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This report was prepared as an accoudnt of work sponsored by the United
States Government, Neither the United States nor the United States
Department of Energy, nor any of their employees, makes any warranty,
expressed or implied, or assumes any legal liability or responsibility
for the accuracy, completeness or usefulness of any information,
apparatus, product or process disclosed, or represents that its use would
not infringe privately owned rights.
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ABSTRACT

This work resulted in two basic accomplishments, The first was the |
identification of DOW CORNING® Q1-2577 as a suitable encapsulant material for
use in cost effective encapsulation systems. The second was the preparation 1
of a silicone-acrylic cover material containing a durable ultraviolet screen-
ing agent for the protection of photo-oxidatively sensitive polymers.

The most cost effective metiwd of encapsulating photoveltaic medules is
the one which requires the fewest and Teast complicated steps and which uses

a minimum amount of material.

The most expeditious method of fabrication is one in which the encapsu-

@ lant material performs the combined function of adhesive, pottant, and outer

| cover. The costs of the encapsulant can be mirimized by using it as a thin
conformal coating.

Our evaluation of methods by which to process encapsulation systems and

the screening of candidate materials took those factors into consideration.

E One encapsulation system using silicones was identified from this work

| which provided protection to photovoltaic cells and survived the JPL qualifi-

; cation tests.

This encapsulation system uses DOW CORNING® Q1-2577, a conformal coating

! from Dow Corning as the combined adhesive, pottant and cover material. The

l Towest cost encapsulation system using Q1-2577 had Super Doriux® as the sub-

strate structural member. The overall material cost of this encapsulation

system is 0.74¢/ft2 (1980 dollars) based on current material prices, which

could decrease with increased production of Q1-2577.




Subsequent to identifying the best silicone encapsulation system, a
silicone acrylic cover material containing a durable ultraviolet screening
agent was prepared and jts effectiveness 1in protecting photo-oxjdatively

sensitive polymers was demonstrated.
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SUMMARY AND RESULTS

Technology Review

Silicone resins and elastomers have been used successfully for the pro-
tection of electrical devices and electronic circuitry for over 30 years. They
are well suited for this application because the polymers are free of ionic
contaminants and consequently have good resistivity, high dielectric strength
and a low dissipation factor. These properties are also required for the
protection of photovoltaic cells.

Although silicones have high water vapor transmission rates, the amount
of water they can absorb is low and they retain good physical, chemical and
electrical properties when saturated with water vapor. Good adhesion of the
silicone material to the electrical device is necessary to provide corrosion
protection in high humidity environments,

Silicone elastomers have been used as sealants in weathering environments
for many years and make the construction of free standing glass walls poss-
ible. These sealants retain most of their elasticity and strength after 20
years outdoor exposure. Silicone resins are used in silicope-organic paint
formulations, and the durability and gloss retention of this pigmented system
can be correlated to the fraction of silicone resin used.

A review of the experience of the photoveltaic industry in using silicone
materials as encapsulants disclosed the following:

1) Virtually all of the experience in commercial applications was with

elastomeric silicone products such as SYLGARD® 184 and GE 615 or
gel consistency products such as DOW CORNING® Q3-6527.
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2) These silicone products provide adequate protection if: a) a hard
cover such as DOW CORNING® R4-3117 or Q1-2577 is used with the
elastomeric encapsulants or b) the Q3~6527 gel is covered with

glass or placed in a plastic film bag.

3) The use of elastomeric silicone encapsulants without a hard surface

cover leads to a reduction in power output due to dirt pick-up.

4) Elastomeric silicone encapsulants delaminate from metal or glass
substrates unless primers are used and care is taken during the
fabrication of modules. The proper handling and use of these
materials as well as the recommended primers can be found in the

manufacturer's product information sheets.

5) Attempts to use high modulus silicone resins such as R4-3117, as
thick coatings in direct contact with solar cells failed because
of cell and encapsulant cracking caused by differences in thermal

expansion.

The general view of the photovoltaic industry is that an improved, lower
cost encapsulation system is required to achieve the 1986 DOE volume and price
goals of 500 peak megawatts at $0.50 per peak watt. The encapsulation system
must be amenable to automated large scale production.

This review of relevant technology provided abundant support for the
investigation of silicone materials as cost effective encapsulantc of photo-

voltaic materials.
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Screening and Processing of Silicone Encapsulation Systems

The silicane matgria]s were screened for use as cost effective encapsu-
lants based on their physical properties, availability, and cost. Ease of
processing, simplicity of design and cost of fabrication were the criteria
used to assess the encapsulation designs, The following silicone based
materiais were identified as possible candidates for silicone based encapsu-
lation systems:

DOW CORNING® Q1-2577 Conformal Coating - A clear silicone resin with good

dielectric properties which cures to a tough dirt resistant polymer,
DOW CORNING® 808 Resin - A clear silicone resin higher in modulus than Ql-
2577.

Blends of DOW CORNING® 840 Resin with acrylic resins such as B48N from Rohm

and Haas - The purpose of using silicone=acrylic polymer blends is to reduce
material cost without an unacceptable decrease in durability.

DOW CORNING® 3140 RTV - A clear, compliant elastomer proposed as an

encapsulant.

SYLGARD® 184 - Another clear silicone elastomer proposed for use as an

encapsulant. This material provides a good reference point based on exten-
sive experience by the photovoltaic industry in using this product.

DOW CORNING® X1-2561 Solventless Resin ~ An experimental resin proposed for

use as a conformal coating.

DOW CORNING® 96-083 Adhesive - A clear silicone adhesive.

DOW CORNING® Z-6082, Z-6030, Z-6020, 1204 Primer - Organofunctional silanes

proposed as primers to provide adhesion of the coatings to substrates.
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The materials of construction identified as candidates to provide mechan-
ical support were:

Super Dorlux® =~ An outdoor weathering grade of hardboard from Masonite

Corporation, Proposed for use as a substrate support material.

Solatex® - A clear, low jron containing glass from ASG Industries proposed

a a superstrate support material,

Metals such as steel and aluminum were considered as substrate materials,
however, no system could be envisioned which would be cost effective when the
cost of the metal and cost of electrical isolation of the cell-string were
combined.

The two encapsulation concepts generated consisted of: a) a transparent
superstrate with solar cells adhesively bonded with a thin glue line, coated
with a white pigmented conformal coating and b) a solid substrate such as
Super Dorlux® painted white with cells bonded to the surface and overcoated
with a thin clear conformal coating.

Spectrotab supplied the cell circuits used in this evaluation which were
two inch diameter 2-cell circuit-strings using silver-ink screened metalliza-

tion with solder-plated copper ribbon interconnectors.
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Assessment of Encapsulation Concepts

Several tests were used to assess the relative merit of the encapsulation
concepts which had been generated.

The rieasurements of material properties which were obtained to determine
their suitability for use as adhesives, pottants or outer cover were:

1) Initial Tangential Moduli

2) Glass Transition Temperature

Also, all information on the candidate materials which was available
through data sheets or in-house testing was used in assessing the relative
performance of the materials.

The stress and exposure tests which were used %o assess the candidate
concepts were:

1) Exposure to UV radiation using an Atlas Filtered Weather=Ometer@.

2) Accelerated dirt pick-up using carbon black powder.

3) Natural outdoor exposure and its effect on the performance of cells

coated with candidate materials.

The initial tangential moduli were used to estimate the stress relieving
characteristics of the candidate materijals and during the evaluation of encap-
sulation concepts a good correlation was found between materials having high
tangential modulus and the tendency of these materials to crack during thermal
cycling.

This tendency to crack during thermal cycling also correlated well with
sharp glass transitions of materials which occurred within this temperature

range,
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A11 of the candidate encapsulation materials resisted degradation during
exposure to UV radiation, The silicone resins having high phenyl content were
harmed by UV more than those with Tow or inéignificant amounts of phenyl.
After 4,000-5,000 hours exposure, these resins with high phenyl content had
significant loss of surface gloss and developed small cracks and checks while
those with Tow or insignificant phenyl content did not visibly change. This
period of exposure in the Weather-Ometer® corresponds to years of eguivalent
UV radiation from outdoor exposure. The samples which were made by coating
Super Dorlux® particle board with the candidate silicone coatings and then
exposed in the Filtered Weather-Ometer® degraded and delaminated along the
edges which were uncoated but portions of the edge which were coated with
silicone resin remained in good condition after 500 hours exposure demon-
strating the protective properties of the silicone resins.

The accelerated dirt pick-up test did not correlate well with long term
outdoor exposure. The long term outdoor exposure tests were more relevant and
indicated that there is a significant loss in cell output for all of the
materials tested. RTV 3140, a very soft silicone elastomer, became very
soiled and had the yreatest loss of power. There did not appear to be a good
correlation between modulus of the resin and Joss of cell power due to soiling

for the other silicone based materials.

..10..




per NI I L T« T

wn g E A
™

Evaluation of Candidate Encapsulation Concepts

The encapsulation concepts were evaluated by stressingy two-cell modules
made with the candidate silicone based materials using both the Super Dorlux®
substrate and glass superstrate design,

The stresses were:

1)  Thermal cycling from 25°C to 40.5°C at 95% relative humidity

2) Fifty days exposure at 70°C and 95% relative humidity

3) Thermal cycling from -40°C to +90°C.

A11 of the modulus came through the humidity stresses with negligibie
losses in power output and Tittle evidence of corrosion.

The thermal cycling test <‘rom -40°C to +90°C), however, caused all of
the candidate conformal coatings except Q1-2577 to crack and check,

DOW CORNING® Q1l-2577 was the nonly silicone based material which was both
dirt resistant and compliant enough to pass the JPL Thermal Cycling Stress.
This silicone conformal coating was used to prepare five 24-cell circuit
string modules using Super Dorlux as the substrate and four 24-cell circuit
string modules using glass as the superstrate. These modules were made in
compliance with JPL's mini-module size requirements and were submitted to JPL
for testing and evaluation.

The recently revised allocation of $1.40/ft% (1980 dollars) for the
Encapsulation Task of the LSA Project includes the cost of framing. The
material costs for the lowest cost encapsulation system using Q1-2577 and
Super Doriux® are less than this targeted amount. The minimum materials cost

2
for this module design is estimated to be $.74/ft (1980 dollars).




DERELEE it o+ ol Lo

Silicone=Acrylic Cover Material

Sunsequent to identifying the lowest cost silicone encapsulation system,
work was finitiated to demonstrate the feasibility of fabricating a |
silicone-acrylic cover material containing a non-fugitive UV screening agent.
This work was successful and a cover film containing Permasorb MA was prepared
in usable form. This film protects polymers which are sensitive to UV
radiation,

Work is needed to optimize the formulation and determine the scope and
1imits of this technology.

A11 of the data and information on preparing and using this polymer was
delivered to Springborn Laboratories under JPL supervision,

Springborn Laboratories will continue to investigate this technique of

protecting UV sensitive polymers.
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RESULTS AND DISCUSSION

Technology Review

The protection of photovoltaic cells requires a material which is
durable, will prevent corrosion of metallization and interconnectors, and
remain transparent,

A review of the information available on the long term weathering of
silicones concerned with these porformance criteria produced relatively few,
well documented examples.

Although silicones have been used in outdoor applications and are known
for their durability and performance in harsh environments, most of the appli-
cations in which they are used do not require the combination of corrosion
protection and optical clarity.

Silicone elastomers are commonly used in outdoor weathering envirr -iants
as sealants and roof coatings and have demonstrated excellent durability when
used in these applications. Silicone resins provide increased life and dura-
bility to outdoor coatings and paints. These applications normally use sili-
cone resins blended or coreacted with organic coating resins in pigmented
formulaticns. The number of examples of clear coatings is quite Timited.

Silicones have also been used for many years to provide protection to
electrical components and electronic devices expcsed to harsh humid environ-
ments, These silicone polymers have high rates of water vapor transmission,
and therefore, an expiasnation for reconciling the good performance of these
materials with their physical properties.

Protection of a surface depends on the quality and stability of the

adhesive bond between the surface and the protective coating,




Malcolm White of Bell Labs!’2 has proposed that silicone provide protec-
tion by chemically bonding substrate through silanol interaction and demon-
strated that silicones do not allow 1liquid water to accumulate at the inter-
face of a silicone encapsulated integrated circuit. Sailer and Kennedy® have
reported similar findings:

Initially, the choice of silicone-resin conformal cocating and a
silicone-rubber back-seal for an application where environmental pro-
tection is required may not seem prudent, It is well known that the
permeability of these materials tv most gases including water vapor is
quite high; it is higher than many other plastics. The advantage of
these materials 1is not in Jow transmission rate of moisture, but
rather in their Jow moisture absorption and good chemical and
electrical stability while "saturated".

Surfaces coated with silijones have a hydrophobic character which
prevents moisture from condensing and creating leakage paths. The Tow
moisture absorption rate of silicones maintains the dielectric
strength on coated surfaces and prevents electrical degradation. In
short, the use of permeable silicone materials for encapsulation
provides a package which ‘"breathes" moisture in and out while
attenuating the moisture to non-critical levels.

Sierawskit, and Sierawski and Currin® have shown that the silicone
elastomers with the appropriate chemical coupling primer can give corrosion
protection in high bumidity environments for automotive and solar applica-
tions. They have also reported that the silicone gels give corrosion pro-
tection and stress relief for the protection of delicate electronic
components.

Kookootsedes and Lockhart® have shown that highly filled silicone
encapsulants can also give excellent protection to electronic devices even at
elevated temperatures. Performance after stressing of silicone encapsulated

electronic devices and electrical equipment has also been demonstrated by

-.14..
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Jaffe?, and VanWert and Ruth®. In hoth cases, retention of performsnce and
physical properties was shown after thermal cyciing and high humidity/tempera-
ture stressing. Jaffe also reported good cure under the leads of an
electronic device using a silicone RTV.

The processing of silicone polymers removes ionic, corrosive contaminants
and silicone materials are known for their inertness and cleanness. The cata-
lyst chosen for crosslinking and curing these silicone materials for encap-
sulating photovoitaic cells must aiso be non-corrosive.

The requirements for the protection of photovoltaic cells are similar to
those needed for the protection of these electronic devices. In addition to
providing corrosion protection and stress relief for the interconnects, the
photovoltaic application has the additional requirements of opiical clarity
and durability in a weathering environment.

Silicone resins have been used for many years by the coatings industry to
up-grade the performance of durable exterior coatings. Brown reports that
substituent groups on silicones can yield different properties in a silicone
resin®, The organic substituents present in silicone polymers result from the
organic groups contained in the silane monomers used to make the polymers.
Phenyl and methyl are two common organic moieties on the silane monomers used
to make silicone polymers,

Pruperties yielded by high methyl content:

Flexibility Water Repeliency

Low Weight Loss Low Temperature Flexibility
Chemical Resistance Fast Cure Rate

Arc Resistance Gloss Retention

Heat Shock Resistance U.V. & I.R. Stability

Properties yielded by high phenyl content:

Heat Stability Oxidation Resistance
Thermoplasticity Retention of Flexibility on Heat Aging
Toughness Air-Drying

_15_




The improved durability a silicone resin can impart to a coating was
shown by comparison of 30% and 100% silicone coatings with organic alkyds.
The all silicone lost 4% of its initial 94% gloss after 36 months in Florida.
An air drying silicone-alkyd lost 30% of its dinitial 85% gloss. The air
drying organic-alkyd Tlost 90% of 4its finitial 85% gloss®. After testing
silicone-polyesters, it was found that for identical paint formulations except
for silicone content, the formulation with more silicone retained its proper-
ties of gloss, non-chalking and non-checking better than that with less or no
silicone. Thomas showed similar findings in tests with Tong oil soya alkyd
coatings weathered in Midland, Michigan, and baked alkyds weathered in
Floridal®, 1In both cases, more silicone gave better performance as rated by
retention of gloss.

Finzel has found not only do silicone-organic durable coatings weather
better in the Dew Cycle Weather-Ometer® and Florida, but also that each resin
system gives its own correlation of WOM effects of stressing to Florida

effects of stressing'?.

A. Adhesion

One further area investigated in this technology review was the use of
chemically coupling primers and chemicals to promote adhesion between dis-
similar surfaces. It has been known for at least fifteen years now that
organofunctional silanes can chemically react with organic resins, by proper
choice of organo-reactive group of the silane, and metal or oxide surfaces
through silanols formed on the silane after hydrolysis. Plueddemann has

demonstrated the use of organo-silanes to adhere resin to glass in spite of

-16_
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the presence of water and differences in coefficient of thermal expansion
(CTE)12°13,  The use of a silane coupling agent in a plastic composite can
cause a 100% increase in physical properties such as tensile, flexural and
compressive strengths after exposure to moisure.

Two patents were also found describing the use of organoborates and alkyl
or alkoxy titanates for bonding silicones 10 substratesl4'l5, These sub-
strates include metal and siliceous mater'als s.ch as giass Liles reported
successful bonding of a silicone molding compound to metal using an organo-
silicone hydridelS,

Since good adhesion of the silicone to a substrate 1is fimportant,
state-of-the-art primer technology was utilized in this study.

The performance of silicone materials used in outdoor applications or
exposed outdoors for test purposes was reviewed. Data on clear silicone coat~
ings having this kind of exposure was limited. The only examples of clear
silicone materials were silicone resins coated on metal panels and one example
of a silicone resin on glass cloth. Silicone resin materials wusually
contain significant amounts of aromatic components and because of this they
can absorb UV radiation which leads to degradation. Silicone elastomers on the
otherhand usually have 1ittle or no aromatic content.

Silicone materials with known weathering characteristics were exposed in
an Atlas Filtered Weather-Ometer® to ascertain if this accelerated stress test
couid be correlated with outdoor exposure.

A direct correlation of the effects of time of exposure in the
Weather-Ometer® to outdoor exposure could not be made due to the few number of

samples and the variety of test sites. See Tabje I.

-17-




Two important and relevant results were obtained during this experiment:

1) Exposure for 3,000-4,200 hours in the Weather-Ometer® caused more

damage to all of the resin coatings than 13 years outdoor exposure.

2) None of the silicone elastomers were visibly changed after 5,000-

6,000 hours of exposure,

The checking and loss of gloss which occurred with the silicone resins
could be attributed to their aromatic content.

Unfortunately, the silicone elastomers for which historical weathering
data were available were pigmented and opaque, and therefore, their resistance
to UV radiation could well be due to the lack of penetration by the UV Tight.

However, as part of this work we included examples of clear silicone
elastomers which are currently commercially available and recommend for use
outdoors. Three clear silicone elastomers; Clear Silicone Elastomer, RTV 3140
and SYLGARD® 184 were exposed in the Atlas Weather-Ometer® for more than 8,000

hours without any change in appearance.

B. Photovoltaic Industry Experience with Silicone Encapsulation Materials

The photovoltaic industry widely uses silicone elastomers as encapsulants
for the protection of cells. The silicone material most widely used in photo-
voltaic applications are Dow Corning SYLGARD® 184 Resin and G.E. 615. Silicone
elastomers were selected for this use because they are optically clear, they
remain flexible in weathering environments, they are compatible with cell cir-
cuitry and they provide protection to these electronic devices in humid

environments.

_18_
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The current encapsulation material cost of approximately $1/ft? equates
to $0.10/watt. This value represents a signficant portion of the 1986 LSA
cost goal of $0.70/watt (in 1980 dollars),

This 1986 cost goal can only be achieved by using encapsulation materials
in the most cost effective manner and by improving the methods used to manu-
facture moduies,

Although the photovoltaic industry has been using silicone elastomers as
the encapsulant for many years, some manufacturers have experienced problems
using this type of elastomeric silicone materjal. The two principal reasons
for the failures and dissatisfaction which some photovoltaic array
manufacturers have experienced with silicone elastomer encapsulants have been
due to:

1) Delamination of the encapsulant from the substrate.

2) Dirt pick-up and retention by soft elastomeric encapsulants with

exposed surfaces.

The most common mode of failure of modules encapsulated with SYLGARD® 184
which occurred during the early stages of terrestrial photovoltaic commercial-
jzation was celamination of the encapsulant from the substrate. These results
were obtained during JPL's Block I procurement of state-of-the-art modules and
were widely publicized!?.

During the Block II procurement program, the use of adhesion promoters
and more careful fabrication techniques reduced the number of modules which

fajled because of delamination.

- 19_
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Another factor which must be considered when silicone elastomers are used
as encapsulants without a hard transparent cover is the relatively soft sur-
face which is difficult to clean. The impact of this soil retention on module
performance has not been completely resolved; however, a decrease in power
output frem modules exposed in urban areas such as New York City is greater
than the power loss of modules exposed in rural areas.

A rather detailed analysis of silicone elastomer encapsulated modules was
made by Spectrolabl®, They felt that silicone materials were not practical
encapsulants for a variety of reasons. Although a number of delaminations
have occurred and decreases in power output due to soiling were observed in
exposure studies conducted by MIT-Lincoln Laboratory®, it is noteworthy that
of 3,400 modules deployed a various sites for periods of up to 16 months, ¢nly
22 have failed. This is an outstanding performance record.

To date, no cleaning techniques has been identified which will recover
all of the losses in power output due to soiling.

One array manufacturer has improved the cleanability and lowered dirt
retention characteristics of silicone encapsulated modules by overcoating the
elastomeric silicone encapsulant with a thin coating of a harder silicone
resin20,

One attempt to reduce the dirt pick-up was to use a high modulus silicone
resin as the encasulant itself. Modules fabricated by Spectrolab using DOW
CORNING® R4-3117 Conformal Coating, a higher modulus silicone resin, had much
improved resistance to dirt pick-up; however, the higher modulus silicone
resin as an encapsulant cracked during thermal cycling and during outdoor
exposure studies?!. A detailed analysis by JPL on the resin itself provided a
rational explanation for this failure mode?2. The strain created during ther-
mal expansion due to a relatively high coefficient of thermal expansion caused
encugh tension stress to fracture the resin,

..20.-




Generation of Methods for Screening and Processing Silicone Encapsulation

Systems
The most cost effective method of encapsulating photoveltaic module s

the one which requires the fewest and least complicated process steps and
which uses a minimum amount of material,

The most expeditious method of fabrijcation is one in which the encapsu-
lant material performs the combined function of adhesive, pottant, and outer
cover, The costs of the encapsulant can be minimized by using it as a thin
conformal coating.

Our evaluation of methods by which to process encapsulaticn systems and
the screening of candidate materials took those factors into consideration.

The following silicone based materials were identified as possible candi-
dates for silicone based encapsulation systems:

DOW CORNING® Q1-2577 Conformal Coating - A clear silicone resin with good

dielectric properties which cures to a tough dirt resistant polymer,
Proposed as a clear protective conformal coating and as a cover material
for use with ultraviolet (UV) absorbers.

DOW CORNING® 808 Resin - A clear silicone resin used as a conformal coating

and as a cover material for use with UV absorbers. This resin
is a higher modulus resin than Q1-2577.
Blends of DOW CORNING® 840 Resin with acrylic resins such as B48N from Rohm

and Haas - These combinations are proposed as clear conformal coatings and
as UV screening cover materials. The purpose of using silicone-acrylic
polymer blends is to reduce material cost without an unacceptable decrease
in durability.

DOW CORNING® 3140 RTV - A clear, compliant elastomer proposed as an

encapsulant. This concept would require an inexpensive dirt resistant
cover.

o 21-
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SYLGARD® 184 - A clear silicone elastomer proposed as a conformal coating.

This material provides a good reference point based on extensive experience
by the photovoltaic industry in using this product.

DOW CORNING® X1-2561 Solventiess Resin - A clear resin proposed for use as a

conformal coating and as a cover material.

DOW CORNING® 96-083 Adhesive - A clear adhesive pronosed for use in bonding

cells to glass, wood and metal substrates,

DOW CORNING® Z~6082, Z-6030, Z-6020, 1204 Primer ~ Organofunctional silanes

proposed as primers to provide adhesion of the coatings to substrates.
The materials of construction identified as candidates to provide mechan-
jcal support were:

Super Dorlux® - An outdoor weathering grade of hardboard from Masonhite

Corporation. Proposed for use as a substrate support material.
So’itex® - A clear, low iron containing glass from ASG Industries proposed

a a superstrate support material.

Metals such as steel and aluminum were considered as substrate materials,
however, no system could be envisioned which would be cost effective when the
cost of the metal and cost of electrical isolation of the cellstring were
combined.

The two encapsulation concepts assessed consisted” of: a) a transparent
superstrate with solar cells adhesively bonded with a thin glue 1line, coated
with a white pigmented conformal coating and b) a solid substrate such as
Super Dorlux@ painted white with cells bonded to the surface and overcoated
with a thin clear conformal coating.

Spectrolab supplied the cell circuits used in this evaluation which were
two inch diameter 2-cell circuit-strings using silver ink screened metalliza-
tion with solder~plated copper ribbon interconnectors.

_22-
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Assessment of Encapsulatjon Concepts

The selection of stress tests and measurements was based on their rele-

vance to outdoor weathering, temperature fluctuations and soil accumulatinn,

A. Ultraviolet Exposure

An Atlas Filtered Carbon-Arc Weather-Ometer®2?3 was used to stress
silicone materials with known weathering history. This instrument closely
approximates the solar spectrum at a reasonable cost. We reviewed the commer-
cially available light sources for stressing materials at wavelengths hetween
290-400 nanometers and found that a Xenhon 1ight source simulated the distribu-
tion of solar insolation better than any other source. However, the intensity
of a Xenon lamp rapidly decays with time. This loss can be compensated by
increasing the power to the lamp. Equipment is available from Atlas which
monitors the 1ight intensity from the Xenon Tamp and adjusts the power to com-
pensate for loss., This equipment is relatively expensive and the 1ife of a
Xenon lamp is short so the filtered carbon-arc 1ight source was chosen as the
most cost effective alternative for Jong term durability testing. In addition
Dow Corning has used the Weather-Ometer® source for stressing silicone
materials and found it a suitable method of accelerating the effects of sun-
Tight on candidate materials. Dr. Roger Estey (JPL) measured the output of
the Atlas Weather-Ometer® we are using to stress silicone mateials and found
that the time average output of this source closely approximates the solar
spectrum®4, The intensity was in good agreement with that claimed by the

manufacturer,

...23..
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B. Weather-Ometer® Stressing vs. Weathering History of Silicone and Modified

Silicone Materials

Based on the information from the technical review, ten materials with
well defined periods of exposure and changes in properties were identified.
Samples of these materials or products which closely duplicate them were
exposed in an Atlas Sunshine Carbon Arc Weather-Ometer®. The resins were in
the form of 2-4 mil coatings on metal panels and in one case as a coating on
open weave fiberglass. The elastomers were exposed as 1/8" thick strips
stretched to 20% greater than their unstressed length and in an unstressed
condition,

The same properties that were monitored during outdoor weathering were
tracked during artificial weathering. The mode of degradation as a function
of time was monitored and correlation with natural weathering was made where
possiblv.

Table I shows a comparison of the results obtained from samples exposed
outdoors apd those opbtained wusing an Atlas Filtered Carbon Arc
Weather-Ometer®.

None of the samples showed any appreciable effects from exposure in the
Weather-Ometer® until 3,000 hours. Between 3,000 and 4,200 hours all of the
resin coatings showed more signs of degradation than any of the coatings
weathered naturally for up to 13 years.

Usually the resins degraded due to goor check ratings and loss of 60°
gloss. Both of these signs of degradation are indicative of higher surface

crosslinking and/or oxidation attributed to UV radiation.




Between 2,500 and 3,000 hours, 1large cracks became visible in DOW
CORNING® 901 Resin exposed as a clear coating on an aluminum panel. A sample
of DC® 901 exposed as a clear coating on woven glass cloth remained clear and
transparent at 3,000 hours exposure, By 3,500 hours exposure, however, this
sample became embrittlad, lost adhesion to the glass substrate and most of the
resin was missing from the glass cloth,

DOW CORNING® 808 Resin had no checking at 2,500 hours but between 2,500
hours and 3,000 hours dropped %o a check rating of 7 indicating that the
entire surface was covered with microcracks, The checking did not become any
worse up to 4,200 hours exposure, however between 3,500 and 4,000 hours the
60° gloss dropped from 90% of the original value to 68% indicating additional
Toss in surface properties,

DOW CORNING® 996 Resin had the most significant change 1in checking
between 2,500 and 3,000 hours of any of the resins tswted, The check rating
dropped from 10 (no checking) to 4 (visible cracks on 50% of the surface
area), This resin also dropped from no loss of 60° gloss at 2,500 hours to
15% loss at 3,000 hours, By comparison after 10 years exposure in Midland,
Michigan this resin had no loss of gloss and a check rating of 6,

The blend of 10% DOW CORNING® 840 - 90% B66 acrylic resin from Rohm and
Haas also showed degradation due to checking between 2,500 and 3,000 hcurs
when the check rating dropped from 10 to 6. No additional degradation was
observed in either gloss or checking at 3,500 hours exposure. However, at
3,500 hours, 80% of the film was lost from the aluminum panel due to poor
adhesion, In contrast, a sample of this resin blend had no loss of gloss or

checking after 13 years exposure in Texas.




None of the elastomers show any visual signs of degradation after 4,200
hours exposure in the Weather-Ometer®, Samples of 132U silicone elastomer,
which were removed from the Weather-Ometer® at periodic intervals through
3,786 hours, were measured for tensile strength and elongation, There 1is a
relatively large variation in the values obtajined but the data indicates a 10
to 20% loss in hoth tensile strength and elongation.

Test specimens of all the elastomers exposed in the Weather-Ometer® were
removed after 5,000 hours exposure and tested. These included specimens
exposed in both stressed and unstressed states.

None of the elastomers were visibly changed after this UV exposure; how-
ever, except for Silastic® 55 Silicone Rubber, all of the elastomers decreased
in tensile strength and elongation. These results are shown in Table II, As
might be expected, the samples which were exposed in a stretched condition had
greater losses of tensile strength and elongation than samples in the relaxed
state.

The losses in tensile strength caused by 5,000 hours of UV exposure for
unstressed samples ranged from 6% for Silastic® LS-53 to 25% for Silastic®
132U. The percent elongation of DOW CORNING® RTV 3110 was within experimental
error of the original value and the greatest 1nss in percent elongation, 36%,
occurred with Silastic® 675. Samples which were stretched during exposure
gave much different results. Stretched Silastic® LS-53, for example, had the
greatest decrease in tensile strength, 49%, after exposure to UV.

Silastic® 55U gave anomolous results. The samples exposed to UV which
were stretched 20% retained their tensile strength and elongation within
experimental error. The unstressed samples on the other hand lost 63% of

their original tensile strength. The stretched samples gave abnormally high
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values after exposure and the unstressed samples abnormally low values. The
abnormally Tow values could be due to flaws in the test specimens although
none were visible. There is ne obvious explapation for the high tensile
strength of the stressed samples.

This data indicates that although the silicone elastomers are inherently
resistant to UV radiation compared with organic rubbers, the degree nf this
stability is dependent upon the formulation and nonsilicone components in the
elastomer,

Clear silicone elastomers for which no previous weathering data was
available were also exposed in the Filtered Atlas WeatherOmeter® and after
8,000 hours of exposure there were no visible changes i, the elastomers. In
addition, Q1-2577 Conformal Coating was exposed for over 7,500 hours as a

coating cveyr Super Dorlux®. The surface of the Q1-2577 was checked after this

[

exposure but the coating still had good adhesion to the substrate and provided

a continuous protective film,

C. Soiling Measurements

The soiling characteristic of the candidate encapsulation materials were
assessed in two ways, The first was an accelerated test using carbon black
and the second was the measurement of short circuit current of photovoltaic
cells coated with the candidate materials as a function of outdoor exposure.

The first method provides a rapid assessment of the tackiness of a sur-
face and its affinity for carbonaceous material. These results were super-
ficial and did not correlate well with the more relevant results from outdoor
exposure, The accelerated sailing results are shown in Table III but a
Tengthy description of the details is unwarranted because of the poor correla-
tion with real outdoor soiling.
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The outdoor soiling of candidate encapsulation materials was evaluated by
adhesively bonding one cell circuits to the top of 3" x 9" x 1/8" soda lime
filoat glass substrate panels with candidate silicone materials and then over-
coating with these same materials. These samples were exposed on the roof of
the Dow Corning Development Laboratory at its industrial site in Midland,
Michigan at an angle of 45° south. This site is within 2 miles of 2 major
industrial power plants. Although the pollution and soiling characteristics
of this site has not been quantified, it can be subjectively rated as moderate
i.e,, causing more soiling than most remote sites but not as harsh as many
urban sites.

Two sampies of wach candidate material was used in the outdoor soiling
measurements. One was washed before the short circuit current and open cir-
cuit voltage of the encapsulated cell vias measured and the other sample was
measured in the unwashed condition. The measurements were made every two
weeks. The assessment of the effects of washing was started four months after
the original exposures, and therefore, the total accumulated exposure time is
110 days less than that obtained on the unwashed samples.

Measuring the Isc of an encapsulated cell after outdoor exposure is the
most relevant way to measure the effect of dirt pick-up. The wavelengths of
solar radiation which power a silicon photovoltaic cell are predominantly out~
side the visual range so although visual irspection may indicate changes in
cell performance due to dirt pick-up, this observaticn may not correlate with
changes in module performance.

The design and construction elements of the one-cell circuits used to

monitor soiling are shown in Figure 1.
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The short circuit current (Isc) and open circuit voltage (Voc) of the
test samples was monitored. The light source for measuring the cells, a 400
watt ELH lamp, is adjusted to 1,000 w/m® by adjusting its intensity using a
standard reference solar cell from NASA Lewis Research Center. The light
source js adjusted to give a I, of 140 milliamps and a Voc of 478 millivolts
at 28°C for the reference cell.

Random fluctuations in the short circuit current were observed during the
portion of this work which were initially attributed to the effects of natural
cleaning. These effects were undoubtedly present but the magnitude of these
effects were discussed by an artifact of the measurement technique.

An ana]y;is of this technique revealed that the fluctuations were pro-
bably due to slight variations in cell position during the measurement. The
short circuit current measurements are obtained by illuminating the cells for
a short period of time (approximately 2-3 seconds) using & 400 watt ELH lamp.
It was observed that the cell position during this measurement was extremely
critical. Differences in cell placement of 1-2 mm gave up to 10% variation in
Isc values. This sensitivity to cell position was overcome by moving the tar-
get area back from the light source several inches. An jllumination of 1,000
watts/m? could still be obtained measured with a standard reference cell from
NASA Lewis Research Center and the target area is twice as large as the cell's
area. The cell position could be varied up to 1 cm with Tess than a 10%
change in Isc‘

The results of these outdoor exposure tests are shown in Tables IV and V.
Table V shows the results obtained with samples which were never washed. The
most striking consequence of this exposure is the similarity in short circuit
current (ISC) values of all the cells which remained functional regardless of

their composition and modulus of the resins used to coat them. The only




T T e R TR M T e

Fo

exception was RTV 3140 which is a very low modulus elastomer. This elastomer
was included as a reference sample and became very soiled., Its ISC value was
358 mamps after 471 days exposure outdoors. Al1 of the other samples had
short circuit current values between 377 mamps and 391 mamps.

The cell encapsulated with DOW CORNING® X1-2561, an experimental solvent-
less resin, failed due to an open circuit caused by the X1-2561 lifting the
metallization from the cell surface., The coating of X1-2561 used in this out-
door exposure test was quite thick, approximately 40 mils, and its adhesion to
the glass substrate was poor.

This experimental resin functions well as the cell adhesive for bonding
cells to a glass superstrate. The glue 1ine is clear, void free, and survives
both humidity and thermal cycling stress.

The samples which were washed before making the I, measurements have
much higher values than the unwashing samples at this time. However, if the
I, values of the washed samples are compared with those of the unwashed
samples at the same period of exposure 361 days (washed) of 388 days
(unwashed) the values are extremely close. This data indicates that careful
washing does not prevent Toss of cell output due to soiling. The procedure
used to wash the panels was to gently wipe the panels with a cheese cloth in a
dilute Ivory Snow Soap solution and followed by a rinse with water.

At the conclusion of this contract, the outdoor exposure samples which
are still intact will be sent to JPL to hopefully have this exposuﬁe study

continued.
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D. Temperature/Humidity Cycling

Test mini-modules were prepared for temperature/humidity cycling by
adhering the photo-active side of the two-cell circuits to 3" x 9" x 1/8"
panels of A.S.G. Industries' Solatex® Glass with the candidate silicone
encapsulant. The back of the module was then coated with the same resin
pigmerited with Ti0,. This type of construction is referred to as a super-
strate module because the structural element is the clear glass cover over the
cells.

Substrate test modules were prepared by painting 3" x 9" x 1/8" panels of
Masonite's Super Dorlux® hardboard with Ti0, pigmented versions of the
candidate encapsulants, laying the cells front side up on the coated substrate
and the coating the cells and substrate with a clear version of the same
resin. The stress conditions used are those specified by the Jet Propulsion
Laboratory with all testing done at 90-95% relative humidity. The following
temperature cycle was used: 1) room temperature to 40.5°C over a 2 hour
period; 2) 16 hours at 40.5°C; 3) 40.5°C to room temperature over a 2 hour
period; and then 4 hours at room temperature. The ISC of each cell on each
test module was measured separately.

A1l of these systems were cycled 75 times and there were no statistical
decreases in short circuit current, see Tables VI and VII. Random fiuctua-
tions were observed which were due to an artifact of the measurement technique

described earlier.

T, TR I A T TS ST T e AT T e TR e R T R e T R e R e R TR T e T S g R LS i RS S BT




£
i
£
4
€
:
v

ALELAETAT AT

E.  Exposure at High Humidity/High Temperature

The specimens using varijous encapsulation concepts from above after the
temperature cycling stress from room temperature to 40.5°C at 95% relative
humidity were stressed in the same humidity chamber at a constant 95% relative
humidity and 70°C for 50 days. After this period, there was again no signifi-

cant change in 1 see Tables VIII and IX. These results show that there

sc’
were no chemical species present around the encapsulated cells which would
cause serjous corrosion in humid environments and that the encapsulants them-
selves were also free of chemical contaminants which would cause rapid cor-
rosion in a wet environment,

In order for these high humidity stresses to differentiate between poten-
tial encapsulation concepts much higher stresses need to be used. A1l of the
encapsulation concepts appear to provide adequate protection from moisture
induced failure mechanisms. The additional criteria of UV stability and

relief of stress during thermal cycling are more 1likely to discriminate

between the encapsulation concepts.

F.  Thermal Cycling Stress

Two-cell modules were prepared using both Super Dorlux®@ as a substrate
and Solatex® Glass as a superstrate. Four silicone based materials were used
as thin, protective conformal coatings with both structural members. These
materials were; DOW CORNING® Q1-2577, DOW CORNING® 808 Resin, DOW CORNING®
840/Acryloid B48N Resin Blend, and DOW CORNING® X1-2561.

The candidate materials were used as both the adhesive and protective
coating on the Super Dorlux®. The glass superstrate modules were all fabri-
cated using X1-2561 as the clear, void-free adhesive.
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These modules were thermally cycled from ~-40°C to +90°C using a schedule
recommended by the Jet Propulsion Laboratory.

After four thermal cycles there were only four modules which did not have
visible cracks. These were modules using DOW CORNING® Q1-2577 on both Super
Dor)4«® and Solatex® Glass and the module using DOW CORNINGO® 840/B48N on Super
Dorlux® and the module using DOW CORNING® 808 resin on Solatex® Glass.

The two-cell modules which survived the first four thermal cycles were
still 1intact after 40 <cycles and the test was discontinued. The
thermo-mechanical properties of Q1-2577 and DOW CORNING® 840 Resin were
determined to obtain an understanding of why Q1-2577 exhibited superior stress
relieving characteristics.

A good technique for measuring transitions in polymers as a function of
temperature is with dynamic mechanical spectrometers. One of these instru-
ments, a Torsional Braid Apalyzer, was used by Professor John Gillham of
Princeton to measure the dynamic modulus and damping factor of the two sili-
cone polymers. The results of these analyses are shown in Figures 2 and 3.
Figure 2 shows a sharp glass transition for Q1-2577 at -120°C which is well
below the normal operating temperature range of photovoltaic modules. This
transition accounts for the flexibility and ability of the cured silicone
polymer to relieve stress during thermal expansion and contraction. In addi-
tion, there is a broad, poorly defined, transition centered at approximately
45°C. The absence of a sharp transition in the operating range and the
relatively high modulus of Q1-2577 accounts for its resistance to cracking.

DOW CORNING® 840 Resin in contrast to Q1-2577 has a sharp glass transi-
tion in the normal operating range at 45°C. Rohm and Haas' Acryloid® B48N has
a reported glass transition temperature of 50°C. These glass transitions in
the operating range can account for the cracking and crazing which occurred
using the blend of DOW CORNING® 840 with B48N.
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Evaluation of Encapsulation Concepts

Mini-modules designed to conform to JPL's size requirements were prepared
using Q1-2577 as the protective coating. These modules were fabricated at
Spectrolab using 24 two inch cells on each module. Both Super Dorlux® sub-
strate and glass superstrate style modules were made for testing and evalua-
tion.

Six modules using Super Dorlux® as the substrate were made. Depressions
were milled into the Super Dorlux® approximately as deep as the thickness of
the solar cells. The cells were placed in these depressions making the sur-
face of the solar cells even with the module surface which gave a flat smooth
module. Five of these modules were given to JPL for environmental testing.
Three glass modules were prepared using X1-2561 as the cell adhesive and
Q1-2577 as the protective covering on the backside. These were also submitted
to JPL.

The modules survived both the humidity stress test and the thermal
cycling tests. The Super Dorlux® substrate modules became warped during the
humidity cycling test but the encapsulant remained intact. These modules are

still undergoing tests at JPL.
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Silicone-Acrylic Cover Materials

A.  Background

Low cost pottants are being evaluated as potential candidates for encap-
sulating and protecting photovoltaic cells. 0One promising candidate is
ethylene vinyl acetate, This polymer has suitable physical and mechanical
properties for this use but it is photo~oxidatively unstable. Therefore,
ethylene vinyl acetate (EVA) must be protected from ultraviolet radiation in
order for it to have a cost effective 1ifetime when used as an encapsulant for
photovoltaic cells,

One method of providing this protection is to incorporate a UV absorber
in a high modulus, dirt resistant, protective film used above the EVA pottant.

This protective cover film must have the following properties:

1) Be dirt and scratch resistant,

2) Be durable and weatherable.

3) Have high transmissivity above UV wavelengths.

4) Contain a non-fugitive UV absaorber.

5) Be available in useful form

6) Be cost effective

Two families of polymers with demonstrated weatherability which can be
made suitable for this application are silicones and acrylates.

For example, polydimethylsiloxane, butyl acrylate and methylmethacrylate
can be combined in various ratios to give copolymers with a wide range of
physical and mechanijcal properties. These are the polymers used in this
investigation.

Methylmethacrylate can be homopolymerized to a hard, weatherable plastic.
Plexiglas® is a familiar trade name for this polymer.

-35.—
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Butylacrylate and polydimethylsiloxane can both be used to plasticize
polymethyimethacrylate and such copolymers are lower modulus and have higher
elongation than polymethylmethacrylate.

Two approaches were used 1in an attempt to obtain silicone-acrylate
copolymers. The first approach was to graft silanol functional fluids on
prepolymerized acrylate resins. This approach was not successful principally
because of the incompatibility of the silicone fluid and acrylate polymer,
Even at high dilution in a co-solvent, the two polymers separated into
different layers.

A two-step process was used in the second approach and although this
approach was more complicated from the viewpoint of chemical processing, it
was successful.

A silicone-acrylate copolymer was prepared by first reacting an acrylate
functional silane with a polydimethylsiloxane fluid and then copolymerizing
this acrylate functional fluid with butyl acrylate and methylmethacrylate
monomers.

Additionally this technique provided a propitious method of chemically
incorporating the UV absorber into the copolymer. Permasorb MA is a commer-
cially available, acrylate functional, orthohydroxybenzophenoie which can be

coreacted with acrylate monomers.

B. Results and Discussion

Methacryloxypropyltrimethoxysilane, DOW CORNING® Z-6030, was coreacted
with a silanol functional polydimethylsiloxane fluid, DOW CORNING® Q1-3563.
An excess of Z-6030 was used to promote endcapping of the polydimethylsiloxane

~hains rather than coupling. Potassium acetate was used to accelerate the
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reaction,

CH, 0
| ) Me,
CHy=C —COCH,CH,CH,51(0Me); + HO s:o)xﬁ

KOAc
Me Me
Clis 0 0 Me, | O Q Chs
CH,=C—COCH, CH,CH,$1 = O $1-0 ), $1CH,CH,CH,0C—C=CH,
0 0
Me Me .
+ 2 MeOH

The excess Z-6030 and methanol were removed by heating in vacuum and the
potassium acetate removed by filtration.

The resulting liquid could be cured to a soft gel using azobisisobutyro-
nitrile (Vazo), a free radical catalyst.

This acrylate functional fluid was coreacted with butyl acrylate and

methyImethacrylate using the following ratio of ingredients:

Acrylate Functional Fluid 20
Butyl Acrylate 40
MethyImethacrylate 40
Permasorb MA 1.0
DOW CORNING® Z-6062 (chain regulator) 0.35
Vazo (catalyst) 0.5
Toluene (Solvent) 200
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The monomers, chain reyulator, and catalyst were all combined and slowly
added to toluene which was preheated to 100°C, This method of combining
reactants is not advised for repeated or large scale polymerizations because
of the potential for premature and uncontrolled reaction. The same polymer
can be prepared by dissolving the catalyst in solvent and adding it separately
to the hot toluene simultaneously with the other ingredients.

The polymer which was prepared was sprayed on decal paper to form a thin
film, approximately one mil thick. A thicker film was obtained by pouring the
solution ..f polymer on a flat surface and allowing the solvent to evaporate.

Cellulose acetate samples were protected with a thin film of the polymer
and exposed in a Filtered Atlas Weather-Ometer® These samples were unchanged
after 1,000 hours exposure. Unprotected cellulose acetate becomes cracked and
crazed after 48 hours exposure.

Samples of cured polymer film containing 0.25% Permasorb MA were
extracted with water and comuared with extracts of samples having the same
composition but with Permasorb MA added as a physical blend and not ropoly-
merized. Extracts of the samples with Permasorb MA added as a physical blend
had much more UV absorption than extracts of the copolymerized Permasorb MA
films, see Figure 4.

The rate of homopolymerization of Permasorb MA is much lower (approxi-
mately 50 times slower) than homopolymerization of methylmethacrylate?5. The
degree of copolymerization versus oligimerization of Permasorb MA in this
system has not been established.

Much work is needed to optimize the formulation and process conditions to

develop the most cost effective practical polymers for this application.
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The concept of using this approach to protect UV sensitive polymers has
been successfully demonstrated and was the goal of this work.

This technojogy has been transferred to Springborn Laboratories for
further development.
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TABLE 11
Hours # of PSI % 1 Elong- 4 %

Elastomers WOM Specimens | Tensile | Change ation | Change
Silastic® LS-53 Control{ O ] 1026 550%
Weathered Flat 5256 2 968 ~5.6% 450% ~18%
Weathered 20% Stretched| 5256 1 519 -49% 275% -50%
SILASTIC® 675 Control 0 2 529 275%
Weathered Flat 5256 2 396 -25% 175% ~36%
Weathered 20% Stretched .5256 2 292 -45% 100% ~-64%
Silastic® 132U Control | O 2 426 305%
Vleathered Flat 5256 2 320 -25% 212% ~30%
Weathered 20% Stretched! 5256 2 276 -35% . 238% -22%
Silastic® 55U Control ? 0 2 1120 825%
Weathered Flat | 5256 2 420 | -62% 340% | -59%
Weathered 20% Stretched’ 5256 2 1118 -0.2% 875% +6%
DOW CORNING® 3110 RTV 0 2 285 220%

Control

Weathered Flat J 5543 3 250 -12% 197% -10%
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