Yiking Navigation

W. J. O'Neil, R. P. Rudd, D. L. Farless,
C. E. Hildehrand, R. T. Mitchell,
K. H. Rourke, et al.
Jet Propulsion Laboratory

E. A. Euler
Martin Marietta Aerospace

November 15, 1979

National Aeronautics and
Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Viking Navigation

W. J. O'Neil, R. P. Rudd, D. L. Farless,

C. E. Hildebrand, R. T. Mitchell,
K. H. Rourke, et al.

Jet Propulsion Laboratory

E. A. Euler

Martin Marietta Aerospace

November 15, 1979

National Aeronautics and
Space Administration
Je: Propulsion Laboratory
California Institute of Technoiogy
Pasadena, California

The research described in this publication was carried out by the Jet Propulsion Laboratory. California Institute of Technology, under NASA Contract No NAS7-100

Abstract

NASA soft-landed two Viking spacecraft on Mars in the summer cf 1976 . These were the free world's first landings on another planet. This report provides a tinal. comprehensive description of the navigation of the Viking spacecraft throughout their flight from Earth launch to Mars landing. The flight path design, actual inflight control, and postflight reconstruction are discussed in detail. The report is comprised of an introductory chapter followed by five chapters which essentally correspond to the organization of the Viking navgation operations, namely, Trajectory Descriptuon. Interplanetary Orbit Determination, Satellite Orbit Determination, Maneuver Analysis, and Lander Flight Path Analysis. To the extent appropriate, each chapter describes the preflight analyses upon which the operational strategies and performance predictions were based. The inflight results are then discussed and compared with the preflight predictions and, finally, the results of any postflight analyses are presented.

Contents

Introduction 1W. J. O'Neil and R. P. Rudd
I. Flight Path Design 5
II. Viking 1 Inflight Synopsis 16
III. Viking 2 Inflight Synopsis 20
References 27
Appendix. Definitions of Terminology 28
Figures
1a. FPAG personnel 3
1b. FPAG functional organization 4
2. Viking flight team functional organızation 9
3. SPFPAD operations schedule 11
4. Lander descent 13
5. Accessible area constraints 13
6. Accessible area fixed to orbit 14
7. Inertial landing point 14
8. Orbit plane design 14
9. Viking 1 orbit insertion design 15
10. Viking 1 B-plane delivery requirements 15
11. Timing offset 15
12. Orbital operations plan 16
13. Viking 1 heliocentric trajectory 17
14. Viking 1 launch accuracy 17
15. Viking 1 Earth departure control 17
16. Viking 1 interplanetary delivery 18
17. Viking 1 Mars approach control 19
18. Viking 1 Mars orbit insertion 20
19. Viking 1 actual site acquisitions 20
20. Descent sequence 21
21. Landing accuracy 21
22. Viking 2 heliocentric trajectory 21
23. Viking 2 launch accuracy 22
24. Viking 2 midcourse aimpoints 22
25. Viking 2 unbiased rear-Earth midcourse maneuver 23
26. Viking 2 Earth departure control 24
27. Viking 2 madcourse tar geted and achereved aimponts 25
28. VO 1 and 'O 2 ground tracks 26
29. Viking 2 landing region 26
Trajectory Description 30D. L. Farless, L. H. Dicken, and R. E. Diehi
I. Launch Phase 30
II. Interplanetary Phase 31
A. Heliocentric Orbit Description 31
B. Near-Earth Midcourse Maneuver Effects 33
C. Solar Pressure Effects 33
D. Interplanetary Trajectory Data 33
III. Encounter Phase 33
IV. Mars Orbit Phase 37
Tables

1. Viking 1 launch trajectory mark event list 30
2. Viking 2 launch trajectory mark event list 31
3. Orbital data 31
4. Heliocentric orbit elements 32
5. Areocentric orbit elements 37
6. VO-1 Mars orbit elements 38
7. VO-2 Mars orbit elements 44
8. Mars orbit trim maneuver execution times 47
Figures
9. Targeted and achieved injection aimpoints for Viking launches 31
?. Viking 1 heliocentric trajectory 32
10. Viking $\mathbf{2}$ heliocentric trajectory 32
11. Targeted and achieved midcourse maneuver aimpoints for Viking 33
12. Viking $\mathbf{1}$ geocentric range 34
13. Viking 1 geocentric range rate 34
14. Viking 1 geocentric declination 34
15. Viking 1 geocentric right ascension 34
16. Viking 1 heliocentric range 35
17. Viking 1 areocentric range 35
18. Viking 2 geocentric range 35
19. Viking 2 geocentric range rate 35
20. Viking 2 geocentric declination 36
21. Viking 2 geocentric right ascension 36
22. Viking 2 heliocentric range 30
23. Vikıng 2 areocentric range 36
Interplanetary Orbit Determination 48
K. H. Rourke, N. Jerath, C. H. Acton, W. G. Breckenridge, J. K. Carr,pbell,
C. S. Christensen, A. J. Donegan, H. M. Koble, N. A. Mottinger, G. C. Rinker, and F. B. Winn
I. Introduction 48
II. Mission Description 49
III. Orbit Determination System Fundamentals 49
A. Trajectory Models 50
B. Observation Models 50
C. Radio Data Models 50
D. Optical Data Models 51
E. Filter Models 51
F. Orbit Determination Process 52
G. Critical Orbit Determination Inputs 53
H. Orbit Determination Errors 54
IV. Orbit Determination Software System 54
V. Orbit Determination Strategy 55
A. Radio and Optical Orbit Determination 55
B. Approach Observation Schedules 58
C. Orbit Estimation Strategies 58
VI. Orbit Determination Results 60
A. Launch/Earth Departure Phase 60
B. Cruise Phase 60
VII. Long-Arc Radio Data Processing 62
A. Inflight Processing 62
B. Postflight Processing 64
VII. Solar Preasure Model Improvement 68
IX. Optical Measurements Processing 73
A. Optical Measurement System 73
B. Optical Observables 73
C. Sequerice Data and Pointing Optimization 74
D. Data Flow and Management 74
E. Telemetry Data Processing 74
F. Picture 'Data Processing 74
G. Optıcal Observables Generation 75
H. Processing Results 75
X. Approach Orbit Determination Evaluation 75
XI. Inflight Orbit Determination Solution Compilation 79
XII. DSN Station Location Evaluation 80
A. Theoretical Background 81
B. Data Coverage and Calibrations 82
C. Preliminary Solutions 83
D. Final Solutions 83
XIII. Satellite Ephemeris Evaluation 101
A. Wilkins' Angles 101
B. Analysis of Approach Optical Data for Ephemeris Determination 102
C. Sate:iite Ephemeris from VO-1 and VO-2 104
XIV. Conclusions 106
References 108
Tables
24. Mission events 49
25. Optical observables 51
26. Orbit determination system error model 54
27. OD software inputs 55
28. OD software outputs 56
29. OD software glossary 56
30. Typical operations sequence 56
31. Mission requirements and radio capability 57
32. Data treatment 60
33. Launch departure solutions 61
34. B-plane summary of Viking 1 postflight long-arc date processing 64
35. Comparison of solutions for Viking 1 solar pressure parameters 68
36. Comparison of inflight solutions for Viking 1 and Viking 2 solar pressure parameters 73
37. Pointing knowledge accuracy 75
38. Detrended target residuals 76
39. Orbit estımate deliveries 78
40. Viking 1 cruise solution summary 84
41. Viking 1 approach phase solutions (ODP) 85
42. Viking 1 approach phase solutions (ONP) 88
43. Viking 2 cruise solution summary 90
44. Viking 2 approach phase solutions (ODP) 91
45. Viking 2 approach phase solutions (ONP) 93
46. Location set 44 95
47. Summary of Viking 1 and 2 radiometric data sets 95
48. Summary of charged particle calibration sets 95
49. Viking ? uncalibrated corrections to LS44 99
50. Viking 1 calibrated corrections to LS44 99
51. Viking 2 uncalibrated corrections to LS44 100
52. Viking 2 calibrated corrections to LS44 100
53. Final Viking corrections to LS44 100
54. Combined Viking 1 and 2 station location solutions 100
55. Vikıng nominal Deimos ephemeris 102
56. Parameter set selection for satellite ephemeri- 103
57. Data strategy selection for satellite ephemeris 103
58. Effect of degrading a priori uncertainty on satellite ephemeris 103
59. Optical measurement biases 104
60. Deimos ephemeris parameter updates 104
61. Deimos ephemeris update evaluation 104
62. Deimos ephemeris using Viking approach optical data 105
Figures
63. Mission events 49
64. Orbit determination process 52
65. Orbit determination software interfaces 55
4a. Mission requirements and radio capability: departure 57
4b. Mission requirements and radio capability: approach 57
66. Optical observations 59
67. Optical observable 59
68. Optical accuracy 59
69. Optical observation schedules 59
70. Viking 1 launch phase solutions 61
71. Viking 2 launch phase solutions 61
72. Viking 1 cruise solutions 62
73. Viking 2 cruise solutions 63
74. Viking 1 lony-are solutions €3
75. Viking 2 long-arc solutions 63
76. Viking 1 long-arc inflight calibrated doppler residuals 65
77. Viking 1 long-arc postflight calibrated doppler residuals 66
78. Viking 2 long-arc inflight calibrated doppler residuals 67
79. Viking 1 long-arc postflight uncalibrated doppler residuals 69
80. Viking 1 long-are postfight calibrated doppler residuals, doppler.cnly fit 70
81. Viking 1 long-arc postflight lincalibrated range residuals 71
82. Viking 1 long-arc postfight calibrated range residuals 72
83. Viking 1 Mars residuals 76
84. Viking 2 Mars residuals 76
85. Viking 1 Deimos residuals 76
86. Viking 2 Deimos residuals 76
26a. Viking 1 approach solution histories, pre AMC 1: ODP 79
26b. Viking 1 approach solution histories, pre AMC 1: ONP 79
27a. Viking 1 approach solution histories, pre AMC 2: ODP 80
27b. Viking 1 approach solution histories, pre AMC 2: ONP 80
28a. Viking 1 approach solution histories, pre MOI: ODP 81
28b. Viking i approach solution histories, pre MOI: ONP 81
29a. Viking 2 approach solution histories, pre AMC: ODP 82
29b. Viking 2 approach solution histories, pre AMC: ONP 82
30a. Viking 2 approach solution histories, pre MOI: ODP 83
30b. Viking 2 approach solution histories, pre MOI: ONP 83
87. A cylindrical coordinate system for a DSN station 95
88. Viking 1 uncalibrated doppler residuals 96
89. Viking 2 uncalibrated doppler residuals 97
90. Viking 1 calibrated doppler residuals 98
91. Viking 2 calibrated doppler residuals 99
92. Final Viking spin axis and longitude corrections to LS44 101
93. Wilkins' angles 101
94. VO-1 postfit Deımos residuals 102
95. VO-1 postfit Deimos residuals; loose a priori 104
96. VO- 1 pre-update Deimos residuals 105
97. VO-1 post-update Deimos residuals 105
98. VO-1 post-update Deimos residuals, biases solved for 105
Satellite Orbit Determination 109
C. E. Hildebrand, E. J. Christensen, D. H. Boggs, G. H. Born, B. G. Willinms, and Z. Shippony
I. Introduction 109
II. Overview of Viking Satellite OD Activities 111
A. Support Activities 111
B. Methods 112
III. Initial Orbit Convergence 113
A. The Convergence Problem for Short Data Arcs 113
B. Preflight Simulation Anaiysis 114
C. Viking 1 and 2 Initial Orbit Convergence 117
IV. Short Arc Orbit Determination 121
A. Preflight Analysis 121
B. Inflight Results 121
C. Late Update Strategies 124
D. Constrained State Estimates During Extended Mission 126
E. PVRA: Efficient Spacecraft State Ertimation in Orbit Phase 127
F. Media Effects on OD Accuracy 128
V. Modeling Cravitational Accelerations 132
A. Preflight Analysis 132
B. A. Linear Piecewise Batch Estimator 134
C. VO-1 Experience 134
D. Vo-2 Experience 136
E. Gravity Estimation in Extended Mission 137
F. Conclusions 141
Vi. Viking Lander Pocition Determination 142
A. Information Content of VL Radic Tracking Data 142
B. Preflight Analysis 143
C. Inflight Results 143
VII. The Mass of Phobos from Viking Flybys 145
A Introduction 145
B. Encounter Geometry 145
C. Prefight and Real-Time Estimates 145
D. Postflight Estimates 150
E. Concluding Remarks 150
VIII. Conclusions and Recommendations 151
References 151
Tables
99. Areocentric orbital clements of Viking 1 110
100. Areocentric orbita' elements of Viking 2 110
101. Post-MOI initial state uncertainties 114
102. Post-MOI convergence worst-direction error 115
103. Vo. 1 first orbit convergence history 119
104. VO-2 tirst orbit convergence history 120
105. Trim maneuver description 125
106. Normalized spherical harmonic coefficients for Mars $\times 10^{5}$ 137
107. Areocentric orbital elements of Viking 1 and Viking 2 139
108. VL position and Mars spin axis direction estimates at five days ater touchdown 143
109. Phobos enicounter parameters 150
Flgures $\stackrel{3}{i}$
110. Viking orbit phase navigation related events 111
111. Range-rate time history for different values of orbital period 114
112. Worst-direction diagram in phase space 115
113. Viking 1 eccentricity convergence profile 116
114. Vixing $2 \Omega_{\text {po }}$ convergence profile 116
115. Viking 1 ser,ii-major axis convergence profile 117
116. Viking 1 worst-diroction convergence profile 117
117. Viking 2 worst-direction convergence profile 118
118. Viking 1 first orbit period estimate evolution 118
119. Viking 1 first orbit $\Omega_{\text {pos }}$ estimate evolution 120
120. Viking 2 first orbit period estimate evolution 120
121. Viking 2 first orbit $S_{\text {nos }}$ estimate evolution 121
122. Viking 1 orbit knowladge accuracy 122
123. Viking 2 orbit knowledge accuracy 127
124. Viking 1 and 2 two wiay renge residuals using DF84 123
125. Preflight and actual Viking 1 periapse position prediction accuracy 124
126. Late update orbit period errors 125
127. Late uodate plane.cf.sky node errors 126
128. Effect of a priori constraints on orbital period uncertainty 127
129. Effect of a prioriconstraints on time periapsis passage 128
130. Phase change for VO. 1 DSS $6310 / 15$ i $^{\text {n }}$ oass 129
131. VO-2 first orbit worst case media-induced period error 130
132. VO-2 first orbit worst-case media-induced $\Omega_{\text {pos }}$ error 131
133. Errors in predicted times of periapsis (t_{p}) incurred using a 6×6 gravity field estimated using three revolucions $\left(P_{116}{ }^{-P_{119}}\right.$) of partially calibrated S / X data 131
134. Errors in predicted $\Omega_{\text {pos }}$ incurred using a 6×6 gravity field estimated using three revolutions ($\mathrm{P}_{116} \mathrm{P}_{\mathbf{1 1 9}^{\prime}}$) of partially calibrated \mathbf{S} / X data 131
135. Schematic representation of the cr:znge in period (ΔP) through periapsis 132
136. Definition of the graphic node β 133
137. RSS position error before and after gravity sensing over two revolutions of Viking 1. The figure represents a typical case from a preflight covariance analysis where errors in gravity. sta*ion locations, ephemeris and mass of Mars were conside:ed 133
138. Change in period as a function of g a aphic node at periapsis based on a 6×6 VO. 1 combined field determined over $P_{2}-P_{46}$ 135
139. Difference in the change in period (VO.1 6×6 combined
field - nominall as a function of graphic node at periapsis 135
140. Uncertainty in the change in period as a function of graphic node at periapsis based on the nominal field and a VO. 16×6 field determined over $P_{3}-P_{5}$ 135
141. Uncertainty in the change in period as a function 0 . graphic node at periapsis based on the nominal field and a $6 \times \mathrm{F} \mathbf{V O . 1}$ combined field determined over $\mathrm{P}_{\mathbf{2}}-\mathrm{P}_{\mathbf{4 6}}$ 136
142. Change in period as a function of periapsis passage bay d on nominal and VO-I determined gravity fields and observations for ine first 20 days 136
143. Errors in predicted times of periapsis t_{p} and predicted changes in period ΔP incurred using the nominal gravity field on VO-2 (prediction started as P_{7}) 137
144. Errors in predicted times of peria, $"$ is t_{p} and predicter, changes in period ΔP incurred using the 6×6 VO. 1 ar.e.] VO-2 combined field on VO. 2 (prediction started at F_{7}) 137
145. Uncertainty in the change in period as a function of graphic node at periapsis based on the nominal field and the 6×6 VO-1 and VO- 2 combined field 138
146. Comparison of $\Delta \mathrm{P}(\beta)$ between various gravity fields and the nominal gravity field evaluated for the first VO-1 synchronous phase 138
147. Timing uncertainty mapped for $\mathrm{H}_{\mathrm{p}}=300 \mathrm{~km}$, VO-1, using COMBIX/AVE covariance 140
148. Error in timing predictions based on observed errors in delta period (Revs. 264-273) 141
149. Comparison of ΔP errors 141
150. Viking lander tracking geometry 142
151. Viking lander dopplei signatures 143
152. Standard deviations of Viking lander position and Mars spin axis direction from radio tracking (1-eflight) 144
153. VL radio tracking coverage for five days following touchdown 145
154. Standard deviations of Viking lander position and Mars spin axis direction from radio tracking (in-flight) 146
155. Phobos encounters 147
156. VO-1 and Phobos encounter geometry 147
157. Orbit period change vs B-plane encounter location 148
158. Range-rate change vs B-plane encounter location 149
Maneuver Analysis 153
R. T. Mitchell, D. L. Farless, J. K. Miller, G. R. Hintz, N: I. Adams, N. P. Dwivedi, c id D. L. Gray
I. Interplanetary Maneuvers -53
A. Choice of Maneuver Dates 153
B. Launch 154
C. Emergency Early Maneuver Strategy 154
D. Summary of Maneuvers Performed 156
E. Maneuver Mechanization 160
II. Orbit Insertion 161
A. Viking 1 162
B. Viking 2 167
III. Orbit Trim Maneuvers 169
A. Prelanding Maneuver Strategies 170
B. Maneuver Mechanization 182
C. Maneuver Constraints 183
D. Trim Maneuver Software 184
E. Viking 1 Trim Maneuvers 184
F Viking 2 Trim Maneuvers 198
References 211
Tables
159. Prelaunch plan tor midcourse maneuver locations 154
160. Targeted and achieved encounter conditions 156
161. Maneuver data 157
162. Viking 1 MOI command update site acquisition tradeoffs 166
163. Viking 1 MOI command update ΔV budget 166
164. Final MOI parameters and related data for Vikings 1 and 2 167
165. Trajectory data - Viking 1 insertion 167
166. Viking 2 post-MOI orbital parameters 169
167. Viking 2 orbit insertion parameters 169
168. Inflight a priors execution errors (99%) 183
169. Design quantities: velocity increment and ignition time 185
170. Design quantities: turns 185
171. Trajectory data 186
172. Vikıng 1 landing site targeting adjustments 191
173. Candidate Viking 2 landing sites 199
174. Viking 2 landing site adjustments 203
175. MOT-3 and MOT-4 trajectory summary for Viking 2 205
Figures
176. Viking 1 injection dispersions 155
177. Viking 2 injection dispersions 155
178. Viking 1 EEM energy envelopes 155
179. Viking 1 midcourse aimpoints 157
180. Viking 1 midcourse aimpoints, detail 157
181. Viking 2 midcourse aimpoints 158
182. Viking 1 first midcourse Earth/Sun cone and clock angles during turns 158
183. Viking 1 midcourse 1 dispersions 159
184. Viking 2 unbiased first maneuver 160
185. Viking 2 biased first maneuver 161
186. Viking 2 first maneuver velocity in critical plane coordinates 162
187. Examples of \mathbf{B}-plane turns quantization 162
188. Viking 1 orbit geometry 163
189. Viking 2 MOI geometry 163
190. Viking 1 insertion timing strategy 163
191. Viking 1 approach midcourse B-plane delivery 163
192. ΔV trades for h_{p} correction at $\mathrm{MOI} /$ trım, $د \theta=0$ deg 164
193. ΔV trades for h_{p} correction at $\mathrm{MOI} / \mathrm{trim}, \Delta(\theta=2 \mathrm{deg}$ 164
194. ΔV trades for h_{p} correction at $\mathrm{MOl} / \mathrm{trim}, \Delta 1=-2$ deg 164
195. Viking 1 post $-\mathrm{N}_{\mathrm{L}} \mathrm{Ol}$ period dispersion 165
196. Roll-yaw turn variations for Viking 1 MOI 165
197. Ignition time sensitivity to h_{p} error 165
198. Effect on post-MOI orbit dispersions of updating MOI parameters based on post AMC-2 orbit knowledge 166
199. Viking 1 Earth/Sun traces for MOI 167
200. Vikıng 2 nomınal post-insertıon orbit tıming 168
201. Viking 2 approach control and knowledge 168
202. Viking 2 approach trajectory history 168
203. Viking 2 period change vs ignition time error 169
204. $\Delta \mathrm{V}$ cost for correcting periapsis altitude errors at MOI vs in orbit for Viking 2 169
205. Viking 2 Earth/Sun traces for MOI 170
206. Viking 2 MOI burn tracking data residuals 170
207. Satellite orbit control for lander separation 171
208. Timing definitions 171
209. Separation orbit time phasing 172
210. VL/VO timing relationships 172
211. Reconnaissance parameters 172
212. Definition of tilt angle $\phi_{t / 1 t}$ 173
213. Flight plane velocity space 174
214. Period gradients for Viking 1 175
215. Periapsis altitude gradients for Viking 1 175
216. Right ascension of ascending node and inclination gradients for Viking 1 175
217. Argument of periapsis gradients for Viking 1 175
218. Time to periapsis gradients for Viking 1 176
219. LATPER gradients for Viking 1 176
220. Sun elevation angle gradients for Viking 1 176
221. Period gradients for Viking 2 176
222. Periapsis altitude gradients for Viking 2 177
223. Right ascension of node and inclination gradıents for Viking 2 177
224. Argument of periapsis gradients for V/king 2 177
225. Time to peridusis gradients for Viking 2 177
226. LATPER gradients for Viking 2 178
227. Sun elevation angle gradients for Viking 2 178
228. Partial of period and periapsıs altitude with respect to velocity for a sunline maneuver on Viking 1 178
229. Partial of LATPER with respect to velocity for a sunline maneuver on Viking 1 178
230. Partıal of period and deriapsıs altitude with respect to velocity for a sunline maneuver on Viking 2 179
231. Partıal of LATPER with respect to velocity for a sunline maneuver on Viking 2 179
232. Viking 1 timing strategy 179
233. Latitude correction trim 180
234. Viking 2 timing strategy and reconnaissance opporturities for EMA < 9 deg 181
235. Defintion of ellipse orientation angle ψ 181
236. Definıtion of vertical impact point 181
237. Site acquisition geometry for Vikıng 2 182
238. Viking maneuver pointing constraints 183
239. MOT site acquisition strategies 185
240. Site acquisition for July 4, 1976, lariding 187
241. Viking orbit geometry 188
242. Landing site rendezvous 188
243. A-1 site acquisition probabılity 189
244. MOT-3 velocity cost analysis for Viking $1, \Delta p=-1 \mathrm{~min}$ 189
245. VL accessible area and landing dispersion ellipse with MOT-3 190
246. AINW acquisition with MOT-4, LATPER TD $=23^{\circ} \mathrm{N}$ 190
247. A1NW acquisition without MOT-4 190
248. P20 tilt and VL accessible area 191
249. MOT PER update for Viking 1 192
250. Site acquisition for Viking 1 192
251. MOT-6 period control vs true anomaly 193
252. MOT-6 ΔV-cost vs true anomaly 193
253. Site acqusition strategy following MOT-5 193
254. VL parameters R30-R35 194
255. Station-keeping strategy for Viking 1 194
256. SKT-2 ΔV geometry for Viking 1 195
257. SKT-2 accuracy analysis 195
258. VL-2/VO-1 relay geometry 195
259. Viking 1 walk analysis 195
260. VO-1 walk timeline 196
261. MOT-7 geometry for Viking 1 196
262. MOT-7 turns doppler for Viking 1 197
263. MOT-8/9 geometry for Viking 1 198
264. Viking 1 tımeline 198
265. VL-2/VO-1 offset 198
266. Viking 2 site certification/acquisition 199
267. Viking 2 orbit timing at MOT-1 200
268. Orbit plane for Viking 2 201
269. MOT-1 ΔV geometry for Viking 2 202
270. Viking 2 orbit timing at MOT-2 202
271. Maneuver update analysis for Viking 2 MOT-2 203
272. MOT-2 geometry for Viking 2 203
273. Viking 2 site acquisition 204
274. MOT-3 ΔV cost analysis for a sunline maneuver on Viking 2 204
275. MOT-3 h_{p} and LATPER changes for a sunline maneuver on Viking 2 204
276. MOT-4 ΔV cost analysis for a sunline maneuver on Viking 2 204
277. MOT-4 h_{p} and LATPER changes for a sunline maneuver on Viking 2 205
278. MOT-3/MOT-4 geometries for Viking 2 206
279. Pre!iminary MOT-3/MOT-4 VL accessible area for Viking 2 207
:.J. Post-MOT-4 VL accessible area for Viking 2 208
280. Sun direction in velocity space 209
281. Viking 2 plane geometry (MO: 1 210
282. VL-2/VO-2 relay sensitivity to timing offset 210
283. Viking 2 plane change cost 211
11 Jiking 2 plane change geometry 211
Lander Flight Path Analysis 212E.A. Euler, G. L. Adams, and F. W. Hopper
I. Intmxuction 212
A. LFPAT Software 212
B. Operational Activities 213
II. Prefight VL Capability Estimate 216
A. Maximum Accessible Area 217
B. Targeting Region and Preferred Targeting Region 220
C. Landing Accuracy 221
D. Additional Design Considerations 222
III. Preliminary VL Trajectory Design History and Validation 224
A. Preliminary VL-1 Trajectory Design His:ory and Validation 224
B. Preliminary VL-2 Trajectory Design History and Validation 227
IV. Final VL Trajectory Design and Descent Parameters 228
A. Nominal VL Descent Trajectery Design 228
B. Descent Flight Load Parameters 229
C. Descent Trajectory Dispersions 234
D. Desce:: t Relay Performance 234
V. Reconstructed VL Flight Path Summary 234
VI. Entry Trajectory Reconstruction 241
A. Description of Process 241
B. Data 252
C. Entry Trajectory Reconstruction Results 252
D. Vehicle Subsystem Performance 270
VII. Environmental Estimates 274
A. Reconstructed Atmosphere/Winds 274
B. Terrain Profiles 279
VIII. Postland Relay Link 286
A. Procedures, Requirements, and ICL Definition 286
B. Actual VL Relay Link Performance History 286
References 299
Tables
284. Preseparation timeline 214
285. Preflight system and mission constraints 216
286. Summary of descent trajectory designs for candidate VL-1 LS's 226
287. VL descent trajectory design summary 229
288. Trajectory-related descent guidance parameters 230
289. Predicted VL entry and touchdown dispersions 235
290. VL-1 descent constraints checklist 236
291. VL-2 descent constraints checklist 236
292. Descent reconstruction summary 239
293. Actual vs predict VL SOE 240
294. VL entry flight path angle and touchdown errors resulting from each deorbit control error 241
295. A priori entry state and covariance 253
296. Instrument bias and scale factors 254
297. Model parameters and uncertainties 254
298. ODP landed position fixes, 1σ uncertainties 254
299. Viking trajectory/atmosphere reconstruction summary: Viking 1 reconstruction 255
300. Viking trajectory/atmosphere reconstruction summary: Viking 2 reconstruction 256
301. Viking trajectory/atmosphere reconstruction summary: VL-1, 10 uncertainties in estimates 257
302. Viking trajectory/atmosphere reconstruction summary: VL-2, 1o uncertainties in estimates 257
303. Initial measurement residuals 267
304. Measurement residuals, VL-1 and VL-2, smoothed trajectories 269
Figures
305. Descent validation process 214
306. VL-1 altitude vs time during entry phase 215
307. VL-2 altitude vs time during entry phase 215
308. $\mathbf{9 9 \%}$ design wind magnitude profile 217
309. Sensitivity of $\mathbf{a}_{\text {max }}$ to entry errors 217
310. Sensitivity of stagnation point heating rate to entry errors 218
311. Sensitivity of total stagnation heat load to entry errors 218
312. Parachute phase dynamic pressure and Mach No. vs altitude 218
313. Descent trajectory geometry 219
314. Maximum accessible area 220
315. Dispersions (3a) over targeting region 220
316. Targeting regions 221
317. SMA of the 0.99 landing dispersion ellipse over the targeting region 221
318. Components of touchdown dispersion ellipse SMA and SMB over targeting region 221
319. VL terrain height capability 223
320. Terminal descent contours 224
321. VL-1 landing site and targetıng region history 225
322. Final VL-1 targetıng region and landing site 225
323. Targetıng region and landing site 227
324. Nominal VL descent trajectory 228
325. VO-1/VL-1 relative geometry at deorbit 232
326. VO-2/VL- 2 relative geometry at deorbit 233
327. Predicted VL-1 descent relay link performance 237
328. Predicted VL-2 descent relay link performance 238
329. VL-1 landing site error 240
330. VL-2 landing site error 240
331. Reconstructed and observed VL- 1 descent reidy performance 242
332. Reconstructed and observed VL-2 descent relay performance 247
333. VL-1 nominal terram height profile 254
334. VL-2 nominal terrain height profile 254
335. VL-1 altitude above reference aeroid vs time 258
336. VL-1 altitude above reference aerold vs range 258
337. VL-1 range from entry vs time 258
338. VL-1 altitude above reference aeroid vs range 258
339. VL-1 relative velocity vs time 259
340. $\mathrm{VL}-1$ relative flight path angle vs time 259
341. VL-1 relative azimuth vs time 259
342. VL-1 aerocentric latitude vs time 259
343. VL-1 longitude vs time 260
344. VL-1 ground trace near touchdown 260
345. VL-1 terminal descent performance 260
346. VL- 1 planet relative sigma vs time 260
347. VL- 1 planei relative sigma vs time (detail) 261
348. VL-1 planet relative beta vs time 261
349. VL-1 planet relative alpha vs time 261
350. VL-1 Euler PSI vs time 262
351. VL-1 Euler theta vs time 263
352. VL-2 altitude above reference areoid vs time 263
353. VL-2 range from entry vs time 263
354. VL-2 altitude above reference areoid vs range 263
355. VL-2 altitude above reference areoid vs range 264
356. VL-2 relative velocity vs time 264
357. VL-2 relative flight path angle vs time 264
358. VL-2 relative azimuth vs time 264
359. VL-2 latitude vs time 265
360. VL-2 longitude vs time 265
361. VL-2 latitude vs langitude 265
362. VL-2 terminal descent performance 265
363. VL-2 planet relative sigma vs time 266
364. VL-2 planet relative beta vs time 266
365. VL-2 planet relative alpha vs time 266
366. VL-2 Euler PSI vs time 266
367. VL-2 Euler theta vs time 267
368. VL-2 Euler PSI vs time (detail) 268
369. VL-2 Euler theta vs time 269
370. VL-1 dynamic pressure vs time 271
371. VL-1 Mach No. vs tıme 271
372. VL-2 dynamic pressure vs time 271
373. VL-2 Mach No. vs time 271
374. Planet relative angle of attack vs Mach No. 272
375. Atmosphere estimation loops 273
376. $\mathrm{VL}-1$ and $\mathrm{VL}-2$ wind estimation uncertainties 273
377. VL. 1 ambient pressure ($<.1 \mathrm{mb}$) vs altitude 275
378. VL-1 ambient pressure ($>.1 \mathrm{mb}$) vs altitude 276
379. VL. 1 density $\left(<10^{-7} \mathrm{gm} / \mathrm{cc}\right)$ vs altitude 277
380. VL-1 density (>10-7 $\mathrm{gm} / \mathrm{cc}$) vs altitude 278
381. VL-1 altitude above reference aeroid vs temperature 279
382. VL- 2 ambient pressure ($<.1 \mathrm{mb}$) vs altitude 280
383. VL-2 ambient pressure $(>.1 \mathrm{mb}$ vs altitude 281
384. VL-2 density $\left(<10^{-7} \mathrm{gm} / \mathrm{cc}\right)$ vs altitude 282
385. VL-2 density ($>10^{-7} \mathrm{gm} / \mathrm{cc}$) vs altitude 283
386. VL-2 altitude above reference areoid vs temperature 284
387. Atmosphere estimation uncertainties (10) 284
388. VL- 1 altitude above reference areoid vs wind magnitude 284
389. VL-1 altitude above reference areoid vs wind azimuth 28^{\prime}
390. VL-2 altitude above reference surface vs wind magnitude 285
391. VL-2 altitude above reference surface vs wind azimuth 285
392. VL-1 terrain height profile 285
393. VL-2 terrain height profile 285
394. VL-1 transmission start times 287
395. VL-2 transmission start times 287
396. VL-1/VO-1 relay lint performance (sol 9/ICL) 288
397. VL-1/VO-1 1-W mode relay link performance (sol 2) 289
398. $\mathrm{VL}-1 / \mathrm{VL}-1$ relay link performance (sol 26) 290
399. VL.1/VO-1 10.W relay link performance (sol 42) 291
400. VL- 1 antenna pattern traces 292
401. VO-1 antenna pattern traces 293
$98 \mathrm{VL}-2 / \mathrm{VO}-2$ relay link performance (sol 5/ICL) 294
402. VL-2 antenna pattern traces tor VO-2 arid VO-1 relay links 295
403. VO antenna pattern traces for VL-2/VO-2 and VL-2/VO-1 relay links 296
404. VL-2/VO-2 relay link performance (sol 20) 297
405. VL-2/VO-1 relay link performance (sol 45) 298

Introduction

W. J. O'Neil and R. P. Rudd

The free world's first landing on another planet was accomplished by the Viking I Lander when it flawlessly soft-landed on the Martian plain Chryse Planitia at 04:53 PDT, July 20, 1976. Less than two months later, the Viking ? Lander performed an equally magnificent landing on the Martian plain Utopia Planitia at 15:37 PDT, September 3. It is particularly significant that the very first attempt at such an extraordinary feat was completely successful. Viking 1 landed within 30 km of its target more than 300 million km from Earth. Viking 2 landed within 10 km of its target. Both larders have transmitted a tremendous amount of high-quality scientific data to Earth via relay links with their parent vehicles, Viking Orbiter 1 and Orbiter 2. Both Viking spacecraft consisted of a Lander attached to an Orbiter. The Orbiter was designed to carry the Lander into Mars orbit, observe candidate landing sites with television and infrared (IR) instruments, deliver the Lander to the required position and velocity to begin its descent, and to subsequently relay data firm the Lander to Earth during descent and throughout the Lander's 90 -day surface mission. By "station-keeping" the Orbiter in a near Mars-synchronous orbit (24.6 -h period), the Orbiter flew over the lander once each Martian day maintain. ing $a \mathbf{3 0}-60$ minute communication link during which it received and recorded Lander data at 16 kbps . Between the daily links the data was played back to Earth at 8 kbps . In addition to relaying the Lander data, both Orbiters also
transmitted tens of thousands of television pictures and IR observations of Mars obtained by the Orbiters' own science instruments. Comprehensive discussions of the science data obtained by the Ladders and the Orbiters are presented in Ref. 1 .

This publication presents a final, comprehensive report on the design, control, and reconstruction of the flight paths of all four Viking vehicles. The initial work on the flight path including the specification of requirements on the flight hardware was done by the Viking Navigation Working Group (NWG) from 1970 to 1973. In 1973 the Viking Flight Path Analysis Group (FPAG) absorbed the functions and most of the membership of the NWG. The FPAG continued the flight path design, developed the navigation strategies, procedures, and operational software and, ultimately, performed the inflight navigation. Viking navigation included the precise determination of the spacecraft trajectories (classically referred to as orbit determination), prediction of the trajectories, design of the propulsive maneuvers required to effect the necessary trajectory changes, and calculation of the Lander descent guidance parameters.

The FPAG was a multi-agency team led by the Jet Propulsion Laboratory (JPL) with members from JPL. Langley

Research Center, Martin Manetta Aerospace (o). General
 Id and it present the FPAC; an it existed durng the promary misurns. Figure ba lists the membershup of eath team and Lues the affilation of each menter in recogntion of the contrabutum of has orgamation. One of the most semifiant factors contrabutng to the totaly coherove minght werathon of the FPAG; was that seellent working relatomshop were developed over the many yeas the FPAG worked as a tean m prepanng for flght. Durmg the thght all members were co-losated and functooned as a untit without regard to company affiliation.

Figure lb identifies the functoms of each FPAG team. The Interplanetary Orbit Determmation Team (IPODT) was responsible for trajectory determinathon and prediction to the pont of engue igmtion for Mars Orbit Insertion (MOI). The Satellite Orbit Determination Team (SATODT) was responsible for these functions after MOI. The SATODT was also responsible for determining the landed location of each Lander based on radio tracking of the Lander. Radometric tracking dita (two-way doppler and range) provided by the JPL Deep Space Network (DSN) was the princtpal data type used in the orbit determination process. The Traching Data Conditooning Team (TDCT) was responsible for editing and calibrating the data for use in the JPI Orbit Determination Program (ODP). The ODP was the pnamary orbit determination tool. All the FPAG software operated in the Univac 1108 computers at JPL. During the Mars approach phases, optical tracking data were also extensively used in the OD process. The optical data were obtained by imaging either Mars or its natural satellite Deimos against the star background with the Orbiter television sysiem.

The Orbiter Maneuver and Trajectory Team (OMATT) was responsible for developing the maneuver strategies and designing each individual propulsive maneuver requred to deliver the Viking Spacectaft iv the proper position and velocity for initiating the Lanjer descent. The orbit defined by this position and velocity was known as the "separation orbit" -the key navigation interface between the Orbiter and the Lander. Specification of the separation erbit was a joint responsibility of the Lander Flight Path Analysis Team (LFPAT) and the OMATT. The strategy for achieving the separation orbit was complicated by the necessity to observe a variety of candidate landing sites under stringent observation conditions prior to the Project commitment to land. The OMATT was also responsible for the postlanding strategies and individual maneuvers required to station-keep the Orbiter with respect to the Lander to maintain adequate relay geometry and, alternatively, to desynchronize the Orbiter, causing it to "walk" around the planet in order to obtain global science observations. Unlike its predecessor, Mariner 9, the Viking

Project routmely utilined athtude maneuvers of the spacecraft tu wricome the physial hontatoms of the Orbter sean platorm in order to pollt the sctence mstruments m any diection and/or ahgn an motrument tater in a preferred way dround its boresght. The design of these "non-propuisive" maneuvers was a jom responstbility of the OMATT and the Orbter Science Sequence Team (OSST). Fmally, the OMAIT dow gerierated all Vihng Spacecraft/Obbter trapectory data requared by the Project.

The prinapal mancuver tools of the OMATT ware the Midcourse Maneaver Operations Program (MMOP), the Mars Orbit Insertoon Operatoms Program (MOIOP), and the Mars O:bit Trim Operathons Program (MOTOP). Each program had a design and analysis capabilty including Monte Carlo simulations with dpproprate approximations for predeting trajectory control accuracy and propellant expenditure statistics. Each program also had a single maneuver, hegh-precision targeting apability. The JPL n-body, double-precision trajectory program, DPTRAJ, was the principal trajectory tool and was the Project standard for tlight path computations except for the • 'sphertc phase of the Lander descent.
[h., . nder Flight Path Analysis Team (LFPAT) was responsmle for the design and control of the Lander thght fath from separation to touchdown. This involved the precision targeting of the Lander's deorbit maneuver, generation of the attitude to be commanded at key points along the trajectory, and specification of timed backup commands for critical events to be sensed onboard. All the Lander descent commands were stored in the Lander's Guidance, Control and Sequencing Computer (GCSC) days before separation, S, with a routine update performed at $\mathrm{S}-39$ hours and, as required, updates at S-9.5 and S-3.5 hours. Following separation the descent was completely autonomous - no command could be received by the Lander until it was on the Mars surface. Basically, the Lander attitude commands were 3×3 transformation matrices relating the desired altitude to the Lander's attitude at the instant of separation. Attitude changes were specified for the deorbit maneuver burn(s), beginning of descent coast, mid-coast, pre-entry, and entry. Attitude control was maintained with an RCS hot gas system until 0.05 g was sensed. After 0.05 g , aerodynamic stability maintained pitch and yaw control; an RCS was required for roll control all the way to touchdown. It was crucially important to maintain the proper angle of attack with the RCS to the 0.05 g point. This was accomplished by initiating a programmed pitch maneuver in concert with the pre-entry attitude command.

The LFPAT targeted the deorbit maneuver and generated the attitude command parameters using the Lander Targeting Operations Program (LTOP). The Lander Trajectory Simula-
origin.. .
OF POOR LULa...

Fig. 1a. FPAC persemnol

Fig. 1b. FPAG functional organization
tion (LATS) program was the P.oject standard for computa tion of the Lander`s descent through the Mars atmosphere. LATS was a six-degree-of-ficedom, high-indelity simulation including the Lander's attitude control system response characteristics. The LFPAT used LATS to verify the descent guidance parameters generated by LTOP. These parameters were independently checked to the 0.05 g point by OMATT using DPTRAJ and auxiliary software. External to FPAG, the Lander Support Office (LSO) at Martin Marietta Aerospace in Denver performed a complete simulation of the descent based on the GCSC command load using the Viking Control and Simulation Facility (VCSF). The VCSF contained a hybrid analog-digital facility utilizing bit-by-bit simulation.

The LFPAT was also responsible for reconstructing the Lander trajectory from separation to touchdown using telemetered onboard measurements from the IRU and pressure and temperature probes in conjunction with best estimates of the separation state vector and the landed location based on radio tracking data. The PREPR (Preprocessor for Landet Trajectory and Atmosphere Reconstruction) Program was used to smooth the telemetered data and compensate the IRU data for cg offset affects. It was also used to fill data gaps with simulated data from LATS (subsequent processing required continuous data). The Lander Trajectory and Atmosphere Reconstruction Program (LTARP) was then used to estimate the trajectory based on the "sensed" data file prepared by PREPR and the estimates of the separation state and landed location provided by the Satellite Orbit Determination Team.

Finally, the LFPAT was responsible for predicting the performance of the Lander-to-Orbiter relay links. The Postland Relay Link Program (RLINK) was the primary tool for this. RLINK solved the geometrical problem of determining the path of the Lander-to-Orbiter line-of-sight through the antenna gain patterns of both vehicles based on the input trajectory of the Orbiter and the input attitudes of both vehicles. The resulting predictions of link margin (in dB) vs time were used to establish when to turn the Lander transmitter and Orbiter receiver on and off.

The foregoing has merely identified the primary functions of the FPAG teams. In subsequent chapters of this report, each team reports in full detail its inflight and postflight activities, including all pertinent numerical results. (The only exception is the Orbiter Science Sequence Team; its activities are reported in Ref. 2.) Each chapter is essentially selfcontained and the sequential order of the chapters is arbitrary. Consequently, the reader may direct his immediate attention to the chapter(s) of his primary interest.

Figure 2, which was extracted from Ref. 3, presents a functional description of the total Viking Flight Team (VFT)
organiatarn. The figure is included here to show the relationshups between the FPAG and the other elements of the VFT. The total membershup of the VFT exceeded 800 people during the primary misston.

The FPAG was instrumental in developing an operatoonal scheduling format that resulted in working schedules providing considerable detail (event tumes resolution to 10 min) yet remarkable clarity for tens of days of the mission at a glance. An example schedule in its actual working form is shown in Fig. 3. These schedules were unique in providing for immediate reconciliation of trajectory events (e.g., time of periapsis), command windows, and personnel schedules (particularly metabolic considerations).

The remainder of this introduction is devoted to an overview of the Viking flight path design followed by synopsis of the inflight navigation activities on both Viking missions from launch to landing.

Please note that a com lete list of acronym definitions is given in an appendix to this Introduction. Most readers will find it nee ssary to refer to this list for terminology used throughout the remainder of this report.

I. Flight Path Design

As stated carlier, each Viking spacecraft consisted of a Lander attached to an Orbiter. The Orbiter was designed to carry the Lander into Mars orbit and perform a series of orbit trim maneuvers to deliver the Lander into the separation orbit. The requirements for site observations pre-landing and daily post-landing Lander to Orbiter relay radio transmussions dictated the design of a Mars synchronous separation orbit with a periapsis altitude of 1500 km . The Mars synchronous orbital period is 24.6 h . The period control accuracy requirement was $\pm 4 \mathrm{~min}$ to ensure adequate relay communications geometry for at least five (Mars) days after landing without any reliance on Lander transmitter or Orbiter receiver timing adjustment commands from earth. The tolerance on periapsis altitude was $-50 \mathrm{~km},+150 \mathrm{~km}$. The lower limit was based on relay considerations; the upper limit on constraining landing dispersions.

The Lander was designed to perform a deorbit maneuver shortly after separation from the Orbi :r while in the separation orbit to effect its descent and atmospheric entry. The relationship between the separation orbit and the descent trajectory is illustrated in Fig. 4. Durng descent the Lander's electrical power was supplied by batteries which were charged by the Orbiter prior to separation. Battery capacity constrained the maximum allowable descent coast time (fromand field centers
7. Provide material to the PAO for displays at professional meetings, museums, planetariums. educational institutions, and public display areas 8. Arrange for the appearance of Viking personnel at press briefings interviews, television appearances, lectures, and panel discussions
9. Operate the Viking Project Sifeakers Bureau
10. Provide scientific data and other material to the PAO for mayazines and television and radio stations
11 Provide responses to medta inquiries
12. Provide approval of Viking lecrnical papers

ORIGINAL PAGE IS
OF POOR QUALITY

IDRDOUT FRAME

Conduct loeng.terim Irema studies on all enginew ing parameters and waluat these long ter m treents in terms of iuture wo perior mance Montior mad analyze downlink drat to oeter mine vo science instrument mgineer ing perior mmest
Assess the imact of my unteroteme tremas on future vo pertor mence atid devece stratipes to countre these averse tremos

- Produce vo maneuver Sot's with asiociaded contingency ur magements aporese the crival pertits
Prowte res time VO maly
mantain a reasiness to respena to wo miyngeering chamnel alarm viotation
Mantan a reasiness posture such that an uplinat response com be inflatec
Provere a propi wo iding commants to oscor

Cninquing ads
 malyes. mad lurnish inputs to the OCASt on mape tiscrepencies trem provictions
 makuted taing into account $5 / \mathrm{C}$ limit cxcles and misalignments or owlormities in the scan platiorm
 non -standurd or anomatas vo pertor memce
is Assist the OSN in reet time and nem-red time in wolusting vo acha quality 15. Purform all recured ondinas for closing out VO D/R's and VISA's

Mointion a iter wy at to system ent stobytiem pertor mence nistor,

oraitr command ane sfouinciac tam

 3 Provinerer ing osie

a time tor exh DSA staions bass

planning Vo wience soavences

- Coordir de with the lPAG in the extolisnment a or cociets tor the picoumeters of the dolly thay tint

 il Establish v sustem mo subs atem pertor mance GAls prexessing requiremanis ame pr tor ther

sOLDOUT FRAME

ORIGINAL PAGE IS OF PONR QUALITY

Fig. 2. Viking Might temm funetiond orgentardion
$\frac{\text { POT }}{2400} \frac{\text { UTC }}{0700}$

22000500

LEGEND

20000300

18000100

- start vo sequence Rev x

16002300

- FPAG OUTPUT REV x: sEP
(unless otherwise noted) (unless otherwise noted)
ORA INPUT: VODEY $\begin{aligned} & \text { OAR K TIP - FINAL } \\ & \text { OPEN TIP = REL. }\end{aligned}$

14002100
x]- CHD WINDOW REV x
$\times 1$ fate update
IMO WINDOW REV x
$D-\{(3$ DARK CORNERS) -
A. VI CONTROL PICTURE TRIAD

- - VI KNOWLEDGE PICTURE
x - eN CON REV x
FA - SPAN MTG
PR - MEL PROD REVIEW
SC. . RE SHMO - MTG
x
x
(a) - LSS INPNT REX x

A - argol REY x
02000900

00000700
DAY NO. (PDT) OAY of

MONTH (PDT) SEPARATION

GOLDOVT FFAME

urignal phue is OF POOR OUALITY

EST (WNW)

Boldout prame
Fif. 3. EPPPAD eperatione echecive

Fig. 4. Lander descent
separation to entry) to 5 h . To provide adequate margin with respect to aerodynamic structural and thermal loads and bhipout in the presence of trajectory disperstons and any one of the five "equally likely" Martian destgn atmospheres, the targetable entry corridor was constrained to be the flight path angle range from -16.2 to -17.4 deg at $800,000 \mathrm{ft}$ altitude at a speed less than $4.625 \mathrm{k} / \mathrm{s}$. The Lander Capsule RCS mounted on the aeroshell, which was used for attitude control during descent, was also used to impart the deorbit velocity increment. Approximately 85% of the RCS fuel was allocated for deorbit yielding a maximum velocity increment capability of $i 56 \mathrm{~m} / \mathrm{s}$. Finally, to assure adequate relay communication riom the Lander to the Oribiter throughout descent and for 11 minutes after landing, the Lander was to be 20 deg ahead (i.e., downrange) of the Orbiter at the moment of entry.

The constrants on the foregoing parameters - coast time. entry flight path angle, deorbit velocity increment, and lead angle - determined the accessitle landing area with respect to the separation orbit as illustrated in Fig. S. PER is the downrange surface angle from the separation orbit periapsis; $\mathbf{X R}$ is the arc distance away from the separation orbit plane. One degree of Mars surfare angle is equivalent to about 60 km . Observe that the maximum achievable crossrange was constrained by the 5 h coast limit and the maximum available deorbit velocity of $156 \mathrm{~m} / \mathrm{s}$. The downrange limit was determined by the shallow entry and the $156 \cdot \mathrm{~m} / \mathrm{s}$ limits; uprange by the steep entry and the 5 h coast limits. Actually the crossrange capability was somewhat arbitrarily reduced to ± 3 deg to avoid the rapid growth in landing dispersions which would result beyond ± 3 deg. Also, as the coast time increases, the required deorbit velocity increment decreases. In order to minimize entry mass the maximum deorbit velocity increment of $156 \mathrm{~m} / \mathrm{s}$ was to be expended. Therefore, for long coasts it would have been necessary to use a "two-burn" deorbit maneuver totalling $156 \mathrm{~m} / \mathrm{s}$ but designed so that the second bum would partly cancel the effect of the first yielding the

Flg. 5. Accessble area constrainta
required net inctement of less than $150 \mathrm{~m} / \mathrm{s}$. Shise it was undesirable to use long coast times and two-burn deorbit maneuvers. the extreme uprange rapability was to be avoided as indicated in Fig. 5. The abo, margin considerations dictated a "preferred" targeting regoon wherein the Lander could be targeted to land up to three degrees away irom the orbit plane and 2.5 deg downrange or uprange of the midpoint. The targeting controis were the direction, magnitude, and location (in the separation orbit) of the deorbit naneuve : Since the accessible ianding area was "fived" to the separation orbit as illustrated in Fig. 6, the separation orbit had to be controlled to "capture" the landing site withon tie accessible area so that the Lander could reach the site within the capabilities and constraints described above.

The elevation of the Sun at the landing site a^{\prime} the time of landing was a crucial parameter in the orbit design. The best observations of the landing area would be obtained when the Orbiter/Lander spacecraf was flying over the accessible area. Following landing, the relay links would alse ocets in this overflight region, and real-time television from the Lander was to be obtained during the links. Consequently, TV imaging of the landing area both from orbit and on the surface necessitated a sun elevation angle (SEA) at landing that would yield good shadowing. As shown in Fig. 7, the landing SEA and the landing site latitude uniquely determined the landing point in inertial space.

The ballistic approsch to any planet is along a hyperboia whose focus is at the planet's center and whose inbound mymptote approximates the straight line motion relative to

Fig. 6. Accessible area fixed to orbit

Fig. 7. Inertial landing point
the planet as the spacecraft enters the planet's sphere of influence. The "S-vector" which is parallel to the asymptote and passes through the planet center is fundamental in the orbit design. It corresponds to what would be a vertical impact trajectory as shown in Fig. 8. The Earth-to-Mars interplanetary trajectory, which is uniquely determined by the launch and arrival dates, establishes the S-vector. The plane of any

Fig. 8. Orbit plane design
possible approach trajectory contains the S-vector; therefore, the plane can be changed only by rotation about the S -vector. A coplanar orbit insertion maneuver is the most efficient transfer from the hyperbolic "flyby" trajectory to Mars orbit. Accordingly, the orientation (θ around $\widehat{\mathbf{S}}$) of the approach trajectory plane was controlled with midcourse maneuvers to contain the inertial landing point in the plane as illustrated in Fig. 8. Thus, the vertical impact point, the inertial landing point, and the planet center uniquely specify the orbit plane. The orientation ψ of the orbit within its plane was controlled to center the accessible area over the landing point (Figs. 8 and 9). The approach trajectory was targeted to minimize the orbit insertion velocity increment required to transfer to the orbit prescribed above. As illustrated in Fig. 9 this was essentially a tangential transfer. The insertion velocity increment for Viking 1 would nominally be about $1250 \mathrm{~m} / \mathrm{s}-85 \%$ of the total Orbiter capability. Viking 2 would require about $1100 \mathrm{~m} / \mathrm{s}$ for insertion into a 28.7 -h orbit initially.

An aiming plane passing through the planet center and perpendicular to the S-vector known as the "B-plane" is used to avoid nonlinearities in targeting. The approach trajectory is controlled by controlling the point at which its asymptote pierces the B-plane. This is the point at which the spacecraft would fly through the B-plane if the planet has no mass (i.e., if there were no gravitational bending). The vector in the B-plane from the planet center to the asymptote is known as the "B-vector"; it corresponds to the semi-minor axis of the hyperbola. Knowleige and control of both the B-vector and the time of arrival are the essence of interplanetary navigation.

Fig. 9. Viking 1 orbit insertion design

The Viking 1 B-plane is presented in Fig. 10. In this view the planet appears as it would to an observer on the spacecraft during the approach. The T -axis in the B-plane lies in the ecliptic and is used as the reference direction for measuring θ. (R completes the right-handed R-S.T frame.) The edge of the trajectory plane coincides with the B-vector; thus, the aim angle θ completely orients the trajectory plane. The Viking 1 B-vector was to be controlled to within 5 deg and 700 km of the target, resulting in the approach control accuracy requirement zone shown. This control requirement would ensure that even in the presence of 0.99 orbit insertion errors, the orbit could be adjusted with small orbit trim maneuvers within the site acquisition propellant hudget to achieve the required separation orbit, i.e., to correct periapsis altitude to within the allowed tolerance and to capture the landing site within the Lander accessible area. The orbit insertion errors would be due to errors in the knowledge of the approach trajectory (i.e., "orbit determination" errors) at the time the insertion
commands were calculated on the ground and the execution errors of the spacecraft in performing the maneuver. In concert with the control requirement, the B-vector knowledge requirement was set at 3 deg and 500 km . The Viking 2 requirements were 7 deg and 500 km and 5 deg and 350 km for control and knowledge, respectively. The requirements differed because the geometry of the two missions differed significantly.

In the foregoing discussion the landing point was treated as a point in inertial space specified by site latitude and sun elevation. The timing of the spacecraft in orbit had to be precisely controlled so that t.te intended landing site on the Mars surface would, in fact, be under the Lander at the moinent of touchdown. The parameter "timing offset" was introduced to achieve this control. Consider the meridian fixed to the center of the Lander accessible area as illustrated in Fig. 11. Timing offset was defined to be the time required for the spacecraft to reach this "inertial" meridian after the landing site has crossed it.

The Viking 1 in-orbit maneuver strategy for acquiring the landing site is depicted in Fig. 12. To obtain adequate site certification observations of the intended landing area the timing offset had to be less than one hour. To capture the site within the Lander accessible area the offset of the Orbiter at the landing periapsis was to be $8 \pm 8 \mathrm{~min}$. Recall that the Lander leads the Orbiter during descent; therefore, the nominal Orbiter timing offset had to be positive at landing. To expedite site certification and land 15 revolutions after insertion, the strategy was to:
(1) Control the arrival time at Mars such that the timing offset immediately after insertion (i.e., periapsis-0) would not exceed 15 min .

Fig. 10. Viking 1 e-plene dolvery requirements

Fig. 11. Tining offeet

Fig. 12. Orbital operations plan
(2) Insert into a very nearly Mars synchronous orbit such that the $8-\mathrm{min}$ offset would result at periapsis- 15 .

To aid the understanding of Fig. 12, consider a 1 -hour subsynchronous postinsertion orbit (i.e., $23.6-\mathrm{h}$ period). The spacecraft will complete is first revolution in 1 hour less than a Mars day; thus the landing site will be 1 hour west (timing offset $=-1.0 \mathrm{~h}$) of the meridian when the spacecraft is at the meridian. The converse holds for the supersynchronous case, and the problem is completely linear. The knowledge requirement for generation of the orbit insertion commands discussed earlier and the spacecraft execution accuracy ensured that the 0.99 error in the postinsertion period would not exceed 3 h . A "phasing" maneuver was scheduled at Periapsis2 to change the orbit period such that the timing offset would be zero at Periapsis-S. A "synchronizing" maneuver would be performed at Periapsis-5 to drive the offset to +8 min at Periapsis-15. Owing to their smaller size and the vast improvement in orbit determination "knowledge" once in orbit, these trim maneuvers would be at least a hundred times more accurate in period control than the insertion maneuver (i.e., 1 min vs 3 h). An orientation correction maneuver was scheduled near Periapsis-7 to move the accessible area in the improbable event it was not accurately positioned with the approach and insertion maneuvers. A fourth maneuver was scheduled to correct the periapsis altitude and perform any appropriate vernier timing adjustment in the revolution preceding Periapsis-11. Final orbit determination and Lander targeting and commanding would then be performed between Periapsis-11 and Periapsis-14 as indicated in Fig. 12. This maneuver strategy guaranteed acquiring the landing site within the $150 \mathrm{~m} / \mathrm{s}$ velocity budget allocated for navigation dispersions; $25 \mathrm{~m} / \mathrm{s}$ was suballocated for midcourse maneuvers, $125 \mathrm{~m} / \mathrm{s}$ for insertion maneuver adjustments and the site
acquisition orbit trims. The foregoing presented the "prelaunch" site acquisition strategy for Viking 1. The Viking 2 strategy, which was significantly different, is described in the Maneuver Analysis chapter.

The salient features of the flight path design and control strategy as it existed at launch have beer presented. The actual inflight performance will now be discussed.

II. Viking 1 Inflight Synopsis

Viking 1 was launched by a Titan IIIE/Centaur launch vehicle on August 20, 1975, on the 10 -month journey to Mars depicted in Fig. 13. The launch aimpoint was intentionally biased about 0.3 million km from Mars as shown in Fig. 14. The arrival time was biased about one day late. These biases satisfied the following constraints: (1) the probability of impacting Mars with unsterilized hardware was to be less than 10^{-6}; (2) the first maneuver was to exceed $2 \mathrm{~m} / \mathrm{s}$ to ensure propulsion stability; and (3) the maneuver attitude was to allow communication over the spacecraft low-gain antenna.

The crosses (+) in Fig. 14 show the variety of orbit determination solutions obtained during the first few hours after launch. By 12 h after launch sufficient tracking data (doppler and range) were available to determine the solution very well. All subsequent solutions were nicely clustered within the area indicated; thus, the Centaur injection error was about $\mathbf{2 \sigma}$. The first midcourse maneuver scheduled for launch plus seven days was targeted directly to the center of the approach control zone discussed earlier (and to the final desired arrival time). This zone lies within the dot on Fig. 14. An enlarged view of the zone is shown in Fig. 15, where the 30

Fig. 13. Viking 1 heliocentric trajectory

Fig. 14. Viking 1 launch accuracy

Fig. 15. Viking 1 Earth departure control
orbit determination and execution errors for the $4.7 \mathrm{~m} / \mathrm{s}$ midcourse are displayed. The major orbit determination error source was the uncertainty in the solar pressure force that would act on the spacecraft throughout its journey to Mars. This uncertainty could be reduced only after several months of tracking, at which point the solar pressure coefficients could be accurately estimated in the orbit determination process. Note that the orbit determination and maneuver execution errors were comparable and their combined total was small enough to avoid planetary quarantine biasing and was well within the earth departure control requirement. The departure control requirement was set at 6000 km to ensure that the approach midcourse maneuvers would be sufficiently small that their errors would be inconsequential compared to the approach orbit determination errors. After about a week of post-midcourse tracking, it was clear that the actual execution error was indeed small and no further maneuvers would be required until Mars approach.

Durng the nine-month interplanetary "cruise," the navigation emphasis was on refining the trajectory and observational models. These refinements were very important to providing the capability to do "radio-only" redetermination of the trajectory between the two scheduled approach midcourse maneuvers. This effort resulted in significant adjustments of the solar pressure coefficients and the Australian tracking station locations. The effort also produced a "best" long. (tracking) arc estimate of the trajectory utilizing all available tracking data. This long-arc estimate provided the baseline for encounter operations.

The encounter operations schedule provided for approach maneuvers at both 30 and 10 days before arrival. A series of observations of Mars and stars by the Orbiter television cameras was scheduled prior to each maneuver opportunity. These observations were used to ald in the orbit determination process but were not to be relied upon to meet navigation requirements. The first optical series confirmed the long-arc radio solution, and it was then clear that a single approach midcourse at 10 days before arrival would easily correct the existing delivery error. The final delivery error would be essintially the orbit determination error at the time the midcourse was calculated. Therefore, the 10 -day midcourse was preferred since the second optical series could be analyzed prior to its design.

The short-arc (~ 3 weeks) radio and optical orbit determination solutions id not agree as well as expected with the long-are radio-only solution. There was more confidence in the short-arc radio plus optical. Furthermore, it was fully demonstrated that if this solution was used in targeting the approach midcourse while the long-arc radio was actually the right solution, the consequences would be minimal. In this event,
the periapsis altitude would be about 150 km lower, but this error would be easily correctable with the inorbit maneuver strategy described earlier. Accordingly, the short-arc radio plus optical solution was adopted without reservation. Fig. 16 presents this final premaneuver solution and its uncertainty. Observe that the $3 a$ uncertainty would be well within the approach control zone following the maneuver since the execution error would be negligible. Note also that the interplanetary delivery error (i.e., the error prior to the approach midcourse) was about 1800 km . corresponding to about 1.5σ with respect to the delivery accuracy predicted for the departure control. Most of this error was due to solar pressure prediction error as expected.

When the propulsion system was repressurized two days before the midcourse, the pressure regulator in the propellant feed system leaked such that the pressure buildup by the time of orbit insertion would be much too high for safe engine operation. It was possible to avoid this buildup by again sealing off the pressurant supply with a pyro valve as it had been sealed throughout interplanetary cruise. However, if this were done, the mission would be lost if the last pyro "open" valve did not open when commanded just before insertion. Consequently, it was decided to leave the system open and reduce the pressure with large approach midcourse maneuvers. Accordingly, two maneuvers of 50 and $60 \mathrm{~m} / \mathrm{s}$ were executed at 9 and 4 days before arrival, respectively. The approach midcourse that had been designed to correct the navigation error was only $3.7 \mathrm{~m} / \mathrm{s}$.

In order to minimize propellant cost, these two maneuvers were designed as retro maneuvers to reduce the approach speed and thereby reduce the insertion velocity requirement.

Fig. 16. Viking 1 Interplanetary dellwery

The insertion requirement would be reduced about $1 \mathrm{~m} / \mathrm{s}$ for every $2 \mathrm{~m} / \mathrm{s}$ of retro during approach. However, these retro maneuvers would also delay the Mars arrival by about 6.5 h so that at least the first part of the site acquisition/certification strategy discussed earlier (Fig. 12) was now invalid because the initial timing offset would be +6.5 h . To get back to the original timeline as quickly as possible without any further propellant penalties, it was decided to insert into a $42.5-\mathrm{h}$ orbit so that the spacecraft would nominally overfly the landing site at the end of the first revolution - the $6.5-\mathrm{h}$ arrival delay plus the 42.5 h period would be equivalent to two revolutions in the synchronous orbit. The first orbit trim would be performed during this overflight to synchronize the orbit (i.e., reduce the period to 24.6 h). The periapsis at the end of the first revolution was called Periapsis- 2 to maintain the original relationship between periapsis numbering and ruission events (e.g., trim-1 was still scheduled at "Peri-apsis-2").

An important factor in the decision to do the large maneuvers instead of closing the propulsion system was the excellent actual performance of the optical orbit determination process. Radio data alone could not adequately redetermine the approach trajectory in the few days between these maneuvers, but the optical data could. If the optical process had not been working so well, it is unlikely that these large maneuvers would have been attempted. Figure 17 illustrates the maneuver performance. The predicted delivery error ellipse for each was dominated by the spacecraft execution error owing to both the large size of the maneuvers and to the excellent orbit determination performance. The aimpoint was moved progressively away from the planet due to the increased bending of the trajectory that would occur at the lower approach speeds and also due to the larger initial orbit. Note that both maneuvers were executed very well. The final delivery error was less than 30 km in the B-plane and less dian 10 s in arrival time. A third ser es of Mars/stars observations between the maneuvers was inceed instrumental in achieving this accuracy.

A series of observations of the Mars' satellite Deimos against the star background was used as planned to precisely determine the final approach trajectory for calculation of the orbit insertion maneuver commands. The last observation was made 37 h before arrival and incorporated in the orbit determination as quickly as possible. The updated estimate was then used to calculate updated insertion commands, which were transmitted to the spacecraft at 16 h before arrival. The updated estimate was in error by less than 10 km based on postflight analysis.

The insertion maneuver was extremely accurate. The lander assessible area was positioned within 0.1 deg of the ideal

Fig. 17. Viking 1 Mars approach control
inertial location. The obbit period error was only 8 min ; therefore, it was possible to attempt achieving the sep ation orbit directly with the single trim at Periapsis-2. The altitude was already well within tolerance at 1513 km . The initial orbit is contrasted with the separation orbit in Fig. 18.

The principal difficulty in directly achieving the separation orbit with the first trim was accurately predicting the timing offset at Periapsis-15. Because of uncertainties in the Mars gravitational harmonics the actual orbital period in each future revolution was rather unpredictable. However, the Mariner 9 derived gravity field proved to be very accurate, and after several revolutions of tracking, it was clear that the first trim had, in fact, perfectly acquired the primary landing site as illustrated in Fig. 19. It is seen that the primary site Al at $34.0^{\circ} \mathrm{W} 19.5^{\circ} \mathrm{N}$ had been captured virtually in the center of the accessible area for a July 4 landing. Only $10 \mathrm{~m} / \mathrm{s}$ of the $150 \mathrm{rm} / \mathrm{s}$ navigation velocity budget was expended (to correct navigation errors) in acquiring the Al site!

Several days before the last prelanding scheduled trim opportunity near Periapsis-11. the Al site was abandoned because features observed in the site area implied hazardous terrain. A new site AlR about 100 km southeast of Al was then considered. A trim was designed for the opportunity near Periapsis-11 to cause the A1R to "drift" to the center of the entry corridor for the July 4 landing. Lander descent trajectories were targeted to AlR for separation orbits with and without the trim. Before a decision was reached whether or not to trim before descending to AlR, it was decided that AIR was too hazardous and that a safer area probably existed to the northwest. Accordingly, a maneuver strategy was developed to start a westward migration with a period trim at

Fig. 18. Viking 1 Mars orbit insertion

Periapsis-16 followed by an orbit orientation trim near Periapsis-19 to move the accessible area as far north as prudent based on observations yet to be made. When it became clear prior to Periapsis-16 that the accessible area should be moved one degree north, the strategy was modified to combine the orientation adjustment and the start of the migration into the trim near Periapsis-19. The actual landing site was selected during the migration; its coordinates $47.5^{\circ} \mathrm{W} 22.4^{\circ} \mathrm{N}$ warranted resynchronizing the orbit at Peiiapsis-24. Thus the site was captured in the accessible area for a July 20 landing as shown in Fig. 19.

The orbit determination performance was exceptionally good throughout the entire site acquisition phase. For example, the time of Periapsis-19 was predicted within one second eight revolutions earlier. All three of the prelanding trims were executed so accurately that their errors were truly inconsequential.

The final Lander targeting resulted in a nominal entry flight path angle of -16.9° (only 0.1° from ideal), a 3.1-h coast time, and utilized a $156-\mathrm{m} / \mathrm{s}$ single-burn deorbit maneuver. The navigation parameters transmitted to the Lander computer 39 h before separation included attitude command matrices for deorbit, descent coast, preentry, and entry. The parachute deployment altitude, terminal descent ignition altitude, and the altitude-vs-velocity descent guidance profiles were set at the standard values. Following separation the Lander executed a flawless, autonomous descent as illustrated in Fig. 20. Fig. 21 presents the Viking 1 landing accuracy. Observe that the Viking I landed within 30 km of its target, which corresponds to a 10 landing error. The Viking 2 landing accuracy of 10 km is also shown.

Fig. 19. Viking 1 actual site acquisitions

III. Viking 2 Inflight Synopsis

Viking 2 was launched by a Titan IIIE/Centaur launch vehicle on September 9, 1975, and targeted for a Mars arrival date of August 8,1976 . The 11 -month journey to Mars is illustrate 1 in Fig. 22. As with Viking 1, the launch aimpoint was bias:d to satisfy planetary quarantine requirements, to assure the first midcourse maneuver would exceed 2 mps , and to guarantee two-way communications during the first midcourse maneuver burn. Figure 23 shows this intentional biasing, the 99% launch vehicle dispersion ellipse and the early orbit determination history.

The crosses (+) in Fig. 23 indicate the orbit determination solutions obtained during the first few hours after launch. By 10 hours after launch, the orbit solutions had stabilized and further premidcourse solutions were clustered within the area indicated. The Viking 2 Centaur injection performance was approximately 2σ.

The first midcourse maneuver for Viking 2 was scheduled for 10 days after launch. A velocity change of approximately 8 mps was necessary to achieve the required final Mars encounter conditions. However, for reasons to be described, this first midcourse maneuver was targeted to a different set of Mars encounter conditions. This resulted in the necessity to execute a near Mars midcourse maneuver to achieve the required final Mars encounter conditions. Figure 24 illustrates these two sets of encounter conditions. The "target for MOI" point is the required final Mars encounter condition to establish the proper Mars orbit for landing site reconnaissance and landing. The " M / Cl target" is the aimpoint for the first midcourse maneuver.

Initial maneuver analysis indicated that the first midcourse maneuver could be targeted directly to the required final Mars encounter conditions while still satisfying the required plane-

Fig. 20. Descent sequence

Flg. 21. Landing sceuracy

Fig. 22. Viking 2 hellocentric trajectory

Fig. 23. Viking 2 launch accuracy

Fig. 24. Viking 2 midcourse aimpoints
tary quarantine probability of impact constraints. However, because of the size and orientation of the midcourse maneuver dispersion ellipse, this could result in the spacecraft being on a Mars impact trajectory following the execution of the maneuver. Should this be the case (approximately 20% probability, Fig. 25), a decision would have to be made to either (1) execute a second near-Earth midcourse maneuver to correct the execution errors of the first maneuver or (2) leave the spacecraft on the impact trajectory until Mars arrival, correcting the error with a near-Mars midcourse mancuver. Since it was almost a certainty that at least one Mars approach midcourse maneuver would be required in any event, and the ΔV penalty for biasing the near-Earth midcourse maneuver to avoid impact was relatively small (less than 5 mps), it was decided to bias the targeted Mars aimpoint. This biased aimpoint is indicated in Fig. 26 along with the midcourse
maneuver dispersion ellipse and its orbit determination and execution error components. The biased aimpoint was selected to (1) assure that the probability of being on an impact trajectory following the first midcourse maneuver execution was less than 1%, (2) maximize the ability to achieve a Mars orbit if the spacecraft could perform only the insertion maneuver but no more midcourse maneuvers, (3) assure that the Mars approach midcourse maneuver spacecraft attitude would provide communication in the burn attitude, and (4) minimize the additional ΔV expenditure resulting from the bias. The resulting ΔV for this near-Earth midcourse maneuver was 8.1 mps .

As with Viking 1, the major orbit determination error at the time of the maneuver was the uncertainty in the solar pressure force. After about a week of postmidcourse tracking it was clear that the actual maneuver execution error was indeed small and no further maneuvers would be required until Mars approach.

The navigation activities during the interplanetary cruise phase for Viking 2 were similar to those for Viking 1. Short-arc solutions were generated on a weekly basis including the previous three weeks' doppler and ranging data. These weekly trajectory estimates were used to prepare tracking predicts for the DSN stations providing mussion support. Every three to four weeks a long-arc solution was generated including all of the doppler and range data after the near-Earth midcourse maneuver. Comparisons of these short-and long-are solutions and the consistency of the solutions as the data arc increases provided the means for validating the orbit determination process and verifying the orbit determination models (e.g., station locations, solar pressure). These analyses combined with the Viking 1 cruise orbit determinations resulted in the adjustments to the solar pressure coefficients and the Australian tracking station locations.

The encounter operations began 40 days hefore Mars arrival. Extensive radio and optical tracking data processing was completed during this 40 -day time period in support of a near-Mars midcourse maneuver 10 days before encounter and the Mars Orbit Insertion (MOI) maneuver. During the encounter operations phase, the optical navigation tracking schedule for Viking 2 differed from the Viking 1 schedule. For Viking 2, three sets of star-Mars-star triads were scheduled prior to the encounter-minus-10-day midcourse maneuver rather than the two sets for Viking 1. This allowed an early optical-only orbit determination for comparison with the radio and radio-plus-optical solutions, and was important for Viking 2 because of the concern over degraded radio tracking data as a result of increased solar plasma activity. This increased plasma activity was due to the smaller Sun-Earth spacecraft angle for Viking 2 (Viking 2 encounter occurred

Fig. 25. Viling 2 unblacod noer-Earth midcourse manouver

Fig. 26. Viting 2 Earth deperture control
closer to solar conjunction than the Viking 1 encounter). In addition to the different optical navigation tracking schedule for Viking 2, revised long-arc radio tracking data processing procedures were implemented based on postencounter analysis of the Vikirg 1 radio data. These revised procedures resulted in much improved long-arc radio orbit determination solutions over the Viking 1 experience. These solutions exhibited close agreement with the short-arc radio only and radio-plus-optical solutions. The Viking 2 Mars approach midcourse maneuver was executed ai encounter minus 10 days. The ΔV^{\prime} for this maneuver was 9.2 mps . Because of the pressure regulator problem on Viking 1, it was decided to delay repressurizing the orbiter propulsion system until as late as possible before MOI. As a result of this decision, the encounter-minus-10-day maneuver was performed in the "blowdown" mode. The propulsion system pressurization from the near-Earth maneuver was sufficient to allow the 9.2 mps near-Mars maneuver to be executed without additional pressurization. Figure 27 illustrates the near-Earth midcourse aimpoint and the achieved B-plane conditions. the difference being primarily a result of the solar pressure modeling error. Also shown is the Mars approach midcourse (AMC) maneuver targeted aimpoint, the achieved B-plane conditions and the final Mars approach control accuracy requirement zone.

Following the successful completion of the near-Mars midcourse maneuver, additional uptical navigation observations consisting first of star-Mars-star triads and then Deimosstar single frames were acquired. These observations combined with continuous radiometric tracking data coverage were used to first confirm the midcourse maneuver execution accuracy and then to determine the maneuver parameters for the MOI maneuver. The preliminary MOI maneuver parameters were determined based on radio and optical tracking data to six

ANC - AVPROMEH MIDCOUNS:
Fig. 27. Viling 2 mideourse tergened end echiowed empotint
days before ncounter. As a result of the excellent Viking 2 approach orbit determination performance, the planned maneuver update at to hours before encounter was not required. Post-encounter trajectory reconstruction verified the B-plane error of less than 40 km for the encounter-minus-6-day orbit determination.

Because of the pressure regulator leak experience on Viking 1, the -yro-valve for repressurizing the fuel and oxidizer tanks for Viking? was not fired until about 13 hours before MOI. This was accomplished without incident, and although a small leak was indicated after the repressurization it was not a factor in the orbit insertion operations.

The MOI matecuver was accomplished on August 7, 1976. placing the spacecraft in a Mars orbit inclined 55.2 deg to the equator, with a periapsis altitude of 1519 km and a period of 27.623 hours. These parameters compare with the targeted values of $55.0 \mathrm{deg}, 1500 \mathrm{~km}$ and 27.414 h . The dispersion from the targeted values were all within the expected tolerances.

The target orbit period of 27.414 h for the post-MOI orbit was selected to allow a landing site survey to be conducted over 360 deg in longitude between the latitudes of 40 and 50 deg north prior to landing site selection. With the supersynchronous orbit the spacecraft progressively "walked" around the planet in 40 -deg steps. At each periapsis passage, low-altitude observations of a region of the planet displaced 40 deg from the previous periapsis passage could be obtained. This provided the opportunity to evaluate two of three specified potential ianding areas for VL-2. These three potentiai landing areas were in the longitude regions of Bl (345 to $15^{\circ} \mathrm{W}$), B2 (90 to $140^{\circ} \mathrm{W}$) and B. $\mathbf{2}^{(200}$ to $270^{\circ} \mathrm{W}$). While VO-2 surveyed the B2 and B3 sites, the B1 site was surveyed with VO-1 from its synchronous orbit over the VL-1 landing site. Figure 28 illustrates the inertial ground tracks of the two Viking orbiters.

Because of the +12 min orbit period error, the orbit was "walking" around the planet at a rate approximately 2.9 deg per revolution faster than desired. That is, at each periapsis passage the spacecraft was progressively 2.9 deg further west from the nominal plan. In order to eliminate the effect of this orbit period error and regain the nominal timeline and landing dite survey profic, a trim maneuver strategy employing maneuvers on revi 2 and 6 was executed. The first of these maneuvers reduced the orbit period by approximately 19 min ; the second maneuver resulted in an orbit with the nominal orbit period. Thus, between reve 2 and 6 the oriblt was "walking" at a rate approximately 1.5 deg per revolution less than desired. When the maneuver on rev 6 was completed, the effect of the initial orbit period error had been nullified. This

Fig. 24. VO 1 and VO a ground tracks
strategy provided reconnaissance of the B 2 region on revs 4 through 8 and the B 3 region on revs 9 through 11 . In addition to correcting the orbit period, the periapsis altitude was also corrected to the desired 1500 km .

The orbit geometry and nature of the trajectory corrections to be made resulted in an opportunity to execute these inaneuvers in a unique manner with some definite advantages. It was found that each of these maneuvers could be executed while maintaining a Sun-Canopus acquired spacecraft attitude. This had the advantage of eliminating the usually necessary spacecraft turns to achieve the burn attitude. By eliminating these turns, the inherent spacecraft risk in leaving the ct:oziial references was avoided as well as the possible need for the spacecraft going into a battery share mode if the yaw turn positioned the solar panels too far from the sunline. The major navigation advantage, however, was the reduction in the pointing contribution to the maneuver execution errors and the resulting increased ort ${ }^{\prime}$: control accuracy. The maneuvers on revs 2 and 6 were successfully executed in this SunCanopus acquired attitude, a technique that was used a number of times throughout the remainder of the mission operatisis.

The orbit period established with the trim mineuver on rev 6 resulted, as designed, in the apheecraft la'ng in the middle of the BI landing region when it pasced through the PER point (the center of the arcessible area; see Fig. 5) on rev 19. If the selected landing site had been in the BI repion, a trim maneuver on rev 19 would have been performed to scquire the final lending orbit with the sync maneuver wecurring on rev 21. However, reconnaistance data indicated that both the B1 and B2 repiona were too hazardous.

Accordingly, an area was selected in the B 3 region specified as $48.0^{\circ} \mathrm{N} \pm 1.5^{\circ}$ areographic latitude and $226.0^{\circ} \mathrm{W} \pm 2.0^{\circ}$ longitude.

In order to establish the separation orbit to reach this landing region, trim maneuvers near periapsis on revs 16 and 18 were planned, with landing to occur near periapsis on rev 25 . Since the landing site was currently specified as a region and not a point, the maneuver strategy was to "center" the separation orbit such that (1) VL entry flight path angle changes could be used for down-track adjustments and (2) VL cross ranging could be used for out-of-plane adjustments. Fig. 29 illustrates this alignment of the lander accessible area and the specified landing region.

In order to center the lander accessible area within the specified landing region, an increase in latitude of the PER point was required. This was combined with the orbit period changes necessary to establish the proper spacecraft landing site time-space relationship. MOT 3, executed on rev 16 . decreased the orbit period by 3 h 21 min and increased the latitude of PER by 1.5 deg. WOT 4 executed on rev 18 increased the orbit penod to be Mars synchronous and further increased PER latitude by 0.3 deg . These two trim maneuvers were also executed while maintaning Sun/Canopus acquisition, providing the benefit of reduced maneuver execution errors.

Satellite orbit determination activities during this time period consisted of generating both short-are (single rev) and long-arc (multi-rev) solutions. The Viking 2 supersync orbit

Fig. 29. Viling 2 lenting region
period, while providing data for updating the Mars gravity field, made prediction less accurate than Viking I because of the varying terram at each periapsi: passage. This increased the importance of late updates to key site certification observations and trim maneuvers. After the MOT 4 sync maneu ar was executed the prediction capability improved to the same level as that achieved with Viking!.

At separation minus 84 hours, the final landing site location was selected - $225.9^{\circ} \mathrm{W}$ and $47.9^{\prime} \mathrm{N}$. Lander deorbit and descent parameters were then de:ermined and transmitted: the spacecraft at separation minus 39 hours. Landing occurred near periapsis on rev 25 . September 3, 1976. Lander targeting tc achieve this landing site consisted of an entry angle of -17.0 deg and a cross range of 0.1 deg. The coast time was 3.1 hours and the Lander lead angle at the time of entry was 20 deg .

At Lander separation, an anomaly in the Orbiter attitude control system caused a loss of the Orbiter's roll reference.

This resulted in the loss of the real-time Lander telemetry during descent becouse of the off Earth pointing of the obbter high-gain antenna. Fortunately, in accordance with the nominal plan, the Lander-to-Orbiter relay data were recorded on the Orbiter tape recorder and played back after landing when the Orbiter roll attitude was reestablished. During the time period when real-time telemetry was not avalable, Lander events were monitored by observing the changes in the relay link reception. These changes were monitored on the grot: d via the Orbiter engmeering low-rate channel transmitted over the Orbiter low-gain antenna

Reconstruction of the Lander trajectory following the Orbiter replay of the Lander relay data confirmed near nominal performance with a landing accuracy of 10 km . This was illustrated in Fig. 21 along with the 99% landing cispersion ellipse.

References

1. Soffen. G A., et al., "Scientific Results of the Viking Project," Journal of Geophysical Research. Vol. 82, No. 28 Sept. 30, 1977, American Geophysical Union, Washington, D. C., Library of Congress No. 77.23719.
2. Koskela, P. E., Viking Orbiter Picture Catalog, Jet Propulsion Laboratory. Pasadena, Calif. (in press).
3. Robins, C H., Jr., "Viking Flight Team Organization and Staffing." M75-150.5, Jet Propulsion Laboratory. Pasadena, Calif., June 23, 1976 (an internal document).

Appendix

Definitions of Terminoloyy

A/S	aeroshell
ACS	Attiture Controi System
AGC	automatic gain control
AMC	approach mid-course
APF	argument of periapsis
ATBS	accelerometer thermal bias shift
BER	bit error rate
CA	in-plane pointing angle
CBE	current best estimate
CD	drag coefficient
CL	lift coefficient
CLA	out-ot-plane pointing angle
CMD	command
CMSOE	command sequence of events
DECSET	downlink decommutation and decalibration set
DN	data number
DPODP	Double Precision Orbit Determination Program
DPT	Data Processing Team
DPTRAJ	Double Precision Trajectory Program
DR	downrange
DRVID	differenced range versus integrated doppler
DSG	Data Support Group
DSN	Deep Space Network
DSS	Deep Space Station
E	encounter
E	entry
EDR	Experiment Data Record
EEM	emergency early maneuver
EMA	emission angle
EME	Earth mean equator
ERT	Earth received time
ESLE	equivalent station location error
EXEC	execution
FCG	Flight Control Group
FOV	field of view
FPAG	Flight Path Analysis Group
GCSC	Guidance Control and Sequencing Computer
GDS	Ground Data System
GMT	Greenwich Mean Time
GRE	ground-reconstruction equipment
HGA	high gain antenna
1	inclination
1	injection
IC	initial conditions
- ICI	initial computer load
INA	incidence angle
INC	inclination
IPF	Image Processing Facility

IPL	Image Precessing Lauoratory
IPODT	Interplaneary Orbit Determination Team
IR	infrared
IRTM	infrared thermal mapper
IRU	inertial reference unit
ISDR	Intermedrate System Data Record
JPL	Jet Propulsion Laboratory
kbps	kilobits per second
L/D	lift-to-drag ratio
LAN	longitude of ascending node
LATPER	latitude of PER
LATS	lander trajectory simulation
LCAST	Lander Command and Sequencing Team
LFPAT	Lander Flight Path Analysis Team
LGA	low gain antenna
LPAG	Lander Performance Analysis Group
LRC	Langley Research Center
LS	landing site
LSG	Lander Science Group
LSO	Lander Support Office
LSS	Landing Site Staff
LTARP	Lander Trajectory and Atmosphere Reconstruction Program
LTOP	Lander Targeting Operations Program
LTR	lander trajectory reconstruction
M	Mach number
M/C	midcourse
MAWD	Mars atmospheric water detector
MCCC	Mission Control and Computing Center
MCCF	Mission Control and Computing Facility
MCD	Mission Control Directorate
MCR	midcourse correction required
MDR	Master Data Record
MEQ	Mars mean equator
MLVA	master list of Viking anomalies
MMOP	Midcourse Maneuver Operations Program
MOI	Mars orbit insertion
MOIOP	Mars Orbit Insertion Operations Program
MOT	Mars orbit trim
MOTOP	Mars Orbit Trim Operations Program
MPG	Mission Planning Group
MPS	mission profile strategy
MSL	mean surface level
MTCF	Mission Test Computing Facility
MTVS	Mission and Test Video System
OD	usit determination
ODP	Orbit Determination Program
OIT	Orbiter Imaging Team

OMATT	Orbiter Maneuver and Trajectory Team
OMSET	optical measurement set
ONP	Optical Navigation Progam
OPAG	Orbiter Performance Analysis Group
OSCOT	Orbiter Spaucraft Operation Team
OSG	Orbater Science Group
OSST	Orbuter Sctence Sequence Team
OWLT	one way light time
P/B	playback
PAO	Public Affairs Office
PCR	Profile Change Request
PDT	Pacific daylight time
PER	true anomaly of landing site with respect to VO separation orbit
PFR	Problem Failure Report
PMC	Problem Management Center
PP	post prucessor
PO	planetary quarantine
PREDIX	DSN Prediction System
PREPR	preprocessor for lander trajectory reconstruction
PSA	partial step algorithm
PTC	Proof Test Capsule
P'VRA	path-vary-regress-accum
q	dynamic pressure
Q	heat load
\dot{Q}	heating rate
QSS	quasi-statistical sum
RA	right ascension
RCA	radius of closest approach
RCM. ${ }^{\text {P }}$	reconstituted mission profile
RCS	Reaction Control System
RDR	Reduced Data Record
RLINK	Post Landing Relay Link Program
RPA	retarding potential analyzer
RSI	radio science investigation
RTI	real-time imaging
S.SEP	separation
SAMPD	Science and Mission Planning Directorate
SATODT	Satellite Orbit Determination Team
SEA	Sun elevation angle
SEAPER	Sun elevation angle at PER
SEDR	Supplementary Experiment Data Record

SEP Sun-Earth-Probe
SKT station keeping tim
SMA,SNMA Semi-major avis
SMB.SMIA semm-minoraxis
SNR mgnai-to-noise mato
SOE sequence of events
SOL Mars day
SPFPAD Spacecraft Performance and Flight Path Analysts Directorate
SPM shadow prediction model
SSG Science Steenng Group
STL suence test lander
TCA tume of closest approach
TD touchdown
TDCT Tracking Data Condituming Team
TDLR terminal descent and landing radar
TIGN tame of ignition
TM telemetry
TSAC tracking system analytic calibration
TSEP tume of separation
UAMS upper atmosphere mass spectrometer
UTC Universal Time Coordmated
VCSF Viking Control and Simulation Facility
VDL Viking Data Library
VFT Viking Fiight Team
VIS Visual Imaging Subsystem
VISA Viking Incident. Surprise. or Anomaly Report
VL Viking Lander
VLBI very long baseline interferometry
VLC Viking Lander Capsule
VMCCC Viking Mission Control and Computing Center
VMCOE Viking modified clasical orbital elements
VO Viking Orbiter
VPSS Viking Project Simulation System
XR crosstange
α angle of attack
β angle of sideslip
γ flight path angle
γ_{E} flight path angle at entry
IV velocity increment
ψ arsidal rotation
θ auning angle in B-plane

Trajectory Description

D. L. Farless, L.. H. Dicken, and R. E. Diehl

I. Launch Phase

The two Viking ' 75 spacecraft were launched by Titan IIIE booster vehicles with Centaur D-1T high-energy upper stages. The two launch vehicles were the third and fourth Titan/ Centaur combinations to be launched and were designated as vehicles TC-3 and TC-4. The launch trajectories utilized a parking orbit coast phase between two Centaur thrusting phases. Both launches were conducted from Launch C mplex LC-41 at the Air Force Eastern Test Range.

Viking 1 was successfully launched on August 20, 1975, after a nine-day delay. The delay was caused, first, by failure of a thrust-vector-control valve in one of the Titan solid rocket boosters and later by a discharged battery on the Viking C.biter (VO) which necessitated replacement of the entire spacecraft with the second spacecraft. Liftoff came at 21 h 22 min 0.6 s GMT, only 0.6 s after the nominal open-window launch time for this day. Launch azimuth was 96.57 deg , and the required Centaur parking orbit coast time was 15 min 20 s . Table 1 shows the nominal and actual Mark Event times for the Viking 1 launch.

Viking 2 was launched 20 days later on September 9,1975, after several days of delay because of trouble with the orbiter's S -band radio subsystem. Liftoff came at 18 h 39 min 0 s , once again right on the open-window launch time at an azimuth of 96.51 deg. Nominal and actual Mark Event times for this
launch are presented in Table 2. Nominal Centaur parking orbit coast time for this launch was 18 min 13 s .

Both launches were essentially nominal, well within expected dispersions. Table 3 presents post-separation geocentric orbit elements for both spacecraft. These data are

Ticble 1. Viking 1 launch traipetory merk ovent list

Mark	Event	Nominal time	Actual time
0	Launch	21:22:00	21:22:00.6
1	Heat shield jettison	21:23:40	21:23:40.2
2	Stage I ignition	21:23:51	21:23:51.0
3	Stage I/O separation (jettison SRM)	21:24:02	21:24:01.9
4	Stage I shutdown	21:26:16	21:26:19.7
5	Stage I jettison	21:26:17	21:26:20.4
6	Stage II ignition	21:26:17	21:26:20.3
7	Jettison Centaur standard shroud	21:26:28	21:26:37.3
8	Stage II shutdown	21:29:40	21:29:40.9
9	Stage II jettison	21:29:46	21:29:54.6
10	Centaur first main engine start (MESI)	21:29:56	21:30:05.9
11	Centaur first main engine cutoff (MEC01)/park orbit insertion	21:32:03	21:32:11.6
12	Centaur second main engine start (MES2)	21:47:23	21:47:33.0
13	Centaur wecond main engine cutoff (MEC02)	21:52:44	21:52:48.0
Launch date: 8/20/75 Launch time: 21:22:00 Arrival date: 6/19/76			

Teble 2. Viking 2 launch tralectory mark event list

Mark	Event	Nominal time	Actual time
0	Launch	18:39:00	18:38:59 96
1	Heat shield jettison	18:40:40	18:40:40.0
2	Stage I ignition	18:40:51	18:40:52.0
3	Stage I/O separation (jettison SRM)	18:41:02	18:41:02.9
4	Stage I shutdown	18.43:16	18:43:210
5	Stage I jettison	18:43.17	18.43:21.6
6	Stage II ignition	18:43 17	18.43:21.8
7	Jettison Centaur standard shroud	18:43:28	18.43.33 3
8	Stage II shutdown	18:46:40	18:46.50.0
9	Stage II jettison	18:46:46	18:46:53.2
10	Centaur first main engine start (MESI)	18:46:56	18:47:05.1
11	Centaur first main engane cutoff (MEC01)/park orbit insertion	18:49 09	18:49:13.2
12	Centaur second main engine start (MES2)	$1907: 22$	19:07:27.0
13	Centaur second main engine cutoff (MEC02)	19:12:25	19:12:27.8

Launch date: 9/9/75
Liunch time: 18:39:00
Artiva! date: $8 / 7 / 76$

NOTE: TCA IS TIME OF CLOSEST APPROACH ON THE HYPERBOLA
Fly. 1. Targeted and achleved Injection almpoints for Viking launches

Table 3. Orbltal data
(Earth mean equator and equinox of 1950.0 coordinate reference)

Parameter	Post-separation geocentric orbit elements		Injection orbit elements from launch polynomials	
	Viking 1	Viking 2	Viking 1	Viking 2
Epoch, GMT	8/20/75, 21:52:43.4	9/9/75, 19:12:24.0	8/20/75, 21:52:44	9/9/75, 19:12:25
Periapsis radius, km	6,561.0	6,557.1	6,562.7	6,558.8
Semi-major axis, km	-18,842.2	-26,502.4	-18,849.7	-26,466.1
Eccentricity	1.3482	1.2474	1.3482	1.2478
Inclination, deg	29.29	29.31	29.34	29.39
Longitude of ascending node, deg	104.48	83.56	104.40	33.52
Argument of periapsis, deg	-159.71	-148.66	-159.66	-148.64
Time past periapsis, 3	136.9	130.9	138.6	134.6
Trajectory energy, $\mathrm{km}^{\mathbf{2} / \mathrm{s}^{2}}$	21.155	15.040	21.146	15.061
Declination of outgoing asymptote, deg	-10.48	-2.63	-10.47	-2.63

based on the best orbit estimates obtained prior to the nearEarth midcourse maneuver on each spacecraft. For comparison, the injection orbit elements, based on the nominal launch polynominals, are included in Table 3. Figure 1 is a display of the injection targets and actual achieved injections in the B-plane. Also shown are the final targets required for the nominal Mars Orbit Insertion (MOI). The injection aimpoints were biased away from these MOI aimpoints to insure that planetary quarantine (PQ) requirements were met in consideration of expected launch vehicle dispersions, to guarantee a minimum required ΔV for the first maneuver, and to insure that the sparecraft attitude for the first maneuver would allow real-time communications during the burn.

II. Interplanetary Phase

A. Hellocentric Orbit Description

The two Viking spacecraft were inserted into Type II Class II interplanetary trajectories from Earth to Mars. That is, they traversed more than 180 deg of true anomaly from launch to encounter and arrival occurred after apoapsis of the transfer orbit. Plots of the two trajectories are shown in Figs. 2 and 3, along with positions of the Earth and Mars. The pre-near-Earth midcourse maneuver heliocentric orbit elements for the two Viking interplanetary trajectories are presented in Table 4. The epochs of these conditions are the times of the tirst midcourse maneuvers. The total central angle traveled

Trble 4. Helliocentric orblt elements
(Earth mean orblt pime and equinox of 1950.0 coordinde reference)

Parameter	Pre-midcourse		Post-midcourse	
	Viking 1	Viking 2	Viking 1	Viking 2
Epoch, GMT	8/27/75, 18:30:00	9/19/75, 16:30:00	8/27/75, 19:59:12	9/19/7 ${ }^{\prime}$ 6:59:12
Periapsis radius, $\mathbf{k m}$	149.778×10^{6}	150.584×10^{6}	149.779×10^{6}	150.58×10^{6}
Semimajor axis, km	199.644×10^{6}	200.168×10^{6}	199.728×10^{6}	200.291×10^{4}
Eccentricity	0.24978	0.24771	0.25008	0.24813
Inclination, deg	4.48	2.92	4.48	2.92
Longitude of ascending node, deg	146.72	165.82	146.72	165.83
Argument of perispsis, deg	198.70	185.02	198.68	184.97
Time past periapsis, days	-10.0899	5.5947	-10.0076	5.6439

from launch to encounter for Viking 1 was 201 deg in 304 days and for Viking 2 was 203 deg in 332 days.

Launch occurred on the descending node of the transfer orbit in each case. so the majority of the trajectory was flown below the ecliptic plane but encounter with Mars was above the ecliptic plane. It is interesting to note that, although Viking 1 was launched first and encountered Mars first, Viking 2 actually passed Viking 1 and reached the orbit of Mars first. Mars having not yet arrived at this point in its orbit, Viking 2 continued on to apoapsis of its heliocentric orbit before encountering Mars on the way back toward the Sun. Mannwhile, Viking 1 was overtaken near apoapsis of its heliocentric ellipse by the faster moving Mars.

B. Near-Earth Midcourse Maneuver Effects

Both Viking launches required that the aimpont at Mars be biased away from the planet. For this reason, at least one midcourse (M / C) maneuver, executed shortly after launch, was mandatory. For both spacecraft, one near-Earth M/C, 7 to 10 days after launch, was sufficient to meet all mis. ion requirements. In the case of Viking 2 , the M / C maneuver was also biased away from the desired final target as discussed in Maneuver Analysis. Figure 4 is a sketch of the B-plane at Mars thowing the achieved post-M/C encounter points along with the targeted aimpoints for the M / C designs. Table 4 lists the post-M/C heliocentric orbit elements for Viking 1 and Viking 2. These are the best estimates of the two-body interplanetary orbits for the two Viking spacecraft.

Fig. 4. Targeted and echloved midocuree maneu ier almpolinte for Viling

C. Solar Pressure Effects

The effect of solar radation pressure acting on the Viking spacecraft throughout the interplanetary phase of the tralectories is to cause a change in the encounter point relative to Mars of about 20,000 hilometers. This eftect was athowed for in targeting the launches and the near-Earth M/C maneuvers by calculating the solar pressure effects using the best estimate of the solar radiation constant and the dimensions of the spacecraft. However, several months into the mission, solution for actual solar pressure effects indicated modification to the spacecraft solar pressure model to allow for colat radation impingement in areas of the spacecraft not previously included in the model. These changes caused the encounter points for both spacecraft to move by about 1000 km relative to Mars.

D. Interplanetary Trajectory Data

Time history plots of several parameters relative to the interplanetary trajectories are presented in Figs. 5 through 10 for Viking 1 and in Figs. 11 through 16 for Viking 2. In each case, the first two figures plot geocentric range and range rate, the next iwo figures plot geocentric declination and right ascension (relative to Earth equator and equinox of 1950.0), and the last two figures plot heliocentric and areocentric range. All data are plotted against calendar date.

III. Encounter Phase

Only one encounter phase M/C maneuver was planned for Viking 1, to take place 10 days before encounter. However, a leaking pressure regulator valve was encountered when the pyrotechnic squib valve, which sealed off the high pressure gas supply during cruise, was opened shortly before the maneuver. To reduce the pressure accumulating in the propellant tanks, two M/C maneuvers were executed, one on June 10, 1970, at 11:00 GMT, about 10 days before encounter and another on June 15 at 14:00 GMT, about 4 days before encounter. Since these maneuvers had to be large - about 50 meters/second to achieve the required reduction in propellant tank pressure, they were used to reduce the Mars-relative velocity of the spacecraft. This delayed the arrival time by a total of over 6 hours and also decreased the required MOI maneuver ΔV.

Table 5 presents areocentric encounter orbit elements for Viking 1 before the approach midccarse maneuvers and after each of the two maneuvers. The changes in the encounter orbit geometry were dictated by changing MOI requirements as detailed in the Maneuver Analysis chapter of this document.

Viking 2 required only one encounter phase M / C maneuver - the leaky valve problem was precluded by waiting until shortly before MOl to open the squib valve and doing the

Fig. 5. Viking 1 geccentric range

Fig. 7. Vining 1 grocentric decination

Fig. 6. Viking 1 geocentric range rate

Fig. 8. Viluing 1 geocentrice right esconelon

Fig. 9. Viking 1 hellocentric range

Fig. 11. Vidreg a geocmitic renge

Fig. 10. Viking 1 ereocentric range

Fig. 12. Viding 2 geocentio range rive
-"•••

25

Fig. 13. Vking 2 geocentric docilination

Fig. 15. Vidix. 2 hellocentite range

Fig. 14. Viking 2 geocentric right ascension

Fg. 16. Viving 2 erbecentile range

Table 5. Areocentric orbit elements (Mars mean equator and equinox of date coordinate reference)

		Vikine 1.		Vihme 2	
Parameter	Pre-aproseh M / C	Powlapprowh 4/C	$\begin{gathered} P_{m 1-a p_{1}} \cdot \mathrm{H} \\ \mathbf{N} / \mathrm{C}_{2} \end{gathered}$	$\begin{gathered} \text { Preapproath } \\ M / C \end{gathered}$	$\begin{gathered} \text { Pont-apponth } \\ B / C \end{gathered}$
- --.				-	--..-
Rudhu of clomest approath, km	5170.9	55105	5561.6	11172.7	50507
Semmajor ans, km	-5774.6	forla, 8	6.79 .7	6184.9	6167.1
Eccentricty	1.8455	1.9175	1.8856	2.8164	1×190
Inclination, deg	3644	38.44	38: 1 :	4281	55.18
Longtude at axcendory node deg	116.76	132.15	12987	53.89	36.52
Argument of pertapsis der	2571	1298	15.38	57.82	8148
Time ot perapon parage, Cill	619:76	6/19/76	$6.19^{\prime 7} 76$	X:07/76	א/117:76
	16.3123	203750	2254 :194	$12 \cdot 2113$	114505
Hyperbohac eversvernity, hm/	2.723	2.670	2.612	2.6 .31	2.635

M / C in the blowdown mode. The M / C maneuver was executed about 10 days before encounter on July 28.1976 . at 0100 GMT. Table 5 lists the aerocentric orbit elements at encounter before and after the M / C.

IV. Mars Orbit Phase

On June 19, 1976, at 22:59 (iMT, Viking 1 was mserted into a hughly ellipticall orbit about Mars ifter a 38 -min MOI motor burn. The orbit elements atter MOI for each orbit revolution up to the end of the nominal mission are presented in Table 6. The definition of rev number is as follows: A rev is measured from apoapsis to apoapsis with apoapsis bemg the start of each rev; i.c., apoapsis number I precedes periapsis number 1 . Orbit insertion is assumed to occur on rev 0 so that the first apoapsis is the start of rev 1. An mmediate exception to this rule was made with Viking 1. Because of the large approach M/C maneuvers exccuted with this spacecraft, Viking I was inserted into a 42.5 -h-period orbit instead of the planned $24.6-\mathrm{h}$ orbit. The period was reduced to 24.6 h by a Mars orbit trim (MOT) maneuver near periapsis at the end of the first full rev. This periapsis would normally have been numbered " I " but it occurred on the GMT day and time at
which the second perapsis would have occurred if the nominal mission protile hat been follnwed. In order to preserve the day/rev number sequence which had previously been established, the first rev of Viking 1 was labeled rev 2 and there was no rev 1 . This is the reason Table 6 begms with rev number 2 .

Viking 2 was insertel into Mars orbit seven weeks later on August 7.1976, at 1209 GMT afer a 39 -min MOI motor burn. Table 7 lists the rev-hy-rev orbit elements for this spacecraft through the end of the nommal mission.

Periodic discontmuities may be observed in the normal progression of the orbit elements in these tables. These will usually be the result of MOT maneuvers, as between tevs 2 and 3 in Table 6. A list of MOT maneuver execution times is included here as Table 8 to and in identifying these points. This hist is complete regardless of the absence of some MOT numbers. A number of trim maneuvers were planned and designed but never executed. Some other, generally small. discontinuities in the orbit elements are attributable to updates in orbit determination solutions, lack of tracking data, or poor orbit determination due to noisy data during solar conjunction.

Tebiv 6. Vo-1 Mare orbit clements

Rev. No.	Apoapsis/Perrapsıs GMT date and time, 1976		Period, h	RCA. km	$\begin{gathered} \text { INC (MEQ). } \\ \text { deg } \end{gathered}$	$\begin{gathered} \text { LAN (MIQ). } \\ \text { deg } \end{gathered}$	$\begin{gathered} \text { API (MEO) } \\ \text { deg } \end{gathered}$
2	6/20	20:16:56	42.35210	4907.19	3) 888	129.7960	39.7596
	6/21	17:28:15					
3	6/22	05:47:19	24.66124	4907.10	37.8787	129.6765	39.9378
	6/22	18:07:55					
4	6/23	06.27:40	24.65884	4907.03	37.8849	129.5444	40.1125
	6/23	18:47:26					
5	6/24	07:07:06	24.65640	4906.96	37.8911	129.4145	40.2872
	6/24	19:26:48					
6	6/25	07:46:24	24.65393	4906.89	37.8975	129.2837	40.4619
	6/25	20:06:01					
7	6,26	08:25:32	24.65143	4906.81	37.9039	129.1531	40.6365
	6/26	20:45:05					
8	6/27	09:04•32	24.64889	4906.73	37.9104	129.0226	40.8111
	6/27	21:24.00					
9	6/28	09:43:22	24.64633	4906.65	37.9169	128.8922	40.9856
	6/28	22:02:45					
10	6/29	10:22:03	24.64374	4906.56	37.9235	128.7620	41.1601
	6/29	22:41:22					
11	6/30	11:00:35	24.64113	4906.46	37.9301	128.6319	41.3346
	6/30	23:19:49					
12	7/01	11:38:57	24.63850	4906.37	37.9368	128.5019	41.5041
	7/01	23:58:06					
13	7/02	12:17:10	24.63586	4906.26	37.9435	128.3720	41.6835
	7/03	00:36:14					
14	7/03	12:55:13	24.63320	4906.15	37.9502	128.2423	41.8579
	7/04	01:14:13					
15	7/04	13:33:07	24.63052	4906.04	37.9570	128.1126	42.0322
	7/0S	01:52:01					
16	7/05	14:10:51	24.62784	4905.92	37.9638	127.9830	42.2065
	7/06	02:29:40					
17	7/06	14:48:25	24.62514	:905.80	37.9706	127.8534	42.3808
	7/07	03:06:30					
18	7/07	15:25:10	24.62280	4905.74	37.9757	127.7264	42.5505
	7/08	03:43:51					
19	7/08	16:02:28	24.62012	4905.62	37.9876	127.5949	42.7449
	7/09	04:20:38					
20	7/09	16:43:52	24.77574	4906.92	37.6949	124.7660	44.8918
	7/10	05:06:44					
21	7/10	17:30:17	24.77210	4906.70	37.7165	124.6130	45.1146
	7/11	05:53:28					
22	7/11	18:16:33	24.76986	4906.54	37.7235	124.4851	45.2906
	7/12	06:39:39					
23	7/12	19:02:38	24.76700	4906.38	37.7306	124.3578	45.4669
	7/13	07:25:39					
24	7/13	19:48:34	24.76415	4906.22	37.7277	124.2390	45.6123
	7/14	08:11:31					
25	7/14	20:31:03	24.65140	4902.50	37.7007	124.1978	43.8188
	7/15	08:50:35					
26	7/15	21:10:02	24.64859	4902.33	37.7078	124.0713	45.9953
	7/16	09:29:29					
27	7/16	21:48:51	24.64579	4902.17	37.7148	123.9451	46. 7717
	7/17	10:08:13					
28	7/17	22:27:3n	24.64300	4901.99	31.72.8	123.8189	46.3481
	7/18	10:46:47					
29	7/18	23:05:39	24.64022	4901.81	37.728	123.6928	46.5244
	7/19	11:25:11					

Table 6 (contd)

Rev. No.	Apoapss/Perlapss GMT date and time. 1976		Perod, h	RCA. km	$\underset{\substack{\text { INC } \\ \text { deg }}}{ }$	$\begin{gathered} \text { Lanimio). } \\ \text { deg } \end{gathered}$	$\begin{gathered} \text { API (ME:Q). } \\ \text { deg } \end{gathered}$
30	7/19	23.44:18	24.63744	4901.63	37.7358	1235663	46.70018
	7/20	12.03.26					
31	7/21	06.22:31	24.63667	4902.19	37.7424	123.4365	46.8761
	$7 / 21$	1241:37					
32	7/22	01:00:37	24.6.3.391	4902.010	377493	123.3108	47.11524
	7/22	131938					
33	7/23	${ }^{11} 13834$	24.63115	4901.81	17.7562	123.1852	47.2286
	7123	1357.30					
34	7/24	02.16 .20	24.62840	49011.60	37.7631	123.10596	47.4148
	7/24	14.3511					
35	7/25	02:53:57	24.63565	4901.40	37.7700	122.9341	47.5811
	7/25	$15 \cdot 1243$					
36	7126	113.31 .23	24.62291	4911.19	37.7768	122.8087	47.7572
	7/20	1550.05					
37	7/27	(144880)	24.62016	49010.97	37.78.36	122.6833	47.9334
	7/27	16: 2717					
38	7/28	14.4547	24.61742	49010.76	37.7909	122.5919	$4 \times .11996$
	7/28	17 (4)19					
39	7/29	115224	$246146{ }^{8}$	+906. 5.3	37.7972	122.4325	48.2858
	7/29	17.41.11					
40	7130	055932	2461194	4900.30	37.80411	1223072	48.4620
	7/30	18.17 .53					
41	$7 / 31$	16.3609	24.60919	4910.07	37.8108	122.1818	48.6381
	$7 / 31$	18.54.26					
42	9/01	07.1236	2461644	4899.83	378176	122.0564	48.8143
	$8 / 01$	1930.48					
43	$8 / 182$	07.5013	24.60569	4900.09	37.8143	121.9410	48.9604
	$8 / 02$	20:07.01					
44	8/03	08:28:06	24.63793	4898.84	37.9011	121.7756	49.3066
	8/03	20:43:03					
45	8/04	09.06:26	24.63777	4898.80	37.9009	121.7778	49.3035
	8/04	21:25:34					
46	$8 / 105$	09:44:36	24.63507	4898.50	37.9074	121.6530	494790
	8/05	22:03:40					
47	8/06	10:22:37	24.63237	4898.21	37.9139	121.5282	49.6545
	8/06	22:41:36					
48	8/07	11:00:28	24.62968	4897.90)	37.9203	121.4035	49.8301
	8/07	23:19:22					
49	$8 / 08$	11:38:10	24.62700	4×97.60	37.9267	121.2788	50.0056
	$8 / 08$	23:56:58					
so	8/09	12.15:42	24.62432	4897.29	37.9330	121.1542	50.1812
	8/10	00:34:26					
51	8/10	12:53:04	24.62169	4896.97	37.9394	121.029	50.3568
	8/11	01:11:43					
52	8/11	13:30:17	24.61898	48\%.65	37.9457	120.9050	50.5324
	8/12	01:48:51					
53	8/12	14:07:20	24.61632	4896.33	37.9520	120.7804	50.7080
	8/13	02:25:49					
54	8/13	14:44:13	24.61366	4896.01	37.9582	120.6559	50.8836
	8/14	03:02:38					
53	$8 / 14$	15:20:37	24.61100	4895.68	37.9645	120.5313	51.0593
	8/15	03:39:17					
56	$8 / 15$	15:57:31	24.608:3	4893.34	37.9707	120.4066	51.2349
	$8 / 16$	04:15:46					
57	$8 / 16$	16:33:56	24.60567	4895.01	37.9769	120.2820	51.4105
	8/17	04:52:06					

Teble 6 (contd)

Rev No.	$\begin{aligned} & \text { Apoul } \\ & \text { giv7 dut } \end{aligned}$	Prrapus monc. 1970	Perrad in		$\begin{gathered} \text { N(Mi M) } \\ \text { He" } \end{gathered}$	$\begin{gathered} \text { I Mivilol. } \\ \text { de } \end{gathered}$	$\begin{gathered} \text { WI (M10 } \\ \text { der } \end{gathered}$
48	$8 / 17$	171011	2461299	+81.4.6.6.	3-9831	1211573	515×6.2
	\%/18	15.2817					
59	$8 / 18$	$1746!7$	24.601132	489432	379893	1.900 .325	517618
	$8 / 19$	0610417					
611	8/19	182913	24 5976:	48934	37.9955	11991977	819375
	820	(6) 41018					
61	$8 \cdot 20$	185759	24 59494	4893.62	3601017	1197828	5311.32
	N/21	071550					
62	8.11	14.3 .3 .35	2459224	4893.27	38.01079	114.6575	¢2. 2×88
	$8 / 22$	$17 \cdot 5122$					
$6{ }^{2}$	8/22	2010902	2458454	4×92.92	$3 \times 11+4$	1195328	524645
	8:23	(18 26.43					
64	$8: 3$	20.4419	24,58682	4×92.56	:x.020:	$119+1176$	S2.64i\%
	8:24	09.0156					
65	$8 / 24$	$219: 27$	24.584109	4892:20	34 19265	1192931	48157
	$8 / 25$	1986.58					
66	$8 / 25$	2154.4	245813.5	4891.84	38.19327	1191570	52.9014
	$8 / 26$	101150					
67	8/26	$\because 2911$	24.5786 .1	489147	3181388	119.19314	51670
	$8 / 37$	$119+6,33$					
68	8.27	2311349	2457586	$4 \mathrm{x9110}$	3×14551	1189159	
	8/28	11.2116					
69	8:28	23.3817	24.673111	4×90173	381512	1187×611	23518,
	$8 / 29$	11.5529					
$71)$	$8 / 20$	00.1235	24.57033	4×90 is	3×11574	11×6.541	$\because 6.693$
	8/311	1229.41					
71	8/31	004643	24.56756	4889.99	3×1636	115 527x	5.8693
	8/31	13:03 44					
72	9/01	0120.40	24.56174	4889.6:	38.1697	1184115	44.1444
	9/01	13.37 .37					
73	9/02	01.54:28	24.56201	4889.24	380754	118.2750	54.2214
	$9 / 02$	14:11:20					
74	$9 / 103$	02:28:06	24.55924	4888.87	3×11820	118.148:	54.3459
	9/133	14 44:53					
75	$7 / 14$	03:01:34	24.5564	4888.49	38.0881	118.11:13	54.5714
	$9 / 14$	15.18:16					
76	9/05	03:34.52	24.55373	488\%.11	38.19942	117.894?	54.7469
	$9 / 105$	15:51:29					
77	9/116	04:08:00)	24.35099	4887.73	38.1002	117.7668	54.9324
	$9 / 06$	16:24.32					
78	$9 / 07$	(14:40:59	24.54827	4887.35	381162	1176391	55.10978
	$9 / 07$	16:57:26					
79	9/08	15:13:01	24.54397	4886.80	38.1260	117.51068	55.2883
	9/08	17:29:20					
80	9/09	05:45:34	24.54113	4886.43	38.1320	117.3787	55.4637
	9/09	18.01:48					
81	$9 / 10$	06:17:56	24.33831	4886.05	38.1379	117.2514	55.6391
	$9 / 10$	18:34:05					
82	9/11	06:50:09	24.53550	4885.47	38.15.38	117.1219	55.8244
	$9 / 11$	19:06:14					
83	$9 / 12$	06:02:33	21.87715	4885.17	381293	116.9917	\$6.0344
	$9 / 12$	16:59:03					
84	$9 / 13$	03:55:10	21.87698	4884.82	38.1321	116.8512	56.2054
	$9 / 13$	14:51:39					
85	$9 / 14$	01:47:49	21.87793	488.8. 37	38.1397	116.7192	$56.3 * 01$
	9/14	12:44:10					

Table 6 (contd)

Rev. No.	Apropsis/Perapsis GMT date and tume. 1976		Period. h	RC'A, km	$\begin{gathered} \text { INC (MIO). } \\ \text { deg } \end{gathered}$	$\underset{\text { deg }}{\operatorname{LaN}(\mathrm{Mi}(\mathrm{O})} .$	$\begin{gathered} \text { API (MI:()). } \\ \text { deg } \end{gathered}$
86	9/14	23:41,33	21.87928	4884.18	38.1279	116.5934	565552
	9/15	10:36.55					
87	9/15	21:33:17	21.87912	4884.22	38.1309	116.4682	56.7330
	9/16	08:29:40					
88	9/16	19.2556	21.87615	4883.81	38.1374	116.3309	56.9122
	9/17	06:22:14					
89	9/17	17:18:31	21.87634	4883.22	38.1359	116.1862	57.0898
	9/18	04:14:49					
90	9/18	15:11:13	21.88004	1882.92	38.1282	116.0534	57.2693
	9/19	02:07:37					
91	9/19	13:04:00	21.87961	4882.64	38.1297	115.9277	57.4505
	9/20	00:00:24					
92	9/20	10:56:42	21.87727	4882.42	38.1043	115.7753	57.6303
	9/20	21:53:02					
93	9/21	08:59:57	22.22920	4835.90	38.3090	115.7176	57.9874
	9/21	20:06.51					
94	$9 / 22$	07:13:42	22.22968	4885.43	38.3025	115.5870	58.1616
	$9 / 22$	18:20:36					
95	9/23	05:27:32	22.23107	4885.14	38.3000	115.4602	58.3349
	$9 / 23$	16.34:28					
96	9/24	03:41:26	22.23192	4885.16	38.1004	115.2467	58.5102
	9/24	14:48:23					
97	9/25	03:08:11	24.64537	4909.35	38.1579	115.0810	59.7747
	$9 / 25$	15:27:33					
98	9/26	03:46:50	24.64313	4909.09	38.1634	114.9552	59.9485
	9/26	16:06.08					
99	9/27	04:25:21	24.64092	4908.82	38.1690	114.8295	60.1224
	9/27	16:44:35					
100	$9 / 28$	05:03:44	24.63874	4908.56	38.1744	114.7038	60.2964
	$9 / 28$	17:22:54					
101	$9 / 29$	05:42:00	24.63658	490830	3\%.1799	114.5782	60.4703
	9/29	18:01.06					
102	$9 / 30$	or 20:08	24.63444	4908.05	38.1852	114.4526	60.6443
	9/30	18 7:10					
103	10/01	06:58:09	24.63243	4907.74	38.2104	114.3375	60.8217
	10/01	19:17:07					
104	10/02	07:36:02	24.63033	4907.49	38.2157	114.2120	60.9956
	10/02	19:54:57					
105	10/03	08:13:47	24.62824	4907.24	38.2209	114.0865	61.1696
	10/03	20:32:38					
106	19/04	02.51:25	24.62616	4906.99	38.2261	113.9610	61.3437
	10/04	21:10:12					
107	10/05	09:28:55	24.62409	4906.74	38.2313	113.8355	61.5178
	10/05	21:47:39					
108	10/06	10:06:18	24.62202	4906.49	38.2364	113.7100	61.6919
	10/06	22:24:58					
109	10/07	10:43.34	24.61996	4906.24	38.2415	113.5844	61.8661
	10/07	23:02:10					
110	10/08	11:20:42	24.61789	4905 ${ }^{\text {P }}$	38.2466	113.4588	62.0404
	10/08	23:39:14					
111	10/09	11:57:43	24.61582	4905.74	38.2517	113.3331	62.2147
	10/10	00:16:11					
112	10/10	12:34:44	24.61419	4905.52	38.2304	113.1893	62.4120
	10/11	00:53:10					
113	10/11	13:11:31	24.61213	4905.31	38.2354	113.0635	62.5865
	10/12	01:29:53					

Table 6 (contd)

Rev. No.	Apoapsis/Pertapss GMT date and tme. 1976		Permed, h	RCA, kill	$\begin{gathered} \text { INC (MIO) } \\ \text { deg } \end{gathered}$	$\begin{gathered} \text { LAN(MIQQ). } \\ \text { deg } \end{gathered}$	$\begin{gathered} \text { APl } \begin{array}{c} \text { MLQ } \\ \text { deg } \end{array}, \end{gathered}$
114	10/12	13:48:11	24.61005	4905.19	38.2405	112.9376	62.7609
	10/13	02:06:29					
115	10/13	14:24:43	24.60795	4904.87	38.2455	112.8117	62.9355
	10/14	02:42:58					
116	10/14	15:01 08	24.60584	4904.65	38.2505	112.6856	63.1101
	10/15	03.19.19					
117	10/15	15:37:25	24.60370	4904.43	38.2556	112.5594	63.2847
	10/16	03:55:32					
118	10/16	16:13:35	24.60153	4904.20	$38.26^{\prime} 6$	112.4332	63.4594
	10/17	04-31:38					
119	10/17	16.49:36	24.59934	4903.98	38.2657	112.3067	63.6342
	10/18	05:07:35					
120	10/18	17:25:30	24.59711	4903.75	38.2708	112.1802	63.8090
	10/19	05.43:25					
121	10/19	19:01:16	24.59485	4903.52	38.2759	112.0535	63.9839
	10/20	06:19:06					
122	10/20	18:36:53	24.59754	4903.29	38.2810	111.9267	64.1589
	10/21	06:54:40					
123	10/21	1912:22	24.59020	4903.05	38.2861	111.7996	64.3339
	10/22	07:30:04					
124	10/22	19:47:42	24.58780	4902.81	38.2913	111.6724	64.5089
	10/23	08:05:21					
125	10/23	20:22:54	24.58536	4902.57	38.2965	111.5450	64.6840
	10/24	08:40:28					
126	10/24	20:57:57	24.58286	4902.32	38.3018	111.4174	64.8592
	10/:3	09:15:26					
127	10/25	21:32:51	24.58030	4902.07	38.3071	111.2896	65.0345
	10/26	09:50:15					
128	10/26	22:07:35	24.57768	4901.82	38.3125	111.1615	65.2097
	10/27	10:24:55					
129	10/27	22:42:10	24.57499	4901.56	38.3179	111.0332	65.3851
	10/28	10:59:25					
130	10/28	23:16:35	2457224	4901.29	38.3233	110.9046	65.5605
	10/29	11:33:45					
131	10/29	$23: 50: 50$	24.56942	4901.02	38.3288	110.7758	65.7359
	10/30	13:07:55					
132	10/31	00:24:55	24.56652	4900.74	38.3344	110.6466	65.9114
	10/31	12:41:55					
133	$11 / 01$	$00: 58: 49$	24.56355	4900.45	38.3400	110.5171	66.0870
	11/01	13:15:44					
134	11/02	01:32:32	24.56050	4900.16	38.3457	110.3873	66.2625
	11/02	13:49:22					
135	11/03	02:06:05	24.55736	4899.86	38.3515	110.2572	66.4382
	11/03	14:22:48					
136	11/04	02:39:26	24.55414	4899.55	38.3573	110.1266	66.6138
	11/04	14:56:03					
137	11/05	03:12:35	24.55084	4899.23	38.3631	109.9957	66.7895
	11/05	15:29:06					
138	11/06	03:45:32	24.54746	4898.90	38.3690	109.8644	66.9652
	11/06	16:01:57					
139	11/07	04:18:17	24.54399	4898.57	38.3750	109.7326	67.1409
	11/07	16:34:36					
140	11/08	04:50:49	24.54043	4898.22	38.3810	109.6004	67.3166
	11/08	17:07:02					
141	11/09	0. 23:08	24.53680	4897.86	38.3871	109.4677	67.4924
	11/09	17:39:14					

Table 6 (contd)

Rev. No.	Apoapsis/Perrapsis GMT date and time, 1976		Period, h	RCA, km	$\underset{\text { deg }}{\text { INC (MEQ), }}$	$\underset{\operatorname{deg}}{\text { LAN (MEQ), }}$	$\begin{gathered} \text { APF (MEO). } \\ \text { deg } \end{gathered}$
142	11/10	05:55:14	24.53309	4897.49	38.3932	109.3345	67.6681
	11/10	18:11:14					
143	11/11	06:27:06	24.52930	4897.11	38.3993	109.2008	67.8438
	11/11	18:42:59					
144	11/12	06:58:45	24.52544	4896.72	38.4054	109.0666	68.0195
	11/12	19:14:31					
145	11/13	07:30:10	24.5?153	4896.31	38.4115	108.9318	68.1952
	11/13	19:45:49					
146	11/14	08:01:21	24.51756	4895.89	38.4176	108.7964	683708
	11/14	20:16:52					
147	11/15	08:32:17	24.51356	4895.47	38.4237	108.6605	68.5464
	11/15	20:47:41					

Table 7. VO-2 Mars orbit elements

Rev. No.	Apoapos/Periapos GMT date and times 1976		Pentud, is	RCA, km	INC (MIQ), de:	$\begin{gathered} \text { I.AN }(\mathrm{MI} \cdot()) \\ \mathrm{deg}: \end{gathered}$	API (111 O). de:
1	8/08	01:27.53	27.623	4912.2	- 55.17	36.37	69.32
	8/08	15:16:35					
2	8/09	05:05:11	27.620	4912.4	55.18	36.28	69.36
	8/09	18.53:53					
3	8/10	$0833: 16$	27.313	4893.0	55.20	36.07	66.77
	$8 / 10$	22.12:40					
4	8/11	11.52:10	27.317	4892.9	5521	36.111	69.81
	-/12	01:31:41					
5	8/12	15:11:26	27.325	4893.0	55.20;	35.90	69.86
	8/13	()4:51:12					
6	8/13	18:30.49	27.321	4892.8	55.21	35.80	69.91
	8,14	08.10:28					
7	8/14	21:52.53	27.413	4895.0	55.21	35.72	70192
	8/15	11-35:17					
8	8/16	01:17:44	27.415	4895.3	55.20	35.63	71..68
	8/16	15:00:12					
9	8/17	04:42.45	27419	4895.3	55.19	35.53	71.15
	8/17	18:25:20					
10	8/18	08:07:56	27.420	4895.3	55.19	35.43	70.20
	8/18	21:50:33					
11	8/19	11:33:04	27.417	4895.6	55.19	35.33	70.25
	8/20	01:15:36					
12	8/20	14:57:57	27.412	4895.7	55.20	3524	71.31
	8/21	04:40:20					
13	8/21	18:22:51	27.417	4895.7	55.19	35.15	70.37
	8/22	08:05:23					
14	8/22	21:48:07	27.424	4895.8	55.18	35.04	70.42
	8/23	11:30:52					
15	8/24	01:13:25	27.418	4895.8	55.19	34.94	71.46
	8/24	14:55:59					
16	8!25	94:38:23	27.413	4896.0	55.19	34.85	70.52
	8/25	18:21:31					
17	8/26	06:22:43	24.040	4818.3	55.65	34.78	72.66
	8/26	18:23:57					
18	8/27	06:25:12	24.042	4818.6	55.65	34.70	72.71
	8/27	18:26:29					
19	8/28	06:45:15	24.622	4883.0	55.39	34.40	73.65
	8/28	19:03:56					
20	8/29	07:22:35	24.622	4882.9	55.38	34.38	73.66
	8/29	19:41:16					
21	8/30	07:59:56	24.622	4883.3	55.38	34.29	73.73
	8/30	20:18:37					
22	8/31	08:37:17	24.622	4883.6	55.38	34.20	73.79
	8/31	20:55:58					
23	9/01	09:14:38	24.622	4884.0	55.38	34.1 I	73.86
	9/01	21:33:20					
24	9/02	09:52:00	24.623	4884.4	55.38	34.02	73.92
	9/02	22:10:42					
25	9/03	10:29:23	24.623	4884.8	55.38	33.93	73.99
	9/03	22:48:05					
26	9/04	11:06:51	24.626	4885.5	55.39	33.85	74.03
	9/04	23:25:39					
27	9/05	11:44:26	24.626	4886.0	55.39	33.77	74.09
	9/06	00:03:15					
28	9/06	12:22:02	24.626	4886.4	55.39	33.68	74.15
	9/07	00:40:51					

44

Table 7 (contd)

Rev. No.	Apoapsis/Perrapsis GMT date and time, 1976		Period, h	RCA, km	$\begin{gathered} \mathrm{INC} \text { (MIO) } \\ \text { deg } \end{gathered}$	$\begin{gathered} \text { LAN (MEO) }, \\ \text { dey } \end{gathered}$	$\begin{gathered} \text { API (MI.Q). } \\ \text { deg } \end{gathered}$
29	9/07	12:59:39	24.626	4886.8	55.39	3354	74.21
	9/08	01:18:28					
30	9/08	13:37.16	24.627	4887.2	55.39	33.50	74.28
	9/09	01.56:06					
31	9/09	14.14:55	24.627	4887.7	55.39	33.41	74.33
	9/10	02:33.46					
32	$9 / 10$	14.52:35	24.628	4888.2	5539	33.32	74.40
	$9 / 11$	03:11:26					
33	$9 / 11$	15.30:21	24.628	4888.6	55.39	33.23	74.46
	9/12	03:49:19					
34	$9 / 12$	16:08:00	24.628	4889.0	55.39	33.14	74.53
	$9 / 13$	04:26:52					
35	9/13	16:45:44	24.629	4889.5	55.39	33.05	74.59
	$9 / 14$	05:04:37					
36	$9 / 14$	17:23:30	24.629	4890.0	55.39	32.95	74.66
	$9 / 15$	05:42.25					
37	$9 / 15$	18:01.18	24.630	4890.5	55.39	3286	74.73
	9/16	06:20:14					
38	9/16	18:39:08	24.630	4890.9	55.39	32.77	74.79
	$9 / 17$	06:58.05					
39	9/17	19:17:01	24.631	4891.4	55.39	32.68	74.85
	9/18	07:35:58					
40	9/18	19:54:55	24.632	4891.8	55.39	32.59	74.92
	9/19	08:13:53					
41	9/19	20:32:52	24.632	4892.4	55.39	32.51	74.97
	9/20	08:51:52					
42	9/20	21:10:52	24.633	4892.9	55.39	32.42	75.03
	$9 / 21$	09:29:53					
43	$9 / 21$	21:48:54	24.634	4893.3	55.39	32.33	75.10
	$9 / 22$	10:07:؛ 7					
44	9/22	22:26:59	24.635	4893.8	55.39	32.24	75.16
	9/23	10:46:03					
45	9/23	23:05:07	24.636	4894.3	55.39	32.15	75.22
	9/24	11:24:13					
46	9/24	23:43:20	24.637	4894.9	55.38	32.04	75.31
	9/25	12:02:27					
47	9/26	00:21:35	24.638	4895.4	55.38	31.95	75.38
	9/26	12:40:44					
48	9/27	00:59:54	24.639	4895.9	55.38	31.86	75.44
	9/27	13:19:05					
49	9/28	01:38:17	24.640	4896.4	55.38	31.76	75.50
	9/28	13:57:30					
50	9/29	02:16:44	24.641	4897.0	55.38	31.71	75.53
	9/29	14:38:27					
51	9/30	02:57:44	24.643	4925.5	55.34	31.27	75.89
	9/30	15:17:01					
52	10/01	04:56:43	26.794	49023	74.90	54.60	68.34
	10/01	18:20:16					
53	10/02	07:44:16	26.794	4902.3	74.90	54.60	68.34
	10/02	21:08:07					
54	10/03	10:32:07	26.800	4902.1	74.89	54.56	68.28
	10/03	23:56:08					
55	10/04	13:20:13	26.802	4902.0	74.89	54.51	68.22
	10/05	02:44:19					
56	$10^{\prime} 05$	16:08:19	26.800	4902.2	74.89	54.44	68.18
	10/06	05:32:21					

Table 7 (contd)

Rev. No	Apuapsis/Pertapsis GMT date and time, 1976		Period, h	RCA. km	$\begin{gathered} \text { INC (MFQ), } \\ \text { deg } \end{gathered}$	$\begin{gathered} \text { LAN (MEQ), } \\ \text { deg } \end{gathered}$	$\begin{gathered} \text { API (MEO), } \\ \text { deg } \end{gathered}$
57	10/06	18:56:08	26.793	4902.6	74.89	54.40	68.13
	10/07	08:19:56					
58	10/07	21:43:35	26.788	4902.6	74.89	54.36	68.09
	10/08	11:07:15					
59	10/09	00:31.06	26.795	4902.5	74.88	54.31	68.06
	10/09	13:54.59					
60	10/10	03:19:10	26.806	4902.6	74.87	54.27	67.99
	10/10	16:43:23					
61	10/11	06:07:31	26.805	49026	74.88	54.25	67.86
	10/11	19:31.42					
62	10/12	08:55:33	26.795	4902.4	74.89	54.21	67.80
	10/12	22:19:27					
63	10/13	11:43:06	26.789	4902.7	74.90	54.16	67.76
	10/14	01:06:48					
64	10/14	14:30:32	26.791	4903.0	74.90	54.12	67.73
	10/15	03.54:19					
65	10/15	17:18:15	26.798	4902.9	74.89	54.07	67.68
	10/16	06:42:13					
66	10/16	20:06:23	26.802	4902.7	$74 . \mathrm{K} 8$	54.03	67.60
	10/17	09:30:29					
67	10/17	22:54:31	26.801	4903.0	74.88	53.98	67.54
	10/18	12:18.35					
68	10/19	01:42:25	26.795	4903.4	74.89	53.94	67.48
	10/19	15:06:18					
69	10/20	(14:2s:56	26.788	4903.6	74.89	53.90	67.44
	10/20	17:53:37					
70	10/21	07:17:21	26.791	4903.5	74.89	53.85	67.41
	10/21	20:41:11					
71	10/22	10:05:16	26.803	4903.6	74.87	53.79	67.37
	10/22	23:29:24					
72	10/23	12:53:36	26.807	4903.8	74.87	53 75	67.29
	10/24	02:17:51					
73	10/24	15:41:48	26.799	4903.7	74.87	53.71	67.21
	10/25	05:05:48					
74	10/25	18:29:30	26.790	4903.8	74.88	53.67	67.17
	10/26	07:53:14					
75	10/26	21:16:55	26.790	4904.2	74.88	53.62	67.13
	10/27	10:40:39					
76	10/28	00:04:32	26.796	4904.3	74.87	53.58	67.09
	10/28	13:28:28					
77	10/29	02:52:29	26.801	4904.1	74.87	53.53	67.03
	10/29	16:16:33					
78	10/30	05:40:37	26.802	4904.3	74.86	53.48	66.97
	10/30	19:04:43					
79	10/31	08:28:39	26.797	4904.7	74.87	53.41	66.96
	10/31	21:52:36					
80	11/01	11:16:17	26.790	4905.1	74.87	53.36	66.91
	11/02	00:40:00					
81	11/02	14:03:40	26.789	49.5 .1	74.87	53.32	66.88
	11/03	03:27:22					
82	11/03	16:51:21	26.800	4905.2	74.86	53.27	66.83
	11/04	06:15:22					
83	11/04	19:39:35	26.808	4905.4	74.85	53.23	66.76
	11/05	09.03:51					
84	11/05	22:27:54	26.802	4905.4	74.86	53.18	66.69
	11/06	11:51:59					

Table 7 (contd)

Rev. No.	Apoapsis/Perlapsis GMT date and time, 1976		Pertod, h	RC'A. km	$\begin{aligned} & \text { INC (ML:(), } \\ & \text { deg } \end{aligned}$	$\begin{gathered} \text { LAN (MLQ). } \\ \text { det } \end{gathered}$	$\begin{gathered} \text { API (MLO) } \\ \text { deg } \end{gathered}$
85	11/07	01:15:44	26.792	4905.5	74.87	53.15	66.63
	11/07	14:39:32					
86	11/08	04:03:14	26.789	4905.7	74.86	53.14	66.49
	11/08	17:26:56					
87	11/09	06:50:45	26.794	4906.0	74.86	53.10	66.45
	11/09	20:14:36					
38	11/10	09:38:36	26.800	4906.2	74.85	53114	66.43
	11/10	23:02:38					
89	11/11	12:26:42	26.803	4906.2	74.85	52.99	66.36
	11/12	01:50.49					
90	11/12	15:14:47	26.799	4906.6	74.85	52.94	66.30
	11/13	04:38:48					
91	11/13	18:02:32	26.792	4907.1	74.86	52.90	66.25
	11/14	07:26:19					
92	11/14	20:49:57	26.788	4907.2	74.80	53.86	66.22
	11/15	10:13:37					
93	11/15	23:37:29	26.796	4907.3	74.85	52.82	66.18
	11/16	13:01:23					

Table 8. Mars orbit trim (MOT) maneuver execution times

Spacecraft	Maneuver	Innition	
		Date	$\begin{gathered} \text { Time } \\ \text { (GMT), } \\ 1976 \end{gathered}$
V-1	MOT 1	6/21	17:26
V-1	MOT 5	7/09	00:40
V-1	MOT 6	$7 / 14$	07:12
V-1	SKT $2^{\text {a }}$	8/03	03:00
V-2	MOT 1	8/09	17:16
V-2	MOT 2	8/14	08:31
V-2	MOT 3	8/25	17:48
V-2	MOT 4	8/27	20:26
V-1	MOT 7	9/11	19:04
V-1	MOT 8	9/20	22:15
V-1	MOT 9	9/24	15:10
V-2	MOT 5A	9/29	04:33
V-2	MOT 5	9/30	21:08

${ }^{2}$ This trim was for lander relay station keeping purposes and was labeled SKT for that reason.

$=N 80-21400$

Interplanetary Orbit Determination

K. H. Rourke, N. Jerath, C. H. Acton, W. G. Breckenridge, J. K. Campbell, C. S. Christensen, A. J. Donegan, H. M. Koble, N. A. Mottinger, G. C. Rinker, and F. B. Winn

I. Introduction

This chapter presents a general description of the Viking interplanetary orbit determination activity extending from launch to Mars encounter. The emphasis is on the technical fundamentals of the problem, basic strategies and data types used, quantitative results, and specitic conclusions derived from the inflight experience. Special attention is given to the use of the spacecraft-based optical measurements and their first application as a principal navigational data type for an interplanetary mission. The optical-based orbit determination in fact was the primary contributor to the exceptional inturplanetary navigation accuracy experienced by both Viking missions. The Viking application of optical orbit Jetermination relied in large part on the technology developed and demonstrated by the Mariner 9 Optical Navigation Demonstration (Refs. 1-3).

The contents of this chapter can be summarized as follows: Section II presents a brief description of Viking navigationrelated interplanetary events. Section III discusses the principles of the various orbit determination system elements. The description includes tine identification and quantification of
the major system errors. Section IV surveys the software system established for the orbit determination data processing. Section V discusses the orbit determination strategies emplo/ed for Viking, including strategy rationale developed using a simplified model of the spacecraft-based optical observables. Section VI describes the salient results of the launch, departure, and cruise orbit determination operations. Section VII describes the long-are radio data processing results. Section VIII describes the inflight solar pressure model improvement resulting from inflight analysis. Section IX describes the operational processes required to reduce raw spacecraft-based observations into data usable for orbit determination. Section X describes the collection of inflight approach orbit determination results and evaluates their accuracy with respect to precision post-flight reconstruction results. The complete set of interplanetary OD solutions are compiled and tabulated in Section XI. Section XII discusses the DSN station locations at some length and Section XIII contains an analysis of satellite ephemeris related issues. Section XIV concludes the article with some general statements drawn from the Viking inflight experience, with emphasis on conclusions that may assist orbit determination efforts on future interplanetary missions.

II. Mission Description

Table 1 and Fig. 1 depict the prime interplanetary o. ${ }^{\text {nht }}$ determmation related events that occurred during the Viking mussions. The cntical events for navigation and orbit determination are the execution of the spacecraft midcourse correction (M/C) and Mars orbit insertion (MOI) maneuvers. The departure corrections were required to remove expected launch vehicle errors. The appioach mideourse corrections were needed to remove errors in the departure corrections, in the trajectory prediction. and ir. general to ensure the required accuracy of the delivery of the Viking spacecraft to Mars. During the Viking 1 approach, two corrections were made before insertion instead of the normally expected single correction. The second correction, executed just 4 days before Mars encounter, was not necessary for navigational purposes, but was required to relieve propellant overpressurization caused by a valve malfunction onboard the Viking 1 spacecraft. Following the approach M/C, the interplanetary orbit determination activity was completed with the deli.ary of estimates supporting the computation of the Mars orbit insertion maneuver commands.

For each maneuver, the accuracy of the specific orbit estimate used to derive the maneuver commands directly affected the accuracy of the maneuver itself. For approach and orbit insertion maneuvers, the orbit determination accuracy largely determined the accuracy of the post-maneuver trajectory.

At the times indicated in Table 1, best orbit estimates wete required in support of maneuver calculations. At these points,

Table 1. Mission events

	Event	Viking 1	Viking 2
1. Launch	$8 / 20 / 75$	$9 / 9 / 75$	
2. Initial estimate	$\mathrm{L}+3 \mathrm{~h}$	$\mathrm{~L}+3 \mathrm{~h}$	
3. Final departure M/C estimate	$8 / 25 / 75$	$9 / 17 / 75$	
4. Departure M/C	$8 / 27 / 75$	$9 / 19 / 75$	
5. Orbiter instrument checkout	$10 / 13 / 75$	$10 / 9 / 75$	
6. Sran platform calibration I	$2 / 9 / 76$	$2 / 13 / 76$	
7. Solar pressure model update	$3 / 10 / 76$	$3 / 10 / 76$	
8. Scan platform calibration 2	$4 / 11 / 76$	$4 / 14 / 76$	
9. Navigation model finalization	$4 / 25 / 76$	$4 / 25 / 76$	
10. Start planetary operations	$5 / 10 / 76$	$1,29 / 76$	
11. Start optical navigation	$5 / 17 / 76$	$7 / 6 / 76$	
12. Final approach M/C-1 estimate	$6 / 6 / 76$	$7 / 25 / 76$	
13. Approach M/C-1	$6 / 10 / 76$	$7 / 28 / 76$	
14. Final approach M/C-2 estinate	$6 / 14 / 76$		
15. Approach M/C-2	$6 / 15 / 76$		
16. Preliminary MOI estimate	$6 / 17 / 76$	$7 / 31 / 76$	
17. Final MOI estimate	$6 / 18 / 76$	$3 / 6 / 76$	
18. MOI	$6 / 19 / 76$	$8 / 7 / 76$	

Fig. 1. Mission events
the available navigation observations (radio tracking data from the Deep Space Network and onboard optical observations from the spacecraft) were incorporated into best estimates. The best estimates were passed by the interplanetary Orbit Determination Team to other elements of the Viking Flight Path Analysis Group for the maneuver analysis and the ultimate generation of spacecraft executable commands.

Table 1 also lists events aiding the direct navigation support, including navigation model refinement and the spacecraft instrument checkout and scan calibration activity. The instrument checkout and scan calibration activity were crucial to the preparation for obtaining the spacecraft-based optical measurements.

III. Orbit Determination System Fundamentals

The orbit determination system used for Viking has as inputs ground-based radio metric and spacecraft-based optical ohseivations. These input data are then "fit" in a !east-squares sense to obtain a "solution" of the spacecraft state (position and velocity) at a reference epoch. This "solved for" state is numerically integrated to obtain an estimated spacecraft trajectory.

The orbit determination process requires three sets of models: trajectory model: determine the spacecraft trajectory in an inertial coordinate system; observation models relate the
observations to the spacecraft trajectory; filter models determine how the observations are fit to obtain the solution.

A. Trajectory Models

The equations of motion of a spacecraft in the solar system are given by

$$
\mathbf{r}(t)=f[\mathbf{r}(t), t]
$$

where r is the position vector and t is time. The terms in the acceleration function f include gravitational forces of the sun. the planets, and their satellites. The parameters in this model are the masses of the respective celestial bodies and their positions relative to the spacecraft at any given time. Their positions are obtained by planetary ephemeris interpolation.

There are also nongravitational accelerations. Solar pressure is the major such acceleration and depends on the spacecraft mass, size, and orientation, as well as on reflectivities of various spacecraft components and the orientation and distance of the spacecraft with respect to the Sun. There can also be uncontrolled outgassing, e.g., attitude control leaks. In the case of Viking, venting of air and water vapor from the lander parachute and bioshield insulation was also a significant effect. The third type of spacecraft acceleration is caused by the engine firing when a maneuver is performed.

8. Observation Models

For each observable obtained, a computed observable is calculated, based on the current nominal spacecraft trajectory. The two are differenced to form a "residual." The vector of residuals forms the right-hand side of the data equation that the filter uses. The length of this vector is minimized in a least-squares sense when a solution is formed. Following is a brief summary of how the observables are computed.

C. Radio Data Models

There were two types of radio metric data used in orbit determination for Viking. Doppler is a measure of the diffurence in frequency of the carrier signal received from the spacecraft compared to that transmitted. The observable is an average of this difference over some sample time T. It can be expressed in terms of range rate or differenced range between the spacecraft and station as:

$$
\begin{aligned}
f(t) & =\frac{i_{0}}{T} \int_{t-T / 2}^{t+T / 2} \frac{\rho(\tau)}{c} d \tau \\
& =\frac{f_{V}}{T}\left[\frac{\rho(t+T / 2)-\rho(t-T / 2)}{c}\right]
\end{aligned}
$$

where ρ is the range, f_{0} is the transmitted frequency, and c is the speed of light.

Kange is given by the round-trip transmit time of a signal from the station to the spacecraft and return. Thus:

$$
\begin{aligned}
\rho\left(t_{\text {recefive }}\right)= & t_{\text {receive }}-t_{\text {transmit }} \\
= & \frac{\left|\mathrm{r}\left(t_{r}\right)-\mathrm{r}\left(t_{s_{i} C}\right)\right|}{c} \\
& +\frac{\left|\mathrm{r}\left(t_{s / C}\right)-\mathrm{r}\left(t_{t}\right)\right|}{c} \\
& + \text { relativity corrections, }
\end{aligned}
$$

where $r\left(t_{t}\right)+r\left(t_{r}\right)$ are position vectors of the station at transmit and receive times, and $\mathbf{r}\left({ }_{s_{S / C}}\right)$ is the position of the spacecraft at the time the signal is received there and retransmitted toward Earth. To obtain these vectors requires an ephemeris interpolation to find the position of Earth, knowledge of the station location, and knowledge of UT and polar motion (Earth rotation rate changes and Earth wobble). See Ref. 4 for a detailed discussion of radio observational models.

Radio metric data is affected in two ways by the media through which the radio waves pass. First, the Earth's troposphere slows the velocity of a signal passing through it, which is especially imporiant at low elevations where the signal path through the atmosphere is comparatively long. All radio metric data are corrected for tropospheric effects with a seasonal model that is a function of the spacecraft elevation angle.

Second, there are charged particles both in the Earti's ionosphere and in clouds of space plasma streaming outward from the Sun. A modulation on a carrier signal (for example, the modulation used for the range measurement) is slowed by an amount proportional to the total number of electrons encountered along the propagation path. An approximation for "his "group velocity" is

$$
V_{z}=c\left(1-1 / 2 K \frac{N}{f^{2}}\right)
$$

where c is the speed of light, N is the electron density, f is the carrier frequency, and K is a constant. The amall velocity decrease, due to plasma, increases the transmit time as seen in the range observable by an amount

$$
\Delta t=1 / 2 \frac{K}{f^{2}}\left(\int_{\text {station }\left(t_{l}\right)}^{s / C} N d l+\int_{S / C}^{s t a t i o n}\left(t_{r}\right) N d l\right)
$$

The phase velocity, which determines the doppler observable, is similarly influenced by plasma. The phase velocity is increased, however: i.e.,

$$
V_{p}=c\left(1+1 / 2 K \frac{N}{f^{2}}\right)
$$

The total phase change is the integral of V_{p} along the propagation path

$$
\phi=\int_{1} V_{p} d t=c\left(1+1 / 2 \frac{K}{f^{2}} \int_{1} N d t\right)
$$

The net change in electron content along a propagation path can be determined by differencing integrated doppler from relative range. This procedure takes advantage of the opposite, but equal, influences the plasma has on group and phase velocities. This difference is called DRVID (for Differenced Range Versus Integrated Doppler) and was used th correct $t^{\prime} \cdot$ doppler data in some of the solutions discussed in Section X.

The range observables must be w.dibrated for the transit time of the range signal within the ground station and within the spacecraft. This calibration is n:easured and computed for each pass of data.

D. Optical Data Models

The optical observables used in Viking orbit determination are a "line" number and "pixel" number of the eptical center of an image of either Mars or Deimos. The line and pixel numbers give the location on the TV raster formed by one of the vidicon cameras onboard the spacecraft. These observables along with the camers pointing direction give an angular measurement between either Mars or Deimos and n fixed inertial direction.

A camera optical model iclates the electromagnetic image to the theoretical physical image. A camera alignment model, attitude control telemetry, and star images are used to determine camera pointing direction. The Mars limb insdel defines the line and pixel of the planet center given an image of a disc or partial disc. The Mars and satellite ephemerides are needed, along with the spacecraft ephemeris, to give the inertial direction needed for the computed observable.

Table 2 describes the process used to transform an inertial vector from the spacecraft to an object into line and pixel numbers. The optical measurements syst in and the end-toend processing of the measurements are descrabed in detail in Section IX.

E. Filter Models

The filter used in the Viking Orbit Deternination Program (ODP) is a minimum variance filter. It is formulated as a "Square Root Information Filter" (Ref. 5). It can be operated in two modes: a hatch or weighted least-squares mode where all data are used together for a solution, and a sequential mode where the time span of data is divided into smaller batches. In the sequential mode, there are stochastic parameters whose values change from barch to batch, but are statistically correlated. Details on the application of estmation techniques to orbit determination are given in Refs. 6 and 7.

In obtaining a solution, a list of parameters to be estimated and a list of parameters to be "considered" are chosen. The estimate list includes the spacecraft state (position and velocity at some epoch) and possibly parameters from the trajectory and/or data models (e.g., solar pressure parameters. station locations, and Mars mass or ephemeris). "Consider" parameters are not solved for in the solution, but are parameters whose uncertainty increases the uncertainty (covariance) of the solution.

Teble 2. Optical obeervabies

$$
\begin{aligned}
\bar{Q} & =\bar{q}_{0}+[K] \cdot\left\{\bar{d}+|F| \bar{y}_{c}\right\} \\
\bar{v}_{c} & =|C| *|P| *|A| *|R| * \bar{\nu}_{1}
\end{aligned}
$$

$\overline{\mathrm{Q}}=$ umage location (line and pixel;
$\bar{\Sigma}_{1}$. $=$ location of Visual lmaking System (VIS) line of sight (line and pixe!)
$K=$ VIS scan raster transformation, linear part (line and pixel/ millimeter)
$\overline{\mathrm{d}}=$ nonlinear distortion err: a function of amage position. $f D_{c}(\mathrm{~mm})$
F. = optics model, transforms from ν_{c} to image position (mm)
$\bar{\nu}_{c}=$ unit vector to object in camera coordinates
C = transtormation for camera alignment w. i scan platform
P = transformation. scan platform wrt spacecrat body coordinates, includes gim bal angles
A = transformation for attitude control riotion of spacecraft body wit spacer raft nominal orientation
R = transformation isom inertial/reference coordinates to spacecraft nominal orientation
$\bar{v}_{\mathbf{1}}=$ unit vector to object in inertial/reference coordinates

The a priori statistics of toth the estimated and consider parameters must be choser. The observation set to be included in the solution along with the observation weights must be selected. If the sequentidi fiter mode is used. the batch sires. the correlation time. the set of stochastic parameters, and the a moni statustics also must be chosen.

F. Orbit Determination Process

Figure 2 illustrates the orbit determmation process by describing the data flow between the three sets of models discussed. It is divided into four horizontal sections. Section I
consists of mputs: Secton II, data preparation: Sectoon III, the mainline processing: and Section IV is a list of decisoms made by the orbit determination dalyst.

This process was mplemented for Vikin by the orbit determination software system described in Section IN. The major elements of this system, which actually consist of subsystems of separate UNIV/iC 108 computer programs, are the Orbit Determination Program (ODP), the Optical Navigation Program (ONP), and the Optical Measurements Set (OMSIT).

Fig. 2 Ortin deremminotion preeses

G. Critical Orbit Determination Inputs

The urbit determanation process requires, in addation to the observathom data descrif a prevous!y, mput values for numerous tundamental constans and parameiers required by the trajectory and observation models. The most critical of these mptes, those most strongly aff cing :he orbit determation output are summaried below, along with then wrespondme external sources.
(1) Planetary ephemers suppled by the JPI planetary ephemerss development progerm.
(2) Jraching station lacatoms supplad by the arasA Office of Tracking and Data Aequsiton.
(3) Spacecraft a puore solar presure coetfienth supphed by Vihng spacecraft engmeentip persomed.
(4) Demos satelite ephemers supphed by researcin supported by the Mariner 9 Optacal Navgation DemonstraLom (Ref 8).
(5) Timne, polar motion, and transmssion medad what thon supplied by the taching system analytic calibratom element of the JPL. Operatoons Support Oifice.

Accurecy valies for these data and the assomated eflects on orbat determmation are descrbed in the following whecetion.

H. Orbit Determination Errors

The error in an orbit estimate results from an accumulation of a laige number of identified error sources. Each error influences the estimation accuracy to a different extent depending on the mission phase, observation set, and estinaation process. Although a large comprehensive error model was used during flight for error analysis, relatively few errurs are really significant in their ultimate influence on orbit determination accuracy. These errors are listed n Table 3. Each major error is identified, its one-sigma level is given, and the corresponding orbit determination error is indicated. Two error levels have been indicated for the optical observations. The larger is the conservative value adopted before flight to aiow for some performance variations in the optical measurements system. The smaller values are consistent with the values observed during flight.

IV. Orbit Determination Software System

The basic functions of the orbit determination process are described in this section in terms of their .mplementation in the Viking orbit determination software system including the ODP, OMSET, and ONP. These programs are actually systems of subprograms or links dhit perform individual orbit determination functions, e.g., frajectory integration, solution genera-
tion, and tracking data plotting and printing. These links generally communicate by UNIVAC 1108 mass storage files.

The primary task of the software system was to generate trajectory estimates based ci radio data and optical data. The four types of solutions generated were radio solutions, optical solutions, radio plus optical solutions, and optical plus radio a priori solutions. The software interfaces used in generating these solutions are shown in Fig. 3. A detailed summary of the software inputs and outputs is given in Tables 4 and 5. For definitions of the programs and intermediate data files see Table 6.

For the ODP and the ONP, the large number of intermediate data files and solution files were systematically and efficiently stored on and retrieved from magnetic tape by the "FARMER," an autcmated file management system. Mass storage data files remaned on the computer system for approximately 24 h betore they were transferred to magnetic tape. For the ODP, the solution information was automatically extracted from the Salient Information File and stored in a data base at the time of transfer.

The operation of the orbit determination software system was typically controlled ty the use of computer demand terminals. During the enzounter phases, at least three com-

Table 3. Orblt determination system error model

Fig. 3. Orbit determination software interfaces
puter demand terminals were used on the UNIVAC 1108 to operate the ODP. OMSET, and the ONP concurrently. A typical operat $-n$ sequence for the encounter phase is given in Table 7.

V. Orbit Determination Strategy

A. Redio and Optical Orblt Determination

The Viking mission was designed requiring only radio orbit determination. The Project requirements on interplanetary orbit determination reflect this as shown in Table 8. Requirements on B-plane accuracy are given for the midcourse maneuvers at Earth departure, Mars approach, and for the Mars orbit insertion maneuver. The aqquirements are based on

Table 4. OD software Inputs

	ODP	OMSLT	ONP
Planetary ephemeris file	E	E	E
PV file	1	I	I
Card images of user optional inputs	I	I	I
Program control card file	1	1	I
Optical regres file	1		I
Lock files of nomınal values	1		
Planetary ephemeris partials file	E		E
Radio data file	E		
Radio regres file	1		
Star catalog file		E	E
Pointing related engineering telemetry		F	
Optical data file		E	
Picture data hardcopy		E	
Satellite ephemens parameters		I	
P: ture sequence file containing geometry data		I	
Optical working file of neminal values			1
Edited optical data file			I
Radıo covariance file			1

the need to ensure that the Viking prelanding Mars orbits were acquired with sufficient accuracy within specific propellant allotments. The table includes associated radio accuracies assuming the nominal Viking error model (Table 3). In each case, the major error affecting the capability at that time is identified. The accuracies and capabilities are shown in Fig. 4. The radio capaidities satisfy the requirements on a 99% basis.

In 1972, following the successful engineering demonstration of spacecraft-based optical navigation by Mariner 9, Viking adopted optical navigation as a backup to enhance navigation reliability. This was not done because of specific concern over radio orbit determination, a function which had performed without difficulty in previous interplanetary flights. Instead, optical orbit determination was adopted as a relatively inexpensive means for complementing radio orbit determination which, for Viking, would be operating under demanding circumstances, including stringent navigation requirements vs a rather unfavorable radio navigation geometry. Furthermore, it was recognized that the optical capability provided the oppor'‘ ity to greatly improve navigational accuracy. This improvement would provide the attendant benefits of simpli-

Table 5. OD software outputs

	OHP	OMSI T	ONP
User selected files of interinediate calculations	X	X	X
Radio regres file	X		
PV file	X		
Radio solution, covarance and revdual, hard opy	X		
Radio covariance file	x		
Plots of image geometry		X	X
Updated optical observation model		X	
Processed optical data file		X	
Line and pivel residuals		X	X
Updated satelite ephemeris parameters			X
Picture sequence file			X
Optical regres file			X
Optical solution, covantance and residuals hardcopy			X

Note: Residuals and solutions were often summarized as plots

Table 6. 00 software glossary

Farmer	A system of programs used for automatically cataloging, storing, and retrieving mass storage files on magnetic tape
ODP	Orbit determination program Processes radio metric observations and ONP-processed optical observations to generate radio-based and radio-plus-optical orbit estimates
OMSET	Optical measurements set Processes raw optical observation data to generate processed optical observables
ONP	Optical navigation program Processes optical observables to generate optical-based orbit estimates Contains probe cphemeris plus variational paitials as sum and difference arrays
Radio covariance file	Contains radio covariance and state vector used as a priori by the ONP for optical- based solutions
Regres file	Contains computed observables, residuals, and data partials
Salient information file	Contains a record of the major computa- tions made by each ODP link during a run

Generate rado solution
Generate PV file for OIPP, OMSFT, and ONP
Get rado data and calabrations
Generde rado regres wath ODP
Analyze rado data renduals
lterate PV/regres it necessary
Generate radio wolution with ODP
Deliver radio covarlance file to ONP
Generate multiple rado solutions
Process optical data
Get $P V$ tile from ODP
Get opticai data and hardcopy
Do video image extraction
Do image center findine
Do pointene error calibration Analyze optical data residuals Deliver OMSFT data file to ONP
Gererate optical solutions
Get PV file from ODP
Get processed optical observatuons from OMSI T
Generate optical regres with ONP
Deliver optical regres to ODP
Generate optical solution with ONP
Analyze optical data residuak
Get radio covariance file from ODP
Generate multuple optucal solutions
Generate radio plus optical solutions
Get PV file from ODP
Get radio regres from ODP
Get optical regres from ONP
Generate radio plus optical solution with ODP
Generate new PV file, deliver best estumate
Evaluate above solutions aganst short- and long-are solutions Select best solution
Generate new PV file with ODP
Deliver new PV file to all users

Note: Multiple solutions are generated by varying the data set. parameter list or weights, or filter options

Table 8. Mission requirements and radio capability

Parameter	Planned target			Requarment			Radus capabilty			${ }^{3} 1$.	Major error
	B, hm	θ, deg	TCA	$1 \mathrm{LB} 1, \mathrm{~km}$	$\|\Delta \theta\|$ deg	\|TCAI.,	SMAA, km	SMIA, km	$\theta_{\text {SMAA }}$ deg		
Viking 1											
Departure M/C	9.737	47	16:24.45	5,000	Criculd	900	1.200	3011	129	260	Soldar radataon pressure mode!
Approach M/C				700	5	900	250	61	77	55	I SLI
MOI				500	3	15	145	10	711	5	I SLI
Vikıng 2											
Departure M/C	11.959	15	11:51:41	5,000	Circular	900	1.500	300	160	240	Solar radiataon pressure model
Approach M/C	9,421*	-13.6*	11:51:41*	500	7	909	485	40	95	21.5	FSİF
MOI				350	5	15	250	5	91	5	ESLI

*Planned target at time of Departure M/C. I'inal target was modified slightly on approach.

Fig. 4a. Mission requirsments and radio capability: departure

URIGINAL PAGE IS OF POOR QUALITY

Fig. 4b. Mission requiremente am' radio capability: approach
fied mission operations and increased fuel reserves, which ultimately enhance science return.

The detailed mechanics of the Viking optical observa. .s are given in Section III. The specific geometric configuration of the optical observations during .pproach is shown in Fig. 5. The standard conceptualization of the optical observable is given by

$$
\phi=\frac{X}{R}
$$

(see Fig. 6). The angle measurement ϕ applies to either the line or pixel effective angle observation. The position measurement X is the corresponding B-plane displacement. For Viking, the line and pixel B-plane displacement correspondence is, to a fair degree of accuracy, represented by

Line: $-B \cdot T$
Pixel: $\quad B \cdot R$
(see Fig. 5). An extension of the optical model proved very helpful:

$$
\phi=\frac{X-\dot{X} T}{\dot{R} T}=\left(\frac{X}{\dot{R}}\right) \frac{1}{T}-\frac{\dot{X}}{\dot{R}}
$$

where $T=$ time to go. For an approaching spacecraft, $\dot{R}=V_{\infty}$. the planet-centered hyperbolic excess velocity.

This extension describes the way spacecraft normal velocity and B-plane displacement intluence the observation. The velocity produres a bias, while the B-plane displacement produces a $1 / T$ signature. If observations are taken at two times, T_{1} and T_{2}, X and \dot{X} are determined unambiguously. The expression for the accuracy in "estimating" X is given by

$$
\sigma_{X}=\sigma_{\phi} V_{\infty} T_{2}\left(\frac{\sqrt{2}}{1-\frac{T_{2}}{T_{1}}}\right)
$$

S: : Fig. 7 and observe the importance of increasing observation arc length $\left(\Delta T=T_{1}-T_{2}\right)$.

This illustrates the important fact that the optical observable permits separation of the trajectory displacement from eithei optical bias or velocity errors, provided that observations are obtained over a sufficiently long data arc. For this reason, long optical data arcs were planned for Mars approach.

This did in fact allow orbit estimates based on only the optical data. As indicated in Section X, the "optical-only" estimates generally agreed well with the radio only and the radio plus optical estimates. The agreement between the basically independent means for determining the approach orbit greatly enhanced the confidence placed in the final orbit determination results.

B. Approach Observation Schedules

Figure 8 displays the approach observation schedules planned and executed for the Viking 1 and Viking 2 missions. Each schedule covers the 40 -day period before each encounter (termed the "planetary operations phase," during which the most intense preorbit insertion preparations took place).

Duing this time, the Earth-based doppler and range tracking coverage was virtually continuous. The optical observations included the star-Mars-star triads and star-Deimos single frames discussed in Section IX. A total of 35 triad observations was scheduled for each Viking delivery. The observations were concentrated at the end points of the 20 -day arc preceding the "final" ($E-10$ day) M/C. That distribution was optimal with respect to the strength of the observations. The Viking 2 schedule included a data set midway between the endpoints to permit a preliminary optical-only determination. The number of observations was considerably larger than necessary for accuracy. The redundancy was included to allow for the possibility of lost observations and to provide sufficient data for residuals analysis.

Following the approach midcourse maneuvers, additional triads were planned to sllow rapid orbit redetermination capability as well as a means for postmaneuver camera pointing validation. After the final triads, the sequence of Deimos-star observations was scheduled to support orbit insertion. These observations were carefully planned to provide good coverage of the satellite orbital motion, permiting separation of satellite ephemeris errors from spacecraft trajectory errors in the estimation process.

C. Orbit Estimation Strategies

There exists a large degree of flexibility in obtaining interplanetary orbit estimates, and the process of arriving at a final best estimate supporting a critical midcourse maneuver is by no means straightforward. The procedure generally consists of obtaining a large variety of solutions based on varying treatments of the available data sets. A summary of the more important data treatments is presented in Table 9. A performance analysis of some of these treatments is given in Section X. During flight, thorough analysis of these results then identifies, and hopefully resolves, any problems with particular

TWO-CAMERA FIELD OF VIEW

Fig. 5. Optical obeervations

Fig. 6. Optical obeervable

Fig. 7. Optical accuracy

Fig. 8. Optical observation schedules

Table 9. Data traatment

Observation eets
Short are rado (21 day)
Doppler plus range
Doppler only
Rarge onlyDoppic plus range with DRVID calibratams
Doppler plus range
Range only
Radio plus optical Optical
Sequental filter
Weighted least squares
Solution vector
S/C (state)
State, solar pressure (SP)
State, Deep Space Station (I)SS) locations
State, SP, DSS
State, range base
Dais weighting
$1-\mathrm{mm} / \mathrm{s}$ doppler, 1 pixel optical (nominal)
$3-\mathrm{mm} / \mathrm{s}$ doppler, 0.5 pisel optical (account for charged particle corrupted doppler, good optical measurements. performance)
Radio and optical data combination
Direct radio plus optical
Radio consider covariance and estumate plus optical

Observation vets
oft are rado (21 days)

Doppler only
Karge only
Doppie plus range with DRVID calibratzons
Doppler plus range
Range only

Optical
bit determunation filter
Weighted least squares ution vector

State, solar pressure (SP)
State, Deep Space Station (DSS) locations
State, SP, DSS
State, range base
aia weighting
$1-\mathrm{mm} / \mathrm{s}$ doppler, 1 pixel optical (nominal) corrupted doppler, good optical measurements. performance)
adio and optical data combination
Radio consider covariance and estumate plus opucal
data sets and ultimately leads to the selection of the final best estimate.

Special consideration was given to the particular character of the radio and optical orbit estimate accuracies. Generally, the radio estimates proved to be very accurate in $B \cdot T(\sim 10-\mathrm{km}$ errors) and relatively inaccurate in $B \cdot R(\sim 200 \cdot$ to $400-\mathrm{km}$ errors). The optical-only errors were equally distributed in $B \cdot T$ and $B \cdot R$ and generally much more accurate than the radio solutions in $B \cdot R$. The optical solutions were very inaccurate in TCA, however. These factors provided the following set of criteria that proved very successful in obtaining accurate and reliable final estimates:
(1) Final $B \cdot R$ is consistent with the optical-only $B \cdot R$.
(2) Final $B \cdot T$ is consistent with the radio $B \cdot T$.
(3) Final TCA, accounting for the radio correspondence of $B \cdot R$ and TCA variations, should agree with the radio TCA.

This is not to suggest that the final estimates were constructed ad hoc, or by hand. Instead, data weighting and filtering specifications were modified, usually slightly, to produce radio plus optical solutions that satisfied the above criteria.

VI. Orbit Determination Results

A. Launch/Earth Departure Phase

The launch/Earth departure phase of the mission extented from launch to the first trajectory correction maneu"is, which were made 7 days and 10 days after launch, on Viking 1 and 2, respectively. The purpose of the maneuvers was to remove the nominal planetary quarantine bias and the launch erior.

Viking 1 was launched on August 20, 1975. with TransMars Injection (TMI) occurring at 21:52:48 (;MT. Viking 2 was latanched on September 9, 1975, with TMI occurring at 19:12:28 GMT. Figures 9 and 10 show for each spacecraft the Mars B-plane with the injection aim points and the launch (or injection) dispersion ellipses. The sequence is also shown of orbit determination solutions from 1 hour past up to several days past TMI. These solutions are summarized in Table 10 for both spacecraft along with the one-sigma uncertainties mapped to the Mars B-plane. Note that during the first feu hours past injection, angle data (ground tracking antenna hour angle and declination) were used. As the spacecraft-station range increases, the angle data are no longer useful and were not used again.

The major error source contributing to the uncertainties shown in Table 8 is nongravitational acceleration uncertainty, in the form of solar pressure uncertainty. It is not possible to estimate solar pressure effects in the early launch/Earth departure phase because the inverse distance squared signature of a solar pressure acceleration error cannot be distinguished from a possible constant gas leak. Thus, a high reliance must be placed on the nominal solar pressure model. The first few estimates also have a significant uncertainty due to the uncertainty in the assumed Earth gravitational constant. Finally, as the spacecraft-station distance increases, the sensitivity of orbit estimates to station location errors tends to increase.

B. Cruise Phase

This portion of the interplanetary flight followed the departure correction maneuver, and terminated at start of planetary operations, 40 days before actual encounter. The basic activities during this phase are the provision of:
(1) Ongoing updates and assessments of the spacecraft orbits for the primary purpose of predicting tracking antenna pointing and transmitter frequency.
(2) Best-estimate trajectories to support planning and calculations for the Mars approach maneuvers following.
(3) Evaluation of the overall accuracy level of the orbit determination system.

Fig. 10. Viking 2 launch phase solutions

Fig. 9. Viking 1 launch phase solutions

Tabie jo. Launch departure solutions

Data span, from injection	DSS	Data	B $\cdot \mathrm{R}, \mathrm{km}$	B $\cdot \mathrm{T}, \mathrm{km}$	TCA	SMAA, km	SMIA, km	6, deg	${ }^{\text {a }}$
		6/20/76							
Vikin's 1 nominal			-210,270	162.760	17:07				
1 h	42	Doppler, angle	-240,500	L05,960	20:55	28,270	4,710	127	$4^{\text {h }} 578 \mathrm{~m}$
3.5 h	42, 44	Doppler, angle	-272,040	157,930	22:50	14,100	515	121	$1^{\text {h }} 5^{\mathrm{m}}$
6 h	42, 61	Doppler	-277,470	164,500	23:19	9,180	420	125	39^{m}
9 h	42, 61	Doppler, range	-275,740	163,360	23:12	1.610	260	130	7 m
6 days	43, 61, 11	Doppler, range	-277,200	164.500	23:19	$1,137^{\text {a }}$	$250^{\text {a }}$	135^{2}	5^{m}
Viking 2 nominal		8/9							
1.6 h	42	Doppler, angle	-299,550	555,650	09:25	22,370	1,680	155	58^{m}
7.3 h	42,61	Doppler	-311,600	602,400	10:23	44,020	350	153	$2^{\text {h }} 2^{m}$
9.6 h	42, 61	Doppler, range	-301,560	581,580	م.18	1,670	275	161	4^{m}
5 days	$\begin{aligned} & 11,12,42,43 . \\ & 61,63 \end{aligned}$	Doppler, range	-301,810	581,900	6y: 20	1,65C ${ }^{\text {a }}$	$290^{\text {a }}$	iv3 ${ }^{\text {a }}$	$3.3{ }^{\text {m }}$
10 days	11, 12, 42, 61, 63	Doppler, range	-301,870	582,110	09:21	2,290 ${ }^{\text {a }}$	$335^{\text {a }}$	$158{ }^{\text {a }}$	$5.8{ }^{\text {m }}$

${ }^{\text {a }}$ Station location uncertainties added to error model.
${ }^{\text {b }}$ TCA date is $8 / 8$ for this entry only

One of the tasks to be accomplished during cruise was to determine the nongravitational force environment of the spacecraft. Specifically, it was necessary to determine to an accurate level the solar pressure model for the spacecraft and simultaneously monitor the tracking data for any indication of a large attitude control gas leak or other acceleration anomaly. A large solar pressure modeling error of 5% will accumulate approximately 1000 km in position error by Mars encounter time. The goal was to increase the accuracy to perhaps 2% by the inflight processing of tracking data. For the Mars mission, months of tracking data were required to achieve this levei of solar pressure model accuracy.

Typically, item 1 was satisfied on a weekly basis by processing a "short" data arc, which included the previous 3 weeks of two-way doppler and range data. The term "long arc" was applied to data spanning the entire cruise phase. Each arc length shows different characteristic sensitivity to possible error sources; treating the two data arcs separately provides a good measure of the overall orbit determination performance. Figures 11 and 12 show a partial history of short-are solutions mapped to Mars for each spacecraft. A description of the long-arc processing follows in the next section.

VII. Long-Arc Radio Data Processing

This section presents a special description of the inflight and postflight processing of the Viking 1 and 2 radio data arcs spanning the entire interplanetary cruise. In summary, the orbit estimates using the long radio data arce did not behave as well as expected on Viking 1 . The Viking 1 B-plane estimate was in error by nearly two sigma, even allowing for tie later application of ionosphere corrections to the tracking data. The Viking 2 estimate was quite accurate, however, owing to modifications to the long-arc strategy determined from analysis of the Viking 1 long arc post Viking 1 encounter.

A. Infilght Processing

The long-arc data processing was performed every 3 to 4 weeks and generally followed the outline of the short-arc processing activity. These data sets generally included all data ($20-\mathrm{min}$ doppler samples, 3 or 4 range points per pass) collected to date, from the near-Earth midcourse on but prior to any approach midcourse burns.

It had been expected that the processing of the long-arc data would produce stable and accurate radio-only trajectory estimates throughout the cruise phase and help verify the orbit solutions based on early approach optical data. The long data arcs provide more of a heliocentric trajectory determination, and as such are less sensitive to equivalent station location error (ESLE in Table 8) effects than the short arc counter-

Fig. 11. Viking 1 cruise solutions
parts. Also, long arcs contain the slowly varying $1 / R^{2}$ solar pressure acceleration signature, and can thus be most effectively used to evaluate the nominal solar pressure model. This last aspect is discussed further in Section VIII.

The actual inflight results from the long are radio processing were mixed. The last few long-arc estimates were uniformly accurate in ecliptic $B \cdot T$ as was to be expected (see Section V) but not in $B \cdot R$ (see Fig. 13). The real-time solutions from the Viking 1 long arc data were in error by several hundred kilometers at the time of the approach maneuver. Figures 13 and 14 summarize the history of long arc solutions for each mission. Note that the final Viking 1 inflight estimate (point E in Fig. 13) was in error by $\mathbf{- 2 5 0} \mathrm{km}$ in $B \cdot R$ relative to the delivered "best" estimate obtained from short-arc radio and optical combined processing. This error constituted more than a " 2.5 sipma" bias. See Section X for further discussion of the approach orbit determination results.

Based on analysis of the Viking 1 long-arc solutions following Viking 1 MOI , the Viking 2 long-arc solutions were improved by implementing the following strategies:
(1) Adding Faraday calibrations for Earth ionospheric charged-particle effects (solution F of Fig. 14). This resulted in the removal of a $90-100 \mathrm{~km}$ bias in $B \cdot R$.
(2) Introducing a constant nongravitational acceleration to absorb unmodeled error effects, and subsequently

Fig. 12. Viking 2 crulse eolutions

Fig. 13. Viking 1 long-are solutions

Fig. 14. Viking 2 long-were colutions
converging the long arc trajectory using a sequential filter fit (solution G of Fig. 14).

In contrast to Viking 1, the resulting Viking 2 long-are estimates were much improved, and in fact strongly supported the final best approach estimate. The sequrntial filter, stateonly fit of the long data are to the final data set 10 days from encounter was nearly coincident with the delivered short radio are plus optical result.

B. Postflight Processing

As mentioned above, the eccuracy of the mflight Viking 1 long-arc orbit determination was less than that expected initially, as measured against the near-Mars short-are radio-plus-optical data solutions. Good solutions of $B \cdot T$ and TCA were obtained; however, the $3 \cdot R$ solution, as mentioned earlier, was in error-by approximately 250 km . The following remarks summarize the efforts made to rectify the Viking 1 long arc solution.

The dynamical environment for the interplanetary cruise is considered to bc favorable for obtaining good radiometricbased heliocentric orbit determination. Between the Earth departure maneuver and the Mars-approach maneuvers, t'se spacecraft iranslational motion resulting from gravitationsl and solar pressure accelerations could be modeled in a straightforward fashion. The contribution to the translational dynamics from the attitude control system vas minimal, owing to the use of coupled attitude thrusters. One notable but minor exception was the venting of atmospheric pressure from the lander during the Earth departure phase and later venting during planned checkout tests. (The events are discussed in more detail in the material to follow.)

Thus it was felt that with some further attention to detailed postflight processing, the long-are solution could be made compatible with the very accurate near-Mars radio-plus-optical solution. Such a solution was finally obtained by accounting for the following phenomena:

1. The orbit solution was referenced to the improved planetary ephemeris DE.96. This ephemeris was available ior use during real-time flight operations and was evaluated at that time using shoat data arcs. To accomplish the postflight reprocessing in a reatonable fashion, the doppler data was compressed to 2 h samples, from the $20-\mathrm{min}$ inflight sample rate. A station location set compatible with DE-96 was obtained, and the trajectory recomputed based on DE-96. The first entry of Table 11 shows a change of +59 km in $B \cdot R$ and -9 km in $B \cdot T$ for the switch from ephemeris DE-84 to DE-96.
2. Two spacecraft outgassing events were identified from plots of the doppler and rarge residuals based on inflight
solutions. These events were verified postflight by the Viking spacecraft team, and the effective velocity increments resulting were accounted for. Igure 15 shows the nommal doppler residuals from the inflight data. Note the slight initial slope in the plot. indicating a somewhat cone ant, unmodel id spacecraft acceleration. Also note on the plot reference to the two jumps in the residuals. which occurred on 10/30/75 and $11_{i}: 3 / 75$. These jumps were traced postflight by the spacecraft operations team and were attributed to two planned events. The first jump, on 10/30/75, was attributed to a quich venting of atmospheric pressure from the GCMS instrument in an unknown direction. The second jump was due to venting of propellant pressure from the lander, also in an unknown direction as part of a planned lander checkout sequence. The two jumps are seen to have a fairly small magnitude, on the order of 5 mliz along the Earth line-of-sight direction, or about $0.3 \mathrm{~mm} / \mathrm{s}$, and thus, even if ignored, have only a small effect on the solution. Two impulsive velocity increments were introduced to account for the jumps, and as shown in the second entry of Table 11, the Mars B-plane coordinates changed by only -7 km and -13 km in $B \cdot R$ and $B \cdot T$ respectively. Figure 16 shows the final doppler residuals after including the effective velocity impulses. As a matter of interest, these same events also occurred for Viking 2, but in the opposite sequence. Figure 17 shows the lander checkout occurring on $11 / 21 / 75$, when propellant was vented, and the GCMS venting occurring on 11/25/75. The larger slope in the initial doppler residuals in the figure is due to the lander bioshield venting, which was documented inflight. It was

Table 11. B-plane suminary of Viking 1 postinight long-are data processing

			B \cdot R	B - T
Final inflight solution (long-arc)			5.520 km	7,300 km
Postflight long-are improvements			$\Delta B \cdot R$	$\Delta B \cdot T$
1. Orbil referenced to improved ephemeris DE:-96			59 km	-9 km
2. Estimate velocity increments due to spacecraft outgassing on 10/30/75 and 11/13/75			$-7 \mathrm{~km}$	$-13 \mathrm{~km}$
3. Add calibrations to account for ionospheric effects			+31 km	+3 km
4. Reestimate solar pressure coefficients using data set derived from itens 1.3 above			+150 km	+14 km
	B - R	B \cdot T	TCA	(UTC)
Final postflight solution (long-arc)	5,752	7,295	6/19/76	16.31:21
Best inflight solution (radio + optical)	5,774	7.289	1,19/76	16:31:23

ORIGINAL PAGE IS
OF POOR QUALITY

$1.01 \times 2 \mathrm{H}$ 'sivnoissy y3lddoc

confirmed postflight that the venting did cease at about the time shown in the figure.
3. Calibrations based on Faraday rotation data obtained from the DSN were introduced to account for ionospheric effects on the doppler and range data. Figures 18 and 19 show, resnectively. the uncalibrated a...'calibrated doppler residuals. The calibrated residuals are much smoother in general; the larger level of apparent noise at the end of the data arc is probably due to space plasma effects, which were more pronounced daring the approach phase and not removed by the Faraday correction. In the case of a long radiometric arc thes ' effects can he assumed to be random and near-zero mean a id were not e^{kn} ' :tly accounted for in the long-arc processt. . Figures : ul 21 cornpare, respectively, the range residuals for the uncalibrated data and the calibrated data. $\therefore ; \cdot \because$ that the difference is not strictly due to the correcting of the range data itself for ionosphere, which is on the order of $1-2$ meters, but is due to the effec of the doppler calibrations on the orbit solution. The range residuals are from a combined doppler and range fit, where the effective doppler data weight dominated the range data weight. The third entry in Table 11 indicates that the application of ionospheric calibrations increments the B-plane position by +31 km in $B \cdot R$ and +3 km in $B \cdot T$.
4. After including the above adjustments and reconverging the trajectory, the solar pressure coefficients were reestimated. Table 12 compares the final inflight and postflight solutions. The final entry in Table 11 shows that the revised coefficients accounted for the largest B-plane change, +150 km in $B \cdot R$ and +14 km in $B \cdot T$. This procedure for trajectory convergence differed from the usual inflight procedure in that the solution used to converge consisted of the spacecraft state vector plus solar pressure coefficients from the final inflight soluion.

In summary, several general conclusions regarding long arc radiometric data processing can be stated:
(1) Careful attention should be paid to accurate representation of spacecraft-based dynamics, to both guard against real orbit effects, and efficts which mainly corrupt the data, and reduce the overall solution confidence, as in the case of the early gas leaks on Vikings 1 and 2.
(2) The orbit estimates should be converged as necessary to preserve the accuracy of the linear corrections made throughout cruise. In this regard, as a practical measure, the doppler compression rate should be on the order of several hours for continuous tıacking missions to keep the data processing costs to a minimal level.
(3) Ionospheric effects should be calibrated for inflight. These could be derived from either Faraday observa-

Table 12. Comparison of solutions for Viking 1 solar pressure parameters

tions, in which case formal requirements for these data should be included in project planning, or from dual-frequency or DRVID tracking observables.

VIII. Solar Pressure Model Improvement

The major portion of the Viking spacecraft solar pressure acceleration was modeled by a constant-area flat plate reflectance representing the total cross-sectional area projected normal to the spacecraft-Sun line and the composite set of reflectance properties. A precise geometric model was separately defined for the parabolic Earth-pointing radio antenna since its projected cross-sectional area varied with time. The antenna contributed about 5% of the total solar pressure acceleration.

Solutions for the constant coefficients of the flat plate model and for the paraboli: antenna were made throughout the cruise period, using both long and short data arcs. The final solutions, used for encounter OD and prediction, were made approximately two months before each encounter. Table 13 gives the nominal and final inflight adjusted values for the two vehicles. The values given in this table are essentially the composite values of $(1+\gamma B)$ for the flat plate representation, where γ is the fraction of incident radiation which is reflected from the plate, and B is a factor depending on the diffuse and specular portions of the reflection. As the solar pressure coefficient determination was proceeding, an

Fig. 18. Viking 1 long-arc poetright uncallibrated doppler residuals

Fig. 19. Viking 1 long-are poetfilight callibrated doppler residuals, dopplev-only fit

Fig. 20. Viking 1 long-wre poetfilght uncallibrated range reskiuals

Fig. 21. Viking 1 long-arc poetnight callibrated range residuals

Table 13. Comparison of inflight solutions for Viking 1 and Viking 2 solar pressure parameters

Parameter	Numinal values	Influght solutions	
	Viking 1 and Viking 2	Viking 1	Viking 2
Spacecraft bus			
7-axis coefficient (GR)	1.234	1.173	1179
X-axis coefficient (GX)	0.0	0.060	0.037
Y-axis coefficient (GY)	0.0	0.036	0.025
Interior surface of high-gain antenna			
Specular reflectivity (MUF)	0.05	0.05	0.05
Diffuse reflectivity (NUT.)	0.10	0.10	0.10

error was discovered in the specification of the nominal effective flat plate area and in the inclusion of reradiation effects in the nominal coefficients. This error was corrected by allowing the area to remain fixed and adjusting the nominal g_{r} coefficient from 1.320 to 1.234.

Note that most of the orbit solution migration shown in Fig. 11 is due to mapping the orbit solution to Mars with the uncorrected nominal solar pressure coefficients, through successively shorter times to encounter. The nominal prrabolic antenna solar pressure coefficients are also shown in the table. Because of the small overall effect of the antenna, the nominal values could not be improved on.

IX. Optical Measurements Processing

A. Optical Measurement System

The optical measurements system of the Viking spacecraft consists of the Visual Imaging System (VIS), scan platform (S/P) and articulation control system, attitude control system $(\mathrm{A} / \mathrm{C})$ and the ground software required to combine their data to generate observations of the direction to Mars, or its satellites, with respect to the stars. The spacecraft subsystems involved are modeled in the software. These models are calibrated using preflight and inflight data so that they can be used to transform measurements into accurate navigation observations.

The VIS consists of two vidicon cameras with offset 1.54 -deg by 1.76 -deg fields of view (FOV), which overlap by 0.38 -deg. They are sensitive enough to make detectable images of stars as dim as 9.5 visual magnitude with a $2.66-5$ exposure. The images are recorded, and then transmitted as 1056 lines of 1204 samples of intensity with 7-bit resolution. The cameras are shuttered and images recorded during alternate $4.48-s$
frame times. The math model of the cameras relating image sample positions to directions relative to the S / P includes camera alignment, optical focal length, scan raster center, scale factor, rotation and nonorthogonality, and the geometric distortion in the vidicon.

The VIS is pointed in a desired direction by the saan platform articulation control system. The two orthogonal gimbals, clock and cone, are commandable in 0.25 -deg increments and telemetered with $0.04-\mathrm{deg}$ resolution. The math model of the scan platform includes the misalignments of the gimbal axes and instrument mounting surfaces and calibrations for the gimbal angles, null offset, scale factor. hysteresis, and harmonic errors.

The reference for the S / P pointing is the spacecraft attitude in space, which is controlled relative to the Sun and a reference star by the attitude control system. The nominal spacecraft attitude is defined by the directions to the Sun and reference star, but the actual attitude is defined by the error signals from sun sensors, star tracker, and/or gyros depending on the attitude control mode in use. The math model of the attitude deviations includes sensor null offisets, scale factors, and gyro drift rates.

The parameters of these math models were calibrated using VIS pictures of stars taken in flight. The VIS scan raster and geometric distortion parameters were estimated using images of a reseau grid marked on the vidicon face, with a posteriori image residuals of 0.25 pixel, 10 . The VIS focal lengths and camera-to-camera alignment were estimated using successive VIS frames of a star field (the Pleiades) and of Mars and adjacent stars. The scan platform and attitude control parameters were estimated by comparing VIS pointing determined from angle telemetry with that determined from the stars appearing in the pictures.

B. Optical Observables

Two types of navigation observations were made using the VIS: stars-Mars-stars picture triads and satellite-star pictures. The triads are used when the Mars image is smaller than the FOV. Because of sensor dynamic range limitations, Mars and dim stars cannot be imaged accurately in the same picture. The two long-exposure star pictures are used to determine the pointing direction and rate of one camera. Using this, the pointing direction at the time of the Mars exposure is evaluated. The calibrated camera-to-camera alignment then is used to define the pointing direction of the camera taking the Mars picture. Because stars in the narrow FOV do not determine the rotation/twist of the S / P as accurately as the angle telemetry, the telemetry is used in the pointing estimation process. Accurate rotation is needed because of the
relatively large angular separation between Mars and the centroid of stars imaged in the other camera. A Mars limb model is then used to find the center of the Mars image on the frame. The camera pointing direction and the location of the center of the Mars image in the camera FOV combine to give a measure of the direction from the spacecraft to Mars.

The satellite-star pictures image a Marian satellite against a star background in a single picture and are used when the Mars image is larger than the FOV and the picture will not contain Mars. The long exposure required to see dim stars will not seriously overexpose small satellite images. For this type of navigation measurement, the angle telemetry is not as important since the satellite centroid-of-stars separation is smaller. Again, a center-finding technique on the satellite image, along with the pointing direction determined by the star background and the satellite center location, gives a measure of the direction from the spacecraft to the satellite.

C. Sequence Design and Pointing Optimization

The initial design of a navigation measurement sequence was chosen considering the time period to be covered, the frequency/number of measurements required to achieve the required accuracy, and the availability of suitable stars. Each picture/triad in this preliminary sequence was then repointed to optimize the data return. Special software was used to determine the pointing that guaranteed observation of Mars/ satellite and maximized the probable number and brightness of stars, considering the range of S / P pointing errors and attitude control limit cycle. Also, in the early sequences, to optimize the probability of picture acquisition, the desired pointing was manually corrected for systematic S / P control offsets. The offsets were later automatically applied in the commanding process, making the manual operation no longer necessary.

The success of this optimization is demonstrated by the fact that not one picture/triad of the 142 planned was unusable because of missing the target or stars.

D. Data Flow and Management

Many Viking Flight Team organizations were involved in scheduling and processing navigation pictures. A large volume of pictures was processed, with relatively few problems, as a result of two important decisions:
(1) Acquisition of optical navigation data was specially managed by the people processing the data.
(2) Navigation pictures were given priority over all other concurrent picture processing requests.

The following events and times depict a typical processing sequence for a Mars observation triad played back at $8 \mathrm{kbits} / \mathrm{s}^{\circ}$

Triad recorded at	T_{0}
spacecraft	
Triad received at Mission Computing Center	$T_{0}+80^{\mathrm{m}}$
Video reconstructed Optical measurement processing complete	$T_{0}+140^{m}$
	$T_{0}+200^{m}$

E. Telemetry Data Processing

The camera pointing at the shutter time of a picture was determined from the A / C and S / P angle telemetry. Three different sources of these data were used: the chain of data processing softwar used to generate pointing for science pictures, real-time monitoring of telemetry displays, and telemetry extracted from the engineering telemetry embedded in the recorded pictures.

Camera pointing, as derived from telemetry, was used to determine expected picture content: objects and their locations. These predicts were used to prepare input for OMSET to specify the areas of the picture to be extracted as arrays of intensity values. These areas would be offset by the difference between predicts and actual location once a known object (Mars or Deimos) had been located in the hard copy of the picture.

F. Plcture Data Processing

The picture data (array of intensities) processing consisted of the determination of the locations in the image frame of four types of images: reseau, star, large body (Mars), and small body (Deimos). Generally, this consisted of either extracting an area around a small image and determining its center from the intensity profile or locating points on the limb of a large body and determining its center by fitting an ellipse to the set of limb points.

Reseau images were processed for camera distortion calibration. Areas around the known reseau locations were put in a file by OMSET. Because of the large number of reseau images to be processed, special software was used to determine the reseau location in each area and to write formatted location data for input to OMSET, which would do the calibration.

Star images were manually located from printout of the extracted area around the image and edited into the predicts file in place of predicted locations. The star location criterion used was eyeball interpolated peak intensity.

Mars limb points wete found by OMSET using interpolated threshold crossings. Analysis of Mars pictures taken during Scan Cal II indicated that the best results were ob+ained for a threshold about 10 DN ($\sim 10 \%$ of peak signal) above the background. The limb fitting was done by OMSET at three different levels of data point editing with the operator selecting the one to be used and inserting that location into the predicts file.

Deimos images were too small to be located by their limb, but were generally larger and brighter than star images. The location criterion used for minimizing the effects of beani pulling, based on analysis of Mariner 9 data, was the center of a box circumscribed about the image, using tangency points just above the peak background level.

G. Optical Observables Generation

The residuals from processing of the star and target images and engineering telemetry were evaluated and each image was accepted, rejected, and/or reevaluated until a consistent set of data remained. Errors removed by this process include data transcription errors, mislocated stars (e.g., peak of background identified as dim star), bright stars biased by beam bending, dim stars not definitely located on the first attempt but found when star reference predicts were available, etc.

Processing of the Mars observations produced estimates of the VIS pointing and attitude control rates based on engineering telemetry and the star images in the first and third pictures. These values and the calibrated camera-to-camera alignment were used to determine the pointing of the camera imaging Mars. The VIS pointing angles, pointing covariance and expected image locations were updated based on this estimate. Residuals and their statistics were then computed. The same process, except for attitude control rates, was perfurmed for the simpler, single-frame Deimos observations.

Each processed observation was added to a composite Optical Measurement File, which was used for orbit determination. This file contained picture time and best pointing based on star images, image identifications and distortion corrected locations, and their statistics.

H. Processing Results

1. Pointing control and knowledse accuracy. The spacecraft attitude control and scan platform pointing subsystems performance for control of camera pointing met or exceeded the ± 0.5-deg contiol requirement as evidenced by no loss of data because of pointing error. The knowledge accuracy is indicated in Table 14, which gives the statistics of star residuals, the difference between observed star locations and

Table 14. Pointing knowiedge accuracy (plxels)

Observation sequence	Viking 1				Viking 2			
	Line ${ }^{\text {a }}$		Pixela ${ }^{\text {a }}$		Line ${ }^{\text {a }}$		Pixel ${ }^{\text {a }}$	
	μ	0	μ	σ	μ	0	μ	0
Mars 1	14	13	11	26	10	10	18	11
Mars 2	12	10	2	19	19	9	-1	16
Mars 3	-56	12	12	23	5	9	6	9
Mars 4	-	-	-	-	4	14	15	9
Deimos	-91	16	-7	18	5	16	8	13

${ }^{a} 1$ line or pixel $=0.0015$ deg.
the predicted locations, based on the calibrated model, and the angle telemetry.

The migration of the mean line residual on Viking 1 is due to platform offsets induced by stress during two midcourse maneuvers. Even with this offset, the knowledge accuracy was better than the $\pm 0.25-\mathrm{deg}$ (170 pixels) requirement.
2. Mars and Deimos residuals. Part of the measurement validation process was to maintain a plot of Mars/Deimos residuals after pointing correction. These plots are shown in Figs. 22 through 25. The reasonableness and consistency of these residuals indicated the performance level of centerfinding. To make the plots nominally a straight line, residual line and pixel were plotted vs reciprocal time to encounter. Slope of a line of residuals is essentially proportional to B-plane miss and the intercept to measurement bias or cross velocity errors (see description in Section V).
3. Detrended measurement accuracy. A quantitative evaluation of the target residuals was obtained by estimating a target center-finding error (proportional to angular diameter) and a bias to remove the slope and intercept from the plotted residuals. The remaining error indicates the consistency or noise of the data. The Deimos residuals, wiuch are affected by Deimos ephemeris, were corrected for observed ephemeris errors. The detrended standard deviations are given in Table 15 and indicate that the performance level achieved far exceeded expectations.

X. Approach Orbit Determination Evaluation

The output of the orbit determination process is a series of orbit eatimates used in navigating the spacecraft. As indicated in Section V , these estimater are not the product of a single

Fig. 22. Viking 1 Mars residuals

Fig. 23. Viking 2 Mars residuals

Table 15. Detrended target residuals (plxote)

Observation sequence	Viking 1		Viking 2	
	σ line	\bigcirc pixel	a line	σ pixel
Mass 1	0.36	0.28	0.27	0.26
Mars 2	0.22	0.28	0.33	0.29
Mars 3	0.34	0.20	0.32	0.45
Mars 4	-	-	0.41	0.39
Deimos	0.20	0.43	0.38	0.37

provess, but are selected from a collection of orbit estimates, each obtained from a different treatment of the available relevant observation set. This section considers the general behavior of this set of solutions from which the best estimates

Fig. 24. Viking 1 Deimos residuals

Fig. 25. Viking 2 Deimos residuals
were selected. As would be expected, many more solutions were generated and analyzed during flight than can be presented here. Attention will be restricted to what is considered to be the set of most important solutions. More details on specific solutions can be obtained from the comrilation in Section XI.

Variations of the solution values presented reveal the relative accuracy of various solution types, and some insight can also be gained into the selection process by which the best estimates were obtained. Analysis of relative solution variations did not provide the sole criterion, however. Consistency of observation residuals and evaluation of the expected or formal accuracy of the specific solutions provided criteria equally as important.

The absolute accuracy of the estimates can be evaluated only for the pre-MOI phase: that is, the estimates obtained
following the final approach midcourse. This evaluation can be made with respect to the reconstructed orbit estimate based on radio measurements made just before insertion. The near Mars dala is sufficient in strength to allow determination of the encounter parameters to a high degree of accuracy, generally to within 10 km in $B \cdot R$ and $B \cdot T$ and less than 1 s in TCA. These estimates, although very accurate, are available far too late in the flight to assist in maneuver preparation. No such absolute reference is available for estimates prior to the approach midcourse maneuvers because of the relatively large uncertainty in the maneuver execution.

Table 16 presents the delivered orbit estimates including preliminary and final deliveries for each maneuver during the approach phase. The maneuver target values and associated execution uncertainties are given for the maneuver preceding the estimate. The relatively large execution errors predicted for the Viking 1 approach midcourse maneuvers were the result of the large ($\sim 50 \mathrm{~m} / \mathrm{s}$) maneuvers required to alleviate the Viking I propellant pressurant problem. Also presented in the table are the pre-MOI reconstructed estimates based on the near-Mars tracking data.

Figures 26 through 30 show actual orbit estimates obtained during flight. The solutions for $B \cdot R$ are plotted as a function of the time of the end of the observation set. The solution values are plotted with respect to the final best estimates for each approach phase, including the reconstructed estimates for pre-MOI estimates. The solutions are presented according to whether they were generated by the ODP (radio and radio plus optical) or the ONP (optical).

Solution values for TCA and $B \cdot T$ coordinates have not been included. The TCA coordinate is not critical for navigation analysis. The $B \cdot T$ coordinate was well determined by radio observations generally to within $\pm 10 \mathrm{~km}$. This is because T lies in the ecliptic, in which most of the interplanetary spacecraft motion occurs. The effect is especially pronounced for Viking 2 owing to the near coincidence of he T direction and the line-of-sight from Earth. The relative precision in determining $B \cdot T$ was not shared by the optical-only solutions, yet in all cases these solutions agreed well with the radio and radio plus optical $B \cdot T$ solution values. The consistency of the opticalonly solutions with the radio solutions in the $B \cdot T$ coordinate provided an extra margin of confidence in the optical-based results.

Observations and conclusions based on the presented data cen be given es follows:
(1) The radio only, uncalibrated solutions at times exhibit large variations. The variations are amaller and the solutions prove to be more accurate when the radio
data is calibrated for charged-particle effects. This, therefore, strongly indicates that the radio estimates were highly influenced by charged-particle activity and that the DRVID calibrations are effective in alleviating these errors. Note that the sequential filter performs well for Viking 1, but is very unstable for Viking ? prior to the approach midcourse. This behavior is not uncommon to sequential filter processing when the data noise levels increase significantly. This was defiaitely the case for Viking 2 in comparison to Viking 1 as the result of increasing doppler errors due to space plasma activity.
(2) The long-arc solutions (further discussed in Section VII) are stable, yet are not particularly accurate. The Viking 1 long-arc solutions in fact are in error beyond that predicted by covarianct analysis. This proved to be a problem during the Viking 1 approach, and the longare estimates were largely discounted in selecting the final pre-AMC-1 hest estimate. The Viking 2 pre-AMC estimates include long-are solutions that behave interestingly like the Viking 1 long-arc solutions. An improved long-are solution is shown, however, which includes modified processing strategies that resulted from after the fact analysis of the Viking 1 long-arc solutions post-Viking 1 MOI. Some description of this solution and the attendant modifications is given in Section VII. The improved solution nearly equals the delivered best estimate. However, agreement at this level should be taken as largely coincidental considering the expected accuracy of the long-arc solution.
(3) Following each midcourse maneuver, solutions containing only postmaneuver observations were compared with solutions that included premaneuver data and solved for maneuver parameters. The through-maneuver solutions are seen to be superior to the postmaneuve: solutions until considerable postmaneuver data has become available.
(4) Generally the optical-based estimates performed extremely well, particularly once a sufficient optical data arc length was obtained. With respect to estimatirg $B \cdot R$, the optical data proved far superior to radio observations. Generally, the optical-only solutions, again given sufficient arc length, produced $B \cdot R$ estimates as accurate as any produced by radio plus optical solutions.
(5) Prior to Viking I ABIC-1, sone difficulty was encountered initially when combining radio and optical deta. This problem was partially the sesult of the carly large disporsions in the radio solutions, and occurred in both the direct radio + optical and the radio a prion + optical processing procedures. The problems disappeared

Table 16. Orift eatimate deliveriee

Parameter	B \cdot R. km	B - T. km	TCA
Viking 1			
Pre-AMr-1			
Preliminary bevt estumate (delivered 5/21/76)	5,694	7.3411	16:30.41
Final best estimate (delivered 6/6/76)	5.774	7.289	16.31:23
Pre-AMC-2			
Target value ${ }^{\text {a }}$	7.233	6.859	$20 \cdot 38$
Execution error ${ }^{\text {a }}$	± 450	± 4.50	± 10 s
Preliminary best estimate (delivered 6/13/76 20:00 GMT)	7,291	6.701	20:38:04
Final best estimate (delivred 6/14/76 04:00 GMT)	7.282	6,700	20:37:50
Pre-MOI			
Target value ${ }^{\text {a }}$	7.284	6,944	22:54
Execution error ${ }^{\text {a }}$	+225	+225	± 5 s
Preliminary best estimate (delivered 6/17/76 14:20 GMT)	7,254	6,917	22:53:58
Final best estimate (delivered 6/18/76 14:50 GMT)	7,275	6,914	22:54:08
Reconstructed estimate	7.276	6,920	22:54:06
Viking 2			
Pre-AMC			
Preliminary best estimate (delivered 7/22/76)	887	16.197	12:20:49
Final best estimate (delivered 7/25/76)	870	16.195	12:21:13
PremOI			
Target ralue ${ }^{\text {a }}$	-2,387	9,060	11:45
Execution error ${ }^{\text {a }}$	± 70	± 50	± 20 s
Preliminary best entimate (delivered 8/1/76)	-2,387	9,052	11:44:44
Final best estimate (delivered 8/6/76 09:50 GMT)	-2,423	9,056	11:45:05
Reccnstructed estimate	-2.424	9,058	11:45:19

${ }^{\text {a }}$ For maneuver preceding estimate.

7

Fig. 26.. Viking 1 epproech solution histories, pre-AMC 1: ODP
once a sufficient optical arc was obtained, allowing the optical data to govern the $\boldsymbol{B} \cdot \boldsymbol{R}$ determination.
(6) The excellent performance of the optical solutions is considered to be the sesult of (a) better than expected piecision of the oprical observations themselves, and (b) availability of sufficiently long data arcs to permit unambiguous separation of trajectory miss ($B \cdot R$ and $B \cdot T$) from approach velocity and optical bias uncertainties. The Mars and Deimos observation types compared very well; the results of the Viking 2 post-M/C estimates indicate that optical center-finding uncertainty is small - most likely no larger than 1% of the Mars radius.

XI. Imilight Orbit Detcrmination Solution Compilation

This section provides a compilation of inflight solutions beyond the launch phase, for each of Viking 1 and Viking 2 (launch phase solutions were given in Table 10). The solutions are presented in Tables 17 through 19 for Viking 1 and Tables 20 through 22 for Viking 2 . These tables display the end result of the orbit determination program (ODP or ONP) execution: that k, the predicted spacecraft poestion in the B-plane at the

Fig. 26b. VIking 1 approach solution histories, pro-ANC 1: ONP
time of closest approach to Mars. Additional data describes pertinent facts about each solution, c.g., it of data used, the span of the data arc, etc. The variation within each table depending on the relevar. id/or the availability of various data. The abbreviations used for describing the contents of the tables are as follows:
(1) CASEID. This is a six character alphanumeric label which has been assigned to each orbit determination solution. Although of no immediate use to most readers, it is necessary to have this run identification in order to obtain additional detailed information from the archives regarding any particular solution.
(2) EST. This column identifies the parameters, in a coded form, which were estimated in each run in addition to the spacecraft state. The lack of any entry means that only the spacecraft state vector was estimated. The following code words are abbreviations which identify the estimated parameters, other than the spacecraft state.

ATT constant nongravitational accelerations
EPHEM ephemeria parameters for either the Earth or Mars

Fig. 27a. Viking 1 epproech solution histories, pre-AMC 2:00P

IM
impulsive maneuver burn parameters
RBIAS range bias parameters
SEP Mars satellite ephemeris parameters
SP solar pressure acceleration coefficients
STA DSN station locations
STOC stochastic parameters were present
(3) \#F2. The number of two-way doppler points used in the solution
(4) \#PLOP. The number of PLOP range points used in the solution.
(5) HMARS. The number of optical observations of the planet Mars used in the solution.
(6) \#DEIM. The nuriber of optical observations of DEIMOS used in the solution.
(7) SPAN. The length of the data arc processed, days.
(8) LDPT. The calendar date of the last data point used in the solution. The entries give DATE, HR:MIN respectively.

Fig. 27b. Viking ; appromeh solution hiatories, pro-AMC 2: ONP
(9) TCA. The time of closest approach obtained for this solution.
($10, B \cdot R$. The estimated value of $B \cdot R, \mathrm{~km}$.
(11) Sigma $B \cdot R$. The one-sigma uncertainty of the $B \cdot R$ estimate, km .
(12) $B \cdot T$. The estimated value of $B \cdot T, \mathrm{~km}$.
(13) Sigma $B \cdot T$. The one-sigma uncertainty of the $B \cdot T$ estimate, km .
(14) Sigms TCA. The one-sigma uncertainty in the time of closest approach, s.

There are three tables each for both Viking 1 and Viking 2. For each spacecraft, the first table lists representative solutions obtained during tin: cruise phase; the second table lists solutions obtained during the approach phase using the ODP; the third table, covering the same time span as the second. ciuntains solutions derived using the ONP.

XH. DSN Station Location Evaluation

The radic metric data and spacecraft-based optical data from the Mars encounters of the Viking spacecraft were used

Fig. 28a. Viking 1 approach solution Mistories, pre-MOI: ODP
to evaluate the Deep Space Network station location set, LS 44. This set of station location estimates (Ref. 9) along with JPL Development Ephemeris 84 supported critical navigation operations in the vicinity of Mars. LS 44 is displayed in Table 23.

The evaluation was not intended to serve as the definition of an improved station location set. Such an update would normally be accomplished by combining in least squares fashion the Viking station location estimates with those from previous Mariner missions which had been incorporated in LS 44. Rather, the evaluation shows that LS 44 is consistent with the station location information inherent in the Viking encounter data and did meet the mission requirement on station location uncertainty.

A. Theoretical Background

The locations of the DSN stations are computed in a geocentric coordinate system whose axes are defined by the Earth's mean pole (axis of rotation), equator, and prime meridian of 1903.0. The cylindrical coordinates r_{s}, λ, and Z are the parameters used to locate a given station within this system where

Fig. 28b. Viking 1 approach solution histories, p.A-MOI: ONP
$y_{s}=$ distance from the axis of rctation, km
$\lambda=$ longitude, measured east from the prime meridian, deg
$Z=$ height above the equatorial plane, km .
Figure 31 shows the coordinate system and location parameters for a single station.

Using Earth-based Jata, it is apparent that uncertainties in a spacecraft's position are difficult to separate over a short arc from uncertainties in a station location. Consequently, the spacecraft orbit must be determined essentially independently from the station locations themselves. This is done in practice by using the radio metric data taken during the planetary apprcach phase. The probe's motion is heavily governed by the target planet's gravitational field, and its orbit can be well determined ielative to the target body. A geocentric determination is obtained using the reference planetary ephemeris. Hence the station location estimates will reflect the accuracy of the reference ephemeris.

Based on this theoretical analysis and past experience processing radio metric data, some general guidelines can be established for determining the spin axis $\left(r_{y}\right)$ and longitude (λ) estimates:

Fig. 29a. Viking 2 approach solution histories, pre-AMC: ODP
(1) Define tracking arcs which reflect the planetary encounter geometry.
(2) For each arc, obtain the best set of calibrations for ionospheric charged particle effects, tropospheric refraction, timing and polar motion which are currently available. To obtain accurate station spin axis and longitude estimates, the errors introduced by each of these sources must be minimized.
(3) For each arc, obtain as accurate a spacecraft trajectory as possible.
(4) Given the "best" trajectory, obtain estimates for the spacecraft state at the initial epoch of each arc and estimates for the DSN stations which participated in tracking the given spacecraft during the defined time period. In this regard, it is usually necessary to simultaneously estimate one or more other parameter types such as solar pressure, planetary oblateness, range biases, attitude control accelerations, planetary mass, etc.

These guidelines formed the basis for the actual procedures followed in the processing of planetary approach data.

Fig. 29b. Viking 2 approach solution histories, pre-AMC: ONP

The data taken during the planetary approach phase of the mission did not provide accurate solutions for the Z-height component. This was expected. A study is currently ongoing t. obtain accurate results on the relative Z-height differences between stations by processing near-simultaneous range data from the Viking orbiters. This work will not be discussed in this report.

B. Data Coverage and Calibrations

The data arc used to determine the encounter trajectory for Viking 1 extended from the first station pass after the approach maneuver on June 10 to the start of the orbit insertion turns on June 19. Another approach maneuver was performed four days from encounter, on June 15; the direction and magnitude of this maneuver were included in the final approach trajectory solution vector. The Viking 2 data arc was similar and extended from the approach maneuver on July 28 to the last preinsertion station pass on August 7. No intermediate maneuvers were performed on Viking 2.

The radio metric data coverage consisted of approximately 850 two-way doppl ${ }^{-}$and 40 range measurements from each spacecraft. Optical observations, in the form of line and pixel measurement of Mars and Deimos, enhanced the radio metric

Fig. 30a Vik!rig 2 approach solution histories, pro-MOI: ODP
solutions for each spacecraft. Table 24 summarizes the encounter radio metric data sets that were used.

The uncalibrated doppler residuals measured against the best estimate trajectories are shown in Figs. 32 and 33. These residuals do not include any calibrations for charged particle effects on the computed doppler observables. Accurate calibrations significantly enhance the doppler observational models and contribute strongly to the accuracy of the station location estimates. Table 25 summarizes the charged particle calibration sets that were provided for each encounter data arc. Calibrated doppler residuals appear in Figs. 34 and 35.

C. Preliminary Solutions

Tables 26.29 show several sets of station location solutions for each encounter. Table 26 contains the Viking 1 solutions based on radio data only, and radio-plus-optical data, where the radio data is rot calibrated for charged particles. Table 27 gives the same set of solutions, based on a calibrated radio data set. The solutions shown in Tables 26 and 27 were generated using a preliminary set of timing polynomials. The final set of timing polynomials for a particular data arc is not available until 4 to 5 weeks after the end of the radio data arc. Tables 28 and 29 show the uncalibrated and calibrated solution sets

Fig. 30b. Viking 2 approach solution histories, pre-MOI: ONP
for Viking 2, where the radio-plus-optical data set includes Mars pictures and Deimos pictures. For Viking 2, a finalized set of timing polynomials was used throughout. For each encounter, the radio-onl; solutions are consistent with the radio-plus-optical solutior. Vote that both spin axis and longitude corrections are quit large for all solutions using the uncalibrated radio data set.

D. Final Solutions

Table 30 gives the final corrections to LS 44 based on the Viking encounter data processing. The timing polynomial sets used for each encounter are listed in Table 30. The final Viking 1 solution is based on calibrated radio data plus Mars optical data. Note that the final timing polynomial set moved the station longitude corrections by approximately -1.5 X 10^{-5} deg. The final Viking 2 solution shown in Table 30 is based on the calibrated radio-only data set, although Table 29 shows that the solutions for the three calibrated data sets are very similar. Figure 36 displays the final spin axis and longitude corrections with $1-0$ error bars.

The individual spacecraft solutions were then combined in least-squares fashion and the resulting corrections to LS 44 with $1-\sigma$ uncertainties are shown in Table 31. On the basis of
Table 17. Viking 1 cruise solution summary

CASEID	EST	$\mathbf{F Z}$	PLOP	MABS	DEIM	$\begin{aligned} & \text { SPAN } \\ & \text { DAYS } \end{aligned}$	LDPT		$\begin{gathered} \text { TCA } \\ 6 / 19 / 76 \end{gathered}$	$\mathbf{B} \cdot \mathbf{R}$	$\begin{aligned} & \text { b.R } \\ & \text { SIGM } \end{aligned}$	B-T	$\begin{gathered} \text { B•T } \\ \text { SIGMA } \end{gathered}$	$\begin{gathered} \text { TCA } \\ \text { SIGMA } \end{gathered}$
103102		1039	229	0	0	22	12/28/75	13:30	16:30:41	5862	210	7107	271	36
903305		766	122	0	0	20	1/24/76	10:23	16:31:14	5863	177	7176	156	39
003708		883	24	0	0	22	3/14/76	11:51	16:29:41	5483	254	7259	104	83
403811		812	117	0	0	22	3/28/76	12:41	16:31:01	5725	205	7214	72	68
A03905	SP STOC	219	0	0	0	213	3/28/76	12:41	16:30:03	3470	88	7236	60	23
A04204		712	128	0	0	22	5/02/76	12:40	16:29:50	5508	265	7292	42	88
004506	RBIAS STOC	99	92	0	0	22	5/19/76	12:39	16:29:46	5547	251	7297	37	86
003319	SP STA STOC	3710	711	0	0	149	1/24/76	10:03	16:30:23	5604	78	7184	106	24
004578	STA	4071	1562	0	0	262	5/16/76	12:39	16:29:30	5519	82	7298	41	28

Table 18．Viking 1 approach phase solutions（ODP）

CASEID	$\begin{aligned} & \text { EST LIST } \\ & \text { IMLANK STATE, } \end{aligned}$	52	PLOD	Mansi		$\begin{aligned} & \text { Span } \\ & \text { OAYS } \end{aligned}$	$\begin{array}{r} \text { LOP } \\ 197 \\ \hline \end{array}$		$\begin{aligned} & \text { TCA } \\ & 6 / 19 / 76 \end{aligned}$	b．a	$\begin{aligned} & \sin \\ & \operatorname{sichan} \end{aligned}$	－． 7	$\begin{aligned} & \text { Bit } \\ & \text { siga } \end{aligned}$	$\begin{aligned} & i^{C A} \\ & \operatorname{sigha} \end{aligned}$
4045113		$9{ }^{9} 0$	12	0	0	21.5062	5／16	12：39	16：28：12	5270．4	311.	7314.0	30.	P日．9
A04506	Rulas stoc	－96	92	0	0	21.5002	5／16	12：39	16：29：46	5546.5	251.	7296.9	37.	16.2
A04576	Relas stoc	4071	1542	0	0	262.4903	5／16	12：39	16：29：09	5453.7	83.	7300.1	44.	29.3
A04519	Ralas stoc	996	92	－	0	35.5419	5／18	6：00	16：29：51	5562.3	242.	7296.0	36.	82.8
A04522	Roias stoc	996	92	10	0	35.8751	$5 / 18$	14：00	16：30：09	5614．4	202.	729．3	35.	$6 \% .8$
904529	Raias stac	196	46	16	0	36．875？	5／19	14：00	16：31：56	5943.7	341.	7276.4	46.	115.2
104530	meias stoc	94.	$3 \cdot$	23	0	38．0416	5／20	18：00	16：31：26	5846.1	367.	727e．3	42.	125.7
A04an3		1033	63	0	0	21.5111	5／23	12：32	16：30：49	5671．0	333.	7217．4	33.	107.3
104606	malas stoc	2033	${ }^{3}$	0	0	21．5121	5／23	12：32	16：30：57	5896.9	172.	7275.1	34.	50.7
A04613	Rasas stoc	1513	b 3	23	0	40.8134	5／23	12：32	16：31：17	5924.1	180.	7272.9	35.	61.8
A09676	Raias stoc	4497	16^{49}	0	0	269．4854	5／23	12： 32	16：29：10	5452.8	82.	7297．1	42.	29.7
A04703		1067	92	0	0	21.5285	5／30	12：46	16：29：18	5374．0	314.	7301.1	32.	99.4
A04704	Rutas stoc	10n7	92	0	0	21.5705	5／30	12：46	16：30： 20	55.4 .6	173.	7292.7	34.	50.0
A04770	nutas stoc	4ana	166 A	0	0	276．4951	5／30	12：46	16：29：05	5443.1	82.	7302.8	37.	29.6
${ }^{4} 04715$	Rbias stoc	1067	92	22	0	26．5805		14：00	16：31：33	5786.9	223.	7202．4	38.	79.9
A04722	EPhen reias stoc	1067	92	22	0	26．5805	6／4	14：00	16：31：14	5792．0	225.	7310.6	8.	81.8
A04724	malas stoc	1967	92	28	0	27．5AOM		14：00	16：31：46	5831.2	249.	7281．9	41.	A9．0
A04730	malas sroc	1087	92	14	0	2n．5月04		14：00	16：31：55	5951.1	253.	1277．7	37.	09.0
909704		1047	77	0	0	21.5729	6／9	12：43	16：29：52	5505.6	261．	1321．0	36.	62.2
A09904	nutas stoc	1067	77	0	0	21.5229	6／9	12：43	16：29：51	5098．0	159.	7320.1	39.	50．4
D日ann	－	－	－	－	－	－		－	－	－	－	－	－	
OR4000	－	－	－	－	－	－		－	－	－	－	－	－	－
OR4902	－	－	－	－	－	－		－	－	－	－	－	－	

Table 18 (contal)

caseio	EST LIST (BLANK -	STATE	$F 2$	PLOP	mansoel		$\begin{aligned} & \text { sian } \\ & \text { OAYS } \end{aligned}$	LOPT		$\begin{aligned} & \text { TCA } \\ & 6 / 19 / 76 \end{aligned}$	B.R	6. ${ }^{2}$ SIGMA	- 1	$\begin{aligned} & 6.1 \\ & 5 i G \mathrm{Ha} \end{aligned}$	$\begin{aligned} & \mathrm{YCA} \\ & \mathrm{SIGMA} \end{aligned}$
ARS 102	im paias	Stoc	43a	41	0	0	22.5434	6/11	12:47	20:37:46	7234.4	225.	6711.7	53.	74.2
20515s	IM		1331	01	0	0	23.5757	$6 / 11$	12:47	20:36:50	690.0	702.	60.3 .3	42.	170.0
905 159	In		1331	01	78	0	21.5257	6/11	12:47	20:37: 51	7155.0	332.	6675.0	52.	56.5
A0s202	In		269	4	0	0	2.0100	6/12	12:36	2C-36: 18	6670.4	1973.	6480.	184.	-28.6
Mos251	In		1503	100	0	0	27.5146	6/12	12:36	20:36:37	6924.6	2010.	6684. 2	35.	4.0
A05253	1 m		1543	100	39	0	27.5146	$6 / 12$	12:36	20:38:10	7899.9	105.	6468.0	36.	34.3
A05257	In		270	-	4	0	2.0142	6/12	12:36	20:35:56	GPOA. 7	1224.	6.697 .0	68.	311.0
005302	1 n		1511	146	0	0	2n.5020	$6 / 13$	12:19	20:36:46	7031.6	422.	6713.7	- ${ }^{\text {e. }}$	141.8
A0S304	$1{ }^{1}$		1591	106	41	0	20.5020	6/13	12:19	20:38:27	7378.1	164.	6714.7	33.	61.1
905305	IM		318	14	-	0	3.0024	6/13	12:19	20:37:06	2129.5	154.	6727.2	33.	53.1
005357	In		318	14	0	0	3.0n24	6/13	12:19	20:32:03	6120.8	826.	6745.0	43.	247.6
ORS351	In		666	97	0	0	26.0132	6/13	12:19	20:41:25	7727.0	Su2.	6653.7	52.	140.5
005354	IM		1591	106	43	0	28.7402	6/13	18:00	20:38:37	7408.3	131.	6712.3	22.	50.9
005355	IM		319	14	θ	0	3.2398	6/13	18:00	20: 37:40	7224.0	111.	6718.0	28.	3\%.4
Mos46s	In SEP		224	6	0	7	1.4140	6/17	00.51	22:53:05	6989.1	364.	-897.6	31.	100.8
905674	IM SEP		224	6	0	9	1.6473	6/17	06:27	22:54:17	7267.3	134.	6904.5	24.	46.8
DRS804	In		142	12	0	0	2.2569	6/17	23:10	22:54:18	7284.5	623.	6908.4	08.	119.6
A0S804	In		276	12	0	0	2.3962	6/18	00: 26	22:53: ${ }^{7}$	-937.4	390.	6854.7	63.	74.2
905807	in Ste		276	12	0	16	2.3942	6/18	00:26	22:54:17	7274.1	90.	6904.3	20.	29.8
09595 2	IH		62	14	0	0	2.3993	6/18	02:35	22:54:10	7274.6	3520	6917.2	75.	©0. 2
aosess	1.4 Scp		276	12	0	19	2.5484	6/18	04:34	4 22:54:13	72SR.9	48.	6906.8	19.	21.9
005052	In		241	14	0	0	2.6781	6/18	8 07:12	$22: 53: 38$	7032.9	269.	6869.4	57.	47.5
Ab5953	Im RBias	SEP	791	14	0	19	2.67A1	6/18	8 07:12	$222: 54: 10$	7241.3	22.	6911.9	$8 \cdot$	6.1

Table 18 (contd)

Caseio	EST LIST COLANK	STATEI	$F 2$	PLOP	MARS		$\begin{aligned} & \text { SPAN } \\ & \text { DAYS } \end{aligned}$	LDP		$\begin{aligned} & \text { rCa } \\ & 6 / 19 / 76 \end{aligned}$	8. ${ }^{\text {a }}$	$\begin{aligned} & 8 . \mathrm{H}^{2} \\ & \operatorname{sigha} \end{aligned}$	$8 \cdot 1$	$\begin{aligned} & 8.1 \\ & 516 \mathrm{ma}_{\mathrm{a}} \end{aligned}$	$\begin{aligned} & \text { iCA } \\ & 516 \mathrm{ma} \end{aligned}$
A0ses	in mesas	sEp	291	14	0	22	2.6961	$6 / 18$	807:37	22:54:12	1260.0	10.	6914.1	7.	5.4
A06002	1^		35n	18	0	0	3.7656	6/19	09:23	22:54:10	7314.4	104.	4925.9	49.	4.0
0.06202			353	10	0	0	3.9205	6/19	13:11	22:54:20	6984.4	103.	6785.0	47.	4.0
A06303			402	10	0	0	4.1354	6/19	18:15	22:54:10	1314.2	10.	6930.3	5.	-6
004904			431	18	0	0	4.2654	6/19	21:22	22:55:05	7276.0	1.	6919.2	-	- 2

Table 19. Viking 1 approach phase solutions (ONP)

of POOR QTALIT
Table 20. Viling 2 cruiee solution summary

CASEID	EST	$F 2$	FLOP	mas	DEIM	$\begin{aligned} & \text { SFAY } \\ & \text { DAYS } \end{aligned}$	LDPT		$\begin{gathered} \text { TCA } \\ 8 / 07 / 76 \end{gathered}$	B-R	$\begin{gathered} \text { B.R } \\ \text { SIGMA } \end{gathered}$	B-I	$\begin{gathered} \text { B-T } \\ \text { SIGA } \end{gathered}$	$\begin{aligned} & \text { TCA } \\ & \text { SIGMA } \end{aligned}$
20250i	SP STOC	1022	180	0	0	22	11/23/75	13:35	12:17:59	975	250	15532	942	210
302906	stoc	861	184	0	0	22	01/18/76	10:41	12:21:44	1166	290	15662	439	52
806307	RBIAS STUC	1015	75	0	0	22	07/04/76	12:47	12:22:43	1287	570	16188	11	166
BR4402	RBLAS STOC	497	103	0	0	21	07/11/76	12:39	12:20:15	654	383	16200	7.6	127
303064		3220	814	0	0	135	02/01/76	14:00	12:20:14	765	225	16165	325	56
804678	ATT	6144	1727	0	0	296	07/11/76	12:39	12:22:10	742	178	16206	3.8	71

Table 21. Viring 2 epproach pheee sohtions (OOP)

Caselo	$\begin{aligned} & \text { ESTLISY } \\ & \text { CBLANK }=\text { STATC) } \end{aligned}$	17	*lor			$\operatorname{sPan}_{\text {OAYS }}$	LOPI		ICA 8/07/76	*.*	$\begin{aligned} & \operatorname{coR} \\ & \sin \end{aligned}$	1.1	$\begin{aligned} & b i{ }^{\prime} \\ & \text { sigha } \end{aligned}$	$\begin{aligned} & \text { ica } \\ & \text { siGma } \end{aligned}$
-0.3n2	Rutas stoc	-062	1724	0	0	206.5110	7/04	12:27	12:20:20	653.5	131.	16203.8	-	40.5
-04307	Rdias stoc	44 A	75	0	0	21.5271	7/06	12:47	12:22:47	1258.2	100.	16188.8	14.	227.9
-04305		1072	75	0	n	21.5271	$1 / 04$	12:47	12:16:44	50.5	910.	16205.6	13.	255.4
B90307	Quias stoc	1014	75	0	0	21.5271	7/06	12:47	12:22:43	1280.5	570.	16108.0	11.	166.9
089802	auias stoc	49%	173	0	n	21.4049	1/11	12:39	12:20:15	654.2	383.	16199.*	0.	127.2
404902	atiss stoc	1121	103	0	0	21.5097	$1 / 11$	12:40	12:19:00	430.4	279.	10202.0	6.	93.9
304908	anias stoc	1121	103	10	0	21.3097	7/11	12:39	12:20:30	730.3	342.	16107.5	${ }^{\text {a }}$	104.1
E04913		1121	105	0	0	21.5097	7/11	12:39	12:17:40	78.5	735.	16200.5	12.	195.0
B09481	ausas stac	6384	133a	0	0	205.5701	$7 / 11$	12:39	12:20:35	485.4	120.	16202.7	4.	39.1
084509	nolas stoc	616	120	0	0	24.3722	7/16	11:52	12:20:33	479.5	317.	14199.3	7.	115.8
004503		1369	120	0	0	24.5035	7/16	12:30	12:20:35	103.2	447.	16198.0	13.	232.5
-04sos	antas stoc	1369	120	0	0	26.5n35	7/16	12:30	12:18:28	280.4	267.	18203.4	6.	95.0
-095a*	neias stoc	1369	128	14	0	24.7333	1/16	18:00	12:20:17	*51.4	254.	16198.4	-	85.5
004519	Reias stoc	1309	124	20	0	27.9月33	7/18	0:0	12:21:37	P21.1	258.	161*5.0	-	95.0
Be9603	Relas stoc	541	104	0	0	23.9361	7/20	24:0	12:20:03	545.2	276.	10202.2	7.	104.3
Casses	Ratas stoc	630a	1759	0	0	305.5n76	1/21	12:21	12:21:11	696.0	137.	16202.0	4.	41.0
404602		1252	104	0	0	24.5153	$1 / 21$	12:41	12:21:03	778.9	791.	16198.0	13.	225.0
00963	melas stoc	1252	104	0	0	24.5153	7/21	12:41	12:16:41	-91.9	208.	16209.3	7.	103.4
80946		1236	104	27	0	25.7374	7/22	18:00	12:21:34	A87.1	102.	16196.b	10.	04.4
-08419		123a	104	29	0	26.2375	7/23	6:01	12:21:32	98.4	15.	16196.5	10.	0. 2
$0_{64} 422$		123*	104	33	0	27.2375	7/24	6:01	12:21:33	883.4	16.	1+196.4	18.	95.4
004627	nites stoc	1236	10.	is	0	27.7375	1/24	18:00	12:21:30	-84.0	61.	16196.3	11.	103.9
0 OSTu2	in pelas	ans	115	0	0	24.3451	$8 / 02$	9:17	11:46:55	2300.0	443.	9n¢9.0	12.	203.5

Table 21 (condi)

Case 10	```EST LIST CMLAMK E STATEI```	$\text { F } 2$	PLOP	MARS		$\begin{aligned} & \text { SPam } \\ & \text { oars } \end{aligned}$	LOP\%		$\begin{aligned} & \text { ICA } \\ & 8 / 07 / 76 \end{aligned}$	B. R	$\begin{aligned} & \text { B.R } \\ & \text { Signa } \end{aligned}$	- 1	$\begin{aligned} & 8 . T \\ & 5 i 6 \mathrm{ma} \end{aligned}$	$\begin{aligned} & \text { TCA } \\ & \text { SIGMA } \end{aligned}$
Cosod2	In meias	1784	115	0	0	29.5014	8/02	12:32	11:39:8	-3504.7	48.	1047.5	12.	192.3
Cesait	IM peias	-6A	25	0	5	6.6732	$8 / 03$	18:00	11:45: 33	- 242 Co 3	153.	-057.7	$0 \cdot$	98.9
Castos	in meias	日**	126	0	0	31.0310	8104	20:58	11:45:19	-2230.2	370.	9048.9	-	112.7
- 5 S104	Retas	303	34	0	0	7.7809	$8 / 04$	20:58	11:45:16	-2293.U	135.	Cosict	15.	226.7
Ogstos	In ealas	1631	126	0	0	31.0520	$8 / 04$	20:58	11:41:59	-2060.0	367.	9056.8	9.	107.5
00510*	Eelas	595	36	0	0	1.7962	8104	20:58	11: 39:18	-354:. 2	722.	9069.6	19.	202.6
Easis*	ceias meias	395	34	0	\bullet	1.7942	8104	20:58	11:44:30	-239n.9	34.	9051.3	6.	61.1
Cos202	In metas	1964	131	0	0	32.5003	8/05	12:42	11:43:3	-2264.7	177.	9049.1	3.	65.1
-05203	Rolas	638	*1	0	0	A. 4517	8/05	12:42	11:45:52	-2135.4	214.	9048.1	7.	54.6
ens 302	in Pains	1047	132	0	0	32.0437	B/6)	21:44	11:45:36	-2229.8	191.	-050.4	-	30.0
-ns303	meiss	\$22	12	0	0	0.8904	8/05	21:44	11:45:47	-2234.7	205.	9051.4	7.	46.9
Cos 302	In anias	1p*h	132	0	0	32.0447	8/05	21:44	11:45:42	-2134.1	174.	9047.3	\cdots •	42.7
-0s303	-ujas	450	42	0	0	0.0281	$8 / 05$	21:44	11:46:36	-2003.0	17%	9046.8	7.	42.6
dos353	Colas miegas	450	42	0	17	8.3536	8/05	22:20	11:45:24	-2422.7	16.	9058.2	4.	45.6
cosist	Cetas melas sep	450	42	0	19	6.8534	8105	22:20	11:45:1,4	-2425.7	7.	9059.5	3.	34.6
- 05402	-4tas	451	$4 *$	0	0	9.8 ¢35	8/06	21:19	11:45:18	-2420.3	17.	9057.4	1.	-6
-0s4uz	昒tas	702	4	0	0	9.8247	8/06	21:49	11:44:50	-2354.6	211.	9051.6	-	19.0
Co5408	CBIAj meias sep	18.2	**	0	23	-. 247	8/06	21:49	11:44:55	-2423.7	5.	9055.2	2.	13.3
-0s502	metas	717	43	0	0	10.0920	$8 / 07$	05:13	11:45:22	-2202.1	177.	9049.2	\cdots	4.0
-05sos	celas metas sep	777	43	n	23	10.0920	8/07	05:15	11:45:17	-2420.1	**	-057.9	1.	2.1
303s02	atas	707	- 3	0	0	111.0920	$8 / 01$	10:22	11:45:15	-2202.1	17\%.	9049.2	*	4.0
-05702	melas	425	43	n	0	10.3118	$8 / 071$	10:29	11:45:19	-2424.1	15.	7057.7	1.	-6

Tate 22. Vinhag 2 approact phece solutions (ONP)

Caseio	EST List CHENE STAPE!	r	Plope	mans	IMOS SPAM,		Lopt	ICA 8/97/76	H.0	$\begin{aligned} & \text { sir } \\ & \text { sicma } \end{aligned}$	6.1	$\begin{aligned} & \text { e. } \boldsymbol{r}^{\prime} \\ & \text { sion } \end{aligned}$	$\begin{aligned} & i<A \\ & \operatorname{sicha} \end{aligned}$
-2czes	-	-	-	7	0	-	1/08 18:01	12:21:24	1008. 2	419.	16,109.5	9.	133.3
-3czas	-	-	-	13	0	-	7108 18:01	12:12:04	665.6	152.	16100.3	203.	1548.8
-3¢320	-	-	-	17	0	-	7/09 18:01	12:11:35	sst.t	140.	16033.3	192.	1598.7
-36339	-	-	-	11	0	-	7/09 18:01	12:20:36	As5. 2	181.	14200.6	P.	58.0
-9Cuso	-	-	-	15	0	-	7/16 18:01	12:20:27	849.9	200.	16205.3	291.	2710.1
Bacate	-	-	-	15	0	-	7/16 18:01	12:20:54	44.4	175.	16201.3	s.	62.7
-4Cus0	-	-	-	15	0	-	1/16 18:01	12:20:04	638.6	203.	16198.0	12.	117.7
- 0 CSI	\bullet	-	-	20	n	-	7/18 0:0	12:20:57	6sw 0	106.	14201.2	5.	73.6
-acsic	-	-	-	20	0	-	1/1	12:20:29	869.6	197.	10151.7	209.	2718.1
-spioy	-	-	-	25	0	-	71. ':41	12:21:15	879.2	130.	16157.6	149.	3571.4
250213	-	-	-	27	0	-	7/22 10...	12:20:38	075.7	117.	16170.2	132.	3562.9
650229	-	-	-	"	n	-	7/22 18:01	12:21:47	079.7	54.	16194.1	26.	287.6
-59239	-	-	-	21	0		7/22 18:01	12:21:00	801.5	146.	16201.2	5.	09.5
-so30*	-	-	-	29	1		7/23 6:01	12:21:08	975.2	66.	16194.4	24.	240.8
esomot	-	-	-	13	n	-	7/24 6:01	12:21:07	EnO. ${ }^{\text {a }}$	46.	1819*.0	28.	204.2
-504t	-	-	-	13	5		7/24 6:01	12:19:58	e78.5	$\otimes 8$.	16100.7	107.	3535.9
-spsos	-	-	-	35	u		7/24 18:01	12:21:07	078.0	45.	16144.2	2 E .	288.7
-sasit	-	-	.	35	0		7/24 18:01	12:15:05	818.2	44.	16. 1.1	75.	2984.1
-spsit	-	-	-	15	n		7/24 18:0:	12:21:05	972.8	90.	16200.3	\bullet -	323.9
-6Etap	in	-	-	39	0		7/29 10:01	11:45:13	-2639.2	392.	e920.4	4 4.	4832.6
-6E120	in	-	-	39	0		7/29 10:01	11:43:43	-2622.7	122.	9056.2	25.	316.5
- $0^{\text {c }} 121$	in	-	-	\checkmark	0		7/29 10:01	11:46: 55	-2204.7	J35.	9 c 54.4	27.	201.7
-6Eza)	In	-	-	\cdots	0		7/30 15:01	11:44:40	-2413.7	64.	93s2.?	27.	311.6

Taide 22 (condi)

Teble 24. Summary of Viking 1 and 2 radlo metric data sets

Participiting DSS	Number of 2-way doppler measurements	Number of range measurements		
	Viking 1	Viking 2	Viking 1	Viking 2
11	48	55	12	14
14	180	98	0	0
42	0	88	0	14
43	139	115	14	3
61	42	71	5	12
63	232	5	12	0

Table 25. Summary of charged particle callibration sets

Viking 1					
Participating DSS	Type of calibration ${ }^{\text {a }}$	From		To	
11	DRVID	$6 / 11$	19:10	6/18	00:40
14	S/X	6/18	19:40	6/19	02:00
		6/19	18:30	6/19	20:50
43	DRVID	6/11	06:30	6/19	08:20
61	DRVID	6/10	13:50	6/14	17:10
63	DRVID	6/11	11:20	6/18	16:30
	S/X	6/19	10:50	6/19	18:10
Viking 2					
11	DRVID	7/28	20:00	8/6	00:30
14	DRVID	8/3	19:00	8/4	03:00
	S/X	8/3	17:50	8/3	18:50
		8/6	17:30	8/7	00:10
42	DRYID	7/29	04:00	8/5	07:30
43	DRVID	7/28	02:90	7/28	08:00
		8/6	00:50	8/6	07:50
	S/X	7/28	08:00	7/28	09:00
		8/7	02:30	8/7	09:30
61	DRVID	7/28	10:00	8/6	14:30

[^0]

Fig. 32. Viking 1 uncellibrated doppler reelduale

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 33. Viking 2 uncalibrated doppler reskduals

Fig. 34. Viking 1 callbrated doppler residuala

Fig, 35. Viking 2 calibrated doppler residuals

Table 26. Viking 1 uncalibrated corrections to LS44

	Participating DSS	Radio data	Radio data plus Mars pictures	1-sigma errora
Spin axis, m	11	-0.041	0.547	0.798
	14	1.18	1.96	0.' 9
	43	-3.29	-3.02	د. 665
	61	-4.41	-3.76	0.835
	63	-2.10	-0.94	0.524
Longitude, 10^{-5} deg	11	-1.21	$-0.7+7$	1.15
	14	3.51	4.07	1.29
	43	-1.22	-0.712	1.10
	61	0.0	0.352	1.23
	63	1.41	1.74	1.16

${ }^{6}$ For radio data

Table 27. Viking 1 callbrated corrections to LSA4

	Participating DSS	Radio data	Radio data plus Mars pictures	1 -sigma error
Spin axis, m	11	1.21	0.787	1.03
	14	1.58	1.66	1.60
	43	-0.509	-0.682	0.921
	61	-0.302	-0.675	0.121
Longitude,	63	-0.213	-0.332	0.802
10^{-5} deg	11	0.798	0.496	1.45
	14	1.19	1.00	1.70
	43	-0.200	-0.479	1.33
	61	1.25	1.00	1.51
	63	2.12	1.89	1.42

${ }^{a}$ For radio data

Table 28. Viking 2 uncalibrated corrections to LS44

	Participating DSS	Radio data	Radio data plus Mars pictures	Radio dala pius Deimos pictures	1-sigma error
Spin axis, m	11	-2.18	-2.23	-2.23	0.60
	14	-3.71	-3.91	-3.95	0.83
	42	-1.08	-1.03	-1.01	0.56
	43	-0.35	0.16	0.44	0.82
	61	-1.81	-1.81	-1.80	0.38
Longitude, $10^{-5} \mathrm{deg}$	11	0.12	0.28	0.35	0.95
	14	3.46	3.61	3.55	1.14
	42	2.20	2.34	2.41	0.94
	43	-2.88	-2.74	-2.79	1.14
	61	0.52	0.68	0.75	0.96

Table 29. Viking 2 callibrated corrections to LS44

	Participating DSS	Radio Data	Radio data plus Mars pictures	Radio data plus Deimos pictures
Spin axis, m	11	-1.19	-1.11	-1.16
	14	-1.35	-1.28	-1.38
	42	0.20	0.18	0.32
Lerror				

Table 30. Final Viking corrections to LS44

	Participating DSS	Viking ${ }^{\text {a }}$		Viking ${ }^{\text {b }}$ b		Table 31. Comblned Viking 1 and 2 station location solutions				
		Δ	1-sigma error	Δ	1-sigma error	DSS	$\Delta_{\mathbf{r}_{\mathbf{s}}^{\prime}}^{\mathbf{m}^{\prime}}$	Computed $1-0$, m	$\begin{gathered} \Delta \lambda^{a} \\ 10^{-5} \mathrm{deg} \end{gathered}$	$\begin{gathered} \text { Compited } \\ 1-\sigma, \\ 10^{-5} \mathrm{deg} \end{gathered}$
				-1.19						
Spin axis, m	11	0.38	0.85		1.01					
	14	0.67	1.58	-1.35	0.86					
	42	-	-	0.20	0.80	11	-0.31	0.64	0.45	0.63
	43	-0.34	0.88	0.51	0.86	14	-0.92	0.75	1.52	0.81
	61	-0.23	1.00	0.48	0.64	42	-0.22	0.79	-3.05	0.64
	63	0.19	0.76	08	1.04	43	0.09	0.61	-1.27	0.68
Longitude,	11	-0.94	1.38	0.82	1.04	61	0.31	0.53	-1.27	0.64
$10^{-5} \mathrm{deg}$	14	-0.17	1.70	2.00	1.22	63	-0.07	0.68	0.79	0.645
	42	-	-	0.01	1.00	63	-0.0)	0.68	0.7	0.8
	43	-1.70	1.28	-1.92	1.23					
	61	-0.51	1.46	0.94	1.04	,	ng) - r_{s}	44); $\Delta \boldsymbol{\lambda}$ =	(Viking)	(LS 44).
	63	-0.13	1.36	-	-					

${ }^{a}$ Timing polynomial set LD761004/PT761106.
${ }^{6}$ Timing polynomial set LD761018/PT761116.

Fig. 36. Final Viking spin axis and longitude corrections to LS44
these results, it can be concluded that if Viking data were combined with the Mariner spacecraft data incorporated in LS 44, the perturbation to LS 44 would be well within the Viking mission requirement of 0.6 m in spin axis and $2.0 \times 10^{-5} \mathrm{deg}$ ($\sim 2 \mathrm{~m}$) in longitude on station location accuracy.

XIII. Satellite Ephemeris Evaluation

This section records results of the analysis conducted to evaluate and update the Mars satellite ephemeris model, using Viking optical navigation data, i.e., photographs of Deimos against a star background. The improvement in the satellite ephemeris is an important by-product of the orbit determination activity using the optical data. The data available consisted of a total of 25 pictures spanning a 2.1 -day data arc from VO-1 and 23 pictures over 3.3 days from VO-2.

A. Wilkins' Angles

The motion of the natural satellite in its orbit around the planet is obtained based on the analytical ephemeris theory developed by H. Struve and described in Ref. 10. Wilkins' orbital elements (Ref. 11) are used to define the coordinate system (Fig. 37). In this theory the orbital plane of the satellite is approximated to be inclined at a constant angle to a

Fig. 37. Wilkins' angles
fixed plane, called the Laplacian plane, upon which the ascending node of the satellite orbital plane regresses. Shortperiod variations in the orbit are ignored. The angles shown in Fig. 37 are defined brlow:
$N_{A}=$ longitude of node of fixed Laplacian plane on standard equator (1950.0 Earth equator).
$J_{A}=$ inclination of fixed Laplacian plane to standard equator
$K_{A}=$ the argument of the ascending node of the orbital plane on the fixed Laplacian plane
$I_{A}=$ inclination of the satellite orbital plane to the fixed Laplacian plane
$L=$ the mean longitude of the satelite measured along the standard equator, the Laplacian plane and the satellite plane
$P=$ the longitude of pericenter of the orbit of the satellite, measured along the standard equator, the Laplacian plane and the satellite orbit plane.

As mentioned earlier, I_{A} is held a constant in the theory. The angles N_{A}, J_{A}, K_{A}, L and P are modeled as linear functions of time given by

$$
\left.\begin{array}{rl}
N_{A} & =N_{Z}+N_{R} t \\
J_{A} & =J_{Z}+J_{R} t \\
K_{A} & =K_{Z}+K_{R} t \\
L & =L_{Z}+L_{R} t \\
\text { and } \\
P & =P_{Z}+P_{R} t
\end{array}\right\}
$$

where the elements $(\cdot)_{Z}$ are the values of the angles $(\cdot)_{A}$ at a specified epoch and the elements $(\cdot)_{R}$ are their rates; the time t is measured in days past the epoch.

Table 32 gives the assumed a priori values and uncertainties for the Deimos ephemeris.

B. Analysis of Approach Optical Data for Ephemeris Determination

In this subsection we discuss the satellite ephemeris update, using the Viking 1 data for the analysis.

1. Satellite ephemeris parameter set selection. A preliminary analysis was conducted to establish the parameter set to be updated. Table 33 lists the results of six different parameter sets estimated using the Deimos optical data and the radio best estimate available in real-time, along with its associated covariance, as a priori. In each case the parameters estimated, in

Table 32. Viking nominal Delmos ephemeris

Parameter	Value	1 -sigma uncertainty
N_{A}	$46^{\circ} .211$	$0^{\circ} .1$
\boldsymbol{J}_{A}	$36^{\circ} .716$	$0^{\circ} .1$
K_{Z}	$210^{\circ} .266$	$1^{\circ} .0$
K_{R}	$-0^{\circ} .01813$	$0^{\circ} .0003$
I	$1^{\circ} .81$	$0^{\circ} .02$
L_{Z}	$273^{\circ} .587$	$0^{\circ} .1$
L_{N}	$285^{\circ} .16180$	$0^{\circ} .0001$
\boldsymbol{P}_{Z}	$126^{\circ} .097$	$5^{\circ} .0$
\boldsymbol{P}_{R}	$0^{\circ} .01813$	$0^{\circ} .003$
a	23458.89 km	0.1 km
e	0.00052	0.001

addition to the spacecraft state, are as indicated in the table. For the A1KX04 case the semimajor axis A, the mean motion $L N$ and the angular rates for K and P were also estimated.

For the update parameter set selection it was decided to drof I (the inclination of the satellite orbit to the Laplacia, plane) and to include the parameters N_{A}, J_{A} related to the orientation of the Martian pole; the latter are not as well known as is I, which is in fact modeled as a fixed constant in the satellite theory. The mean longitude L the eccentricity E and the longitude of pericenter P were included; also included was the node of the Laplacian plane K, which is not very well known.

Thus the update parameter set is: E, L, K, P, N_{A}, J_{A}.
2. Data strategy selection. Table 34 lists the results from estimating the satellite ephemeris parameter set described above, using four different data strategies. These are respectively:
(1) The post-AMC2 radio data available during the realtime processing as a priori.
(2) Optical data only.
(3) The radio a priori resulting from processing all the radio data available from AMCl until encounter.

Fig. 3s. VO-1 poetith Dedmoe realduals

Table 33. Parameter set selection for satelite ephemeris

RUNID	$B \cdot R, \mathrm{~km}$	$B \cdot T, \mathrm{~km}$	SMAA, km	ΔE	ΔL, deg	دl, deg	Δk, deg	$\Delta P, \mathrm{deg}$	$\Delta N_{A}, \mathrm{deg}$	$\Delta_{A}, \operatorname{deg}$
AlKX04	7265.9	6912.6	10.3	-0.270-3	0.215-1	0.115-2	0.1215	-0.114+1	-0.313-1	-0.832-2
AlKX05	7265.9	6912.6	10.3	-0.270-3	0.219-1		01235	-0.114+1	-0.321-1	-0.935-2
AlKX06	7265.9	6912.6	10.3	-0 270-3	0.208-1			$-0.114+1$	-0.378-1	-0.748-2
AlKX08	7266.7	6912.6	10.8	-0.265-3	0.267-1	0.119-1	0.412	$-0.112+1$		
AlKX09	7265.9	69:2.6	10.3	-0.270-3	0.220-1	0.115-2	0.121	$-0.114+1$	-0.314-1	-0.832-2
AlK $\times 10$	7271.8	6915.8	21.2		0.219-1					

Table 34. Data strategy selection for satelitite ephemerls

Strategy	RUNID	$B \cdot R . \mathrm{km}$	B.T. km	SMAA, km	ΔE	ΔL, deg	$\Delta \sqrt{\text { d }}$ deg	$\Delta K, \mathrm{deg}$	ΔP deg	$\Delta N_{A}, \mathrm{dex}_{\chi}$	ΔJ_{A}, deg
(1)	A1KX05	7265.9	6912.6	10.3	-0.270-3	0.291-1		0.1235	$-0.114+1$	-0.321-1	-0.935-2
(2)	A 2 KX 25	7263.9	6907.9	10.8	0.250-5	0.241-1		0.105	-0.824	-0.303-1	-0.138-1
(3)	A3KX83	7275	6920	1.92	-0.178-3	0.257-1		0.146	$0.450+1$	-0.373-1	-0.724-2
(4)	A3K $\times 87$	7275	6920	1.89	-0.175-3	0.256-1		0.145	$0.426+1$	-0.370-1	-0.734-2

Table 35. Eftect of degrading a priorl uncertalnty on satellite ephemeris

| RUNID | $B \cdot R, \mathrm{~km}$ | $B \cdot T, \mathrm{~km}$ | SMAA, km | ΔE | $\Delta L, \mathrm{deg}$ | $\Delta I, \mathrm{deg}$ | $\Delta K, \mathrm{deg}$ | $\Delta P . \operatorname{deg}$ | $\Delta N_{A}, \operatorname{deg}$ | $\Delta J_{A}, \mathrm{deg}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A2KX25 | 7263.9 | 6907.9 | 10.8 | $0.250-5$ | $0.241-1$ | | 0.105 | -0.824 | $-0.303-1$ | $-0.138-1$ |
| A3KX94 | 7257 | 6899 | 15.97 | $0.111-4$ | $0.257-1$ | | 0.121 | $-0.275+2$ | $-0.308-1$ | $-0.130-1$ |

(4) The a priori resulting from processing the data in (3) plus the star-Mars-star optical data arc from AMC1 to AMC2.

Strategy (2) was considered the best for updating the satellite ephemeris parameters, i.e., using the Deimos optical data only. This process should yield the best determination of the parameters with no corruption from any external error sources. Figure 38 gives the post-fit residuals for this strategy.
3. Loosening a priori satellite parameter variances. Table 35 shows a comparison of the nominal navigatiu. plan parameter uncertainties used as a priori with those degraded by an order of magnitude to allow the parameters greater freedom to move. Figure 39 gives the resulting post-fit residuals. The results were consistent with other solutions. However, the solutiot. had large correlations between the parameters, the B-plane solution was further from the current best estimate (CBE), and the longitude of periapsis moved by a large amount. Since there was confidence in the nominal satellite parameters and their associated statistics as determined from

MM'71 data, this solution was not considered to be suitable for use as an update. There is not sufficient strength in the data to be able to make a definite determination regarding the periapsis shift; this will have to await the in-orbit optical results.
4. Evaluation of measurement biases. An analysis was conducted to evaluate measurement biases in the optical data. The focus was on the determination of any relative shifts in the measurement biases between the star-Mars-star triaus and the Deimos-star data types. Biases were solved for in the latter using the strategies listed below:
(1) Using the Deimos optical data only.
(2) Using the a priori resulting from processing the radio data from AMCl to encounter, including the postAMCl Mars data assuming zero biases, followed by the post-AMC2 Deimos data solving for biases.
(3) Using the a priori resulting from processing all the radio and optical data between AMC1 and AMC2 and the post-AMC2 radio data, including the Deimos data solving for biases.

Fig. 39. V $0-1$ poettit Deimoe residuals; looee a priori
(4) Simultaneous processing of ali the post-AMC1 radio and optical data, assuming zero biases for the Mars data.
(5) Using the a priori as in (2), including only the postAMC2 Deimos data, solving for biases.

Results are listed in Table 36. Biases do exist in the Deimos data at the level of approximately 1 pixel in the pixel direction and $1 / 3$ pixel in the line direction. These types of biases are not surprising owing to the known difficulties in extracting precise image center from the intentionally overexposed Deimos image.
5. Evaluation of satellite parameter update. The values of the satellite parameters updated are listed in Table 37. They reflect a change in the inertial position (from the pre-updated Deimos orbit) of a minimum of 11 km and a maximum of 17.5 km , depending on the location in its orbit. Of this the down-track error is about 10 km .

To examine the effect of using the updated satellite ephemeris, a solution was made using the radio data available during the real-time processing along with the opti 1 data, but not solving for the satellite ephemeris. The results, along with the current best estimate are shown in Table 38.

Table 36. Optical measurement biases

RUNID	$\mathrm{BlASM}^{2} \times 10^{3} \mathrm{deg}$		BIASN ${ }^{\text {a }} \times 10^{3 \mathrm{deg}}$	
	Delta	Sigma	Delta	Styma
A1KX76	-0.003	1.5	-0.028	1.5
A $3 \mathrm{KX01}$	-1.5	0.48	-0.41	0.55
A3KX91	-1.44	0.52	-0.42	0.60
A06524	-1.53	0.50	-0.40	0.60
A3K X 35	-1.42	0.52	-0.42	0.60

${ }^{a_{1}}$ píxel $\div 1.5 \times 10^{-3} \mathrm{deg}$

Table 37. Deimos ephemeris parameter updates

Parameter	Value
E	05225×10^{-3}
L, deg	273.6111 .4
K, deg	210.37176
P. deg	12527263
N_{A}, deg	46180634
J_{A}, deg	36702119

Table 38. Deimos ephemeris update evaluation

Run	$B \cdot R$	$B \cdot T$
Before update AlKX0S	7266	6913
After update AlKX68	7269	6916
Current best estimate	7276	6920

Figures 40 and 41 show the pre-update and post-update Deimos residuals against the best postflight spacecraft trajectory. Figure 42 shows the same, using the satellite ephemeris corrections from case (4) in subsection 4, where biases were also solved for. An examination of Figs. 41 and 42 shows that similar biases are present in both sets of residuals; i.e., in the optical-only case biases are indistinguishable from spacecraft velocity errors. Also evident in both are spacecraft position offet signatures. The Fig. 41 residuals appear to be slightly flatter.

C. Satollite Ephemeris from VO-1 and VO-2

The results of applying the data and solution strategies discussed above are shown in Table 39. For both Viking 1 and 2, the changes of the parameter values from the nominal are displayed. The associated $1-\sigma$ uncertainties are also given in the table.

FIg. 40. VO-1 pre-update Delmoe realduals

Table 39. Daimos ephomeris using Viking approach optical data

Parameter	VO-1		Vo-2	
	Δ	1 sigma	Δ	1 sigma
E	0.25×10^{-5}	0.27×10^{-3}	0.19×10^{-4}	0.17×10^{-3}
L. deg	0.024	0.020	0.045	0.010
K, deg	0.11	0.89	0.01	0.89
P, deg	-0.82	4.95	-1.62	4.83
N_{A}, deg	-0.030	0.050	-0.016	0.045
J_{A}, der	-0.014	0.026	-0.020	0.015

As can be observed from the table, the major significant change from the a priori value is in the mean longitude L. Moreover, the change appears to be inconsistent between the results of VO-1 and VO- 2 by a statistically large difference of approximately 8 km . This apparent discrepancy can be explained, however, by an examination of the short-period terms omitted in Wilkins' theory.

In Deimos down-track variations, the dominant perturbations in down-track position due to sclar effects during the interval from VO-1 approach to VO. 2 approach are given by (Ref. 12)

Fig. 41 VO. 1 poet-update Dolmos realduals

$$
\begin{aligned}
\delta D T(\mathrm{~km})= & -8.6 \sin l^{\prime}-0.6 \sin 2 l^{\prime} \\
& -5.5 \sin \left(2 l^{\prime}+2 g^{\prime}\right) \\
& -1.1 \sin \left(3 l^{\prime}+2 g^{\prime}\right) \\
& +0.7 \sin \left(2 l^{\prime}+2 g^{\prime}-h+h^{\prime}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
l^{\prime} & =\text { mean anomaly of Sun } \\
& =204.5^{\circ}+0.5240207666(\mathrm{JD}-2414800.5) \\
g^{\prime} & =\text { argument of periapse of Sun } \\
& =2.49 .7^{\circ} \\
h^{\prime} & =\text { node of Sun } \\
& =180^{\circ} \\
h & =\text { node of Deimos } \\
& =\mathrm{K}-43.7^{\circ}
\end{aligned}
$$

The periods of these solar perturbations range from 229 to 687 days. The effect is to advance Deimos by 6.6 km in the down-track position at the time of the VO- 2 approach observations, and by 0.6 km at the time of VO.I approach, giving a net longitude difference of 6 km .

In addition to the above effects there is another shortperiod (65 -h) term neglected in Wilkins' theory. The 65 -h downtrack position variation. due to $\mathrm{J}_{\mathbf{2 2}}$, is given by

$$
\delta D T(\mathrm{~km})=-5.1 \sin \theta
$$

where

$$
\frac{\theta}{2}=L+136.0^{\circ}-350.892017 \text { (JD.2442778.5) }
$$

This term, which has a period of the order of the data spans, would in general have different effects on VO-1 and VO- 2 data. However, it may average out and would not therefore be expected to introduce any significant inaccuracy. After the short-period terms are accounted for, the VO- 2 satellite ephemeris results are in very good agrec.,.ent with VO-1 results.

In summary:

(1) There appears to be very good agreement between the results of VO-1 and VO-2 after the short-periodic terms are taken into account.
(2) The prediction error from Mariner 9 to Viking has been lem than 15 km . This constitutes a verification of the long-period-variation term due to Bom (Ref. 8); it is
the combined effect of the diaect solar perturbation and an interaction perturbation induced by the variation in inclanation of the satellite orbit relative to the planet equator due to solar perturbation. This effect would have yielded 80 km in the mapping from Mariner 9 to Viking.
(3) The approach optical data had limited strength: verification and/or improvement of the Deimos ephemeris will have to await results from the in-orbit and extended mission close encounter pictures.

XIV. Conclusions

The success of the interplanetary orbit determination effort is best measured by the accuracy of its delivered estimates:
(1) Viking I trajectory was delivered to within 25 km of its intended target despite the difficulties brought on by the pressurant problem. Although this error includes execution uncertainty. it still indicates a very accurate estimate of the premidcourse orbit.
(2) Viking 1 final pre-MOI orbit estimate, which was used to generate the MOI maneuver, was in error by 6 km . The accuracy of this estimate coupled with the precision of the orbit insertion maneuver permitted Viking 1 to fly a virtually nominal flight path to the initially prescribed lander separation orbit.
(3) Viking 2 was delivered to within 37 km of its intended target.
(4) Viking 2 MOI maneuver was based on an early, encounter minus 6 -day, estimate. This estimate was in error by 37 km .
(5) Viking 2 E .24 orbit was in error by 2 km .

There are a number of general conclusions resulting from the Viking innight experience that should be of value to future interplanetary orbit determination efforts. These conclusions are summarized below:
(1) Accurate postlaunch estimates are obtainable using just minutes of spacecraft tracking following launch. Early accurate estimates require moderate accuracy antenna angle observations.
(2) Long-arc estimates prior to approach M/C, although stable, were not as accurate as expected. The long-are technique has the potential for very accurate orbit estimation; however, it is computationally expenaive, unwieldy to implement for Viking, and it is relatively difficult to establish the confidence in the resultant estimates. For these reasons, further development is
required if long-are solutions are to be fully relied on in future applications.
(3) Effect of charged-particle density variations in the interplanetary medium strongly influenced the Earthbased doppler measurements. The effects were somewhat larger than predicted, and introduced relatively large variations in the approach estimates. The doppler calibrations using DRVID successfully removed these effects and brought the radio-only solution accuracies to within their expected levels.
(4) Optical measurements and the resultant optical-based solutions performed excellently. The limb measurement technique proved to be very precise and centerfinding errors proved to be small, most likely within 1% of the Mars radius (i.e., $\sim 35 \mathrm{~km}$). The two-camera observation technique achieved the most optimistic accuracy levels.
(5) Success of the optical orbit determination resulted from the concerted efforts in several areas, including: (a) use of long optical observation arcs, which essentially gave the optical-only solutions a stand-alone capability in determining the spacecraft orbit; (b) careful planning, design, and executi n of the onbodrt optical observation sequences; (c) extensiv participation ir, and use of data from, inflight camera and S / P checkolt and calibration activity: (d) use of spacecraft teleme:ry to improve two-camera observation accuracy; and (e) careful design of the radio-plus-optical processing techniques that ootained the relative advantages of the radio and optical data types. The optical orbit deteriniration success in addition drew heavily from the development provided by the Mariner 9 demonstration. including the general technology and software development (ONP and OMSET were derived frum Mariner 9 versions) and the Deimos satellite ephemeris determination.

References

:. Duxhury, T. C. Born. G. H., and Jerath. N.. "viewing Phobos and Demis tor Navigating Mariner 9." Jiournal of Spactecraft amd Roikers. Vol. 11, No. 4, pp. 215-222. Apr. 1974.
2. Jerath, ì., and Ohtakay, H., "Mariner IX Optical Navigation Using Mars Lit Limb," Jourral of Spacceraft and Rockets, Vol. 11, No. 7, July 1974.
3. Burn, G. H., et al., Mariner Mars 1971 Optical Navigation . Remonstratum : ïnal Reporr, Technical Memorandum 33-683. Jet Propulsion Laboratory . Pasadena. Calif., Apr. 15, 1974.
4. Moyer, T. D., Mathematical Formulation of the Double-Precision Orbit Determination Program (DPODP), Technical Report 32-1527. Jet Propulsion Laboratory. Pasadena. Calif., May 15, 1971.
5. Bierman. G. J.. Filtering an' Smewthing for the Viking Filter. Technical Nemorandum 391-414. Jet Propulsion Laboratory. Pasadena. Calif.. Fet. 28. 1973.
6. Rourke, K. H., and Jordan, J. F., "Application of Sequential Filtering to Fatimation of the Interplanetary Orbit of Mariner 9," Jourm! of Spacecraft and Rechets, Vol. 10. No. 12. pp. 773-778, Dec. 1973.
7. Christensen. C. S., Perfinmance of the Square Root Information Filter for Navigation of the Mariner 10 Spacecruff. Technical MemoranJum 33-757. Jet Pror ulsion Laboratory, Pasadena, Calif., Jan. 15, 1976.
8. Born, G. H., and Duxbury, T C.. "The Motions of Phobos and Deimos from Mariner 9 TV Data," Celestial Mechanics, 12, pp. 77.88, 1975.
9. Koble, H. M., Pease, G. E., and Yip, K. W., "LS 44 - An Improved Deep Space Network Location Set for Viking Navigation," in The Decp Space Network Pregress Report 42.35, pp. 79-88. Jet Propulsion Laboratury, Pasadena, Calif., Oct. 15, 1976.
10. Explanatory Supplement to the Astronautical tiphemeris and the American tiphemeris and Nautical Almanac. Iler Majesty's Stationery Office, London, 1961.
11. Winains, G. A., "The Analysis of the Obzervations of the Satellites of Mars," Modern Questions in Celestial Mechanics, G. Colombo ed., Edizione Cremoshese, Rome. 1967.
12. Hildebrand, C. E., personal communication.

Satellite Orbit Determination

C. E. Hildebrand, E. J. Christensen, D. H. Boggs, G. H. Born, B. G. Williams, and Z. Shippony

I. Introduction

The satellite phases of Viking 1 and Viking 2 began on June 19, and August 7, 1976, when the respective spacecraft were inserted into orbit about Mars. Each spacecraft consisted of an orbiter-lander combination. The orbiters, which had their own complements of science instruments, also served as communication relays for the landers in their search for Martian life.

The Mariner 9 Mission to Mars served as the precursor to Viking and was instrumental in guiding the development of mathematical models and procedures used for Viking orbit determination (OD). For example, the gravity field of Mars developed with Mariner 9 data was found to be well within its predicted uncertainty for Viking applications. In addition, the ephemerides of the Martian satellites Phobos and Deimos as determined by Mariner 9 television data aided precise navigation of the Vin.' s spacecraft on Mars approach (Ref. 1).

The orbital elements for the Viking spacecraft subsequent to Mars orbit insertion (MOI) and each major orbit adjust throughout the nominal 90 -day mission are shown in Tables 1 and 2. As seen from these tables the Viking spacecraft were in a wide range of orbits. Generally the orbits were near synchronous with the Mars rotational period (24.6 h) as contrasted
with Mariner 9's orbital period of approximately 12 h . Other signficant differences between Viking and Mariner 9 are in the orbit inclination and location of periapsis $\left(64.5^{\circ}\right.$ and $22^{\circ} \mathrm{S}$ for Mariner 9 (Refs. 2 and 3)).

This part of the report relates the experiences of the Viking Satellite Orbit Determination Team in determining the Marscentered ephemerides of the Viking Orbiters and positions of the landers from two-way doppler and range data. In Section II an overview of mission satellite OD functions and methods is given. Section III relates postmaneuver orbit convergence experiences, while Section IV discusses local orbit knowledge accuracies, including the effects of interplanetary media, use of constrained solutions and solving through trim burns. A very significant aspect of any planetary orbiter mission is rapid identification of the planet gravity field; the relevant procedures and results are given in Section V. Viking lander position determination is discussed in Section VI. While this chapter is primarily concerned with activities during the nominal mission, several interesting activities associated with the extended mission are also included. Specifically, results relative to sensing Mars' gravity field during the extended mission are included in Section V; Section VII contains a discussion of the Phobos Flyby Experiment conducted during February 1977.

Table 1. Areocentric 0. I elements of Viking 1

		MOI	MOT-1	MOT-5	MOT-6	SKT-2	MOT-7	MOT-8	MOT-9
Date of maneuver		6/19/76	6/21/76	7/9/76	7/14/76	8/3/76	9/11/76	9/20/76	9/24/76
Semımajor axis, kmi	a	29325.5	20448.9	20512.0	20443.4	20435.9	18879.4	19081.1	20440.1
Eccentricity	e	0.8327	0.7600	0.7608	0.7602	0.7603	0.7412	0.7439	0.7598
Mean perrod, h	P	42.352	24.661	24.776	24.651	24.638	21.877	22.229	24.645
Longitude of ascending node, deg	Ω	129.80	129.68	124.77	124.20	121.78	116.99	115.72	115.08
Argument of perlapsis. deg	ω	39.76	39.94	44.89	45.82	49.31	56.03	57.99	59.77
Inclination, deg	1	37.87	37.88	37.69	37.70	37.90	38.13	38.31	38.16
Height above surface at periapsis, km	h_{p}	1513.2	1513.1	1512.9	1508.5	1504.8	1491.2	1491.9	1515.4
Latitude of subperiapsis passage, deg	o_{p}	23.12	23.21	25.56	26.01	27.76	30.80	31.71	32.26

Keplerian elements referenced to Mars true equator of date. Mean radius of Mars $=3394 \mathrm{~km}$.

Table 2. Areocentric orbital elements of Viking 2

		MOI	MOT-1	MOT-2	MOT-3	MOT-4	MOT-5
Date of maneuver		8/7/76	8/9/76	8/14/76	8/25/76	8/27/76	9/30/76
Semimajor axis, km	a	22054.8	21889.5	21943.0	21513.4	20472.2	21611.2
Eccentricity	e	0.77:	0.7765	0.7769	0.7603	0.7610	0.7732
Mean period, h	P	27.623	27.313	27.413	24.040	24.622	26.794
Longitude of ascending node, deg	Ω	36.37	36.07	35.72	34.78	34.40	54.60
Argument of periapsis, deg	ω	69.32	69.77	70.02	72.66	73.65	68.34
Inclination, deg	I	55.17	55.20	55.21	55.65	55.39	74.90
Height above surface at periapsis, km	h_{p}	1518.2	1499.0	1501.0	1424.3	1489.0	1508.3
Latitude of subperiapsis passage, deg	ϕ_{p}	50.17	50.40	50.51	52.00	52.16	63.80

Keplerian elements referenced to Mars true equator of date. Mean radius of Mars $=3394 \mathrm{~km}$.

The Viking Navigation Plan (Ref. 4) extensively covers preflight models, procedures and error analysis for all Viking navigation functions from launch through landing. Consequently, preflight analysis will be discussed here only insofar as necessary to explain in-flight results.

II. Overview of Viking Satellite OD Activities

A. Support Activities

Viking satellite phase events requiring extensive navigation support are shown chronologically in Fig. 1. Prior to Viking Lander (VL) separation, orbit phase navigation activities were directed toward
(1) Acquiring imaging and other scientific observations of candidate landing sites.
(2) Achieving an orbit from which a safe landing could be effected.
(3) Designing the VL deorbit burn, entry trajectory, and descent guidance and control sequences.

Postlanding activities during the primary mission shifted to VL/VO relay link design and maintenance, VO Science and

Radio Science support, and, between VL-1 landing and VL-2 descent design, analysis of the VL-1 descent performance. Specific areas requiring direct orbit determnation support are described below.

1. Mars orbit trim (MOT) design. Orbit trim maneuvers were performed to achieve orbits such that
(1) Landing site reconnaissance could be performed.
(2) VL descent and landing could be safely executed.
(3) The VL/VO relay link was of sufficient duration.
(4) VO Science objectives could be met.

MOT design employed estimates of VO state at the time of the maneuver and at the target point (VL separation, for exampie). Estimates were typically provided at three different stages of the design process, ranging in time from several days prior to a maneuver to as late as 20 hours before a trim. Providing for "late updates" to the maneuver time employing the most recent estimates of orbit timing resulted in elimination of the major contribution of the orbit determination error to the orbit control error.
2. Science sequence design. VO position estimates accurate to 13 km at periapse were required for targeting the scan

Fig. 1. Viking orbit phase navigation related evente
platform instruments. Orbit determination support of this function was relatively intensive because
(1) Science sequences were performed nearly every orbit during the plime mission.
(2) Accuracy and lead time requirements limited the useful interval of prediction of a given solution.
(3) Frequent orbit trims shortened the useful prediction intervals and often necessitated quick redetermination of the post-trim orbit so that science sequences could be updated to compensate for maneuver execution errors.
3. VL descent design. VO state estimates at VL separation provided initial conditions for the descent trajectory. Again, descent design employed VO state estimates at several stages of the design process. Provision was made for utilizing estimates becoming available as late as 26 hours before separation to update the time of inituation of the descent sequence.
4. VL/VO radio tracking. Predictions of round trip light times to the Viking orbiters and landers are routinely prepared to support the tracking :- + ivities of the NASA Deep Space Network (DSN). The DSN culloys this information in selecting tracking frequencies and in monitoring data quality. Frequent orbit trims significantly impact the complexity of this task.
5. Pseudoresidual generation. Frequency-independent doppler observable predictions are routinely provided to the Mission Control and Computing Center (MCCC) at JPL. The predicted and actual doppler measurements are difterenced by MCCC in real-time, and the resulting pseudoresiduals are displayed via closed circuit TV. The navigation group uses pseudoresiduals to monitor trajectory events (trims, VL separation, atc.), monitor orbit prediction accuracies, detect doppler data or orbit anomalies, and to edit the doppler data.
6. VL/VO relay link design. Lander science and engineering data is returned to Earth via a low-data-rate S-band direct link or a high-rate VL-to-VO UHF relay link. Orbit determination support of the relay link design activities consists of providing predicted VO trajectories and estimates of VL position, which are then used to determine the time of initiation and duration of each relay period. The VO trajectories typically provide predictions of time of periapse accurate to much better than 30 s 10 orbits in advance.
7. Radio Science. Local orbit estimates and pseudo Earth-to-Mars range measurenents (normal points) are periodically prepared in support of Radio Science activities. The normal points, which are obtained by processing VO ranging data, are
used in the relativity/ephemeris experiment (Ref. 5). VO position estimates are also provided in support of the S / X occultation experiment.

B. Methods

The basic techniques for determining the state of a Mars orbiter were well established during the Marmer 9 mission (Ref. 3). The strategy involves processing a single revolution of two-way doppler to determine the local orbit. Accurate prediction is achieved by using data arcs spanning several revolutions to obtain improvement in the estim: te of a spherical harmonic coefficient model of the Mars gravity field. The Mariner 9 spacecraft remained in essentially the same orbit from the first trim at two davs after insertion until the end of the mission. The orbit periapses made a complete circuit of the planet at nearly constant latitude in a resonance cycle of 38 revolutions. Thus, gravity models generated with four to six orbits of data from one resonance cycle could be used in predicting over the same region on the next cycle. During the Viking Prime Mission, a technique designed to deal with a variety of orbits was employed. Basically, gravity models associated with a given orbit were developed by first processing two to four orbits of data estimating harmonic coefficients through sixth degree and order, and then selected "local" models were combined into an ensemble field.

A task which required relatively little attention during Mariner 9 was that of redetermining the orbit after a maneuver in support of Science Sequence Design and DSN tracking (only two trim maneuvers were performed during the Mariner mission, compared to three for VO-1 and four for VO-2 prior to lander separation). Possible approaches involve
(1) Processing short arcs of post-maneuver doppler data.
(2) For orbit trims, processing pre- and post-trim data and estimating trim ΔV components (and possibly gravity coefficients) in addition to VO state.

A problem encountered with the former technique is that ill-conditioning may lead to slow convergence, or even divergence unless a numerical method such as the Partial Step Algorithm (Ref. 6) is employed. This problem may be especially critical in the process of converging to the initial orbit after Mars orbit insertion. If an accurate orbit is available prior to the trim, the solution can be constrained with an a priori covariance matrix. This question is addressed in detail in Section IV. In any case, for rapid redetermination, the problem of assessing the estimate accuracy arises. In general, this can be satisfactorily done by processing several intermediate arcs and monitoring the evolution of the estimates of selected orbit parameters.

Viking lander position determination involved estimating hwh the cylindrical coordinates of the VL relative to a Mars fixed reference frame and the inettial direction of the Mars spin axis from short ares of two way doppler data and a few two-way range points. Accurate VL position estimates were required five days after landing. Potential errors resulting from an incorrect value of the Earth-to-Mars range were eliminated by making use of VO range residuals, as discussed in Section VI.

III. Initial Orbit Convergence

A. The Convergence Problem for Short Data Arcs

As a result of the excellent encounter phase orbit determination (OD) and Mars orbit insertion (MOI) maneuver design and execution, the differences between the actual post-MOI crbits achieved and the desired target orbits were within predicted 10 levels. Thus, for example, the period component of the error in the a priori state used in the initial fit after insertion was 20.25 min for VO-1 and -5.98 min for VO-2 (using as reference the periods that resulted from processing full orbits of data. Section III-C). In general the determination of a postinsertion solution becomes more difficult as the total error in the a priori state increases: the overall accuracy of the Viking orbit insertion process allowed convergence to the (approximate) initial state of both orbiters without undue difficulty. using only the first several hours of post-MOI data.

Under less fortunate circumstances the initial determination of the post-insertion state; could have been more troublesome, particularly a few hours after MOI when only short data arcs were available for fitting. Indeed, if the a priori state error had had a significant component in an unfavorable direction, and had the iterative differential-correction process using the classical Gaussian least-squares solution offered by the DPODP been used, a suitable solution might not have been obtained. The standard linear batch data filter, which is entirely adequate for interplanetary $O D$, has in fact been shown to lead to divergent results over a wide class of orbital configurations - even for relatively small initial state errors (Ref. 6).

Such a convergence problem arises from the coupled effects of nonlinearity and "ill-conditionedness," and was recognized some time before the Viking mission (Refs. 3, 4, 6). Noalinearity here refers to the inability to accurately relate finite deviations in the data to deviations in the spacecraft state with first-order partial derivatives, and ill-conditionedness is related to the numerical difficulty inherent in computing the full-rank solution for a set of parameters - state in this case - which for a given data set is highly correlated statistically. A short
data arc, i.e., one spanning less than an orbital period, typically yields deleterious conditioning. As the amount of data used in a least-squares fit decreases from a full orbit to, say, a four-hour are (i.e., $1 / 6$ of a revolution) following perapsis, the process of inverting the linear system becomes mereasingly dominated by numerical error.

A closely related, but distinct, problem associated with classical batch data filtering of ill-conditioned data sets is the inherent loss of precision in the formation of the "normal matrix" $A^{T} A$, where $A=\partial z / \partial x$ is the matrix of partial denvatives of observables (z) with respect to estimated parameters (x). This degradation intensifies the ill effects of nonlinearties in a solution attempt, but even when conventional techniques are adequate for convergence, the accuracy of the orbit determination process is enhanced by the square-root approach to the least-squares problem. The DPODP's square-root batch data filter (Ref. 7) eliminates the numerical error and instability that s rise in the normal equations formulation. Most of the routine single- and multiple-revolution fits performed throughout the mission were devord of convergence problems and were therefore accomplished using this full-rank, square not solution techrique.

Mission requirements dictated that the spacecraft postinsertion state be estimated as quickly as possible, namely, four to six hours after burn termination. It is perhaps ironic that during the orbit phase it was necessary to compuie these crucial early state solutions using a small and thus poorly conditioned data set at the very time when the a priori error in the spacecraft orbit - and therefore the nonlinearity effect was maximal. The partial-step algorithm (PSA) (Refs. 3, 4, 6, 8) was developed and implemented in the DPODP to deal with this post-MOI initial convergence problem, and also to produce an essential safeguard against an anomalous (larger than ex. pected) orbit error due to an insertion burn irregularity. The fact that nine PSA iterations were necessary to obtain the first (data arc length: 4 hours) post-MOI state solution for VO-1 (see Section III-C) - despite the accuracy of the crbit insertion - underscores the utility of the PSA for orbiter state convergence.

The PSA is a sub-rank (i.e., partial-step) method that uses an a priori estimate error covariance ellipsoid to judiciously constrain the classical full-rank solution vector computed for each iteration of a least-squares process. The basis of the method is a spectral decomposition of A from which a similar representation of the pseudo-inverse (Refs. 9, 10) of A is computed. Specifically, components of the solution step in the normal-matrix eigenvector coordinate system are individually constrained to lie within the expected error cllipsoid. The possibility of taking a solution step leading to divergence is thereby greatly reduced.

B. Preflight Simulation Analysis

An important aspect of the DPODP's batch data-filtering process is that the PSA and square-root full-rank techniques give identical converged state sulutions for fit cases that lie within the limitations of the latter: no penalty is paid for the margin of safety gained by using the PSA for a state fit that the full-rank method could perform equally well. On the other hand, due to the inherent nature of the nonlinear convergence problem, the power of the PSA is not unlimited. Thus the region of convergence, i.e., the largest initial spacecraft state error allowing convergence with the PSA. determined by preflight simulations will be described here. Such a region was determined for -- and centered about - the nominal post-MOI orbit configuration for both VO-1 and VO-2. These nommal orbits were based upon best-estimate Mars encounter trajectories and associated insertion maneuver parameters updated a few weeks before the respective MOIs.

To compare convergence capability against the expected post-MOI total spacecraft state error, it was necessary to assess the a priori encounter-phase $O D$ and maneuver execution errors. Encounter OD eirors for both approaches were determined assuming the baseline physical model error levels quoted in Section 7 of Ref. 4 with doppler tracking (with 1σ noise $=1 \mathrm{~mm} / \mathrm{s}$) of the spacecraft from Encounter-40 days to Encounter-1 h (attitude maneuvers in preparation for MOI ignition occurred during the hour preceding MOI). The resulting orbit determination error, when mapped to MOI maneuver termination, was found to have 1σ cartesian components bounded by 5 km in position and $5 \mathrm{~m} / \mathrm{s}$ in velocity for both VO. 1 and VO.2.

The covariance matrices representing the dispersion in the maneuver system executions were computed by Monte Carlo techniques with program MOIOP (Ref. 4) based upon bestestimate approach trajectories. The RSS of these maneuver uncertainties and the approach OD errors - the two processes were assumed to be \cdots :-correlated -- yielded the total a priori state errors. The resulting 1σ values for position and velocity in the mean-Earthequator of 1950.0 system are given in Table 3. The a priori maneuver execution error was the major component of the total uncertainty in the postinsertion state for both orbiters.

Although errors in all state-space directions led to convergence provided they lay within the PSA convergence region, some directions were more favorable than others. A worst direction for post-MOI state errors was found: the convergence boundary for this direction yielded the most conservative limit for the capabilities of the partial-step method. To gain an intuitive notion of the worst direction for on initial state error, the doppler time history for one orbit of a planetary satellite

Table 3. Post-MOI initial state uncertainties

VO-1	${ }^{\sigma} \boldsymbol{x}$	9 km	${ }^{\dot{X}} \dot{x}$	$15 \mathrm{~m} / \mathrm{s}$
	σ_{y}	25	${ }^{\circ} \dot{j}$	10
	σ_{z}	12	$0 \div$	8
	$\sigma_{r s s}$	292	$\sigma_{r s s}$	19.7
VO. 2	σ_{x}	15	${ }^{\circ} \dot{x}$	10
	σ_{1}	20	${ }^{\circ} \dot{j}$	6
	σ_{z}	11	$u:$	10
	${ }^{\text {r }}$ rs	27.3	$\sigma_{r s s}$	15.4

as shown in Fig. 2 must be considered. Letting the solid line represert the real data and the broken line the predicted data based or an a priori post-MOI state, then t_{0} and t_{1} are the first and second periapsis times of the true trajectory, i.e.. the generat or of the real data. The following convergence characteristics were observed in all PSA test cases, where t represents the end of the data span included in the fit (for all cases, $t \leqslant$ the predicted orbital period:
(1) If the second periapsis of the true trajectory was not included in the real data, i.e., if $t \not t_{1}$, then convergence was obtained.
(2) If the second periapsis was included in the real data, i.e., if $t>t_{1}$, then convergence was not obtained.

Fig. 2. Rango-rate time history for different values of ortital period

These observations led to the conclusion that the presence of an unexpected periapsis in the data interval is the most significant condition that can occur with regard to limiting the convergence of the PSA. Thus, the worst initial direction error (where error Δ real minus predicted) is that which results in the predicted period being maximally larger than the actual period for a given error magnitude.

A worst-direction analysis, however, must be conditioned on the a piori probabilities associated with the direction of the initial error. Examination of Fig. 3, which heuristically depicts position-velocity space, might suggest that the worst direction is given by the vector A, the shortest distance to the boundary of the nonconvergence region. However, if the a priori initial error dispersion is represented by the ellipse centered at the origin, then the probable worst direction will lie more in the direction of the vector B. This worst direction can be found analytically by minimizing the scalar function

$$
\begin{equation*}
J(w)=g w+\lambda\left(w^{T} \Gamma_{X}^{-1} w-1\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
w & =\text { worst-direction error vector (to be computed) } \\
g & =\partial a / \partial X \text { (row-vector gradient of semimajor axis) } \\
\Gamma_{X} & =\text { post-MOI state covariance matrix } \\
\lambda & =\text { scalar Lagrange multiplier }
\end{aligned}
$$

Fig. 3. Woret-direction diegram in phase space

The solution to the minimization of J in (1) is

$$
\begin{equation*}
w=-\frac{\Gamma_{X} \varepsilon^{T}}{\sqrt{g \Gamma_{X} g^{T}}} \tag{2}
\end{equation*}
$$

Evaluations of Expression (2) showed that the worst direction fell within a dispersion in position opposite the post-MOI position vector and a dispersion in velocity opposite the postMOI velocity vector. Table 4 gives the worst-direction vectors determined by evaluating (2) for the a priori best-estimate post-MOl orbits.

A simplified state-only orbit determmation progran: incorporating the PSA was used to obtain the preflight initial convergence results. The program approximates the spacecraft orbit about Mars with a conic path and the movement of a point-mass Earth with respect to Mars by linear motion. All accelerations other than two-body are ignored, and light is assumed to have infinite velocity. The simulated results duplicate the state-convergence properties of the full-modeled DPODP to within approximately one percent; thus the convergence regions to be given are realizable to within a sımilar margin. Media effects, while significantly influencing the accuracy of short-arc solutions, have little bearing on convergence characteristics and were therefore not included in the simulations.

Convergence profiles determined for large post-MOI state knowledge errors in individual orbital elements are summarized here. Worst-direction error capability limits found by testing multiples of the worst-direction vectors given in Table 4 are then given. Solution epochs used in these convergence cases were initial periapsis after MOI for VO-1 and MOI maneuver motor-off time (true anomaly $\approx 68 \mathrm{deg}$) for VO-2. The various data spans used for the fits all began 30 min after the respective epochs; thus VO-1 spans started $\sim 40 \mathrm{~min}$ after

Table 4. Post-MO1 convergence worst-direction error

Coordinate $^{\mathrm{a}}$	Viking 1	Viking 2
Δx	0.3769 km	0.9167
Δy	-0.8778	0.1867
$\Delta . \dot{\Delta \dot{x}}$	-0.2956	-0.3532
$\Delta \dot{y}$	$0.1383 \mathrm{~m} / \mathrm{s}$	1.1837
$\Delta \dot{z}$	1.0169	0.4473

${ }^{a}$ Vectors have been scaled so that $(\Delta x)^{2}+(\Delta y)^{2}+(\Delta x)^{2}=1$.
the nominal motor-bum ternination. While convergence boundartes were seen to be only secondarily influenced by data-start times, the start times used gave optimal results. The presence of loose a priori information on the state and nominal data noise also had little influence on convergence characteristics.

Results are presented showing convergence and nonconvergence regions in terms of post-MOI position-error converger.ce limits vs tracking data span used. The position error is the magnitude $\left(\Delta x^{2}+\Delta y^{2}+\Delta z^{2}\right)^{1 / 2}$ of the position deviation in cartesian coordinates corresponding to an orbital element or worst-direction perturbation. OD accuracies are also included on each plot in the form of epoch RSS position uncertainties $\left(\sigma_{x}{ }^{2}+\sigma_{y}{ }^{2}+\sigma_{z}{ }^{2}\right)^{1 / 2}$ as a function of the data interval. These accuracies were computed by the DPODP with state-only fits assuming baseline errors ($R: f .4$) in gravitational harmonics and doppler data.

Figure 4 illustrates convergence properties for perturbations in the VO-1 post-MOI eccentricity. For example, for a $4-\mathrm{h}$ VO-1 data interval, convergence is obtained for errors up to 0.11 in eccentricity, or equivalently, 2300 km in position-error magnitude. The maximum convergent position error drops to 430 km as the data interval is extended over nearly the entire
nominal 24.7 -h orbat. The VO-2 eccentrcity profile is simular: in buth cases the convergence regions extend far above the OD uncertainty for all data spans. In addition. the region boundaries lie far above the 1σ RSS pidictad position errors given on Table 3. The eccentricity conveigence regions are found to be independent of the sign of the error.

Similar results are given in Fig. 5 for perturbations in the plane-of-sky node (see Section IV) for VO-2. The convergence limits are not dependent upon the sign of the $\Omega_{\text {pos }}$ error. Figure 6 illustrates the convergence region for a VO-1 state error in semimajor axis. For thas parameter the sign of the perturbation thes influence the region boundaries: a negative perturbation in semimajor axis exhibits more pessimistic convergence characteristics than a positive perturbation. The convergence pronerties associated with errors in the remaining Kepler elements are similar to those shown: each exhibits maximum convergent RSS position errors of over 1000 km .

Figures 7 and 8 summarize the PSA worst-direction capabilities found for VO-1 and VO-2 with the observed boundaries (solid lines) compared against the analytically determined boundaries (broken lines). The latter boundary divides the $t<t_{1}$ region from the $t>t_{1}$ region (ct.. Fig. 2). The observed and analytic boundaries are seen to lie close together except

Fig. 4. Viding 1 cceenticity corvergence provilo

Fig. 5. Viving $2 \Omega_{\text {poe }}$ convergence profile

Fig. 6. Viking 1 semi-major axis convergence proflis
when t (data span end-time) approaches a full revolution of the nominal orbit, and in the case of VO.2, when $t \leqslant 6 \mathrm{~h}$. It is evident that a good margin of safety existed for the convergence problem; e.g., fitting 2 h of post-MOI VO. 1 data would allow convergence for RSS position errors of up to 725 km and corresponding RSS velocity errors of up to $788 \mathrm{~m} / \mathrm{s}$. Similarly, a 4 h fit of V(). 2 data would yield convergence for errors up to 400 km and $527 \mathrm{~m} / \mathrm{s}$.

The post-MOI convergence strategy was clear: upon preliminary convergence with say a 4 .h data arc, finer "tuning," i.e., convergence to a more accurate solution, would be performed with successively longer data arcs. After finding the initial 4 -h solution, most remaining error would he in $\Omega_{\text {pos }}$, and as seen in Fig. 5 , this direction is quite favorable to convergence. Thus, convergence boundaries as a function of increased data span length were even more optimistic than those suggested by Figs. 7 and 8.

Naturally, as the error in the initial state increases, convergence becomes more difficult: the penalty for starting with a poorer a priori solution is an increased number of PSA iterations required. For example, during testing, a certain illdirected VO-1 error with magnitude $\sim 3.3 \mathrm{o}$ in position (100 km) and ~ 50 in velocity ($100 \mathrm{~m} / \mathrm{s}$) was found to require $\mathbf{2 6}$ iterations for convergence with a two-hour data arc.

Fig. 7. Viking 1 wors-direction convergence profile

C. Viking 1 and 2 Initial Orbit Convergence

The first real-time operation of the Satellite OD Team was to obtain a spacecraft strte solution from tracking data acquired during the early part of the first revolution of VO-1 following MOI. Mission anomalies that occurred during the days preceding encounter dictated that the first orbit about Mars would have a period of about 42.5 h instead of the nominally planned 24.7 h . Last-minute simulations with this and several other neighboring potential orbits showed no substantive changes in the initial convergence characteristics given in the previous subsection. Only the a priori maneuver error varied somewhat.

Initial con;ergence and refinement during the first VO. 1 orbit were performed in the following manner. The data processed was two-way 1 . and $10-\mathrm{min}$ compressed doppler, which began soon after tracking station reacquisition following the MOI unwind attitude maneuver. Thus the frocessed data started 61 min after the initial periapsis, which was chosen to be the epoch for all fit cases done during this first orbit. The first fit used a data arc that ended about 4 h after periapsis; succeeding fits had data extending to $6,9,11,12,14,20,24$, 30,33 and 41 h (full-rev case) after periapsis. Each successive

Fig. 8. Viking 2 worst-direction convergence profile
solution was used as a priori for the subsequent case, which then improved upon this state estimate. In a strict sense, this improvement was limited to a monotonic decrease in the computed uncertainties on the solution as data was auc 4. As shall be seen, corresponding improvement in the solutions themselves did not always occur.

Nine PSA ite:ations were required to converge to the 4-h solution. Table 5 summarizes the solution states (Marscentered, mean-Earth-equator of 1950.0) resulting from this and all succeeding short-arc fits performed throughout the first orbit. The last two columns give the orbital period and $\Omega_{p o s}$ evaluated at the apoapsis following the epoch of the corresponding states. These are the important measures of the local accuracy of the estimates as they are the two major components of the VO state error (cf., Section IV). The first entry in Table 5 is the a priori state used to start the 4 .h convergence process; this state was at the time the best estimate of the post-MOI orbit. The last entry is the final full-revolution solution that resulted from fitting the 40.4 -h data arc obtained by deleting an hour of near-periapsis data at each end of the 42.4-h orbit. This solution is presumed to have the smallest error and is therefore a convenient reference against which to compare the short-arc fits.

The initial 4-h fit was an interesting example of the PSA's utility. Table 5 shows that this convergence yelded a solution requiring a sizeable net RSS move of 394 km and $0.280 \mathrm{~km} / \mathrm{s}$ from the a prioni state. In addition, the three hours of data yielded a system matrix with condtion number (ratio of largest to smallest singular value) $\approx 0.15 \times 10^{11}$. Had a fullrank step resulting from this rather ill-conditioned system been taken for any of the first few of nime tterations. divergence would surely have resulted. In fact, taking the full-rank step ($185 \mathrm{~km}, 560 \mathrm{~km},-717 \mathrm{~km}, 0.397 \mathrm{~km} / \mathrm{s}, 0.305 \mathrm{~km} / \mathrm{s} .0 .43 .3$ km / s) computed for the first tterate leads rapidly to a diver. gent process. For comparison, the PSA first step was $(-2 \mathrm{~km}$. $63 \mathrm{~km},-61 \mathrm{~km}, 0.030 \mathrm{~km} / \mathrm{s} .0 .034 \mathrm{~km} / \mathrm{s}, 0.039 \mathrm{~km} / \mathrm{s}$). After the fourth iteration the full-rank and PSA solution steps coincided as the remaining corrections moved withm the linearity region. After more data accumulated, the 6 -h are was fitted with the DPODP by correcting the preceding solut in. The small total adjustment required (cf., Table 5) e?a, led the DPODP to take full-rank steps for each iteration. As the data arc lengthened, subsequent DPODP solutions were obtained in the same manner.

The evolution of the orbit penod error resulting from these short-arc state solutions is given in Fig. 9 . For cach fit, the absolute value of the difference between the full-rev perood and the short-arc period given in Table 5 is shown. The brokenline curve is the corresponding formal statistical error in the period due 'o a $10(1 \mathrm{~mm} / \mathrm{s})$ doppler noise level. Figure 10

Fig. 2. Viling ithut ortik pertod eatimate avolution

Tabl: 5. VO-1 first orbit convergence ustory

Data ares h past pertapsas	- pochd cartestan chite.		$\begin{aligned} & \mathrm{S}_{\text {pos }} \\ & \text { deg } \end{aligned}$	limal pernod. h. min. s
	pos. km	vel, km / l		
-- --	--- ---	--- -		
	2389.75	-2.4293		
A prom	3036.31	-1.0729	108.23	424124
	3027.17	2.9909		
	2459.80	-2.2503		
4	3268.113	-0.9346	108.27	42 1921
	2710.22	3.1682		
	2457.47	-2.2542		
6	3274.10	-0.9307	108.12	422443
	2704.65	3.1713		
	2455.70	-2.2672		
9	3254.81	-0.94.34	108.54	422050.2
	2730.34	31578		
	2455.81	-2.2667		
11	3255.42	-0.9430	108.53	422053.1
	2729.48	3.1582		
12			108.47	42215.9
14			108.43	422114.4
20			:18.47	42217.6
24			108.443	42218740
30			108.438	42218.784
33			108.436	$42 \therefore 8784$
	2456.5793	-2.26.36113		
41 (full-rev)	3254.6630	-0.9401376	108.4.35	42218.836
	2723.4073	3.1614176		

gives the same history for the $\Omega_{p o s}$ error. The performance of the initial short-are estimates was evidently consistent with the ψ ficted errors for both period and $\Omega_{p o s}$. The irregularity observed for the $20-\mathrm{h}$ solution may result from nonstochastic errors in the doppler data due to the media (charged particle) effects.

Initial convergence and refinement during the first 27.6-h VO- 2 orbit followed the same scheme as for VO-1. Data again started scon after completion of the MOI unwind altitude maneuvers. However, since the VO-2 MOI burn terminated after the initial periapsis, the first usable data started about 100 min after periapsis. The first fit used a data arc with length 130 min terminating again about 4 h after periapsis. Succeeding fits had arcs terminating 6, 8, 10, 12. 16, 18, and 26.5 h (full-tev case) past periapsis.

Table 6 shows that the initial convergence pattern for VO. 2 differed substantially from VO-I since the a priori estimate was much closer to the final solution. Thus the 4 -h solution required only four DPODP full-rank iterations for conver-
gence. This first estimate is pathologically close to the finai solution when compared against succeeding fits and the predicted error due to data noise as showr in Figs. 11 and 12. Later fits appeared to be significantly affected by nonrandom media contributions to the doppler noise as evidenced by the rather large changes in $\Omega_{\text {pos }}$. Except for the 18 h case, bounds for these solution errors were nonetheless predicted reasonably well by the formal statistics shown. The more erratic hehavior for VO-2 may be explained by its later arrival at Mars - the effect of solar plasma charged particle activity on the doppler noise became more pronounced as the Earth-spacecraft system moved closer toward superior conjuiction with the Sun.

Contrary to the VO.1 experience. several of the VO. 2 intermediate short-are fits required the PSA - as well as a considerable number of iterations - for convergence. For example, 12 PSA terations, the first seven of which involved constrained steps, were necessary to converge for the 6 -h arc. The large variations observed in the early solutions are contained mostly in $\Omega_{\text {pos }}$ and are characteristic of media-induced systematic errors in such short data arcs.

Fig. 10. Viking 1 first orbit $\Omega_{\text {pos }}$ eatimate evolution

Fig. 11. Viking 2 finst ortit period estimate evolution

Table 6. VO-2 first orbit convergence histery

${ }^{1}$ Epoch $\sim 76 / 8 / 712^{\mathrm{h}} 10^{\mathrm{m}} 14.5$ (ephemeris time) is initiol periapsis +30.3 min.

Fig. 12. Viking 2 first orbH $\Omega_{p o s}$ eatimate ovolution

Support of the numerous Mars orbit trim maneuvers perfo ned for both VO- 1 and VO. 2 typically required a determination of the post-trim orbit within a lew hours following the maneuver (see Section If). Thus short-ars fits of post-trm doppler were frequently a necessity, even if only for corroboration with a concurrent estimatiow-of-maneuver fit of preand post-trim data. Since these maneuvers were much smaller than the orbit insertion burns, the smaller attendant maneuver errors made reconvergence simpler than it was following MOI. Nonetheless, ill-conditioning siue to the minimal information contained in the short data arcs would have led to divergence for some of these cases if fuli-rank unconstrained steps had been taken. The PSA provided a systematic technique for routinely converging to these short-arc solutions in the realtime mission environment.

IV. Short Arc Orth Dotermination

A. Preflight Anolyals

With a single exception, the Viking Prime Mission orbits had periods in the range 22.2 to 27.6 h , high eccentricities (0.76). and periapse altitudes of approximately 1500 km (see Tables 1 and 2). Preflight analyses demonstrated that the Mariner 9 strategy of estimating the spacecraft state by batch filtering a single orit! of twoway doppler (deteting nearperiapse data) is also an optimal strategy for the Viking orbits.

In additon, the studies showed that the accaracy of local orbor estmates would be lamted by gravity model ertors until an in-flight gravite model 'plate was performed. The pretlegh
 set of spherical !aramonic coeffienents converucted irm an ensemble of Varne ${ }^{\prime}$ larmonte coefficent model (Ref 11). Prellghe predictions of local accuractes (Ref 4) may he characterned as follows
(1) St.andard devatuons of 002 to 004 , in orbit pertod and time-nt-penape passage.
(2) Orbit ortentaton errors due almost enturely to errors of approamately $0.02 \mathrm{deg}(10) \mathrm{m}$ the orhit node on the Earth planeofesky. S pus. (the plane perpendecular to the Earth-spacecraft hnes
(3) Errors in the spacecraft position ($Z_{\text {pos }}$) along the Earth-spacecraft line with standard deviations of 15 to $25 \mathrm{~m}(0.1 \mathrm{t} 0.2 \mu \mathrm{~s})$.

The major contributor to the total spacecraft pootion error is the error in $\Omega \Omega_{\text {pos }}$. An error of 0.01 deg in $\Omega \Omega_{\text {pos }}$ produce position erross as large as 1 kine at perrapse and 6 hill at apoapse.

B. Inflight Results

An indeation of inflight accuracy levels can be obtamed hy examinuag the consistency of $\Omega_{\text {pos }}$ and $Z_{\text {pos }}$ estamates tron. different solutions. Figures 13 and 14 present typical deviations of local estimates of these parameters from their values on selected reference trajectories. Since the magnitudes of the errors in the reference trajectories are not known, only the "scatter" of the estimates has significance. Generally, the RMS residuals in $\Omega_{\text {pos }}$ and $Z_{\text {pos }}$ are consisteri with preflight predictions for the first three months of the orbital mission. Some unexpectedly large excursions do occur, howsver, probably as a result of doppler signatures indineed by interplanetary charged particles. Media effects, which are discussed in Section IV-C, were not treated in preflight studies, but their influence on the "post-fit" duppler residtals was quite evident. Plasma activity along the line-of-sight increased as the Sun-Earth-Mars angle approached the minimum of 0.26 deg on November 25. The ancrease combined with a decrease in tracking coverage is responsible for the large scatter in VO. $2 Z_{\text {pos }}$ estimates during October (Fig. 14b).

It might be expected that the error in $Z_{p o s}$ determinations would be observed by passing the doppler-determined orbits through the VO range data. Figure 15 is a plot of these "pass-thru" range residuals, which are the data used to con-

Fig. 13. Viking 1 orbit knowledge accuracy
struct the relativity/ephemeris normal points. The residuals contain contributions from several sources:
(1) Range measurement error ($<0.1 \mu \mathrm{~s}$).
(2) VO $Z_{p o s}$ error.
(3) Earth/Mars range error $(\approx 7 \mu \mathrm{~s})$.
(4) General relativistic time delay error ($\sim 1 \mu \mathrm{~s}$).
(5) Charged particle effects.

For the first six weeks a sinusoidal variation with an amplitude of $0.3 \mu \mathrm{~s}$ and a period of approximately 28 days is apparent. This is induced by a pre-Mariner 9 value of the Earth/Moon mass ratio in the DF 94 ephemeris (Ref. 4). The scatter relative to the sinusoid during this period is consistent with the predicted uncertainty of 0.1 to $0.2 \mu \mathrm{~s}(\mathrm{lo})$ in $Z_{p o s}$.

In addition to local orbit error levels, the accuracy with which future VO states may be predicted is of extreme impor-

Fig. 14. Viking 2 orbit knowledge accuracy
tance to orbit phase navigation. Prediction accuracies prior to an inflight gravity model update as determined from preflight studies are shown for a Viking-I synchronous orbit in Fig. 16. Indications of the significance of various prediction error levels are aiso given. The monotonic increase of position error at periapse with increasing prediction intervals resul from orbit resonance with the Mars gravity field induced by the nearly one-to-one commensurability of the spacecraft orbit period and the Mars rotation period (the details are given in Section V). The actual prediction performance of the Mariner 9 ensemble field during the inual phases of Viking- 1 is also presented. As will be seen in Section V, inflight updating of the gravity model yielded significant improvements in prediction accuracy.

The remainder of this section discusses strategies for performing late updates of the Viking orbiter trajectories in support of postmaneuver activities and spacecraft sequences. Procedures which are discussed include unconstrained and constrained short arc OD combined with use of PVRA. A discussion of media-induced effects on OD also is included.

Fig. 16. Preflight and actual Viking 1 periapse position prediction accuracy

C. Late Update Strategies

Nominal mission planning called for VO science sequences in support of landing site selection and certification to be performed at nearly every periapsis prior to VL separation, including periapses following orbit trim maneuvers. Since the accuracy requirement on time-of-periapse passage knowledge imposed by imaging considerations ($1.3 \mathrm{~s}, 1 \sigma$) was generally more stringent than the orbit control accuracy requirement, provision was made to update the sequence initiation time and initial camera pointing directions based on orbit knowledge derived from postmaneuver tracking.

Two orbit determination strategies for late updates were investigated preflight (Ref. 4, Section 8.6.5.7). The first strategy involved processing post-trim data only to estimate VO state. With the second, pre- and post-trim data were employed to estimate VO state and trim ΔV components. Both methods were used in Viking operations, with the first being preferred.

Solutions-through-trims were performed primarily to assess the viability of this techmque. The advantages and disadvantages of these methods are discussed below, and the inflight pertormance is described.

1. Post maneuver processing. With this approach, VO state is estimated by processing short ares of dopplet data acquired after an orbit trim maneuver. As implemented a priori knowiedge of the possible dispersions of the post-trim orbit was not used to constat the solutions. As a result. estimate errors were expecte. ine almost entirely due to noise on the data until the are encompassed nearly a full orbit. The short arc method has the advantages that (1) the DPODP link PVRA may be used, so that processing can be perfurmed very iapudly (see Section IV-E), and (2) the solution accuracy may be evaluated both by generating formal covariance matrices and by monitoring the evolution of the estimates as the length of the data arc increases. Figs. 9 through 12 provide an example of the information used in the accuracy evaluation. The disadvantages are (1) many iterations may be required for conver. gence due to the poor observability of the orbit node on the plane-of-sky, somewhat offietting the advantage of processing speed provided by PVRA, and (2) several hours of post-trim data may be required simply to achieve the same level of orbit knowledge as is avallable by propagating the pretrim orbit through the design maneuver (this criticism apples more to knowledge of orbit orientation than to orbit period).
2. Solve-through-trim. In this method. a full orbit of data prior to the maneuver is processed in conjunction with a short are of post-trim data. Both VO carnesian state and three components of the trim ΔV are estimated. A priori knowledge of possible dispersions in ΔV direction or magnitude is not utilized to constrain the solutions due to the difficulty of determining the validity of such a procedure in the presence of errors in the model of the gravity field of Mars. Solving through the trim effectively utilizes knowledge of the orientation of the post-trim orbit to supplement the orientation information in the post-trim data. Thus the estimate errors for a given amount of post-trim tracking may be expected to be smaller than those achieved with the short arc method. However, since the data arc employed typically includes a periapse, estimate errors arise not only from data noise but also from an imperfect gravit’ model. The difficulty of generating a reliable estimate of solution accuracy is one of the limitations of this method. A more serious disadvantage, however, is the processing time required. One iteration of a solve-through-trim case requires significantly longer running time than a short arc case because:
(1) PVRA cannot be employed.
(2) ΔV partials must be generated, and an integration restart occurs at the time of the maneuver.
(3) The orbit of data prior to the maneuver must be processed.
3. Inflight experience. The results achieved in real-time operations by applying the previous strategles are presented in Figs. 17 and 18 . The errors in the orbit node in the plane-ofsky and in the orbit period are shown as functions of the length of the post-trim data are. Late update processing results are given for the maneuvers listed in Table 7.

Note that the solve-through-trim errors are typically an order of magnitude smaller than those realized by processing post-trim data nly. In fact, when compared to covariance analysis results of Ref. 4 , the solve-through-trim errors are surprisingly small. The probable explanation is that the gravity fields employed were developed by sensing the field in the vicinity of the "included" periapse, and thus were more accurate than had been assumed in the analysis.
4. Constrained orbit determination. Neither of the late update strategies described to this point is without its limitations. Processing only postmaneuver data results in poor orbit convergence and somewhat unsatisfactory solution accuracy. Solving-through-trims requires excessive computation time and provides no convenient method for accuracy assessment. It was repeatedly observed that orbit orientation ($\Omega_{p o s}$) control accuracy for the trim maneuvers was better than the $\Omega_{\text {pos }}$ knowledge accuracy. The inverse is true with regard to orbit period. Thus, the convergence problem encountered when processing post-trim data alone may be largely eliminated by employing a priori constraints on the orbit orientation ($0.05 \mathrm{deg}, 1 \sigma$ would generally have been conservative for Viking applications). For most cases, it would also have been acceptable to constrain the anomalistic or mean orbit period to the 99% maneuver execution level. A strateg: of applying appropriate a priori constraints would yield accurate solutions with rapid convergence and short processing times. The question which arises is that of how the appropriate a priori covariance matrix is constructed. It is desired to constrain the "mean" values of the orientation angles and orbit period, but the DPODP accepts an a priori covariance matrix on VO state

Table 7. Trim maneuver description

Spacecraft	Trim	ΔV, m / s	Time from periapse, h, min
VO-1	MOT1	80.1	$+0: 02$
	MOT5	25.7	$-3: 04$
	MOT6	2.7	$-1: 00$
VO-2	MOT1	4.1	$-1: 38$
	MOT2	1.8	$+0: 20$

Fig. 17. Late update orbit period errors
only in terms of EME50 cartesian position and velocity at epoch. For the high-eccentricity Viking orbits, a suggested procedure is:
(1) Construct a diagonal covariance matrix on "mean" Viking modified classical orbital elements (VMCOE) at apoapse, preferably referenced to the plane-of-sky.
(2) Transform the VMCOE covariance matrix to a covariance on VO EME50 cartesian state at apoapse.

Fig. 18. Late update plane-of-sky node errors
(3) With the DPODP links MAPGEN and MAPSEM, map the cartesian covariance from apoapse to the desired epoch (usually periapse), considering model erıors such as Mars' harmonics.

The constrained orbit determination method proposed here bes not been tested. However, an analogous technique which has been employed for processing short arcs during the Viking Extended Missio, is reported in Section IV-D.

D. Constrained State Estimates During Extended Mission

Due to DSN scheduling restrictions, full-rev doppler tracking coverage for the Viking orbiters has not always been provided during events of scientitic interest. Such events include the Radio Science Team occultation and VLBI experiments, which require the best possible knowledge of the spacecraft trajectory over a short tme interval. Usually, these experiments provided doppler coverage only durng the time-span of interest (3.4 hours), and it has been shown in Section III that state-only fits over short data arcs of this length are divergent for both full and subrank estimates. In order to utilize these short ares of data. a constrained state estimate strategy was developed and implemented by the SATOD Tean.

Navigation experience during the Viking orbit phases indicated that tuming errors in orbit prediction 're highly dependent on modeling errors (specifically Mars gravity), but orientation errors remain essentially constant throughout predictions from a state-only fit. In fact, the uncertainty in orbit timing can be likened to an uncertainty in the time of periapse passage. This suggests that constraints could be most easily applied to a suitable set of orbital elements $\vec{\beta}$, which includes orbital period and time from periapsis along with the classical elements e, i, S, and ω. Since the DPODP operates in cartestan state-space, the transformation of the diagonal a priori covariance takes the following form:

$$
\Gamma_{x}=\left(\frac{\partial \overline{\mathbf{x}}}{\partial \bar{\beta}}\right) \Gamma_{\beta}\left(\frac{\partial \overline{\mathbf{x}}}{\partial \bar{\beta}}\right)^{T}
$$

where Γ_{β} is the constraint on the $\vec{\beta}$ elements, $\overrightarrow{\mathbf{x}}$ is the set of cartesian components, and $\Gamma_{\boldsymbol{x}}$ is the constraint on the cartesian state.

Next, the proper strategy for implementing this constraint on the estimation process was considered. In order to insure that the estimate was actually being constrained to the true mean predicted orbit, the starting epoch was chosen at a point in the orbit where the rates of change of the osculating elements were small. Tests indicated that an epoch 2 hours removed from periapsis was sufficient to exclude the effects of short-period gravity perturbations. In aucuition, a scheme was devised for assigning values to the elements of the diagonal Γ_{β} matrix corresponding to a given prediction by comparing that prediction to nearby full-rank solutions. The deviations of these solutions around the predicted values provided sample statistics for the standard deviation of each element of β.

Error analyses were conducted to determine the effect of various angular constraints on the orbit timing errors. It was
found that the uncertainty in the orbit period determination for short data arcs $(<10 \mathrm{~h})$ could be reduced by as much as 2 orders of magnitude over an unconstramed estimate by assigning a standard deviation of 0.1 deg to the orientation angles. Reducing this constrant to 0.01 deg makes practically no difference in the perod uncertanties (Fig. 19), but it does reduce the uncertainty in periapse timing by about half over a wide range of data arc lengths (Fig. 20). Further, the error analysis indicated the computed uncertainties in the estumated orientation angles were always less than their a priori constrant for data arcs longer than 2 hours.

The effects of various a priori timing sigmas were also considered in the error analysis; the period and time from periapse were constrained initially with a priori standard deviations of 5 and 30 s , respectively. Later, the constraint was tightened by using $\sigma_{p}=1 \mathrm{~s}$ and $\sigma_{t p}=6 \mathrm{~s}$. It was found, for a given orientation constraint, that both sets of timing constraints gave essentially the same results for data arcs longer than 6 hours (see Fig. 20). Also, it is important to note that computed uncertainties in both period and time from periapse are always less than the a priori standard deviation for data arcs longer than 2 hours: a further decrease of an order of magnitude in the timing uncertainties occurred for partial data arcs greater than 10 hours in length. Recall that all these results were obtained with data taken after an epoch 2 hours removed from periapse.

Another a priori constraint technique was considered for short data arcs within 2 hours of periapse. These short arcs of radiometric tracking were obtained to support the Radio Science Team's solar occultation experiments, which require highly accurate determinations of the spacecraft position during the occultation events that are within an hour of periapse. In these cases, the rates of change of the osculating elements and the uncertainty in the gravity modeling are too great to constrain the estimate to the proper orbit as before, so in addition to estimating the six constrained orbit parameters, the coefficients of $\cdot 6$ degree and order gravity model are also estimated. This results in a good fit of the data over short data spans near periapse, which results in a highly localized trajectory estimate and associated localized gravity model.

The usefulness of the constrained state estimate has been demonstrated under flight and postflight conditions for many situations which require accurate spacecraft position estimates from a limited data span. For example, postmaneuver state estimates with $10-12$ hour data arcs have been successful using the first constraint technique discussed. The second technique has been used with many otherwise ill-conditioned short arcs of data to supply highly localized position estimates for experiments.

Fig. 19. Effect of a priori conatraints on orbital period uncertalnty

E. PVRA: Efficient Spacecraft State Estimation in Orbit Phase

As described in Sections III and IV-C, post-MOI orbit determination frequently involves rocessing full or partial orbits of two-way doppler data to obtain estimates of VO local position and velocity. Often, as in orbit redetermination fol-

Fig. 20. Effect of a priort constrainte on time periapels pasasge
lowing a maneuter, this processing must be performed on constrained timelines in order to provide early orbit updates for science sequence design and DSN station predicts. Thus, Viking ODP development included implementation of a new link specifically designed to efficiently perform t.ie state-only data processing task.

This addition to the ODP software system, hereafter referred to as PVRA. performs those functions of links PV, REGRES, and ACCUM (Ref. 4) which are routinely required in orbit phase. To minmize the programming and program checkout efforts. PVRA was constucted fiom the buhlding blocks of the links it replaces. Efficiency was acheved by reducing total program size and quantity of I / O performed. Significant reductions in number of instructions and amount of data storage required were effected by (1) restricting variational parameters to spacecraft epoch state (2) resticting trajectory models to central body gravity (includng harmones). third body gravity, and flat-plate solar pressure, and (3) ehminating sequential filtering capabilty. The combinng of links PV, REGRES, and ACCUM2 into a single link led to I/O savings. since it was no longer necessary to both write and rad a PV file (probe ephemeris and variational partials) and a REGRFS file (residuals and data partials).

A measure of the efficiency achieved by PVRA is given by a comparison of SUP values (1108 accounting units). Generating an ACCUM file for a single Viking orbit with links PV, REGRES, and ACCUM2 requires 8.9 SUP - the same file may be obtained with PVRA for approximately 2 SUP. Sunce dollar cost of running the ODP is proportional to SUP, these figures represent a cost saving of at least 75%. The overall savings for a typical three-iteration orbit determination run amounts to better than 40%. Comparisons of wall clock time required to complete a run on a dedicated machme reveal comparable savings in running time.

F. Media Effects on OD Accuracy

Radio metric data is affected in two ways as it passes through the Earth's troposnhere, ionosphere and through whatever solar plasma miy be present in interplanetary sp.ce along the signal's path from a tracking station to the spacecraft and back. The troposphere, which is nearly static, causes a decrease in apparent velocity of signal propagation: the primary effect on doppler data is due to the change in tropospheric path length along the line-of-sight as the spacacraft elevation changes during a pass. Range corrections for this effect, which have a typical variation of 25 m over a station pass (Ref.4), were made for all Viking radio data with a spacceraft elevation-angle model that has a seasonal dependency.

The other media effect on radio data is due to the charged particle content of the ionosphere and the interplanetary plasma clouds emanating outward from the Sun. The ionospheric effect - an increase in phase velocity and an equal decrease in group velocity - also has an elevation dependence, a large diurnal dependence, and occasional large changes due to solar activity. Solar plasma effects, which are usually less
important. become quite signticant at times of high solar activity or at small Sun-Earth-Probe (SEP) angles. Typical variations of range corrections over a pass are 5 n for the ionosphere, whereas solar plasma corrections can vary from 0 to 50 m or more in a pass. The potentral for corruption of orbit estimate accuracy by unmodeled plasma effects is readily seen: a constant-rate range change of 50 m over an 8 -h pass is equivalent to a doppler bias of about $3.4 \mathrm{~mm} / \mathrm{s}$ - a (nonstochastic) contribution considerably larger than the assumed baseline doppler data 1σ noise level.

As the SEP angle approached a minimum on November 25. 1976, plasma activity increasingly de ${ }_{\square}$ aded satellite OD acc \cdot. racy. particularly noticeable fior short data ares. Figure 21 shows the effective one-way range error induced by the media charged-particle content during a pass of VO-1 data taken by DSS 63 on October 15, 1976. The line-of-sight phase change in meters derived from dual-frequency S / X doppler calibration data is given as a function of GMT. The near-constant rate of range vartation seen to have occurred starting at 1124 GMT is approximately equivalent to a 2-way doppler bias of 0.08 Hz for the ensuing 4.5 hours of data, assuming equal uplink and downlink effects. This degree of activity was not unusual: occasional bursts of media-induced doppler signatures at levels of 0.2 Hz and higher were observed weeks before superior conjunction.

The contribution to the doppler signatur: due to the charged-particle effect can be eliminated with varying degrees

Fi. 21. Phase change for VO-1 D8s 03 10/18/76 paed
of success dependirg upon the availability of S / X and DRVID data. Calibration polynomals derived from S/X or DRVID were obtainable from the TSAC team program MEDIA (Ref. 4) for any station pass which had coverage with either data type (since X-band transmission occurs only on the duwnlink, the uplink contribution to S / X calibration must be estimated from the downlink). However, since DPVID coverage was rare and S / X availability was irregular throughout orbit phase. there was no opportunity to mitigate the effects of plasma on OD accuracy by calibrating the doppler on a regular operational basis. While mission accuracy requrements were met without performing such calibrations. detivitics such as quick-look orbit reestmation following the numerous trim maneuvers that took place during the weeks preceding conjunction would probably have heen performed with less disquiet had the plasma contribution to the short-arc OD error been reduced by any significant amount.

Since no commitment had heen made for providing S/X calibration support during in-orbit operations, the TSAC software was not designed to be compatible with constrained operational timelines. As a result, calibrations were not used for real-time navigation support even when S - and X-band data were available.

1. Worst-case errors. An accurate assessment of estimation error resulting from charged-particle activity requres some knowledge of the structure of the doppler error signal due to this source. Since such structure was not generally known int advance, a worst-case approach was taken to at least allow a priori OD error upper bounds to be established. Thus simulated doppler errors of a given magnitude were assigned a signature which maximized the resulting error in individual estimated state parameters. The impact of expected plasma effects on short-arc local period and $\Omega_{\text {pos }}$ accuracies, for example, could then be conservatively predicted before a mission event.

The method used for worst-case computations is easily developed by letting the vector ϵ denote the lumped error in a set of linearized doppler observations Z : the observation equation $Z=A_{\hat{x}}+\epsilon$ yields for the error Δx in the weighted least-squares estimate of x

$$
\begin{equation*}
\Delta \hat{x}=F \epsilon \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
F=\left(A^{T} W A\right)^{-1} A^{T} W \tag{4}
\end{equation*}
$$

W being the usual data-weight matrix. Thus

$$
\begin{equation*}
\Delta \hat{x}_{t}=\sum_{l} f_{i j} \epsilon_{j} \tag{5}
\end{equation*}
$$

gives the component-wise OD error due to a not necessarily random doppler error sequence $\left\{\epsilon_{j}\right\}$. For unknown $\left\{\epsilon_{j}\right\}$, a meaningful bound for $\Delta \hat{x}_{i}$ can be computed by letting

$$
\begin{equation*}
\bar{\epsilon}=\max _{j}\left|\epsilon_{j}\right| \tag{6}
\end{equation*}
$$

be the assumed doppier error level. $\Delta \hat{x}_{i}$ is then maximized by choosing

$$
\begin{equation*}
\epsilon_{j}=\bar{\epsilon} \operatorname{sgn}\left(f_{i j}\right) \tag{7}
\end{equation*}
$$

for each i. Thus for a fixed-magnitude doppler disturbance at the $\bar{\epsilon}$ level

$$
\begin{equation*}
\Delta \hat{x}_{i \max }=\bar{\epsilon} \sum_{i}\left|f_{i j}\right| \tag{8}
\end{equation*}
$$

Equation (8) was used to evaluate the possible effects of plasma activity for numerous short-arc fits. Figures 22 and 23 show worst-case period and $\Omega_{p o s}$ results for the first VO-2 orbit following MOI; the upper curves are the OD errors due to an assumed media activity level of $\bar{\epsilon}=0.015 \mathrm{~Hz}$ as a function of the data-arc length. For comparison, the computed 1σ errors due to random data noise and the actual errors incurred in the succession of fits summarized in Table 6 are also given.

The $\Omega_{p o s}$ plasma curve is evidently an order of magnitude higher than the data noise curve throughout most of the arc-length range. This result appears to be overly conservative, however, since the actual errors for this case are consistently close to those predicted by $0.015 \cdot \mathrm{~Hz} 10$ data noise. The curves for the period are also roughly separaied by an order of magnitude until the $16-\mathrm{h}$ point, at which time the data noise error drops off rapidly. Both curves flatten out at about 10 h , but perhaps the most striking feature is the apparent persistence of plasma period error for arc-lengths approaching a full orbit - 2 s for 24 hours of data. While this too may be unrealistically high, it is interesting to note that the interval between 16 and 22 h , where the plasma error remains essen. tially constant while the data noise curve falls, is the only region where the actual period errors were significantly larger than those predicted by random data noise alone.
2. S / X calibration of a multirevolution fit. While the quality of a short-arc fit was measured in terms of local orbit

Fig. 22. VO-2 first orblt worst-case medis-Induced period error
accuracies, the more important single- and multirevolution fits were assessed by how well they predicted period and orientation several orbits beyond the end of the processed data. Although the prediction ability of the longer-arc fits was sufficient to satisfy operational demands, plasma activity became increasingly troublesome as solar conjunction was approached. Plasma noise and data outages would at times cumbine to degrade the most current single-revolution fit to the degree that more accurate states could be predicted using an estimate based upon data several days older, even though the prediction interval would thereby be longer. The prediction capability of multirevolution gravity sensing estimates was also adversely affected by increasing plasma activity, and aggregate gravity field determinations were, at the very least, inhibited by the growth in the plasrna-induced error (see Section V).

The worst-case approach was not extended to the longer arcs because the effects of gravity uncertainties, which become

Fig. 23. VO-2 first orbit worat-cesee media-induced $\Omega_{\text {pos }}$ error
significant as the processed data arc length approaches a full revolution, could not be readily accounted for in the simula. tion of media-induced doppler error. Therefore, in an effort to assess both the effects of plasma activity and the potential of S / X calibration data for diminishing such effects on longer-arc fits, a three-revolution 6×6 gravity field estimate was performed. The data arc chosen began at P_{116} for VO-1, the interval with nearly the highest percentage coverage ($\sim 34 \%$) of S/X data over all such intervals for both orbiters. Even though only $1 / 3$ of the doppler could be calibrated, it was believed that inclusion of this data in the estimate would result in a noticeable effect on prediction accuracies since the arc uccurred during a period of substantial plasma activity (October $15.18,1976$).

The gravity sensing was done both with and without the avallable \mathbf{S} / \mathbf{X} calibration corrections added to the data. Figures 24 and 25 give the comparative results in teims of errors in the predicted values of time of periapsis t_{p} and $\Omega_{\text {pos }}$ that

Fig. 24. Errors in predicted times of periapsis ((L_{p}) incurred using a sxe grevity fleld eatimated using three revolutions ($\mathrm{P}_{118}-\mathrm{P}_{119}$) of pertially callberated $\mathbf{S / X}$ data

Fig. 23. Erroess in prodicted $\Omega_{\text {pos }}$ mourrod uing a bis gravily fied coflimeted ualng three rovelutions (P_{11} - P_{11}) of partery cellerated 8/X deta
result form the two solutions. Shown is the magnitude of deviations from reference local single-revolution estimates for prediction intervals beyond periapsis 119 . It is evident that results were, at best, inconclusive: the poralihration solution performed better in predicting t_{p} until periapsis 126, heyond which point inclusion of the calihration data did reduce the prediction error somewnat. Simularly, calibrations improved $\Omega_{\text {pos }}$ predictions only for longer prediction inter als and then only slightly. The consistent pattern of $\Omega_{\text {pos }}$ errors may be an indication that significant errors existed in the reference $\Omega_{\text {pos }}$ values due to charged-particle noise.

No firm conclusions can be drawn from this trial case regarding the utility of S / X calibrations in improving the performance of multirevolution fits. A conclusive test would require full calibration of the data arc. and may also demand more accurate up-link calibration than was employed in the present study.

V. Modeling Gravitational Accelerations

A. Prefilight Analysis

As pointed out earlier, the limiting error source on the period estimate is shared by modeling errors and data noise within a one-revolution fit. and dominated by gravity modeling errors for the predicted orbits that follow. Conceptually, the reriod experiences a change (ΔP) upon each periapsis crossing due to gravitational perturbations, as shown schematically in Fig. 26. For a synchronous orbiter the error in Δ^{p} propagates in much the same manner as ΔP itself, so that the predicted error in the time of periapsis (t_{p}) grows as $1 / 2 n(n+1) \epsilon_{\Delta p}$, where n is the number c. predicted orbits. The error in ΔP may alter sign and magnitude for different periapsis crossings on an asynchronous orbit so that the error in t_{p} does not grow geometrically but instead goes as

Fig. 24. Schamedte reprocentation of the arange in period (AP)

$$
\begin{equation*}
\epsilon_{t_{p}}=\sum_{i 0}^{n-1}(n \cdot i) \epsilon_{\nu_{n_{i}}} \tag{9}
\end{equation*}
$$

In this case the predicted orbit may experience the benefit of compensating errors which keep the errors in t_{p} smalle than might be expected. For this reason, and also since the crittical phases of the misswn were synchronous most of the preflight (as.well as in-flight) analysis was confinec' to synchronous orbiters.

An analytical expression for $\Delta \boldsymbol{P}$ as a function of the orbital elen.ents and a given gravity field (in the foim of spherical harmonics) can be obtained using Kaula's expression for the disturbing function (Ref. 12).

$$
\dot{P}=6 \pi \sum_{k m}\left(\frac{R}{a}\right)^{\ell} J_{\ell m} \sum_{p q} F_{\ell m p}(I) G_{8 p q}(e)
$$

$$
X(x-2 p+q)\left\{\begin{array}{l}
-\sin \tag{10}\\
\cos
\end{array}\right\}_{\ell-m \text { odd }}^{x-m \text { even }} \phi_{\text {(mpq }}
$$

$$
\begin{equation*}
\phi_{\ell m p q}=(\ell-2 p) \omega+(\ell-2 p+q) M+m\left(\beta-\lambda_{\ell m}\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
J_{\Omega m} & =\text { harmonic coefficients } \\
F_{R m p}(I) & =\text { inclination function } \\
G_{\ell p q}(e) & =\text { eccentricity expansion } \\
\omega & =\text { argument oi periapsis } \\
M & =\text { mean unomaly }
\end{aligned}
$$

The graphic node (β) is defined as $\beta=\Omega-\theta$, where θ is the hour angle and Ω is the ascending node (see Fig. 27). Under the condition of resonance

$$
\begin{equation*}
(l-2 p+q) \dot{M}+m \dot{\beta}=0 \tag{12}
\end{equation*}
$$

so terms corresponding to $\ell-2 p+q=m,(m \neq 0)$ result in M $+\beta \approx$ constant and $\dot{P} \approx$ constant. It is convenient to evaluate $M+\beta$ at the time of spacecraft periapsis, and in all future reference to β it is understood to be evaluated at periapsis.

Fig, 27. Definition of the graphic node β

Thus $1 P$ can be casily expressed as a function of β for a synchronous orbit (Ref. 4). This analytical tool is convenient for a ready comparison of the prediction characteristics of different gravity models. Also, the uncertanty in ΔP for a given field with covariance Γ_{C} can be obtained as a function of β by

$$
\begin{equation*}
\sigma_{\Delta P}^{2}=\left(\frac{\partial \Delta P}{\partial C}\right) \Gamma_{C}\left(\frac{\partial \Delta P}{\partial C}\right)^{T} \tag{13}
\end{equation*}
$$

Error analysis indicates that a large reduction in the error of time of periapsis passage can be expected once a gravity fieid is sensed over but two revolutions of a Viking y ychronous orbit. The RSS position error based on a covariance analysis of the preflight nominal (Mariner 9 ensemble) field (Ref. 11) is represented in Fig. 28. Here, the initial error of 0.7 km at periapsis is due to the error in the node in the plane-of.sky, which is essentially the same at each periapsis, and the remainder of the error growth is due primarily to an in-track error resulting from an error in the time of periapsis. The tuming error can be approximated by dividing the residual position error by the velocity at periapsis ($\sim 4 \mathrm{~km} / \mathrm{s}$). As indicated, the error is substantially reduced after gravity sensing by about an order of magnitude.

A number of simulations were performed to test the results of covariance analysis as well as gain some preflight experience. The specific purpose for these simulations was to examine the effects of data span and a priori on period and parameter estimation. Data close to periapsis ($\sim \pm 1.0 \mathrm{~h}$) is particularly sensitive to unmodeled accelerations and may require high-order gravity terms to accurately represent them.

Fig. 23. Res poantion arror betove and after gravity semaing over two revolutions of Viling 1. The figure reprocemte a typleel cese from a preflight covertence anclyale where errers in grovily, station tocations, ephemerts and maes of Mare were conaldered

Since computational limitations may not permit sufficiently large-order parameter eerimates to account for these effects, it is important to devriop strategies which minimize their corrupting influence on the estimator. Based on the results of error analysis and simulation, the adopted procedure consisted of two revolution fits estimating a sixth order and degree field while deleting data within one hour of periapsis. An appropriate a priori covariance was used to constrain the filter to the nominal field. It was felt that this strategy would permit fair
recovery of the "true" field while substantially reducing the error in ΔP.

In reality, most Viking orbits were slghty asynchronous and also experienced a srall regression of the ascending node. Thus, the graphic node (β) is not constant so $\Delta P(\beta)$ is not absolutely constant. As a result, new information is gained on each periapsis crossing which permits gravity sensing over a fairly broad groundtrack. In order to ohtan a single gravity model which retains all of the information contained in the individual short are fields. selected models determined over short ares were combined in a linear sense. A description of the method used to accomplish this follows.

B. A Linear Piecewise Batch Estimator

Gravity estimation techniques using combinations of short are solutions have been applied successfully to Mariner 9 data in the past (Refs. 13, 14). The alvantages sought here are to reduce the time and cos usually required to process long ares of data in a single hatch as well as provide a convenient means for combiring gravity information from muluple spacecraft. As applied here, an a priori Mariner 9 field (C_{0}) with covariance $\left(\Gamma_{0}\right)$ is combined with estumates obtained using short ares (two to four revolutions) of data from VO.I and VO.2 synchronous and walk phase orbits. Each short are solution with its associated covanance will be referred to as \hat{C}_{i} and Γ_{i} respectively.

Rather directly then. consider the quantities

$$
\begin{equation*}
\hat{C}_{i}=\hat{C}_{i}-\Gamma_{i} \Gamma_{0}^{-1}\left(C_{0}-\hat{C}_{i}\right) \tag{14}
\end{equation*}
$$

as data and

$$
\begin{equation*}
r_{1}^{-1}=r_{i}^{-1}-r_{0}^{-1} \tag{15}
\end{equation*}
$$

as the data weight applied to a least squares estimator

$$
\begin{equation*}
\hat{c}=\left(\sum_{i} r_{i}^{-1}+\Gamma_{0}^{-1}\right)^{-1}\left[\sum_{i} r_{i}^{-1} \hat{c}_{i}^{\prime}+r_{0}^{-1} c_{0}\right] \tag{16}
\end{equation*}
$$

where $\hat{\boldsymbol{C}}$ is to be taken as the best estimate of the field given the ensemble of all available data. Note that $\hat{\boldsymbol{C}}_{i}^{;}$and Γ_{i}^{\prime} are the estimates and associated covariances obtained if no a prioni knowledge is assumed. It must be pointed out, however, that the gravity information pertaining to the long-term behavior of
the orbth is not moluded in this estumator sunce the states at the beginning of each short are are not connected dynamatly (i.e.. they are determined independently). It was found that this shortwoming does not seroush degrade the valoloty of the field. A simblar result was previously demonstrate 1 in Refs. 1.3 and 14.

The matrix inversoons required here are performed using a square root algorim. following the methods wed in the DPODP (Ref. 9!. in order to preserve precisom. Choleshy decomposition is used to transform a positive-defimtes symmetric matrix Γ into an upper-trangular equare ront matrix i so that $\Gamma=\Lambda^{\top}$. 1 . Once \backslash is obtained, it follows that $\Gamma^{-1}=$ $N^{-1} I^{-1}$. where d^{-1} is computed using a bachward substatu tion scheme. This algorithm has been shown to produce a more accurate inverse than conventional techniques and also insures that Γ^{-1} is symmetric.

Use of the square root method outined here results in a more precise inverse due to the fact that the condtion number (ratio of the largest to the smallest eigenvalue) of λ is the square root of the condition number for I. This concept can be carned further by defining an upper triangular matrix θ such that $\Lambda=\theta^{2}$, i.e., a second square root. θ is ohtained from

$$
\theta_{i i}=\sqrt{\lambda_{i i}} . i=1.2 . \cdots, n
$$

$$
\begin{align*}
& \theta_{i-8, i}=\left(\theta_{i-8,18}+\theta_{i j}\right)^{-1} \\
& \times\left(\lambda_{i-8, i}-\sum_{i-1}^{8-1} \theta_{i-8, i-i} \theta_{i-j, i}\right):\left\{\begin{array}{l}
i=1,2, \cdots, n \\
i=1,2, \cdots, i-1
\end{array}\right. \\
& \theta_{i j}=0 ; i>j \tag{17}
\end{align*}
$$

Then, $\Lambda^{-1}=\theta^{-2}$. The process can be continued where θ plays the role of Λ, etc., to obtain as many square roots as desired. At most, two square roots proved to be adequate for the combination of gravity fields prescribed by Eqs. (14.16).

C. VO-1 Experience

The synchronous phase of VO-I began at the periapsis designated P_{2}, approximately 42 h and 21 min after MOI on June 19. 1976. A number of naneuvers were performed to prepare for the July 20 landing, resulting in slight asynchronous phases (walk phases) of the mission. This may be seen by noting the period of rotation for Mars (approximately
24.6 .28 h) and the pernod of the orbit after each maneuver as given in Table 1 . The change on pernd due to gravity perturbatoons for these phases of the misston ranged from 10.0 to -80 a en each perlapsis crosenge as shown in fig. 29. This figure war obtamed usme the gravity model resultugt from the combinaton of thon are ectmates covering the span from P_{2} to P_{40}. by applying the methon prevously desconed (Eq. 16) The practual advantage of the techmque sevident in that thas long are of data could be ededuced without requite knowledge of the maneuves. As modicated. this sixth order and degree model was sampled over only thrty degrees of the planet's
 with catuon. The appled a priont constrame dies not allow us to thally disclam the global natue of this Viking sense. model however.

The errer in ΔP was reduced to +0.02 s for thos interval using the new lield. whereat the errer would have been as arge as 0.65 s had the ammal tedd been retamed see fig. 30). As shown in Fig. 31. the ce.peted error in D^{P} for the nommal
 was substantially reduced in the neghboheod of a levorevolution gravity fit crosenge P_{4}. The formal uncertanty was reduced over an even boader range of hongotudes once the combined estmate was obtained. as mugh be expected (see Fig. 32).

Fig. 22. Change in partod es a froction of graptic node at pariaplels reed on oles vo-1 combined fied dereomined over $\mathrm{P}_{2}-\mathrm{Pa}_{4}$

Fig. 30. Difterence in the change in period (VO-1 6xt combined field-nominal) as a function of graphic node at periapels

Fig. 31. Uncertainty in the change in pertod ase thanetion of grophic note at mertapels meeed on the nominel theid end a vo-i Cut frad deromined ower P3-Ps

Fig. 32. Uncertainty in the change in period as a function of graphic node at periapsis based on the nominal field and a 6×6 VO-1 combined field cietermined over $\mathrm{P}_{\mathbf{2}}-\mathrm{P}_{\mathbf{4 6}}$

Comparisons between the observed ΔP and those predicted by various models are typified in Fig. 33. The sixth order and degree field obtained over $P_{3}-P_{5}$ tracks the actual ΔP history remarkably well, as does the long arc combined field. It must be noted that all short are models did not perform as well as that shown; thus the predictability of the $P_{3}-P_{5}$ field may be deemed fortuitous. A fourth order and degree model obtained over the span $P_{2}-P_{4}$ performed well locally but could not recover the information necessary to maintain accuracy for many orbits into the future. The early recovery of an accurate gravity model permitted prediction of the times of periapsis to within 1.0 s 10 days in advance, while the nominal field would have produced errors on the order of tens of seconds.

Improvement of a global model continued once data was processed over the early walk phase of VO-2. Beginning the middle of August 1976, errors in the estirlated period as large as 0.2 s were experienced due to increased solar plasma coupled with ieduction in the VO-1 tracking coverage. Thus, data

Fig. 33. Change in period as a function of periapsis passage based on nominal and VO-1 determined gravity fields and observations for the first 20 days
taken during this phase was rendered uscless for gravity determination purposes. Fortunately, this problem did not become sericus until after the VO-2 subperiapsis point had completed one circulation about the planet. This permitted sampling of the gravity field for all longitudes of Deriapsis.

D. VO-2 Experience

Unlike the early phases of VO-1, VO- 2 was initially on a markedly asynchronous orbit as indicated in Table 1. Coverage of the planet was completed after the first 10 revolutions (with maneuver interrupts at P_{2} and P_{6}). during which time the solar plasma effects were still small enough to permit gravity estimation. The data noise level became intolerable (for further gravity sensing) after this time, including data taken after the plane change; thus no valuable gravity information was available after August 18, 1976.

Short are gravity estimates were obtained over the orbits $P_{0}-P_{2}, P_{2}-P_{6}$. and $P_{7}-P_{10}$ to ensure circumplanetary coverage by the subperiapsis point. These were then used to form a VO- 2 ensemble field This model was combined with the VO-1 field ($P_{2}-P_{46}$) to yield the Model-V field (see 1able 9). The prediction accuracy of the combined VO-1/ VO- 2 field was found to be comparable to that of the individual ensemble fields. Consequently, the dual spacecraft gravity estimate was adopted for navigation purposes. Unlike a synchronous orbit, an asynchronous orbit exhibits an error in ΔF which may vary sharply in magnitude and sign upon each periapsis passage. Fig. 34 shows the error in ΔP and the resulting error in t_{p} based on a prediction starting at P_{7} and extending through P_{14}, using the nominal gravity field. The error in ΔP was as large as ± 0.65, but the error in t_{p} did not grow above 0.5 s during this interval of prediction due to compensatory period errors. Aftel gravity sensing, the error in ΔP was held to $\pm 0.2 \mathrm{~s}$; however, the error in t_{p} still grew as large as 0.68 s , indicating that compensating period errors are extremely model-dependent (see Fig. 35). Once VO. 2 was synchronized prior to the landing sequence, the error in ΔP introduced by Model. V was observed to be less than 0.04 s , thus permitting much the same precision for the separation

Table 8. Normalize d spherical harmonic coetficients for Mars \times 10^{5} (this model is based on preconjunction Viking data for both orbiters with a Mariner 9 field (Ref. 11) included as a priori)

l	m	$C_{l m} \times 10^{5}$	$S_{l m} \times 10^{5}$
2	0	-87.64	0.00
2	1	0.00	0.00
2	2	-8.56	4.85
3	0	-0.81	0.00
3	1	0.63	2.58
3	2	-1.76	0.68
3	3	3.43	2.45
4	0	0.36	0.00
4	1	-0.01	0.24
4	2	-0.17	-0.81
4	3	0.66	0.65
4	4	-0.43	-1.66
5	0	-0.07	0.00
5	1	0.42	0.28
5	2	-0.54	0.00
5	3	-0.13	-0.56
5	4	-0.69	0.22
5	5	-0.37	0.55
6	0	0.18	0.00
6	1	0.68	-0.39
6	2	0.11	-0.31
6	3	0.61	1.35
6	4	0.46	0.00
6	5	0.26	0.33
6	6	0.12	0.03

design as realized in VO-1. It must be noted, however, that the solar plasma activity made it difficult to recognize gravity errors apart from local orbit determination errore at this time.

The valdity of the Mode!-V hecame even more apparent once VO-1 was synchronized over the VL-2 site on September 24,1976 . The VO-1 only field differed by approximately 0.2 s in ΔP from Model $-V$ for this phase, and it was found that the error in ΔP using Model-V was less than 0.04 s . Formal statistics, though usually optimistic, show extremely small uncertainties in ΔP for all values of β due to circumplanetary gravity sensing using VO-2 walk data (see Fig. 36). Qualitatively at least, thi: has been bome out. since the errors in ΔP due to Model-V did not exceed 0.4 s for the VO-2 walk orbit

Fig. 34. Errors in predicted times of periapsis t_{p} and precilcted changes in period ΔP incurred using the nomin il gravity field on VO-2 (prediction started as P7)

Fig. 35. Errors in predicted times of perimpels t_{p} and predicted changes in period ΔP Incurred using the 6x6 VO-1 and Vo-2 combined fiold on VO-2 (prediction started at P_{7})

Fig. 36. Uncertainty in the change in period as a function of graphic node at periapsis based on the nominal field and the 6×6 VO-1 and VO-2 combined field
and 0.04 s for the VO-1 synchronous orbit during the time period beginning the middle of September 1976 toward solar conjunction in the middle of November 1976.

It should be kept in mind that the VO-1 and VO- 2 combined field (Model-V) also contains Mariner 9 data through the applied a priori nominal field. A comparison between this Viking sensed model and certain independently determined Mariner 9 models can be made using Fig. 37. Here, the change in period as a function of graphic node for each field is compared to the preflight field (see Eqs. 9-12), all evaluated for the first VO-1 sy..chronous phase. Model-V can be taken to be fairly accurate globally and strictly correct in the region covered by the early phases of VO-1 (P_{2} to P_{46}). With little exception, all fields predict a $\Delta P(\beta)$ within one standard deviation of the preflight $(\sim \pm 1.0 \mathrm{~s})$. It is of interest to note that all fields (except Model-M) exhibit the same sinusoidal behavior in the neighborhood of $\beta=300^{\circ}$, which leads to ΔP errors less than 0.3 s over the region P_{2} to P_{46} in all cases. The fields tend to be lers congruous for the more westerly longitudes, however, with differences as large as 1.0 s occurring. Clearly, none of these fields would have introduced gravity modeling errors significantly larger than those expected.

Fig. 37. Comparison of $\Delta P(\beta)$ between various gravity fields and the nominal gravity field evaluated for the first VO-1 synchronous phase

E. Gravity Estimation in Extended Mission

The orbital elements for the Viking spacecraft subsequent to solar conjunction are given in Table 9. All trajectories for this phase of the mission were virtually asynchronous in support of Mars, Phobos, and Deimos imaging, Phobos mass determination experiment, and lander relay links. As in the primary mission, knowledge of the gravity field was essential to the success of navigation and science sequences. Actually, prediction accuracy became more important owing to the long-range planning and reduced tracking schedule peculiar to the Viking extended mission.

Table 9. Areocentric urbital elements of Viking 1 and Viking 2

Vikıng 1						
Parameter		MOT-10	MOT-11	MOT-12	MOT-13	MOT-14
		Date of maneuver. 1977				
		1/22	2/5	2/12	3/11	3/24
Semimajor axis, km	a	19538.5	19513.6	19498.4	18903.4	19804.6
Eccentricity	e	. 7508	. 7504	. 7498	. 8047	. 8133
Mean period, h	P	23.033	22.989	22.962	21.919	23.505
Longitude of ascending node, deg	Ω	100.56	99.19	97.99	90.10	87.06
Argument of periapsis, deg	$\boldsymbol{\omega}$	78.25	80.18	81.64	90.00	93.96
Inclination, deg	I	39.11	39.26	39.30	39.23	39.30
Height above surface at periapsis, km	h_{p}	1474.9	1477.8	1485.4	299.1	303.1
Latitude of subperiapsis point, deg	ϕ_{p}	38.14	38.58	38.80	39.23	39.19
Viking 2						
Parameter		MOT-8		MOT-9		MOT-10
		Date of maneuver, 1977				
		1/22		3/02		4/18
Semimajor axis, km	a	21452.0		20488.5		19365.1
Fccentricity	e	. 8051		. 7977		. 7860
Mean period, h	P	26.498		24.733		22.727
Longitude of ascending node, deg	$\boldsymbol{\Omega}$	57.53		54.76		52.93
Argument of periapsis, deg	$\boldsymbol{\omega}$	60.33		55.68		51.49
Inclination, deg	I	79.01		80.18		80.51
Height above surface at periapsis, km	h_{p}	787.2		750.9		722.9
Latitude of subpcriapsis point, deg	ϕ_{p}	58.53		54.47		50.52

No gravity model improvement was attempted during the solar conjunction phase hecause of inadequacies in the data. Data limitations at this time were primarily due to (1) high solar induced noise fiom mid-Nuvember 1976 to late January 1977, (2) lack of contiguous orbits with continuous coverage, and (3) lack of new information in the data. As a result, navigation throughout the conjunction phase had to rely on Model-V. Orbit determinations early in February 1977 indicated that Model.V was producing errors in ΔP on the order of 0.5 s for the low-altitude ($800-\mathrm{km}$) VO-2 rebit and approximately 0.25 s for VO-1. Since accurate predictions were needed to support the VO-1/Phobos encounter phase, beginning February 12. 1977, and the VO-1 low-altitude ($300-\mathrm{km}$) phase, beginning Match 12. 1977, an early improvement in the gravity model was necessary. The new model (COMBIX) consists of the linear ensemble of all fields which comprise Model-V plus a number of short arc fields obtained after conjunction. The new short arc fields were reduced from 8 revolutions of VO. 2 data and 5 revolutions of VO-1 data taken early in February. The merits of COMBIX as appled to the Phobos encounter phase are discussed in Section VII. An analysis of the low-altitude phase of VO-1 based on COMB1X follows.

Erro: analyses of the post MOT-13 low-altitude phase of VO-1 have been compared to the actual navigation experience for that period. In an attempt to bound the expected prediction errors, two somewhat subjective covariance matrices for the COMBIX gravity mode' were considered. COMB1X/NEW is the computed covariance which results from the least squares combination of the constituent fields that comprise COMB1X. The other covariance, COMB1X/AVE, was based on sample statistics derived from the deviations of the constituent fields from their mean.

These two covariance matrices were used to predict the evolution of orbit position errors over one planetary circulation (9 revolutions). The expected errors were found by mapping the state consider covariance obtained from a onerevolution fit. As usual, it was assumed that the corrupting influence of the short-period gravity effects could be eliminated by deleting data within one hour of each periapsis. The nominal orbit used for this low-altitude covariance mapping is defined by the orbit elements following MOT-13 as shown in Table 9.

The corresponding evolution of timing uncertainties predicted by the COMB1X/AVE covariance matrix is presented in Fig. 38. The trends for σ_{P} and $\sigma_{t P}$ obtained from COMBIX/ NEW are 10^{-2} times the corresponding values computed using COMBIX/AVE. Sach a small error is unrealistic, so COMBIX/ NEW was not considered further in this study. The maximum timing erre redicted by the COMBIX/AVE covariance is

Fig. 38. Timing uncertainty mapped for $H_{p}=\mathbf{3 0 0} \mathbf{k m}$, vo-1, using COMBIX/AVE covariance

15 s after 9 revolutions. Navigation experience indicates that the errors predicted by COMB1X/AVE bounded the actuai timing errors, which were observed to be typically 5.6 s after 9 revolutions of prediction.

As expected, the observed errors in the change in period (ΔP) were generally larger for the post MOT-13 orbit than they were for the previous $1500 \cdot \mathrm{~km}$ altitude orbit. However, the random signs of the ΔP errors contribute to widely varying timing errors over a planetary circulation depending on the epoch of prediction.

Assuming that the observeci error in ΔP history for the first low-altitude circulation of Mars (revolutions 264-273) is repeated on successive circulations. the predicted timing errors which would result from any given state-only fit can be estimated using Eq. (9). This relation was used to compute expected timing errors after 9,14 , and 18 revolutions of prediction, starting with each of the 9 orbits comprising the first low-altitude Mars circulation. The results are presented in Fig. 39. Notice that the error associated with any particular fit is roughly proportional to the number of orbits predicted. Further, the accumulated error in prediction depends highly on where the prediction starts. As noted earlier, the error in time of periapsis after 9 revolutions can be as large as $5-6 \mathrm{~s}$.

It is concluded that analyses using two independent covariance matrices for COMBIX have at best bounded the observed timing errors. In particular, the computed covariance for COMB1X predicts timing errors that are small by nearly 2 orders of magnitude. This suggests that data noise covariances

Fig. 39. Error in timing predictions based on observed errors in delta period (Revs. 264-273)
for gravity models are extremely optimistic and therefore do not reflect the true timing errors. Further it is difficult to assign or even properly bound the effect of modeling errors on the predicted times of periapsis associated with an arbitrary walk-phase state-only fit. However, the sample covariance matrix (COMB1X/AVE) does tend to properly bound the observed error in ΔP. This was conciuded by noting that the observed errurs in ΔP over the longitudes of $60^{\circ} \mathrm{E}$ to $260^{\circ} \mathrm{E}$ were on the order of one second, very close to the predicted uncertainties (see Fig. 38).

In summary, analyses tend to bound the error in ΔP as a function of longitude but have little value in bounding predicted timing errors. This is due to the fact that the magnitude of $\epsilon_{\Delta P}$ can be predicted but not its sign. Thus a given gravity model can best be evaluated by observing errors in predicted ΔP rather than predicted t_{P} for the asynchronous phases of the mission.

With this in mind, the $\epsilon_{\Delta P}$ history was examined for the VO-1 low-altitude fast-walk phase following MOT-13. During this phase, the orbit period was about 22 hours which resulted in subperiapse points successively spaced approximately 40° eastward in Mars longitude. After MOT-14 was executed on March 28, 1977. the orbit period changed to 23.5 hours and the walk-rate decreased to about 15° per VO-1 revolution. The errors in delta period throughout both low-altitude phases were monitored and are presented as a function of longitude of periapsis in Fig. 40. Note the COMB1X gravity model predicted delta periods within $\pm 0.8 \mathrm{~s}$ (10) for most of these low-altitude orbits, but some large errors were still evident for

Fig. 40. Comparison of ΔP errors
orbits whose subperiapse points occurred at about 30° west longitude.

In order to reduce longitudinal deficiencies of COMBIX, a new 6 th degree and order gravity field called COMB3X was estimated by including four new short-arc fields determined during the $40^{\circ} /$ rev fast-walk of VO-1 and seven new fields determined using the $15^{\circ} / \mathrm{rev}$ slow-walk of VO-1. No new VO. 2 data was included. This gravity model predicts ΔP to within $\pm 0.5 \mathrm{~s}(1 \sigma)$ for all subsequently observed VO-1 revolutions. Further, the apparent error in COMBIX at 30° west longitude is not evident in COMB3X, which indicates that it should predict better than COMBIX in a global sense. The errors in ΔP observed for VO-2 while using COMB1 X are also presented in Fig. 40, and since the period of the $800 \cdot \mathrm{~km}$ altitude VO. 2 orbit was being predicted adequately with COMB1X, the decision was made not to use COMB3X for VO. 2 but to continue using COMBIX for riavigation purposes. Future development will be confined to obtaining a gravity model tailored to the low-altitude phases of the mission only.

F. Conclusions

A number of conclusions drawn from the VO-1 and VO. 2 experience are particularly pertinent to synchronous orbits. At least for the high-altitude ($-1500-\mathrm{km}$), high-eccentricity (~ 0.76) Viking orbiters, the error in ΔP can be reduced to a few hundredths of a second by estimating a sixth order and degree gravity model over two revolutions while deleting data within an hour of periapsis. Further, if the orbit is slightly
asynchronous, a gravity model derived from a linear combination of short are estimates retams the inherent local accuracy of its constituent fields. Improvement may be possible should higher-order terms be included but an error of $\sim 0.02 \mathrm{~s}$ is very close to the limit imposed by data noise. This is clearly not the case for walk orbits where the error in ΔP was only reduced to 0.2 s within the fit. The solar induced noise became fairly high during the time VO-2 walk phase data was processed. which could explain a 0.2 -s error, but this contradicts the excellent performance demonstrated by Model-V on the later synchronous phases. Perhaps a sixth order and degree field is inadequate to properly account for all perturbations expenenced on a walk orbit, but such a conclusion requires further study.

During the low-altitude phase of VO-1 $\left(h_{P} \simeq 300 \mathrm{~km}\right)$ and VO. $2\left(h_{p} \simeq 800 \mathrm{~km}\right)$ in the extended mission. a tailored sixth degree and order gravity field predicted period changes of the orbiters accurate to $\pm 0.5 \mathrm{~s}$. Work is currently underway to develop higher degree and order tailored fields. which are necessary to reduce ΔP errors in these orbits to a level comparable to that of the nominal mission.

VI. Viking Lander Position Determination

A. Information Content of VL Radio Tractring Data

The VL radio tracking geometry is illustrated in Fig. 41. The lander and the Earth are referenced to a nominal Marscentered equatorial-equinox coordinate frame (Ref. 17). The cylin tical coordinates of the VL relative to this frome are r_{L} (distance from the spin axis), \boldsymbol{Z}_{L} (height above the equatorial plane), and α_{L} (areocentric right ascension). The lander rotates about the Mars spin axis with angular velocity ω (the rotation period is approximately 24.6 h). The areocentric right ascension α_{E} and declination δ_{E} of Earth define the Mars-to-Earth direction. The orientation of the true spin axis of Mars relative to the nominal is specified by the clock angle θ and cone angle ϵ (the latter is assumed to be small).

Doppler signatures induced by the VL rotational motion and by a Mars pole offset are shown in Fig. 42 (a,b). In each case, the doppler signature is a sinusoid with the period of Mars' rotation. The amplitudes are functions of either r_{L} or ϵ, and the phases depend upon either the right ascension of the VL relative to the Earth or on the clock angle of the true pole. The doppler signature induced by the third lander coordinate Z_{L} is illustrated in Fig. 42 (c). Examination of these signatures leads to the following conclusions:
(1) Motion of the Earth in areocentric right ascension is necessary to provide separation of errors in Mars' pole direction from errors in r_{L} and α_{L}.

Fig. 41. Viking lander tracking geometry
(2) Doppler provides a relatively weak determination of Z_{L} (because the rate of change of Earth declination δ_{E} is small compared to the Mars rotation rate ω).

The insensitivity of VL doppler data to errors in Z_{L} was noteci in numerical studies reported by Tolson et al. (Ref. 18), and a method of employing ranging cuata io determine this component of lander position was proposed. The drawback of VL ranging data is that it contains a bias that is equal to the ephemeris error in the distance from Earth to Mars. With estimates of $r_{L}, \alpha_{L}, \epsilon$, and θ from doppler data, the errer in Z_{L} is approximately related to a range bias through the equation

$$
\Delta Z_{L} \simeq-\csc \delta_{E} \Delta \rho(\text { bias })
$$

Thus, the error in Z_{L} is at least $2.4\left(=\csc 25^{\circ}\right)$ times as large as the ephemeris range error. Prior to Viking. 1 insertion, the uncertainty in the Earth-to-Mars range from the Viking ephemeris (DE84) was on the order of 1 to 2 km during the interval of the Viking Prime Mission. It was pointed out in Section IV that the VO position relative to the center of Mars alorg the line of sight ($Z_{p o s}$) was well determined from doppler data. Thus, passing doppler-determined orbits through

a) I ROTATION SIGNATURE

b) MARS POLE OFFSET SIGNATURE

e) Z_{L} SIGNATURE

Fig. 42. Viking lander doppler slgnatures

VO range data was expected to give a measure of the ephemeris range elior بith an accuracy of 15 to 25 m . The method suggested in Ref. 18 involved using tite VO range residuals to update the ephemeris range prior to processing the VL data. In practice, the VO range residuals are used to obtain an approximate ephemeris range error, which is then applied as an adjustment to the VL range measurement.

B. Profight Analysis

Estimates of VL position accurate to 0.5 deg were required to be delivered within 5 days after touchdown, with the condition that at least one good VL range point had been acquired. The results of preflight studies (Ref. 4) employing up to 5 days of tracking are summarized in Fig. 43. The doppler arcs were centered at the time on each day that Earth crossed the VL meridian, and were of 30 to 90 min duration. The doppler sample rate was one point per minute. An "adjusted" range point was included on the third day. The parameters to be determined included the three components of VL
position and the direction of Mars spin axis (represented by the right ascension α and declination δ relative to the Earth mean equator and equinox of 1950.0). Although errors in tracking station locations were treated vic the DPODP "consider" option (Ref. 7), the statistics primarily reflect the noise levels in the doppler and the VI. range adjust. The dramatic improvement achieved with the second day of data is due to increased separability of VL position and Mars pole resulting from the change in the areocentric right ascension of Earth. The decrease in Z_{l}, uncertanty from the second to the third day is evidence of the utility of VL ranging.

Note the strength of the pole orientation determination relative to that achieved with Mariner 9 data (Ref.4). The lower precision of the pole right ascension e timate as compared to the declination estimate reils : a correlation between α and α_{l}, produced by the tracking geometry.

C. Inflight Results

The initial VL-1 and VL-2 radio tracking is summarized in Fig. 44. The VL-1 coverage is relatively extensive as compared to that for VL-2. Not only were most of the VL-1 passes of longer duration, but they also span a greater range of tracking geometries. This is reflected in the formal statistics given in Fig. 45.

The poor VL. 2 tracking coverage in combination with a higher level of space plasma activity observed in the VO after-the-fit residuals led to the decision te employ the pole as determined from VL-1 processing in estimating the position of VL-2. The final (5-day) position estimates and the pole estimate derived from initial VL-1 tracking data are given in Table 10. For verification purposes, landing site radii obtained

Table 10. VL position and Mars Epin axis direction eetimates at five days after touchdown

Parameter	Estimate			
	VL-1		VL-2	
Radius, km	3389.4	± 0.1	3381.4	± 0.6
Topographic radius, ${ }^{\text {a }} \mathrm{km}$	3388.9		3381.5	
Areocentric latitude, deg	22.26	± 0.01	47.66 ± 0.01	
'ivest longitude, ${ }^{\text {b }}$ deg	48.01	± 0.01	225.78 ± 0.01	
$\alpha_{0}(1950.0)$, deg	317.36	± 0.02	-	
$\delta_{0}(1950.0)$, deg	52.708 ± 0.004	-		

${ }^{1}$ Irom reference 19 .
${ }^{h}$ West iongitude λ is defined by $\lambda=2 \pi-\left(\alpha_{L}-V\right)$, where V is the hous angle of the prime meridian from Ref. 17 and α_{L} is m. .nared in the equatorial/equinox frame relative to the estimated pole.

Fig. 43. standard deviations of Viking lander peatition and Mare spin axis direction from radio tracking (preflight)

Fig. 44. VL radio tracking coverage for five days following touchdown
from studies of Mars topography (Ref. 19) are also presented. The VL-1 estimated pole is within 0.04 deg of the Viking preflight nominal adopted from Ref. 15.

VII. The Mass of Phobos from Viking Flybys

A. Introduction

On February 12, 1977, VO. 1 was given a final precision trim in preparation for a number of close encounters with Phobos. The period of VO-1 ($\sim 22^{\mathrm{h}} 57^{\mathrm{m}} 30^{\mathrm{s}}$) was designed to be $3: 1$ commensurate with the period of the Martian moon such that encounters would occur on every third orbit of Phobos. In 12 of these encounters the closest spacecraft approach to the natural satellite was less than 200 km . The closest approach distance for the complete encounter sequence was 88 km on February 20, 1977.

The primary purposes for this experiment were to acquire close-up photography of the surface and to provide an opportanity to estimate the mass, and ultimately the density of Phobos - data which are relevant to a determination of the origin and evolutionary history of the satellite (Ref. 20). This section will discuss the real-time and postflight estimates of the mass of Phobos obtained by the SATOD Team.

B. Encounter Geometry

The spacecraft-Phobos encounter geometry is shown in Fig. 46 (excerpted from Ref. 20). Phobos is seen from the approaching spacecraft in a coordinate system with the T-axis parallel to the Mars equatorial plane. The direction to the Sun is about 16 deg above T and 37 deg into the paper while Mars is 63 deg below T and 50 deg out of the paper. The dots above
and to the right of Phobos indiciute the points of chosest flyby for each passage during the encounter period.

For comparison, the encounter sequence that would have occurred if Phobos had been masless is also shown. The difference between the encounter sequences is primarily due to the cumulative effec: of the individual orbital period changes occurring at each encounter, which for this sequence all tend to increase the orbital period.

C. Preflight and Real-Time Estimates

The method of analysis used here requires knowledge of the mean period change (ΔP) of the orbiter induced by the Plobos encounter. When viewed relative to inestial space the effect of the mass of Phobos on the spacecraft velocity vector at encounter is to change its direction. The equations relating the spacecraft velocity change and the orbital penod change are approximately given by (see Fig. 47).

$$
\begin{gather*}
\Delta V=-\left|\Delta V_{T}\right|,(\cdot \hat{V})=-\frac{2 \mu_{P}}{b V_{R}}(\hat{b} \cdot \hat{V}) \tag{18}\\
\Delta P=-\frac{\ddots \mu_{P} a P V}{\mu_{\delta} b V_{R}}(\hat{b} \cdot \hat{V}) \tag{19}
\end{gather*}
$$

where

V Mars relative spacecraft velocity vector (in or out)
$\Delta \mathbf{V}_{7} \quad$ total change in spacecraft velocity
$\Delta \mathbf{V}$ component of $\Delta \mathbf{V}_{T}$ along the original velocity vector \mathbf{V}
$\mathbf{V}_{R} \quad$ spacecraft-Phobos relative velocity at closest approacl.
$\mu_{P} \quad$ GM of Phobos
$\mu_{\delta} \quad$ GM of Mass
b Phobos-spacecraft vector at closest approach
a semimajor axis of spacecraft orbit relative to Mars
P period of spacecraft orbit
(\sim) indicates unit vector
Equations (18) and (19) are accurate to within 1 or 2 percent. Figure 48 presents a change in the spacecraft orbital period as a function of the magnitude and direction of b. Also

Fig. 46. standerd deviations of Viking lander poettion and Mare spin axis direction from radio tracking (lo-nlgm)

Fig. 46. Phobos encounters. The alstance of V0.1 to Phobos is shown for each llyby (1 flyby/ -23h)

Fig. 47. Vo-1 and Phobes encounter geonidity
shown are the actual encounter points in the b-plane for the Viking encounter sequence for $\mu_{p}=0.66 \times 10^{-4} \mathrm{~km}^{3} / \mathrm{s}^{2}$. As seen from this figure, the maximum period chang. for the Viking encounters was 1.2 e.

In addition to the direct effect just described there is also a period change due to the offet of Mars center of mass from the barycenter of the Mars-Phobor system. This is actually a resonance affect for the case at hand since the period of VO-I is 3:1 commensurate with the period of Phobos. The spacecraft ortit period change is approximately described by

$$
\begin{align*}
\dot{P}= & -187 \frac{a_{P}}{a} \frac{\mu_{P}}{\mu_{\delta}}\left\{F_{110}(I) G_{102}(e) \sin \mid \omega+3 M\right. \\
& +\left(\Omega 2-\theta_{P}\right)\left|+F_{111}(I) G_{114}(c) \sin \right|-\omega+3 M \\
& \left.+\left(\Omega-\theta_{P}\right) \mid\right\} \tag{20}
\end{align*}
$$

where $F(I)$ and $G(e)$ are the inclinaton and eec ntricity functions described by Kaula (Ref. 12). Evaluating I. . . (20) yiclds

$$
\dot{P}=-20 \frac{\mu_{\mu}}{\mu_{\delta}} \mathrm{s} / \mathrm{rev}
$$

which for $\mu_{P}=6.6 \times 10^{4} \mathrm{~km}^{3} / \mathrm{s}^{2}$ yields $\Delta P=-0.03 \mathrm{~s} / \mathrm{rev}$.
Perturbations des to the gravity field of Mars also produce changes in the mean period of VO-I upon each periapsis passage. As a result, perturbations due to Phobos are not easily distinguished from Mars' gravity effects on the period evolution of VO.1. This may he qualified by noting that a component of the change in velocity ($\Delta \mathbf{V}_{T}$) incurred at encounter may be directly observable in the two-way doppler data. Figure 49 presents the magnitude of the doppler shift in a manner analagous to the ΔP infermation in Fig. 48. Such an observation would provide a uniquely separable signature which could lead to a ready mass estimate. Unfortunately, the maximum change in the VO. 1 range-rate of $4 \mathrm{~mm} / \mathrm{s}$ is largely obscured by the observed data noise level of $2 \mathrm{~mm} / \mathrm{s}$. The solar plasma coninbutes to the data noise as well as inducing systematic signatures into the data. However, the methods employed here are not sensitive to these effects.

The perturbation in the mean period of VO. 1 due to the sans of Fiowos can be considered large when compared to an estimated $0.1-5$ error in predicted ΔP due to uncertainties in the gravity field alone. The change in mean period from orbit to orbit can be determined from two-way doppler data to an accuracy of $\pm 0.03 \mathrm{~s}$. Thus. ny systematic deviation beyond $\pm 0.1 \mathrm{~s}$ in the predicted Δ^{\sim} can be attributed to an error in μ_{p} or in the distance of closest approach b. An error in b of 5 km resulting from Phobos and VO-I ephemeris errors would produce a contribution to ΔP which would be less than 6% of the effect produced by the Phobos mass. By assuming that the difference between the observed and predicied values of ΔP on the first four encounters was due solely to an error in μ_{p}, it was concluded that the a priori $G M$ of Phobos $\left(10^{-3} \mathrm{~km}^{3} / \mathrm{s}^{2}\right)$ should be reduced to $5.5 \times 10^{-4} \mathrm{~km}^{3} / \mathrm{s}^{2}$. The observed period change on the fifth eicounter was consistent with this value. This estimate permitted predictions of sufficient accuracy to

satisfy imaging requirements throughout the remaining encounter sequence.

D. Postflight Estimates

Most of the postflight analysis was confined to separating the Mars gravity effects from the perturbations of Phobos. Two rather distinct methods will be discussed. The first method uses the analytical expressions given by Eqs. (19) and (20) and is similar to that used for the real-time analysis. A correction is applied to the mass by assuming that the error in ΔP results solely from an error in μ_{P}, while the gravity errors contribute only in a random manner. Table 11 shows sn:ne of the salient parameters used in this calculation for 14 close encounters. Additional quantities which are essentially invariant between encounters are the semimajor axis ($a \simeq 19.510$ km), spacecraft-Mars relative velocity ($V \simeq 2.6 \mathrm{~km} / \mathrm{s}$) and spacecraft-Phobos relative velocity at closest approach ($V_{R} \simeq$ $2.20 \mathrm{~km} / \mathrm{s}$).

The data ($\delta \Delta P$) is shown botil before and after the fit, based on an a priori value of $\mu_{P}=5.5 \times 10^{-4} \mathrm{~km}^{3} / \mathrm{s}^{2}$. With an assumed systematic gravity error -quivale..t to $\delta \Delta P=0.1 \mathrm{~s}$, the best estimate obtained by this method is $\mu_{P}=(6.63$ $\pm 0.8) \times 10^{-4} \mathrm{~km}^{3} / \mathrm{s}^{2}$.

The second method, which is designed to munimize estimatien errors arising from inaccuracies in the Mars gravity model, involves processing two consecutive revolutions of VO-1
doppler data using gravity coefficienis tailored to the regon beneath the meluded perapsis. This method was applied to perlapsis number P242, which corresponded to an encounter with one of the largest Phobos-nnduced penod perturbat $n s$ The procedure used to tailor the field was to estimate sphertioal harmonic coefficients based on two revolutions of data which were selected such that the Phobos perturbations were neglig. ble and the central subperapsss point conncided with that of P242. This opportunity occur ed at perlapss number P257. over which a sixth degree ar.d r rder gravity field for Mars was estimated. It was felt that this field would all but remove the gravity errors, the reby uncoupling the effects of the gravity of Mars and the mass of Phobos. Use of this local field resulted in an estimate of $\mu_{P}=(6.57 \pm 0.7) \times 10^{-4} \mathrm{~km}^{3} / \mathrm{s}^{2}$, which is m excellent agreement with the results obtained va the analyucal techmque just dest:ibed.

E. Concluding Remarks

The mass of Phobos has also been determined by Tolson, et al. (Ref. 22) by processing three revolutions of tracking data and solving for the spacecraft state and GM of Phohos. The result of their data analysis was an estimate of (7.3 ± 0.7) $\times 10^{-4} \mathrm{~km}^{3} / \mathrm{s}^{2}$ for $G M$ of Phobos. It is significant that the results presented here are consistent with thears within the quoted uncertanties, since different methods of analysis were used.

Table 11. Phobos encounter parameters

Periapsis number	$b, \mathrm{~km}$	$\hat{b} \cdot \hat{V}$	$\partial \Delta P / \partial \mu_{P}, \mathrm{~s}^{3} / \mathrm{km}^{3}$	$\left(t_{P}=5.5 \times 10^{-4} \mathrm{~km}^{3} / \mathrm{s}^{2}\right)$

VIII. Conclusions and Recommendations

The experinces of the BATOD Team have resulted in several observations and recommendations of interest to future orbital operations. These include:
(1) Constrained OD techniques as discussed in Section IV appear to be a reliable means of obtaning rapid postmaneuver solutions and warrant further study. These techniques also are useful for routine $O D$ solutions when limited racking data exists such as often hap. pened during the Viking Extended Misston.
(2) Combination of sinort are gray ity solutions as discussed in Section V proved to be a reliable and relatively inexpensive (compared to a sugle long are solution) means of obtaining a global gravity field.
(3) Use of demand terminals, as opposed to batch loadmg used on Manner 9 , was essental for the tumels performance of $9 D$ funchom for the four Viking space. craft.
(+) If DRVID and S / X calibrations are to he used operatonally, an atomated option shouk evest in the OD software.
(5) The procedure for producing normal points (Section IV) should be reevaluated and automated to a greater extent.
(6) Period change and doppler shift plots for satellite flybys as discussed in Section VII are extremely useful for optimally choosing 1 -plane encounter conditions.

References

1. Rourke, K. if. et al., "The Determination of the Interplanetary Orbits of Viking 1 and 2." AIAA 15th Aerospace Sciences Meeting. Los Angeles, Calif., Jan. 1977.
2. Born, G. H. et al., "The Determmation of the Satellite Orbit of Mariner 9." Celestial Mechanics, Vol. 9, F_{1}, 395-414.
3. O'Neil, W. J. et al., Mariner 9 Navigation. Techntcal Report 32-1586, Jet Propulsion Laboratory, Pasadena, Calif., Nov. 13. 1973.
4. O'Neil, W. J. et al., "Viking 1975 Navigation Plan," Vol. I and Supplement I. Miller. J. K. (technical editor), Viking 75 Orioiter Control Document 612-32. Jet Propulsion Laboratory, Pasadena, Calif., May 1, 1975 (an internal document).
5. Jordan, J. F., Melbourne, W. G., and J. D. Anderson, "Testing Relativistic Gravity Theories Using Radio Tracking Data from Planetary Orbiting Spacecraft," COSPAR Space Research XIII, Akademie - Verlag, 1973.
6. Boggs, D. H., "A Partial-Step Algorithm for the Noulinear Estimation Problem," AIAA ${ }^{\prime}$., Vol. 10, No. 5, pp. 675-679, May 1972.
7. Moyer, T. D., Mathematical Formulation of the Double-Precision Orbit Determination Program (DPODP), Technical Report 32-1527, Jet Propulsion Laboratory. Pasadena, Caiif., May 1971.
8. Boggs, D. H., "The General Problem of Three Bodies: Periodic Orbits and Their Stability," Ph.D. Dissertation, UCLA. pp. 53.76, 1975.
9. Hanson, R. J., and Lawson, C. L., "Extensions and Applications of the Householder Algorithm for Solving Linear Least Squares Problems," Mathemattes of Computation, Vol. 23, No. 108, pp. 787-812, Oct. 1969.
10. Greville, T. N. E., "The Pseudo-Inverse of a Rectangular Matrix and Its Applications to the Solution of Systems of Linear Equations." SIAM Rev., Vol. 1. pp. 38-43, Jan. 1959.
11. Jordan, J. F., and Lorell, J.. "Mariner 9. An Instrument of Dynamical Science," Icarus, Vol. 25, pp. 146-165, 1975.
12. Kaula, W. M., Theon of Satellite Geodesy, pp. 30-37. Blasdell, Walthran. Mass., 1966.
13. Sjogren, W. L., and Lorell, J., "Mars Gravity Based on a Short-Arc Techmque," J. Geoph's. Res., Vol. 80, No. 20, pp. 2899.2908, 1975.

14 Daniels, E. F., Tolson, R. H., and Gapcynski, J. P., "Sphernal Harmonc R.spresentation of the Gravity Field of Mars Usirg a Short-Are Technique," J. Spacecraft Rockets (in preses).
15. Born, G. H., "Mars Physical Parameters as Determined from Marmer 9 Observations, of the N . ural Satelites and Deppler Tracking," J. Geophys. Res., Vol. 79, No. 32. pp. 45.3,-4844, 1974.
16. Reasenbe ${ }^{\text {b }}$, R. D., Shapiro, I. I., and White, R. D., "The Gravity Field of Mars." Geophys. Res. Letters, Vol. 2. No. 3, pp. 89-93. 1975.
17. deVaucoleurs. G., Davies, M. E., and Sturms, F. M., Jr., "Mariner 9 Areographic Coordinate System," J. Geophys. Res., Vol. 78, No. 20, July 10, 1973.
18. Tolson, R. H., Blackshear. W. T.. and Anderson, S. G., "Orbit and Positon Determination for Mars Orbiters and Landers," J. Spacecraft Reckets. Vol. i3. $\mathrm{N}_{0} .9$. pp. 1095-1100, Sept. 1970.
19. Christensen, E. J., "Martian Topography Derived from Occultation, Radar Spectral. and Optical Measurements,"J. Geophys. Res., Vol. 80, No. 20, July 10, 1975.
20. Tolson, R.H., et al., "Viking First Encounter of Phobos: Prelimmary Results." Science, (in publication).
21. Kaula, W. M.. Theory of Satellite Geodesy, Blaisdell. Waltham, Mass.. 1960.
22. Tolson, R. H., et al., "The Mass of Phobos," Geophys. Res. Letters, Vol. 4. No. 12. Dec. 1977.

Maneuver Analysis

R. T. Mitchell, D. L. Farless, J. K. Miller, G. R. Hintz, M. J. Adams, N. P. Dwivedi, and D. L. Gray

I. Interplanetary Maneuvers

At launch both Viking spacecraft were targeted to ainpoints at Mars which were biased away from the final desired encounters to insure that the first maneuver on each vehicle would exceed a required minimum ΔV (applicable only to the first burn on each spacecraft), have a favorable attitude for communications during the first burn, and satisfy the planetary quarantine (PQ) constraint. As a result, it was virtually guaranteed that each vehicle would need at least one midcourse maneuver; and because of the tight trajectory control requirements at encounter, there was a high probability that Viking would be the first mission 'o Mare requiring more than one interplanetary maneuver.

The design of the required encounter trajectories for Viking was uniquely complex owing to the manner in which these trajectories were dependent on the landing site coordinates, specified sun elevation angle (SEA) at landing, and number of revs in Mars orbit from insertion to landing. Consequer, dy, although the midcourse software targeted only to the classical B-plane parameters, the total problem to be solved at each maneuver was one of targeting to a final orbit from which separation could occur. Details of this process are covered in depth under Mars Orbit Insertion later in this chapter.

A. Choice of Maneuver Dates

For planning purposes, a maneuver strategy was developed which allowed for a maximum of two earth departure and two approach maneuvers fer each spacecraft. As it turned out, only one of each was needed (with one exception due to a spacecraft malfunction) due to the near nominal performance of both the spacecraft and the orbit determination process. One of the significant early tasks was to specify nominal dates for the maneuvers. Since a wide spread of launch dates and encounter dates was considered, near-Earth maneuver dates were stated relative to launch date L, and near-Mars maneuver dates were stated relative to encounter date E. A chart of the dates chosen is shown in Table!.

1. Near-Earth maneuvers. Several factors were considered in choosing dates for near-Earth maneuvers, the most importank of which were:
(1) The guidance singularity resulting from the type II trajectories.
(2) Possible propellant tank overpressure due to solar heating.
(3) Mission rules on spacing of activities.

Table 1. Preiaunch plan for midcourse maneuver locations

Spacecraft	Near-Edrth			Near-Mars	
	Midcourse-1	Midcourse-2		Midcourse-3	Midcourse-4
	$\mathrm{L}+7$	$\mathrm{~L}+35$	$\mathrm{E}-30$	$\mathrm{E}-10$	
Viking 2	$\mathrm{L}+13$	$\mathrm{~L}+42$	$\mathrm{E}-30$	$\mathrm{E}-10$	

The primary motivation for planning the first maneuver on Viking 1 prior to the launch of Viking 2 was to observe the propulsion system performance in space and have the opportunity to make any modifications that might be indicated on the second vehicle before its launch. A second consideration was to sinnplify the operational timelines by having the first vehicle's near-launch activities essentially complete by the time the second was launched. A third consideration, although of little importance here because of the slowly changing sensitivities, was that early maneuvers generally require a smaller propellant expenditure. The earliest possible maneuver date was constrained by the time needed for fuel and oxidizer tank warmup prior to first pressurization. Since perihelion occurre. after launch, significantly higher tank temperatures could develop, and if the tanks were already pressurized, with the small initial tank ullage, an overpressure condition could develop with possible overpressure diaphragm rupture, venting of pressurant gas, and lowered reliability for subsequent pressure control. Small resistance heaters were provided to raise the tank temperatures and maintain them at a steady design value, prior to pressurization, but these heaters required many days after launch to heat the tanks to a safe temperature that would limit the expected overpressure. The resulting first maneuver dates listed in Table 1 are different for Vikings 1 and 2 , due partly to the difference in expected initial ullage.

A second near-Earth maneuver date was also scheduled, in case it should be needed to compensate for delivery errors from the first maneuver or to renove a first maneuver $P Q$ bias. The date for the second maneuver was set late enough to guarantee that, for any of the trajectories under consideration, the guidance singularity would occur before the second maneuver and not so near as to more than double the propellant required (based on the cost of the same maneuver a few days after the first maneuver). An additional benefit of the late second maneuver date was the expected availability of the $33-1 / 3$ bps telemetry channel (guaranteed after day $L+20$).
2. Near-Mars maneuvers. The iollowing factors affected the choice of near-Mars maneuver dates:
(1) Maneuver capability decreases approximately linearly as encounter approaches.
(2) It was desired to postpone repressurizing the propulsion system as late as possible prior to MOI.
(3) Orbit knowledge improves as encounter approaches, especially if optical data are available.
(4) There was a minımum turnaround time constramt between the last madcourse maneuver and insertion into Mars orbit (MOI).

The decrease in maneuver capability as encounter approaches dictates that a near-encounter midcourse be performed eariy in this phase if there are large known errors to correct. However. the desire to leave the propulsion system pressurized after thus maneuver limited the date to within a few weeks of encounter. $E \cdot 30$ days was chosen as a compromise between these two factors. As it happened, there were no errors large enough to require an carly approach maneuver. and the $E \cdot 30$ day opportunity was never used.

Since the orbit determination accuracy improves as encounter approaches, the trajectory control error is minimized by waiting as long as possible to do the inaneuver. The limiting factor is the minimum turnaround time required after the maneuver to redetermine the crbit solution, finalize the design of the MOI maneuver, and prepare the necessary commands for the spacecraft. The nominal time of the last maneuver was set to $F \cdot 10$ days, which allowed for an emergency "recovery" maneuver at $E-5$ days.

B. Launch

Viking 1 was launched on August 20, 1975, and targeted to arrive a: Mars on June 20, 1976. The launch vehicle injection accuracy was well within the 99% dispersion ellipse as shown in Fig. 1, and the launch+7-day Midcourse Correction Requirement (MCR) to the targeted aimpoint at launch was $3.5 \mathrm{~m} / \mathrm{s}$.

Viking 2 was launched on September 9, 1975, and targeted to arrive on August 8, 1976. The injection accuracy is shown in Fig. 2, and the launch +7 -day MCR was $5.1 \mathrm{~m} / \mathrm{s}$.

C. Emergency Early Maneuver Strategy

Contingency planning was done to define a set of alternate (reduced) missions in case of an anomalous spacecraft injection. These plans invoived using a portion of the spacecraft propellant to correct the spacecraft trajectory, in general not back to nominal, jut to an optimum energy and asymotote direction combination that gave a trajectory passing nea: Mars up to perhaps several days different in arrival time from nominal. The propellant remaining would then determine the alternate mission, ranging from a reduced capability for ! lars orbit trims all the way down to a simple flyby of Mars by the orbiter only. As part of this contingency planning, an

Fig. 1. Viking 1 injection dispersions

Fig. 2. Viking 2 injection dispersions
operational Emergency Early Maneuver (EEM) strategy was developed.

Since the mission wouid have been constrained by limited propellant under such contingency conditions, the maneuver would have had to be done at the most efficient time possible. The following considerations made injection plus 4 hours ($I+4 \mathrm{~h}$) the time chosen for an EEM maneuver:
(1) The most likely launch vehicle anomaly correctable with the spacecraft propulsion system is an underburn or overburn with correct thrust pointing.
(2) For a simple injection underburn or overburn, sufficiently accurate spacecraft turns for a corrective maneuver can be determined before launch for a given launch date and encounter date.
(3) With spacecraft command files for both the und roburn and overburn cases available prelaunch and only the ΔV magnitude command to be determined after launch, the carliest the maneuver can be performed is 4 hours after injection. This includes the time required both for the ΔV determination and for spacecraft personnel to generate and transmit the appropriate commands to the spacecraft.
(4) For an injection under/over burn, a maneuver at $1+4$ hours saves about 15% of the cost of performing the same correction several days after injection.

Figure 3 shows a representative launch energy plot demonstrating how the decision would have been made on whether or not to execute an EEM. Achieved injection energy is shown as a function of time from the start of the Centaur second burn, starting at about $-60 \mathrm{~km}^{2} / \mathrm{s}^{2}$ in the parking orbit and reaching $0 \mathrm{~km}^{2} / \mathrm{s}^{2}$ (parabolic escape) in about 270 seconds. The next 50 seconds was the key time for evaluating the Centaur performance. In region 1, a near-nominal mission could be achieved with a maneuver at the normal first midcourse time, although at the low end of this interval there would have been little or no propellant left for site retargeting or for any extended mission activities. In region 2, the propellant savings resulting from the early maneuver would be needed in order to land from orbit. In region 3, it would not be possible to get the lander into orbit in any event; and a

Fig. 3. Viking 1 EEM energy envelopes
direct entry from the approach hyperbola, followed by insertion of the orbiter alone did not require the ΔV savings of an EEM. In the fourth interval, however, the EEM savings were required to do a direct entry. If the Centaur left the spacecraft in region 5 , it would not have been possible to get the lander to Mars. Regions 2 and 4 then represent energy deficiencies where an EEM would have b en of significant benefit to the mission. A Centaur burn to depletion in this case would have been included in region I, but could have duplicated at least regions 2 and 3 for some trajectories with lower injection energies.

Operationally, for each candidate launch date, an average thrust pointing direction for a total of four subsequent launch dates over the range of possible correctable energy deficiencies was determined. and corresponding turn iets were delivered to spacecraft personnel in preflight preparat on for implementing
the emergency maneuver. In actual flight, both launches were executed . ormally and no contmgency measures were required.

D. Summary of Maneuvers Performed

Three interplanetary maneuvers were performed by Viking 1 and two by Viking 2. A summary of all the targeted and achieved aimpoints is given in Table 2, and plotted in Figs. 4-6. Data on the maneuver parameters, both ideal and commandable, are given in Table 3. In Table 3 the spacecraft cone and clock angles of the Earth are shown only for the burn (i.e., end-of-turns) orientation. The traces of the Sun and Farth in spacecraft cone and clock coordinates during the turns for the first maneuver on Viking 1 are shown in Fig. 7 as representative of the type of data provided for turn constraint analysis.

Table 2. Targeted and achieved encounter conditions

Parameter	$B . R . \mathrm{km}$	B.T. km	(B/. km	6, deg	$\begin{gathered} \text { Date } \\ 1976 \end{gathered}$	Closest approach time, GMI. (h:min)	$\Delta V, m / 4$
Viking 1							
Injection							
Targeted	-210270	152720	259880	-54.0	6/20	$17 \cdot 07$	
Achieved	-277130	164490	322270	-59.3	6/20	23:19	
1 st midcourse							
Targeted	7119	6643	9737	47.0	6/19	16:24	4.684
Postmaneuver estimate	6122	6996	9296	41.2	6/19	16:28	
Pre-encounter estimate	5774	7289	9299	38.4	6/19	16.31	
AM/Cl							
Targeted	7232	6861	9969	46.5	6/19	20:38	50.540
Achieved	7291	6700	9902	47.4	6/19	20:38	
AM/C2							
Targeted	7292	6945	10070	46.4	6/19	22:54	60.142
Arhieved	7277	6919	10041	46.4	6/19	22:54	
Guidance succe ${ }^{\text {. }}$							
99\% required			± 700	± 5		$\pm 15 \mathrm{~mm}$	
Viking 2							
Injection							
Targeted	-163290	339730	376940	-25.7	8/08	13:01	
Achieved	-301780	581980	655570	-27.4	8/09	9:20	
1 st midcourse							
Targeted	3100	11550	11959	15.0	8/07	11:52	8.108
Postmancuver estimate	1086	15560	15598	4	8/07	12:18	
Pre-encounter estimate	870	16199	16222	3.1	8/07	12:22	
AM/C							
Targeted	-2384	9062	9370	-14.7	8/07	11:45	9.223
Achieved	-2424	5058	9377	-15.0	8/07	11:45	
Guidance success							
99\% required			± 500	± 7		$\pm 15 \mathrm{~min}$	

Table 3. Maneuver data

Maneuver	Ignition epoch. Tune/GMT	RY turns. Ideal/implemented	ΔV, Ideal/implemented	Burn ortentation. Cone/clock
Viking 1				
1st midcourse	$\begin{gathered} 8 / 27 / 75 \\ 18: 30 \end{gathered}$	$\begin{array}{rr} -226.658, & 79.500 \\ -226.773, & -79.538 \end{array}$	$\begin{aligned} & 46949 \\ & 4.6844 \end{aligned}$	$\begin{array}{r} 5!.84 \\ 284.76 \end{array}$
$\mathrm{AM} / \mathrm{Cl}$	$\begin{gathered} 6 / 10 / 76 \\ 11: 00 \end{gathered}$	$\begin{array}{llll} 104.054 & -97 & 160 \\ 104.038 & -97.085 \end{array}$	$\begin{aligned} & 50.5291 \\ & 50.5396 \end{aligned}$	$\begin{array}{r} 117.92 \\ 22.17 \end{array}$
AM/C2	$\begin{gathered} 6 / 15 / 76 \\ 14: 00 \end{gathered}$	$\begin{aligned} & 106.386,-97.038 \\ & 106.358-97.088 \end{aligned}$	$\begin{aligned} & 60.1234 \\ & 60.1424 \end{aligned}$	$\begin{array}{r} 118.02 \\ 23.63 \end{array}$
Vikıng 2				
1st midcourse	$\begin{gathered} 9 / 19 / 75 \\ 16: 30 \end{gathered}$	$\begin{aligned} & 102.594,-53.243 \\ & 102.713,-53.223 \end{aligned}$	$\begin{aligned} & 8.1125 \\ & 8.1085 \end{aligned}$	$\begin{array}{r} 28.59 \\ 239.55 \end{array}$
AM/Cl	$\begin{gathered} 7 / 28 / 76 \\ 01: 00 \end{gathered}$	$\begin{aligned} & -85.262,-40.145 \\ & -85.303,-40.019 \end{aligned}$	$\begin{aligned} & 9.2261 \\ & 9.2226 \end{aligned}$	$\begin{aligned} & 31.97 \\ & 80.96 \end{aligned}$

Fig. 4. Viking 1 midcourse almpointe

The final target encounter farameters for each spacecraft were determined such that the post-insertion requirements on the orbital elements could be achieved with near minimum ΔV expenditure at insertion. A guidance success region was then defined about the nominal encounter point such that, for any delivery within this region, the nominal mission could be cori.pleted within the $99 \% \Delta V$ budget available. Figures 4, 5,

Fig. 5. Viking 1 midcoures aimpoints, detall
and 6 show this guidance success region for each mission, as well as targeted and actual encounter conditions. The boundary of this region is also indicated in Table 2.

1. Near-Earth midcourse maneuvers. Only one near-Earth maneuver was required for each spacecraft, and was performed in each case on the first scheduled maneuver date. For Viking 1 this maneuver was targeted directly to the nominal Mars encounter conditions. The planetary quarantine allocation was easily met without biasing, and no significant mission benefits would have resulted from biasing the first maneuver aimpoint. Reconstruction estimates of the maneuver actually executed indicated a pointing error of 0.8σ of the a priori expected error and a magnitude error of only 0.03 o . The

Fig. 6. Viking 2 midcourse almpoints

Fig. 7. Viking 1 first midcourse Earth/Sun cone and clock angles during turns
targeted and achieved aimpoints an shown in Figs. 4 and 5. The expected delivery accuracy is broken down into the maneuver execution component and the orbit determination component in Fig. 8.

For Viking 2, the planetary quarantine requirement could have been met by targeting the first maneuver directly to the final aimpoint only because of the very high reliability of the spacecraft propulsion system. This would have led to expected post-maneuver control dispersions as shown in Fig. 9 and a

20\% probability of ending up on an imparting trajectory. Such an event would have been satisfactory as far as meeting the formal requirements of the planetary quarantine constraint. However, it would have been sufficiently unsettling to leave the spacecraft on an impact trajectory for the better part of a year, that in all likelihood a second near-Earth maneuver would be performed to get off such a trajectory. Or, the other iand, at least one near-encounter maneuver was almost certamly going to be required whether the first maneuver was biased or not. Also, there was only a very low probability that a second near-Farth maneuver would be required for any reason other than to take the spacecraft off of an impacting trajectory. It was, therefore, decided to bias the first maneuver aimpoint such that the probablity of an impacting trajectory resulting from the control dispersions would be less than 1%.

Other cnterta for selecting a biased aimpoint, in addation to the 1% probability of impact tigure mentioned above, were to minimize the additional propellant expenditure because of the bias. to msure an attitude for the near-encounter maneuver that would be favorable for comme ications during the burn. and to have most, if not all, delivery dispersions be such that MOI would be pussible, albeit far from nominal, without performing another midcourse should this becone necessary for whatever reason. For a significant portion of the delivery dispersions about the unbiased aimpoint, this "MOI protection" was n (tt available due to the excessive ΔV^{\prime} requiremenis to achieve a suitably high periapsis altitude on those cases where the hyperbola would impact. Figure 10 shows the final biased aimpoint selected and the contrul dispersions. Only about 2% of the population, those cases with B out around $20,000 \mathrm{~km}$ or more, posed ΔV problems for achieving some kind of orbit insertion. Although not apparent in Fig. 10, the maximum ΔV penalty for biasing was about $5 \mathrm{~m} / \mathrm{s}$. Also, an approach maneuver to the final aimpcint from any trajectory dispersed within 3σ from the biased aimpoint would have an Earth cone angle in the burn attitude of less than 117 deg. permitting use of the high-gain artenna without having to put it in the flipped position.
2. Near-Mars maneuvers. During the planning stages of the Viking mission, the option was maintained to schedule two near-encounter maneuvers for each vehicle, one at $E \cdot \mathbf{3 0}$ days and one at $E \cdot 10$ days. The earlier maneuver was to correct any large navigation errors or to do any retargeting that would require large ΔV 's, resuiling in unacceptable control accuracy for the "last" pre-encounter maneuver. The 10 day maneuver was to be a precision correction based on the latest trajectory estimate available at that time.

The near-Earth maneuver for Viking 1 was executed well within the expected control trors, but the executicn errors, in conjunction with unmodele, nongravitational accelerations

Fig. 8. Viking 1 midicourse 1 dispersions
during the subsequent interplanetary flight, gave an encounter trajectory well outside the defined guidance success region as shown in Fig. 4. A maneuver at $E-10$ days to correct the trajectory to the nominal encounter point and arrival time required just under $4 \mathrm{~m} / \mathrm{s}$. The plan was to do the maneuver at this time, eliminating a maneuver at $E-30$ days. However, when the propulsion system was pressurized prior to this planned maneuver, a leak in the pressure regulator was noted that would have built up pressure in the fuel and oxidizer tar:ks to an unacceptable ievel prior to the MOI burn. For spacecraft reliability reasons, it was decided not to reclose the pressurant line, but rather to perform a large motor burn ($50 \mathrm{~m} / \mathrm{s}$) that would assure opening the pressure regulator in the hope that it would reseat properly and not leak. By designing this maneuver to change primarily the arrival time, the impact on the mission would be minimized. The postinsertion timing problem could be compensated for by altering the target orbital period at insertion, and by reducing the orbital energy (i.e., approach speed) with this maneuver. About 50% of the propel-
lant expended in this large maneuver would be saved by the reduced velocity requirement for MOI.

Such a maneuver was designed and implemented at E.9.s days. The pressure regulator continued to leak at about the same rate after this maneuver, and the pressure buildup prior to MOI was still going to be unacceptable. Accordingly, a second maneuver similar to the first was designed, this time not in hope of eliminating the leak. but rather to create enough ullage space to keep the pressure buildup prior to MOI down to an acceptable level.

At E.4.5 days, a maneuver of about $60 \mathrm{~m} / \mathrm{s}$ was executed and was successful in its objective of providing sufficien: ullage volume, and no spacecraft problems were experienced due to excessive pressurization prior to MOI. The B-plane target conditions for these two near-encounter maneuvers were altered from the nominal in order to optimize the MOl for the reduced approach velocity and higher - riod in the post-MOI

Fig. 9. Viking 2 unblased first manouver
orbit. The targets anc achieved conditions are shown in Table 2.

For Viking 2, the trajectory change required with the nearencounter maneuver was relatively large, owing to the intentional bias of the near-Earth maneuver. In addition, there was a shift in the estimated encounter conditions due to unme 1 . eled nongravitational accelerations during cruise and a change in the final required encounter conditions as a result of changing the planned latitude of the !anding site by about two degrees. However, the ΔV requirement of about $10 \mathrm{~m} / \mathrm{s}$ for this maneuver at $E-10$ days was still small enough that the orbit control accuracy that could be achieved would be satis. factory and there was no need for a maneuver at $E-30$ days. Figure 6 indicates the final, premaneuver encounter, the target for the maneuver, and the final achieved encounter. This maneuver was performed in the blowdown mode to avoid repressurizing the propellant feed system and risking a repeat of the regulator problem experienced on Viking 1. Data relative to this maneuver may be found in Tables 2 and 3.

E. Manouver Mechanization

The Viking spacecraft implemented velocity changes by first performing turn a. 'se vehicle roll and yaw ixes, and then thrusting in thr .. a:itude until the specified ΔV had been sensed by ... : asccelerometer pulses. In general, the desired cor' auld. 'e commanded exactly because both turns an:: . . مelereat measured in discrete values. However, the effects , atizatio can be minimized in terms of thei: , ine resulting trajectory, whereas ignoring them $m:$. . of small maneuvers with high sensitivaties could eesuas . agniticant control errors relative to normally occurring statisticel control dispersions.

For the interplanetary maneuvers on Viking, the primary accuracy requirement was on the control in the B-plane. Arrival time variations of the magnitude caused by the quantization of the maneuver commandable quantities were of no concern. For this reason, the ΔV magnitude quantization was always landled by adding or subtracting a velocity componer-

Fig. 10. Vixing 2 blaeed first mowneuver
to the maneuver ΔV perpendicular to the critical plane. An example of this for the first mand aver on Viking 2 is shown in Fig. 11. A velocity increment of $0.0134 \mathrm{~m} / \mathrm{s}$ was subtracted from the noncritical component. reducing the total ΔV by about $0.004 \mathrm{~m} / \mathrm{s}$ to reach the next lower ΔV quantum value. In this case, the ideal and commandable ΔV 's were very close; in general their difference can be as large as $0.015 \mathrm{~m} / \mathrm{s}$.

The technique for determining the turn quantization is graphical: two examples are shown in Fig. 12. The four achievable turn sets (resulting from rounding either way in both roll and yaw) are shown around the desired encounter point. The turn selection is then made, not necessarily to the nearest point, but rather to that point giving errors of the least consequence. Another consideration may be to compensate for a shift in the orbit determination estimate between the time of the origin-! turns design and the quantization. It is readily seen from Fig. 12 that an indiscriminate quantizing of the turns could have led to a bias in the encounter parameters of up to 1000 km . In those cases where a second roll turn 'was used for communications, the turn was simply quantized to the nearest pulse, since this turn only affected the spacecraft roll aititude and had virtually no effect on tre thrust pointing.

The targeting errors accepted in this process could possibly have been further reduced by quantizing th. turns and the magnitude jointly rather than independently. However, the magnitude quancization affects the ideal turns, and this would have led to an interface complication between navigation and spacecralt personnel that was not warranted.

A major consideration in the selection of a turn set to achieve a specified thrust pointing is the apparent path the Sun and Earth will follow over the spacecraft during the turns. As an ail to this selection process, plots are enerated showing these traces in a cone-clock system. (Fig. 7 sinowed such a plot for the turn set chosen for the first maneuver on Viking 1.) The quantization described above is negligible as far as affecting that selection.

II. Orbit Insertion

The orbit insertion problem for Viking consisted of two basic parts: one being to determine the optimum condition: for the approach hyperbola in order to effect the transfer, the other being th etermine the required maneuver to trarsfier

Fig. 11. Viking 2 first manouver velocity in critical plene coordinates

Fig. 12. Examples of B-plene furis quantization
mine what postinsertion requirements should be targeted to at insertion ws those which should be. of must necessarily be, corrected with in-orbit inaneuvers where parameter correction capabilitios and knowledge statisties are samaticantly different from those available at MOI. Figures 1 , aiad it show the general orbit geometry for the two orbtt insertions.

A. Viking 1

The orbit insertion strategy for Vihing I was to target to a Mars synchrorous period and nominally require no trim maneuvers prior to landing. This of esurse was changed when the two laze approach maneuvers werr made. delaying the arrival time by about 6 hours. At this point there were two options available to restore the nominal tumeline. One was to target the period at insertion 3 hours subsynchronous. thus causing the second periapsis ($\mathbf{P 2}$) to occur the normal time. and synchronizing the orbit at this posint. The other was to target about 18.5 hours supersenchronous (Mars synhhronous minus the 6 -h shift), causing the first pertapsis to oceur at the time that $P 2$ would nornuty have wecurred, and then synchronize. The proper phasing and tining had to be achieved by P2 in order to allow time for site certification to take place prior to the nominal landing date. Of these two options, the latter was implemented, primarily based on ΔV considerations. Fig. ure 15 shows the neminal planned timeli... is well as the two

Fig. 13. Viking 1 orbit geometry

Fig. 14. Viking 2 MON geometry

Fig. 15. Viking 1 insertion timing strategy
options. In the presence of delivery dispersions on the approach hyperbola, the plan was to target directly to the specified SEA and LATPER on the separation orbit, nominally leaving no orbit orientation biases to be removed either by orbit trims or by the lander during descent. Figure 16 indicates the feasibility of this plan, where it is seen that the expected delivery errors in θ (the orientation of the B-vector in the B-plane), even with radio only OD, were relatively small. More importantly, knowledge errors in orientation θ at the time of the calculation of the insertion parameters were small. This was not the case for Viking 2, and the considerably different strategy developed for that case will be discussed later. For

Fig. 16. Viking 1 approach midcourse E-plane delivery
delivery errors in B-magnitude, the situation was quite different. If the achieved B-magnitude was too latge, then the periapsis altitude h_{p} targeted to at insertion had to be larger than the nominal 1500 km , because an ellipse of $1500 \mathrm{~km} h_{p}$ would not intersect the hyperbola without introducing unwanted apsidal rotation. On the other hand, if B-magnitude was too sn $\cdot \cdot \mathrm{ll}$, then the option existed to raise h_{p} part way or all of the way up to 1500 km at insertion, at a cost of more ΔV at insertion and reduced period control. Figures 17, 18, and 19 show the ΔV cost to correct B-plane errors for orientation θ delivery errors of $0,+2$, and -2 deg , and B errors from C to -700 km for correcting any amount of B error with any combination of corrections between insertion and in-orbit trims. As an example, in reading these figures, consider Fig. 17, with no orientation correction to be made at insertion, and assume a ΔB of -700 km . Then a minimum ΔV transfer would require about $1200 \mathrm{~m} / \mathrm{s}$ and give an h_{p} of 1030 km . Raising h_{p} to 1100 km at insertion would cost $1230 \mathrm{~m} / \mathrm{s}$ and could be corrected to 1500 with an in-orbit trim of $35 \mathrm{~m} / \mathrm{s}$ for a total of about $1265 \mathrm{~m} / \mathrm{s}$. Correcting to 1500 km at insertion would require $1410 \mathrm{~m} / \mathrm{s}$.

The ΔV vector control for orbit insertion was better in magnitude than in pointing - at the 99% level about $3 \mathrm{~m} / \mathrm{s}$ and $20 \mathrm{~m} / \mathrm{s}$, respectively. Period was the most important parameter to control accurately at insertion, as well as the parameter most sensitive to erro.s. Since at a ixed radius the velocity determines the period, it was necessary to control the spacecraft velocity at burnout as precisely as possible. This is best done by having the insertion ΔV nearly aligned with the orbiter velocity at burnout, thus seeing only the $3 \mathrm{~m} / \mathrm{s}$ magnitude error and very little projection of the $20-\mathrm{m} / \mathrm{s}$ perpendicular (pointing) error. Generally, any correction of orientation or altitude at insertion necessitates moving the ΔV vertor away

Fig. 17. ΔV irrades for h, correction ar MOI/tim, $\Delta \theta=0 \mathrm{deg}$
from the velocity vector, thus increasing the pointing error component on the spacecraft velucity and degrading the period control. Figure 20 indicates the pernod control as a function of the orientation and altitude corrections made at insertion. The effects of knowledge errors based on optical tracking data are included. Although both positive and negative orientation errors are not shown for each value of ΔB, the results are approximately the same for errors on either side of the nominal.

A consideration in planning which delivery erross would ba corrected at insertion was the fact that the spacecraft team was concerned that the final maneuver parameters not vary significantly from a nominal set specified well before encourter so as to not disrupt the sequencing work done for this

Fig. 18. ΔV trades for h_{p} correction at MOI/trim, $\Delta \theta=2 \mathrm{deg}$

Fig. 19. ΔV tradee for h_{p} correction an mOI/trim, $\Delta \theta=-2 d e g$

Fig. 20. Viking 1 post-MOI period dispersion
period of the mission. To this end, the effects of correcting various delivery errors on the commandable quantities were investigated with the results as shown in Figs. 21 aind 22. Figure 21 shows the roll and yaw turns required on a grid of delivery points covering the required approach delivery accuracy zone for targeting to a synchronous period, the nominal SEA and LATPER, and a minimum ΔV transfer which determines h_{p}. The results show that all of the delivery zone can be covered by turns within ± 10 deg of nominal, and in fact that ± 10 deg was quite conservative, since it was known well before encounter that the final delivery was virtually guaranteed to be well within the zone shown. Raising altitude for low deliveries was not con idered here, but could have been a limiting factor, along with degraded period control and increased ΔV costs, in determining the amount of h_{p} to be restored at insertion. Figure 22 shows the change in ignition time as a function of altitude restored at MOI. The maximum ignition time delta showr is 12 min , which was within the allowable range. The range of ΔV 's at insertion was not a problem because, with an acceleration of about $0.5 \mathrm{~m} / \mathrm{s}^{2}$ at burnout, the maximum range conceivable would only amount to a very few minutes in total burn duration.

A set of orbit insertion commands was sent to Viking 1 soon after the second approach maneuver (AMC-2) was implemented, based on the nominal encounter trajectory targeted to at AMC-2. This was done as a hedge against the possibility that it might become impossible to uplink commands at a later time. (There was no reason to suspect that such a failure would occur - this was simply a precaution to increase the likelihood of success for this criticai event.) Furthermore, it was known that this maneuver, when applied to any trajectory that could result within the 99% delivery statistics of AMC-2, would yield a postinsertion orbit that could be trimmed to a

Fig. 21. Roll-yaw turn variations for Viking 1 MOI

Fig. 22. Ignition time senalitivity to h_{p} error
satisfactory landing orbit within the ΔV available. A key decision to be made after the results of AMC-2 were known was whether or not to update the command load onboard the spacecraft. Figure 23 and Tables 4 and 5 indicate some of the navigation tradeoffs for each case. The decision made was to do the update, based partly on the reduced ΔV costs (Table S) but also on the fact that the geometry for obtaining site reconnaissance early in the period from insertion to landing was much improved.

Tum constraints for the Viking 1 insertion proved to be quite restrictive, nearly to the point of forcing the maneuver to be biased somewhat from nominal. The final turn sets under consideration, those based on a nominal AMC-2 and those for the update, fortunately were able to satisfy the constraints.

Table 4. VIking 1 MOI command update site acquisition tradeoffs

Parameter	Onbuard			Update		
	Nominal	0.99		Nomınal	0.99	
PERIOD, h	44.1	-1.8, 1.3	42.3,45.4	42.5	-1.8.2.0	40.7, 44.5
HP, km	1399.	-67,68	1332, 146.7	1511	-61.68	1450, 1579
		Separation Orbit				
INCL, deg	37.7	-0.3, 0.3	37.4, 38.0	37.7	-0.3, 0.3	37.4, 38.0
$\phi_{\text {PER }}$, deg	20.0	-0.7, 0.5	19.3, 20.5	19.5	$-0.5,0.5$	19.0, 20.0
$\triangle \mathrm{DR}, \mathrm{deg}$	0	-0.2, 0.2	-0.2. 02	0	-0.1, 0.1	-61. 0.1
$\triangle \mathrm{XR}$, deg	0.6	-0.8, 0.6	-0.2, 1.2	0	-0.5, 0.5	-0.5. 0.5
SEA, deg	29.5	-0.9, 0.9	28.6. 30.4	30.1	-0.8, 1.0	29.3.31.1

Fig. 23. Elloct on poet-MOI orth depperalone of updeting MOI persmetere based on pout-AMC-2 orth knowledge

Table 5. Viking 1 MOI command update $3 V$ budget tradeoffs

Parameter	Onboard		Update	
	Nominal	0.99	Nominal	0.99
$1 \Delta V_{\mathrm{MOI}}$	1107.9		1097.3	
$2 \Delta V_{\text {TRIM }}$	98	116	81	102
3 SUBTOTAL (1+2)	1206	1224	1178	1199
$4 \Delta V^{\prime}$ TOTAL AVAILABLE	1350			
$5 \Delta V_{\text {AVAIL POST }-T D}{ }^{(4-3)}$	14.4	126	:72	151
$6 \Delta V_{\text {REQ'D }}$ POST-TD	16			
7 Margin	128	110	156	135
850% Margin	132		156	
9 Desires	100 for extended mission +25 for $A_{1} \rightarrow A_{2}$			

Table 6. Final MOI parameters and related data for Vikings 1 and 2

Fig. 24. VIking 1 Earth/Sun traces for MO:

The problem, as illustrated in Fig. 24, was to have the Eariin within the accessible region of the high-gain antenna while keeping the Sun out of the field of view of the instruments.

The actual impiementation of this maneuver went cssentially as planned, with performances well within the a priori statistics. Tables 6 and 7 show the relevant maneuver and trajectory parameters related to the planned and achieved maneuver. A reconstruction of the actual maneuver performed based on postflight tracking data indicates an actual pointing error of 8.47 mrad , or about 1.2 a , and a magnitude error of $0.415 \mathrm{~m} / \mathrm{s}$ overburn, or about 0.4 J .

Table 7. Trajectory data - Viking 1 insertion

Parameter	Approach hyperbola	Post inscrtion	
		Target	Achieved
$B \cdot R \$ & 7277 & - & , \hline $B \cdot T\}^{\text {Leliptic }}$	6919	--	
Time of periapsis (CMT)	$\begin{gathered} \left(\mathbf{P}_{0}\right) \text { 19 Jun } \\ 22: 54.06 \end{gathered}$	$\begin{gathered} \left(P_{2}\right) 21 \text { Jun } \\ 17: 39 \end{gathered}$	$\begin{gathered} \left(P_{2}\right) 21 \text { Jun } \\ 1727 \end{gathered}$
Altitude of periapsis, kin	2108	1511	1514
$a, \mathrm{~km}$	6280	29595	29325
c	1.886	0.834	0.833
i	38.1	37.7	37.9
ω MEQ	15.4	39.5	39.8
≤ 2	129.9	130.0	129.8
Period, h	-	42.5	42.35
$\Delta \psi . \operatorname{deg}$	-	24.3	24.3
Viking 2			

The strategy for targeting the orbit insertion for Viking 2 was quite different from that of Viking 1 in two respects, although the final objective of reaching the separation orbit with a near-Mars synchronous period and a specified SEA and LATPER was the same. First, the nominal arrival time was determined to allow for a supersynchronous post-insertion period such that the spacecraft would overfly three different specific longitude zones in the region of $46^{\circ} \mathrm{N}$ latitude for the purpose of site reconnaissance before making the decision to synchronize over one of them. This timing relationship is indicated in Fig. 25 with the three longitude regions of interest indicated on the right. The primary landing site candidate at the time of MOI was at $10^{\circ} \mathrm{W}$ longitude, in the region indicated as BI. To reach this site, the plan was to target to a period of 27.4 h at insertion and do a nominal trim to synchronize to 24.6 h on rev 19 for a landing on rev 25. Alternate maneuver locations and phasing combinations for synchronizing over B2 or B3 are shown. Although both ascending and descending crossings of 46° latituce are shown to indicate site reconnaissance opportunities, only the ascending crossing is available for landing.

The second aspect of the Viking 2 strategy that was distinct from Viking 1 was the targeting of the post-insertion orbit orientation. The approach control and knowledge errors (Fig. 26) show quite good control and knowledge in B-magnitude, but rather poor in orientation, especially for the case of radio-only data. Primarily as a result of this characteristic of the knowledge data, the plan was to always perform a planar

Fig. 25. VIking 2 nominal post-insertion orbit ti.ning

Fig. 26. Viking 2 approesch control and knowledge
insertion and target to the proper in-plane orientation. An in-orbit trim where the orbit knowledge was essentially perfect was then to be performed at the true anomaly of the vertical impact point. This trim would perform an orbit rotation and would have nearly the same effect as an orientation correction on the approach hyperbola. The clear advantage of performing this correction in orbit is that the risk of making an overcorrection or a charge in the wrong direction at MOI is elimi-
nated. In fact, even if an attempt were made to correct any out-of-plane errors at MOI, a priori statistical studies indicated a significant probability that an in-orbit orientation trim would still have been required.

The relatively nominal performance of the approach midcourse and the resulting orbit determination estimate of a very small error at the tiane of the post-AMC update calculations for the insertion parameters, coupled with the fact there was some question about the desired landing coordinates at this time, resulted in this strategy having virtually no effect on the MOI targeting.

A set of MOI commands was generated and sent to the spacecraft about one week prior to the implementation of the AMC, based on the nominal trajectory targeted to with this maneuver. About four days prior to the MOI, an updated set of parameters was calculated based on the OD solution at that time, whicn indicated AMC execution errors of about 8 km in B-magnitude, essentially no error in θ, and about -19 s error in arrival time. This was the command load that was eventually executed for the orbit insertion. The final encounter solution differed from the one used for the final command generation as shown in Fig. 27. A history of predicted and final key orbital elements post-MOI is given in Table 8, and the nominal and updated insertion maneuver parameters are shown in Table 9.

As with Viking 1, the post-insertion orbital period control was very important in order to do the site certification observations as scheduled. An arrival time error is equivalent to an ignition time error, and thus can significantly affect the postinsertion period, especially when TCA occurs early. This relationship is shown in Fig. 28, where all insertion parameters are fixed except for ignition time. As was shown in Fig. 27, the

Fig. 27. Viking 2 approach trajectory history

Table 8. Viking 2 post-MOI orbital parameters

Parameter	Nomınal design value	Post-AMC based on pre-AMC MOI load	Last pre-MOI based on $E-4$ da" update to insertion parameters	Actual
P, h	27.414	27.772	27.490	27.623
$h_{p}, \mathrm{~km}$	1500	1468	1521	1519
1. deg	55.0	55.1	55.2	55.2
LATPER, deg	45.3	44.7	45.6	45.5
SEA, deg	119.6	120.8	119.7	119.2

Table 9. Viking 2 orivit insertion parameters

Parameter	Pre-AMC nominals	$E-4$ day update
Roll turn 1, deg	+134.725	+134.663
Yaw turn, deg	-112.009	-110.913
Roll turn 2, deg	+142.072	+141.957
$\Delta V, m / s$	1102.1	1100.8
TIGN, 8/07; 76 (GMT)	$11: 30: 39$	$11: 29: 52$
Earth cone, deg	131.6	130.5
Earth clock, deg	180.0	180.0

Fig. 26. Viking 2 period change ve ignition time error

ORIGINAL PAGE IS

final estimate of the encounter time differs from the estimate made at the time of the update calculations by 35 s , and in a direction such as to make the ignition time appean to be eanly. This was fortuitous, as can be seen in Fig. 28, and evidently had little impact on the resulting orbit period.

The question of correcting periapsis altitude on Viking 2 was of less concern than on Viking 1 because of the improved control accuracy. Nevertheless there was still the possibility of needing to correct for low B-magnitude deliveries. A plot of the cost for doing this is shown in Fig. 29. Orientation is not a parameter here because of the targeting strategy discussed earlier.

The problem of satisfying turn constraints was straightforward on Viking 2 as opposed to the situation described previously on Viking 1 because the Earth-Sun relationshup posed no problem. However, as expected, it was necessary to use the flipped position of the high-gain antenna to get communications as illustrated in lig. 30.

The maneuver implemention was near nominal, as indicated by the trajectory data of Table 8 . Figure 31 shows the predicted doppler shift during the burn with actual values superimposed. A postflight reconstruction of the maneuver indicated a pointing error of 0.36°, or 1.10 , and a magnitude error of only $0.05 \mathrm{~m} / \mathrm{s}$, or about 0.03σ.

III. Orbit Trim Maneuvers

The most exciting maneuver analysis challenge, following the insertion of each Viking spacecraft into orbit about Mars, was that of providing the proper orbit geometries for site certification and landing. After the landings, station-keeping

Fig. 24. ΔV coat for correcting periapels anthude errors of wOI ve in orbh for Viking 2
maneuvers were made to maintain accoptable relay-link telecommunications performance between the orbiters and landers. The activities after landing also included orbiter excursions away from the vicinity of touchdown, e.g.. a longitudinal walk for global water vapor mapping by the MAWD. In add.tion, a large plane-change maneuver was performed by the Viking 2 Orbiter to move to a high inclination for polar observations.

The maneuver design for Viking was accomplished in twphases. First, there was the preflight design and strategy development that was dictated by mission objectives and requirements. Orbit determination and maneuver execution accuracy statistics were used, together with propellant budget considerations, to determine specific maneuver requirements and strategies to ensure a high probability of meeting the mission requirements. This phase, which had to account for all candidate launch and arrival data combinations. is discussed in Refs. 1 and 2.

The second phase of the maneuver design occurred in flight. This section describes the maneuver analyses that were performed in flight, the software that was employed, and the actual inflight results for the entire orbital phase of the nominal Viking Mission. The first subsection concentrates on the prelanding objectives and geometry considerations. The maneuver strategies discussed here evolved during the preflight

Fig. 30. Viving 2 Earth/Bun traces for MOI

Fig. 31. Viking 2 MOI burn tracking data residuals
and interplanetary portions of the mission. The last two subsections consider the actual adaptive design and implementation of the maneuvers as the mission progressed. This design process included the minimization of both propellant usage 2nd the effects of maneuver execution errors, while complying with several mechanization constraints. The actual inflight results are given in these subsections.

A. Prelanding Maneuver Strategies

1. Maneuver requirements. The orbit trim problem is to attain certain mission-, spacecraft-, and operations-dependent objectives, while coping with delivery, satellite orbit determination and mareuver execution errors. The objectives of the prelanding orbit trim strategies for Viking were:
(1) To satisfy the requirements for landing. The orbit of the spacecraft had to be controlled to within prescribed geometrical bounds. These bounds were governed by the need to acquire the landing site and to p rition the spacecraft orbit within a specified space-time region from which the lander could maneuver to the desired landing site without violating any of its design constraints. Primary lander design constraints were those which required the lander to operate within and near its maximum deorbit ΔV capability, within its maximum separation-to-entry coast time capability of 5 h , within prescribed entry angle corridor limits, and within the relay-link geometry constraints. The required target orbit for the sequence of prelanding trims was specified for that spacecraft revolution during which the Viking lander was to separate from the orbiter.
(2) To provide near-periapsis site reconnaissance as soon as possible following the orbit insertion maneuver. Early reconnaissance of the site was required to permit adequate time for site certification prior to landing. To obtain an acceptable site reconnaissance sequence of a point of interest on the planet, it was necessary for the spacecraft to observe this point at acceptable viewing angles and range.
(3) To satisfy the operational maneuver spacing constraints. At least hid had to be allowed between the orbit insertion maneuver and the first trim and 48 h between successive trims in order to provide adequate orbit determination and command generation time. These time intervals also were to ensure having sufficient propellant communication time. If propellant (liquid) separated or settled at the upper end of the tank during or following engine cutoff, then a small communication channel would slowly transfer the liquid from the forward end to the aft end. In a worstcase situation, the time required would have been 28 h (see Ref. 3). The time required following a motor burn to obtain thermal equilibrium (acceptable temperature distributions in the system) and to do propulsion subsystem performance analyses did not levy additional constraints because the time needed for these activities was considerably less than 28 h . Also, at least four spacecraft revolutions had to be allowed between the last prelanding trim and lander touchdown in order to provide adequate orbit determination and deorbit command generation and validation time.
(4) To make efficient use of propellant capability. The definitions of some of the separation orbit control parameters depend on the PER angle, which is the true anomaly of the point in the orbit that is nominally placed directly above the landing site. The PER point is the subspacecraft point at the PER angle on the actual orbit. Four of the orbit parameters that had to be controlled are shown in Fig. 32: namely, the downrange (DR) and crossrange (XR) of the PER point with respect to the desired landing site, the orbital period P, and the periapsis altitude $h p$ above the Martian surface.

To satisfy landing requirements it was also necessary to control the lander downrange azimuth and sun elevation angle (SEA) at touchdown (TD). The VL azimuth dispersions were critical because the landing dispersion ellipse was very elongated in the downrange direction and, consequently, the total ensemble of landing dispersions was very sensitive to azimuth dispersions. The sun elevation angle (SEA) is defined as the angle between the local horizontal and the direction to the Sun at the point of interest. This angle is interpreted to be in the interval from 90 to 180 leg in the morning, with the

Flg. 32. Setellite orbit control for lander eeparation
morning terminator being at SEA $=180 \mathrm{deg}$, and in the interval from 0 to 90 deg in the afternoon, with the evening terminator occurring at $S E A=0 \mathrm{deg}$. The SEA requirement was actually a time constraint on the amount that the relay transmission window could be shifted without changing the initiation time of all other landed events. The allowable shift of 21 min mapped to an SEA requirement. The requirement on SEA also ensured satisfactory lighting conditions at the landing site for VO site certification imaging before landing. As for the othel landing parameter constraints, the tolerances for azimuth and SEA were specified in terms of corresponding parameters on the separation orbit.

Timing was also a key target parameter. The timing delay ΔT is defined to be the time required for the VO to reach the PER point after the landing site has crossed the meridian of the PER point (see Fig. 33).

Fig. 33. Tining definuitione

The timing strategy for the last prelanding trim maneuver was to optimally compensate for the residual DR and XR errors following the previous trims. The period of the separation orbit was adjusted by the last prelanding trim, controlling the timing offset such that the VL could be targeted to touch down at the landing site as the landing site crosses one diagonal of the DR \times XR tolerance zone. That is, the separation orbit period was chosen so that the VL could touch down at the landing site by performing the amount of downranging and crossranging (DR and XR) indicated in Fig. 34. As discussed in Lander Flight Path Analysis, the DR tolerance was effectively set to zero, to maximize the probability of a successful VL entry and landing.

The target value for the timing offset parameter on the separation orbit was selected to reflect both these DR and XR geometrical errors and the fact that the VL leads the VO between the deorbit maneuver and touchdown. The VL/VO geometry at touchdown and PER passage is shown in Fig. 35.

To obtain an acceptable site reconnaissance sequence of a point of interest on the planet, it was necessary for the spacecraft to observe this point at an acceptable emission angle, incidence angle, and slant range. The emission angle (EMA) is defined as the angle between the local vertical at the point of interest on the surface of the planet and the vector from this point to the spacecraft; the incidence angle INA is the angle between the local vertical and the direction to the

Fig. 35. VL/VO timing relationship
sun at the point of interest: and the slant range $S R$ is the distance from the spacecraft to the point of interest (see Fig. 36). The sui elevation angle SFA is the complement of INA, except that SEA is defined to be in the interval from 90 to 180 deg in the morning. The constraints on these angles depended on the type of observation to be taken, e.g., stereo. oblique photopair, MAWD, and simple VIS. There was also a viewing angle constraint imposed by the site certification stereo analysis process that the tilt angle, shown in Fig. 37. be less than 9 deg . This requirement became the dominant one

Fig. 38. Reconnalecence permmotions
during flight operations, where it was considered in terms of the equivalent timing offset value.

There was also a strong desire to provide site reconnaissance on Viking 2 for both the primary and secondary sites on two separate spacecraft revolutions before synchronizing with respect to a site. Synchronizing with respect to a point on the planet refers to transferring the spacecraft to an orbit with period equal to the Mars rotational period so that the spacecraft will continue to overfly this point. This process requires two trims: one time-phasing maneuver to move the spacecraft over the point on the planet, followed by another to adjust the period to equal a Mars day ($\sim 24.6 \mathrm{~h}$).
2. Maneuver capability. This subsection presents a method and the required design curves for analyzing an orbit trim maneuver on a given nominal spacecraft orbit. The method utilizes the orbit parameter gradients in the Flight Plane Velocity Space shown in Fig. 38. The flight plane coordinate system used is that formed by the nominal velocity direction \bar{V}_{M}, the normal t the orbit plane \hat{V}_{N}, and the direction orthogonal to these away from the pla aet ∇_{G}. For a given nominal orbit the gradients of the orbit parameters with respect to these velocity directions are a function of the true anomaly of the trim maneuver only. The gradient vectors form the rows of a linear mapping matrix which maps velocity perturbations into perturbations in the orbit parameters as follows:
$\left[\begin{array}{l}\Delta P \\ \Delta h_{p} \\ \Delta i \\ \Delta \Omega \\ \Delta \omega \\ \Delta t_{T P}\end{array}\right]=\left[\begin{array}{lll}\partial P / \partial V_{M} & 0 & 0 \\ \partial h_{p} / \partial V_{M} & \partial h_{p} / \partial V_{G} & 0 \\ 0 & 0 & \partial i / \partial V_{N} \\ 0 & 0 & \partial \Omega / \partial V_{N} \\ \partial \omega / \partial V_{M} & \partial \omega / \partial V_{G} & \partial \omega / \partial V_{N} \\ \partial t_{T P} / \partial V_{M} & \partial t_{T P} / \partial V_{G} & 0\end{array}\right]\left[\begin{array}{l}\Delta V_{M} \\ \Delta V_{G} \\ \Delta V_{N}\end{array}\right]$

Note that the gradients of P, h_{p} and $t_{T P}$ lie in the flight plane. the gradients of i and Ω are normal to the flight plane, while the gradient of ω has components both in the flight plane and normul to it. These observations can be made by noting the locations of the zeros in the above mapping matrix.

Changes in the inclination i and argument of periapsis ω produce changes in the latitude of the PER point (LATPER), according to the equation

Fig. 37. Definition of tift angle dum

$$
\sin (\text { LATPER })=\sin i \sin (\omega+\text { PLR })
$$

This equation determines the sensitivity of LATPER to velocity changes. On the other hand, the sensitivity of tie SEA at PER passage depends on all three orientation paramete; : Ω. ω and i.

The gradient vectors for Viking 1 are given as functions of true anomaly in Figs. 39 through 45. Figures 46 through 52 exhibit the same data for Viking 2. In order to assess the effect of any given trim maneuver, the values of the gradients of the parameters of interest were inserted into the aloove mapping matrix, and the indicated matrix nultiplication was performed. Thus the appropriate maneuver required to change the orbit parameters a given amount can be estimated by inspection. The information presented here was very useful in determining the maneuver capability and the effect of maneuver execution errors at various points around the orbit. It was also helpfil in obtaining good initial guesses for use in highprecision numerical searches.

Figures 53 through 56 provide sensitivity data for sunline maneuvers. For example, Figure 53 gives the partial of period with respect to a velocity increment ΔV applied while the Viking 1 epacecraft is in the cruise orientation.
3. Maneuver strategies. Many prelanding raneuver strategies were considered before launch to accoun! for all possible launch and arrival dete candidates. After launch, the design process was redured to refining the strategies required for the two inflight missions. These strategies are described next to provide background for the maneuver sequences that were actually implemented. These descriptions also help to demonstrate the significance of the maneuver design changes that were required as the mission progressed. The orbit control capability and propellant costs for these strategies are described statistically in Ref. 4.

Fig. 34. Fingin plane veloely apeot

Fig. 39. Period gradients for Viking 1

Fig. 41. Right ascension of ascending node and inclination gradients for Viking 1

Fig. 42. Argument of perispels gredionts for Viling 1

Fig. 43. Time to periapsis gradients for Viking 1

Fig. 45. Sun elevation angle gradients for Viking 1

Fig. 46. Perlod gradients for Viking 2

ORIGINAL PAGE IS

OF POOR QUALITY

Fig. 47. Periapels altitude gradients for Viking 2

Fig. 49. Argument of periapsis gradients for VIking 2

Fig. 44. Rigitt secomaion of node and Inclination gradents for Vinding 2

F1g. 80. Thre to periapats gractonte for Vining 2

Fig. 51. LATPER gradients for Viking 2

Fig. 52. Sun elevation angle gradionts for Viking 2

Fig. 53. Partial of period and periapsis altitude with respect to velocity for a sunline maneuver on Viking 1

Fig. 54. Partiol of LATPER with reapect to volocity for a sunline manneuver on Viling 1

Fig. 55. Partial of period and periapsis altitude with respect to veloctty for a suntine maneuver on Viking 2

Fig. 56. Partill of LATPER with respect to volocity for a suniline maneuver on Viking 2

Following the insertion of each Viking spacecraft into orbit about Mars, a sequence of orbit trim maneuvers was to be performed according to a predetermined strategy to prepare for lander separation and to permit the taking of site certification reconnaissance data. These strategies were motivated by geometrical factors, expected MOI delivery errors, plus the need for operational flexibility and simplicity. The strategies were formulated as a fixed sequence of orbit parametercorrection maneuvers to be performed on specified spacecraft revolutions about the planet.

The planned Viking 1 maneuver timeline between MOI and lander touchdown is shown in Fig. 57. This phasing diagram shows the timung strategy incorporated in the maneuver strategy. The maneuver sequence consists of:
(1) A time-phasing maneuver MOT-1 at the second periapsis $\mathbf{P} 2$ to nullify the landing site longitude offset at P5.
(2) A time-phasing maneuver MOT-2 at P5 to produce a nearly synchronous orbit.
(3) A ΔV-optimal LATPER-correction MOT-3 between $\mathbf{P 7}$ and P8 if necessary.
(4) A combined h_{p} correction and time-phasing maneuver MOT-4 near the eleventh apoapsis (AII).

An important requirement for the Viking 1 strategy was to provide site reconnaissance as expeditiously as possible. Therefore, the spacecraft was to be inserted into a synchronous orbit with no time of arrival bias and the time-phasing and near-sync trims performed first. Since the h_{p} and orientation errors were expected to be acceptable for reconnaissance purposes, they were to be corrected later in the maneuver sequence.

Given the maneuver spacing constraints described earlier. the first trim could not be performed before A2. Since period changes are made most efficiently at periapsis, the MOT-1 was to be near P2. MOT-2 could be made near P4, but it was delayed to PS because there was a very high probability of being able to take reconnaissance at P4 and because this delay would save some orbiter propellant.

Fig. 57. VIking 1 timing atrategy

The remaining trims now fill out the timeline. MOT-3 was scheduled, i necessary, about two revs after the second trim. The exact position and direction of this maneuver was to be determined by a numerical search which would minimize the orbiter ΔV^{\prime} cost. MOT-4 was scheduled near apoapsis since this is the most ΔV-efficient place to correct h_{p}. Since there had to be at least f, ur revs between MOT- 4 and lander touchdown, it could not 1 .. performed after the vicinity of All. The trim was usitic: $2 d$ near All to relax the operational implementation of 1 , maneuver sequence as much as possible and to minamize ne timing arror buildup resulting from period errors inc urred at MOT-4.

More information concerning the trim maneuvers is provided in Ref. 2. However, it is worthwhile at this point to discuss MC [-3 and MOT-4 in some detail. The purpose of MOT-3 is o correct the latitude of the orbiter PER point (LATPER' to within an acceptable latitude band determined by the tar ta_{-}DR \timesXR tolerance zone centered at the PER pu'nt. Figure 58 illustrates the situation when LATPER is

NCIE: INTHIS FIGURE, \triangle DENOTLS THE MINIMUM LATITUDE CHANGE P WEDED IF THE P:R POINT IS DISPERSED TOO FAR NORTH
dispersed north of the landing site latitude. A numerical search is used to dete,mine the position and direction of the spacecraft maneuver which corrects LATPER. while mmimizing the cost function

$$
J=\Delta V_{\text {MOT. } 3}+\Delta V_{\text {MOT. } 4}
$$

Eventually, statistical studies showed that the probability of needing MOT 3 was less than 1%, so it was eventually dropped from the maneuver timeline.

The last trim was to be performed at a true anomaly of about 164 deg near All in order to correct h_{p} to within tolerances and to nullify any remaining timing error on the separation orbit, while holding ω essentially fixed. The rationale for selecting a true anomaly of 164 deg for MOT-4 :an be understood by referring to Figs. 39, 40, and 42. The timing error is corrected by changing the orbital period via a velocity increment in the V_{M} direction, which is along the spacecraft velocity vector. However, h_{p} can be corrected by changing the velocity in both the V_{M} and V_{G} (in-plane) directions. Therefore, in order te adjust the orbital period and h_{p} independently, a velocity component is added along V_{M} to change period and a component is added along V_{G} to adjust h_{p}. The component along V_{G} must take into aacount that the V_{M} increment would also change h_{p}. Now, the timing errors that MOT-4 had been designed to correct are only those introduced by execution and OD errors experienced by previous trims. So the V_{M} component would generally be much smaller than the V_{G} component. Reviewing Fig. 42 shows that the sensitivity of ω to V_{G} is zero at 164 deg. Also, note that this true anomaly is very close to the point ($\eta=160 \mathrm{deg}$) of maximunin sensitivity of h_{p} to a change in V_{G}, which means that the maneuver point is a relatively efficient point to obtain a combined period and h_{p} change. Therefore, the 164 -deg maneuver point was selected. Essentially the same result could be achieved at a true anomaly of about 196 deg on the same spacecraft revolution. Figure 40 shows that the sensitivity of h_{p} to V_{G} is also maximized near this point, although in the opposite direction. The final selection of the maneuver point at 164 deg or at 196 deg could be made based on operational considerations such as communication const!aints.

The Viking 2 strategy was designed primarily to correct relatively large expected post-MOI orientation dispersions, to control lander azimuth and SEA at touchdown, and to provide site reconnaissance for both the primary and secondary sites on two separate spacecraft revolutions prior to synchronizing with respect to a site. It was also important to have 12 nearly synchronous revolutions prior to touchdown 25 revs after MOI for reconnaissance purposes. The maneuver timeline and phas-
ing diagram is shown in Fig. 59. The maneuver sequence consisted of:
(1) The first trim MOT-1, which was to be either a timephasing maneuver performed near P2 or a combined LATPER-correction and time-phasing maneuver at the true anomaly of the vertical impact point (about 252 deg for Viking 2) between P1 and P2. In either event, the time-phasing would nullify the site longitude offset at P13.
(2) A time-phasing maneuver MOT-2 at P13 which would produce a nearly synchronous orbit.
(3) A combined h_{p}-correction and time-phasing maneuver MOT-3 near A21.

This strategy was to be combined with a MOI maneuver which would target to the nominal ellipse orientation angle ψ (see Fig. 60) regardless of the estimated approach trajectory (pre-MOI) inclination. MOT-1 could then be performed at the true anomaly of the vertical impact foint (see Fig. 61) to rotate the orbit about this point to bring the PER point to within an acceptable band about the latitude of the landing site. The geometrical effects of MOT-1 are illustrated in Fig. 62. In this figure, point 1 is the expected location of PER following MOI using estimated approach trajectory data; point 2 is the actual post-MOI PER location; and point 3 is the post-MOT-1 PER location. Note that the angle from the vertical impact point to PER ($\psi+$ PER angle $)$ is invariant.

In addition to correcting geometrical errors, the maneuver strategy had to provide for observing both the primary site and

Fig. 60. Viking 2 timing strategy end reconnalseance opportunities for EMA < 8 deg

Fig. 60. Definition of ollipee orientation angle ψ

Fig. 61. Definition of wortical Impact point
the secondary site at acceptable emission angles twice prior to synchronizing to the primary site, plus correcting in-plane orbit size and shape (P and h_{p}) errors. These requirements were to be satisfied by correcting period and orientation errors early, and leaving periapsis altitude errors to be removed by the last of the three preseparation trims.

The nominal post-MOI period and timing offset were selected to provide near overflights of both sites twice prior to synchronization at the thirteenth periapsis P13. The first inorbit trim is performed at the true anomaly of the vertical impact point between P1 and P2. This maneuver is equivalent to a rotation about the S-vector of the approach hyperbola and restores the orientation and SEA, adjusts period to nullify

Fig. 62. Site acquisition geometry for Viking 2
the timing error at P13, and holds ψ essentially fixed. These constraints determine the velocity correction vector, which means that the periapsis altitude cannot in general be controlled independently with this maneuver and often is further dispersed by it. If the post-MOI orientation parameters were satisfactory, timing errors would be corrected at P2 and no orientation correction would be made.

The second trim MOT-2 is made at P13 so that there are 12 near-sync orbits prior to landing. This trim is nominally a synchronizing trinn, but, in the presence of OD and execution errors experienced in MOT-1, it actually phases to the required timing offset on the separation orbit. This maneuver is performed at or near periapsis to minimize ΔV.

The thirs trim is performed at a true anomaly of about 164 deg (or equivalently 196 deg) between P20 and P21 in the same manner as the last trim for Viking 1. The placement of MOT-3 had to be properly balanced between P13 and P25. Location soon after P13 permits too much time for timing error growth by separation. Location too near P25 increases the size of the MOT- $3 \Delta V$ and increases the final period dispersions, which in turn increase the postlanding relay geometry (timing offset) dispersions. Selection of a point near A21 was determined to achieve the best balance among the various tradeoffs.

For this strategy, the nominal post-MOI orbit would provide a direct overflight of the site Bl on revolutions 1 and 7 ,
and a near direct overflight of site B2 on revolutions 3 and 9 . The timing strategy involved for the nominal and 99% perioddispersed cases is shown in Fig. 59. The vertical lines mulcate the range of timing offset that will allow reconnaissance with EMA <9.0 deg. For each reconnaissance opportunity, two such vertical lines are shown: one for the 99% low inclination and h_{p} values and the other for the 99% high values. These parameter combinations are given because of the high correlations between i and h_{F} ($\rho_{i h_{p}}=0.98$ for Viking 2 with radio only OD and $\rho_{i h_{p}}=0.86$ for radio plus optical) on the postMOI orbit and because of their effect on EMA. Reconnaissance probabilities which include the effects of altitude and orientation dispersions are given in Ref. 4.

Another significant feature of this strategy is that both period and orientation errors are corrected early to meet reconnaissance requirements. If the period errors were not corrected early, large timing dispersions would occur at the second reconnaissance opportunities for each site, greatly reducing the likelihood of viewing the sites. If the orientation errors were not corrected before the reconnaissance opportunities, large geometrical errors would produce unsatisfactory viewing angles.

B. Maneuver Mechanization

The planned maneuver sequence for the Viking spacecraft was a gyro warmup period followed by a roll turn, yaw turn, possibly a second roll, and finally the motor burn to achieve the desired ΔV. Turns could be made of either polarity and for durations exceeding a complete revolution about either (roll or yaw) axis. The duration of the turns was controlled by counting a specified number of pulses, each 1 s in length. Hence, the computed (ideal) turns to implement a correction had to be quantized to an integer number of seconds in duration and could not be mechanized precisely. With a turn rate of about $0.18 \mathrm{deg} / \mathrm{s}$, the maximum resolution erior was 0.09 deg about each of the axes. A similar situation existed for controlling the magnitude of the velocity correction. An accelerometer was used, which issued a pulse for each $0.03 \mathrm{~m} / \mathrm{s}$, corresponding to a maximum resolution error of $0.015 \mathrm{~m} / \mathrm{s}$. In addition, there was a requirement that each motor burn be at least 1 s (i.e., approximately $1 / 2 \mathrm{~m} / \mathrm{s}$ for prelanding trims) in length.

There were two methods for reducing the effects of these resolution errors and the minimum burn duration constraint. One method was to alter the time of motor ignition, changing slightly the pointing and magnitude requirements. The second was to modify the direction of the maneuver in such a way that critical target parameters were unchanged and resolution errors were mapped into less important, and perhaps less sensitive, parameters.

In loading the maneuver into the spacecraft's onboard computer, the turns parameters had to be specified well in advance of implementing the maneuver. On the other hand, it was only necessary at this time to estimate the velocity increment magnitude ΔV (equivalently, the burn duration) and ignition time. Following this stage of the maneuver design process, the orbit determination process continued; i.e., additional tracking data were processed to predict the orbital parameters at the time of the trim maneuver. The ΔV and ignition time were then updated to account for late changes in the orbit estimate.

Execution errors associated with the mechanization of a maneuver may be classified as proportional (to the maneuver magnitude) and fixed (independent of the magnitude). The inflight a priori 99% execution errors in both magnitude and pointing are shown in Table 10 for both spacecraft.
rable 10. Inflight a priori execution errors (99\%)

Maneuver Pointing. mrad \begin{tabular}{c}
Proportional

magnitude. $: \quad$| Itsed |
| :---: |
| maghtude. m / s |

\hline
\end{tabular}

Vikıng !

MOT-1	16	0.22	0.029
MOT-5	16	0.21	0.035
MOT-6	16	0.21	0.035
SKT-2	16	0.14	0.063
MOT-7	16	0.11	0.031
MOT-8	9.6	0.113	0.053
MOT-9	9	0.115	0.031

MOT-1	8.5	0.244	0.028
MOT-2	9	0.241	0.028
MOT-3	8.5	0.244	0.028
MOT-4	8.5	0.239	0.028
MOT-5A	9.0	0.157	0.030
MOT-5	15.5	0.157	0.030

C. Maneuver Constraints

There were a number of constraints on the design of each of the maneuvers, primarily on the turns that could be performed and on the timing of the maneuvers. Two independent roll/yaw turn sets could achieve the desired thrusting direction, although the spacecraft oilentation would usually be different after the implementation of each set. By varying the tum combinations, including turns of more than 180 deg, eight different turn sets can be found which yield the required thrust pointing direction. In general, turns constraints identified by the Orbiter Performance Analysis Group (OPAG) eliminated some of these sequences from further consideration.

Turns constraints were determined by the pointing requirements of certain onboard instruments. The violation of these constraints was checked by superimposing traces of the Sun and Earth during the turns on another figure which indicated the unacceptable regions in cone angle vs clock angle space (Fig. 63). Thus, an appropriate set of turns was determined from among the candidates. Specific instruments which imposed constraints were the VIS, IR, and the Canopus sensor sun shutter. The VIS and IR imposed constraints on the pointing of the scan platform. The constraint imposed by the Canopus sensor sun shutter to prevent its being pointed at the Sun was precautoonary since the purpose of the shutter was to protect the Canopus sensor from light sources such as thic Sun. The precaution was necessary because, if the shutter failed eather in the open position and the sensor was danaged by heing exposed to direct sunlight or in the closed position, the spacecraft would be unable to maintain its star reference.

It was also very desirable to maintain downlink communication durng the motor burn. Communication constraints, which required that the low-gain antenna (LGA) be directed, with varying tolerances, to the Eart: , were satisfied by vectorially adding a velocity increment to the maneuver in a noncritical direction.

Figure 63 shows the pointing region for the high-gain antenna (HGA) in either the unflipped ("normal") or flipped

Fig. 63. Viking manouver pointing constralints
positions. To communicate over the HGA during the burn, the turn set had to be selected to position the Earth vector in one of these regions. Recall that a second roll turn was introduced for MOI to communicate over this antenna in the flipped position. However. flipping the antenna was generally considered to be risky and was not done for any of the trims.

Maneuvers performed on orbits having significant solar occultations were further constrained to lie within a specified tolerance of the sun direction. $\mathrm{Tl} \cdot \mathrm{s}$ constraint limits the size of the yaw turn to avoid further depletion of the ba، 'eries. And, in fact, burns were performed in the cruise mode as sunline maneuvers whenever possible. Thus the turns were eliminated. greatly reducing operational complexity.

Timing constraints were imposed for certain trims. For example, some trims were prohibited from being performed within $11 / 2$ hours of periapsis to permit the taking of relaylink data. One maneuver was constrained to be at least four hours after periapsis to allow sufficient time for the obbiter to take and playback relay data.

These and other constraints are considered in more detail in the discussions of the individual trims for each spacecraft given below in Subsections E and F.

D. Trim Maneuver Software

The Mars Orbit Trim Operations Program (MOTOP) was implemented for use by the Flight Path Analysis Group (FPAG) to calculate and analyze the VO orbit correction maneuvers required to acquire the landing site, to satisfy mission and science objectives and to station-keep over the lander. To meet these requirements, MOTOP was designed to perform the following functions:
(1) Trim maneuver strategy function. Simulate selected maneuver strategies designed to acquire primary and secondary landing sites and to support postlanding VO operations, while satisfying mission constraints.
(2) High-precision trim maneuver computation Junction. Compute the precise velocity correction vector and time of ignition, given the best estimate of the spacecraft state, the required postmaneuver orbit parameters, and other mission, spacecraft and astronomical data.
(3) Maneuver post-processing function. Given the velocity correction, compute the turn sequences required to achieve proper thrust pointing and generate the maneuver-commandable quantities based on spacecraft performance data. Data useful for the analysis of maneuver constraints is generated. The turn sequences
required to properly align the VO relay antenna boresight are computed.
(4) Statistical crror analysis function. For each maneuver of a maneuver strategy, perform an error analysis to generate expected velocity cost and postmaneuver control statistics, given maneuver execution and orbit determination uncertainties.
(5) Post-mancuver performance evaluation function. Based on pre- and postmaneuver orbit determination, evaluate the performance of all orbit trim maneuvers after execution, including ΔV, and turns that were actually implemented.

For further details on MOTOP. see Refs. 5 and 6.
To perform the five MOTOP operational functions, a variety of subprograms could be executed. However, as the mission progressed, the typical mode of operation was to perform the strategy function by using just one of the MOTOP stra egy algorithms. This algorithm targeted one trim to a maximum of four parameters in the following list: period, radius at periapsis, time for periapsis, right ascension of the ascending node. argument of periapsis, inclination, latitude of the PER point, and sun elevation angle. If less than four parameters were targeted, the remaining degrees of freedom were used to minimize ΔV. The high-precision analysis was then performed by using DPTRAJ in a man-in-the-loop iterative fashion.

E. Viking 1 Trim Maneuvers

This section and the following section treat the actual adaptive design and implet, entation of the maneuvers as the mission progressed, including the inflight results. Tables 11 and 12 give the commandable quantities for each trim, while Table 13 provides the resulting trajectory data.

1. Prelanding trim maneuvers. Figure 57 showed the original maneuver timeline and phasing strategy associated with a synchronous post-MOI target orbit. However, because of the propellant pressurant regulator leak discussed earlier, two large approach midcourse maneuvers were performed followed by insertion into a 42 -h orbit. This large initial target orbit made it necessary to change the phasing strategy to that shown in Figure 64. This strategy maintained essentially the same maneuver timeline as that shown in Fig. 57, with phasing maneuvers at P2, P5 and A11. But MOr-1 was now a large period-change maneuver designed to return to the nominal timeline to permit the taking of reconnaissance data and to prepare for lander separation.

If the errors encountered at MOI were small, MOT-1 would be a syncing trim to decrease the orbiter period from 42 h to

Table 14. Design quantities: velocity increment and Ignition time

Maneuver	Volocity increment ΔV, m / s	Ignition time GMT-OET (date, himin:s)
Viking 1		
MOT-1	80.053	6-21-76, 17:26:21
MOT-5	25.713	7-9-76, 00:40:00
MOT-6	2.736	7-14-76, 07:12:00
SKT-2	2.228	8-3-76, 03:00:00
MOT-7	21.327	9-11-76, 19:03:54
MOT-8	3.708	9-20-76, 22:15:29
MOT-9	22.926	9-24-70, 15:10:00
Vikıng 2		
MOT-1	4.077	8-9-76, 17:16:00
MOT-2	1.776	8-14-76, 08:31:15
MOT 3	42.728	8-25-76, 17:48:29
MOT-4	11.292	8-27-76, 20:25:38
MOT-5A	5.006	9.29-76, 04:33:20
MOT-5	342.551	9.30-76, $21: 07: 38$

synchronous. If the errors experienced on this trim were also small, no further maneuvers would be needed to acquire the nominal landing site. However, in the presence of large execution errors at MOI, the P2 trim would phase to produce a tilt angle of less than 9 deg at P4 and P6. Note, for example, that a dispersed path having a large positive offset at P2 would be targeted for a negative offset at P5. This strategy improves the tilt angle (equivalently timing offset) at P4. A satisfactory tilt angle is then obtained at P6 by a phasing maneuver at P5. The last trim is performed at A11 to sync over the site in preparation for landing. The probability (pre-MOI) of achieving a 9 deg or less tilt angle at P4 and P6 with the Viking 1 execution and OD errors was about 98%.

The phasing diagram in Fig. 65 shows the timing offset between the Viking 1 spacecraft and the planned landing site at $19.5^{\circ} \mathrm{N}$ latitude and $34.0^{\circ} \mathrm{W}$ longitude. This figure gives the planned sequence of events at the time of MOT-1, when hope still remained for a July 4th landing. Even prior to implementing MOT-1, it was clear that the P5 trim, MOT-2, could be deleted from the maneuver timeline. Recall from the discussion above that MOT- 2 was intended to phase to obtain satisfactory tilt angles for reconnaissance purposes in the event of large post-MOI orbit dispersions. However, the MOI was very accurate and did not introduce large diapersions. Note that the first periapsis passage PI has been omitted in Figs. 64 and 65. This notation was adopted to maintain the correspondence between periapmis number and GMT reflected in extensive operational plams. As shown in Fig. 65, the probability was greater than 99% that the tilt angle requirement 'tilt < 9 deg) would be satisfied for every rev before MOT.3; thus,

Table 12. Design quantities: turns

Mancuver	Roll reference	Turns, deg		
		Roll	Yaw	Koll
Viking 1				
MOT-1	Canopus	56.856	-126.850	0.0
MOT-5	Canopus	-153.329	-130.500	0.0
MOT-6	Canopus	46.270	- 51.100	0.0
SKT-2	Canopus	101.506	-23.907	0.0
MOT-7	Sirnus	125.177	-126.116	0.0
MOT 8	Sirius	0.0	0.0	0.0
MOT-9	Sirius	0.0	0.0	0.0
Viking 2				
MOT-1	Canopus	0.0	0.0	0.0
MOT-2	Canopus	0.0	0.0	0.0
MOT-3	Vega	0.0	0.0	0.0
MOT-4	Vega	0.0	0.0	0.0
MOT-5A	Vega	0.0	0.0	0.0
MOT-5	Vega	-141.351	-123.777	144.839

MOT- 2 was catıcelled. There was a small probability that execution errors experienced at MOT-1 would produce a period error that was large enough to require a phasing maneuver at MOT-3, but, in fact, the Al site was almost perfectly acquired by MOT-1.

Site reconnaissance now proceeded as planned and soon showed that the A1 site was unsatisfactory for landing. As the search for a satisfactory nearby site continued, MOT-3 was designed to provide for significant landing site adjustments as late as possible. However, no satisfactory site was found in time to permit a landing on July 4th.

Fig. CA. MOT athe aoquiation strategiee

Table 13. Trapetory data

	P. h:min:	$r_{p}, k m$	Sl, deg	6. deg	i, dey	$\begin{aligned} & \text { Time } \\ & \text { (GMT } 1,76) \end{aligned}$
Viking 1: MOT-I						
Premancuver (A2)	42:21.07	4907.2	129.80	39.76	37.37	20:16.56 (6/20)
Postmaneuver (A3)	24:39.40	4907.1	129.68	39.94	37.88	05:47.19(6/22)
Viking 1: MOT-5						
Premaneuver (A19)	24.37:13	4905.6	127.59	42.74	37.99	16:02 28 (7/8)
Postmancuver (120)	24:46:34	4906.9	124.77	44.89	37.69	$1643 \cdot 52$ (7/9)
Viking 1: MOT-6						
Premancuver (A24)	24:45:51	4906.2	124.24	45.61	37.73	19:48:34 (7/13)
Pontmaneuver (A25)	24-39:04	4902.5	124.20	45.82	37.70	$210 \cdot 31 \cdot 03(7 / 14)$
Vihny 1: SKl-2						
Premaneuver ($\mathrm{A}^{\text {4 }}$)	24:36:21	4900.1	$12: .94$	48.96	37.81	07:50.13 (8/2)
Postmancuver (144)	24:38:17	4898.8	121.78	49.31	37.90	188:28:06 (8/3)
Viking 1: MOT-7						
Premaneuver (A82)	24:32:08	4885.5	117.12	55.82	38.15	06:50:09 (9/11)
Portmaneuver (A83)	21:52:37	4885.2	116.99	56.03	38.13	06:02:33 (9/12)
Viking 1: MOT-8						
Premaneuver (A92)	21:52:38	4882.4	115.78	57.63	38.10	10:56:42 (9/20)
Postmaneuver (A93)	22:13:45	4885.3	115.72	57.99	38.31	08:59:57 (9/21)
Viking 1: MOT-9						
Premaneuver (A96)	22:13:55	4885.2	115.25	58.51	38.10	03:41:26 (9/24)
Postmaneuver (A97)	24:38:42	4909.4	115.08	59.77	38.16	03:08:11 19/25;
Viking 2: MOT-1						
Premancuver (A2)	27:37:12	4912.4	36.28	69.36	55.18	05:05:11 (8/9)
Postmaneuver (A3)	27:18:47	4893.0	36.07	69.77	55.20	08:33:16 (8/10)
Viking 2: MOT-2						
Premaneuver (A6)	27:19:16	4892.8	35.80	69.90	35.21	18:30:49 (8/13)
Postmaneuver (A7)	27:24:47	4895.0	35.72	70.02	55.21	21:52:53 (8/14)

Table 13 (contd)

Fig. ©6. She acquiation for Jily 4, 1778, lending

Since no site was found in the immediate neighborhood of A1, MOT. 3 and MOT 4 were cancelled and a maneuver strategy comprised of MOT 5 and MOT- 6 was designed to walk to an aren northwest of the original site. Following the implementation of MOT-S, the apacecraft began to walk to a candidate dite in the northwest region. In this walk, atill another candiCate was found. MOT-6 synchronized to this site at $22.5^{\circ} \mathrm{N}$ and $47.4^{\circ} \mathrm{W}$. Final adjustments in the site coordinates were made and landing occurred on 20 July 1976 (GMT). Each of the trims is considered in tum in the following diacussion.

The post-MOI orbit parameters are given in Table 13 and the orbit geometry is shown in Fig. 66. MOT. 1 was designed to return the spacecraft to the nominal timeline to permit the taking of reconnaissance data and to prepare for lander separation. The landing site rendezvous problem is illustrated in Fig. 67.

MOT-1 was designed to remove all downrange (DR) error at P15 and to perform no correction of the latitude of the PER point (LATPER). The remaining error, XR, would then be taken out by the VL at deorbit to conserve propellant on the orbiter. Also, since the landing site was subject to adjustment, it was possible that the current LATPER might be better than the nominal one. Therefore, LATPER was left to precess to a value of $19.65^{\circ} \mathrm{N}$ at P15. This meant that VLI would have to crossrange 0.3 deg to move to $19.5^{\circ} \mathrm{N}$ or as much as 3.0 deg to reach candidate sites further south. Deleting the correction of LATPER also maximized the probability of needing only one trim by minimizing the execution errors. In fact, the probability of satisfying the entry angle requirements for the nominal : ite wes shown to be 86%. The Al site acquisition probability density function is given in Fig. 68. This figure shows the prolability of success as a function of the VLentry angle and crossranging.

Given the above maneuver criteria, MOT-i reduces to a period-change maneuver where the target period must provide

Fig. 66. Viking 1 orbit geometry

Hip. 07. Lending ane randervews

DR $=0$ at P1S. To minimize ΔV, the trim wes performed at periapeis, the most ΔV efficient place for such a maneuver. The maneuver was made in the direction of $-V_{M}$. Being tangeatial to the spececrafi velocity vector essentially nullified
the effects of pointing errors and, in fact, the 99% accuracy for period was predicted to be 1.8 min for the $80.053 \mathrm{~m} / \mathrm{s}$ burn.

The MOT-I design was subject to a constraint on the maneuver execution time. The motor burn had to occur between 13:16 GMT and 22:16 GMT on June 21, 1976. This block of time in the onboard computer CCS was reserved for the maneuver commands. Commands for activities other than the propulsive maneuver were loaded into the CCS for times outside of this window. The boundaries of the window were computed by FPAG prior to MOI, using expected 99% dispersions for MOI. This maneuver constraint was easily met.

For MOT-1, the angle between the LGA and the Earth exceeded 50 deg so the bum was performed in the blind. The commandable quantities are given in Tables 11 and 12, trajec. tory data in Table 13.

Following the execution of MOT-I, site reconnaisance proceeded as planned and soon showed that the AI site was unsatisfactory for landing. As the search for a satisfactory site continued, MOT- 3 was designed to provide for significant

Fig. 65. A-1 sto acquiation probablity
landing site adjustments as late as possible in support of a July 4th landing. Initially, it was not known whether the new site would be east or west of the original one, or how far in either direction. So ΔV-cost and accuracy analyses were performed for changing the orbital period $\pm 1 \mathrm{~min}$ while keeping h_{p} fixed and satisfying the communication constraint (angle between the Earth and the LGA <50 deg). Once the new site was selected, the required period change to walk to this location could be determined and the results for ± 1 min scaled to this new value.

The problem was then considered in fight plane velocity space, using the gradient values given in Figz. 39 and 40. The magnitude of the ΔV_{M} component is determined by the period change, while the ΔV_{i} component cancels the h_{p} change introduced by the ΔV_{k} component. A third component is required along $\Delta \hat{X}_{N}$ to satisfy the communication requirement. Figure 69 shows the magnitude of the resulting inplane velocity incremיnt $\Delta \mathbf{V}_{p}$ and the 3 -dimensiunal vector ΔV for the period decreasing case $\Delta p=-1 \mathrm{~min}$. Finally, the expected 99% accuracy for $p e$ iod is determined, using the execution error statistics listed in Table 10, the ser itivity of period to ΔV_{M}, and the angle beiween ΔV and $\Delta \tilde{P}_{M}$.

A new candidate landing site was selected at $19.35^{\circ} \mathrm{N}$ and $32.5^{\circ} \mathrm{W}$ for targeting purposer. Even though the landing site selection team had not determined ihat there was a satisfactory lander footprint about this point, the decision was made to proceed with the maneuver desifn procees fis MOT. 3 so that manouwer paramoters would be avallable if needed. Since

Fig. 69. MOT-3 velocity cost analysis for Viking 1, $1 \rho=-1 \mathrm{~min}$
the site was to the east of the riginat one the orbital period had to be reduced.

MOT. 1 had obtained an orbit that would place the PI:R print at $19 \quad 5^{\circ} \mathrm{N}$ and $34^{\circ} \mathrm{W}$. Figure 70 shows the resulting VL accessible area, which consists of those sites that the lander could reach by coossranging 3 deg or less and by targeting to an entry angle γ, between -17.4 and -16.2 deg. This figure also shows the 99% landing dispersion ellipse if MOT. 3 were deleted and the lander performed +1.20 deg of crossranging while targeting to $\gamma_{\boldsymbol{F}}=-15.51$ deg. The benefit of using MOT- 3 for the new candidate ($19.35^{\circ} \mathrm{N}, 32.50^{\circ} \mathrm{W}$) was thus seen to be questionable. Bu! this candidate had not yet been shown to be acceptable for landing. Ii this site should be rejected, the late update capability and the Vi crossranging capability could be used to attain another site in this eastern region. However, since no satisfactory site was found in the eastern region, MOT- 3 was cancelied.

A new candidate site (AlNW) was specifiec nurthwest of Al at $23.4^{\circ} \mathrm{N}, 43.4^{\circ} \mathrm{W}$. Therefore, it was necessary to change both the latitude and longitude of the PER point. A three-trim strategy (Fig. 71) was designed consisting of phase and aync maneuvers (to correct the longitude) and a LATPER-chang maneuver. However, subsequently, the first of thes. maneuvens, known as MOT-4, was omitted by combining the phase and LATPER changes in MOT-5. The only penalty for deleting this maneuver was that the tilt angle would exceed 9 deg at $\mathbf{P 2 0}$ for targets northwest of $23.5^{\circ} \mathrm{N}$ and $43.0^{\circ} \mathrm{W}$.

The revised strategy is shown in Fig. 72. The design criteria for this revised AINW acquistion sirategy may be stated bilefly as follows:

Fig. 70. VL accessible area and landing dispersion ellipse with MOT-3

Fig. 71. ATNW acquisition with MOT-4, LATPERTo $=\mathbf{2 3 \%}$
(1) The orbiter will time-phase to the optimum entry flight path angle $\gamma_{E}=-16.8 \mathrm{deg}$.
(2) The lander will crossrange $\mathrm{XR}=-\mathbf{3 . 0} \mathrm{deg}$ to reach the northernmost site at $24.0^{\circ} \mathrm{N}$ latitude.
(3) The VL will land near periapsis P27.
(4) The orbit will minimize the drift following P 27 if the landing is delayed by five days.

The maneuver software discussed earlier was used to compute MOT-5 to phase (adjust period) and correct orientation
(LATPER) for minimum ΔV while holding h_{p} fixed. The resulting tilt angle expected at P20 and the VL accessible area are shown in Fig. 73. Tilt angles for viewing the given latitude and longitude are shown in the range from 0 to 20 deg. For example, the tilt angle in the $\mathbf{P} 20$ coverage for a site at $24^{\circ} \mathrm{N}$ latitude and $39.6^{\circ} \mathrm{W}$ longitude is 8 deg . The VL accessibie area shows those sites thet the lander could reach by crossranging 3 deg or less and by targeting to γ_{E} between -17.4 and -16.2 deg .

An analysis was performed to determine the latitude and longitude changes that could be accommodated with the late

Fig. 72. A1NW acquisition whthout MOT-4

ORIGINAL PAGE IS
 OF POOR QUALI' Y

Fig. 73. P20 tilt and VL accessible area
update. (Recall that late updates involved changes in ΔV and $t_{i g n}$, while the turns remained fixed.) The band of equivalent latitude and longitude adjustments that could be obtained by such an update are shown in Fig. 74. The solid line marked $\Delta \Delta V=0.0 \mathrm{~m} / \mathrm{s}$ shows site changes that could be made by adjusting only the ignition time. Other lines running parallel to this one show sites that could be obtained by also adjusting ΔV. The band is shown for changes of only $\pm 30 \mathrm{~min}$ in $t_{i g n}$ because this was approximately the maximum adjustment capability at the time of the final maneuver design.

This information concerning site targeting adjustment capability was of great interest at this point in the mission since the very intense search for the final landing site was still in progress. In fact, prior to implementing MOT-5, another site was selected at $23.5^{\circ} \mathrm{N}$ latitude and $51.0^{\circ} \mathrm{W}$ longitude: This new site became known as AIWNW. Table 14 can be used as a reference for keeping track of the site changes.

As discussed above, some latitude and longitude adjustments could be made while using the thrust directions specified for AINW. However, to walk to this new site, the wait time between MOT-5 and MOT-6 was increased according to the phasing strategy shown in Fig. 75. MOT. 5 would still perform the LATPER-change and phasing; MOT-6 wou'd be performed near P26 to sync. The phasing was to target for the

Table 14. Viking 1 landing site targeting a justmente

Parameter	Al	AlR	AlNW	AlWNW	AlWNWSE	Final target $^{\mathrm{a}}$
	Latitude, ${ }^{\circ} \mathrm{N}$	19.5	19.35	23.4	23.5	22.5
Longitude, $^{\circ}$ W	34.0	32.5	43.4	51.0	47.4	42.4
SEA at TD, deg	29.8	30.8	38.0	39.0	38.1	38.2

${ }^{2}$ Viking 1 landed at $22.46^{\circ} \mathrm{N}$ latitude and $48.01^{\circ} \mathrm{W}$ longitude.

Fig. 74. MOT PER update for Viking 1

Fig. 75. Site acquistion for Viking 1
optimal γ_{E} of -16.8 deg at P30 (or, if delayed, at P35). The fan of paths at the MOT-6 maneuver shows the results of changing the longitude targeting requirements by $\pm 5 \mathrm{deg}$ after MOT-5 has been executed. A contingency plan is also shown in the figure. If, following the taking of additional reconnaissance data, the decision were made to return to A1NW, MOT. : would be executed at P23 for the optimal $\gamma_{E}=-16.8$ deg to toushdown at $23.4^{\circ} \mathrm{N}, 43.4^{\mathrm{o}} \mathrm{W}$ near P27.

When the commandable quantities were determined for targeting to A1NW, the GMT ignition window was specified as $23 \mathrm{~h}: 35 \mathrm{~min}$ on July 8 to $00 \mathrm{~h}: 40 \mathrm{~min}$ on July 9 . Moving to a
site farther to the west required increasing the period. Hence, it was necessary to delay the maneuver. Because of the constraint to remain within the ignition window, the mancuver was performed at the latest allowable time at a slight ΔV penalty. The required ΔV was $25.713 \mathrm{~m} / \mathrm{s}$.

Only the final (updated) commandable quantities are shown in Tables 11 and 12. Table 13 shows the trajectory data. The P30 value of LATPER was changed from 21.1 deg to 22.0 deg by MOT-5.

Still another candidate site, known as AlWNWSE $\left(22.5^{\circ} \mathrm{N}\right.$, $47.4^{\circ} \mathrm{W}$) was located by using reconnaissance data obtained during the walk begun by MOT-5. MOT-6 was designed to time-phase to $\gamma_{E}=-16.8 \mathrm{deg}$ at this site, while minimizing the postmaneuver asynchronism. The latter was needed to give more time to select a landing ellipse if the proposed area was very rough. These objectives put a heavy demand on the period accuracy.

The design of the m..neuver involved a tradeoff of several factors:
(1) The need for optimal period control.
(2) Timing constraints at P30 and P35.
(3) A favorable geometry for communications.
(d) No change in h_{p}.

This is a 4 -dimensional optimization problem. To simplify the analysis, the requirement to fix h_{p} was ignored at first and the problem was considered in flight plane velocity space. A ΔV_{M} component was needed to decrease the period by 6 min 40 s to time-phase. A normal component ΔV_{N} was needed to satisfy the 50 deg constraint on the angle between the Earth vector and the LGA. We know from the gradient curves that the required magnitudes of ΔV_{M} and ΔV_{N} are functions of the true anomaiy. The period sensitivity to ΔV_{M} is symmetric about the true anomaly $\eta=180 \mathrm{deg}$, but maneuver locations with $\eta>180 \mathrm{deg}$ were more favorable for communications. So only this region ($\eta>180 \mathrm{deg}$) was considered. Figures 76 and 77 show the 99% period control and ΔV cost, respectively. A maneuver at apoapsis would provide the best period accuracy, but would have changed h_{p} by 120 km . Also, the ΔV cost is largest here because of the relative insensitivity of period to velocity changes. For example, if the maneuver at $\eta=220 \mathrm{deg}$ were to maintain h_{p} fixed, the 99% period accuracy would have increased to 12 s .

As a tradeoff, the maneuver at $\eta=262.5 \mathrm{deg}$ was selicted. Calculations using high-precision (DPTRAJ) trajectury data and LTOP target data refined the maneuver design to $\Delta V=$

Fig. 76. MOT-8 period control vs true anomaly

Fig. 77. MOT-A ΔV-coat ve true anomaly
$2.7 \mathrm{~m} / \mathrm{s}\left(\Delta V_{M}=1.2 \mathrm{~m} / \mathrm{s}, \Delta V_{N}=2.5 \mathrm{~m} / \mathrm{s}\right)$ and a 99% period accuracy of 11 s . The timing offset history is shown in Fig. 78.

The landing site specification was finalized at $22.4^{\circ} \mathrm{N}$ latitude and $47.5^{\circ} \mathrm{W}$ longitude. Figure 79 shows the VL parameters for revs 30 and 35 that iesulted from the execution of

Fig. 78. Site acquisition strategy following MOT-5

MOT-6, where the dashed curves at $\gamma_{E}=-16.9$ and $\gamma_{E}=-10.7$ deg indicate desired VL operating limits. Thus, MOT-6 had adequately completed the final landing site acquisition preparatory to lander separation.
2. Station-keeping trim. The mission design designated certain SOLs as station-keeping maneuver opportunities. That is, station-keeping trims (SKT) could only be performed on SOL 5, SOL 13 and SOL 26. SOL 5 was reserved for an early SKT to adjust the relay geometry in the cvent that the lander attained an unfavorable orientation. After the landing, the orientation was found to be favorable for the relay so this maneuver was cancelled. In fact, only the SKT at SOL 13 was performed for Viking 1.

The maneuver design was greatly influenced by a malfunction that occurred on VL-1 following landing. The lander relay to the orbiter had been mechanized to operate in a $1-, 10$ or $30-\mathrm{W}$ mode. Instead of cperating in the $30 . \mathrm{W}$ mode as programmed, the lander used the $1-W$ mode on SOLs 1 and 2 . On SOL 3, VL-1 began using the $30-\mathrm{W}$ capability. Since the reason for this relay link malfunction was not known, there was concern that the VL-1 might switch back unexpectedly to the 1-W m.jde. Therefore, the trim was designed to maintain the VO.. VL relay which would provide maximum 1-W relay performance.

Figure 80 shows the longitude offset history for the orbiter with respect to the landing site. The dashed curve shows the offset if the SKT-2 had not ieen performed. This path would have moved the VO to a geometry which provided better (longer) 30-W performance. However, an SKT would have been required before the EOM in any event. Another reason for performing the station-keeping at this SOL rather than a later one was that Viking 2 was still in interplanetary cruise, whereas a later opportunity would have been during the busy time of Viking 2 landing site selection. The solid path was

Fig. 79. VL parameters R30-R35

Fig. 80. Station-keeping strategy for Viking 1
chosen to keep the VO in the area of good 1-W performance through about SOL 40 . This would allow about 25 more SOLs :o observe and analyze the relay link mode selection. Another SKT could have been performed later to again adjust the offset to remain within the good 1.W region if necessary. However, this additional trim was not needed.

To introduce the longitude shift discussed above, it was necessary to increase the orbital perind of the VO by 2 min 13 s . It was also necessary to keep h_{p} tixed and to perform the maneuver at least four hours after periapsis. This ignition constraint allowed sufficient time for the VO to receive and play back relay data from the lander. The minimum ΔV maneuver that would target to the increased period and fixed h_{p}, subject to the execution time constraint, was located at the beginning of the ignition window, i.e., at a true anomaly of 162 deg . This maneuver was an in-plane maneuver of $1.9 \mathrm{~m} / \mathrm{s}$ and orthogonal to the h_{p} gradient.

To reduce the effect of execution errors on the orbital period, an out-of-plane component ΔV_{N} was added to the velocity vector as shown in Fig. 81. Figure 82 shows the effect on period control as the angle between ΔV_{M} and ΔV is increased, while the component along $\Delta \mathbf{V}_{M}$ is fixed. When ΔV points directly along $\Delta \mathbf{V}_{M}$, i.e., the angle is zero, the fixed magnitude execution error is the dominate error source pointing in the direction of maximum sensitivity to orbit period. As the angle increases, the sensitivity to the fixed error decreases. For large angles, the pointing error begins to dominate and the period error rises.

Finally, it was desirable to maintain communications during the maneuver. At the time of the SKT, the communications

Fig. 81. SKT-2 ΔV geometry for Viking 1

Fig 82. SKT-2 accuracy analyals
angle constraint was that the angle between the LGA and the earth not exceed 40 deg. Since this communications constraint could be satisfied with acceptable period control ($5 \mathrm{~s} 99 \%$) at a ΔV penalty of only $0.3 \mathrm{~m} / \mathrm{s}$, the maneuver shown in Figure 81 was performed. The commandable quantities are given in Tables 11 and 12. Trajectory data are given in Table 13.
3. VO excursion maneuvers. Three trims were performed to "walk" VO.1 to VL-2. The walk was designed so that VO-1 could support VL-2 science data return in an optimum manner during the VO-2 plane change and resync walk period, September 29 to October 17, 1976. Resynchronizing the Vo.1 orbit
cast of the V1-2 landing site would afford the optimum VL-2/VO-1 relay link windows. Hence, a walk/resync maneuver sequence was designed to pusitio; the VO-1 orbit track 11 deg east of the VL-2 longtude at the time of VL-1 lattude (22.4 deg) overfly. Figure 83 shows the geometric relationships.

In addition to providing the relay geometry discussed above, the maneuver sequence was required to walk around as much of the planet as possible by periapsis P88 for site reconnaissance purposes. Figure 84 shows how much longitude would not be overflown as a function of the targeted longitude at P93. This figure also shows the required walk rat in deg/rev for the interval from P80 to P88 to achieve the targeted site longitude and the corresponding ΔV cost. For example, a

Fig. 03. VL-2/VO-1 relay geometry

Fig. 64. Viking I walk enalyals
desynchronizing trim performed at P80 to produce a $40-\mathrm{deg}$ / rev walk rate would cause the spacecraft to overfly all but 30 deg of longitude by P 88 , while the ΔV cost would be less than $60 \mathrm{~m} / \mathrm{s}$.

Ultimately a decision was made to land VL-2 at B_{3}. However, by this time, the orbiter science long-range planning had begun working to a $40-\mathrm{deg} / \mathrm{rev}$ walk. To avoid redoing this sequence design work, it was required that the firsi phasing maneuvet target to this walk rate. Following a decision to delay each of the planned maneuvers for two revolutions, the final walk design characteristics were: (1) to provide a 14 -rev subsync walk beginning on rev 82 and ending on rev 96 , (2) to

Fig. 85. V0-1 walk timeline
begin the walk at 40 deg/rev, and (3) to resync, providing maximum duration VL-2 to VO-I relay links, i.e., to provide the geometic relationship shown in Fig. 83.

These objectives were achieved via a sequence of three trims:
(1) MOT. 7 near P82 to begin a $40-\mathrm{deg} / \mathrm{rev}$ walk,
(2) MOT-8 on rev 92 to phase to the Viking 2 site on rev 96.
(3). MOT-9 on rev 96 to sync 11 deg east of the Viking 2 site.

Since VO-I was now moving into a period of solar occultations which would result in a significant drain of the VO-1 batteries, a lurns constraint was imposed on MOT-8 and M01-9. If the yaw maneuver were to move the solar panels too far off the Sun, the power system would switch to a share mode in which the spacecraft would get some of its power from the Sun and the rest from the batteries. MOT-8 and MOT-9 were constrained to a yaw of less than 40 deg to avoid the use of this share mode and thus avoid further depletion of the batteries.

MOT-7 was to be performed on rev 82 to begin a $10-\mathrm{rev}$ subsync walk of $40 \mathrm{deg} / \mathrm{rev}$ as shown in Fig. 85. (A subsync walk was chosen to walk around the planet as rapidly as possible.) Therefore, it was necessary to reduce the orbital period by 2.7 hours. 'To minimize the ΔV cost, the maneuver

Fig. ©6. MOT-7 geomatry for Viking 1
was performed at periapsis as a retromaneuver opposite the spacecraft velocity vector (Fig. 86).

The accuracy of the maneuver was considered acceptable because the period could be controlled to within 20 s to 99% probability. Performing the maneuver along the velocity vector essentially nullified the effects of pointing errors. The 20 s was essentially due to magnitude errors only. Recall that the execution accuracy was imploved for the SKT by ading a component normal to the crbit plane. Such a strategy could not be used here. In fact, adding such a component would have degraded the accuracy by increasing the effect of the (proportional) pointing error

Finally, the cost of maintaining communications durng the motor burn of $19 \mathrm{~m} / \mathrm{s}$ was deemed to be too great. so this maneuver was performed "in the blind." Figure 86 shows the geometry of the maneuver. Recall that the LGA points in the $-\Delta \mathbf{V}$ direction so that the $40-\mathrm{deg}$ communication constraint was violated. Figure 87 shows the graph of the expected change in frequency (in Hz) during the MOT. 7 turns that was used for monitoring the maneuver. Since communications over the LGA are not lost by the roll turn, a hold was built in following this turn to allow time to verify that it was performed correctly. After this verification, the spacecraft proceeded to perform the yaw. Approximately 4 min after beginning this turn, the downlink was lost. The maneuver was completed in the blind and was accurate to within 10 s in period. The commandable quantities are given in Tables 11 and 12; the trajectory and performance data are given in Table 13.

MOT-8 phased VO-1 for VL-2 relay at rev 96. It was only necessary to reduce the walk rate from 40 to $35 \mathrm{deg} / \mathrm{rev}$ by increasing the orbital period by 0.3 h . This maneuver would

Pig. 87. MOT-7 urme doppion for Viding 1
not have been needed if it were not for the $40-\mathrm{deg} / \mathrm{rev}$ walk requirement following MOT-7. That is, the phasing could have been accomplished by one trim instead of two.

After several strategies were considered, the minimum ΔV sunline maneuver was performed at a true anomaly of 54 deg . Performing a sunline maneuver greatly reduced the operational complexity by eliminating the need for turns and also provided communications during the notor burn by remaining in the cruise attitude. Figure 88 shows the geometry. Thirdly. this orientation also avoided further depletion of the batteries begun by the solar occultations by keeping the solar panels pointed toward the Sun. The 99% period accuracy was shown to be 12 s , which was acceptable. Therefore, the $3.7 \mathrm{~m} / \mathrm{sec}$ maneuver was performed on September 20, 1976. Performance data are given in Table 13.

The post-MOT. 8 timeline shown in Fig. 89 made it necessary to redesign MOT-9. As discussed above, this maneuver had been intended to complete the walk/resync maneuver sequence by syncing VO-1 11 deg east of VL-2. Before MOT-8 was implemented, a high-precision (DPTRAJ) trajectory run provided a list of the expected periapsis passage times through Pl10, assuming nominal MOT-8 and MOT-9 trims. Before MOT-8 was implemented, orbiter science viewing and relay link times were computed based on these expected postmaneuver data. Execution errors experienced at MOT-8 introduced a somewhat different periapsis history. Therefore, the target period for MOT. 9 was adjusted to correct the future periapsis timeline, while sacrificing the requirement to resync at 11 deg east of VL-2. Given this tradeoff, a perfect MOT-9 would now produce the expected periapsis passage times through P 110 to within 1 min and obtain an orbit that is 1.1 min supersynchronous.

This maneuver was also performed along the sunline for the same reasons as was MOT-8. The ΔV penalty for performing the maneuver along the sunline was only $4 \mathrm{~m} / \mathrm{s}$, which was considered acceptable. The orbital geometry characteristics were the same as those for MOT- 8 since the maneuver was again performed at the minimum ΔV sunline maneuver location. The VO-1/VL- 2 offset history following MOT. 9 is shown in Fig. 90. Performance data are in Table 13.

Note that this maneuver sequence increased the height at periapsis to 1516 km . One of the alternate strategies that was considered would have kept h_{p} fixed by performing MOT- 8 at about 139 deg. Such a MOT- 8 maneuver would have lowered h_{p} in anticipation of raising it again at MOT-9. However, it was decided that fixing h_{p} was not worth an increase in $\Delta V \operatorname{cost}$ of $4 \mathrm{~m} / \mathrm{s}$.

Fig. 88. MOT-8/9 geometry for Viking 1

Fig. 0. Viving 1 thmoline

F. Viking 2 Trim Manouvers

1. Prelanding trim maneuvers. Since Viking 1 had shown how difficult it san be to obtain a satisfactory landing site on Mars, the Viking 2 site certification and acquidition process was designed to look at three candidate sites before the spacecraft was synchronized over any one of them. A site selection

Flg. 50. VL-2NO-1 oftser
walk was performed to look at site B 1 in Cydonia, B 2 in Alba Patera, and B3 in Utopia Planitia. Furthermore, each of these sites was only specified as lying within the latitude and longitude bands shown in Table 15. However, a candidate in the B1 band at $46.0^{\circ} \mathrm{N}$ and $10.0^{\circ} \mathrm{W}$ was used as the nominal site for the initial design phase.

The MOI maneuver was targeted to a period of 27.4 h to introduce a walk rate of $40 \mathrm{deg} / \mathrm{rev}(+2.8 \mathrm{~h}$ of asynchronism). Therefore, the spacecraft could, in the absence of MOI dispersions, acquire the nominal site with a single trim at P19 after a walk of more than 720 deg. Following the P19 trim, the spacecraft would he in a synchronous orbit in preparation for the landing to occur during rev 25. Figure 91 shows this

ORIGINAL PAGE IS OF POOR QUALITY

Table 15. Candidate Viking 2 landing sites

Site	Longitude range	Best estimate longitude before MOI	Lathtude range
B1	$345^{\circ} \mathrm{W}$ to $15^{\circ} \mathrm{W}$	$0{ }^{\circ} \mathrm{W}$	$40^{\circ} \mathrm{N}$ to $50^{\circ} \mathrm{N}$
B2	$90^{\circ} \mathrm{W}$ to $140^{\circ} \mathrm{W}$	$110^{\circ} \mathrm{W}$	$42^{\circ} \mathrm{N}$ to $50^{\circ} \mathrm{N}$
B3	$200^{\circ} \mathrm{W}$ to $270^{\circ} \mathrm{W}$	$257^{\circ} \mathrm{W}$	$40^{\circ} \mathrm{N}$ to $50^{\circ} \mathrm{N}$

nominal maneuver timeline, logether with the reconnaissance (VIS) and IR schedules. Note that these activities would be performed for B2 on revs 4, 7 and 8 , and for B3 on revs 9, 10 and 11. IR data woulc be obtained for B1 on revs 12, 13 and !4. The rev 4 observations were to be taken near the ascending crossing of the candidate site latitude, while all of the others would be near the descending crossing (dashed line on Fig. 91). VO1 would obtain VIS data for B1.

Dispersions for the post-MOI orbit could introduce the need for up to two additional trims: MOT-1 at P2 and MOT-2
at P6. The 99% dispersions are shown as dashed lines in Fig. 91. MOT. 1 would time-phase to the nominal B1 site at P19 if this would produce acceptable geometrical conditoms on the reconnaissance and IR revs listed above. Reconnaissance demanded an EMA <9 deg: IR needed a timing offset of less than 5 min . If these requirements were not met, MOT-1 would phase back to the nominal (solid) timeline at P6, where MOT-2 would phase to B1 at P19.

Other trims would be needed to cover all site selection alternatives. If B2 or B3 were selected, MOT-3 would be performed at P16 to move to the new site. Note that the walk rate following MOT-3 is determined by the longitude of this new site. The syncing maneuver MOT-4 would follow at P18 for B3 or P19 for B2. However, it was nuted that proceeding to $B 2$ in this fashion would be ΔV expensive since it required moving to a subsynchronous orbit at P16 to walk eastward. An alternate plan would have delayed these two maneuvers to P21 and P23 (maneuvers MOT-7 and MOT-8 in the figure). This plan would move the spacecraft westward at least to P 23 ,

Fig. 91. Vuking 2 atio certmeetion/coquievion
saving almost $50 \mathrm{~m} / \mathrm{s}$ but would also delay the landing to rev 27. If B1 were selected, MOT. 5 and MOT- 6 would provide the phasing and syncing respectively. Figure 91 shows three paths for each site. Two of these are for the endpoints of the longitude ranges. The intermediate one shows the path to the best estimate shown in Table 15 except for BI where the path is to $10^{\circ} \mathrm{W}$ (the preflight nominal).

This maneuver strategy possesses several very desirable characteristics:
(1) It requires as few as one trim.
(2) All site-selection data are acquired at least five days before the selection maneuver (MOT- 3 or MOT-5).
(3) Information is acquired on all sites before the decision point at Pl6.
(4) Maneuvers and observations are not required on the same rev.
(5) All trims are on fixed revs with no multiple options.

The disadvantages are:
(1) The strategy could require up to five trms.
(2) The walk size cuts down IRTM diurnal capability.
(3) The trims to B2 are costly or a delay in landing is incurred.

The four pre-landing trims that were actually performed are considered in turn below. The first two were the statistical trims MOT-1 and MOT-2. The others were the site selection trims MOT-3 and MOT-4. whech acquired the final target landing site at $47.9^{\circ} \mathrm{N}$ areographec latitude and $225.8^{\circ} \mathrm{W}$ longitude in the B3 area. Maneuver data for all of the trims are given in Tables 11 and 12 .

Two strategies were considered for the first trim. MOT-1. Figure 92 shows how the timing offsel history for each of these strategies would differ from that of the pre-MOI design. Since the post-MOI period was 12 min too large, the spacecraft reached P2 24 min late, i.e., approximately 6 deg west of the

Fig. E2. Viving 2 orthe tiving at mot-1
desired longitude. One strategy would return the spacecraft to the nominal pre-MOI Jesign by P6, where a second trim would obtain the nominal post-MOI period of 27.4 h . After P6, the spacecraft follows the nominal offset history shown in Fig. 91. Note that this path satisfies the $\pm 5-\mathrm{min}$ IR constraint for those revs on which the IR data are to be taken. The second strategy would cancel MOT- 2 and target MOT- 1 to achieve the pre-MOI design value for the time of periapsis passage at $P 7$. Canceling MOT-2 would eliminate the need for late updates to the observation times for revs 5 through 15 . These times would be known as soon as the post-MOT-1 orbit was determined and could be loaded into the onboard computer at that time. Eliminating the trim would also remove the risk involved in performing another maneuver. This MOT-1 targeting would (1) cause the spacecraft to overfly the midpoint of the B1 region at P19, (2) maintain the P7 observations exactly with respect to the plan, (3) enhance P 8 through P11 reconnaissance observations in the B2 region, and (4) produce no expected degradation in the P12 through P15 IR observations. The timing offset history for this one-maneuver rtrategy is shown in Fig. 91 as the path labeled P.

The two-maneuver stiategy was designed to decrease the period by 19.3 min at MOT-1, producing a period which is 6 min less than the nominal post-MOI value of 27.4 h . Thus the $24-\mathrm{min}$ offset error at P 2 is removed at the rate of 6 min per
rev for four revs to P6 (Fig. 92). The partial of period with respect to velocity, given in Fig. 55, shows that such a pernodchange can be accomplished by a $3.5-\mathrm{m} / \mathrm{s}$ sunline maneuver at the true anomaly $\eta=275 \mathrm{deg}$. However, by performing the maneuver at $\eta=243$, it can also be used to remove the +18 km h_{p} error experienced at MOI for $\Delta V=4.15 \mathrm{~m} / \mathrm{s}$. Actually, MOT-1 was designed to overcorrect the h_{p} error by 2 km , anticipating the fact that MOT. 2 would raise it again. A small ΔV penalty was accepted in favor of the sunline maneuver (Figs. 93 and 24) to (1) provide excellent communications, (2) avoid using power from the hatteries, and (3) simplify the operational complexity involved in command generation. The 99% period accuracy of 8 s was also acceptable. The second trim (MOT.2) is then performed at P6 as a sunline maneuver to increase period by 6 min .

The MOT-1 of the alternate strategy was designed in a similar manner. This maneuver would have decreased period by only 17.1 min for $4.05 \mathrm{~m} / \mathrm{s}$.

The two-maneuver strategy was selected, with the maneuver being performed at $17 \mathrm{~h}: 16 \mathrm{~min}$ GMT on August 9, 1976. As for MOT-1 on Viking 1, this maneuver was subjected io a constraint on the execution time. That is, the motor burn had to occur within a window (between 15 h : 00 min GMT on August 9, 1976, and $04 \mathrm{~h}: 00 \mathrm{~min}$ GMT on August 10, 1976)

Fig. 83. Orin pame for Viding 2

Fig. 94. MOT-i $\mathbf{I V}$ geometry for Viking 2
that had been reserved in loading commands into the CCS. This constraint uss easily met.

The period ubtained by MOT-I was 5.4 s too small due to execution errors. Figure 95 shows how the timing ofiset history would differ from the pre-MOI design if the MOT. 2 maneuver computed before MOT. I was performed. This path would have remained well with'n all constraint limits, but the maneuver was updated to produce the second path shown in the figure. Figure 55 shows that the required period increase of 6 min could have been obtained by a $1.2-\mathrm{m} / \mathrm{s}$ sunline maneuver at $\eta=95$ deg. High precision (IPTRAI) analysis obtained the preliminary commandable quantities: $\mathbf{R T}=0.0$ deg. $\mathrm{YT}=0.0 \mathrm{deg}, \Delta V=1.27 \mathrm{~m} / \mathrm{s}, \mathrm{t}_{\mathrm{Ign}}=08 \mathrm{~h}: 56 \mathrm{~min}$ on Anigust 14, 1976. At the time of the delivery of this pretiminary set, the ignition window was specified to be 08 h : 10 min to 10 h : 10 min . while the ΔV and time of ignition could still be updated.

The update capability was used principally to improve the period control accuracy following the trim. Figure 96 shows the ΔV cost and 99% period control accuracy for sunline maneuvers at different true anomalies. The discontinuities in the period control graph were caused by the fact that the 99% fixed magnitude error was given as $0.052 \mathrm{~m} / \mathrm{s}$ for burn durations less than 3 is and only $0.028 \mathrm{~m} / \mathrm{s}$ for longer burns. Therefore, the best period accuracy within the GMT window could be obtained by a maneuver at $\eta=40$ deg. Using the latest orbit determination, the command update made $\Delta V=$

Fig. 95. Viking 2 orbt timing at MOT-2
$1.8 \mathrm{~m} / \mathrm{s}$ with motor 1 , mition at 08 h : $31 \mathrm{~min}: 15 \mathrm{~s}$ GMT on August 14. 1976. The maneuver geometry is shown in Fig. 97.

Exentually, a candidate site was located in the B3 region. However, this site was only specified as $48.0^{\circ} \mathrm{N} \pm 1.5^{\circ}$ areo. graphic latitude and $226.0^{\circ} \mathrm{W} \pm 2.0^{\circ}$ longitude (see Table 16). Trims MOT- 3 and MOT- 4 were then des:gned to:
(1) Reach areographic latitudes from $46.5^{\circ} \mathrm{N}$ to $49.5^{\circ} \mathrm{N}$ with less than 3 deg of VL crossranging (XR).
(2) Target timing to the optimum lanuer entry fight path angle

$$
\gamma_{E}=-17.0 \mathrm{deg}
$$

(PER $=-9.9 \mathrm{deg}$).
(3) Treat the point at $48.0^{\circ} \mathrm{N}$ areographic latitude and $226.0^{\circ} \mathrm{W}$ longitude as the nominal site.
(4) Perform MOT-3 and MOT-4 near P16 and P18 respec. tively.
(5) Land near P25.
(6) Minimize the orbit drift for a 5 -day delay in landing.
(7) "rovide communications during the burn if possible.

The two trims had to walk the spacecraft to the new site longitude and increase LATPER by 1.8 deg. Figure 98 shuws the site acquisition timeline. To time-phas:, MOT- 3 must change the period from 27.4 to $\mathbf{2 4 . 0 5} \mathrm{h}$. This subsynchronous

Table 16. Viking 2 landing ohe acjuatments

	Specification for MOT 3 desiqn:	Specificatior. for MOI 4 design	Achicved site
Aicographic lattude. ${ }^{\circ} \mathrm{N}$	48.011 .5	$4 \% .9 \pm 1.5$	47.97
Areocentric latitude, ${ }^{\circ} \mathrm{N}$	47.7 : 1.5	47.6 : 1.5	47.67
Longitude. ${ }^{\circ} \mathrm{W}$	226.0 ± 2.0	225.8 ± 2.0	225.67
Sun elevation angle, deg	130.0×3.0	130.0×3.0	

Fig. 96. Menouver updete enclysis for Viling 2 MOT-2
orbit takes out the longitudinal offset at the rate of 9 deg per rev. MOT 4 then synchronizes the orbit. The tuming offset jumps shown in Fig. 98 at P16 and P18 reflect the changes in the right ascension of the PER point produced by the trims. The amount of LATPER correction by each trim was selected by considering sunline maneuvers at varous true anemalies. Since MOT- 3 was required to increase LATPER and decrease period, it had to be performed before periapsis (Figs. 55 and 56). Therefore, sunline maneuvers were targeted at true anoinalies before periapsis to change this period from 27.4 to 24.05 h . On the other hand. MOT-4 nad to increase both period and LATPER, so sunline maneuvers were targeted at true anomal:es after periapsis to move the spacecraft from the 24.05 .h orbit to a synchronous one. This process determines the postmaneuver values for all orbital pirameters. The results for the two trims were then inspected to find a combination of mateuvers that would nicrease LATPER by 1.8 deg and projuce a final h_{p} value of 1500 km . F gures 99 through 102 give the ΔV cost and achieved h_{p} and 'ATPER changes. After the MOT. 3 maneuver at $\eta=290 \mathrm{jeg}$ and MOT -4 at $\eta=130 \mathrm{deg}$ had been selected, a high precision (DPTRAJ) anal;'sis produced the trajectory changes shown an Table 17. Note that the inclination of the orbit is increased by each of these maneuvers, reducing the ΔV cost of the later plane change maneuver. which had to raise inclination to 75°.

Thus it was possible to design both trims as sunline maneuvers, providing excellent communication angles. Table 17 shows the planned trajectory changes for the preliminary

Fig. 27. MOT-2 gesometry for Viding 2

Fig. 98. Viking 2 site acquisition

Fig. s9. MOT-3 ΔV cost analysis for a sunline maneuver on Viking 2

Fig. 100. MOT-3 h_{p} and LATPER changes for a sunline maneuver on Viking 2

Fig. 101. MOT $4 \mathbf{A V}$ cost analyals for a sunline maneuver on Viking 2

Table 17. MOT-3 and MOT-4 trajectory summary for Viking 2

Parameter	Pre-MOT- 3 actual	Pust-mot-3		Post-MOTT-4 target	$\begin{gathered} \text { SL:P } \\ \text { target } \end{gathered}$
		Target	Achieved		
Period, h:min:s	27:24:45	24:02:56 $\pm 103 \mathrm{~s}$ (99\%)	24:02:24	24:37:20 ± 15 (99*)	24.37:20
Periapsis altitude, ${ }^{\text {a }} \mathrm{km}$	1512	1433	1434	1497	1500
Areographic LATPER, deg	46.0	47.5	47.5	47.9	48.1
SEAPER, ${ }^{\text {b }}$ deg	--	-	-	-	128.9
Inclination, deg	55.2	5.6	55.6	55.4	55.4
Time of P25, GMT	249/0107	247/1823	247/1818	247/2249	247/2249 ± 116 (99^{\prime};)

The periapsis altitude was computed using the value 3384 for the Mars radius at the landing site latitudes.
bSEAPI:R is the sun elevation angle at PER passage on the touchdown orbit.

Fig. 102. MOT-4 h_{p} and LATPER changes for a sunline maneuver on Viking 2
command set. Note that the $67 . \mathrm{km} h_{p}$ overcorrection introduced by MOT- 3 is to be restored by MOT-4. Also, the Sun elevation angle at PER passage on the separation orbit is essentially nominal. The maneuver geometries for both trims are shown in Fig. 103. The VL accessible area, shown in Fig. 104, covers almost all of the specified region (inside shaded portion) of candidate landing sites. Note that the 99% landing ellipse for zero lander crossranging and $\gamma_{E}=$ -17.0 deg is centered at the nominal site (48.0° aerographic latitude, $226.0^{\circ} \mathrm{W}$ longitude). The ellipse for +3.0 deg of crossranging is also shown in this figure for comparison purposes.

Table 17 shows the orbit attained by MOT-3. LATPER was only +0.003 deg high while the period was 32 s too small. At this time, a slight adjustment was made in the nominal Viking 2 landing site, which was specified for MOT-4 design purposes as $47.9^{\circ} \mathrm{N} \pm 1.5^{\circ}$ areographic latitude and $225.8^{\circ} \mathrm{W}$ $\pm 2.0^{\circ} \mathrm{W}$ longitude. MOT-4 was retargeted to the optimum $\gamma_{E}=$
-17.0 deg , obtaining the maneuver parameters given in Tables 11 and 12 . This retargeting reduced ΔV by $0.4 \mathrm{~m} / \mathrm{s}$ and made the time of motor ignition $18 \mathrm{~min}\left(4^{\circ}\right.$ in true anomaly) earlier than for the maneuver computed before MOT- 3 was implemented. Figure 105, which gives the VL accessible area, shows that the new nominal could be obtained by +0.3 deg of crossranging and 0.0 deg of downranging by the lander. The 99% landing ellipse is also shown.

The post-MOT-4 orbit was perfectly acceptable. Landing occurred near P25 on September 3, 1976 (GMT).
2. Post landing trims. A sequence of three postlanding trims was planned for VO-2 to (1) increase the orbit inclination to 75 deg , (2) walk 480 deg around the planet in 16 revs, (3) resync the VL-2 to VO-2 relay near the descending overflight of the VL-2 latitude, and (4) provide a Sun clevation angle greater than or equal to 15 deg at VL-2 overflight following the resync.

The first of these maneuvers, MOT-5 on rev 51, was designed to accomplish the large inclination change and produce an acceptable SEA at the rev 67 (descending crossing) VL-2 overflight. It was also targeted to initiate the global walk. A statistical trim MOT-6 of less than $2 \mathrm{~m} / \mathrm{s}(99 \%)$ was planned to follow on rev 56 to remove the effect of MOT- 5 execution errors on the orbit period. Later, MOT-7 would terminate the global wall for a ΔV cost of about $14 \mathrm{~m} / \mathrm{s}$. However, after MOT- 5 was performed, the other two trims were canceled, leaving the spacecraft in a 26.8 -h orbit.

The failure of the primary VO- 2 IRU at VL-2 separation raised concern about attitude control during MOT.5. When the primary IRU failed, the secondary one was brought online automatically. Since MOT-5 was the first major maneuver event to occur on the orbiter since separation, there was concern that the backup IRU would fail during the burn. Therefore, a short $5 \cdot \mathrm{~m} / \mathrm{s}$ test burn MOT-5A was introduced before

Fig. 103. MOT-3/MOT-4 geometries for Viking 2
the large plane change. Burning only $5 \mathrm{~m} / \mathrm{s}$ without attitude control would not be catastrophic, whereas the $350 \mathrm{~m} / \mathrm{s}$ for MOT- 5 surely would be.

The test maneuver MOT-5A was designed to (1) be $5 \mathrm{~m} / \mathrm{s}$, (2) be performed at least 32 h before the large plane change maneuver MOT-5, (3) maintain the rev 50 and 51 (SOL 25 and 26) relay links, and (4) be performed in the sunline attitude if possible. In fact, MOT-5A was performed along the sunline 40 h before MOT-5. The exact ignition time was selected to avoid changing the orbit period, thus maintaining the rev 50 and 51 relay links as previously planned. Recall from the parameter sensitivity discussion that adding a velocity increment orthogonal to V_{M} does not change period. Figure 106 shows the sunline direction to be orthogonal to V_{M} at the true anomalies $\eta=50$ and 185 deg. At the latter, 99% execution pointing errors maintain the time of P50 within 2 s and the time of P51 within 6 s . Since these errors would be considerably greater at $\eta=50 \mathrm{deg}$, the $\eta=185 \mathrm{deg}$ point was selected. Note from the V_{G} curve in Fig. 106 and the test burn geometry shown in Fig. 107 that this maneuver had a large component along the $+V_{G}$ vector. Therefore, the maneuver would increase h_{p} by 31 km . The normal component would reduce inclination by 0.1 deg , which was a slight penalty since the plane change maneuver was intended to increase this parameter.

The test burn was executed at $04 \mathrm{~h}: 33 \mathrm{~min}: 20 \mathrm{~s}$ GMT on September 29,1976 , producing $\Delta V=5.006 \mathrm{~m} / \mathrm{s}$. The telemetry data recelved from this maneuver showed no anomalies and gave confidence that the spacecraft could satisfactorily implement the large maneuver to follow.

MOT-5 was designed as a ΔV optimal maneuver with three target parameters (inclination, periapsis altitude and period), subject to a constraint on the Sun elevation angle (SEA $\geqslant 15 \mathrm{deg}$) at the rev 67 descending crossing of the landing site latitude. An inclination of 75 deg was needed for polar observations. This increase of 20 deg required about $350 \mathrm{~m} / \mathrm{s}$. Given such a large velocity change along the normal ($\Delta \mathbf{V}_{N}$) direction, little additional ΔV was needed to achieve the period and h_{p} targets. But for this large a maneuver, the execution errors were necessarily large and h_{p} could only be controlled to within $\pm 54 \mathrm{~km}$ (99%). Since the requirement on h_{p} was that it be between 1400 and 1500 km after the maneuver, it was targeted for 1450 km to maximize the probability of satisfying this constraint. The period was targeted for 26.66 h , yielding a $30-\mathrm{deg} / \mathrm{rev}$ walk. Resyncing after 16 revs would provide a longitude timing that would achieve a $9 \cdot \mathrm{~min}$ offset east of the landing site when the spacecraft crossed the VL-2 latitude. This would maximize the relay link duration (see Fig. 108). Figure 109 shows the ΔV cost of targeting to these three parameters as a function of the target value for SEA. The ΔV optimal maneuver of $343.2 \mathrm{~m} / \mathrm{s}$ was

Fig. 104. Preliminary MOT-3/MOT-4 VL accessible area for Viking 2
selected, attaining an SEA of 22 deg. The maneuver and orbit geometry is shown in Figs. 107 and 110.

The maneuver attitude was achieved by a three-turns sequence: roll $=-141.351 \mathrm{deg}$, yaw $=-123.777 \mathrm{deg}$, and roll $=-144.839 \mathrm{deg}$. The late update specified $\Delta V=342.551$ m / s with ignition at $21 \mathrm{~h}: 07 \mathrm{~min}: 38$ (GMT) on September 30, 1976. MOT-5 was satisfactorily executed achieving $h_{p}=1528$ km , period $=26.78 \mathrm{~h}$ and $i=75.1 \mathrm{deg}$.

After implementation of MOT-5, and prior to the planned phasing maneuver on rev 56 , the science activity plans for VO-1 were changed. The plan for a VO-1 wal's for radio science was eliminated. As a result, VO-1, which had been timed to provide the VL- 2 relay during the VO- 2 walk, was left to continue the VL-2 relay. No further maneuvers were made on VO-2, leaving it in the $\sim 30^{\circ} / \mathrm{rev}$ walk. VL- 1 relay links were infrequent during this period, and were done with VO- 2 when the relative timing permitted.

Fig. 105. Post-MOT-4 VL accessible area for Viking 2

Fig. 106. Sun diroction In velocity space

Fig. 107. Viking 2 plane geometry (MOT-5)

Fig. 108. VL-2/VO-2 relay sensitivity to timing oftreot

Fig. 109. Viking 2 plane change cost

Fig. 110. Viking 2 plane change geometry

References

1. Hintz, Gerald R., "Orbit Trim Strategies for the 1975 Mars Viking Mission," J. Spacecraft Rockets, Vol. 11, No. I1, Nov. 1974.
2. O'Neil, W. J., et al., "Viking 1975 Navigation Plan," Document 612-32, Jet Propulsion Laboratory, Pasadena, Calif., May 1, 1975.
3. Dowdy, M. W., Hise, R. E., and Peterson, R. G., "Development and Qualification of the Propellant Management System for Viking 75 Orbiter," J. Spacecraft Rockets, Vol. 14, No. 3, March 1977.
4. Miller, J. K., et al., "Viking 1975 Navigation Plan Supplement 1," Document No. 612.32 (Supplement 1), Jet Propulsion Laboratory, Pasadena, Calif., May 20, 1976.
5. Hintz, Gerald R., and Pavlovitch, Theodore, "Viking 75 Project Software Requirements Document for the Mars Orbit Trim Operations Program (MOTOP)," Document 620-5, Jet Propulsion Laboratory, Pasadena, Calif., July 1973.
6. Pavlovitch, Theodore, Hintz, Gerald R., and Rinderle, Edward A., Jr., "Viking '75 Project User's Guide for the Mars Orbit Trim Operations Program (MOTOP)," Document 620-405, April 20, 1976.

${ }^{3} 6$ N $80-21403$

Lander Flight Path Analysis

E. A. Euler. G. L. Adams, and F. W. Hopper

I. Introduction

The primary functions of the Lander Flight Path Analysis Team (LFPAT) were to (1) design the Viking Lander (VL) descent trajectory and compute the descent guidance parameters for command transmission to the Viking Lander and Viking Orbiter (VO), (2) reconstruct the VL trajectory from separation to touchdown using data transmitted from the VL to Earth via the VO during descent, and (3) predict the VL/VO relay link system peiformance during descent and post touchdown.

Each of these primary functions is discussed in detail in subsequent sections. Sections II, III, and IV address item 1 above and discuss the preflight VL capability, the history of proposed descent trajectory designs as the site selection process evolved, and the final trajectory design and guidance parameters for each vehicle. Sections V, VI, and VII address the trajectory reconstruction process, including the overail reconstructed VL flight path summary and a detailed discussion of the entry trajectory and atmosphere reconstruction results. The postland relay link prediction function is discussed in Section VIII.

The following paragraphs contain an overall description of the LFPAT flight operations activities, key interfaces, proce-
dures, timelines, and the software used to perform the functions described above.

A. LFPAT Software

1. LTOP - Lander Targeting Operations Program. This program consisted of a number of different modes to generate and completely analyze proposed descent trajectories. The heart of the program was a detailed three-degree-of-freedom trajectory model. Although the onboard computer computations were not simulated in this program, all other applicable VL subsystems were modeled to the degree of sophistication necessary to maintain a flight path positional accuracy of about 10 km at touchdown. Given the parameters of the orbit on which separation was to occur, the program had the capability to construct deorbit maneuver parameters (time, pointing angles, $\Delta \mathbf{V}$) to dchieve a variety of different desired target conditions, perform an error analysis on a given trajectory, predict the VL/VO relay link performance for desce:r: as.t most importantly, compute the onboard guidance par, meters necessary to achieve the desired flight path conditions. Add. tionally, the program operated in a postflight mode to make a weighted least squares estimate of the deorbit maneuver parameters and to generate the actual attitude profile prior to entry using telemetry received from the VL.
2. LATS - Lander Trajectory Simulation. This program was a non-real-time, high-fidelity. six-degree-of-freedom digital simulation of the descent trajectory. The onboard fhght software computations were functionally simulated, and all other VL descent subsystems (i.e., radars, propulsion systems) were modeled in great detail to accurately simulate the detaii d vehicle dynamics and onboard guidance, control, and navigation processes. This program was used primarily as a verntication of the descent gudance parameters and trajectory designt. but it was also useful as an analysis tool to investigate potenthal anomalies. During preflight test and training, the program was used to generate simulated onhoard descent telemetry 10 test the lander trajectory reconstruction process.
3. RLINK - Postland Relay Link Program. RLINK modeled the VO orbital motron to predict the relative VL/VO geometry after landing and used VO and VL relay subsystem parameters to predict the overall link communications systems performance. The output of the program was used to monitor actual performance and to compute the relay data transmission start times and durations for uplink planning.
4. PREPR - Preprocessor for Lander Trajectory and Atmosphere Reconstruction. This nrogram provided the data conditioning and editing functions necessary to prepare the data obtained from onboard telemetry during the entry to touchdown time period for the reconstruction software. The preliminary functions included editing and calibrating the accelerometer and gyroscope data and smoothing these data to produce a continuous time history of angular velocity and acceleration of the vehicle center of gravity at a desired frequency. Other subsystem data used for reconstruction (radars. pressure, temperature) was unaltered.
5. LTARP - Lander Trajectory and Atmosphere Reconstruction Program. LTARP was essentially a classical orbit determination program that employed a sequential KalmanSchmidt filter. The six-degree-of-freedom trajectory was generated by integrating the sensed vehicle acceleration and angular velocity data along witn gravitational accelerations. The observables were radar altimeter and terminal descent and landing radar data, ambient and stagnation temperature and p issure data, and extemally supplied position or velocity fixes (e.g., landed position). The usage of the program is described in Subsection VI-A.

B. Operational Activities

Although a number of operational support tasks were performed beginning at ahout MOI. 30 days (such as MOI/MOT support), the activity penod ieading directly to separation of the VL started about SEP-10 days. At this time the predicted separation orbit was well determined and a preliminary target
landing site was avalable, allowing for a realstic design of the descent trajectory to be flown and the associated flight computer load.along with an estimate of the key event tmes (separation, touchdown, etc.).

The preliminary data was used to do preliminary sommand and sequencing for both the VO and VL. and to perform descent validation runs in the VCSF in Denver. This early valdation of descent was done to provide a "shakedown" of the system in Denver and to identify any potential problems, with the proposed descent. In actuality, this early test proved valuable for VL-I when ground hardware problems were discovered in the VCSF in the first test of the system, performed on June 25, 1976.

The descent validation process is shown schematically in Fig. 1. The VL trajectory was targeted and the VL descernt guidance parameters were computed by the LFPAT wing ITOP, and then verified by the OMATT using DPTRAJ. , his check by the OMATT was performed independently to provide confidence that the proposed parameters were error-free prior to release by the FPAG. The LPAG then generated the necessary command load for the VL and prepared the predicted GCSC memory map at separation that was used to initialize the descent simulation to the VCSF. The separation state vector and attitude were sent from the FPAG to the LSO to complete the set of initialization data. The simulation of descent was performed by the LSO using the VCSF. Key trajectory and subsystem data was sent back to JPL by the LSO for comparison with simulation results from EPAG programs LTOP and LATS. In addition, each element of the flight team did other checks on the detailed output data in certain specialized areas.

During the time period from SEP-10 to SEP- 5 days, two additional simulations were run that utilized worst-case environment and subsystem data along with 3σ trajectory perturbations to further validate the proposed load under stress conditions. This activity ended at SEP-5 days, at which time all of the data was reviewed by the SPFPAD and problems were identified and resolved.

This same process was repeated twice in the final three days before SEP, but on a much tighter schedule. Table I shows the operations timeline during this last critical time period prior to SEP. In addition to the activities described above to validate the descent load, the translation from engineering parameters to the 24 -bit GCSC words and proper memory location was performed by the LFPAT manually and compared with both the predicted and actual memory maps. This provided an independent check on the command generation prosess for descent.

Fig. 1. Descent validation procese

Because of the extremely short response time to anomalies during this time perind, preparations were made for certaill anomalies before the VL executed preseparation checkout. Specifically, an alternate deorbit roll attitude was selected and validated in case a lateral accelerometer failure was observed during the preseparation calibration. Also, trajectories were designed and analyzed for a separation on successive orbits after the nominal in case a no-go was encountered during the countdown to separation. The availability of this data could minimize the delay and aid in the reschrduling of separation.

The last prime VL navigation function prior to separation was the evaluation of the latest VO orbit prediction data to determine if a separation time update was necessary to remove

Tebic 1. Preceperation tirneline

SEP. 84 ht	final site target coordinates
SEP-78	final orbit determination
SEP-77	preliminary descent maneuver conference
SEP64	IPAG delivery of descent guidance pasameters to LPAG
SEP. 57	bepin VCSF validation
SEP49	final descent maneuver conference
SEP4S	descent validation complete
SEP44	VL/VO command conference
SFP43	VO uplink
SEPP39	VL uplink
SEP-33	VL preseparation ro/no eo
SEP. 30	begin VL preseparation C/O
St.P.16	TSEP update conference
SEP-15.5	VL. final CaS confurence
SEP. 13	bedn final VCSF validation
SEP11	final VL. command conference
SER9.5	final VL uplink
SEP6	VO uplink for TSEP
SEP4	Anal descent validation complete
SEP.3.5	so/no 80

the timing error innerent in the orbit solution used to generate the onboard computer load. This change could be made as late as SEP-I6 hours and would reduce the onboard navigator initial conditions error and landing stte error due to this error source. For both missions the timing errors were small (<1 s) and separation time updates were not necessary.

One final verification of descent was performed between SEP-13 and SEP-5 hours that incorporated any VL. commands sent in the SEP.9.5-hour update and the most recent estimate of the separation state vector. For instance, on Misson 2. the decision was made to lock out one heam of the TDL.R due to an anomaly in the preseparation test. This was properly modeled in the final LATS and VCSF verification runs. The successful comparison of these simulations contributed to the final decision to "go" with only $\mathbf{3}$ heams used in the onboard navigation process.

During the actual descents the entry trajectory status was monitored and displayed by comparing the onboard estimate of altitude vs time with the preflight nominal and 30 deviations. These plots are shown in Figs. 2 and 3. Although the VL- 2 data was not obtained in real-time due to a VO- 2 anomaly after separation, the plots were constructed during the playback of the descent da:a from the VO tape recorder the day after VL- 2 descent.

After touchdown the emphasis shifted to the VL trajectory and atmophere reconstuction (LTR) and relay link planning functions. Because of the large preflight uncertainty in vehicle performance and environmental dats, the LTR function was scheduled to be complete within 10 days after touchdown of Mission 1 so that these results could be used in the design of the Mission 2 descent and influence the Mission 2 landing site selection. For Mission 1, all of the key parameters indicated a

Fif. 2. VL-2 ainurco ve tume eving entry pheos

near－nombal descent and，in fact．when the esults were com－ pleted．evers thing wan so slose th the predected whlte that no changes were mate to the Misson 2 trageton dengn．A detaled comparison of the predected and actual hight param－ eters is given in Section Vi．The LTR process for Missom 1 dud．however，lake longer than expected．The entmates of systems performance and envirommental quantites were not truly understood until about four weeh，after landing．As a result of the expernence gained in this first attempt in dealme with real entry data，the recomatraction of the Misum？ descent went smoothly and was escentally complete ahout two weeks after landing．

The relay link planning functons and selectoon of timat transmission times were tied closely to the overall misuon operatoons strategy．At the heginning of cach tong－range plat－ ning cycle（20－25 days betore commanding），the predicted linh performance was used to specify link durations at required bif efrof rates．Prior t：TD and early in the postland phave these durations were quite conservative，heing hat don periom．ance above the QSS（quasistatisticil sum）of adverse tolerances． After a number of observation：of actual relay pertormance were made and understood，the duratons were hased on observed performance．

Approximately two days prior to the prelminary command and sequencing activities for each cycle，tice latest orbit predic－ tions were used to select the final VI．transmissun and VO recerv r start times．No change was made to the durations．

These activities required close coordination with the OMATT for design of VO orbit stati：n－keeping mancuvers． Further discussion of the relay link activities is given in Sec－ ：ion VIII．

II．Prefiight VL Capability Entimate

The design of the VL trajectory，sequence of events，and associated onboard guidance parameters evolved over many years and changed frequentiy as the design of the Viking Lander matured．An extremely conservative approach was taken in the design of all descent mission phases．This conser－ vatism was necessary owing to the lack of previous experience W．th a spacecraft of this type，the desire to provide maximum margin since the entire descent had to be accomplished with－ out ground intervention，and the large degree of uncertainty in the Mars environment（atmosphere density profile．vinds，ter－ rain characteristics）that existed prior to the mission．

The relevant preflight system and mission constraints are shown in Table 2．Because of VL seroshell structural limita－ tions the maximum dynamic pressure $q_{\text {mas }}$ experienced by the VL during entry was nit：to exceed $144 \mathrm{lb} / \mathrm{ft}^{2}$ ．The total

Table 2．Preflight system and mission constraints

lewrhit 31	± 1.156
（ い，Nitmb	$t \cdot \sqrt{1}$
Viximum dy namb preanare	4 \＃na $1+4111^{\text {a }}$
I ut．ll atataton ticat load	（）．1510 13tu 11^{2}
Stashation hiating rate	
Pata hute dephatment dy：able precours	
Parah hute dephasment Varh number	$1 H_{1 H} \cdot 21$
We＇sent relay wommandatorn いいlemperinmonts	toleramer
Imand pualind lirk duratum	St 11， 4 mm

Weorhit 31
Viximam dy nama preavie
Iut．d waynatun heat load
StaEndtion heating rate
Parathe deplot ment dy：：atha precuare

Parahute depinment Math number
lewent relay wommanda aloom
WVem pertarmathe
Iminal powland lirk durathon

$$
\begin{aligned}
& 31 \text { 156m, } \\
& t \cdot 1 \\
& \text { 4, } \text { Has } 1+4111_{1} \text { : } \\
& \text { (1): } 151013+\mathrm{UH}_{1}^{2} \\
& \dot{a} \cdot 2013011^{2} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { " } H_{H \prime \prime}=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { tolerames } \\
& 3 / 11,4 \text { m? } 1
\end{aligned}
$$

 26 Bu＇ta＇．At patachete deploymen the dyname perware was to be between 50 and x onth f^{2} and the Mad number ${ }^{\circ}$ he res than 2．1．The mantum deorhn 35 of 150 m wan determmed by prepellant haded propellom margon．and VI． wass．VL thermal and power comerams datated that Il coost tume from deorbat to entry met exced 5 hour fathy， in order to ensure that allowable bet error rate would not the exceded durng data iranmisom from the Vl．th the VO．the relative VL／V（）geometry was tio provide for relay communica－ tions sytem performance exeedeng the sum of atvence blet． ances though at descent and at leas 10.4 man after landing． In addution，it was desired to minimice the ontes weght for rouvale，aly，use the maximum 31 capahality，therehy man－ mang deorhit propellant usage withon constrants）and veiect traiciories to monimiee the landed dispersoms．

All these constraints had 10 ＇e satiofied under stacked worst－case conditions．Worst－case condtuons were ohtamed by selecting each relevant statistical error source at its so magni－ tude and with its worst－ase sign．Winds were selected at their 49% magnitude，as shown in Fig．4．and in the worst－case selected from one of the five equally probable atmosphere models．The atmosphere models are iifustrated in Figs． 75 and 76 of Section VII－A herein

This is not the entire set of constrames that had to be satisfied．However，these constraints governed the design of the descent trajectory．Other constraints，which were satisfied by orieniing the ViL properly duriag desient，will be discussed in a ，ubsequent paragraph．

One of the key concepts for expressing VL capability was aicessible area．The accesalible area was that region in inertial space within which the VL could land from the given separa．

Fig. 4. 99\% design wind magnitude profile
tion orbit without violating mission or system constraints. During VI. tiajectory design development, the accessible area became progressively reduced in size as new system requirements and desires became known. In the following discussion, the three major accessible area concepts will be presented.

The first accessible area is called the maximum accessible area. It is the region in which the VL could land if it were utilizing its maximum capabilities and if there were no trajectory dispersions. The second accessible area is called the targeting region, and reflects entry corridor (γ_{E}) dispersions and a more conservative utilization of VL capabilities. The third accessible area is called the preferred targeting region, which refers to μ small entry flight path angle band of ± 0.1 deg centered about the optimal entry flight path angle. This region was employed in the targeting of the fina' VO site acquisition maneuvers and the final design of VL descent trajectories. It reflects a design objective introduced by project management during flight operations in order to maximize the probability of mission success. Each of these accessible areas will be discussed in more detail in subsequent paragraphs of this section.

A. Maximum Accessible Area

The procedure for constructing the maximum accessible area begins with a determination (. the entry corridor, i.e., the γ_{E} region between the steepest and shallowest permissible entry flight path angles at fixed entry altitude. The entry corridor is determined by the entry phase constraints on $q_{\max }, Q, \dot{Q}, q_{D E P}$, and $M_{D E P}$. These parameters are examined over a broad range of entry flight path angles, for all five
equally probable Martian atmospheres mentioned above, and with worst-case winds and VL aeroshell aerodynamic characteristics. The results of this process are shown in Figs. 5 through 8. Each figure shows the final set of environmental and VL characteristics which produced the max..num values of the relevant entry paran eters. Figure 5, for example, shows that the maximum $q_{\text {max }}$ was attained in the maximum ρ_{s} atmosphere with a 99% headwind, a $5 \%(3 \sigma)$ low aeroshell C_{D}, and a 0.02 (3σ) low L/D. The steepest γ_{E} pernitted under these conditions was $\gamma_{E}=-17 .{ }^{\circ} 7$, since $\eta_{\eta_{m a x}}$ equals the constraint value of $144 \mathrm{lb} / \mathrm{ft}^{2}$ at this value of γ_{E}. Figures 6 and 7 show the same kind of information for \dot{Q} and Q, respectively. Examination of Fig. 6 shows that with steep γ_{E} restricted to -17.7 deg , the \dot{Q} constraint was also satisfied. Although the shallowest conceivable entry flight path angle is the worst-case skipout flight path angle, which for the VL was -13.5 deg , the shallowest permissible entry flight path angle for the VL was actually determined by the parachute deployment constraints. In order to maximize parachute performance (maximize speed reduction and minimize terminal descent propellant usage), it was desirable to deploy the parachute at the highest possible altitude. Figure 8 shows $q_{D E P}$ and $M_{D E P}$ vs altitude above the areoid (near the end of the aeroshell phase) for a range of entry flight path angles. The worst-case conditions which maximize $q_{D E P}$ and $M_{D E P}$ are listed on the figure. This figure suggests that γ_{E} could not be more shallow than -16 deg owing to the parachute deployment constraints of Mach number and dynamic pressure. An earlier design of parachute depioyment altitude satisfied the constraints exactly for γ_{E} of -15.9 deg. Subsequent environmental model adjustments shifted the curves as shown in Fig. 8, causing a minor violation of the deployment dynamic pressure constraint for $\gamma_{E}=-15.9$ deg. This minor constraint violation was found acceptable owing to the extreme conservatism in stacking the error sources. Therefore, the parachute deployment altitude and the γ_{E} limit of -15.9 deg were preserved to avoid a redesign of

Fig. 5. Senalitulty of $q_{\text {max }}$ to entry errors

Fig. 6. Sensitivity of stagnation point heating rate to entry errors

Fig. 7. Sensitivity of total stagnation heat load to entry errors
several other descent parameters. This figure is referred to later in the description of how the parachute deployment altitude above terrain was selected to provide maximum terrain height capability while still satisfying parachute deployment constraints. Thus, the VL entry corridor was bounded by a shallow γ_{E} of -15.9 deg and a steep γ_{E} of -17.7 deg . Note in Fig. 7 that the Q constraint was easily satisfied by this corridor.

It will be useful at this point to define relevant descent parameters to aid in the remaining discussion of the maximum accessible area. Figure 9 depicts the deorbit controls of $\Delta V_{n o}$, CA, and CLA, entry lead angle λ_{E}, ind touchdown PER and XR angles. Cone angle CA is the in-plane thrust pointing angle; clock angle CLA is the out-of-plane thrust pointing angle. Entry lead angle is defined as the angular separation hetween the VL and the VO when the VL arrives at the entry radius. A negative lead angle means the VL is leading the VO, and this is the normal situation. The PER angle is the

Fig. 8. Parachute phase dynamic pressure and Mach No. vs aftitude
angle between VO periapsis and the VL at touchdown. The XR angle is the angular displacement of the VL out of the VO orbital plane at touchdown. Coast time t_{c} is measured from the beginning of the deorbit burn maneuver to entry,

The fina' step in constructing the VL maximum accessible area was to deter ine the XR capability for the entry corridor defined above. XR capability was determined primarily by $\Delta V_{\max }$ and $t_{c / \text { max }}$. The maximum available deorbit propellant of 160.1 lb was determined by subtracting the ACS propellant and all propellant margins from the total propellant loaded in the tanks. This in turn, along with initial VL mass and deorbit propulsion system $I_{S P}$, determined a maximum available deorbit ΔV of $156 \mathrm{~m} / \mathrm{s}$. The maximum allowable coast time of 5 hours was based on worst-case power and thermal analysis for VL descent. Finally, analysis showed that for the entry corridor specified earlier, a lead angle of -20 deg would always permit satisfaction of the descent and initial postland reiay link constraints. These three parameters -

ORIGINAL PAGE IS
OF POOR OUAIITYY

$R_{\text {TD }}$	RADIUS AT TOUCHDOWN
R_{E}	RADIUS AT VL ENTRY
${ }^{2} \mathrm{DO}$	radius at deorbit
h	VL TRA JECTORY ANGULAR MOMENTUM
CA	CONE ANGLE (IN-PLANE POINTING)
CLA	CLOCK ANGLE (OUT~CF-PLANE POINTING)
$\overline{\Delta V}_{\infty}$	deorbit delia V
${ }^{1}$	COAST TIME
λ_{E}	LEAD ANGLE
OR	DOWN RANGE
XR	CROSS RANGE

Fig. 9. Descem trajectory geometry
$\Delta V_{\max }$ of $156 \mathrm{~m} / \mathrm{s}, t_{c / \max }$ of 5 hours, and λ_{E} of -20 deg and the entry corridor specified earlier completely defined the maximum accessible area shown in Figure 10. Each convex subregion in this figure corresnonds to a specified entry flopht path angle and was determined by the $\Delta V_{\text {max }}^{\prime}$ boundary and the $t_{c / \text { max }}$ boundary.

Fig. 10. Maximum acreassible area

B. Targeting Region and Preferred Targeting Region

The targeting region is a subregion of the maximum accessible area and is obtained by acknowledging entry flight path angle dispersions due to orbit determination and deorbit execution errors and by utilizing VL capabilities in a mor onservative fashion.

The prelanding predicted entry flight path angle dispersions (fixed altitude) over a region of the accessible area are shown in Figure 11. The statistical errors resulted from orbit determi-• 1. cion and statistical deorbit execution errors, although orbit determination errors made only a very small contribution. The total errors were obtained by adding the accelerometer thermal bias shift effect to the statistical errors. The possibility of an accelerometer thermal bias shift was postulated during preflight analysis, when it was shown that moderately large temperature transients might occur in the accelerometers due to RCS firings during deorbit. Note, however, that the accelerometer thermal bias shift effect applied only to the shallow side of the entry flight path angle, not the steep side. The asymmetry of the plot is due to the effect of the rotating atmosphere. That is, to achieve zero XR the deorbit ΔV vector must be displaced out of the VO orbital plane in the direction of negative XR (see Figure 9), so that after the VL encounters

Fig. 11. Dispersions (3 σ) over targeting region
the rotating atmosphere, the atmosphere will carry the VL back into the VO orbital plane. Howerer, as the displacement of the deorbit ΔV vector out of the VO ribital plane increases. so does the contribution of out-of-plane pointing errurs to γ_{E} errors.

To protect against entry flight path angle dispersions causing entry outside the entry corridor. it was necessary to constrict the entry corridor on both the shallow and steep boundaries by the expected $3 \sigma_{\gamma_{E}}$ dispersions. These dispersions vary significantly with XR and, to a lesser extent, with γ_{E}, as is clearly shown in Figure 11. Cross-range targeting was limited to ± 3 deg in order to limit both entry flight path angle and touchdown location dispersions.

Finally, the deorbit ΔV was set at its maximurr value of $156 \mathrm{~m} / \mathrm{s}$ in order to minimize entry weight and coast time. This has the effect of eliminating the convex subregions for each γ_{E} in the maximum accessible area and reducing it to a single γ_{E} arc.

The targeting region obtained by constricting the entry corridor by the $3 \sigma_{\gamma_{E}}$ dispersions and by fixing deorbit ΔV at its maximum value is shown in Figure 12. Also shown is the superimposed maximum accessible area, as well as the third accessible area concept mentioned earlier, namely, the preferred targeting region. This latter region was obtained from the targeting region by defining a mini-entry corridor of ± 0.1 deg about the optimal entry flight path angle, which for VL1 was - 16.8 and for VL2 was -17.0 deg . After the optimal entry flight path angle was selected for the actual descent, the final VO site acquisition maneuver was designed to keep the selected landing site within this band.

Fig. 12. Targeting regions

C. Landing Accuracy

If the landing site is selected to lie within the targeting region described earlier, a descent trajectory which satisfies all relevant system and mission constraints is assured. The measure of the VL capability to land close to a selected site is given by the touchdown dispersion ellipse. This $99 / / n$ ellipse is centered at the nominal touchdown site and is defined by the downrange semimajor axis, SMA, and the crossrange semiminer axis, SMB.

Figure 13 shows the variation of SMA over the targeting region and the contribution of deorbit execution errors to the total. Figure 14 shows both the total SMA and SMB of the touchdown dispersion ellipse, as well as the contribution of each important error source to the total. Statistical components were RSS'd to obtain the total statistical error. The total error was obtained by adding the total statistical error to the algebraic sum of the nonstatistical errors. The trapezoidal bars represent the variation in each error source from $X R=0$ to $X R=3$ deg. It should be noted that SMA and SMB showed very little variation over the entry corridor, so that the results shown in Figure 14 were applicable to the entire targeting region.

Deorbit execution errors were analyzed in terms of errors in deorbit ΔV magnitude (due primarily to accelerometer bias), in-plane pointing, and out-of-plane pointing. Since very little cross-ranging was actually required for either VL, ΔV mag. nitude was the dominant contributor to γ_{E} errors and SMA, out-of-plane pointing was the dominant contributor to SMB, while in-plane pointing was an insignificant error source as far

Fig. 13. SMA of the 0.99 landing dispersion ellipse over the targeting region

Fig. 14. Componente of touchdown dispersion ellipse SMA and SMB over targeting region
as γ_{E}, SMA, and SMB were concerned. This situation can be understood by viewing each error component in terms of the energy and angular momentum errors it induces in the descent trajectory.

The three deorbit execution error components produce the vector $\overline{\delta \Delta \bar{V}}$ in the commanded deorbit $\overline{\Delta V}$. The energy error induced by $\overline{\delta \Delta \bar{V}}$ is proportional to $\overline{\mathrm{V}}_{D O} \cdot \overline{\delta \Delta \bar{V}}$, where $\overline{\mathrm{V}}_{D O}$ is the velocity at deorbit start. The angular momentum error is proportional to $\overline{\mathrm{r}}_{D O} \times \overline{\delta \Delta V}$, where $\overline{\mathrm{r}}_{D O}$ is the radius vector at deorbit start. For both VLs, deorbit began when the true anomaly was about 217 deg, so that the radius was large, while
the velocity was relatively small. The consequence of this situation is that the error $\bar{\delta} \overline{\Delta V}$ does not induce a significant energy error in the VL descent trajectory, but can mduce a significant angular momentum error if $\overrightarrow{\mathrm{r}}_{00}$ and $\bar{\delta} \overline{\Delta V}$ are nearly perpendicular.

Thus, the entry errors (at fixed entry radus) and touchdown errors (SMA and SMB) produced by deorbit execution errors were due promarily to the deorbit angular momentum error. Furthermore, the angular momentum magnitude error maps into a γ_{E} error and SMA, while the angular momentum direction error maps into an entry heading angle error and SMB. For both VLs, the in-plane pointing angle CA was close 1090 deg . Examination of F_{1}. 9 shows that for $(\mathrm{CA}$ cluse to 90 deg. a CA error will produce only negligble angular momentum errors. This explains why in-plane pointing was an insignificant error source for Viking. Contrariwise, again referring to Fig. 9 , with CA close to 90 deg, a ΔV magnitude error maps directly into angular momentum magnitude error. And since for the VLs the out-of-plane pointing angle CLA was also close to 90 deg, which means the deorbit ΔI vector lay essentially in the orbital plane, a CLA error. while producins. very little error in angular momentum magnitude, will produce a significant angular momentum direction error. This accounts for its importance with respect to SMB errors.

Entry systems errors were comprised of winds and errors in predicting VL aerodynamic characteristics. Each of these two sources made roughly equal contributions to SMA, while the SMB contribution was due primarily to winds. Since the direction of the wind was assumed to be random, winds made equal contributions of 19 km to both SMA and SMB. The errors in VL aerodynamics which contributed to SMA were $L / D, C_{L}$. and C_{D} errors. This should be apparent since these errors induce errors in the lift and drag vector magnitudes and in-plane directions. The only VL acrodynamic errors which contributed to SMB were the VL entry roll angle and lateral CG offset errors. These errors act by tilting the VL lift vector out of the entry plane.

Since the touchdown dispersion ellipse was very important in the selection of a suitable landing site (i.e., the ellipse could not include potentially hazardous surface features), the uncertainty in the location of a given point on the Martian surface must also be factored into the dispersion ellipse. The two error sources which produce errors in locating a point on the Martian surface were the Martian pole error and the map error. These error sources together made equal contributions of 45 km to both SMA and SMB.

The accelerometer thermal bias shift error, which was defined earlier, was a nonstatistical error. It induced entry and touchdown errors in much the same way as a deorbit ΔV
magnitude or pointurgerror; i.e., it produced a deorbit angular monentum error.

Five equally probable atmosphere models were assumed for preflight analyses. Since only one atmosphere can be used for targeting the actual descent trajectorv, it is mportant to know how the touchdown pornt would he shifted if one of the ather atmosphere models were encountered. For Viking, the mean atmosphere model was used for targeting. The maximum displacements of the touchdown pont were induced by the min ρ and max ρ models. This should be expected snite these were the models having the minimum and maximuin upper atmosphere densities, respectively. Since each atmosphere was assumed to be equally probable, the conservative approach was to add this touchdown error algebratally to the total statistical error. The touchdown error due to atmospheres was totally an SMA error, with no controbution whatever to SMB.

The final values for SMA and SMB, as indicated in Fig. 14, were 112 hm for SMA and 52 hm for SMB . This value of SMA assumed negligble cross-ranging. If the actud targeted landing site had required the project-approved 3 deg of cross-ranging, SMA would have increased to 138 km .

D. Additional Design Considerations

There are certain VL capabilities which are not r flected by the accessible area and touchdown dispersion ellipse concepts discussed earlier. Since the fight program was designed to deploy the parachute on altitude above the local terrain, it was necessary to carefully select that parameter.

Given the highest permissible parachute deployment altitude above the areoid shown in Fig. 8, there existed a highest terrain height (also referenced to the areoid) at which the VL was capable of landing for stacked worst-case system and environmental conditions. The design Martian terrain height was 2.75 km , with an uncertainty of $\pm 3 \mathrm{~km}$ (3σ). Figure 15 shows the relationship of the maximum terrain height and the highest permissible parachute deployment altitude to the areoid. In order to provide the VL with the capability of landing at the maximum terrain height and at the same time keep the parachute deployment altitude indepen $n t$ of whatever landing site was selected, it was necessary select the parachute deployment altitude as the difference lectween the highest permissible parachute deployment altitude above the areoid and the maximum terrain height above the areoid. This difference is shown to be $5.98 \mathrm{~km}(19,600 \mathrm{ft})$ in Fig. 15. (The actual deployment altitude was reduced by the onboard altitude sensing uncertainty of 0.18 hm .)

There was a high probabilty that the VL could land at the maximum terrain height. However, with stacked worst-case

Fig. 15. VL terrain height capability
conditions for the terminal descent phase at the maximum achievable deceleration by the VL terminal descent sys.em, sufficient propellant was not available to ensure a safe landing at this maximum terrain height. The terminal descent phase was governed by the terminal descent contours shown in Fig. 16. These contours and the corresponding terminal descent propulsion system ignition altitude were designed according to a stacked worst-case philosophy, with one exception. Because of higher VL velocities near the surface for descent through the min ρ_{s} atmosphere, this model was critical for the terminal phase design. These VL velocities were increased still further by the addition of worst-case winds. Finally, because of the fixed parachute deployment altitude above terrain discussion earlier, the higher the terrain, the higher the VL velocities at both parachute deployment and terminal descent ignition. Adding the maximum terrain height to the above stacked worst-case resulted in a terminal descent phase trajectory requiring more propellart than was available. For this reason a decision was made to use a 1.50 terrain height uncertainty in the design of the terminal descent phase. Thus, in a stacked worst-case sense, the highest terrain at which the VL was capable of landing was the design terrain height $+1.5 \sigma$. This relaxation regarding terrain height uncertainty was acceptable for two reasons. First, attainment of the aforementioned high velocities on the parachute prior to terminal descent ignition was quite improbable because of the stacking of several worstcase conditions. And second, as shown in Fig. 15, the nominal VL-1 and VL- 2 sites were well below the maxim am permissible terrain heights. This was also true of alternate VL-I and

VL-2 sites. Although it was possible to adjust the parachute deployment altitude as a function of selected ste terrain height, this parameter was held constant to provide additional deployment q and Mach number margins for the lower sites.

The final VL capability to be discussed is one that was discovered after the actual launches of the Viking spacecraft had occurred. During cruise, a concern developed over the use of the high-power mode of the relay tramsmitter (30 W) from parachute deployment to touchdown +3 minutes because of potential VL thermal preblems. An analysis was conductec to determine the acceptability of using the 10 -watt mode instead during this phase of the mission, thereby avoiding VL thermal problems. The analysis was based on 0.99 uprange/downrange touchdown dispersions over the entire targeting region and on maximum VL pitch/yaw attitude dispersions from parachute deployment to touchdown.

For VL-1, analyses showed that a significant probability of data loss occurs only for the -3 deg XR region at parachute deployment and touchdown. If a data loss did occur at parachute deployment, it was very unlikely that it would have a duration exceeding 1 s . For the initial postland link, the worst relay performance degradation would be 1.2 dB below adverse tolerances, but could last for 2 min in the worst case. This performance degradation corresponds to a bit error rate of $2 x$ 10^{-2} and was acceptable for real-time imaging. On the basis of these results it was concluded that VL-I had the capability to operate satisfactorily in the $10 . W$ mode from parachute

Fig. 16. Terminal descent contours
deployment to touchdown +3 min , and, therefore, the $10-\mathrm{W}$ mode was used for the actual VL-I descent.

For VL- 2 in the $10-\mathrm{W}$ mode the probability of relay performance below the sum of adverse tolerances was significant over the whole targetable region of the accessible area at terminal descent start and touchdown, and also at parachute deployment for ite-3-deg XR region. This analysis could not justify using the $10-\mathrm{W}$ mode for VL.2. However, the excellent relay performance of the actual VL-1 descent and initial postland links provided the rationale for using the $10 . W$ mode on VL-2.

III. Preliminary VL Trajectory Design History and Valldation

A. Preliminary VL-1 Trajectory Design History and Validation

This section documents the history of the VL-1 preiiminary descent trajectory design in response to the unexpected problems encountered in the selection of candidate landing sites (LS's). This sequence of LS's developed when it became appar-
ent that the prime AI site and subsequent sites were much rougher than expected.

Figure 17 depicts the sequence of LS's on a Mars grid as well as related athal and potental VI-1 angetmy regons. The sequence of VL-I LS's in the order in whath they were selected is an follows AI. AI-R, AI-NW. AI-WNW. did AIWNWSL: The four corsespondme: tagetmg regonn are shown and numbered in the order in which they were constered. A targeting region shown with whid hes denotes a tangetmg region for an actually achieved separation orbat. Those shown with dashed lines denote potental tageting regoms when would have been achieved of other Mass orbit trim (MOT) maneuvers had been executed.

The separation orbit following MOT-1 for a VL-1 touchdown on July 4 produced targetang region No. I. The prome landing site is denoted by AI and corresponds to an entry at -10.8 -deg flight path angle and essentally rero XR at TD. The prome site was dropped when VO observations indcated that it was quite rough. Attention was then turned to a revised Al ste, denoted by AI-R, wheh would have required a shallower entry with a moderate XR at TD. However, site AI-R was also dropped when VO observations mdicated that it too was quite rough. It should be noted that prelimnary descent trajectories were designed for both AI and AI-R sites. Plans for landing on July 4 were then cancelled so that time would be available to explore a region known as "Northwest Territory." An MOT was designed (but not executed) to place the spacecraft over the Northwest Territory on July 16. The targeting region which would have existed if this MOT had been executed is labeled No. 2 and the candidate site is denoted Al-NW. This site could have been achieved with nommal - 16.8 -deg entry flight path angle, but with a substantial negative XR. It was quickly rejected, for the same reason as for earlier sites. The LFPAT did complete prelminary design for this site and landing date, but no validation or other Project work hased on this data was done.

A MOT strategy (MOT-5/MOT-6) was then defined which would open up to observation a large region to the west of the first three sites. MOT. 5 would induce a steady westward drift: MOT-6 would stop the drift when an acceptable landing site was finally selected. One of the considered options for MOT-6 would have produced targeting region No. 3, and the site considered within this region was denoted by A1-WNW. This site would have required an entry trajectory very similar to the previous site (A1-NW). However, this MOT-6 design was not implemented because evidence was mounting that region 3 would be less hospitable than the nearer region. Therefore, an MOT-6 was designed and eventually executed which produced targeting region 4 . The selected site within this region was denoted AI-WNWSE, and this was the final VL-I site. The

Fig. 17. VL-1 landing stte and targeting region history
final targeting region is shown in Fig. 18 on an expanded scale, along with the 99% landing dispersion ellipse about the AIWNWSE site. Preliminary descent trajectories were designed for both A1-WNW and AI-WNWSE sites. Table 3 presents a summary of key descent trajectory parameters for all VL-1 landing sites considered.

The first step in the descent validation process for sites A1 and AI-WNW consisted of an independent validation of the nominal descent trajectory and the inertial navigation reference frames by the OMATT using the DPTRAJ program. The separation epoch and commanded deorbit pointing computed by the LFPAT using LTOP served as the fundamental inputs to be used by the OMATT to verify that indeed the predicted entry condition and navigator IC's were obtained.

The second step involved the selection of 3σ dispersed entry state vectors which produced minimum and maximum time entry trajectories in conjunction with the following environmental and VL system conditions:

For minimum time entry trajectory

Low aeroshell $L / D\left(L / D=0.16, Z_{C C}=-0.139 \mathrm{ft}\right)$
Min ρ atmosphere
$10,000-\mathrm{ft}$ terrain height
Nominal RA blackout
Aeroshell C_{L} and C_{D} high by 5%
Parachute C_{L} and C_{D} low by 12%

Fig. 18. Final VL-1 tergeting ragion and lending stio

Low RA lock altitude (inhibit RA lock for 36 s after blackout)
Entry attitude errors (roll, pitch, yaw)

$$
\begin{aligned}
\text { Mission 1: } \phi_{E} & =0.8514 \mathrm{deg}, \theta_{E}=-0.6192 \mathrm{deg}, \\
& \left.\psi_{E}=-0.7224 \mathrm{deg}\right) \\
\text { Mission 2: } & \phi_{E}=-0.7482 \mathrm{deg}, \sigma_{E}=-0.6192 \mathrm{deg}, \\
\psi_{E} & =-0.8772 \mathrm{deg})
\end{aligned}
$$

Sense 0.05 g event at 0.07 g
99% tailwinds

Table 3. Summary of descent trajectory designs for candidate VL-1 LS's

For maximum time entry trajectory
High aeroshell $\mathrm{L} / \mathrm{D}\left(\mathrm{L} / \mathrm{D}=0.2, Z_{C G}=-0.175 \mathrm{ft}\right)$
Max ρ atmosphere
$-26,000-\mathrm{ft}$ terrain height
Aeroshell C_{L} and C_{D} low by 5%
Parachute C_{L} and C_{D} high by 12%
Entry attitude errors (roll, pitch, yaw)
Mission 1: $\phi_{E}=-0.8514 \mathrm{deg}, \theta_{E}=0.6192 \mathrm{deg}$, $\psi_{E}=0.7224 \mathrm{deg}$
Mission 2: $\phi_{E}=0.7482 \mathrm{deg}, \theta_{E}=0.6192 \mathrm{deg}$, $\psi_{E}=0.8772 \mathrm{deg}$
Sense $0.05 . \mathrm{g}$ event at 0.03 g
No winds
The third step consisted of the simulation of the nominal SEP to TD descent trajectory and simulation of entry to TD trajectories for the minimum and maximum time dispersed cases by LTOP, LATS, and the VCSF (LSO). The final results were compared to validate the accuracy and consistency of the three trajectories. It should be noted that the LATS program
utilized the corresponding nominal descent flight load file generated by LTOP, while the VCSF used the corresponding predicted VL memory map generated by LPAG from this same descent flight load file. Thus, the simulation was more than just a validat. of descent trajectory dynamics: it was also a validation of the command load required to produce the descent trajectory. This third step was the m.st important step in the enture descent validation process.

The fourth and final step involved only the use of LTOP to verify that the dispersed entry trajectories satisfied all design constraints when subjected to additional stress conditions. Four stress cases were required: (1) maximum aeroshell dynamic pressure, (2) maximum parachute deployment dynamic pressure and Mach number, (3) maximum terminal descent ignition velocity, and (4) minimum terminal descent ignition velocity. The detailed conditions producing these 4 stress cases are defined in FPAG Procedure SPF3-107.

One feature of the descent validation process requiring more discussion was the selection of the dispersed entry state
vectors. The selection process was based on the convenient fact that the two dominant eigenvectors contained the hulk of the entry dappersions in inertial flight path coordmates at lixed radius and were neany coplanar with entry ime/entry fligh pat! angle space. This smphified the selectum of dispersed samples to produce minimum and maximum thight time entry trajectories. The two dominant elgenvectors were first projected into entry time/entry flight path angle space. Two hncar combinations of these eigenvectors were then formed to produce a low and steep sample (minimum time trajectory) and a high and shallow sample (maximum time trajectory). In addrtion, the effect of accelerometer thermal bias shift was added to the high and shallow sample since it tends to make entry time occur at a higher radius and a shallower flight path angle. In practice, this selection process produced error samples in inertial flight path coordinates which were greater than or equal to 30 in all components, except for inertal entry velocity. Prior to transfer of these dispersed samples to the ISO. they were first transformed into equivalent samples in MEQ coordinates at fixed entry time.

The final descent validation was performed using the descent trajectory designed for the A1-WNW site, even though the final selected site. AI-WNWSE, differed substantially from the Al-WNW site. However, both sites required nearly the same entry flight path angle for site acquisition. In addition, the final site had a smaller cross-range at TD associated with it. so that entry dispersions would, in fact, be smaller than those actually used in the final descent validation process. Thus, adequate rationale existed for relying on the final descent validation results based on AI-WNW. Therefore, the final descent trajectory design was validated for nominal descent but not for the dispersed entry cases.

B. Preliminary VL-2 Trajoctory Design History and Validation

The history of the VL-2 preliminary descent trajectory design was not complicated by a sequence of substantial LS selection changes as in the case of VL.I. Lessons learned during the VL-1 site certification and acquisition process were applied in defining the strategy for the corresponding VL- 2 process. Three longitude bands (designated B1, B2, and B3) of potential VL- 2 siter were selected. The insertion and trims were designed to produce a steady westward drift of the VO-2 orbit so that each longitude band could be examined in a more orderly fashion for an acceptable VL-2 landing site. When an acceptable site was found, the MOT-3/MOT-4 maneuver sequence could be designed to place the orbit over this landing site at the surrect time. The final VL-2 site area was selected in the B 3 band at a latitude of $48^{\circ} .0 \mathrm{~N}$ and a longitude of $226^{\circ} 0$ W. Minor adjustments to this site were made on two subsequent occasions, with the final landing site coordinates defined to be $47^{\circ} .89 \mathrm{~N}$ and $2250^{\circ} 86 \mathrm{~W}$. The targeting region from the
final separation orbit for this site and the 99% landing dispersons are shown in Fig. 19. The key trajectory parameters for the related descent trajectory design are tabulated in Section IV (Table 4). [t.rre was no evoluthon of descent trajectory designs for VL-2 as there was for VL-I.

As can he seen in Fig. I9 the nominal VL-2 entry flight path angle was selected to be -17.0 deg , unlike the -16.8 deg angle for VL-I. There were two reasons for this. Fist, the fact that VL-1 had actually entered with a fight path angle of -17.0 deg and performed excellently provided a strong argument for doing the same thing with V1.2. Second, the B site nominal atmosphere extrapolated from the atmosphere reconstructed by LTARP from the actual VL-1 data slowed that entry at an angle steeper than - 16.8 deg was entirely satisfactory since the reconstructed atmosphere closely resembled the ming atmosphere at high altitude, and thus a lower $q_{\text {max }}$ would be encountered.

As can be seen in Fig. 19, the touchdown dispersion ellipse for VL-2 was smaller than the preflight ellipse used for VL-1. There wete several reasons for this. First, analysis of actual VLI deorbit data showed that temperatures were stable during deorbit and no accelerometer thermal bias shat had occurred. It was for this reanom that the accelerometer thermal hias shift was deleted as a VI-2 error source. Second, the actual VL-1 atmosphere reconstruction process, as expected. was able to reduce the degree of atmosphenc uncertainty: consequently, the in-plane. nonstatistical touchdown dispersions due to the unknown atmosphere were reduced from $\pm 30 \mathrm{~km}$ for VL-1 to $\pm 12 \mathrm{~km}$ for VL-2. Third, as a result of landed VL-1 tracking, the pole component of the map/pole

Fig. 19. Tergethy region and landing alio
disperston was greatly reduced. Thas permitted the $45 . X$ 45 km dispersion ellipse used for VL. 1 to be reduced to a 30 . $\times 30-\mathrm{km}$ ellipere for ${ }^{\prime} \mathrm{l}-2$. which esentally was the map error only.

The descent validatoon precess for VI.-2 followed the same steps as for VL-I. For VL-2, of course, there was only one descent validation.

IV. Final VL Trajectory Design and Descent Parameters

This secton describe: the final VL-1 and VL-2 trajectory designs and presents the hass for the selectoon of relevant descent parameters. The expected trajectory dispersions and descent relay performance wiil also he discussed.

A. Nominal VL Descent Trajectory Design

The final VL descent trajectory design process began with the specification of the final landing site and the current best estimate (CBE) of the separation orbit.

The final landing site for VI. I was:

Areocentric latitude $=22^{\circ} .4 \mathrm{~N}$ (areographic latitude
$=22^{\circ} .6 \mathrm{~N}$)
Longitude $=47.5 \mathrm{~W}$
The final landing site for VL- 2 was:
Areocentric latitude $=47^{\circ} .59 \mathrm{~N}$ (areographic latitude $=47^{\circ} 89 \mathrm{~N}$)
Longitude $=225^{\circ} .86 \mathrm{~W}$

In addition to the landing site, two other targets were required for the targeting process. For both VL-1 and VL. 2 these were:

Deorbit $\Delta V=156 \mathrm{~m} / \mathrm{s}$
Entry lead angle $=-20 \mathrm{deg}$
The selection of deorbit ΔV as a target is consistent with the decision discussed earlier to select the deorbit ΔV at its maximum value in order to minimize coast time and entry weight. Entry lead angle was selected as a target because the targeting region employed in landing site selection was based on a lead angle of $\mathbf{- 2 0}$ deg to ensure acceptable descent and initial postland relay link performance. Note that entry fight path angle γ_{E} was not a target since selection of the landing site within the targeting region automatically determined $\boldsymbol{\gamma}_{\boldsymbol{E}}$ (observe the $\boldsymbol{\gamma}_{E}$ arcs in Figs. 18 and 19).

The whital elements and epoch of the separaton othas wheh were used in the devgen of the nommal VI. 1 and VI.-? descent trafectoris are given below

$$
\begin{aligned}
& 17.1 \\
& P=8809.2 .9 .459 \\
& r_{r}=4901.185 \mathrm{hm} \\
& i=37.7302 \mathrm{de}! \\
& \Omega 2=12356 \mathrm{~K}^{\circ} \mathrm{deg} \\
& \omega=46.6924 \mathrm{deg} \\
& t-t_{p}=74088.242 \mathrm{~s} \\
& \text { epoch }=1076 \text { July } 20 \\
& 0800.00 \mathrm{UTC} \\
& 1 \% \cdot 2 \\
& P=880.38 .0192, \\
& r_{p}=488-8.472 \mathrm{hm} \\
& i=55.384 .312 \mathrm{der} \\
& \Omega=3.924790 \mathrm{deg} \\
& \omega=73.98 .5842 \text { deg } \\
& t-t_{p}=7.4953 .47 \mathrm{x} \\
& \text { epoch }=1070 . \text { Sept } 3 ; \\
& 1900.00 \text { UTC }
\end{aligned}
$$

The VL-I separation orbit above corresponds to SATOD solution P24S48, the VL2 separatoon orhit corresponds to SATOD solution Q20S2.4.

The resulting targeted descent trajectory is shown in Figure 20. To the scale shown m this figure, no discernible differences exist between the VL-I and VL-? descent trajectories. Major descent trajectory event, are shown. The VL descent trajectores are essentally coplanar with the VO trajectory. The VL-1 out-of-plane thrusting angle of -7.4 deg produced only a relatuely small out-of-plane displacement of the descent trajectory, as ded the VL-2 out-of-plane thrusting angle of +1.9 deg. Important trajectory parameters for these descent ir jectories are summarized in Table 4.

Fig. 20. Menvinal VL deseent traverery

Table 4. VL descent trajectory design summary

Parsmeter	VLI	$V L 2$
Soparataon to entry		
Separation time (UTC)	202/08. 3215	247/191929
Deorbit $\mathrm{SV}^{\text {V }}$	156.0 m/*	$15611 \mathrm{~m} / 4$
Deorhit propellant		
Cobst time	3.082 hr	$3.03 \times \mathrm{hr}$
intry conditions ${ }^{\text {b }}$		
Intry tume (l)TC)	202/1144.08	247/22 2846
Intry time from Sl P	11513.0ヶ	11356.7,
Heretal velocity	$4.6105 \mathrm{~km} / \mathrm{s}$	$4.6135 \mathrm{~km} / \mathrm{s}$
Inertail fleht path angle	-16.89 deg	$-17.03 \mathrm{deg}$
VL/VO lead angle	-20.0 dey	$-20.0 \mathrm{deg}$
1 nery mas	984.2 kg	982.9 kg
Antry to toundoun		
Maximum dy nama pressure	$112.6 \mathrm{lb} / \mathrm{tr}^{2}$	$115.8 \mathrm{lb} / \mathrm{tt}^{2}$
Parachute deployment (mortar arm)		
Altitude above		
1)y пamue preswure	$6.567 \mathrm{lb} / \mathrm{H}^{2}$	$6535 \mathrm{lb} / \mathrm{tt}^{2}$
Mach number	1.014	1.041
Tince from SIP	11931.6,	11766.8,
Termmal dexent		
I nege tration altitude	1.462 km	1.462 km
Time from Sl:P	114920s	11826.0s
Relative velocity at end of warmup	$515 \mathrm{~m} / \mathrm{s}$	$52.7 \mathrm{~m} / \mathrm{s}$
Propellant consumpton	152.0 lb	152.0 lb
Touchdown		
Touchdown time (litc)	202/11:52:50	247/22-3718
Touchdown ti.ne from		
SI:P	12034.9 s	11868.7
Arcopraphi latitude	$22^{\circ} 59 \mathrm{~N}$	47.89N
Longitude	47.52 W	225.85 W
PER angle	-9.18 deg	-10.0 deg
Cross-range angle	-0.60 deg	0.12 deg
Sun clevation angle at touchdown	38.3 deg	128.8 deg

${ }^{3}$ Day of year/hr:minisec.
Dintry was defined as 800,000 it aboze the areod at touchdown.

B. Descent Filght Load Parametors

After the VL descent trajectory had beer designed, a corresponding set of descent guidance parameters had to be computed. These constituted a set of commands which were up. linked to the spacecraft and which. when executed, produced the desired descent trajectory. The desient guidance parameters represented the culmination of the descent trajectory design process and guaranteed satisfaction of all trajectoryrelated constraints and requirements discussed earlier. They
ako guaranted satsfaction of certan comstraints and requirements imposed on the VI athtude durne deveent.

Table ${ }^{\text {a }}$ smmantes the actual uphated descent gudance pardmeters tor both VI. 1 and $\mathrm{VI}-2$ Delimbom ot the paramcters are also presented in tha table

Certan VL. descent flght load parameters are diseussed in this section. along with their rationale, in the approximate order in wheth they were excated hy the thght sofiware. In particular. most VI attitude-related parameters and "manual" parameters will be discussed

The VI attutude commands $\mathbf{A (2)}$ through $\mathbf{A}(6)$ were referenced to the VL attitude just pror to separatom. Thes separathon (or celestial hock) coordinate frame was defined by the ideal VO celestal lucs onentaton corrected for the predected VO roll drift while th: VO was on roll inertial hold from SEP. 3 hr to SEP. For VO.I the reference star was Camopus and the predoted VO roll drift ande was - 0.082 deg. For VO.? the reference star was Vega and the predneted VO roll drift angle was -0.470 deg.

The VL onemtation durng the deorbit burn was specified by attitude command $A(2)$. Thas matrix defined the required pombung of the VL x-avis for the deorbit ha, as determmed by the targeting process. It also defined the V; il onentation about the x-axis which would result minmum sensutity of entry flight path angle errors to deorbit pointing errors in the event of a VL z-axis accelerometer fallure. The technque for selecting this roll angle is described in Section 10.2.0.2 of the Navigation Plan (Ref. 1). For VL-1 this roll ortentation was 20 deg: for VL-2, 36 deg. The relative VL/VO attitude orientation geometry during the deorbit hurn is shown in Fig. 21 for VL-i/VO.I and in Fig. $2:$ for VL.2/VO.2.

Following the deorbit burn, the VL was reoriented to prepare for the long coast phase of the descent trajectory. In the case of VL-I a roll maneuver ahout the x -axis (defined by matrix $A(4))$ was performed to position the VL 8 -axis perpendicular to the Sun direction. This maneuver, plus another 180-deg roll (defined by matrix $A(5)$) modway through the long coast at time $T(180)$ prevented uneven heating of the IRU, which is located on the 1 -axis. In the case of VL.2, the reorientation after the deorbit burn involved a repositioning of the x -axis as well as a roll about the x -axis. The repositioning of the VL-2 x-axis was required to shield the RPA from the Sun during the long coast. This maneuver was defined so that the Sun vector was 120 deg from the VL- 2 x -axis and in the $x-y$ piane. Like VL-1. VL- 2 performed a 180 -deg roll midway through the long coast.

The preentry phase for VL. 1 began at $\mathbf{E} .6 \mathrm{~min}$ (command $T(6))$, which required that the altitude maneuver for preentry

Parameter	13 timuthon	1 ml	\11 ${ }^{\text {alum }}$	11： 1.14.
HISTRT	Jermens dewent temetun Nipud．	！！		
HMMORTI	Parachute deplos ment altitude	11		
H／CV）	Alntude for constant welestry dewent watt	11		
T11）	Deurbit atherde maneurer intathon time	，		
T（2）	Deurbit butn mitiatun tume	，		
（14）	Orhatal descent imtation time	，		
115）		，		
［16）	Picenty initation ture	，		
T17，	Intry intiation tume	，		
Al2）	seast deorbt burn 1 Aote that elementeot tha maton and all whequent matmer ate widered a hllous $a_{11}, a_{12}, a_{13}, a_{21} a_{22} \cdot a_{23} \cdot a_{31}, a_{32}, a_{23}$			
			－6407 943199820＋6101	
			$\because ? \rightarrow 763849298(1+011$	－マ7361631296414＊14，
			$660178442039462+161$	
			4 $615 \mathrm{x} 91114012(19+611$	
			－161139 ${ }^{\text {－}}$（109 $2 \times 329+111$	94246－293x＋4i4＋（11）
			$4 \times 8414112732 \times 5$	
（3）	axco dl dewher burn．？			
			－ $040711943159 \times$ ？ $10+161$	
			2？ ？$^{716.339929810+1111}$	$-173 \mathrm{~h} 1 \mathrm{~h} 31264,41^{\circ}+1011$
				$-\div 2119969+44, i 12+111$
				$942+6$－ $434414+61$
			4xK＋14112712929＋1＂1	$-3154+20 \times 23083+1011$
A（t）	axe at wethat dexent imthettern		33：3013271301＋1／1	
			$-640711443159820+1111$	
			2277163：992981，$+1,1$	$-4+121693926013+610$
			67947610144720．4＊（17）	$x h 6+1124+1711118+101$
			－ $690 \times 974 \geq 2538510+61$	$-45415 \times 1011015: 3+101$
			24555347255742＋111	$-14 \times 196017 x+4913+100$
			-11942367313414.11	$-945 \times 179479 n 13 x-12$
				$-196311711 \times 12+7 h+16$
			$94235713 \times 514111+111$	91811999x94くt11＋1010
A（6）	ates at preentir）		－ $60 \times 54864 \times 43: 96+100$	
			－2944474 7×5 2669＋161	
			$7393119135610 x+1 \mathrm{M}$	
			R1 $2 \times 17109421691+161$	
			－13944326a4 3 ［83＋67	
			－ $599 \times 744 \times 2 ? 25611+1{ }^{2}$	
			－S02：56004135157＋101	$-44 \geq 02 ? 79478764+(6)$
（10）	Cimedinate tianstormatoon trom Víaver at Si P tulewal vertera aver at TDitor entry navisathon）		$-5346175434(4494+$（1）	
			$-2326011792965535+111$	$-6 x>h 9+x \times 40 \geq 111 x+(6)$
			． $159244974361(N)+1 H 1$	$-644 \geq 72611219 \times 2+64$
			－ $563168749(14 \% 68+(10)$	5545411546x 3 20401
			N13144（1）7546387＋14）	
				GXOBYX13704＋？ $1+(6)$
			-6301 （856（）901449＊（4）	$-77101 \times 731 \times 42112+60$
			$-53773456 ? 79 \mathrm{~K} \times 3+1 \mathrm{H}$	$=597049474 \geq 1 K 1 X+101$
			－560018792733380＋1H1	
C（1）C（1）C（2）C（3）C（4）			$11768773160325+6 \mathrm{Wr}$	$1176 \times 7731611325+(\mathrm{K})$
	Deorbit veloxity podynumal corefikicnts．$\Delta V=(10)+C(1) x+\left(12 x^{2}+C 13 x^{3}+C\left(4 x^{4}\right.\right.$	$11 / s^{2}$	$48572641114301+(5)$	$485726411143311 /$＋（M）
		$10 / 5$	－ $11959749137646-111$	－ $114554789137646-113$
		11／4	4285297：77（M以4－1）9	．42853472771444－（）7
		H1：5	－81100468n77497－11	－ $\mathbf{N 1 1 1 6 4 6 8 K 7 7 8 4 7 - 1 1 ~}$

Param．＇いr	Dethatur	1 ロット		いご見い，
V（1）1）		11／2	$36521197344423+11.3$	365 21147344423＋63
V（02）	reppectarely	11 i	25119844665 $3991+113$	$250984466539901+113$
V（C）	Velonity for constant velonets dexemt	ti／s		
（NJURII）	lermmal dexent contour I coticsant	11	51901376×84 大1594＋112	$51911376 \times 481594+612$
（NILRII2）		\checkmark		
（NHERH3）	＋（NTLR\｜t）$\times \mathrm{V}^{3}+$（NICKH5） V^{4}	$\therefore 2 \cdot 11$	4912186881660161－01	
（NILRI（4）		$3^{3} \mathrm{it}^{2}$	－ 816811562211667 －14	－R016x15622016．6．7－114
（NTURIIS）		.$^{4} \cdot 11^{3}$	$489266667344356-117$	$48926667394356,-11^{-}$
（Nill ${ }^{\text {（Na）}}$	Terminal dexent chitour 2 asthicme	11	$50428843099282+02$	$514288431099282+112$
（N7UR20）		，		
（MTCR23）		$\checkmark^{2}, 11$	72166149932342x－01	$7216616992342 x-111$
（Nll＇R2（4）		,$^{3} / 11^{2}$	－93165337612190－64	－ $931653376021911-114$
CNTLIR2（5）		${ }^{4} / 41^{3}$	554674860666320167	$55467.7868196632(1-117$
vicur）	Denrbit delad ${ }^{\text {der lo burn }}$	11／2	$51181102362205+113$	$511811102362205+113$
V（COS）	Deorbit deltat for 2nd burn	11／2		
V（V）		115	$15116249894268+115$	15132212739134＋115
Vi）11	Inertal weonty at enta in leal verthat at（1）	H，	$38774722789450+11.3$	$290378345 \times 10900 x+113$
V1／1）	coordinativ	11：	$-428761531724524+11.3$	－ $25106426610671+113$
H（1）	Intry alutude sbots Landme nte	11	$806490 \times 4954711+16$	$84394306555141+16$
R（ S^{\prime} ）	Planet radiusat landing vite	11	11117349216188＋118	11997478071929＋618
All 11	Intry pitio rate puly nombal wethients	rad／	－466514828．666879－113	－56761155669293－113
A1 2 ）	$\Delta \theta=A(1) \times\left(+A(1)\right.$ ）t^{2}	$\mathrm{rad} / \mathrm{S}^{2}$	－24098930126432－16	－ $2391414314319 \mathrm{~K}-16$
क（CL）	Parathute roll ancle whame	rad	－171654276116995＋111	$26638.380727306+111$
K（G， 1 I）	（iravaty gradem at II）	4	－22014744572449－015	－221362238729019－115
K（\％）${ }^{\text {（ }}$	Gravity gradent at entry	,$^{-2}$	－ 17843 （1448785 $78-15$	－17941807369155－115
G（O）	Acceleratuon（t）gravity at II）	$11 / 3^{2}$	$1223728016585.5+112$	$122801636963421+112$
R（XI）		11	－ $37839557222424+117$	－ $36735063678 \times 10+07$
RIYI）	Inertial powtion at entry in leal vertioal at TO co rdinaten	It	－29139711932419－11	
R（Z1）		tt	$-11307503747749+18$	－11320824957924＋（18
V（XS）		11／3	$616847202012416+03$	14396452737：12＋03
V（YS）	Landing we veloctl？it TiD in local vertical at（I） coordinates	11／9	387747227894：01＋13	$2900^{2} 783460109018+113$
V（ZS）		1t／s	$7119793059309 \mathrm{i}+111$	3961624943485 $7+01$
H1）OT（1）	Altitua atc at entry	11／5	－439051111318684＋（14	－44317205519557＋044
TU	Tinc from 6／24／76（iMT to SIP	－	$2277135100010100+07$	
RA	Kight arcension of landing wte on 6／24／76	rad	． 37979 ，929881543＋111	$685489246199(17+010)$
A（1）	Pitch change at entry	r．ad	． $14643526285480+10$	$146435262 \times 5480+101$
TT（1A）	Time between 10t and 2nd deorbit burns	，	．\％оюобоноюооо	
V（ST）	Velocity to deploy stagratuen temperature vencor	11／3	360：89238649591＋114	． $36089238649591+114$
r（TP）	Thern， 1 pulsing tome limit	\checkmark		
1（180）	Time ter coast roll maneuver	¢	． $645500000000000+04$	64670）（\％）00\％0010＋64
A（5）	Coordinate transformatoon from VL aves at SI P to VL．		－．73323713887637＋601	－49999973272647＋610
	axes after coast roll maneuver		－64070943159820＋0110	－795111597411164060
			． $22771633992989+010$	－．34321588942269＋00）
			－．67997302518712＋（1）11	－86602510056962＋101
			$69089792252642+00$	$45905788147787+101$
			－． $24555397255747+00$	198156，14967524＋601
			．11580432793257－11	． $499707481025596-12$
			－．33489（125300967＋000	396：1160513495＋（1）
			－． $94225713851911+00$	－91811586567765＋（90）
1 CO	Backup time for deorbit burn 1	，	1791.	1782
$\mathrm{COO}^{(1)}$	Backup time for deorbit burn 2	，	0.	0.
（105G）	Backup time for 005 g g cvent	\checkmark	11690.	11530
（1PROBL）	Backup time for $1.1 \mathrm{~km} / \mathrm{\sim}$－vent	\checkmark	11813.	11657
H（05（i）	Altitude for re－intialization at $0.05 \cdot \mathrm{~g}$ event	$f t$	259635.	257666
MMTI	Time from Sol 0 midnight at anding site to separation	¢	46341	23444

be initiated at $\mathrm{E}-9$ min (command $\mathrm{T}(5)$). The preentry phase for VL-2 was deiayed until E-3 min in order to keep the Sun out of the RPA port while electron temperature measurements were being made. This required that the VL- 2 attitude maneuver for preentry be initiated at E-6 min. The required VL attitude at the beginning of preentry was specified by matrix $\mathrm{A}(6)$. The VL began a slow pitch maneuver from this attitude in order to maintain the RPA port essentially paraliel to the VL relative velocity vector until entry, i.e., until $800,000 \mathrm{ft}$ above the areoid at touchdown. This pitch maneuver was a quadratic function of time (with respect to preentry start) defined by polynomial coefficients $A(E 1)$ and $A(E 2)$. The slow pitch was interrupted momentarily at entry by a step change in pitch (defined by $A(1 E)$) to place the VL in the aerodynamically trimmed orientation. The slow pitch maneuver then maintained this trimmed orientation until aerodynamic moments took over at 0.05 g .

The parachute phase roll command $\phi(\mathrm{CL})$ was designed to produce the required VL leg 1 azimuth at touchdown, which for VL-1 was 320 deg and for VL- 2 was 210 deg.

The manual parameters presented in Table 5 will be discussed next. Deorbit burn cutoff backup time $t \mathrm{COl}$ was selected so that an overburn would still keep the 'L from exceeding the steep entry angle constraint (-17.4 deg) of the entry corridor and not deplete propellant to such an extent that attitude control would be impossible during subsequent trajectory phases. For VL-1 the numerical value of $t \mathrm{CO} 1$ was obtained from $\mathrm{COL}=1757+6+28 \mathrm{~s}$, where 1757 s was the nominal cutoff, 6 s was the GCSC cutoff time error, and 28 s corresponded to an ove,burn which would change the entry flight path angle from the nominal -16.87 deg to the steep constraint of -17.4 deg. For VL-2 the overburn component of tC01 was different: it was 19 , not 28 s , since the VL-2 nominal entry flight path angle was -17.03 deg. Backup time CO 2 was set to 0 , since the deorbit burn was a one-burn, not a two-burn.

The backup time $t(05 \mathrm{~g})$ for the 0.05 g event was selected to ensure attitude stability in the worst-case entry situation. This worst-case entry situation would occur at a 3σ shallow entry in the ming atmosphere with 3σ low C_{D} and $C_{L}, 3 \sigma$ low

L/D, and 99 / tailwind. For VL-1, $t(05 g)$ was set at 177 s after entry: for VL-2, it was set at 173 s .

The backup time t (PROBE) for the $1.1 \mathrm{~km} / \mathrm{s}$ event was selected to be greater than the worst-case situation producing the longest time interval between entry $T(7)$ and the $1.1 \mathrm{~km} / \mathrm{s}$ event, yet soon enough to prevent interference with the parachute deployment event. The latest that the $1.1 \mathrm{~km} / \mathrm{s}$ event could have occurred is 282 s after $T(7)$. This would occur for a 3σ shallow entry in the min ρ atmosphere with 3σ low C_{D} and $C_{L}, 30$ high L'D, and a 99% tailwind. The earliest that para chute deployment could occur is 337 s after $T(7)$. This would occur for a 3σ steep entry in the max ρ atmosphere with 3σ high C_{D}, C_{L}. and L/D and a 99% headwind. Therefore a judicious selection of t (PROBE) for both VL- 1 and VL- 2 was $T(7)+300 \mathrm{~s}$.

Parameter $H(05 g)$, which was used to re-initualize the navigation computations for altitude at the 0.C5-g event. was selected as the midpoint altitude between the extreme altitudes at which 0.05 g could occur in the entire set of atmosphere models. This approach minimized the maximum altitude error.

Parameter MMTI, the Mars mission time increment, was the time difference between SFP GMT and Sol 0 midnight GMT ai the nominal landing site. For VL-1, SEP was commanded at 202/08:32:15 and Sol 0 midnight at the landing site was 201/ 19:39:54. For VL-2, SEP was commanded at 247/19:19:29 and Sol 0 midnight at the landing site was 247/12:48:45.

C. Descent Trajectory Dispersions

Trajectory dispersions were predicted for the nominal VL descent trajectory design in order to verify that the dispersed trajectory parameters would not violate constraints. The predicted entry and touchdown dispersions for the nominal VL-1 and VL-2 descent trajectory designs are summarized in Table 6.

Tables 7 and 8 present the constraints checklists for the final VL-I and VL-2 rescent designs, respectively. The rationale for the constraints themselves was presented earlier in Section II. Many of the minimum and/or maximum values appeating in this table were obtained by applying both the statistical and nonstatistical dispersions in Table 6 to the nominal VL descent parameters. The methods employed for obtaining the $\mathrm{min} / \mathrm{max}$ values for parameters not appearing in Table 6 will be discussed next. The $\mathrm{min} / \mathrm{max}$ values of the VL-Sun angle and the RPA/UAMS angle of attack were obtained by applying the maximum attitude limit cycle excursions expected during the appropriate descent trajectory phase. Required terminal descent propellant $\min /$ max values
were obtained by definmg 30 termmal descent igmtion min/ max velocity cases to produce min/max propellant consump. tion case; respectively. The maximum montion velocity case was defined by a 30 shallow entry fhght path angle. the min ρ_{s} atmosphere a 30 ligh terrain height. a 99 tailwind. a 30 high A/S L/D. and 30 low A/S and parachute acrodynamic coefficlents. The minimum ignition velocity case was defined by a 3σ stiep entry flight path angle, the max ρ_{s} atmophere, a 30 low terram. no wind, nomina! A/S L/D. and 30 high A / S and parachute aerodynamic coefficents. The minmas values for terminal descent propellant remainng and the minimum planet-relative velocity at parachute release were obtamed using methods described in the Navigation Plan (Ref. 1). Mini max leg 1 azmutis at touchdown were obtained by applyng the maximum expected inertal roll hold attitude excursion durng the parachute phase. And finally. the minmum postland relay link duration was obtained from Monte Carlo analyses conducted prethight.

D. Descent Relay Performance

The predicted nommal and adverse descent relay performances for VL-1 and VL-2 are shown in Figs. 23 and 24. respectively. The 1.W and 10.W mode phases of the descent trajectory are indicated in these figures. Note, however, that the 1 - and $10 . \mathrm{W}$ modes were actually 1.7 and 10.26 W , respectively, for VL-1, and 1.4 and 9.68 W , respectively, for VL-2. The predicted performance assumed the reference star to be Canopus for VO-1 and Vega for VO-2. The predicted nominal and adverse initial postland link durations were 14.4 and 12.2 min . respectively, for VL-1, and 17.9 and 14.7 min , respectively, for VL.2.

V. Reconstructed VL Flight Path Summary

This section present the CBE's of the VL descent trajectories. Detailed entry p^{p} : d dimusphere reconstruction is discussed in Sections V: :II. respectively.

Table 9 summarizes the CBE's of pertinent VL-1 and VL-2 descent trajectory parameters fruin SEP to TI). The predicts in this table represent the best a priori predicts and so are not necessarily identical to the nominal descent trajectory designs. The reconstructed trajectory parameters in this table were actually the result of a 2 -step process. The first step consisted of reconstructing the trajectory from entry to touchdown with LTARP, using the a priori entry state, the SATOD landing site fix, and entry phase IRU and measurement data. The second step consisted of reconstructing the separation-to-entry seg. ment of the descent trajectory with the reconstruction mode of LTOP. This latter process employed a weighted least squares algorithm to process the CBE of the SEP state vector from SATOD and the entry state vector estimate generated by

Table 6. Predicted VL entry and touchdown aispersions

Parameter	VL-1			VL-2	
	3σ statistical error	Nonstatistical atmosphere error	Nonstatistical ATBS error	3σ statistical error	Nonstatistical atmosphere error
Fined entry altitude errors					
V_{t}	$0.628 \mathrm{~m} / \mathrm{s}$	NA	0.017	$0.635 \mathrm{~m} / \mathrm{s}$	NA
γ_{I}	0.203 deg	NA	0.076	0.191 deg	NA
ψ_{I}	0.098 deg	NA	a	0.197 deg	NA
t	26.56 s	NA	3.57	29.55 sec	NA
LAT	0.307 deg	NA	a	0.299 deg	NA
LONG	0.309 deg	NA	a	0.343 deg	NA
Fixed entry time errors					
V_{I}	$25.22 \mathrm{~m} / \mathrm{s}$	NA	a	$28.35 \mathrm{~m} / \mathrm{s}$	NA
γ_{I}	0.849 deg	NA	a	0.969 deg	NA
ψ_{I}	0.342 deg	NA	a	1.126 deg	NA
h	35.55 km	NA	a	39.92 km	NA
LAT	1.107 deg	NA	a	1.533 deg	NA
LONG	1.576 deg	NA	a	1.897 deg	NA
Entry phase					
$q_{\text {max }}$	$6.06 \mathrm{lb} / \mathrm{ft}^{2}$	$-23 \rightarrow 6$	-1.31	$5.64 \mathrm{lb} / \mathrm{ft}^{2}$	$-23 \rightarrow 6$
$q_{\text {DEP }}$	$0.51 \mathrm{lb} / \mathrm{ft}^{2}$	$-0.4 \rightarrow 1.0$	0	$0.52 \mathrm{lb} / \mathrm{ft}^{2}$	$-0.4 \rightarrow 1.0$
$M_{\text {DEP }}$	0.042	-0.06 $\rightarrow 0.34$	0	0.044	$-0.06 \rightarrow 0.34$
Touchdown					
t	34.4 s	$-15 \rightarrow 40$	6.8	35.4 s	$-15 \rightarrow 40$
DR	70.0 km	± 30	18.2	58.8 km	± 12
XR	50.7 km	0	-0.3	37.6 km	0

${ }^{\mathbf{a}}$ Not significant.

Table 7. VL-1 descent constraints checklist

Table 8. VL-2 descent constraints checklist

Parameter	Nominal value	Minimum/maxımum value	Constramt
Inertial entry flight path angle	$-17.03 \mathrm{deg}$	-17.23/-16.84	$-17.7 \leqslant \gamma_{\boldsymbol{E}} \leqslant-15.9$
Inertial entry velocity	$4.6135 \mathrm{~km} / \mathrm{s}$	NA/4.6141	$V_{E}^{\prime} \leqslant 4.625$
Maximum dynamic pressure	$115.8 \mathrm{lb} / \mathrm{ft}^{2}$	NA/127.4	$4_{\text {max }} \leqslant 144$
Deployment dynamic pressure	$6.54 \mathrm{lb} / \mathrm{ft}^{2}$	5.62/8.06	$5.0 \leqslant q_{D}<8.6$
Deployment Mach number	1.041	NA/1.43	$M_{D} \leqslant 2.1$
VL-Sun angle	120. deg	114./126.	Sun angle >110
Coast time	3.038 h	NA/3.046	$t_{c}<5.0$
Terminal descent propellant required	152. lb	144./173.	$W_{T}<185.0$
Terminal descent propellant remaining (per tank)	16.5 lb	6.5/23.9	$u_{R}^{\prime} \leqslant 26.0$
Minimum planet-relative velocity at chute release	$172.9 \mathrm{ft} / \mathrm{s}$	118./NA	$V_{R}>100$
RPA/UAMS angle of attack at pre entry	0.5 deg	NA/1.5	$\alpha \leq 20$
Leg 1 azimuth at touchdown	210. deg	200./220.	$190<A_{z}<230$
Initial postland link duration	14.7 min	12.5/NA	$\Delta t>10.4$

Fig. 23. Predleted VL-1 descent relay Ilink performance

Fig. 24. Predicted VL-2 deecent relay link performance

Table 9. Descent reconstruction summary

Parameter	VL-I			VL-2		
	Predict	Estimate	Δ (o-level)	Predict	I stimate	$\Delta(\sigma$-level)
Separation (MEQ SEP+0)						
χ	15480.259 km	15480.340 km	$0.08 \mathrm{~km}(.04)$	12990.758 km	12990.932 kmi	0.17 km (.06)
Y	7617.091	7617.090	-0.001 ($\sim 0)$	-4991.806	-4992.063	-0.26 (.15)
Z	-13234.228	-13234.296	0.068 (.07)	-16509.059	-16508.515	0.54 (.21)
\dot{X}	$-1.160690 \mathrm{~km} / \mathrm{s}$	$-1.160683 \mathrm{~km} / \mathrm{s}$	7.0E-6 (.11)	-. $044430 \mathrm{~km} / \mathrm{s}$	-. $044438 \mathrm{~km} / \mathrm{s}$	$-8 . \mathrm{L}-6 \mathrm{~km} / \mathrm{s}(\sim 0)$
\dot{Y}	0.410977	0.410977	$\sim 0(\sim 0)$. 856233	. 856244	1.101-5 (.24)
\dot{Z}	0.572120	0.572117	-3.05-6 (.02)	1.065381	1.065392	$1.10 \mathrm{E}-5$ (.14)
Deorbit						
ΔV	$156.0 \mathrm{~m} / \mathrm{s}$	$156.310 \mathrm{~m} / \mathrm{s}$	0.199% (1.26)	$156.0 \mathrm{~m} / \mathrm{s}$	$156.086 \mathrm{~m} / \mathrm{s}$	$0.055^{\prime \prime} / 8(.35)$
CA	$85 .{ }^{\circ} 914$	$86 .{ }^{\circ} 155$	0. ${ }^{\text {c }} 241$ (.84)	85.0106	85. ${ }^{\circ} 343$	0. ${ }^{\circ} 237$ (.82)
CLA	97. ${ }^{\circ} 384$	$97 .{ }^{\circ} 373$	$-0 .{ }^{\circ} 011(.04)$	$91 .{ }^{\circ} 927$	91. ${ }^{\circ} 765$	-0.0 162 (.56)
Coast						
$i_{\text {RPA }}$ from T4 to T180	$137 .{ }^{\circ} 5$	$127 . .^{\circ} 9 / 141 . .^{\circ} 9$	9. ${ }^{\circ} 6$	$122 .{ }^{\circ} 1$	114. ${ }^{\circ} 3 / 128 .{ }^{\circ} 2$	7. 8
$i_{R P A}$ from T180 to $T 5$	129.98	$122 . .^{\circ} 5 / 135 .^{\circ} 1$	7.9	$114 .{ }^{\circ}$	109.0/120.2	6. ${ }^{\circ} 1$
${ }^{\alpha_{V L L}}$ from $E-6^{m}$ to E	$-19 .{ }^{\circ} 5$	$-19.9 /-18.9$	0.9	-19.5	-19.7/-19.1	0.94
${ }^{\alpha_{V L}}$ from E to 0.05 g	$-11 .{ }^{\circ} 1$	$-10 .{ }^{\circ} 9 /-10.4$	0.9	-11.1	-11.2/-10.7	0.4
$i_{R P A}$ from $E-6^{m}$ to $E-0$	$\begin{aligned} & 110^{\circ} 0 \text { @ } E-6^{m} \\ & 118^{\circ} 6 \text { (a } E-0 \end{aligned}$	$109.8 / 119.9$	NA	$\begin{aligned} & 70 .^{\circ} 0 \text { @ } E-3^{m} \\ & 74 .^{\circ} 9(a E-0 \end{aligned}$	69.9/74.6	NA
Entry						
77	11513.s	NA	NA	$11357 . \mathrm{s}$	NA	NA
V_{I}	$4.61000 \mathrm{~km} / \mathrm{s}$	$4.60989 \mathrm{~km} / \mathrm{s}$	$-1.10 \mathrm{E}-4$ (.01)	$4.61430 \mathrm{~km} / \mathrm{s}$	4.61216	-2.14E-3 (.23)
$\gamma_{\boldsymbol{I}}$	-16.900	-16.995	-0.095 (.34)	$-17 .{ }^{\circ} 005$	-17.084	-0.079 (.25)
ψ_{I}	$54 .{ }^{\circ} 173$	54.145	-0.028 (.25)	44. ${ }^{\circ} 790$	44.754	-0.036 (.10)
r	3635.57 km	3635.41	-0.16 (.01)	3626.96 km	3628.77	1.81 (.14)
LAT (areocentric)	12. ${ }^{\text {. } 575}$	12.503	$-0.072 \cdot 20)$	$36 .{ }^{\circ} 586$	36.476	-0.11 (.22)
LONG	$62 .{ }^{\circ} 004 \mathrm{~W}$	62.151W	0.147 (.28)	243. ${ }^{\circ} 036 \mathrm{~W}$	243.131W	0.095W (.15)
Entry						
r	3635.57 km	NA	NA	3626.96 km	NA	NA
V_{I}	$4.61000 \mathrm{~km} / \mathrm{s}$	4.60978	-2.2E-4 (1.05)	$4.61430 \mathrm{~km} / \mathrm{s}$	4.6134	-9.0E-4 (4.25) ${ }^{\circ}$
$\boldsymbol{r} \boldsymbol{r}$	$-16 .{ }^{\circ} 900$	-16.999	-0.099 (1.46)	-17. ${ }^{\circ} 005$	-17.042	-0.037 (.58)
ψ_{I}	$54 .{ }^{\circ} 173$	54.144	-0.029 (.89)	44. ${ }^{\circ} 790$	44.802	0.012 (.18)
t	11513.0 s	11512.9	-0.1 (.01)	11357.0 s	11358.34	1.34 (.14)
LAT (areocentric)	$12^{\circ} 575$	12. ${ }^{\circ} 498$	-0.077 (.76)	36. ${ }^{\circ} 586$	36.54	-0.05 (.46)
LONG	62. ${ }^{\circ} 004 \mathrm{~W}$	62.158W	0.154W (1.50)	$2: 3.036 \mathrm{~W}$	243.049W	0.013W (.11)
Entry phase						
$9_{\text {max }}$	$112.49 \mathrm{lb} / \mathrm{it}^{2}$	96.5	-15.99 (NA)	$115.75 \mathrm{lb} / \mathrm{ft}^{2}$	99.3	-16.45 (NA)
$9_{\text {deploy }}$	$6.57 \mathrm{lb} / \mathrm{ft}^{2}$	6.8	0.2 (NA)	$6.536 \mathrm{lb} / \mathrm{ft}^{2}$	6.3	-0.2 (NA)
M\#deploy	1.014	1.1	0.1 (NA)	1.041	1.05	0.01 (NA)
Touchdown						
t	12035.6 s	12050.8	15.2 (NA)	11868.2 s	11900.9	32.7 (NA)
Terrain height	-2.3 km	-1.4	0.9 (0.9)	-1.7 km	-2.8	-1.1 (1.1)
LAT (areocentric)	22. ${ }^{\text {a }} 369$	22.23	-0.14 (NA)	47. ${ }^{\circ} 596$	47.646	0.050 (NA)
LONG	47. ${ }^{\circ} 535 \mathrm{~W}$	17.93W	0.40 W (NA)	$225 .{ }^{\circ} 845 \mathrm{~W}$	225.680W	-0.165W (NA)
Azimuth leg 1	$320 .{ }^{\circ} 0$	321.6	1.6 (0.24)	$210^{\circ} 0$	210. ${ }^{\circ} 1$	0.1 (0.02)

The entry state best eatimates are the result of a backward integration of the final state near couchdown. The abnormally large fixed alti-ude velocity error is probably the result of amall accumulated velocity errors obtained in the forward filtering process. All other indications are that the true velocity was much closer to the predict.

LTARP in the first step of this process to reconstact the best separation-toentry trajectory. In Table $9, \Delta$ is detined as the difference between the reconstructed and predicted values, except for the coast phase, where Δ is defined as the maximum magnitude difference. Note that the estimates of the roast phase angles are given as the min/max values whact: were observed over the entire coast phase.

Table 10 compares the actual event-dependent VL sequence of events with the predicted SOE . All times are referenced to separation and are rounded to the nearest second.

Figures 25 and 26 depict the CBE's of the contributons of all error sources to the VL-1 and VL-2 landing site errors, respectively. The reconstructed error sources correspond to reconstructed entry state. atmosphere. winds. and acroshell L/D characteristics. For VL-1, the dominant contrbutor to the landing site error was the deorbit execution error more specifically, the deorbit ΔV magnitude error. The errors due to VL aerodynamics diad winds were also important. Although the deorbit execution error was also important for VL-2. the dominant contributor to the VL-2 landing site error was thr VL aerodynamics modeling error. A more detailed explanation of the VL aerodynamics modeling error can be found in Section VI, where the unusual observed trimi angle of attack vs Mach number characteristics are discussed. The smaller contribution of the deorbit execution error to VL. 2 was very likely due to the fact that the VL-2 axial accelerometer was of higher quality than the VL-1 axial accelerometer. During VL-2 pre

Fig. 28. VL-1 lending athe error

Table 10. Actual ve predict VL SOE (all times in seconds from separation)

I vent	V1 1		\12	
	---		-	
	Predut	Actual	Predtet	Actual
Ind of deorbit burn	1757.	17601.	1757.	11757
F ntry radius	11513.	11513	1135%.	11358.
0.058	11665	11652.	11505	11495.
$q_{m \times r}$	11713.	117107.	11553	11553
$1.1 \mathrm{n} / \mathrm{s}$	11761.	11760.	11600.	11606.
M/1:	11933	11943.	11767	11792.
Terminal descent ignition (pyro fire)	11993	12005.	11826.	11856.
Constant veloclly , tart	12029	12043	11861.	11893.
Touchdown	12036.	12051.	11868.	11901.

separation checkout the accelerumete, biar s!ahility data showed very little 'ariabilty, undike the relatively large vanations whlh were observed during the VL-I pre-separation checkout. Table 11 shows the landing error contributions due to each deorbit execution error. In the entry trajectory reconstruction pocess, the winds can only be estimated below about 25 km . For VL-1, analysis of the high-altitude attitude data indicated that the vehicle "cocked" sightly. producing a cross-range error. This cross-range error can be explained by an average wind of about $30 \mathrm{~m} / \mathrm{s}$ from the east, which also corresponds to the estimated wind at 25 km altitude. This inferred

Fig. 28. VL-2 landing stie error

Table 11. VL entry flight path angle and touchdown errors regulting from each deorbit control error

VL-1: I.rrot due to				
	Δ magnitude error	In-plane pointing error	Out-ot-plane pointing error	All deorbit control errors
γ_{E} error (fixed radius)	$-0.070 \mathrm{deg}$	-0.009 deg	-0.001 deg	-0.080 deg
DR errorat TD	$-21.6 \mathrm{~km}$	-2.1 km	$-0.4 \mathrm{hm}$	-24 1 km
XR errorat TD	-0, 59 km	$-0.003 \mathrm{~km}$	$+0.12 \mathrm{~km}$	$-11.47 \mathrm{~km}$
VL-2. I ror due to				
γ_{E} error (fived radius)	-0.019 deg	-0.007 dey	-0 0008 deg	-0.0134 dex
DR errorat TD	$-4.52 \mathrm{~km}$	- 0.85 km	$-198 \mathrm{~km}$	$-7.35 \mathrm{~km}$
XR error at TJ)	-0.02 km	-0.01 km	$+1.47 \mathrm{~km}$	+144 hm

high-altitude wind has been included in the VL. 1 wind contrbution error. Two 1.0 dispersion ellipses are sh. wn in Figs. 25 and 26. The large ellipse represents the a prion control dispersions which were predicted prior to separation. The small ellipse (a circie) apresents the knowledge dispersions for the final estimate of the landing site from LTARP If should be noted that the reconstructed trajectories which modeled itie above reconstructed error sources also satisfied the observed VL entry sequence of events and $q_{\text {max }}$.

Plots of reconstructed and observed descent relay performance time histories are shown in Figs. 27 and 28 for VL. 1 and VL-2, respectively. The reconstructed descent relay performance was computed using the best reconstructed descent trajectories and, in the case of mission 2, with an anomalous VO roll attitude of -22 deg off Vega, which was the final estimated attitude after stabilization.

VI. Entry Trajoctory Reconstruction

This section documents the trajectory reconstruction results obtained by the Lander Flight Path Analysis Team following the landings of VL-1 and VL-2. Trajectory, atmosphere, and vehicle parameter estimates are presented, along with estimate uncertainties. In addition, characteristics of each reconstruction are discussed, with mention of difficulties encountered and resulting accuracy implications.

A. Description of Process

In order to facilitate understanding and correct interpreta. tion of results, a b.ief description of the overall reconstruction process used is given, with pertinent details added in later sections as requ tred.

Data used in the reconstruction were
(1) Targeted entry state (position. velocity. and attitude) and covariance thereof.
(2) Raw dyname data file from DLCSF 1 (tabulated gyro and accelermeter telemetry data. all properly scaled and tme-taged)
(3) Measurviaseni data file from DI CSI T (tabulated RA, TDLR, pressure and iesuperature measurements, calibrated and time-tagged).
(4) Post-touchdown measurements (ODP landed position fix, and pressure and temperature measurements from the meteorology experiment).

The dynamic data were preprocessed by the program PREPR, which (after datd editing and filling any gaps present) yielded a file of smoothed time histories of angular velocity and acceleration for each vehicle axis. PREPR did nothing to the measurement data except to arrange the data into a file with time-sequencing corresponding to that of the dynamic data file (this could result in negligible time-tag shifts).

The actual reconstruction was done by the program LTARP. By means of a planetary model and the PREPR dynamic data file, LTARP propagated the targeted entry state forward in tince in the manner of a strapped-down inertial navigator. In so doing, angular velocity data wis integrated to keep track of vehicle attitude. and total acceleration (sensed from the PREPR dynamic data file plus computed gravitation) was integrated to provide velocity and position time-histories. At selected ime points corrections were applied to the state thus computed by processing with a Kalman-Schmidt filter RA and TDLR measurements from the PREPR measurement data

Fig. 27. Peconatructed and cbeerved VL-1 desceent relay performence

Fige 27 (conti)

Flg. 27 (contd)

Fig. 27 (contd)

Fig. 28. Reconstructed and obeerved VL-2 deecent relay pertormance

Fig. 28 (contd)

Fig. 28 (contd)

Fig. 20 (contd)
file. After similarly processing the position fix slightly before touchdown, the resulting final state was integrated back to entry to provide a continuous reconstructed trajectory.

This trajectory was then "frozen." and the atmosphere reconstructed thereon. Working from entry to touchdown. LTARP computed dynamic pressure from sensed acceleration. using a prion aerodynamic data. Density was computed from dynamic pressure, based on the velocity history from the frozen trajectory (modified by wind estimates). Pressure was computed by integration of density with respect to altitude in the hydrostatic equation. Temperature was then computed from density and pressure by means of the equation of state. Wind estimates were based on a comparison of a prion aerodynamic trimr predictions with those computed f(er the frozen trajectory on a no-wind basis. Pressure and temperature measurements from the PREPR measurement data ile were processed by the Kalman-Schmidt filter at selected times to provide atmospheric corrections. Finally, a continuous reconstructed atmosphere was obtained by means of a deterministic run of the frozen trajectory. incorporating a wind vs alitude table and other parameter estimates from previous filmering runs.

B. Data

The primary data used for the initialization of the reconstruction process is presented in this section. The a priori entry state and covariance for each mission are shown in Table 12. Alsu shown is the transformation from the MEQ coordinate system to the a priori direction of the body axes at entry. The a priori uncertainty in body a+titude was 1 deg (1σ) in pitch, yaw, and roll. The uncertainties in sysiem parameters are documented in the Navigation Plan.

The IRU data contained in the entry telemetry was converted to engineering units using the scale factors shown in Table 13. Known biases (determined in preseparation checkout) were removed from the data and are also shown in Table 13. These biases were also used by the onboard software during each descent.

A radar altimeter scale factor of .9965 was applied to the decalibrated TM values to correct for terrain effects on signal return time. A bias of about 17 m was identilied during instrument calibrations, but was not used in the reconstruction because of its variation with altitude and insignificance compared with terrain uncertainty.

Values of model paratusters critical to the reconstruction are presented in Table 14. 10 uncertainties are given where significant.

Owing to softwin modeling hmatans, the (fouth-order) reference areoid was modeled as a spheroid with polar and equatorial radir shown in Table 14. This surface matched the radus of the reference areoid exactly at the targeted landing site and was very close in the general area of each site. The data contained in this report is with respect to this spherodal surface. For statistical purposes it was regarded as an altitude reference with tero uncertainty. ODP landed postion fixes together with 1σ uncertainties are presented in Table 15.

Nominal terrain height profiles were deduced for both landers from available contour mape and input to LTARP by means of tables. Plots of these profiles are included in Figs. 29 and 30 . The 1σ uncertainty of each profile was regarded as $\pm 1 \mathrm{~km}$.

Aerodyname tables were constructed fiom data in Ref. 2. with 1σ uncertainties as follows.

Aeroshell phase axial force coefficient vs Mach number and total angle of attack, $\pm 1.7 \%$.

Aeroshell phase trim angle of attack vs Mach number (for nominal CG offset of 183 in). $\pm 0.5 \mathrm{deg}$.

Parachute phase drag coefficient vs Mach number, $\pm 4 \%$.

C. Entry Trajectory Reconstruction Results

The VL-1 and VL-2 reconstructed trajectory variables are recorded at various times of interest in Tables 16 and 17, along with uncertainties in the estimates. Tables 18 and 19. These variables are plotted in Figs. 31 to 47 for VL-I and Figs. 48 to 65 for VL-2, with significant events noted, and design limits included where applicable. Comparisons of estimates with predicted values were given earlier in Table 9.

1. Discussion of results. Were it not for a data gap problem, which will be discussed, both the VL-1 and VL. 2 trajectory reconstructions would have been simple and straightforward, using LTARP and the procedures developed therefor (Ref. 3). Much of the de:slopment work leading to LTARP was aimed at providing the ability to cope with large (e.g., 3o) entry dispersions, but for both vel cles the entry dispersions were about $1 a$ or less. The fear of a large radar blackout region and a resulting loss of reconstruction accuracy led to studies and development - special procedures, but both landers obtained near-continuous radar altisneter measurements below 130 km altitude. Similarly, the TLLR data was almost continuous where scheduled and of excellent quality. A great worry had been the anticipated poor quality of the dynamic data, and much work went into PREPR to provide the capability to edit out numerous wild points and to fill gaps in the raw data prior to smoothing. Surprisingly, the data was of

Table 12. A priori entry state and covariance

Table 13. Instrument bias and scale factors

Parameter	VL-I	VL-2
X-gyro bras, rad/s	-.31282t.4	-.93531.-9
Y-gyro bias	-.276331:4	-.19730L-4
Z-gyro bias	-4340E-5	-.253601.4
X-gyro scale factor. deg/pulse	8.00422 t 4	$7.96527 \mathrm{E}-4$
Y-gyro scale factor, deg/pulse	$7.90358 \mathrm{~F}-4$	7.846981-4
Z-gyro scale factor, deg/pulse	7.92614 r .4	$7.93027 \mathrm{~L}-4$
X-accelerometer bias, $\mathrm{km} / \mathrm{s}^{2}$	-1.0894L-5	-2.0129L. 5
Y-accelerometer bias, km/s ${ }^{2}$	$1.1067 \mathrm{t}-5$	-6.745E.6
2-accelerometer bias, $\mathrm{km} / \mathrm{s}^{2}$	7.4781 .6	$1.0167 \mathrm{t}-5$
X-accelerometer scale factor. km/s/pulse	1.272191-5	$1.27754 \mathrm{E}-5$
Y-accelerometer scale factor, $\mathrm{km} / \mathrm{s} / \mathrm{pulse}$	3.18267 t .6	3.148681.6
Z-accelerometer scale factor, km/v/pulse	3.18009E-6	$3.19154 \mathrm{E}-6$

Fig. 29. VL-1 nominal merrain holgith proftif

Table 14. Model paramete:s and uncerta.nties

Parameter			$\begin{gathered} 10 \\ \text { uncertainty } \end{gathered}$
Mars gravitation constant μ	. $4282844315 \mathrm{~km}^{3} / \mathrm{s}^{2}$		
Harm onic J_{2}	. 001965		
Mars rotathon rate	7088219r-4 rad/s		
Universal gas constant	. $008831434 \mathrm{~km}^{2} / \mathrm{K} \mathrm{mol} \mathrm{c}^{2}$		
Ratio ot spectic heats γ	$1.38{ }^{\text {a }}$		1
Molecular weght of lower atmosphere	$43.3{ }^{\circ}$. 1
--			- -
Kadn of reference spheroid			
		VL-1	VL-2
Lquatorial radius, km		3393.470	3394.114
Polar radius, km		3375.654	3376.294
Lander mass			
Entry mass, kg		982.93	981.63
Mass atter aeroshell drop. kg		789.25	787.95

${ }^{3}$ Regarded as constant below 100 km .

Table 15. ODP landed position fixes, 10 uncertainties

The numerical values in this Table differ from those in Table 10 of the Satellite Orbic Determination chapter because the above entries are with respect to the proflight (i.e., Mainer 9) Mars pole, whereas the other entries are with respect to the inflight "solved-for" pote.

Fig. 30. VL-2 nominal cerrein hovint profile

Table 16. Viking trajectory $/$ atmosphere reconstruction summary: Viking 1 reconstruction

Variable	Fntry	10.05	Maxa	$1.1 \mathrm{~km} / \mathrm{s}$	Mortar tire	Vernter ygnition	Touchdown
- - - -							
GCSC time. s	11513	11652	11707	11760	11943	12005	12050.8
$V_{R}, \mathrm{~km} / \mathrm{s}$	4.4177	4.5388	3.2139	1.1032	0.2327	0.15532	0.0027
γ_{R}, deg	-17.758	-12.995	-7.962	-0.429	-53.392	-69.758	-
λ_{R}, deg	52.138	54.784	56.080	56.343	55.547	-34.151	-
Altitude above MSL, km	242.8	78.3	32.2	25.8	4.3	-0.09	-1.5
Latitude, deg	12.503	18.286	20.447	21.376	22.208	22.224	22.228
W longitude, deg	62.151	54.072	50.747	49.260	47.932	47.928	47.931
${ }^{0}{ }_{R}, \mathrm{deg}$	0.60	0.003	-0.31	-0.48	-0.60	-3.16	-
β_{R}, deg	0.09	0.12	-0.36	-0.52	-0.19	9.75	-
${ }^{\alpha_{R}}$, deg	-18.81	-11.19	-11.64	-12.49	-8.85	-13.40	
Pressure, nib	-	.74F. 3	. 28	. 54	4.42	7.20	7.62
Density, gm/cc	-	30E-8	.87E.6	.16E-5	.111E.4	.1591:4	.165E:4
Temperature, K	-	140	165.	177.	214.	234.	241.
Mach no.		>20.	15.4	5.1	1.1	. 21	-
Dynamic pressure, $\mathrm{lb} / \mathrm{ft}^{\mathbf{2}}$	-	. 6	96.5	22.0	6.8	. 4	-
Range, km	0	574.1	799.6	898.5	986.5	988.1	988.4
	Date: 9-5.76 -						
Date: 9.5 .76 Time: $250 / 00: 25: 00$ Data sources: PREPFXA PREPR files ENTRYDIG	220, PREP NTR YD2C	A20217. TARP runs	IFBSC, IT				

Table 17. Viking trajectory / atmosphere reconstruction summary: Viking 2 reconstruction

Vartable	Entry	0.05 g	M.s 4	1.1 km/	Mor:ur fire	Vernker mnition	Tomchdown
W以	--						
GOSC tume.	11357	11495	11553	11606	11791. K	11"56	11900.87
$\mathrm{V}_{R^{\prime}, \mathrm{km} / \mathrm{M}}$	4.4756	4.595	3.148	1.1	. 237	"1510	. 0030
γ_{R}, deg	-17.6221	-12.949	-7.443	-. 04.3	-50.80	-80.3	-
λ_{R}, deg.	42.7813	49.597	53.027	54.641	55.28	120.2	
Allitude abswe MSL., km	240.99	77.69	29.80	24.71	3.12	-1.23	-2.8
Latitude, deg	36.476	43.258	45.791	46.758	47.638	47.647	47.646
W lonkitude. deg	$243.1{ }^{1} 1$	233.944	229.50;	227.597	225.715	225.683	225.680
${ }^{\sigma_{R}}$, deg	-. 262	-. 719	-.886	-. 728	1.32	c: -15.15	-51.61
β_{R}, deg	. 132	-.121	-. 059	. 084	-2.53	w: 135.01	-89.01
α_{R}, deg	-19.262	-11.115	-12.088	-12.985	-915	0: -87.34	-98.33
Pressure, mb	-	. 00069	. 30	. 54	4.65	7.19	7.78
Density, gm/cc	-	27 E .8	.95E.6	.156E. 5	.11F-4	.16E.4	.178E.4
Temperature, K	-	126.	166.	179.	205.	229.	229.
Mach no.	--	>20	15.1	5.1	1.05	. 20	
Dynamic pressure, $\mathrm{lb} / \mathrm{ft}^{\mathbf{2}}$	\cdots	. 65	99.3	20.3	6.3	. 42	-
Range, km	0.	578.	817.	914.	1015.	1006.8	1007.0

Date: 9-22-76.
Time: 266/20:4.
Data sources: V7SCDBB, PPFVL2LA3, PREPFXB00220.
A/S phase axial force cocfficient $\sim 0.7 \%>$ nominal.
Parachute phase drag coefficient $\sim 7 \%>$ nominal.
Hypersonic $\alpha_{\text {trim }}$ variable, averaging -12.5 deg.
PREPR files. EDIVL2C, EDIVL2D, ED2VL2F; LTARP runs: FWH320, 22, 27. 28, 34

Table 18. Viking irajectory / atmosphere reconstruction summary: VI-1, 1 ar uncertainties in estimates

Variable	tintry	11058	Ma q	$1.1 \mathrm{~km} / \mathrm{V}$	Mortar fire	Vermict ten:mon	Inundiown
Gres tume,	11513	11.52	11707	11760	11943	1200s	1205018
${ }^{1} \mathrm{R}^{\text {, }} \mathrm{km} / \mathrm{l}$. 1011	01008	. 11017	.rewe	. 00012	Mrne	(10)2
γ_{R}. deg_{R}	031	120	017	1917	1056	3 n	45
λ^{2}. deq	. 151	. 038	.1136	.109.3	. 511	17	236
Altitude shove MSI, km	. 9	. 44	. 20	.22	. 21	2	2
Latitude deg	. 169	. 1410	.1133	. 032	.032	.1032	1132
W longtude. der	. 173	. 14.4	036	.035	. 03.3	013	11.5
$\sigma_{k} \cdot \mathrm{deg}^{\prime}$	41	25	. 21	20	$+1$	-14	3.4
β_{R}, deg	1154	.1042	.1039	. 050	. 29	-13	39
${ }^{\alpha}{ }_{R}$, dep	. 032	. 020	. 017	. 017	.122	9 19	. 19
Pressure, :		2.2	2.3	2.7	24	1.	7
Density, "\%		2.3	2.8	3.7	2.7	1.7	. 8
Temperature. ';		2.7	2.2	4.	1.8	1.3	.s
Mach no., \%".			4	4.	3.	3.	
Dynamic presure. \%		2.	2.	2.	2.	4.	
Range, km	0.	. 07	. 1	. 12	.2	. 25	. 27

Table 19. I ixing trapectory I atmoephere reconstruction summery: VL-2, 1a uncortalmies in estimates

Variable	Entry	0.058	Maxa	$1.1 \mathrm{~km} / \mathrm{s}$	Mortar fire	Verner innition	Toundown
CCSC time.	11357	11495	11553	11606	11791.9	118.56	11909.87
$V_{R}, \mathrm{~km} / \mathrm{s}$.0011	. 0011	. 001	. 6.1	.0063	.000)	.0002
γ_{R}, deg	.031	. 020	. 617	. 017	.056	. 36	4.5
λ_{R}, deg	. 515	. 038	.036	. 093	. 5	1.7	23.6
Altitude above MSL., km	1.	. 83	. 6	. 5	. 5	. 5	. 5
Latitude, des	. 069	. 1040	. 033	. 032	.10,2	. 032	. 132
W longitude, deg	. 073	. 043	. 036	. 035	. 035	. 035	.635
$\sigma_{\text {R }} \cdot$ der	. 41	. 25	. 20	. 20	. 41	¢: 1.4	3.8
$A_{R}, \mathrm{dc} \mathrm{C}^{\prime}$. 054	. 042	. 039	. 050	. 29	$\downarrow: 1.3$	3.9
α_{R}, deg	. 032	. 020	. 017	. 017	. 022	0. 19	. 19
Pressure, \%	-	2.2	2.3	2.7	2.4	1.	. 7
Density, ©	-	2.3	2.6	3.7	2.7	1.7	. 8
Temperature, \boldsymbol{x}	-	2.7	2.2	4.	1.8	1.3	. 5
Mach no., \%	-	--	4.	4.	3.	3.	--
Dymamic prescure. \%	-	2.	2.	2.	2.	4.	-
Range, km	0.	. 07	. 1	. 12	. 2	. 25	. 27

Fig. 31. VL-1 anitude above reference areodd vs thine

Fis. I2. M-1 diduce move reversice areod ve range

Fig. 33. VL-1 range from enti, va time

Pig. 34. VL-1 aninuce thewe moterence areeld ve rance

Fig. 35. VL-1 relative velocity ve time

Fig. 36. VL-1 relative filght path angle ve thene

Fig. 37. VL-1 relative azimuth vs time

Fig. 38. VL-1 ersocontric lathude ve time

Fig. 39. VL-1 longltude ve time

Fig. 40. VL-1 ground trace neer touchidown

Fig. 41. VL-1 terminal descent performance

Fig. 43. VL-1 planet relative sigma ve thow (derali)

Fig. 44. VL-1 planet relative beta va thro

Fig. 46. VL-1 plenet releatue alpha ve time

Fig. 46. VL-1 Eulor Psi ve time

Fig. 47. VL-1 Euler theta vs time

Fig. 43. VL-2 anturde above rolwence ereoid ve time

Fig. 49. VL-2 range from entry ve time

Fig. B0. VL-2 altivie above reforence areold ve range

Fig. 51. VL-2 altitude above reference arccid ve range

Fig. 62. VL-2 relative velochy ve time

Fig. 53. VL-2 relative filght path angle vs time

Fig. 54. VL-2 relative aximuth ve time

Fig. 55. VL-2 latitude ve time

Fig. 56. VL-2 longturde va thme

Fig. 57. VL-2 latitude va longitude

Fig. 68. VL-2 terminal descent performance

Fig. 59. VL-2 planet relative sigma ve time

Fig. 60. VL-2 plenet rolotive beta ve time

Fig. 61. VL-2 planet relative alpha ve time

Fig. 62. VL-2 Eulor Per ve time

Fig. 63. VL-2 Euler theta ve time
excellent quality except for a short (i.e., approx 2 s) gap following parachute deployment for both VL-1 and VL-2.

That short gap, however, gave a great deal of trouble in both cases. It appeared in a region of great dynamic activity, and attempts to fill it by deducing a wave-form consistent with data on either side fell short of their mark. In effect, this resulted in a loss of attitude reference (several degrees) as LTARP reconstructed the trajectory through the gap such that excessively large TDLR residuals occurred when that measurement become available. Because the attitude errors were no longer consistent with the covariance matrix being propagated by LTARP, the Kalman filter responded to the TDLR residuals by making false corrections to velocity and to the positi: 1 variables, which by that time were heavily correlated with velocity. Hers another factor entered, in that the large TDLR residuals exceeded the linear range of the filter equations. Nevertheless, the filter was thus able to "explain" the initial large TDLR residuals and to keep the remaining ones to touchdown at near-respectable values. However, after processing the CDP position fix at touchdown, the smoothed (i.e., continuous) trajectory obtained by integrating th dynamic data back to time of entry was not of acceptable quality. Measurement residuals were not too bad back up to parachute deployment, but from there on back the RA residuals became progressively worse. To rephrase the above simply - with the
attitude error inherent in the gap-filled dynamic data. no continuous trajectory from entry to touchdown could be found which satisfactorily fit all the measurement data. While efforts were made to recover the lost dynamic data, a twopiece solution (with attitude discontinuities and small velocity discontinuities at the gap) was generated which fit the data quite well. Most of the atmosphere reconstruction was based on this two-piece trajectory. Finally, after playback of the entry data from the lander, the gap was filled with real data and a continuous dynamic file was generated by PREPR of a quality needed by LTARP for a good 1 -piece trajectory reconstruction. This same story applied virtually without change to VL-2.

For both reconstructions the initial residuals for each type of measurement processed during the 1-piece filtering runs using the final versions of the dynamic data files are presented in Table 20. These were almost unbelievably small - especially those for VL-1. In particular, the VL-1 TDLR residuals imply that the relative velocity vector and vehicle attitude were known quite accurately before the TDLR went on, contrary to expectations based on premission studies. This attests to the accuracy of knowledge of the entry state, the low drift rate of

Table 20. Intial meacurement residuals

Radar altimeter		
	VL-1	VL-2
GCSC time, s	11600,05	11446.45
Altitude (meas.), km	131.7	131.9
Residual, km	. 28	27
TDLR		
	VL-1	VL-2
GCSC tince, s	11960.9	11812.8
Relative velocity magnitude, m/sec	71.2	63.6
Beam 1 residual, m/s	1.12	-5.27
Beam 2 residual, m/s	. 123	-2.60
Beam 3 residual, m/s	1.18	. 80
Beam 4 residual, m/s	1.54	-1.73
ODP touchdown position fix		
	VL-1	VL2
Radius residual, km	. 29	-3.29
Latitude residual, des	. 143	. 062
Longitude residual, dez	-.0008	. 147

Fig. 65. VL-2 Euler theta vs time
the gyros during coast, the accuracy of the IRU and RA, and the high quality of the smoothed dynamic data processed. The landed position residuals were also quite small, corroborating the abore. The radius residual of VL- 2 indicated some inconsistency in the way the TDLR processing results in altitude changes through correlation with velocity which has built up in the covariance matrix. This effect, never observed in test activities with simulated data, was prominent in processing all the Viking dynamic data files (except the final one for VL-1). and is not yet understood. At any rate, its slight effect on position reconstruction accuracy was offset by the information in the ODP position fix.

The final continunus 1-piece reconstructed trajectories thus obtained for both VL-1 and VL-2 appear, on the basis of measurement residuals (see Table 21), to be highly accurate. In fact, they were much better than any obtained during development tests and flight team test and training activities using simulated telemetry data, and were excellent bases on which to reconstruct the atmosphere.
2. Solve-for parameters. Capability existed in LTARP to augment the state with solve-for parameters of significance. and most of the procedures were developed on this basis. Thanks to the precision of the IRU, RA, and TDLR, no significant effect on results could be noted by treating their scale factors, biases, etc., as solve-for or consider parameters.

Table 21. Measurement residuals, VL-1 and VL-2, smoothed trajectories

arollowing is a tabulation of representative residuals in m / s obtained by sampling those printed out in the backward passes of the final filtering runs.

An exception, however, was terrain elevation from MSL. Because L'TARP's equations of motion involved radial position from the center of the planet, which was observable to the RA only through an intermediate surface of uncertain location, inclusion of a bias to the nominal terrain height table as either a solve-for or consider parameter was necessary. The latter proved adequate in the Viking reconstruction due to the relative accuracy of the nominal terrain profiles deduced from the available contour maps. In spite of the above, however, accuracy figures in this report are derived from filtering runs in which the staie was augmented with the most significant dynamic and measurenent parameters as solve-fors. Estimates obtained were so near nominal that they will not be reported.
3. Local vs overall reconstruction accuracy The reconstruction philosophy underlying the results it thes report is one of identifying a trajectory which best fits. in a mmimum variance sense. a variety of measuremen' and other data taken at different times during entry. As a result, the local fit was not always as good in any given subregon as might be ohtained by some less comprehensive method. Two examples of this are significant and will now be discused.
a. Eintry state. The estimated entry state was the final result of a determunistic run in negative time starting at touch. down and ending at entry. The nature of ths trajectory was such that the entry state thus obtained was quite sensitive to small errors in the touchdown estimate. and in addition, primarily because of IRU uncertainties. the touchdown state uncertainty was amplified as the state was propagated back up to entry. It was thus often found that a better entry estmate (at least for selected variables) could be ohtaned by means of a restricted. in that was terminated in the aeroshell phase after processing early RA data, with its final state being propagated back to entry. Though better in entry allutude and vertical velocity. such an entry state would. in general. be incapable of detining the other trajectory parameters to an ac:uracy suitable for the subsequent atmosphere reconstruction. The estimates presented in this report were obtained for both landers by backward integration of the touchdown state computed in a complete forward filtering run. The VL. 1 and VL. 2 entry states thus obtained are believed to be sufficiently accurate for all foreseen purposes because of the high quality of the dynamic data received from the landers.
b. Trajectory in vicinity of tomiddown. As the reconstruction proceeded through the parachute and terminal descent phases, processing TDLR and RA data, the velocity and position (relative to touchdown position) were determined quite accurately. Throughout the long flight from entry, however. position and velocity became strongly correlated, such that the post touchdown ODP position fix not only corrected radius. latitude. and longitude, but applied a correction te velocity as well. The velocity history, though improved on an overall basis over the entire trajectory, was thus degraded in the vicinity of touchdown. Although this may be by an insignificant amount for most purposes (e.g., only a fraction of a meter per second). it might be unacceptable, for example, for accurately inferring the terrain slope in the neighborhood of the landing site from RA measurements. Similarly, the terminal velocity and position histories may not be sufficiently accurate for deducing, physical properties of the seil from landing impart veiocities and the ground track leading to tolchdown, or for assessing vehicle behavior during touchdown. For such uses a limited reconstruction fitting only selected data in the vicinity of touchdown would be preferable. Even for this, however, a
better tie point with the planet is needed, i.e., through avalabllty of !RU data to the pont where the velucle is at rest.
4. Integration step size and PREPR smoother length. The PREPR unoothers selected were short (i.e., 7 pomt) during the first few second encompassing entry and the putch mancuver following entry. long (ie.. 4^{\prime} pomit) from there until just before mortar fire, and short (t.e.. 7 point) the rest of the way down. These lengths were chosen to provide accurate tracking of the large amplitude changes durng penods of great dynamic activity and to filter out the huph-frequency. low-amplitude effects unwanted in a trajectory intended for atmosphere reconstruction. They also allowed use of a lager interation step si/e in ITARP down to the parachute piase It should be pointed out, however, that the tratectory thin reconatructed is uniquely mated to the smosther-mbegraton step side combinaton used. Although a differen combinatoon will, hy means of an LTARP filtering run, result in an entry state and trapectiory with apparently only msignificant differences. a detemmostic run starting with an entry state unmatched to the smostherintegrathon step sle combination heng used may differ significantly (e.g.. several hundred meters in altotude at wathdorn).

For the Viking recomstrucion the fundamental choice was smoother length. The integration step ste schedule was then chosen so as to munimite computer run time without degrad. ing accuracy of results. Step sizes thus varied from 0.1 to 0.5 s . depending on prevailing smoother length and nature of run.

D. Vehicle Subsystem Periormance

1. Aerodynamics. Reconstructed dynamic pressure and Mach number time histories are presented in Figs. 66 to 69 for both landers. Figure 70 gives reconstructed trim angle of attack curves, together with design curves.
2. Aeroshell phase. The $a_{\text {irim }}$ vs M curves for the two landers are qualitatively similar to each other. hut dilfer distinctly in shape from the a piori curves of Ref. 2. Above Mach 3 the reconstructions were based on plaret-relative rather than air-reiative velocity, but are believed accurate, in that unreasonably large winds would be required to alter them sig. niricantly. At Mach 5, where flight jath angle was approximately zero, for example, the srsults were virtually insensitive to horizontal wind. There, a vertical wind of about $18 \mathrm{~m} / \mathrm{s}$ would be requirel to explain a 1 -deg difference. Although such a vertical wind might not be totally unreasonabie considering surface slopes, it was fairly well ruled out as a factor by the similarity of the VL-1 and VL-2 curves.

Below Mach 3, where winds were being estimated, the accuracy of the a priori curve became quite important. Here

Fig. 6e. VL-1 dynamic preasure ve time

Fig. 67. Vhel Mech Mo. ve tme

Fig. 6. VL-2 dyne. nic preesure vs tume

Fig. OO. VLe2 Mach No. ve time

Fig. 70. Planet relative angle of attack vs Mach No.

LTARP tended to reconstruct a wind which, when combined with planet-relative velocity, resulted in a reconstructed $\alpha_{\text {trim }}$ curve qualitatively similar to the a priori nominal, though biased away from it.

Characteristics of the atmospheric computation algorithm below Mach 3 deserve discussion. The feedback loops were rather involved, as can be seen from Fig. 71. Mach number was computed from dynamic pressure and then used in a table lookup of aero coefficients, which were subsequently used to compute dynamic pressure. Accuracy (and indeed stability) of the process in some Mach regions was of concern. The same holds to a lesser extent for angle-of-attack feedback effects. In particular, in the neighborhood of Mach 1.2, $\alpha_{\text {trim }}$ was highly sensitive to Mach number, which was reflected in the wind estimation uncertainties given in Fig. 72. Fortunately, this occurred at the end of the aeroshell phase, where the trajectory was bending over rapidly and the atmosphere reconstruction was becoming less sensitive to wind estimates.

At higher Mach numbers the accuracy of the LTARP atmospheric estimates was sensitive to real gas effects. The $5 \% 3 \sigma$ tolerance on axial force coefficient was assumed to adequately cover these, but recent analyses exploiting stagnation pressure measurement data indicated that that value was too low and that LTARP final dynamic pressure and density above Mach 3 might be on the order of 6% too high due to real gas effects not being modeled. LTARP, however, by processing end-of-
phase pressure and temperature measurements, estimated scale factor corrections to be applied uniformly over the entire Mach range to the nominal axial force coefficient table as follows:

3. Parachute phase. The attitude reconstructions of Figs. 46, 47, 64, and 65 showed large-amplitude pitch and yaw oscillations following mortar fire, for both VL-1 and VL-2, with recognizable coning motion continuing thereafter. The density reconstruction for VL-2 was well-behaved, with a plausible (after smoothing out oscillations attributed to attitude excursions) density vs altitude plot over the entire parachute phase. Pressure and temperature measurement processing gave an estimated scale factor correction of 1.08 to be applied uniformly to the nominal drag coefficient over the entire parachute phase. Similar treatment of VL-1 data, however, seemed to indicate that for about 18 sec following deployment the parachute was not fully reefed, with the product $C_{D} S$ being about 15% less than nominal. At that point $C_{D} S$ jumped rather suddenly to about 7% greater than nominal. The interpretation here given was that the drag coefficient was 7% high over the entire phase, with the parachute being only about 80% reefed for 18 s following mortar fire. Other inter-

*IN PARACHUTE PHASE THIS beCOMES $a_{\text {frim }}(M) \equiv 0$
*IN PARACHUTE PHASE THIS TABLE IS $C_{D}(M)$
Fig. 71. Atmosphere estimation loops

Fig. 72. VL-1 and VL-2 wind estimation uncertinties
pretations involving wind and attitude situations were perhaps equally plausible but did not lead to different atmosphere conclusions.

Ground track plots (Figs. 40 and 57) show the manner in which the motion of the landers was rapidly arrested after deployment, with motion relative to the planet defining the wind direction thereafter.
4. Terminal descent performance. Altitude-velocity plots (Figs. 41 and 58) indicate that the terminal descent phase was nominal for each lander, with the velocity contours being closely followed after intersection. Figures 40 and 57 show the ground tracks during terminal descent. VL-2 took a rather interesting turn just before touchdown, accompanied by an unscheduled change in velocity (possibly the result of the TDLR locking on a cloud of dust, as has been conjectured).
5. Inertial reference unit. Results of the trajectory reconstruction ndicate that uncertainties associated with the IRU were well within tolerance and the least significant of all those affecting the process. Gyro accuracy is illustraved by attitudes at entry:

	Targeted	Actual	Δ
VL-1			
σ deg	0	. 6	. 6
β deg	0	. 1	. 1
α deg	-19.5	-18.8	. 7
VL- 2			
0 deg	0	-. 3	-. 3
β deg	0	-. 1	-. 1
α deg	-19.5	-19.3	. 2

The a priori 10 uncertainty for each of these was regarded as 1 deg, primarily allowing for gyro drift during coast.

Leg I azimuth at touchdown was another measure of gyro accuracy:

	LTARP	Gyrocompassing
VL-1 deg	321.6	321.6
VL-2 deg	210.1	209.2

Estimated corrections to the accelerometer scale factors were essentially zero.
6. Radar altimeter and TDLR. Estimated corrections to the RA and TDILR scale factors were essentrally zero. RA bias was inseparable from the terrain height estimate.

VII. Environmental Estimates

A. Reconstructed Atmosphere/Winds

The atmosphere estimates based on VL-1 entry data are presented in Table 16 and Figs. 73 to 77; those on VL- 2 data in Table 17 and Figs. 78 to 82. Uncertainties in these estimates are presented in Tables 18 and 19 and Fig. 83.

Wind estimates are presented in Figs. 84 and 85 for VL-1 and Figs. 86 and 87 for VL-2. Uncertainties in these estimates were presented in Fig. 72.

Reconstructed terrain profiles are presented in Figs. 88 and 89. The wind and atmosphere reconstructions are inseparable and will be discussed together. The figures and data presented are a composite of results obtained from runs made addressing individual phases, within an overall iterative procedure. The discussion follows in a like manner.

1. Upper aeroshell phase. For both VL-1 and VL-2 the accelerometer threshold for computation of density occurred at about 115 km altitude above the areoid. Above that aititude sensed axial acceleration was rather erratic, with attitude control disturbance predominating. Density at 115 km was found to be about $5 . E-11 \mathrm{~g} / \mathrm{cc}$ and pressure on the order of $1 . E-5 \mathrm{mb}$. Because of the inaccuracy associated with picking a starting value for pressure, its estimate did not become reasonably accurate until the increase in pressure below 115 km had exceeded the starting value several fold. This was at an altitude of about 100 km . Temperature, being computed from pressure and density, thus had a threshold of about 100 km . VL-1 and VL- 2 altitude and velocity time histories were quite similar during their respective aeroshell phases, with flight path angle staying near zero over a period of about 100 sec , during which velocity decreased from about $4 \mathrm{~km} / \mathrm{s}$ to about $0.6 \mathrm{~km} / \mathrm{s}$. In this region it was not possible to obtain a good wind estimate (the uncertainty in the estimate would have greatly exceeded
the estimate), so planet-relative, rather than the unknown air-relative velocity was the basis for density computation. At small γ_{k} an unknown in-plane wind V_{w} will introduce a fractional error of $-2 V_{W^{\prime}} / V_{R}$ in computed densty, which becomes significant as velocity decreases. For Viking this occurred where altitude was changing only slowly, thus contributing to a physically implausible jog in each of the preliminary density-altitude plots. The upper aeroshell phase data of Figs. 73 to 82 retlect zero-wind assumption down to the point where wind becontes significant in the density calculation. Inherent are estimated scale factor corrections to the axial force coefficient made on the basis of pressure and temperature measurement processing during lower phases and posttouchdown.
2. Lower aeroshell phase. Wind estimation was begun for both landers at a point where γ_{R} had dropped below about $-6 \operatorname{deg}(M \sim 3$, altitude $\sim 24 \mathrm{~km})$. This process in LTARP involved comparing a priori trim α and β with planet-relative values emanating from the trajectory reconstruction process. The difference was attributed primarily to a combination of horizontal wind and error in the a priori trm characteristics. with estimates of each beng made in accordance with their uncertainties. The resulting wind estimates are presented in Figs. 84 to 87 . These were manually extended above the altitude threshold defined by $\gamma=-6$ deg in such a manner as to include cross-plane estimates not subject to γ limitation and in-plane estimates which improve the density plots in the vicinity of the jogs described in the previous paragraph. The VL-1 wind μ rofile above 25 km also includes results of a study made to force consistency between reconstructed wind, trajectory, and event times. Uncertainties in the wind estimates presented vs altitude in Fig. 72 reflect 1σ uncertaintics of 0.4 and 0.3 deg in knowledge of $\alpha_{\text {trim }}$ and $\beta_{\text {trim }}$, respectively, including both aerodynamic and CG -fset uncertainties.

Note that the wind uncertainties were of the same order of magnitude as the estimates themselves, especially in the case of VL-2, for which the winds appear to have been small enough during the aeroshell phase to be ignored in the atmosphere computations.

Atmosphere estimates of Figs. 73 to 82 were obtained for the lower aeroshell phase by means of LTARP runs in which the wind profiles of Figs. 84 to 87 were approximated by tabular input. Final results incorporated the axial force coefficient scale factor estimates based on pressure and temperature measurements processed below the aeroshell phase.
3. Parachute phase. Atmosphere reconstruction in the parachute phase was complicated by the large-amplitude attitude excursions that followed parachute deployment. These are presented in terms of the Euler angles $\bar{\psi}$ and $\bar{\theta}$ (yaw and pitch)

Fig. 73. VL-1 ambiont prossure (< 1 mb) vs altitude

Fig. 74. VL-1 ambient pressure ($>.1 \mathrm{mb}$) vs aftitude

Fig. 75. VL-1 density (<10-7 gm/cc) vs altitude

Fig. 76. VL-1 density ($>10^{-7} \mathrm{gm} / \mathrm{cc}$) ve altitude

Fig. 77. VL-1 altitude above reference areoid vs tomperature
in Figs. 46, 47, 64 and 65 . The wind estimation algorithm for the parachute phase assumed that, on the average, the direction defined by these angles lay on a 6 deg cone about the air-relative velocity vector. A horizontal wind was then defined by the difference between planet-relative and air-relative velocity vectors. Inherent in this approach was an error during most of the parachute phase (after the initial rapid decrease in relative velocity to around $60 \mathrm{~m} / \mathrm{s}$) of about $6 \mathrm{~m} / \mathrm{s}$ in the horizontal wind estimate. This was the main contributor to the wind uncertainties reported for the parachute phase in Fig. 72. Again, especially for VL-2, the uncertainties in the estimates were of the same order of magnitude as the estimates themselves.

The wind profiles of Figs. 84 to 87 reflect rather drastic manual smoothing of the original estimates to remove questionable large oscillations following parachute deployment. Parachute phase atmosphere runs were then made, with these profiles being approximated by tabular input. Final results incorporated parachute drag coefficient scale factor estimates based on pressure and temperature measurements processed during the parachute phase and post-touchdown.
4. Terminal descent phase. Atmospheric variables were computed by LTARP during terminal descent by propagating the final values of the parachute phase to touchdown assuming hydrostatic equilibrium and a constant temperature lapse rate deduced from lower parachute phase and post-touchdown
temperature measurements. Because of the erratic nature of the density estimate during the parachute phase. the actual times of start of the terminal descent phase were not used. Rather, carefully selected points were chosen for both VL-1 and VL- 2 several seconds back into the parachute phase, where computed density had a mean value between peaks of oscillation.
5. Pressure and temperature measurement processing. The reconstructed aeroshell and parachute phase atmospheres for both VL-1 and VL-2 were "adjusted" as a final step by processing selected measurements:
(1) Stagnation pressure: just before mortar fire.
(2) Pressure and temperature: just before vernier ignition.
(3) Pressure and temperature: post-touchdown.

This yielded estimates of overall scale factor corrections to be applied to the aeroshell phase axial force coefficient table and to the parachute phase drag coefficient table which. in combination with the wind table based on a priori trim characteristics, resulted in an atmosphere that fit the measurement data at the ends of the aeroshell, parachute, and terminal descent phases. It should be noted that this procedure artifically explains, by means of fixed scale factor corrections of the aerodynamic coefficients, differences due to the combined effects of:
(1) Eirors in the reconstructed wind.
(2) Neglect of real gas effects in generation of the aerocoefficient tables.
(3) Use of free-stream Mach number, rather than that behind the shock wave, in table lookup.

B. Terrain Profiles

The terrain profiles of Figures 88 and 89 were o'stained by means of LTARP runs which compared altitude estimates of the VL-1 and VL-2 reconstructed trajectories with corresponding radar altimeter measurements. Nominal scale factors were used for the latter. Also shown on the figures are the profiles deduced from Mars topographical maps and tableinput to the program as nominal.

The 10 uncertainty associated with the VL-I terrain height estimates varies from about 0.2 km at touchdown to 0.9 km at entry. For the VL-2 estimates corresponding uncertainties are 0.5 and 1 km .

Fig. 78. VL-2 emblem presoure ($<.1 \mathrm{mb}$) ve alitude

Fig. 79. VL-2 ambient preseure ($>.1 \mathrm{mb}$) ve antuide

Fig. 00. Vh-2 denalty ($<10^{-7} \mathrm{gm} / \mathrm{ce}$) ve athude

ORIGINAL PAGE IS OF POOR QUALITY

Fig. E2. VL-2 ahtude sbowe reforence ereold ve temperature

Fig. 85. Vi-1 ambude cbove reforence aroold ve wind azionim

ORIGINAL page is OF POOR QUALITY

Fig. 28. Vi-i elthuce sbove refierence surtace vs wind megnitude

Fig. 82. VL-i terrain helght profile

VIII. Postland Relay Link

The discussion of the VL/VO postland relay links will be divided into two parts. The first part discusses the procedures and requirements which were used in flight operations for the various relay link phases. Also discussed in this section is the process of defining the re.ay transmission start times in the Initial Computer Load (ICL). The second part treats the actual relay link performance history from Sol! to the end of the primary mission for both landers.

A. Proctdures, Requirements, and ICL Definition

To protect against failure to acheve a command link with the VL after touchdown. it was necessary that a preprogrammed mission be defined (and loaded into the VL GCSC prior to separation) to enaole the landed VL to function and collect science data until a link could be established. The set of commands corresponding this preprogrammed mission constituted the ICL. A subset of the !CL was the set of preprogrammed VL relay link transmission start times. The procedures and requirements relating to the preprogrammed transmission start times were fundamentally different from those employed during the postland primary mission. Preprogrammed mission relay link planning acknowledged increased uncertainty in predicting relay link performance and timing because of a lack of knowledge of VL landed position and attitude and of communications subsystem performance. Earlier Monte Carlo studies showed that $17.1-\mathrm{min}$ link durations at bit error rates less than or equal to 3×10^{-3} could be achieved with 99% probability during this mission phase for VL-1; 17.2-minute durations at bit error rates less than or equal to 5×10^{-4} for VL-2. These durations reflected dispersions in VL ' ${ }^{\prime} \eta$ ded position and attitude, VO orbit uncertainties, and communications systems performance at the QSS of adverse tolerances. Lower bit error rates were predicted for VL-2 links because of the more favorable relay geometry between VL-2 and VO-2.

Mission Planning responded to this situation by recording only 17.1 minutes of playback (two tape recorder tracks) and by transmitting this data in the "loop mode" such that the 17.1 mirutes of data would be transmitted twice to account for start time uncertainties. This ensured that no data would be lost in the event that the relay performance window shifted as a result of the actual landed position and attitude. In defining the relay transmission start times in the ICL, the LFPAT positioned the middle of the playback data structure (end of first loop, beginning of second loop) defined by Mission Planning at the middie of the predicted QSS adverse link. This midpoint was based on bit error rates of 3×10^{-3} and 5×10^{-4} for VL-1 and VL-2, respectively. The final start times corresponding to this positioning of the recorded data were uplinked at SEP- 39 hours.

Figure 90 shows the final VL-1 ICL update in relation to the original onboard ICL (which assumed a landing at the A1 site on July 4) and the July 10 baseline ICL (which assumed a landing at the AIWNW site on July 20). The total sequence of events stored onboard the VL was structured so that the relay playback sequence could be shifted by up to ± 40 minutes in Lander Local Time without introducing conflicts with other scheduled events. A station-keeping trim (SKT-2) was assumed in the design of the final ICL update to avoid viclating th's ± 40-minute constraint. Since a communication link with VL-1 was cotablished, the ICL beyund Sol 12 was not executed. However, as is described in the Maneuver Analysis Chapter, SKT-2 was redesigned to accomplish another purpose.

Figure 91 shows the final VL-2 ICL update in relation to the original onboard ICL (which assumed a landing at the original B1 site on September 4) and a preliminary ICL for the final $\mathrm{c}:$: .

After touchdown the actual VL landed attitude and latitude were extracted from the GCSC octal memory readout. In addition, estimates of the VL latitude, longitude, and radius were obtained from the SATOD team after a few days of VL tracking. All this information, along with actual observed relay link performance, was used to reduce the uncertainty in predicting relay link performance on future Sols. Because of the long lead time (approximately 20 dys) in the Long Range Planning cycle, where the relay link playback durations were set, the reduced uncertainty in relay geometry and performance was not fully utilized in the onboard VL data acquisition and playback sequences until Sol 19 for VL-1 and Sol 18 for VL.2.

B. Actual VL Relay Link Performance History

1. VL-1/VO-1 relay links. All VL-1 relay links were with VO-1. The VL-1 relay links were complicated by VL-1 power mode anomalies. Originally designed to transmit at 30 watts during relay links, VL-1 inexplicably transmitted in the 1-watt mode on Sols 2 and 3. This p ecipitated a redesign of SKT- 2 on Sol 12 to provide favorable geometry in case the 1-wattmode anomaly recurred. However, this anomaly did not reappear after Sol 3. Transmissions continued in the 30 -watt mode for Sols 4 through 39. The power mode was intentionally reduced to 10 watts for the final links on Sols 40 through 43 because of observed VL transmitter power degradation on earlier links.

Relay link start times after Sol 11 utilized the CBE of actual VL-1 landed attitude and position. The landed position (LAT, LONG) was tabulated earlier in Table 9. The following

Fig. 90. VL-1 transmission start times

Fig. 91. VL-2 transmission stant times
reconstructed VL-1 landed orientation was obtained from the postland memory readout: a landing slope magnitude of 2.99 deg, a landing site downslope azimuth of 285.18 deg , and a leg 1 azimuth of 321.91 deg. For all VL-1/VO-1 links, VO-1 was locked on Canopus.

The observed VL1/VO-1 relay link performance was generally close to the predicted nominal performance. Figure 92 shows a typical preprogrammed VL-1/V0.1 (Sol 9) relay link. The received signal power (dBm) is plotted as a function of Earth received time (ERT). Also shown on the plot are the threshold power levels for bit error rates of 2×10^{-2} and 5×10^{-4}. These are the bit error levels crucial to real-time imaging (RTI) and recorded data playback (P / B). respectively. At the bottom of the plot is shown the actual link utilization,
i.e.. the relative positioning of RTI and, in this case, four tracks of P / B in the loop mode.

Examples of typical relay link perfornance during other phases of the VL-1 landed mission are shown in subsequent figures. Figure 93 shows an example of the anomalous 1 -wattmoic transmissions that occurred on Sols 2 and 3 of the preprogrammed mission. An example of the standard 30 -watt relay link performance during the primary mission phase is shown in Figure 94 . Finally, an example of the 10-W relay link performance during the final 4 Suls of the primary mission is shown in Figure 95.

Typical look vector traces through the VL-1 and VO-I antenna patterns can be seen in Figs. 96 and 97, respectively. In these antenna pattem traces, rise and set refer to the predicted start and stop of the 2×10^{-2} BER links.
2. VL_2/VO-2 \mathbf{r} lay links. The initial relay links with VL-2 were, of course, with VO-2. These links were maintained through Sol 26, at which time the VO. 2 orbit plane change maneuver was performed. Relay link start times after Sol Il utilized the CBE of actual VL-2 landed attitude and position. The landed position (LAT, LONG) was tabulated earlier in Table 9. The reconstructed VL-2 landed orientation was obtained from the postland GCSC memory readout: a landing slope magnitude of 8.2 deg , a landing site down slope azimuth of 277.7 deg , and a leg 1 azimuth of 209.1 deg . Unlike certain VL-1 relay links, VL-2 always transmitted in the 30-W power mode. For VL-2/VO-? links, VO-2 was locked on Vega.

The observed VL-2/VO-2 relay link performance was very close to the predicted nominal performance. Figure 98 shows a typical VL-2/VO-2 (Sol 5) relay link. As can be seen in Fig. 99, VO- 2 passes directly cverhead so that the VL-2/VO. 2 look vector traced through a good region of the VL-2 antenna pattern. In this figure are shown the look vector traces for Sols 1 and 26 to show how the antenna trace drifted from the first to the last VL-2/VO-2 link. The prelanding predict of the Sol 1 trace was about midway between the actual Sol 1 and Sol 26 traces. Figure 100 shows the corresponding look vecto, traces through the VO- 2 antenna pattern. In these antenna pattern traces, rise and set refer to the predicted start and stop of the $2 \times 10^{-2} \mathrm{BER}$ links.

Figure 101 presents a plot of a typical VL-2/VO-2 relay link following the completion of the preprogrammed mission. At the bottom of the plot is shown how the link was utilized during this phase of the mission, i.e., three tracks of recorded data transmitted in the standard mode (not the loop mode). Note that additional RTI was scheduled at the tail end of the link in order to take into account the unexpected beneficial

Fig. 92. VL-1/VO-1 relay Ink pertormance (Sol 9/ICL)

ORIGINAL PAGFI IS OF POOR QUALITY

Fig. 93. VL-1/VO-1 1-W mode roley Ilnk pertormance (SOl 2)

Fig. 94. VL-1/Vo-1 relay link performance (Sol 28)

ORIGINAL PAGE IS O? POOR QUALITY

Fig. 95. VL-1/VO-1 10-W relay link performance (Sol 42)

Fig. 98. VL-1 anterna pattorn traces

Fig. 97. VO-1 amtemna pattorn fraces

Fig. ©3. VL-2/VO-2 retay link performance (8ol 5/1CL)

OR'GINAL PAGE IS
OF POOR QUALITY

Fig. 101. VL-2NO-2 resey Mint portormance (Sel 20)
multipath effect on link performance at the tail end of the link.
3. VL-2/VO-I relay links. On VL-2 Sol 20 VO-I performed a maneuver to resynch it over VL-2. Test links between VL-2 and VO-1 were conducted on Sols 21, 23, and 25 to verify that VL-2/VO-1 links were acceptable before terminating VL.2/VO-2 links. The test links were acceptable, although they did show significant multipath effects. From Sol 27 to Sol 61 (end of primary mission) all VL- 2 relay links
were handled by VO-1. All these inks were characterized by low elevation angles of VO-I with respect to VL-2, which is in direct contrast to the overhead lin!s with VO.2 (Fig. 99). The traces through the VO.I antenns pattern are shown in Fig. 100. The observed and predicted received signal power for a typical VI.-2/VO-I relay link (Sol 45) is shown in Fig. 102. Unlike VL-2/VO-2 relay link utilization, for VL-2/VO I th. data playback was shifted earlier in time to take advantage of the beneficial multipath effect at link rise. For all VL-2/VO-1 links, VO.I was locked on Canopus.

References

1. Viking 1975 Navigation Plan, 612.32, Jet Propulsion Laboratory, Pasadena, Calif., May 1975 (an internal document).
2. Viking ' 75 Project Aerodynamics Data Book, TR-3709014, prepared for JPL under Contract NASI-900 by Martin Marietta Corp., Dec. 1974 (an internal document).
3. Hopper, F., "Trajectory Atmosphere and Wind Reconstruction from Viking Measurements," AAS Paper No. 75-068, July 28, 19/5.

[^0]: ${ }^{\text {a }}$ All data not calibrated by either DRVID or S / X was deleted.

