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From Skylab ue have demonstrated and prot:en that manned Extravehicular 
Activity (EVA) is a viabl technique for relatgvely simple one-time assembly 
functions. However, a s  depicted i n  f igure 2, w e  recognize that a s  structure 
characterist ics  and requirements become more complex we must emphasize the 
ro le  of remte/autmated systems i n  structural assembly, us ing  man as an 
overseer. 
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Figure 2 Man/Machine Role in Assembly 



Manual assembly is very feas ib le  ( f igure  3) when mechanical asseaably 
methods r e i n  simple o r  vhen the s t ruc tu re  t o  be a s s d l e d  is i n  close 
proximity t o  the Orbiter guyload bay. However, asseirbly with aanual crev 
a i d s  becomes less e f f i c i e n t  a s  construction w v e s  t o  r epe t i t ious  functions 
for  la rge  sca le  s tructures.  Here, remote o r  automatic assembly a ids  may 
best  perform the  assembly fuctions. 
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Figure 3 Orbital  .ksexnbiy Aids and Crew Involvement 



h r  i n t e r e s t  i n  t b e  determination of e f f i c i e n t ,  cos t  e f f e c t i v e  s t r u c t u r a l  
assenbly is manifested i n  a three  year p lan  ( f i gu re  4). Through 1962 v e  w i l l :  

a. Continue t o  develop t h e  cos t  anb lys i s  begun last year. This  ana lys i s  
is intended t o  e s t a b l i s h  a method f o r  economically mixing l a r g e  s t r u c t u r e  
assembly techniques. I t  v i l l  alsa develop a ~ d  eva lua te  procedures f o r  assem- 
bl ing  var ious l a rge  s t ruc tu re s .  W e  consider t h i s  ana lys i s  and its output ,  a 
working c o s t  algorithm for  assembly, t o  be our  wajor s tudy emphasis. The 
a l g o r i t h  w i l l  be  computerized and araintained such t h a t  an organizat ion can 
determine the most cos t  e f f e c t i v e  method f o r  assembling any defined s t ruc tu re .  
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Figure 4 Three-year Plan for LSST Operations 









I n  summary, l e t  us address what we have learned about assembly i n  space 
(f igure 8). From Skylab we know t ha t  man can perf o m  large  sca le  planned 
and unplanned operations. Both erectable and deployable assembly have been 
successfully demonstrated. 

We fur ther  have demonstrated i n  a water environment, tha t  under control- 
led conditions an EVA subject with minimal crew a ids  (dual handrails) can 
manipulate masses up to  17,000 lb. 

Underwater simulations of payload-related EVA tasks  have demonstrated 
t h a t  a crewman can perform contingency EVA operations. However, t h i s  is 
dependent upon ear ly  planning in  design fo r  manned par t ic ipa t ion  i n  such 
contingencies. 

Neutral buoyancy simulations invest igat ing the  transport,  positioning, 
and assembly of la rge  s t ruc tu ra l  elements have simulated assembly with unaided 
one and two man operations, EVA operations with manipulator assistance,  and 
EVA operations with small pi loted vehicle support. From such tests w e  have 
determined tha t  EVA assembly is possible and feasible.  Results indica te  
tha t ,  even though one crewman can accomplish assembly: it is more e f f i c i e n t  
with two men and i n  some cases with machine aid. 

Figure 8 .essons Learned i n  Large Structure Assembly 
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WHAT HAS BEEN D M  TO HELP US LEARN ABOUi ASSEMBLY IN SPACE? 

ACTIVITY 

d SKYLAB REPAIR OPERATIONS 
- ,  

EXPERIMENTS WITH MANUAL MANIPULA- 
TIONS OF VERY HIGH MASSES 

NEUTRAL BUOYANCY SIMULATIONS OF d SPACEUB P A Y L O A D - W E D  EVA 
TASKS 

NEUTRAL BUOYANCY TRANSPORT# POS I - d TlOt l lNG AND ASSEMBLY OF URGE 
STRUCTURAL ELEMENTS (MSFC & LaRC) 

UNAIDED W E  AND TWO hUN N A  OPER- 
ATION 
EVA G*fRATION WITH MANIPULATOR 
ASSISTANCE 

NAOPERAflw*dITHSMAUPILOTED 
VEHICLE SUPPORT 

RESULTS 
ESTABLISHED THAT CREWMEN CAN PER- 
FORM LARGE SCALE PLANNED AND 
UNPLANNED OPERATIONS 
N B  SUBJECTS M4NIPULATE 17,1100 LB. 
MASSES 

.CREWMAN ?ERFORM CONTINGENCY EVA 
OPERATION IN PAYLOAD BAY 
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MACHINE AIDED TASK PREFERRED TO ONE 
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CREW WORKSTATIONIRESTRAINTS 
REQUIRED: CREN iJIOVEMEM I S  COSTLY 

*ST?UCTURAL ELEMEPXS MUST HAVE 
FLEXIBILITY DURING ASSEMBLY 

*ASSEMBLYTlMEFORTETRAI.EDRALCELL 
APP?OXI MATELY 114 HOUR 

CONS:3ER CREW FOR NONREPETITWS 
TASKS, CONS IDER MACH INE FOR 
ERECTINC13EPLOY ING STRUCTURES 



It is important t o  note tha t  assembly time is great ly  reduced, and 
hardware damage is kept t o  a minimum when the crewman has a proper work- 
s t a t ion ,  which includes foot  r e s t r a i n t s ,  and continuous v i sua l  and 
manipulative access t o  the components being assembled. It should a l s o  
be emphasized tha t  there must be f l e x i b i l i t y  among s t ruc tu ra l  elements 
during the  actual  assembly operation. Unions on columns o r  beams which 
do not allow some play during assembly a r e  s trong candidates f o r  damage. 

Y e  have found tha t  a two-man EVA team can assemble a te t rahedra l  
c e l l  i n  about 15 minutes when properly restrained and with minimized 
crew ac t iv i ty .  However, the water environment and its inherent drag on 
large  volume, low mass equipment may make t h i s  a very conservative 
number. Use of other simulation modes may democstrate tha t  t h i s  number 
can be reduced. 

Lastly, w e  should emphasize tha t  manual EVA i s  an  acceptable mode f o r  
nonrepetitious assembly tasks. However, i f  repet i t ious  tasks a r e  required 
o r  i f  assembly occurs remotely from the Orbiter cargo bay, we should 
consider remote controlled assembly equipment fo r  la rge  sca le  construction. 



PART B - RESULTS TO DATE 

MCIGROU19) AM) SCOPE 

Essex Corporation is currently supporting MSFC's LSST programunder a con- 
t r a c t  en t i t l ed  "On-Orbit Assembly of Large Space Structures" (NAS8-32989). The 
overa l l  purpose of the  e f f o r t  is t o  learn  more about t h e  cos t  f o r  assembling a 
la rge  s t ruc ture  by EVA crewmen working unaided or using avai lable  assembly a i d s  
such as the manned maneuvering u n i t  (M), s h u t t l e  remote manipulatot system 
(IMS) , o r  a teleoperator.  Although the  t o t a l  cos t  f o r  a large  struczure would 
include cos t s  f o r  such a c t i v i t i e s  a s  research a d  development, ground fabrica- 
tion, checkout, and ground support, the cos t  f o r  assembling a platform or  
antenna i n  space w i l l  be a major cos t  dr iver  and should be considered when 
evaluating any proposed LSS 8s a candidate f o r  fur ther  development and f l i g h t .  
The work being performed by Essex is aimed a t  developing assembly cost  data so 
the assembly cos t s  f o r  any proposed s t ruc tu re  can.be estimated before any signi-  
f i c a n t  development expenses a r e  incurred. Although embryonic i n  nature, t h i s  
work could eventually have a tremendous impact on the se lec t ion  of proposed 
s t ruc tures  fo r  fur ther  evaluation. 

CONTRACT TASKS - 
The tvo majo r -ac t iv i t i e s  being performed within the contract  a r e  (1) develop- 

ment of a cost  algorithm f o r  predicting assembly cos ts  (Task l),and (2) support 
of the LSS tes t ing  e f f o r t  a t  MSFC's Neutral Buoyancy S h l a t o r  (Tasks 2, 3 C 4). 
The four tasks and t h e i r  major outputs are shown below. 

TASK 1 TASK 2 TASK 3 TASK 4 
ANALYZE ASSY a 

DEVELOP COST 
RLZOR 1 TM 

ASSY. S U P P O T  

TASK ANALYSES @ S IPtUUTIOl l  0 SKETCHES 
SUPPORT E W I P  REQUIREnEllfS D R A W I S S  
REQUIREMENTS 0 TEST PUNS @ HARDWARE 

FINAL TEST PUWS 
@ TEST SUPPORT 
6 TEST REPORTS 

Task 1 is by f a r  the most d i f f i c u l t  and consuming of the four tasks. I n  
t h i s  task, several LSS qcenarios a r e  being prepared tha t  describe a wide range 
of s t ruc ture  configura -ons and assembly operations. These scenarios a r e  used 
to  develop more deta i led  functional analyses tha t  describe the assembly s teps  
and the hardware required t o  support the assembly task. The seven Task 1 sub- 
tasks a r e  l i s t ed  below. 

1.1 Develop Generic Assembly Scenarios 
1.2 Define Assembly Tasks 
1.3 Define Support Equfpment 
1.4 Develop Equipment Performance Requirements 
1.5 Develop Cost Algorithm 
1.6 Identify Cost Parameters 
1.7 Determine Costs f o r  t he  Six LSSs Studied and Other 

Proposed LSSs to  Evaluate Cost Options 



In  Task 2, the  neut ra l  buoyancy t e s t  program is being defined i n  terms of 
the  s k l a t i o n  requirements and support hardware required f o r  the  tests. Pre- 
liminary test plans a r e  being prepared f o r  evaluation of two types of j o i n t s  and 
two types of columns. Preliminary test plans f o r  evaluation of a 36 element 
s t ruc ture  t o  be provided by the  Massachusetts I n s t i t u t e  of Technology @IT) a r e  
a l s o  being prepared. 

The purpose of Task 3 is t o  provide hardware needed during the  neut ra l  
buoyancy tests but not provided by NSFC o r  sane other  NASA center.  This in- 
cludes handrails, foot  r e s t r a i n t s ,  assembly f ix tures ,  and data  recording equip- 
ment. 

I n  Task 4, the simulation test plans a r e  updated t o  r e f l e c t  the as-buil t  
hardware configurations and any addit ional  procedural changes. During the t e s t s  
Essex provides a test conductor a s  w e l l  a s  da ta  recorders and test observers. 

PROJECT STATUS 

The major output from Task 1 is the  cos t  algorithm f o r  predicting assembly 
costs.  To develop t h i s  algorithm, several  supporting a c t i v i t i e s  have been s t a r t ed  
tha t  w i l l  provide input da ta  t o  the  algorithms such a s  the  wide range of crew and 
aided assembly tasks and the c o s t  f o r  providing various labor and hardware ele- 
ments. AltSough the  cos t  algorithm is not complete, many of these supporting 
a c t i v i t i e s  a r e  near ccmpletion. 

Five assembly scenarios have been prepared tha t  describe the  erection, 
deployment, and fabr ica t ion  tasks f o r  the s t ruc tures  l i s t e d  below. These struc- 
tures  were selected not because of the i r  probabil i ty of fu r the r  development and 
f l i g h t  but because of the wide range of assembly tasks they included tha t  should 
be reflected i n  the  algorithm. 

8 LaRC/RI Pentahedral Area Nodal Mount (Ref. 11 
JSC/MDAC Single Trapezoidal Box with Nested P a l l e t s  (Ref. 2) 
JSC/MDAC Telescopic Spine (Ref. 2) 
MSFC Space Fabricated Platform (Ref, 3) 
MSFC 50m Deployable Antenna (Ref. 4).  

Each of these scenarios includes the following major headfngr: 

1.0 Outline 
2.0 Description of Structure 

' 3.0 Packaging Plan 
4.0 Major Assembly Steps 
5.0 Assembly Equipment and Aids  
6.0 Problem Areas. 

These sect ions describe the major a c t i v i t i e s  tha t  might impact t o t a l  cost  f o r  
s t ruc ture  assembly from launch through component deployment and assembly to  
sc ien t i f i c  instrument i n s t a l l a t i o n  and checkout. 

Functional analyses tha t  describe these s t ruc tures  i n  marc d e t a i l  have a l so  
been prepared. These documents describe i n  more d e t a i l  the  individual assembly 



tasks,  the crewmen and t h e i r  locat ions,  the  crew a i d s  and LSS hardware required 
to  perform the  task,  and the time required. 

Individual  cos t  elements such as assembly f ix tu re s ,  handrai ls ,  o r  renrote 
manipulators have been iden t i f i ed  and a r e  presented i n  Table 1. The spec i f i c  
c o s t s  f o r  each of these elements is cur ren t ly  being assessed i n  terms of d o l l a r  
cos t ,  volume, weight, e t c .  The c o s t s  f o r  these items w i l l  no t  remain s t a t i c ,  
and some w i l l  be e n t i r e l y  structure-dependent.  Any unce r t a in t i e s  associated 
with the  individual  cos t  elements a r e  being recorded i n  addi t ion  t o  the  pro- 
jected cos t  per un i t ,  f l i g h t ,  pound, foot ,  hour, e t c .  

Table 1 - LSS Assembly Cost Elements 

(1) L b o r  - NA A . r o ~ u t s  
- IVA Support Crew 

o Operator 
o Assp b o r d i ~ t o r  

- Ground support Crm - rrsimiap T:, e. b t e r i s l s  i Developmat - Development S L u l s t l o ~  

(3) Cr- Support -1-t - Pressure S u i u  - S u i t  locpplr - mt st-* b llsndl* - Peed b 0th- b.HI.bler - tir on o r b i t  - *soy hoedurm. E b K U L c s .  D l e p a w  - Camua ics t im  W u i p a r t  

(2) LSS b r d u r e  - LSS 8- or  C o l t a s  ( 6 )  
- U t l l i r t  Condults b Juoctioo bres 
- Experhent Pa l l e t s  - LSS Subsystm 

o Atci:ude Colltrol Sysr ta  
o Pwcr  System 
0 n K d  s y s t s  
o Senwrs  - A l i g a m c  Tool. - J i g s  b ?i.tures (5) - ~ - 1 8  - hell Mda 
o Handrails 
o Poor Restrsfnts 
o Tethers 
o Lif i t*  
o C a r r s s  b M n i t o r s  
o l o r t s b l e  Work Ststiorrs - US 4 End Lffrc tors  

-mu - b t e r k l s  (Sheet Stock. Uelding X l t e r h l s .  etc.) - ?.stmere 

Fl ight  Opers t lom - No. of ? l igh t s  - Durstioo of F l igh t s  
- Ro. of Onhoard Cr- - No. of Crornd C r m o  - Ilo. of LITAS - EVA Durstion 
- Orbi ta l  h e w e r s  

Other - Assy Error Probabi l i ty  - Assy Destruction Probebi l i tp  - Power (Aug b Puk) - ilydrsullcs. h e - t i c s  - G l 0 ~ d  Prep. fw (P*c Iu~ID~)  - Developvet cos t s  

Development of the i n i t i a l  cos t  algorithm should be completed by February, 
1980. 

In Task 2, a generic simulation t e s t  plan w a s  prepared f a r  d i s t r i b u t i o n  by 
MSFC t o  cont rac tors  and other  NASA centers  who a r e  planning t e s t  a c t i v i t i e s  i n  
MSFC's Neutral Buoyancy Simulator. This plan i d e n t i f i e s  the step-by-step task 
descr ipt ions required, the  da t a  recording c a p a b i l i t i e s  and other  information 
needed by personnel not fami l ia r  with the MSFC t e s t  procedures. 

Additionally,  preliminary t e s t  plans werr prepared f o r  eva1uatio.1 of the 
LaRC snap joint /unions,  R o c k ~ ~ ~ e l l  b a l l  and socket j o i n t s ,  and the  18 f t  and 30 f t 
columns (NB-18A, B and C) . 



I n  Task 3 a video tape recording system was provided f o r  recording ;he 
test runs. This system has been tremendously usefu l  f o r  a ~ a l y z i n g  the  crew 
assembly operat ions a f t e r  the t e s t  runs. 

A manned maneuvering u n i t  (MMIJ) m~ckup is a l s o  being designed f o r  use i n  
t he  simulator t o  supFort t h e  LSS test runs. 

I n  Task 4 s i x  member t e t r ahed ra l  c e l l s  were assembled 38 times during 
21 test runs. Dur .g t h e  runs Essex provided a t e s t  conductor, data  co l l ec to r s ,  
and t e s t  observer.,. F i n a l  test plans were provided p r i o r  t o  each run,and quick- 
look t e s t  r epo r t s  were prepared a f t e r  each run. F ina l  test r epor t s  were a l s o  
prepared descr ibing the r e s u l t s  of a l l  the tests. Figures  9 through 1-4 i l l u s -  
t r a  te the  assembly of the te t rahedra l  c e l l  from i n i t i a l  condi t ions through 
i n s t a l l a t i o n  of the simulated equipment module (SEN) a t  the  apex a t  the  end of 
the  run. Figures  15  and 16 show the two j o i n t s  evaluated. 

IiAJOR STUDY OUTPUTS 

Three study outputs  a r e  presented below i n  addi t ior .  t o  the r e s u l t s  a l ready 
discussed i n  t h e  above p ro j ec t  s t a t u s  sunnnary. These study outputs are:  

Neutral buoyancy test r e s u l t s  
Task element times 
S ta tus  of cos t  algoritkm. 

NEUTRAL BUOYANCY TEST RESULTS 

T:.e r e s u l t s  of the 21 neu t r a l  buoyancy test runs t o  eva lua te  the  snap j o i n t /  
unions, b a l l  and socket j o in t s ,  and 18 f t  and 30 f t  c o l m n s  a r e  presented i n  
d e t a i l  i n  the  quick-look and f i n a l  test reports .  However, the following para- 
graphs summarize cne r e s u l t s  and conclusions. 

Assembly Tiwe - The lowest assembly times f o r  unaided operat ions (co RMS 
or  MMU) f o r  the  18 f t  columns were on the  order  of 30 min f o r  the  six element 
s t ruc ture .    he bes t  asjembly times using the simulate2 RMS f o r  co lmn  handling 
and a simulated MMU f o r  crew t r ans l a t ion  f o r  th ree  union/column combinations " : 
l i s t e d  below. 

Time (Yin) 

Bal l  and Socket w/ 30 f t  Columns 10.6 
Bal l  and Socket w/ 18 f t  Columns 11.1 

a Snap J o i n t  w/ 18 f t  Columns 14.5 

This represents  an evaluat ion of two types of unions and c o 1 u . l ~  from dozens 
of possible  a l t e rna t ives .  Obviously no firm hardware tradeoff data  should be 
drawn from these  preliminary t e s t s .  However, i t  does appear t h a t  the assembly 
operation is possible  with ex i s t i ng  STS equipment and EVA technology and the 
assembly time f o r  a s i x  element s t ruc tu re  i s  i n  the  15-30 min.range. 









Figure 15 - Ball and Socket J o i n t  

Figure 16 - Snap Joint/Union 



Ease of Operations - Subjectively, t h e  crew preferred the b a l l  and socket 
j o in t s .  It appeared from the  run times t h a t  moretrainingwas required f o r  t h e  
snap joint/unibns f o r  the crew t o  become p ro f i c i en t  a t  &ting the  unions. 

Support Equipment Needed - The snap jc in t /un ion  w a s  more e a s i l y  operated 
when a pos i t ive  crew r e s t r a i n t  such as a f o o t  r e s t r a i n t  was used. The crew 
could e a s i l y  use the  b a l l  and socket j o i n t  without the a i d  of a f o o t  r e s t r a i n t .  

Re l i ab i l i t y  - The snap jointfunion o f t en  could not be mated by the crewman 
because of column o r  assembly f i x t u r e  misalignment. This required t h a t  t he  
u t i l i t y  d ivers  make the connection o r  v e r i f y  t h a t  t he  crewman had successful ly  
made the connection. This w a s  not t r u e  f o r  the  b a l l  and socket j o in t s .  

TASK E L m N T  TIMES 

The evaluation of video tapes from the  LSS t e s t  runs and some of the  Space 
Telescope t e s t  runs revealed 10 major task categories .  A l l  the  crew operat ions 
can be described i n  terms of these t a sk  ca tegor ies  and 83 subtask ca tegor ies  o r  
individual  task elements. The 10 task ca tegor ies  are:  

Remove 
Translate  
Posi t ion Body 
Ingress 
Egress 
Attach 
Transfer 
Mate 
Verif v 
Hand Tool Use 

The task elements s h a m  i n  Ta3le 2 can be used t o  descr ibe a l l  the crew operat ions 
observed i n  the LSS and Space Telescope t e s t  runs. The Space Telescope runs were 
used t o  include l a rge  moduie handling and the  use of t oo l s  which were not observed 
during the LSS runs. 

The task element data  presented i n  these cha r t s  can be used along with 
de ta i led  assembly procedures f o r  any proposed s t r u c t u r e  t o  est imate t he  s t r u c t u r e  
assembly t i m e .  The v a l i d i t y  of the t a sk  element time da t a  w i l l  be determined by 
comparing estimated versus a c t u a l  assembly times f o r  LSS s t r u c t u r e s  assembled i n  
the neut ra l  buoyancy simulator i n  the fu ture  (e.g., the MIT t e s t  scheduled fo r  
January, 1980). 

STATUS OF COST ALGORITHM 

The i n i t i a l  cos t  algorithm fo r  predict ing t o t a l  LSS assembly c o s t s  is cur- 
r en t ly  a co l l ec t ion  of independent s e t s  of da ta  with no connecting logic .  The 
major p a r t s  of the algorithm a r e  the t a sk  element times, cos t  elements, and 
funct ional  analyses t h a t  def ine  support hardware the labor requirements. I t  
is ant ic ipa ted  t h a t  the f n i t i a l  algorithm w i l l  be completed i n  February, 1980 and 
w i l l  be continually updated and expacded throughout the LSST program. 



Table 2 - LSS Assembly Task Element Times 

TASK ELMENT T l M E  
Oec) TASK ELMENT 1111 

Oec) 

2.1 Along S i l l  10 f t .  

TASK ELD(fN1 TIME 
(SIC) 

3.1 To Ingress root Restrelnt 

TALK LLDlfkr lily (set 1 

5.0 CGRCSS 

5.1 Foot k s t r e i r t  Urlng OM 
L n d r a l l  

5.2 foot Restraint Using 
Tro L n d r r i l r  

5.1 1.0 Restr r ln t  Ublng One 
Hlndrel 1 

5.4 L@g Rer t r t l n t  Using lro 
L n d r b l l s  

[ 1.2 Union f ran Box I 
5 

14 

M 

L 

2.2 Along S i l l  20 l t .  

2.3 Over S i l l  from Outrigger 

2.a Over S l l l  from Cbrgo Bay / 1.3 Union l r a n  Post l w l  

49 

21 

11 I 3.4 To Attach or Verl ly Union 
Connu t i o n  1 22 1 ( 1.4 PI. from Post I w I  I 2.5 Up A s 9  Aid Pole 15 f t .  I I 3.5 To Ver i fy  Co lun  Connu- I t ton 1 1 1 2.6 Ooun Arsy Ald Pole 15 f t l  22 1 

2.7 Up Atsy Aid Pole 15 f t .  
w l th  Lqulpent Wc:ule 
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SUMMARY 

The major a c t i v i t i e s  remaining i n  the ex is t ing  Essex contract are additional 
support of the LSS tests planned for January, 1980 and completion of the i n i t i a l  
cos t  algorithm. These a c t i v i t i e s  as  wel l  a s  the tasks already completed w i l l  be 
described i n  a report due i n  February. 
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