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Abstract

A general orthogonal coordinate system is used to describe various
axisymmetric and twoe~dimensional shapes. Close approximations to planetary
probe configurations are possible. The full Navier-Stokes equations are
discretized in this coordinate system in a manner based on Allen and
Cheng's numerical procedure. The bow shock is treated as a discontinuity
which floats between grid points. Completely coupled flows over the
forebody, base, and near wake have been calculated over a cylinder,
sphere, and an approximation to the Viking Aeroshell for 2 <M_< 10 and
1000 < Re < 30,000. The program gives good comparisons with experimental
data. A major contribution of this work is that it allows one to study
the effect of changes in the blunt body shape on the base flow structure.
Also, some problem areéas in determining the base flow for increasing
Reynolds number are discussed. In particular, it is found that the mean
free path of the fluid near the wall immediately below the corner of the
Viking Aeroshell, which experiences a severe expansion, can become greater
than the local mesh size required to resolve the boundary layer in the fore-
body. Negative pressures, densities, and temperatures can be calculated in
these'instances. It appears that part of this problem is due to an

inability to capture a lip shock close to the wall with the given grid.

*Aero-Space Technologist, Aerothermodynamics Branch, Space Systems
Division. Presently involved in Graduate Study at Princeton University,
Princeton, New Jersey.
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Nomenclature

transformations constants, nondimensionalized by RN
speed of sound, m/sec

coordinate stretching constants used in Eq. (3)
shock shape parameters in Eq. (6)

functions defined in Eq. (3)
2

[e]

total enthalpy nondimensionalized by V
metric coefficient, nondimensionalized by RN
indices on node points (Fig. 2)

heat transfer coefficient, W/m-9K

Tength of recirculation region along axis, nondimensionalized
by RN

Mach number

total number of node points in 6 dijrection

total number of node points in n direction

direction normal to wall, m

Prandtl number

pressure nondimensionalized by pmvi

heat transfer, W/m2

Reynolds number - based on nose radius of curvature

nose radius of curvature, m

temperature, nondimensionalized by T,

freestream temperature, O

0

stagnation temperature, K

time nondimensionalized by RN/Voo




u,v velocities directed along lines of constant r and

® respectively, nondimensionalized by V

Vw freestream velocity, m/sec
XsYsZ Cartesian coordinates, nondimensionalized by RN
Y metric, nondimensionalized by RN

= 1 (2D case)

= distance from axis in axisymmetric case

Y ratio of specific heats
S shock standoff distance, normal to body nondimensionalized by RN
S initial quess on shock standoff distance on an axis,

nondimensionalized by RN

€ smoothing constant in Eq. (5)

n transformed r coordinate

B,r,¢ transformed coordinates

esep value of 6 where flow separates in the base
u viscosity, nondimensionalized by u(T, )

v Mach angle

o density nondimensionalized by p,

Oy freestream density, kg/m3

1 angle defined by Eq. (7) and Fig. 3

Subscripts:

W wall

© freestream



Introduction

Currently projected missions to probe the atmosphefes of the outer
planets have raised questions concerning the influence of base flow on
the low density aerodynamics of a probe and the radiative heating levels
imposed on a probe afterbody. The radiative heating levels on the
forebody will be severe and although the ratio of afterbody to forebody
heating is expected to be small the magnitude of the afterbody heating
can still be significant. A 1ip shock standing off the body just
ubstream of the separation point adds to the complexity of the base flow,
and makes it difficult to solve the base flow problem on a computer.

There are two general approaches for attacking this problem
computationally: 1) The coupling of several approximate techniques
which are designed to model specific features of the flowfield, the

so called "patchwork" approach, and 2) the solution of the full Navier-

1,2,3,4

Stokes equations in the entire flowfield. Both of these

approaches have their own advantages and disadvantages. Several

approximate techniques for the solution of wake flows have been

5,6,7,8,9

presented in the Titerature and summaries of these results

10,11,12

are available. Solutions to the Navier-Stokes equations in the

base region using specified conditions on the inflow boundary have also

been presented in the 11terature.]3’]4

In general, these approximate
techniques offer the advantage of obtaining solutions rapidly on the
computer. However, the nature of the various approximations can distort

the results and usually these techniques are restricted to specific body




geometries and flow regimes. A solution of the full Navier-Stokes equations
in the entire flowfield eliminates the need for making the various
assumptions required for the approximate solutions. However, solutions

of the Navier-Stokes equations typically require a great deal of
computational time and stdrage. Ideally, one should be able to use the

two solution approaches to complement each other; i.e., use the Navier-
Stokes solutions to improve the nature of the approximations in the
approximate techniques and use these rapidly running, specialized

techniques to perform parametric studies for design analyses.

The material presented herein is a continuation of a research
effort] which is directed toward developing a computer code which can
compute full Navier-Stokes solutions around complete probe-like
configurations for a wide range of supersonic Mach numbers and Reynolds
numbers. As Mach number and Reynolds number are increased various flow
phenomena develop (shock strengths increase; boundary layers, 1ip shocks,
and recompression shocks form) which require special consideration
within the computational code. Flowfield solutions at low supersonic
Mach numbers and low Reynolds numbers were described in the previous
work and good agreement was found with experimental data. Whereas the
technique presented in Ref. 1 employed shock capturing throughout
the flowfield, a procedure for treating the bow shock as a discontinuity
which is allowed to float within the computational grid has been included
in the present analysis. This capability permits the computation of
higher Mach number and Reynolds number flows. An improved coordinate

stretching capability has extended the Reynolds number range by making




it possible to pack more points in the boundary layer. Shock and body
s1ip conditions have been included in the present code. Observations
of flowfield characteristics and comparisons to experimental data are
presented for a Mach number range 2 < M_ < 10 and a Reynolds number
range 1000 g_Re < 30,000. In keeping with a philosophy of adding only
one complicating factor at a time, only laminar, perfect gas,
two-dimensional, or axisymmetric flows are considered.

It is also noted that this program is still considered in a
developmental stage. Although comparisons with experimental data are
encouraging there are still aspects of this approach which should be
investigated more fully (these potential problem areas will be discussed
in later sections). The purpose of the present paper is to report the
progress of this investigation and to point out some ihteresting

problem areas and flow phenomena that have been encountered.




Coordinate System

1

A generalized curvilinear orthogonal coordinate system 5 which can

be used for approximating various axisymmetric and two-dimensional body
shapes; including spheres, ellipses, spherically-capped cones, flat-faced
cylinders with rounded corners, circular disks and planetary probes; is
used herein., The transformation from the (6, r, ¢) domain to the

(x, ¥, z) domain for an axisymmetric coordinate system is written as:

N nr
x(8,r,¢) = (~B sinh r + C cosh r) cos 6 - 2 n€  Cos né W
n=2
N nr
y(6,rs¢) = [(B cosh r - C sinh r) sin 6 + >, Ae" sin nélcos ¢ ) (1)
n=2 "
L nr
z(6,r,¢) = [(B coshr - C sinr) sino + ), Ae sin nelsin ¢ )

n=2

where N 1is a positive integer greater than two and An’ B, and C

are arbitrary constants. A two-dimensional transformation to the x,y
plane is obtained by setting ¢ = 0. Lines of constant r are
transformed to circles in the x,y plane as r increases without limit
through negative values. The line r = 0 forms the body in the X,y
plane. The outflow boundary of the computational space is mapped to
infinity (i.e. a circle of infinite radius) using an additional
transformation. An example of a body with the associated coordinate
system is shown in Fig. 1. The metric coefficients hg and h, are
equal in this coordinate system, thus saving considerable computational

time and storage.



Analytic Development

The Navier-Stokes equations written in an orthogonal curvilinear

16 Since only

coordinate system may be obtained from the literature.
the steady-state solution is desired, a term involving the temporal
derivative of pressure has been omitted from the energy equation in order
to simplify the numerical procedure, The convective terms in the
governing equations are written in conservation form as recommended]7
for shock capturing whereas the dissipative terms are expanded in
terms of u, v, H, and yu. (Even though the bow shock is fitted it
is asgumed that we will be able to capture the 1lip shock and
recompression shock in the base.)

In preliminary numerical calculations it was found that finite-
difference approximations of terms involving products of metric
coefficients with the conservative flow variables (i.e. 8(hpu)/d9,
a[hz(p+pu2)]/38 etc.) caused large errors in the numerical solution
at Targe distances from the body where coordinate stretching was
significant. Writing the governing equations in a form which separated
derivatives of metric coefficients, which are evaluated analytically,
from derivatives of conservation flow variables, which are evaluated

numerically, eliminated this problem. The governing equations expanded

in this manner become:




dp/at = ~[dpu/36 + dpv/ar + ou(1/Y aY/36 + 1/h oh/28)
+ pv(1/Y 3Y/3r + 1/h 3h/3r]/h a
dpu/ot = -[a(p + puz)/ae + dpuv/ar - pv2 1/h 3h/36 |
+ pul(1/Y 8Y/36 + 1/h 3h/38) + puv(1/Y aY/ar + 2/h 3h/3r)1/h
+ Fy/ (%R, | b
dpv/ot = -[3puv/36 + 3(p + pv2)/3r - pu2 1/h ah/ar
| + ov2(1/Y 3Y/ar + 1/h ah/ar) + puv(1/Y 8Y/36 + 2/h 3h/38)]/h
+ Fol (PR c
d9pH/at = -[3puH/36 + dpvH/3r + puH(1/Y 3Y/36 + 1/h 3h/38)
+ pvH(1/Y 3Y/3r + 1/h 3h/ar)]/h
+ Fof (WPR.) + Fy/ (hZRGP,) d

where F,_, are various dissipation functions defined in Ref. 1 with

pu = p(T) using Sutherland's Taw and Pr = constant.
An additional coordinate transformation is utilized which simplifies

the treatment of the outflow boundary by mapping it to infinity where

\ (2)




conditions are known and gives some control in the density of mesh points

near the body. The new coordinate n is defined so that

r = -n(f,)/f,
d

f=agn > +a

This stretching does not affect the orthogonality of coordinate system.
Derivatives with respect to r are rewritten as derivatives with
respect to n as follows:

of/ar = 3f/3n on/ar

32£/ar2 = 32f/an(an/ar)2 + af/an 82n/ard

where 9p/or and azn/ar2 can be obtained algebraically.

10
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Numerical Approach

A11 of the material presented in this section, except for the

discussion on shock floating and initial conditions, is described in

Ref. 1. For the sake of brevity and completeness, only a brief summary of

material presented in the earlier work is presented.

A modification of the Brailovskaya scheme which was introduced by
Allen and Chengm’]8 was applied to the governing equations. This
particular method was chosen because the viscous stability limit
in the numerical procedure is removed. The stability 1imit on the time

step for the inviscid terms is written as

At < 1/[|u|/(hag) + |v|/(h 3r/3n An)

+ a‘I;/(Aez) + 1/(5r/or, An)z/%] (4)

where a is the local speed of sound.

Preliminary calculations indicated that a smoothing routine was
necessary to eliminate numerical instabilities which occur in the
vicinity of a captured shock and in the wake. A nonphysical damping
function was used to eliminate these 1'nstab1'h't1'es.]9 Terms of fourth
order in the spatial grid are used to smooth the variables p, pu, pv,

and pH after every iteration. For example

n
oI T = B - el(ao)®aorae® + (an)* a%o/an*; (5)



12

The tilde indicates the undamped results from the corrector step
of the difference scheme and ¢ 1is a constant such that 0 < e < 1/24.
Small variations to the smoothing formulas must be implemented near the
boundaries j =1, j = NJ and in the vicinity of the fitted bow shock

(Fig. 2).

Initial Conditions - The initial shock shape is prescribed by the
20)

formula (similar to one by Van Dyke

=2Rx§-ax$ (6)

where

o
]

1/(1—Mg) , 0<c<2,R >0

Xp = x = xgs and  x, = 8 + x(m,0)
(The constant c = 1 yields an hyperbola, c¢ - 0 causes the Mach angle,
v, to be approached more quickly, and Rs controls the magnitude of

Yg at a particular x location). The points of intersection (values

of r) where lines of constant 0 intersect the shock are determined
implicitly. The shock angle is calculated and conditions on the shock

at these_points are evaluated using the Rankine-Hugoniot equations. The
no-slip conditions are imposed on the body. A stagnation pressure is
calculated and the pressure distribution around the body is assumed to
vary as the cosine squared of the body angle, until the freestream
pressure is achieved, at which point the pressure on the body is held

at p_. An isentropic expansion around the body is used to approximate




the distribution of p and H. The quantities p, p, U, and v are
assumed to vary linearly in n - between the shock and the body along
Tines of constant 6, and H 1is calculated from the equation of state.
A linear variation of these quantities in n based on freestream values
of p, p, u, and v 1is used in the base region where lines of
constant © do not intersect the shock.

- The components of the uniform freestream velocity field in the
present coordinate system are calculated as v = - sin ¢ and
u = cos Y, where ¢y is the angle of the vector tangent to a line of
constant r in a direction of increasing 6, measured in a counter-
clockwise direction from the horizontal (Fig. 3). The differentials

dx and dy along a line of constant r can be determined from

Eq. (1) and may be used to show that

N
(B sinh r - C cosh r) sin 6 + 2, nAnenr sin no )
cos ¢ = . h=2
LI )
(B cosh r - C sinh r) cos 8 + ), nA e’ cos ne
. n=2
sin ¢ =
h J

13

Shock Floating - The shock floating technique, treating the shock as a

discontinuity which 1ies between mesh points in the computational field

21,22

(Fig. 2), has been described by Moretti, Sa]as,23 and Daywitt,

24 Treating the bow shock as a discontinuity using the Rankine-

et al.
Hugoniot equations eliminates the problem, associated with shock
capturing, of creating a numerical overshoot and undershoot of properties
near the shock, possibly causing static enthalpy to go negative. The

choice of shock floating over nondimensionalizing by shock displacement



was made for two reasons. Shock displacement along a Tine of constant 6
becomes unbounded in the base region; and, for small values of 6 near
the base symmetry plane, lines of constant 6 never intersect the shock.
Also, nondimensionalizing by shock displacement destroys the orthogonality
of the coordinate system and consequently further complicates the
governing equations.

The shqck position is tracked along lines of constant 6. This
coordinate is the obvious choice in the stagnation region because lines
of constant © are nearly normal to the bow shock here. However, in
sweeping around the body in a clockwise direction, it is found that
these lines intersect the shock at smaller angles; consequently, a small
displacement of shock position in a direction normal to the shock (which
is the direction shock velocities are determined) is seen as a large
displacement along a line of constant 6. The shock position could be
tracked along lfnes of constant n in these situations; however, the
bookkeepiné and internal logic would become more complex. It has been
found that lines of constant 6 can be used to track the shock movement
so long as one ensures that the shock angle never becomes less than the
Mach angle during the iteration process. |

| The shock floating algorithm cannot be described in detail here
because of space limitations but a general description is supplied below.
The numerical procedure at interior points is described in Ref. 1,
Special difference formulas are used when the shock cuts a computational
molecule. A predictor step is performed at mesh points behind and on the
bow shock. Pressure behind the shock and the shock angle determines shock

velocity. These velocities are resolved along coordinate directions to
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obtain shock displacement. The Rankine~Hugoniot equations for a moving
shock are used to redefine p, u, v, and H on the shock. The
procedure is repeated for the corrector step. Some damping of the shock
motion and smoothing of the shock shape are necessary early in the
iteration process; however, these fixes can be turned off when the shock
approaches a steady position. The shock converges rapidly in the
stagnation region and more slowly downstream where the shock angle
approaches the Mach angle. Depending on the severity of the "misalignment"
of the initial shock shape, a wave in the shock can be observed to travel
downstream. The use of central differences to calculate shock angle in
the forebody region, where the flow behind the shock is subsonic or
transonic, and forward differences downstream, prevented these waves from
reflecting back into the stagnation region, thus speeding convergence.
Sometimes this wave caused the shock angle to become Tess than the Mach
angle. In such situations, rather than use the Rankine-Hugoniot equations
which are invalid, shock displacement is defined in a manner to force

the shock angle to equal the Mach angle.
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Results and Discussion

A11 of the material presented herein, unless otherwise noted, was

computed on a grid of 51 x 50, with ay = 1.5, =1, a, =2, and

a
2
ay = 1.5. The constants describing the cylinder are B =C =1, An = O.

The constants describing the Viking Aeroshell (Fig. 1) are B = 1.5146477,

C = 0.71607873, A, = -0.059786238, A3 = -0.056648540, and A, = 0.042817883,

General Observations - For the given initial conditions, a region

of high density and pressure builds up in the base area and eventually
flows out toward the outflow boundary. The formation of this high density
region produces gradients which can cause instabilities in the wake.
These instabilities can be controlled by adjusting the value of the
smoothing parameter, e, and by decreasing the integration time step to
some fraction; (» 1/10) of the stability limit of Eq. (4). At times,
it is necessary to iterate only in the base flow region, while holding
the rest of the fie}d constant. Thgse problems become more severe as
M, and Re_ are increased. Many of these problems can be alleviated
by starting the procedure with a Tow Reynolds number for the first few
thousand iterations. It is advisable to iterate the solution during
this period in blocks of 500 iterations in order to ascertain the effect
of changes in the smoothing parameter, the time step, or the Reynolds
number, always picking up in the new solution where the old solution
left off. When one has passed the hurdle of integrating in time beyond
these artificially induced transients and instabilities the time step

can be raised to the full stability 1imit and e can be decreased.




Note that many of these problems could be overcome by establishing
more realistic initial conditions in this coordinate system. Also, it
is possible that a given set of initial conditions may result in
transients that are too complex to be resolved by the present technique.
This is especially true for the initial guess on shock shape at high
Mach numbers. The smoothing that was incorporated into the program in
the vicinity of.the shock is designed to allow the solution to progress
from a relatively large error in the initial shock shape. Still, it is
possible to specify an initial shock shape that cannot be jterated to
convergence. In such cases it is useful to study the history of the
shock motion (i.e., Is the shock moving in or out? Is the shock bluntness
in the nose region increasing or decreasing?) and adjust the parameters
of the initial shock shape (Eq. (6)) accordingly. It should also be
noted that the fix of using a low Reynolds number initially, as mentioned
in the previous paragraph, can sometimes make the shock floating process
more difficult (i.e., there really is no discrete shock to track). In
such cases some compromise must be found in choosing the values of
Re and ¢ to be used. Experience dictates the best choice and is the
best teacher in these situations,

Convergence is achieved within 15,000 iterations. It is defined by

| (pn"l']

looking at the value E = - pn)/pnl and at the distribution

of properties along the base symmetry line. (When the maximum value of

E 1in the field becomes less than 10’4

and properties on the base line
of symmetry are constant to three decimal places after 1000 jterations

then the solution is said to be converged.) After a converged solution

17
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has been obtained for a particular Mach number and Reynolds number, the
solution at a new Reynolds number can be obtained within approximately
5,000 iterations using the old solution as an ijnitial condition. The
same is true for changes in M_ that produce small changes in wv.

Some distortion of properties near the boundary n = 0 1is observed.
The poor.resolution makes it impossible to measure vehicle drag based
on an integrated momentum deficit in the wake. Mapping the outflow
boundary to infinity has proved useful in these early calculations in
the sense that no stability problems have ever been encountered due to
this particular treatment of the boundary. However, it is belijeved
that a more exact treatment of the outflow boundary at some finite
distance downstream will make it possible to obtain better resolution
of the wake throat.

Comparisons with Experimental Data: Comparisons between the present
25

method and experimental results of Tewfic and Giedt™™ for pressure
distribution and heat transfer on a cylinder are presented in Figs. 4
and 5. Shock and body slip conditions were used although the
calculated effects of shock s1ip were negligible. Also, it appears the
no-slip pressure distribution gives a better agreement to experimental
data than the.slip condition in the stagnation region (Fig. 4) though
the effect is small. A detailed comparison of base pressure
distributions agree well with experimental data for similar flow
conditions. The flow separation point in Fig. 4 occurs slightly
downstream of the pressure minimum, at an inflection point in the curve.
The heat transfer results for the M_= 5.5 case (Pr = 0.77

corresponding to 90% K wall temperature) agree well with the experimental

data, except in the stagnation region where there is approximately an




8-percent difference (Fig. 5). The M_ = 5.73 case yield values of

q which agree well with experimental data in the stagnation region,
fall below experimental data for much of the forebody, and level off
slightly above experimental data in the base. In both cases, the

calculated heat transfer was obtained according to the formula

q = k aT/3n + uu du/3n (dimensional equation)

"26, which accounts for

where the second term is due to "sliding friction
slip flow effects. Possible explanations for these discrepancies

include the assumptions of Pr = constant, the use of Sutherland's

law at these temperatures (T = 40° K) and experimental error. Changes

in the heat transfer results were negligible when the smoothing parameter,
£, was varied from e = 0.003 to € = 0.0005.

The static pressure distribution along the wake centerline of an
adiabatic cylinder is compared to experimental data of McCarthy and
Kubota27 in Fig. 6. The distributions near peak centerline pressure
are also plotted for the previous cases to illustrate the effect of
Reynolds number. The overprediction of pressure downstream is most
likely due to lack of resolution in the numerical technique. The
experimental data for a Taminar wake show a dip in the transverse
pressure distribution across the centerline which cannot be resoived

in the present computational grid. Velocity vectors around the cylinder

are shown in Fig. 7. Although there is no distinct 1ine where the

19
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velocity vectors are sharply turned dﬁe to the presence of a recompression
shock one can see the gradual turning of the vectors to a parallel
direction in the vicinity of where the shock should be, even in the
relatively coarse grid. (The distribution of node points can also be
understood from this figure, Every other node point, in a checkerboard
pattern, has a velocity vector associated with it, the arrows tail
originating at the node poiht.) The discrepancy of base pressure is
within the experimental accuracy (4p,(6)/p (m) = i-02)-27

Wake centerline pressure distributions and velocity vectors are
presented in Figs. 6 and 8 for a sphere at the conditions given above
for M_ = 5.64. The recirculation region is seen to be slightly
larger for the sphere. The maximum recircu]ating centerline velocity

and Mach number for the sphere is greater than that of the cylinder

(v « = 0.191 for sphere, Vo

na = 0.125 for cylinder, MmaX = 0.436 for sphere,

ax

MmaX = 0.288 for cylinder). Excellent agreement for forebody pressure
distribution and shock shape was obtained between the present method

and the numerical method of Gr'aves28 (Fig. 9).

Viking Aeroshell - Calculations have been made for supersonic

flow over an approximation to the Viking Aeroshell in C02; y = 1.285,
Pr = 0.685, adiabatic wall; for the following conditions: M_ = 2,
Re = 1000, 5000, 30,0005 M_ = 5, Re = 5000; M_ = 10, Re = 1000, 5000.
Fig. 10 presents the isobars for the M_ =2, Re = 1000 case. The
arrows and dashed lines indicate the shift in position of the isobars
for Re_ = 30,000. The expansion fan and the coalescence of jsobars
to form the recompression shock are evident in this figure. Drag

coefficients and some properties of the near wake flow (separation




point, Bsap? length of recirculation region, L, base pressure and

p
temperature at 6 = o, p (0)/p,, T, (0)/T, and maximum pressure on wake

centerline, p__ /p_) are presented in Table 1.

max
The recirculation pattern for the M_ = 2, Re_ = 5000 case is
presented in Fig. 11. There are two recirculating flow patterns
(clockwise rotation) separated by a small counterclockwise circulating
flow. The upper recirculating region in this case seems to form a
horizontal platform over which the separated flow passes. Separation
occurs slightly downstream of the upper corner of the body corresponding

29 and Allen and Cheng]3 for a sharp corner

to observations made by Hama
body. Increasing the Mach number while holding Re_ constant causes
the upper recirculation region to decrease in size and the separation
flow angle decreases below the horizontal. At M_ = 10 this upper
recirculation region vanishes. Supersonic recirculation velocities on
the axis of symmetry were calculated for M_ = 2, Re_ = 1000, 5000,
30,000 and M_ =5, Re_ = 5000. For M_ =2, Re_= 1000 sonic velocity
was just achieved and as the Reynolds number was increased a Mach number
of approximately 1.4 was attained and a small shock formed approximately
0.4 nose radii away from the base, with a radius of approximately 0.25
nose radii. The recirculation shock strengths for M_ =5, Re = 5000,
and M_ =2, Re_ = 1000 are approximately equal, suggesting that such
phenomena are a function of Mm/Jﬁ—;, though clearly more calculations
are needed. A calculation by Erdos and Zakkay30 for supersonic flow
over a wedge in which nearly supersonic recirculating velocity was
reported is the only other mention of large recirculating velocity that

was found in the literature. They conclude that the recirculation

21
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velocity varies directly with the vorticity entering the region, up to
some choking condition in the flow. The present results are consistent
with that observation. Several numerical experiments in which € and grid
size were varied did nothing to change the position or strength of the
shock, although changes in resolution caused some differences in pressure
downstream (Fig. 12). The calculation of this "recirculation shock" is

a disturbing development, even though the magnitudes of pressure and
density are small in its vicinity. It has been assumed that the base
flow is steady and axisymmetric, and possibly the imposition of this
symmetry at the axis artificially produces the calculated phenomenon.
Whatever the cause, whether it is truly physical or numerical, it is

an interesting result that certainly needs more investigation before the
question of its existence can be satisfactorily resolved.

A calculation was attempted for M, = 5, Re_ = 30,000. This case
could not be run to convergence because negative values for density,
pressure, and enthalpy were calculated near the wall just below the
corner of the probe. The expansion around the corner was extremely
severe. Even a half cell away from the body the velocity was supersonic.
Increased resolution near the body did not alter this situation. In
fact, a normal mesh spacing that was just fine enough to resolve the
boundary layer in the forebody was less than the mean free path
immediately behind the expansion corner. No discernible boundary layer
is present in this region. There is a rapid compression at the wall
following the expansion, the flow becomes subsonic and then separates.

This behavior may be due to the formation of a 1ip shock, normal to the




body, immediately below the expansion corner. This shock could not be
captured with the present distribution of node points in a tangential
direction and with the present formulation of the boundary conditions.
The numerical undershoot of properties on the low pressure side of the
shock that occurs with shock capturing would then explain the calculation
of negative enthalpies. Indeed, it may be necessary to "float" the 1ip
shock rather than smear it over several mesh points and thus destroy the

detail of the flow in this region.

23




Concluding Remarks

Solutions of the Navier-Stokes equations for the complete flow
surrounding blunt bodies in a supersonic stream can be achieved using
the numerical method described herein. Good comparisons with
experimental data support this statement. The given coordinate system
is especially useful in that it allows one to study the differences
in the wake flow structure for many realistic body shapes. For
example, the Viking Aeroshell exhibited a double recirculating flow
pattern, while at similar freestream conditions, a sphere exhibited only
a single pattern. However, it is evident that certain areas of the
wake flow will require special treatment for increasing Reynolds
number (i.e., Reynolds numbers on the order of 10,000). In particular,
for blunt bodies experiencing a rapid expansion around a sharp corner
(i.e. Viking Aeroshell) it appears that a 1ip shock will need to be
treated as a discontinuity. The recompression shock may also need
to be treated as a discontinuity and the mesh resolution in its

vicinity to be increased in order to improve calculations in the far

wake (i.e., 3 < x <100).
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Table 1 Calculated properties of Viking flowfields
M Re Cp Ocep® deg L Pu{o)/p,  Tw(o)/T,  Ppay/Po
2 1,000 1.574 80.6 3.82 0.737 1.53 1.090
2 5,000 1.565 88.2 3.34 0.901 1.55 1.152
2 30,000 1.566 93.6 3.36 0.943 1.56 1.179
5 5,000 1.532 72.0 2.64 1.34 2.85 2.21
10 1,000 1.520 25.2 0.72 3.08 12.3 4.88
10 5,000 1.543 55.1 2.6 3.63 13.2 6.15
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Fig. 11. Velocity vectors over Viking Aeroshell, M, =2, Rg_ =5000,



.28

.24

20
16
12 |
— REGULAR MESH 1.5

i Cweeew-COARSE MESH 1.2 0 1
' — ——FINE MESH 1.0 10 1.3
.04

0 | | | | | | | | | |

0 1 2 3 1 5 6 7 3 9 10

Fig, 12 Pressure distribution along wake symmetry axis for Viking Aeroshell,
M, = 2, Re_ = 5000.



1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA TM-81784

4. Title and Subtitle 5. Report Date
March 1980

6. Performing Organization Code

Complete Supersonic Flowfields Over Blunt Bodies in a
Generalized Orthogonal Coordinate System

7. Author(s) 8. Performing Organization Report No.
Peter A. Gnoffo

10. Work Unit No.

9. Performing Organization Name and Address 506-51-13-01

NASA Langley Research Center
Hampton, VA 23665

11. Contract or Grant No.

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, DC 20546

15. Supplementary Notes

16. Abstract

A given orthogonal coordinate system is used to describe various axisymmetric
and two-dimensional shapes. Close approximations to planetary probe configurations
are possible. The full Navier-Stokes equations are discretized in this coordinate
system in a manner based on Allen and Cheng's numerical procedure. The bow shock is
treated as a discontinuity which floats between grid points. Completely coupled flows
over the forebody, base, and near wake have been calculated over a cylinder, sphere,
and an approximation to the Viking Aeroshell for 2 < M, < 10 and 1000 < Re < 30,000.
The program gives good comparisons with experimental data. A major contribution of
this work is that it allows one to study the effect of changes in the blunt body shape
on the base flow structure. Also, some problem areas in determining the base flow
for increasing Reynolds number are discussed. In particular, it is found that the mean
free path of the fluid near the wall immediately below the corner of the Viking Aero-
shell, which experiences a severe expansion, can become greater than the local mesh
size required to resolve the boundary layer in the forebody. Negative pressures,
densities, and temperatures can be calculated in these instances. It appears that

part of this problem is due to an inability to capture a 1ip shock close to the wall
with the given grid.

17. Key Words (Suggested by Author(s) } 18. Distribution Statement

Navier-Stokes equations

Coordinate transformation . ..

Blunt body Unclassified - Unlimited

Wake flow

Supersonic flow Subject Category: 34
19. Security Classif. (of this report) 20. Security Classif. (of this page} 21. No. of Pages 22. Price’

Unclassified Unclassified 41 $4.50

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161













