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Structural Analysis of Hollow Blades
(Torsional Stress Analysis of Hollow Fan Blades for
Aircraft Jet BEngines)

By A. Ogawa, Y. Sofue and T. Isobe
National Aerospace Laboratory

1 Preface /1%
In recent years the trend in fanjet engines has been to greater
size and thrust, and in line with this the daimeter of fan blades
has increased and, since out of considerations of strength and rigid-
ity the fan chord length has also increased, there has been an over-
all trend to greater size. This enlargement of the fan blades neces-
sarily led to the thickening of the fan shaft which must withstand
the centrifugal forces, and the weight of other components is also
increased by the same influences. Since such an increase in weight
causes a considerable lowering of performance in the case of an en-~
gine for aircraft use, the hollowing of the fan blades becomes neces=
sary. Experimental fan blades have already been tested in this lab-
oratory with the aim of studying such light weight hollow blade con-
struction to increase their trustworthiness in respect to structural
strength [1,7]. Here we report the results of a study, using numerical
analysis by the finite element method, of the effects of the hollow-
ing of fan blades on strength and rigidity.

For the load, we have assumed a torque load arising from a com-
ponent of the centrifugal force. Considering this a St Venant tor-
sion problem, the method of analysis is nvrmerical analysis by the
finite element method, according to the procedures of Kawai and Yoshi-
mura. On this occasion, partly to increase the refinement of the
calculation and partly because of the complexity of the hollowed sec-
tions, a situation gradvally developed in which the number of divis-
ions exceeded one thousand. when the number of divisions became so

*Numbers in the margin indicate pagination in the original text.



large, the production of data and checking of errors became too
much for human strength, so we decided to devise a two dimensional
diagram automatic dividing program to make the process easier.

In order to obtain data for the hollowing configuration most
suitable from the perspective of strength and torsional rigidity,
we analyzed models in which reinforcing webs were placed in the hol-
lowed section in varying numbers and locations.

As the result of investigation mainly concerning the location
and number of webs in relation to torsional rigidity and the conver-
gence of stresses, we have obtained data concerning the optimum loc-
ations for webs. From analysis of many models, we have obtained a
forcast of 30% hollowing against torsional loadings.

2 Methods of Analysis

2.1 Load Digtributions and the Modelling of Blades

The shape and dimensions of experimental fan blade F-10 are
shown in Figure 1. In the distance of 260mm between blade root and
blade tip there is a twist of about 37%. The fan blade can have a
pin-joint coupling or a double tail coupling, and the bending moment
due to air pressure is calculated to be balanced by the centrifugal
force.

Stress caused by torque as a component of centrifugal force
principally arises in the fan blade [1]. Figure 2 shows the analysis
of the torque.

In a case where the fan blade and the torque are as in Figures
1 and 2, then for a 1igorous stress analysis a three dimensional
elastic analysis would be necessary, but as an approxima tion we have
analyzed the one face of the blade where the torque is greatest as
a St Venant two dimensional torsion problem [2].
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{1 Key: a cross section of
analysis
b torque

Figure 1. Experimental
Fan Blade.

We assumed the lengtn of the fan blade to be infinite and the
cross section uniform.

For this cross section we take a cross section of the fan blade
at the location where the torque is greatest. And, since we take it
that the effect of the fastening of the blade root is to increase
rigidity, we consider that the result of the above mentioned treat-
ment as a St Venant two dimensional problem will be a safe approach.

2.2 Configuration of the Hollow Blades

When establishing the configuration of the hollowing, one deter~-
mines the percentage of hollowing as given in the following formula.
hollow cross section area

blade cross section area (Includ- X 100
ing hollow portion)

percemage of hollowing =

The result of an evaluation employing an approximate analysis
by membrane theory is that in the case of such a model as in Figure
3, where the percentage of hollowing is made about 30%, the maximum
stress will be less than 10kg/mm2.



From this we established the
percentsze of hollowing at 30%, and
Chord ___%?MIﬂwﬂﬂhw carried out analysis of the models
E::g§§5§j:7 "Chord shown in Table 1, where the number
- T fiee - and location of reinforcing webs
Figure 3. An Exaaple of in the hollowed section were varied.
2}?:}132 zigg;)Model (mat- Ig Table 1 the designation, number
Key: a radius at tip of of elements, percentage of hollowing,
hollow section and number of node points are shown
for each analytical model. In Figure
4 (a)=(j),the configuration of each
model is shown as a mosaic of driangular elements of the finite element
method.

aski

Since the cross section analyzed is symmetrical about the Y
axis, analysis was carried out only for the right hand half.

The thickness of the reinforcing webs is 2mm, the radius of
the joints between web and chord is O.6mm and the radius of the tip
of the hollowed section is 0.2mm, except in the case of the webless
model OB. As the number of webs is increased, the thickness of the
chord must be reduced slightly to keep the percentage of hollowing
and the web thickness constant. Because of this, the situation must
be considered in which a decrease in rigidity and an increase in stress
due to the decrease in chord thickness which exceeds the reinforcing
effect of the webs becomes a problem. The web thickness of 2mm was /H
selected in relation to considerations of manufacture.

Finally, the percentage of hollowing was intended to be 30%,
but this became difficult to maintain uniformly due to the complexity
of the configuration, and there is a variation of I 1%.
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TABLE 1. THE ANALYXTICAL MODELS

Rumber Model Descriptiion Croas Hollow~ Elements Node
of Webs Section ing Points
Area (mm)
Solid solid model 367.0% 0 233 153
° oa tip radius O.témm 25582 30.28 71| 457]
op ! v " 0.5mm " zse3¢ 30.18 . 129 455
N 1A ge‘o gentered rrrYry! 3042 92y, ' 968
S webs
zZA y 30.93
PR S webs at optima  E33SL 863f 5868}
Opt webs centered 25744 2887 1229 734
s g b et
3a webs even 25782 29.76 1103 668
3 | 38 webs near tips 725038 | 296% 1103 668
ac T webs 25790 2972 1094 663
7 TA 26018 29312 1453 868
r . ) 3 - .
o 4 "‘J"‘"‘wv.,.,.].._J _]

o

Figure 4(a). Solid Blade Model (solid)

Pigure 4(d). 1 Web Model (1A)



Figure 4(e). 2 Web Model (24)

Pigure 4(f). 2 Web Model (QPT)

Figure 4(g). 3 Web Model (34)

i‘,‘v

\!\\‘:

~

v

Figure 4(h). 3 Web Model (3B)

Figure 4(i). 3 Web Model (3C)

)

Figure 4(j). 7 Web Model (7A

/5

Dimension Torsional Stress Analysis using the

2.% Technigue of Two
Finite Element Meth

od

——

The problem of torsion across a bar of uniform cross section,
based on the theory of St Venant, is solved by the method of Kawai [3]
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Yoshimura using finite elements.

There is demarcated a section from the bar of uniform cross
section of a length of 1 unit in the direction of the axis, as shown
in Pigure 5(a), and then a system of right angle coordinates js es-
tablished, as in the figure. Next it is modelled as a mesh of tri-
angular elements as shown in Figure 5(b).

A triangula ~lement ijk is shown in

© Pigure 6. The displacement (u,v,w) of
. a given point P within this elesment can
8533? be generally determined, according to-
’,j St Venant's theory, as follows.

) a r=—@yz2 (20 1)
Figure 5. Modelling a v=0rz
Bar of Uniform Cross bl ) (2.2)
Section vy (2.3)
Key: a modelling Here @ is designated "percentage
. of torsion.
5 59,0
- As is clear from the above equations,
u and v of the given point P within the
" _— element may be determined airectly from

the x,y coordinatcs given @, and so col-
umn vector d of the displacement of the
the node point of a triangular finite
element may be simplified to the follow-
. ing component.
- d={0. v, . w,- ' (2.4)
Figure 6, A Triangular

Finite Element (Here superscript T shows the dis-
placement matrix.)

The column vector ¥ of the node point stress corresponding to
is as follows.
f={m 2. 5. 0l (2.5)
Here Zys zj, 2, are the node point stres in direction Z of points
i, 3§, k, and m, is the torque applied to the triangular element.



Next, w is solely dependent on x,y, as shown in equation (2.3),

and so0 it is assumed to be as follows.

w=dy+aQxt By

(2.6)

Since this calculation given above is carried out in the same
way as an ordinary rigidity matrix (4], only the results will be

shown.
[0 1,0,0.0] (8
w'»: D, Lux .y, @, ~d-Ta
w, 0, l..z',.y, a,
lllg‘ 0. l-.tg y‘ aa
[ 24. 0 0
*a‘ >=_l__ 0 'xly.-xkylox.y'_x'y. 'x‘yl-x)y'
Gl 2410 55 . onow
\ﬂs‘ 9, .l‘t".l'l , I T X
0
“L o a=T'd

wy

W

(2.7)

(2.8)

Here A is the area of the base of the triangular element.

The Relation between Distortion and a

€,=€_,=E,='rq=0

Ou  Ou
'« —?z +-a—x=—0,+d!
00 L
T,,-az ay— x 3

That is,

The Relation between Stress and Distortion
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G = shearing elasticity constant

() o e
Ty: 0.1 r,x
The Rigidity Matrix (k8]
&) = (VDN drdyaz = ([ VDN ardy (2.11)
Here N-BT™
Table 2 shows the components of [Ké].
TABLE 2. ELEMENT RIGIDITY MATRIX (K')=IK,}
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Here A = triangular area

G = shearing elasticity constant

(r,+ur, tr,)

i

xy =

)
© Yo (y.+y}+y.)

Method of Torsional Analysis over all Cross Sections

By rearranging and combining the triangular element rigidity
matrix to be found in Table 2, a rigidity matrix for all cross sec-

tions may be obtained.

In this case all finite element rigidity



matrices cintain the same displacement component &, which differs
from the general case.

The equation for rigidity over all cross sections becomes as
follows.,

[ 2\ INED

2 : - H

23 (K4) ;’(K,an ws

1 i b= 1: L (2.12)
n i w,

Ml | k) D Ke | \ g |

Here M.=.§l m, becomes the torque over all cross sections.

When (;)=(z z-z0. (0 =lw o ~w) ¢ then from equation (2.12)

(2) = (K, (0} + 0 K,p) (2.13)
and since there is no external force applied in the Z direction
Iz'=0 (2.14)

and consequently (2.13) becomes
-0 (Kw) = (KJ) o) (2.15)
and from (2.12) one obtains the following equation for M, and /7

M‘:(Kla)r'W)+K00:[‘Km’r|';|+K"Jﬂ (2.16)

Solving equation (2.15) for % and inserting the result in equa-
tion (2.16) one can calculate g.

2.4 Bending Rigidity

The two dimensional moments over the cross sections of the models
of Table 1 are obtained by calculating individually for the triangular
elements then adding them at the center of gravity coordinates over
the whole cross section.,

In triangular element ABC (Figure 7), take the center of gravity
G as the point of generation and consider a local cmordinate system
X,y in relation to the X axis parallel to the base.

10



The two dimensional cross section
L/ moment in relation to the X,Y coordinates
becomes as follows.

b Ao h?
lu kS 2 =
G 1Q’C~‘.’.’.L¥.)’H‘ﬂt‘ S,u%cdd 18

3. %))
(@®+ %4 o2)- 242
36

1, =SA£dA=.4ox

A
Lo = dA=A x Xah
i S:\Aicy ’ 12

NG+
S H o= ah d d erent
Pigure 7. Calculation of Two  aonc % + 44 is differential
dimensional cross section mo-

ment for triangular element

ABC, Transform the above equations in
terms of the basic X,Y coordinate system.

I L oemily 1,, vt 2l smlcosl 4+ 4413
Iyy = 1, 5?0 + 1,y cos?8 + 2/, sm0cosd - gy 57

I —(,) I smbcos 04 /,,(rus"'ﬁ sin’d)

+ Ao Xo Yo

lhe center of gravity for all cross sections was taken as the
point of generation of the basic coordinate system. Since the models
of Figure 4 are symmetrical about the Y axis, the X and Y axes become
inertial shafts.

3 Construction of Data for Applied Force

The model of Figure 3 is divided into blocks as in Figure 8.

ye

— The blocks are simple connected

TTITORC
3_1\ —_
B;i;jil%‘Q:l;iSZ?TQX:IZ::D tevritories made up from four or more

< node points. These blocks are trans-
Figure 8. Example of the formed into square regions using a
division of a model into suitable mapping function. Thus Fig-
blocks. ure 9(a) is transformed into Figure

9(b). The black dots along the sides indicate the node points,
Normally, on being transformed into a square, the left and lower

11



M, M,

( 0.0\1 B N &

Figure 9(a). Example of Figure 9(b). Mapping of
automatic division a block on planes » «nd

Key: a arc g,

sides will have fewer node points than the opposite sides. When
N1,M1,N2,M2 respectively represent the numbers of node points on
the sides,

My <Ngy My <My

In order to divide the above squares into the required triangles,
use the following procedure.

(1) Divide the block in*» (N1-1)X(Ma-1) smaller blocks by lines
drawn through the node points on ‘he left and lower sides (refer to
Figure 9(c)).

i (2) Divide the horizontal lines
by provisional node points as if the
as 1f the node points increased direc-
tly from N, to N, (in Figure 9(d) shown
M, by o). Divide the vertical lines in
the same way with provisional node points
as 1f they increased directly from M1
L to M, (1n Figure 9(e) shown My x).

N
iigare 9(c). Divisidn
of a block by vertical (3) The provisional node points

and horizontal lines. on both the horizontal and ver*ical lines
are shown simultaneousldy j.. Figure 9(f).

M

12

/8



N4 &

Figure 9\d). bistribu-
tion of provisicnal node
points on horizontal

lines ( »1/4, 1/2, 3/4).

. - LB
Figure 9(e). Distribu-
tion of provisional node

oints on vertical lines

= 1/3, 2/3).
L]
j' M
1
5 !
% >--—--a0—-§--—-0-—--:‘—.——---4
! i
' |
1 i .
2 b ommm e ? ......... '5 ________
! '
B e
1 :
] 1
) )
s N d
b 3 ¢

Figure 9(f). Distribu-
tion of provisional node
points.

There are 7 provisional node
on this diagram with the symbol o,
and 8 provisional node points with
the symbol x. There are 6 intersec-
tions between the vertical and hori-
gontal lines. Combine the o symbol
and the x symbol provisional node
points closest to an intersection o~
the vertical and horigzontal lines to
make one real node point (caiculate
distance in terms of the original
X,Y plane).

In Figure 9(f), the provisional /9
node points closest to intersection
Q are A and B (by chance, B and Q
coincide), and take their coordinates
as A ggA,yl), B (EB,OB) whereupon the
coordinates of the new real node point
become (45,%,). In this case the new
real node point coincides with A. The
intersection point between vertical and
horizontal lines Q is moved to the real
node point.

In Figure 9(g), scanning the inter-
section points starting in the lower
left corner, determine the real node
point x for intersection U, the third
one. Provisional node points C and S
are combined to form x. Simkce inter-
section point U is moved to X, provis-
ional node point D, and so on, is
moved to D', and so0 on, on the new
horizontal line. Provisional node
point T is moved to T' where it be-
comes the real node point. The re-
maining uncombined provisional ncde



Figure 9(g). Deter-
mination of real node
points.

)

¥

Figure 9(h). First
division into blocks,

47

Figure 9(i). rinal’
divisior into blokks.

points become real node points on the
sides. Move intersection W by the same
operation,

(4) Figure 9(h) is the situation
vhen these operations have been completed
for all intersections. The original block
has been divided into 12 smaller blocks.
Next repeat steps (1)-(3) for each small
block wherever it is possible to carry
out this kind of subdivision (where M
and N1 are greater than 2).

1

(S5) when thé above blocks cannot
be further subdivided, divide these blocks
into triangles (Figure 9(i)). Choose the
shortest paths for the dividing diagonal
lines.

When the division of the block is
completed as above, return i% to its ori-
ginal form by reverse mapping (see Figure

9(3)).

This method has the followihg advan-
tages compared to the older methods [5,6].

(i) 1t is not necessary for node
points on opposite sides to be equal in
number.

(i1) As seen in Figure 9(j) the
dividing lines are bent and bias in the
dividing pattern is slight.

However, because of the following limitations further improve-

ment is necessary.

14



Figure 9(j).
Completion of stood at a glance.

subdivision re-
turned to the

When the density of the distribution of
node points on a given side is such that it be-
comes uneven, a tias is developed in the distribu-
tion pattern when the metnod of distributing pro-
visional node points using straight lines is used.

[ e e The entry of data is in a free format form,
T since there is little data and it can be under-

The entry of data for the
the automatic example presentéd above is showrn as Figure 8(a).

X,Y plane by Results of the An sis

reverse mapping
(28 node points,
36 elements).

() AUTO PARTITION EXAMPLE title

2 -0.0. 0.0

® A 0 node point

@ B=30. 0 name and co-
@ €-35 60 ordinate data

& D--10 40

-3
© A>8 state of sides
M B>C~-6740. 30

and number of

@ C>D=-5710, 55 divisions

W DPSA-400 20

¥ UNITNO. L = AR CD definition of
block no. 1

a0 END end of data

Figure 8(a}; BEntry list for example
of uutomatic division.

Data entries 7 - 9 show that the sides
are arcs. The arc is defined by the
end points and the point whose coordji-
nates are given after the /.. THe en-
tries are in a free format form.

Table 3.

4.1 Rigidity

tion.

The results of the ana}¥sis are given in

Torsional rigidity in
the table, J, is a value de-
fined by the following equa=-

M, =100

Here M_ is torque (kg-m)
J 1is torsional rigi-
dity (m-mm/rad)

G is shearing elas-
ticity constant
(kg/mm)

is torsion percen-

tage (
length

)

er unit
(rad/mm)

30% hollowing produces about a 13-16% decrease in torsional rig-
idity compared to a solid blade, but per unit area hollowing produces

Wwe think this result from
hollowing satisfactory. With a 0% hollowed cylinder taken as the

ideal case, the torsional rigidity per unit area would increase 30%.

a 20-24% increase in torsional rigidity.

15
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TABLE 3., RESULTS OF THE ANALYSIS

Model 2 Dimension Torsional Torsiocnal Greatest Greatest

Bending Rigidity Rigidity Displacement Shearing
Moment I J per Unit in Direction Stress
area of Axis
Solid 111888" see ] oaTe™ 033¥1 ™ Y
oA 996.58 2548 09956 04622 80+
o8 98870 2609 Lo18 04521 7564
1A 100468 2552 09992 04629 7775
2A 98994 2585 1.019 04498 7905
opt 102038 2661 1034 0.4588 7337
7Y 99676 2611 | 1013 [ oad07 8220
| 38 99038 2636 1820 04415 8005
ic 99328 2660 1.031 04400 ; 2679
1A 990.72 2592 | 09942 04499 (| s229 |

*inf;ired fiom
stress distri-
bution

Mt = 3.65 kg-m

The two dimensional cross section moment decreases 10-11% but
is increased 27-29% per unit area. In the case of bernding rigidity
the results obtained were higher than for torsional rigidity, becanse
of the difference in the stress distributions.

The reinforcing webs had no influence on torsional rigid- j
or bending rigidity. As related below, the webs have the effect
of breaking up concentrations of stress and their influence on such
large scale values as rigidity is slight. However, properly located,
they increase the torsional rigidity per unit area about 5%. For
any cross section area (that is, percentage of hollowing) attachment
of a web causes two opposing tendencies with respect to torsional
rigidity, a balance between one which increases resistance to dis-
placement along the axis established by the reinforcing web, and
another which lowers strength because of the decrease in thickness
of the blade surface material. The cases of 2 or 3 webs gave the
highest rigidity, compared to either O or 7 webs. And, locating the
webs near the ends gave better results than locations in the center.

The torsional distortion of a hollow blade is shown in Figure
10. In the figure the distortion is greatly exaggerated. There
is a slippage between the distoriion of the upper and lower plates

16
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Figure !0. Torsional
distort:on of a hollow
blade (i odel 7A) (view
of a ¢cr ss section of
tle blace at an angle
of 70%)

hey: a torsional dis-
tortion
b before distor-
tion

|

o )pe)

|
.l
|

2.5
AR ~i10Tmn [ X1]

D RANMTYI-——~

Figure 11. C(reatest axial
distortion and *o '‘sional
rigidity.

Key: a torsional rigi-
diuy

b greatest axial
discortion

in the direction of the axis, and
because of this there is a shearing
distortion in the direction of the
axes of the webs. The distortion of
the lower plate is considerable.
Ove.’all the tips of the hollow blades
show the greatest axial displacement.
The relationship between this greatest
distortion and torsional rigidity is
shown in Figure 11. The general trend
is a linear relationship between tor-
sional rigidity and greatest distortion
in the axial direction, the less the
axial distortion, the greater the tor-
sional rigidity.

Because of this it is felt that an
oblique web configuration as in Figure
12 would be the most successful.

The role of the webs in the case
of the parallel webs analyzed here is
principally, as seen in Figure 10, to
resist distortion in the direction of
the axis in the upper and lower plates
of the blade. That is, to the extent
that there is a differential distortion
between the upper and lower plates,
the webs will come under a load and
move. In the center part, because of
symmetry, there is no difference in
distortion, but this increases approac-
hing the tips, then becomes zero at
the spot where the upper and lower
plates meet. The location where paral=-
lel webs will have the greatest effect
is near this area.

/1



4.2 Concerning the Distribution of Stresses

The flow of overall shearing stress r-Jiivr:.
is shown in Figure i3(a)-(e). The direction arrows
in the figures are plotted for each element and /12
show the direction of the slow of shearing stress
at the center of gravitiy of each element. The
size of the arrows is fixed. The density ¢f the
arrows has no relation to the magnitude of the

Figure 12. Re- shearing stress,
inforcement by
oblique webs.

In the case of the web-
| e less model (OA) the greatest
- shearing stress was found at
point A, near the tip of the

hollow section (see Figure 13
Figure 13(a). The flow of shear- (b))
ing stress in the solid model. -

Figure 13(b). The flow of shearing stress
in model OA.

The distiribution of stress over the cross section AB is shown
in Figure 14.

The stress distribution, highest at point A, decreases with
passage into the interior region and increases again near point B.

18




Figure 13(c). The flow of shearing
stress in model OB.

Figure 13(d). The flow of shearing
stress in model 3B.

Figure 13(e). The flow of shearing
stress in model 7A (interior lines
abbreviated).

8.0,

|

T (kg/mm®)

J\ K] 20 &
Figure 14. Stress distri-
bution in the region near

the tip of the hollow sec~
tion (model 04).

The increase near point B is
normally seen in torsional
stress, It is thought to be

a consequence of the addition
of the concentrated stresses
about point A in this kind of
stress distribution curve.(rad-
ius ¢f curvature # = 0.,2mm).

In the case of model OB,
where the radius of curvature
P = 0.5mm, the concentration
of stresses at point A is low=-
er and the maximum stress is
produced elsewhere.

When a web is added the
stresses are divided and flow

1 in the direction of the web, so that a low-
ering of stress near the tip of the hollow
section is seen,

The concentration of stresses at the
point of junction between the webs and the
upper and lower plates is low in the present
models (round, radius O.6mm) and there are
no problems with their intensity.

The flow of shear stress within

the webs, as seen in the 7 web mcdel
(Figure 13(d)), forms eddies in the

central webs and flows along -the webs
near the tip.

The shearing strecs

within the webs is low.
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S Discussion

The effect of the webs on torsional rigidity is, as shown in
Figure 10, to lower the difference in distortion in the axial direc-
tion of the upper and lower plates. We have discovered the location
where this effect is greatest.

Consider the model (OA) in which no webs at all are introduced.
When the model is subjected to torque there is distortion. The ver-
tical cross section of this model at a location x mam removed from the
center of the chord along the X axis is shown in Figure 15. If we
consider the two planes 1 mm apart
which are emphasized in the figure
(shown by broken lines in tke fig-
ure), a point located at just the
distance between planes will be
displaced by exactly x#. The value
of the angle of rotation of the
planes 4w/l (1 = the distance be-
tween the upper and lower plates
of the blade) which is derived from

‘ this displacement value is the

Figure 15. Shearing distor-

tion in a hypothetical web. shearing distortion (r) of the

.(vertical cross section x mm hypothetical web, and so
from the center). ro  (5-1)
r=x0——il-

@, oy | ¥ SR Y

Key: a upper plate
b hypothetical web
¢ lower plate In fact there is also produced
d giigiifgﬁegﬁ iﬁis a torsional distortion amounting to

just @ in this hypothetical web,
but because this is uniform over the cross section it is reasonable
tc disregard it in this analysis.

The final result of the calculations for model (0A) using all
the above equations is shown in Figure 16.
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Point O, where eq- /13
uation (5-1) is greatest,
is the point of intersec-
tion of the intersecting
curved lines running paral-
lel to the straight line
x® This location is com-
paratively near the end
of the hollowed section,

and this agrees with the
Figure 16. Bending and the displace- tendency of the results
ment between upper and lower plates of torsional rigidity
of blade model OA. aalysis for each model
Key: a tip of hollowed section tested so far. In the

center section the webs

show only the most slight effects.

When we place a web at point O (though strictly we do not use
data from model OA) we consider that the web will bear the greatest
shearing distortion (and so the rigidity will be highest).

The optimum model is the one where the webs are placed at
point O, From Table 2 the torsional rigidity per unit area is high-
est, and becuase the nubmer of webs is small, the thickness of the
upper and lower plates i3 increased and both bend rigidity and great-
est shearing stress are improved.

In dealing with torsional rigidity by the above outlined method
it is necessary to consider 1) overall analysis by some effective
method (i.e. a method covering all stresses) which takes account
of changes in the tuickness of the upper and lower plates, and 2)
employment of oblique webs as in Figure 12. However, one should
expect no great improvement over the present 24% increase, in light
of the 30% increase in torsional rigidity (per unit area) in the
case of a hollow cylinder.
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The study of bending and external loadings is important. For /14
example, while central webs are unnecessary in relation to torsion,
they are assumed valuable in relation to emternal loadings.

Examined from the perspective of stresses, the greatest stress
with 30% hollowing is less than 10 kg/mmz, and so hollowing to about
30% is considered fully possible in relation to hypothesized torsion-
al loadings.

6 Conclusions

In order to study hcllow fan blades, light in weight yet high
in trustworthiness in terms of structural strength, for use in air-
craft fan jet engines, we took as examples certain experimental fan
blades and obtained the following results from analysis of torsional
stress and rigidity for hollowed models of them.

1) Hollowing by 30% reduced torsional rigidity by 13-16% and
bending rigidity by 10-11%. The maximum shearing stress was increas-
ed 17-27%. However, when computed in relation to unit area, torsional
rigidity increased 20-24%.

2) Reinforcing webs had a negligible effect on torsional rigid-
ity but a good effect on the compounding of stresses.

3) As for the location of webs, when placed where the shearing
distortion within the webs are greatest, there is a good effect on
torsional rigidity.

4) By selecting an appropriate configuration of hollowing a
weight saving of 30% is possible allowing for all anticipated tor-
sional loadings.
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