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INTRODUCTION

Many aircraft carry heavy concentrated weights attached

to the wings, in the form of engines, auxiliary fuel tanks or

weapons. These heavy weights can produce deliterious effects

on the flutter speed of the wing. If they are not located at

a propitious position, an undesirable lowering of the flutter

speed results. Recently attempts have been made to adapt the

concepts of active control to increase the flutter speed, but

this method requires a complex system of electronics, sensors,

controls, and activators. A passive method of achieving the

desired effect would be more desirable from several standpoints,

namely, less complex, less weight and more dependable. A

passive system proposed by Mr. Wilmer Reed of NASA, Langley

Research Center involves the concept of mounting the store on

a pitch pivot having a very low pitch stiffness relative to

the wing stiffness. It is the purpose of this research grant

to analytically study the proposed concept.

The first task was to investigate the concept utilizing

a two-dimensional approach involving 4 degrees of freedom,

namely, wing bending, wing torsion, store pitch and store

vertical translation. This preliminary analysis was very

encouraging and the results demonstrated that if the uncoupled

store pitch frequency was below the wing bending frequency

that the flutter speed was greatly increased. A second more

complete analysis was developed utilizing a three dimensional

structure, but retaining the two-dimensional, incompressible

unsteady airforees of Theodorsen. The details of the analysis

are given in the Appendix.
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SYMBOLS

a location of wing elastic axes, measured from
wing midchord, based on wing half chord,
positive aft

b wing half chord

EI wing bending stiffness

EMF -mF/£ m

EMS ms/£ m

F,G real and imaginary parts of Theodorsen Function C(k)

g(1) ,g(2), structural damping coefficients for first four
g(3) ,g(4) uncouPled bending modes

g(5) ,g(6) , structural damping coefficients for first three
g(7) uncoupled torsional modes

g(8),g(9), structural damping coefficients for store vertical
g(10) translation, pitch, and fore and aft, respectively

GJ wing torsional stiffness

IF mass moment of inertia of fixed weight, about CG

IS mass moment of inertia of store about pivot point

I mass moment of inertia of wing about E.A., per
unit length

k reduced frequency bw/U

£ wing semi-span

£ spanwise location of store, based on £w

£F chordwise location of fixed weight c.g., measured
from EA, based on b, and positive aft

£S chordwise location of store pitch pivot, measured
from wing mid-chord, positive aft, based on b

£F1 vertical distance of fixed weight, measured from
wing mean chord line, based on b, positive down

£i vertical distance of store pitch pivot point,measured from mean chord line, based on b, positive
down



m mass of wing per unit length

mF mass of fixed weight

mS mass of store

r wing radius of gyration based on wing half chord
e and referred to wing EA

rS store radius of gyration, based on wing half chord,
referred to store pitch axis location

rF radius of gyration of fixed weight_ based on half
chord, referred to wing E.A. (-mFbZ/I £)

U forward velocity

x wing center of gravity location, based on wing
half chord, positive aft

x store center of gravity location, based on wing
s half chord, positive aft

x spanwise coordinate, based on £

< virtual mass of wing zpb2/m

p air density

_h fundamental uncoupled banding frequency of wing
with rigid mass

_h(N) bare wing uncoupling bending frequency in Nth mode

_ (M) bare wing uncoupled torsion frequency in Mth mode

_hs uncoupled store vertical frequency

_ts uncoupled store fore and aft frequency

_8 uncoupled store pitch frequency

flutter frequency



Concept Description

The concept of installing a flexibly mounted store on an

aircraft to increase the flutter speed is based mainly on the

knowledge that flutter is a function of the torsional frequency.

In general, the higher the torsional frequency, the higher the

flutter speed. When a large store is rigidly fastened to a

wing, the torsional frequency is reduced which results in a

reduction in flutter speed. If a system of store suspension

could be devised such that the store inertia effect was

essentially removed fromthe system, it was presumed that the

flutter speed should show a marked increase since the tors_nal

frequency would not suffer a large reduction. A system to

accomplish this is mechanically very easy, for it is only

necessary to hinge the store on a pivot with low flexibility.

Fig. 1 illustrates the mechanical arrangement of such a system.

From practical considerations, it would not be advisable

to maintain a store in a completely free condition, so some

spring stiffness is required to maintain the store in its

proper relationship to the wing. Also some system for maintain-

ing the alignment of the store with the wing may be necessary.

Such a system should have a very low frequency in order to

maintain the low pitch frequency of the store. The present

report analytically investigates this concept and presents some

of the results .



Analysis

The analysis was specialized to the case of a structurally

uniform wing, having a rectangular aerodynamic planform of

relatively high aspect ratio. Three degrees of freedom in wing

torsion, and four degrees of freedom in wing bending were

utilized in a modal type analysis. A single, spring mounted

weight was added to the system which could be located at any

spanwise or chordwise position. The spring-mass was restricted

to three degrees-of-freedom, namely, pitch, vertical translation,

and fore-and aft motion. Two-dimensional incompressible,

unsteady aerodynamic theory was used, ref. i. Details of the

analysis are given in the Appendix. The next section contains

a discussion of the results.

Results and Discussion

The analysis technique presented was applied to a rec-

tangular wing whose properties were held constant throughout

the study. The wing characteristics are given in Table i.

A small store support bracket was assumed to be rigidly attached

to the wing and its properties are given in Table 2. The

store properties are given in Table 3.

Of primary importance is the store pitch stiffness and

this property was first considered, the results of which are

given in Figure 2. The variation of center of gravity position

is shown in Figure 3, and finally the effect of moving the

store spanwise is given in Figure 4.



Effect of Store Pitch Frequency on Flutter

On Figure 2, the ratio of the flutter dynamic pressure

for the wing with a flexible store to the flutter dynamic

pressure of the wing with no store attached is plotted against

the ratio of the store uncoupled pitch frequency to the wing

bending frequency with the rigid store attached. Starting

at the left of the figure, _e/_h=0, it is seen that for a

completely free store in pitch, the flutter speed is well

above the bare wing flutter speed. As the store pitch spring

stiffness is increased, the flutter speed rapidly increases

to until _8/_h=l; for large{values of _8/_h, a rapid decrease

is found which has a minimum at _e/_h= 1.5, where the flutter

speed begins to slowly increase and approaches an asymptotic

value for _e/_h = _, which represents a rigid pylon. There-

fore, for this configuration, if the ratio _8/_h is maintained

below unity, substantial benefits arise from the use of a low

store pitch frequency. It should be pointed out that it was

found that the pylon stiffness in the vertical direction must

be stiff, since some calculations made with a reduced vertical

translation stiffness reduced the flutter speed well below the

base wing flutter speed.

Effect of Store Center of Gravity Location

In Figure 3 is shown the results of calculations for

a rigid and a reduced stiffness case shown in Figure 2,

except that the center of gravity of the store was moved



fore and aft, Examining the rigid pylon case first, it is

seen that as the C. G. is moved forward from an aft position,

the flutter speed is essentially constant in the range of

q/qbase wing of from .3 to .5, which is well below the flutter

speed of the bare wing. As the center of gravity approaches

a more forward position, the flutter speed increases repidly

when x = -.i.
s

For the case of reduced stiffness in the store pitch mode

(_8/_h = 0.54 when xs = 0) the flutter speed trend is virtually

independent of C. G. location, ranging from q/qbare wing =2.3

for Xs = .4 to q/qbare wing = 1.7 for Xs = -.4.

Effect of Spanwise Store Location

Calculations were made to determine the effect of the store

spanwise location for both the rigid and flexible pylon. These

results are given in Figure 4. For the rigid pylon, the flutter

q drops as the store is moved from the base to the wing midspan,

then increases as the wing tip is approached and for the store

located at the wing tip, the bare wing flutter speed is approached.

For the reduced stiffness pitch case, (_8/_h = 0.54) the flutter

speed gradually increases as the store is moved towards the wing

tip where the flutter q is about 2.4 times the bare wing flutter q.

Concludin_ Remarks

A calculation procedure has been presented for a uniform

cantilever wing on which is attached a flexibly mounted store.
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Results of calculations based on the procedure indicated the

following results:

i) The flutter speed is well above the bare wing

flutter speed for frequency ratio _8/_h less than

unity.

2) Over the range of pylon stiffnesses, representative

of production aircraft, the flutter speed was con-

siderably less than that of the bare wing.

3) Large variation in some of the more important store

parameters showed the flutter speed to be virtually

independent of the variations and the speed remained

well above the bare wing flutter speed, if the ratio

_8/_h is maintained below unity.



APPENDIX A

Equations of Motion

The equations of motion for flutter were derived on the

basis of Lagrange's equations. In matrix form, the equations

appear as A = IB where the coefficients A & B are given in detail
2

subsequently and _=€_!) (l+ig). The equations were specialized

for the case of a uniform cantilever wing carrying a fixed and

_prung mass at an arbitrary spanwise and chordwise location

(figure i). The equations were linearized and the unsteady

aerodynamics were limited to the incompressible, two dimensional

case. For the structural part, ten degrees of freedom were

utilized, namely, four uncoupled uniform beam bending modes,

three uncoupled uniform beam torsion modes, and three degrees

of freedom for the sprung mass comprising pitch, heave, and

fore-and aft degrees of freedom. No aerodynamic forces were

applied to the store.

Since the wing mass, inertial and unsteady aerodynamic

forces are constant along the span, and theoretical uncoupled

beam modes were assumed, it was convenient to calculate the

generalized mass, inertial and aerodynamic terms in closed form.

The expressions used for the uniform cantilever modes were

slightly different from those found in textbooks on vibration.

It has been found that the forms given below provide more accurate

results for the higher modes.



I0

For odd modes, the bending modal function is

1 cosh (Sn/2_2x-l) sin (Bn/2)(2x-l)

fw(N) = _ [ cosh(Bn/2) + sin(Sn/2) ]

For even modes, the modal function is

1 sinh (Sn/2X2x-l) cos (Sn/29(2x-l)

fw (N) = 2[ sinh Bn/2 + cos 8n/2 ]

where 8n must satisfy the following relation

cosh 8n cos 8n + 1 = 0 n=i,2,3,4.,.

and where x is the spanwise coordinate, normalized by the span

length, 1.

For the torsion mode, the modal function was selected to be

fs(M) = (-l)m+isin _(m-I) x m=I,2,3...

Several integrals of these functions are required as

follows:

For N odd

FW(N) = I1 fw(N)2 dx0

(sinh Bn/2) cosh 8n/2+Sn/2

4 8n coshz Sn/2

_n/2-_ sin _n+

4a n sin Bn/2



ii

For N even

1 2
. FW(N) = I0 fw(N) dx

.. sinh(Sn/2)zosh(Sn/2_Sn/2

48n sinh2 8n/2

1
sin 8n

+ 2
48nCOS 8n/2

For N odd

1
F(N,M) = I f (N)fe(M) dx0 w

BnCOtan(8n/2)- (-l)m+l_(m-i/2)

-28n2 + z(m-1/2)2

+8ntank (8n/2)+_ (m-2/2)(-i)m+l

28n2 + 2n(m-i/2)2

For N even

1

F(N,M) = I fw (N) fe (M) dx0

8nCOtanh (8n/2)-(-i)(m+l)(m-i/2)

2(8n2 + _(m-i/2)2)

i-8ntanSn/.2+.(,i)m+l (m-i/2)+

2(-8n2 + z(m-i/2)2)
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The order of the modes in the matrix is as follows - the

first four rows are the bending modes, the 5-7 rows are the

torsion modes, and the 8-10 rows are store vertical translation,

store pitch, and store fore and aft respectively.

The definition of the elements of the matrices A and B

follows where the symbols are defined after the definition:
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MATRIX DIAGONAL ELEMENTS

N=M N= 1,2,3,4
2 2

A(N,M) = -FW(N) (HI)-(ms/_m) (FWL(N)) + (-mF/£m)
(FWL(N))

+ i (2KF(FW(N))/k)

N=M N= 5,6,7

A(N,M) = -FA(N-4) (HI2) - (ms/£m) RB(FAL(N-N))2/r2

+(FI) (FAL(N-4))2 + i(FA(N-4) (HI3))

A(8,8) = -i

A(9,9) = £i FAL(1)

A(10,10) = -i

OFF DIAGONAL TERMS

N= 1,2,3,4 M=I,2,3,4 M_N

A(N,M)= -((mF4ms)/£m) (FWL(N))(FWL(M))

N=5,6,7 M=5,6,7 M_N

A(N,M)=(-(ms/im)rB + FI)(FAL(N-4) (FAL(m-4))
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N=5,6,7 M=I,2,3,4

A(N,M) = (F(M,N-4))(HI0)

- (H7)(FAL(N-4))(FWL(M))/r2

2
+rF ZF FWL(M) - FAL(M-4)

+i (-(F(M,N-y))(HI1)

N=I,2,3,4 M=5,6,7

A (N,M)=F (N,M-4)(H5)-(H7)(FAL(1))(FWL(M-4)

- (MF/£F (FAL'(N))(FWL(M-4))

+ I(F(N,M-4)) (H6)

N=I,2,3,4 M=8

A(N,M) = -(Ms/£M) (FWL(N))

N=I,2,3,4 M=9

A(N,M) = -(Ms/£M)xs(FWL(N))

A(I,10)= A(2,10)= A(3,10)= A(4,10)= 0

N=5,6,7 M=8

A_N,8) = -(H7) (FAL(N-4)/r2

N=5 ,6,7 M=9

A(N,9) = (HI6)(FAL(N-4))
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N=5,6,7 M=I0

A(N,10) = (ms/£M) £i (FAL(N-4))/r_

I

N=8 M=I,2,3,4

A(8,M) = FWL(M)

N=8 M=5,6,7

A(8,M) = -(£s+Xs) (FAL(M-4))

A/8,9 = -Xs

N=9 M=I,2,3,4

A(9,M) = (HI4) (FWL(N))

N=9 M=5,6,7

A(9,M) = (HI5) (FAL(M-4))

A(9,8) = HI4

A(9,9) = -i

A(10,1) = A(10,2) = A(10,3) = A(10,4) = 0

N=I0 M=5,6,7

A(10,M) = £1(FAL(M-I))

A(10,10) = -i

! •
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N=I,2,3,4 2
O_h(N)

B(N,M) = ( ) (FW(N))(i + ig(N))
eeI

N=5

B(5,5) = -FA(1)(i + ig(5))

N=6,7 _ 2

B(N,N) = - (_e_--_)(FA(N-4))( 1 + ig(N))

2

= _ (,,_j__s)( 1 + ig(8))B(8,8)
eI

2

_8
B(9,9) = -(-_-) (i + ig (9))

eI

2

= - (____s)( 1 + ig(10))B(10,10)
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2K

HI = i + K + _---G

H2 = 2___KFk
w

H3 = ms/£m

+ Ka + 2KF 2KG 1
H5 = -x k2 (_ - a)/k

1 _
H6 = K/k + 2KG/k2 + 2<F(_- a)/k

H7 = (£s + Xs) ms/£m

H8 = Xs/r_

2 2
H9 = Xs/rs

H10 : -x /r 2 +<air2 + 2<(a+21-) G/(kr2)

Hll = 21<(a+21-)F/(kr2o_)

HI2 = 1 + K( a2)/r2 + 2 (9+)F/(k re)

- 2K(a+I) (a-1)G/(kr2)

1 1 1 1
HI3 = (K(_ - a)/k - 2<(a + _)S/k2 - 2KF(a + _) (a - _)/k)/r2

HI4 = -Xs/r2

HI5 = -(£sXs/r2 + i)

HI6 = -(I0/I £ + (£ x m /£ )/r2)s x s m e

2 2 2 + £2 + £ x + r2rB = £i +Xs s s s

2

FI = -((£F + £F12)mFb2/(ie£) + IF/(I £))
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TABLE i. - WING CHARACTERISTICS

x = .15754

= .06204

EI = 2.756 x 1010 N/m 2

GJ = 2.407 x 10 9 N/m 2

m = 59.13 Kg/m

2
I = .00282 Kg-m

2
r = .1549

a _ me3

TABLE 2. - FIXED WEIGHT CHARACTERISTICS

mF = .5922 Kg

£F = .1473

£F1 = 0
2

IF = .00727 Kg-m

TABLE 3. - STORE CHARACTERISTICS

x = -.01
S

2
r = .4162
S

= 0382 Kgm s •
2

I = .2877 Kg-m
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4

!
!

i
3 /

...................Flutter

dynamic //
pressure 2

q/qbare wing

X
1 - _ Rigid pylon _,

0 1 :2

Frequency ratio, _O/_h

Figure 2.- Effect of store pitch frequency on wing-store flutter.



Flutter

dynamic
pressure,

' q/qbare wing

J

3 --

Decouplerpylon
I

" _ /- .............
Rigid pylon

__ .....

*

' L J I I !
-.4 -.3 -.2 -.i 0 .i .2 .3 .4

FWD AFT
X
S

i bO

Figure 3.- Effect of store e.g. location on wlng/store flutter.



w

Flutter
3"

dynamic
pressure_

q/qbare wing ///

2 _ible pylon:

i _ .i/
_._------Rigid pylon

i

0 .2 .4 .6 .8 1"°0

W

Figure 4.- Effect of spanwise store_ loca.tion-

i






