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SUMMARY

An investigation has been conducted to determine the effects of jet
exhuast on the subsonic flow surrounding two circular-arc boattail nozzles with
attached and separated boundary layers. Measurements of local Mach numbers and
flow angles were made at subsonic free-stream Mach numbers of 0.60 and 0.80 at
an angle of attack of 0° in the Langley 16-Foot Transonic Tunnel. Jet-exhaust
flow was simulated with a solid cylindrical sting and with high-pressure air at
jet-nozzle total-pressure ratios of 2.9 and 5.0. Results show strong effects
of the jet-wave structure on the external flow field. However, the shape of
the jet-exhaust plume more than one exhaust wavelength downstream of the nozzle
exit had little effect on the nozzle surface pressures. The predicted local
Mach numbers and flow angles for attached-flow nozzles with solid jet simulators
obtained by using subsonic inviscid/viscous-flow theory are in good agreement
with experimental data. When jet-entrainment effects are included, predictions
of the nozzle surface-pressure distributions also agree with experimental data
for the attached-flow nozzles with high-pressure air jets.

INTRODUCTION

Current analytical predictions of the pressure distributions and drag for
boattail-nozzle configurations for which boundary-layer separation occurs at
subsonic speeds generally do not agree with experimental data. Most prediction
techniques in use today combine an empirical model of the viscous flow in the
separated region with a conventional boundary-layer solution and a solution for
inviscid outer flow (refs. 1 to 6). These analytical methods typically repre-
sent the jet-exhaust plume as a solid body with the geometry determined by an
inviscid-flow solution. As a result, the effects of entrainment of the exter-
nal airstream by the jet-exhaust flow on the nozzle pressure distributions and
drag are neglected. Experimental data (ref. 7) show that the drag of a noz-
zle with a cylindrical solid jet simulator is less than the drag of that noz-
zle with an air jet at the design nozzle pressure ratio (jet total pressure
to free-stream static pressure) of 2. This difference is due primarily to
entrainment effects. To obtain better predictions, improved analytical methods
which include the jet-entrainment effects must be developed. 1In order to
accomplish this, an improved understanding of the physics of the flow is
required.

The purpose of this study was to gain an understanding of the flow field
surrounding boattail-nozzle configurations at subsonic speeds, including the
effects of the jet exhaust on the flow field, and to compare computed values
with experimental results. Measurements were made of the surface pressures
and of the local Mach numbers and flow angles in the flow surrounding a long
circular-arc boattail nozzle with unseparated flow and a short circular-arc
boattail nozzle with separated flow (ref. 8). Measurements of the pitot pres-
sures in the jet and shear layer for these same two nozzles are presented in
reference 9.



SYMBOLS

P = P,
Cp pressure coefficient, ———r0o
9o
D maximum model diameter, cm
4y nozzle boattail-base diameter, cm
4. nozzle-exit diameter, cm
l nozzle boattail length, cm
M Mach number
NPR jet-nozzle total-pressure ratio, pt,j/poo
ol pressure, Pa
q dynamic pressure, Pa
R boattail circular-arc radius, cm
r radial distance from model centerline, cm
S nozzle-convergence length, cm (see fig. 2(b))
s axial coordinate in nozzle-convergence section, cm (see fig. 2(b))
t nozzle-throat length, cm (see fig. 2(b))
B terminal boattail angle, deg
Be boattail chord angle, deg
AM difference between local Mach number and free~stream Mach
number, M - M
Ax axial distance aft from start of boattail, cm
) flow angle relative to free-stream velocity, positive upward, deg
Subscripts:
e exit
j jet
t total




1,2,3 probe total-pressure numbers (see fig. 3)

© free stream

EXPERIMENTAL APPARATUS AND PROCEDURE
Wind Tunnel

The investigation was conducted in the Langley 16-Foot Transonic Tunnel.
The tunnel is a single-return, continuous-flow atmospheric tunnel. It has an
octagonal test section with eight longitudinal slots and has continuous air
exchange for cooling. The free-stream Mach number is continuously variable
from 0 to 1.30. The average Reynolds number per meter varies from approxi-
mately 9.3 x 106 at M_ = 0.20 to approximately 12.6 x 10% at M_ = 1.30.
A more detailed description of the Langley 16-Foot Transonic Tunnel can be
found in reference 10.

Model and Support System

The experimental apparatus used in this investigation is shown in fig-
ure 1. An isolated, single-engine nacelle model was mounted in the tunnel on
a sting-strut support system. The nose of the model was attached to the strut
blade. The blade was swept 45° and was 5 percent thick with a 50.80-cm chord
in the streamwise direction. The sting was 5.08 cm by 10.16 c¢cm in cross sec-
tion, with the top and bottom capped with half-cylinders of 2.54-cm radius.
The centerline of the sting was 55.88 cm below the wind-tunnel centerline.
This placed the model axis on the tunnel centerline, with the tip of the model
nose at tunnel station 39.78 m. The model blockage was 0.099 percent of the
test—-section cross-sectional area, and the maximum blockage of the model and
support system was 0.148 percent.

A sketch of the single-engine nacelle model is shown in figure 2(a).
The external forebody shape consisted of an ogive nose followed by a straight
cylindrical section. Two nozzle configurations were used in the investigation:
a nozzle with !/D = 0.80 and dp/D = 0.51, and a nozzle with 1/D = 1.768
and dp/D = 0.51. Boattails for the nozzles started at model station 137.16 cm.
A more detailed description of the geometry of the nozzles is presented in fig-
ures 2(b) and 2(c).

The surface-pressure orifice locations are presented in table I. The
interchangeable, convergent circular-arc boattail nozzles were attached at
model station 127.00 cm. The jet was either powered with high-pressure air or
simulated with a solid cylinder 27.94 cm long with a diameter equal to the
nozzle—-exit diameter. The solid cylinder simulated the jet-exhaust flow for a
jet with a nozzle pressure ratio (jet total pressure to free-stream static
pressure) of 2.



Flow Survey Mechanism, Probe, and Probe Calibration

A combination total-pressure probe was used in this investigation to
determine the local Mach numbers and flow angles. Details of this probe are
shown in figure 3. The probe was constructed out of three 0.0808~cm~diameter
stainless-steel tubes. The tips of the two outer tubes were cut at an angle
of 30° with respect to the probe centerline and the tip of the center tube was
normal to the probe centerline.

The probe was positioned in the tunnel with the flow survey mechanism
shown in figure 1. The probe was mounted at the end of a probe-support sting
which was attached to the translating mechanism. The whole assembly was
mounted on the strut head of the tunnel angle-of-attack strut. The survey
mechanism has three degrees of freedom: axial translation, radial translation
along the blade, and rotation of the blade. This provides the capability to
survey anywhere in a cylinder with diameter of 122 cm, the axis of which corre-
sponds to the tunnel centerline from tunnel station 40.69 m to station 41.91 m.

The difference in the pressures measured by the two outer orifices of the
probe nondimensionalized by the local total pressure measured by the center
orifice of the probe is approximately proportional to the local flow angle rel-
ative to the probe axis. The sum of the pressures measured by the two outer
orifices nondimensionalized by the local total pressure is proportional to the
local Mach number. The variation of these two parameters with Mach number and
flow angle was determined by a calibration in the tunnel. Calibration tests
were made at Mach numbers from 0.40 to 0.95 at angles of attack from approxi-
mately -10° to 10°. Upright and inverted tests were made in order to account
for tunnel flow misalignment. The results of this calibration are shown in fig-
ure 3. (Note that calibration data points were obtained at increments of 1°;
however, for clarity, only data at increments of 3° are shown.) The measured
pressures obtained during the investigation were reduced to local Mach numbers
and flow angles by using a double interpolation scheme.

Instrumentation

Pressure measurements were made with individual, remotely located electri-
cal strain-gage pressure transducers. All pressure transducers were calibrated
to an accuracy of +0.5 percent of the capacity of the gage. For probe total-
pressure gages and for model-surface static-pressure gages, the values were
17.2 and 34.5 kPa; for jet total-pressure gages, the value was 689 kPa.

Position measurements of the flow survey probe were made with helipots
calibrated to an accuracy of $0.25 percent of the helipot range. Translation
measurements were made with 100-turn helipots; rotational measurements were
made with 10-turn helipots. The resulting accuracy of the measurements
(including a slight angular misalignment between the model and translating-
mechanism axes) was approximately #0.15 cm, or *0.01 model diameter, for
linear measurements and +0.5° for angular measurements.
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Tests

This investigation was made at free-stream Mach numbers of 0.60 and 0.80
with the model at an angle of attack of 0°. Tests were made with each nozzle
with the jet off (Pt,j/Rm ~ 1.0) and with the jet operating at ratios of jet
total pressure to free-stream static pressure of 2.9 and 5.0. Tests were also
made with the solid simulator attached to each nozzle. By use of the criteria
described in references 11 and 12, boundary-layer transition was fixed with a
0.254-cm strip of No. 100 grit located 2.54 cm from the tip of the nose. Lon-
gitudinal surveys of the flow surrounding the various nozzle configurations
were made at radial locations of approximately 0.25, 0.37, 0.62, 0.75, 1.00,
and 1.50 model diameters from the model centerline. These longitudinal sur-
veys were made at discrete points from 0.4 model diameter upstream of the start
of the boattail to around 2.2 model diameters downstream of the nozzle exit.
All the flow surveys were made in the vertical plane passing through the model
centerline on the opposite side of the model from the sting strut in order to
minimize support interference effects on the measurements.

THEORETICAL METHODS

Two analytical methods were used to predict surface-pressure distribu-
tions and local Mach numbers and flow angles in the flow field for comparison
with experimental results. One method is a computer algorithm called DONBOL
(ref. 13). DONBOL consists of a Neumann solution, with the Labrujere compress-~
ibility correction for the inviscid external flow, coupled with a modified
Reshotko-Tucker integral boundary-layer technigue, the control-volume method
of Presz for calculating flow in the separated region, and an inviscid one-
dimensional solution for the jet-exhaust flow. The viscous and inviscid flows
are solved iteratively until convergence is obtained. The effects of jet-plume
entrainment are neglected, the result of which is that jet—-exhaust flows are
treated as solid bodies. This method is limited to subsonic free-stream Mach
numbers less than that Mach number for which the flow over the body first
becomes sonic.

The other method used in this comparative study is the method of Wilmoth
(ref. 14). This viscous-inviscid interaction method accounts for jet-
entrainment effects in the prediction of subsonic flow over nozzle afterbodies.
RAXBOD, the portion of this method which applies to inviscid flow, is the
relaxation procedure of South and Jameson for the full-potential transonic-flow
equation (ref. 15). The inviscid code is coupled with a modified Reshotko-
Tucker integral boundary-layer technique (ref. 16), an inviscid jet code
(ref. 17), and a jet-entrainment code (ref. 18). The jet-entrainment model is
based on the concept of a weakly interacting shear layer in which the local
streamline deflections due to entrainment are accounted for by a displacement-
thickness type correction to the inviscid plume boundary. The plume boundary
is calculated for one wavelength of the jet shock-wave pattern and then set to
a constant value out to infinity. This method can be used for free-stream Mach
numbers extending up into the transonic regime.
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RESULTS AND DISCUSSION
Presentation of Results

Surface-pressure distributions and flow-field data were obtained at
free-stream Mach numbers of 0.60 and 0.80 at an angle of attack of 0° for a
circular-arc nozzle with /D = 0.80 and dp/D = 0.51 and for a circular-arc
nozzle with /D = 1.768 and dp/D = 0.51. Measurements were made for the
two nozzles with both solid simulators and high-pressure air to simulate jet
exhausts. The surface-pressure distributions are presented in figures 4 to 7.
Flow-field data corresponding to these conditions are presented in fiqures 8
to 21. Theoretical predictions from the two analytical methods are also pre-
sented in fiqures 4 to 21 for selected cases. The method of reference 13 is
used to predict all cases except the jet-off cases. The method of reference 14
is used to predict all unseparated-flow cases except the jet-off case. The pre-
dictions from both methods in general agree well with experimental data. How-
ever, there are some regions where the predictions and the experimental data

differ significantly.

Analysis of Experimental and Theoretical Differences

Probe.~ Some of the differences between predicted and experimental data
are probably due to experimental error. There were two sources of error in the
flow-field data. One of these, the finite size of the probe, caused errors
in several ways. Flow-angle and Mach number variations across the tip of the
probe introduced errors into the point measurements. Total-pressure gradients
in viscous regions such as the boundary layer and the jet-shear layer also
caused errors., Also, as measurements were taken closer to the model surface,
probe-model interference effects would be expected.

The other error source was a minor angular misalignment between the model
and the probe axes. 1In addition, the probe was accidently bent before the data
in figure 20 was taken, introducing a systematic error into the flow-angle data
(but not the Mach number data) for this figure only. Comparison of the flow-
angle data and theoretical predictions in figure 20(b) with similar flow-angle
data and predictions in other figures indicates that the probe was probably
bent between a half and one degree. (The flow angles just upstream of the
boattail at r/D = 1.50 should be about the same for a given configuration.)
Although the absolute magnitude of the flow-angle data of figure 20(b) is in
error relative to the model, the changes in flow angle between data points are

correct.

Theoretical viscous-region model.- Some of the differences between pre-
dicted values and experimental data within viscous regions are probably due
also to the inadequacies of the theoretical methods. Both theoretical methods
account for viscous effects on the external flow by calculating the inviscid
flow over a modified body which consists of the geometrical body with a
boundary-layer displacement thickness added. As shown in figures 8 and 9, good
predictions for the external flow can be obtained in this way. However, within
the viscous-flow region, the theoretical methods still treat the flow as an
inviscid flow over the modified body. This causes the theoretical methods to

6



overpredict the local Mach numbers within the viscous region. This is partic-
ularly true for separated boundary-layer cases, as shown in figures 14 and 15,
when comparisons are made deep inside a thick, complex three~dimensional vis-
cous layer.

Theoretical jet model.- Simplifications in modeling the solid simulator
and the high-pressure air jet led to some differences between predicted values
and experimental data aft of the nozzle exit. Typical differences near the
end of the solid simulator are shown in figures 4, 8, and 9. These differ-
ences occur because the body input into the computer codes extended farther
downstream than did the actual solid simulator. Physically the local Mach
number and flow-angle changes are caused by the flow expanding into the base
flow region of the plume simulator. Typical differences for jet-on cases are
shown in figures 11 to 13. Here the differences in the predictions of the two
methods aft of the nozzle exit are partly due to differences in computing the
inviscid plume shapes. Oscillations of the local Mach numbers and flow angles
in the flow field surrounding the jet plume are not predicted by either of
these theoretical methods. This is because the method of reference 13 uses
only a one-dimensional inviscid jet-plume calculation with no jet-entrainment
model, and the method of Wilmoth (ref. 14) assumes the plume shape is cylin-
drical after the first jet cellular shape. The predictions agree best with the
data at the lower nozzle pressure ratios. It should be noted that the oscilla-
tions dampen rapidly in the external flow field and have little effect on the
surface-pressure distributions. Because of the small effect of the oscilla-
tions on the boattail surface pressures, no effort was made to improve the
flow-field calculations by incorporating a more sophisticated jet calculation.

Analysis of Differences in Analytic Methods

The main differences between the two analytic methods are that the method
of Wilmoth (ref. 14) accounts for jet entrainment and the first jet cellular
shape and that it solves the full-potential flow equation. Since the cases in
which solid simulators were used had no jet entrainment, the differences in the
predictions of the two methods for these cases would result solely from one
method solving the full-potential flow equation. Except at transonic speeds,
these differences should be negligible and the predictions should agree with
experimental data. This is shown in fiqures 4, 8, and 9. The predictions of
the two methods agree almost exactly with each other and with experimental
data. In figure 4, the predictions differ most at the junction between the
boattail and the solid simulator. These differences, however, are probably
because the body geometry was input into the two computer programs differently.
The input into the DONBOL computer program did not place a calculation point
exactly at the boattail~-solid simulator junction and caused the pressure peak
there to be rounded off,

For jet-on cases, the effect of jet entrainment becomes important because
it tends to increase the local velocities over the nozzle boattail. As shown
in figure 5, the effect of jet entrainment must be accounted for in order to
accurately predict surface-pressure distributions. The method of Wilmoth
(ref. 14) does an excellent job of predicting the pressure distributions
for the cases shown in the figure. Since for the solid-simulator case the



predictions of the two theoretical methods agree, the difference between the
predictions for the jet-on case is an estimate of the magnitude of the jet-

entrainment effect.

CONCLUSIONS

An investigation to determine the effect of the ratio of jet-total pres-~
sure to free-stream static pressure and the effect of the free-stream Mach
number on the flow field surrounding two circular-arc boattail nozzles has
been made. The test was conducted at subsonic speeds at an angle of attack
of 0° in the Langley 16-Foot Transonic Tunnel. Theoretical predictions have
been compared with the experimental results to ascertain the capabilities and
deficiencies of current prediction methods. The results of the study indicate
the following:

1. The jet exhaust has strong effects on the flow field near the nozzle.
Especially evident was the influence of the wave structure of the jet plume on
the external flow.

2. The shape of the jet-exhaust plume more than two exit diameters, or one
exhaust wavelength downstream, of the nozzle exit appears to have little effect
on the nozzle surface pressures,

3. The external flow field and the surface pressures can be adequately
predicted with current methods for attached-flow nozzle boattails with solid
jet simulators. Predictions for separated-flow nozzle boattails are less accu-
rate because of the extent and greater complexity of the viscous layer.

4. The external flow field and the surface pressures can be adequately
predicted about attached-flow nozzle boattails with high-pressure air jet
exhaust when the effects of jet~plume entrainment and jet-plume growth are
included.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

February 25, 1980
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TABLE I.~ PRESSURE-ORIFICE LOCATIONS ON NOZZLE BOATTAIL

AND SOLID-SIMULATOR SURFACES

Configuration 1

(I/D = 0.80;

Boattail
surface

0.006
.052
.120
.179
.253
.306
.354
.398
.433
.474
.503
.541
.570
.604
.665
.723
.782

dp/D = 0.51)

Simulator
surface

0.883

.967
1.050
1.133
1.217
1.300
1.383
1.467
1.550
1.633
1.717
1.800
1.967
2.133
2.300
2.467

Pressure—orifice locations (Ax/D) for -

Configuration 2

(/D = 1.768;

Boattail
surface

0.006
.105
.239
.377
.504
.654
.765
.851
.939

1.018

1.088

1.169

1.230

1.309

1.371

1.445

1.503

1.580

1.638

1.720

dp/D = 0.51)

Simulator
surface

1.851
1.935
2.018
2.101
2.185
2.268
2.351
2.435
2.518
2.601
2.685
2.768
2.935
3.101
3.268
3.435

11
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Figure 1.~ Experimental apparatus.
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Figure 2.~ Continued.
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