  are i n  good agreement  with  the  experimental   data.  
(See   f igs .  17 and 1 8 . )  

Reverse  Curvature Body 

The f i n a l  case considered is a r eve r se   cu rva tu re  body with a nose  shape 
(def ined by eq. ( 2 2 ) )  matched to a 30° con ica l   a f t e rbody .   Th i s  is a body shape 
tha t   migh t  resu l t  f rom  ab la t ion   in   the   s tagnat ion   reg ion   due  to  high  heat ing 
rates (as, for  example, on a p l ane ta ry   p robe ) .  The converged  coordinate  system 
a s s o c i a t e d   w i t h   t h i s   c o n f i g u r a t i o n  is shown i n   f i g u r e  19;  t h e  shock-wave shape 
and  sonic- l ine  locat ion are shown i n   f i g u r e  20; and   the   sur face   p ressure  d i s t r i -  
but ion is shown i n   f i g u r e  21. S ince  no known exper imenta l   da ta  or t h e o r e t i c a l  
resul ts  are a v a i l a b l e   o n   t h i s   t y p e  body shape  for   comparison,   these  resul ts  are 
included  here   only to i l lustrate  the   t ype  of complex  body shape for which a flow 
f i e l d   c a n  be  computed with  the  numerical ly   generated  coordinate   system  of   refer-  
ence 6 .  I n   f a c t ,  i t  is wi th   th i s   type   o f  complex  body shape   t ha t  i t  is an t ic i -  
pa ted   tha t   the   numer ica l ly   genera ted   o r thogonal   coord ina te   o f   re fe rence  6 w i l l  
be most u s e f u l .  
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It should be noted  that a nonuniform  spacing of grid  points on the  surface 
has  been  used  in  order  to  concentrate  points  in  the  expansion  region  near  the 
beginning of the  conical  afterbody. This is  a  very  useful  feature  of  this coor- 
dinate  system  since  any  nonuniformity  in  the  physical  spacing  of  grid  points  is 
accounted  for  through  the  metric  coefficients. 

CONCLUDING REMARKS 

A numerically  generated  orthogonal  coordinate  system  (with  the  body  sur- 
face  and  shock  wave as opposite  boundaries)  has  been  applied  with  a  time  asymp- 
totic  method  to  obtain  steady-flow  solutions  for  axisymmetric  inviscid  flow 
over  several  blunt  bodies  including  spheres,  paraboloids,  ellipsoids,  hyper- 
boloids,  hemisphere  cylinders,  spherically  blunted  cones,  and  a  body  with  a 
concavity  in  the  stagnation  region.  Comparisons  with  experimental  data  and 
the  results  of  other  computational  methods  have  demonstrated  that  accurate  solu- 
tions  can  be  obtained  using  this  approach. The numerically  generated  orthogonal 
coordinate  system  used  in  the  present  paper  should  prove  useful  for  applications 
to  complex  body  shapes,  particularly  those  with  concave  regions. In addition, 
the  use of the  present  orthogonal  coordinate  system  simplifies  the  form  of  the 
governing  equations  and  simplifies  the  application  of  boundary  conditions  at  the 
body  surf  ace  and  shock  wave. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton,  VA 23665 
January 22, 1980 
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APPENDIX 

CALCULATION OF PROPERTIES AT SHOCK WAVE 

A method similar t o  t h a t   p r e s e n t e d   i n   r e f e r e n c e  9 has  been  used to  calcu- 
l a t e  the  shock  velocity  and  other  thermodynamic properties a t  the  shock wave 
from the  pressure.   Consider   the  shock wave i l l u s t r a t e d   i n   s k e t c h  (a)  which  can 
be  expressed as a f u n c t i o n  of Z,rs = rs(Z) 

Shock wave 

Sketch (a) 

The  shock-wave ang le  Bs is given by the   equa t ion  

Bs = tan"  (drs/dZ) (A1 1 

and  the  components  of  free-stream  velocity  tangent  and  normal to  the  shock 
wave are g iven ,   r e spec t ive ly ,  by the   equa t ions  

1 6  



APPENDIX 

Changes i n  properties  across  the shock wave can be related  to  the normal 
component  of free-stream  velocity and the shock velocity,  as  illustrated i n  
sketch (b) . 

Pm 

Pm 

11- vs 

IS 

/ Shock wave - vs 

PS 

IS 

Conditions  across  the shock wave can  be related by the  following normal  shock- 
wave equation  (since p, = 1 ) : 

Now, rearranging  equation ( A 5 ) ,  the  following  expression can be obtained: 

17 



APPENDIX 

Combining  this  equation  with  equation (A4) and  solving for [(Vn), - VSl2, 
the  following  result  is  obtained 

Similarly  equation (A6) becomes 

Equations (A8) and (A9) can  be  combined  with  the  ideal  gas  equation  of  state 

p = Pr+,I to  yield  the  following  result: 

1 

1 

2 
I, + -(Ps - Pw) 

Using  this  result,  equation (A8) can  be  solved  for  the  shock  velocity V, 

Using  equation (A4), (V,) is obtained 

I -  - 

(A1 0 )  

18 



APPEND1 X 

Thus,  the  components of velocity  downstream of the  shock  wave  are  simply 

v = (Vn)s (A1 4 )  

since  the  shock  wave is the  outer  boundary of an orthogonal  coordinate system. 

19 
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Figure 1.- Cartesian  coordinate system. 

= o  

Figure 2.- Orthogonal  coordinate system in physical space. 
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Figure 4.- Pressure  distribution on sphere. Zp/Rb = 1.0; y = 1.4. 
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Figure 19.- Coordinate  system on reverse  curvature body. 
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Figure 20.- Shock-wave shape and  sonic-line location on reverse 
curvature body. M, = 10; y = 1 . 4 .  

57 



1.0r 
21 x 15 g r i d  

0 

0 

0 

Figure 21.- Pressure distribution on reverse curvature body. 
M, = IO; y = 1 . 4 ;  zp = 1.0. 
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