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ABSTRACT

This report summarizes the development by JPL of an efficient method of
detecting carbon fibers released from a fire of carbon fiber composite material. The
project was part of NASA's "Carbon Fiber Risk Analysis" program, which was initiated

to study the risk of such electrically conductive fibers being released in a fire or
aircraft crash situation, thereby posing a threat to electronic and electrical
equipment.

In order to determine the density and length of carbon fibers released from such
composites, a detection system is needed. The high voltage spark detection system
reported here was developed by JPL for the NASA Langley Research Center between
August 1978 and December 1979. It uses the ability of a carbon fiber to initiate

spark discharge across a high voltage biased grid, to achieve accurate counting and
sizing of fibers. The design of the system was optimized, and prototype hardware was
proven satisfactory in laboratory and field tests.
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I.	 BACKGROUND

Graphite or carbon fiber in an epoxy matrix provides a composite material

having a high strength and stiffness relative to weight. It has potential
widespread use in aerospace applications. In fact, certain commercial and
military aircraft already carry a significant amount of the material in various

components. However, since the fibers are light in weight and electrically
conductive, they pose a potential hazard in the event they should be released

from the composite during an aircraft crash or fire situation. Currently, NASA

is carrying out a "Carbon Fiber Risk Analysis" program to evaluate this potential
problem (References 1 and 2). The detailed study covers every aspect of the
problem related to the use of carbon composites in aircraft, such as the release
of fiber in the aircraft crash or fire, fiber length distribution, fiber fragment
migration, economic and environmental impacts on industry and population, dust
filter design, and the effects of fiber fragments on electrical equipment,

instrumentation, facilities and household appliances.

In this NASA task, a large number of experiments and field tests are being
conducted to establish the technical basis for mathematical analyses. Carbon
fiber composites are combusted, and the number of fibers as a function of fiber
length are then determined. During this study, various types of fiber detection

techniques and instruments have been developed for use in the tests. These
include the sticky tape technique and prototype high voltage fiber detection
system, developed by JPL for NASA LaRC under this project between August 1978 and

December 1979.

Independently NASA is also studying methods to alleviate or eliminate the

fiber emission problems from the combusting fiber composite. Approaches used
include coating the fiber with an electrically insulating layer, using epoxy

which forms a strong char residue during combustion to physically retain the
fiber from being released, and adding catalysts to the composites to achieve
fiber gasificationi during the fire. For all these experiments a fiber detection
system is needed to determine the quantitative reduction in fiber emission. The

high voltage fiber detection system has been used successfully in the fiber

gasification study conducted at JPL.

The NASA studies, which include fiber detection, have been successful. The
emphasis was on aircraft-related problems. In the simulated fire situation, the
fiber fragments emitted by the composite and subsequently transferred into the

atmosphere ranged in length mainly (about 90% or more) between 1 mm and 4 mm
(Reference 3). The instruments for monitoring these fibers were developed for

optimized performance in this fiber length region. The fiber density dealt with
in these studies was relatively low due to very limited amounts of carbon fiber
composites that were tested and the large distance between the fiber release

source and the sensing device.

The following is a brief discussion of the instruments and techniques used

or explored in the NASA "Carbon Fiber Risk Analysis" program. The instruments
fall into the two categories of active and passive methods. The instruments are
inserted into an air stream which carries the carbon fiber fragments from the

source of fiber, i.e., a burning carbon fiber composite. The active instruments
can provide a live signal to indicate the relevant information on the fiber

concentration and length distribution, while the passive instruments can collect

the fibers for post-test examination and analysis. The active methods are:

1



1.	 Brass-Ball Technique

This technique was developed by the U.S. Army at Aberdeen Proving Ground

(Reference 4). It consists of a 3.8 cm (1.S in) diameter bra ys ball supported by

a plastic insulated rod-electrode. The ball is charged by a high voltage power
supply to about 1 to 2 kV thruugh a high-impedance current limiting ree ', •,:.or, and

it is connected in parallel to a small capacitor. The ball thus attrac.- the
fiber fragments, in a flow stream. Upon contact with the fiber, the capacitance

of the ball is changed, thereby intc ,aducing electrical signals. Analysis has

shown that the amplitude of this signal is correlatable to the fiber length. The

disadvantages of the system are:

a) The signal is weak, in the millivolts region; therefore amplification

by sophisticated electronics is needed. The equipment required for
such amplification and signal processing limits portability for field

tests.

b) The system is influenced by strong, electrical noises of unknown origin,

thereby making difficult the detection of the short fiber fragments

with lengths below 2 mn.

c) The fiber capture efficiency of the device is low, and it may be

dependent upon the flow velocity of the air.

d) The system is sensitive to moisture and soot.

These problems make the system relatively inconvenient for field tests and

for many laboratories.

2.	 Low Voltage Grid System

This approach was explored at JPL in the early stages of the fiber
g+:sification development program. It was soon abandoned due to a variety of
problems. The system used parallel brass-rod grids supported in an insulation
frame. The adjacent rods were biased by low voltage DC up to 15 volts. When
fiber was collected in the grid, it drew electrical current, thereby producing an
electrical signal. The .erious problems were:

a) Loss of sensitivity due to fiber accumulation on the grid.

b) Multiple irregular signals produced when a single fiber made multiple
contacts with the grid.

c) Low count efficiency due to: 1) fibers passing through grid, and 2)
the variable high value of contact resistances which existed between
the fiber and brass-rod electrodes.

The attractive features of the system were its simplicity and the safety of

operation because of the low bias voltage used.

3.	 Continuous Optical Counter

This instrument is similar to a commercial aerosol optical counter. A light
source such as a LED or laser beam is incident on a photodiode device. When the

air flow carrying fiber fragments is passing between them, the shadow of the
fiber generates an electrical signal. The major advantage of the system is its

2



high counting rate capability. It has several serious problems when applied to
fiber monitoring.

a) It cannot differentiate fiber from the scot in the flame or dust
particles in the air.

b) The signal response (shape) as well as sensitivity is very dependent on
the flow rate and optical design.

c) Fiber length is not easily determined.

4. LADAR

This system detects the back scattering of a laser beam by the fibers (or

any other particulates), and is in principle similar to a RADAR. The sensitivity

attainable with the system probably limits its application to .I sense cloud of
fibers. Even in that case, the noise generated by the soot sl-^w , ses a serious
problem.

5. Microwave

This technique is being pioneered by TRW Systems, Inc., under the
sponsorship of NASA and USAF, and currently technical details are not available.

It is believed to be based upon a common microwave apprnach, and the system
presumably uses a microwave waveguide. The fibers flowing in the air across the
waveguide will attenuate the transmission and induce reflections of the
electromagnetic waves propagating in the guide. By monitoring these parameters,

gross fiber concentration information could be obtained. Thus, the technique

cannot measure the length of individual fibers, and the sensitivity is

questionable because the cross —section of a microwave waveguide cannot he made

arbitrarily small.

A brief discussion of two relevant passive fiber detection techniques

follows.

6. Sticky Tape

collecting fiber fragments and

on because so far it is the most

the readout of the fiber under
and therefore limits its
both being investigated at JPL,

This is a convenient and economical means of
storing fiber information. It is worthy of menti

used technique in a field test. Needless to say,
an optical microscope is a very tedious procedure
effectiveness. Two automated readout techniques,

may bring a solution to this problem.

The first one uses photographic film and a microdensitometer to digitize the

fiber image and subsequently process it by a digital computer system (Reference
5). The second technique for counting the fibers collected oil 	 sticky tape,

which to date is a very promising one, uses a met of high voltage plate

electrodes (similar to the high voltage grid technique). Under a proper high
voltage bias, the device generates sparks as guided by the fibers collected on
the tape when the tape is in contact with the electrodes. The spark destroys the

fiber and generates an ele :+•1'ical signal. in this way, high counting rate of the

fibers previously collected on the tape can he accomplished. So far, there i5 no

reliable calibration data for the tape. The accurate interpretation of the

3



stick y tape data, just as for any other fiber detection instrument, is dependent
on a variety of parameters such as air flow rate, angle of coincidence, shape of

the tape, temperature, soot interference, etc. Recently, preliminary tests at
JPL have show►► the capture efficiency of the tape to be quite poor. The
efficiency ranged between 5% and 10% for a nominal wind speed of 0.5 to 2.0 m/s.

7)	 Filter Technique

In the NASA field tests, bridal veil screens of different mesh were used in
a variety of geometrical configurations to collect fibers. This is a most
effective way to collect fiber clusters. For a single fiber fragment the fiber

capture efficiency is uncertain.

The system to be discussed in this rcport, in the active category, uses a

high voltage grid to detect carbon fibers.

4



II. PRINCIPLE OF OPERATION

Carbon fibers released from the fire of carbon fiber composites may be

coated with epoxy resin residues. In most cases, unprocessed raw carbon fibers
are also precoated. Therefore there is considerable difficulty in establishing

electrical contact between a fiber and an electrode. Careful tests have shown

that, in the most cases, a carbon fiber laid carefully across a pair of
electrodes shows no electrical conductivity if the bias voltage between the

electrodes is less than 400 V. Beyond 400-500 V of bias voltage, arcing starts

to occur at the contact points so that there is electrical conduction through the
fiber. Therefore, the reliability of a grid carbon fiber counting system is
higher when using a high voltage bias than whey. •.,;ing a low voltage bias.

Because of the high resistance of the fiber (ti3000 0/cm), under a moderate
high voltage bias (0.5 kV to 2.0 kV), a carbon fiber draws very small current

between a pair of grid electrodes. It can be heated red hot, but rapid burnout
does not readily occur. Thus, most problems associated with a low voltage biased

grid fiber detector remain under high bias voltage. That is, the decrease of

sensitivity as fibers accumulated on the grid, and the creation of multiple
irregular signals as a single fiber is bouncing around the electrodes of the

grid. To quickly burn out a fiber by electrical heating takes considerable
electrical power and may be impractical.

Our concept was to achieve individual fiber counting by using a pulse

discharge technique which is schematically shown in Figure 1. The electrical

energy is stored in a small capacitor C. The high voltage leads of the capacitor
are directly connected to the grid wherein alternate electrodes of the grid are
biased positive and negative.- Upon conductivity being established by a carbon
fiber, a discharge phenomenon occurs in a typical manner of an RLC circuit. The
inductance L comes from the self-inductance of the grid lead wires. It can be

minimized by shortening the lead wires but it cannot be completely eliminated.
The value of the inductance L with about 7.6 cm (3 in) long lead wires was about
0.5 uh.

A typical discharge current waveform is shown in the Figure 2. By using
this approach, a number of advantages are apparent:

1) The signals for fiber counts are prominent and r=producible.

2) The short duration of the signal, 0.5 to 1.0 us, is favorable for high
counting rate operation. In fact, this rate is mainly limited by the
recharging time of the capacitor C.

3) The contact resistance problem is eliminated by the high voltage.

4) The grid is self-cleaning, i.e., fibers do not accumulate on the grid.
Therefore the problem of decrease in sensitivity due to more than one
fiber across the grid electrodes is eliminated. Also, since the fiber

does not stay long on the grid, repetitive irregular arc signals

produced by a single fiber are avoided.

5) Strong evidence indicates that the use of a high voltage bias increases
the fiber counting efficiency. The fiber fragments, being conductors,

polarize under an electrical field and thus are attracted to the grid.

5
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Under a moderately high voltage, the electrical field is strong enough

to overcome the air flow pattern. It aligns the fiber perpendicular to
the axes of the electrodes (grid) and the plane of the grid. Therefore
the probability of fiber contact is high, and is efficient to generate

the spark count. In the absence of the electrical field, the fiber
fragments presumably will align with the stream lines of the air flow
which is parallel to the axis of the grid plane. One can envision, in

this case, that it is easy for fibers to flow through the grid without
contacting the grid electrodes.
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III.	 GENERAL DESCRIPTIONS AND SPECIFICATIONS

The JPL high voltage N.V.) spark carbon fiber detection system was

developed to monitor carbon fiber fragments in the length range of 1 to 5 mm. It
consists of the following sub-assemblies.

1)	 Five independent grid-windbox assemblies (Figure 3)
each of which contains:

a) A grid made of a number of equally spaced, parallel copper blade
electrodes secured in a frame made from electrically insulated

material. The electrodes are biased by a high voltage circuit.

b) A pre-screen (a stainless-steel screen with square meshes), to

prevent fiber clusters from short-circuiting the grid-bias
circuitry (Figure 4).

c) An AC voltage-driven fan.

d) A windbox, which works in conjunction with the fan to sample the
air.

e) High voltage discharge circuit (H.V. Pulser, Figure 5), to store

electrical energy and provide the high voltage bias for the grid.
It sends out a prominent pulse signal, which is subsequently
counted when the spark is initiated by a fiber in contact with the

grid.

2)	 Five independent pulse integrator electronic packages (Figures 6, 7 and
8). These provide the pulse-shaping function for the input spark
signal and integrate these pulses so that a DC voltage output is
provided which corresponds to the total number of fiber counts; this

signal is generated for recording purposes on a strip chart recorder.

The following lists the general specifications for the system.

1) Fiber length detection range: 1-2 mm, 2-3 mm, 3-4 mm, 4-5 mm, 5-10

MMO

2) Counting rate - I/CV - 6.6 x 103 I
V

where I - H.V. power supply current in mA
V - H.V. power supply voltage in volts
C - Capacitance of the discharge capacitor in Farads
- 0.14 J

For safety of operation, a low current H.V. power supply should be used for
most tests which have a low fiber-counting rate. A dry battery pack made of
Eveready No. 497 batteries was designed and supplied for the prototype tests
(Figure 9). It is suitable for use in most carbon fiber tests.

9
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Nio. I	 No. 2	 No, 3	 No. 4	 No. 5

Fig. 3. Full. Vicw of 5 Independent Channels

of Grid-kN'indbox Assemblies
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No. I	 No. 2	 No. 3	 No. 4	 No. 5

Fig. 4. Grid-Windbox As-;umblics Equipped
with PrCscrcuns
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3) H.V. pulse discharge circuitry (Figure 5)

Capacitor bank	 - 0.14 uF

Current limiting resistor - 1 W 1 Kw
Signal output amplitude : -5 V
Signal output duration	 - 111 0.5 ua

4) Nominal operation AC voltage for fans - 50 V rms

5) Pulse integrator

DC input	 - 40 V

Signal input	 - -5 V nominal
10 ns to 5 ps rise time

Signal output - 0 to -10 V, automatically reset
at -10 V

Sensitivity	 - J0 pulse/volt

6) Mechanical

Grid-windbox assembly - 10.7 x 12.1 x 17.0 cm
1.3 kg

Pulse integrator 	 - 5.1 x 12.7 x 17.8 cm
0.39 kg

7) Other relevant physical parameters (see Table 1)

TABLE 1. R_levant Physical and Operational Parameters

CHANNEL NO. 1 2 3 4 5

Grid gap, mm 1.19 2.38 3.58 4.77 5.97

Bias Voltage, Volts 510 690 870 1020 12k'.',

Threshold Fiber 1.0 2.0 3.0 4.0 5.0
Length, mm

Prescreen Mesh Size, 1.50 2.44 3.43 4.69 5.46
mm

A, Total 3Aperture 4.80 4.80 5.00 5.56 5.36
x 10	 m

V, Wind Speed at	 1.40
50 V Variac, m/s

Color Code, Windbox	 Brown

1.52	 1.78	 1.98	 2.41

Red	 Orange	 Yellow Green

8)	 Input, mitput and control elements of the system:

15
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H.V. INPUT:	 banana posts

red: +	 black: -
Connect directly to H.V. power supply
for charging of the 0.14 uF capacitor

bank.

N.V. _OUTPUT: banana posts

red: +	 black: -
Connect to the grid for H.V. bias,

PULSE. SIGNAL:

Output:	 BNC terminal for 50 0 impedance

BNC cable (RG58C), connect to the
Signal Input BNC terminal on t:-e

Pulse Integrator

Wind Monitor

Port	 on top of the windbox for
Figure 10): insertion of air flow probe

such as the Hastings-Raydist
Model AB-27.

PULSE, .NTF.GRATOR

SIGNAL INPUT: receptacle BNC terminal for
receiving the PULSE SIGNAL OUTPUT from

the H.V. pulser circuit. It is equipped
with a 50 '^ terminal load for a better
noise rejection.

Power Supply

Iut:	 banana posts, input for 40 VDC
red: +	 black: -

ON-O:?F:	 miniature toggle switch to control the
application of the 40 VDC to the

electronics.

RESET:	 momentary push-button switch to

achieve zero voltage at RECORD voltage.

WORD:	 banana posts, connect DC output to
the recording system with typical
input impedance of 1 MIL

ZERO:	 miniature potentiometer, adjust to

minimi.:_ the drift of the RECORD output.

Detailed operating procedures may be found in Appendix A.
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IV. EARLY EXPER LNENTS

1. Dynamic Test

At the beginning, grids were made from gold-plated round brass rods secured
in a Micarta frame. They were originally designed and fabricated for use as low
voltage biased grids for carbon fiber counting. The frame was about 10.2 cm x
10.2 cm (4 in. x 4 in.) in size and had a grid aperture of 7.5 cm x 7.5 c;A (3 in.
x 3 in.). The brass roc's were 2.3 mm (0.090 in.) in diameter and arranged in
parallel to the face of :he frame. Typical spacings between the centers of these
rod electrodes were 3.8 mm and 7.6 am. Each frame had two layers of grids. The

axes of the rod electrodes in the two layers were perpendicular to each other.
The separation of the layers was about the same as that of the adjacent rods.

The grid with the H.V. discharge circuit was then mounted on top of a small
glass chimney (Figure 11). The lower end of the chimney had a funnel shape in
which a small amount of carbon fiber composite was burned with the aid of a
propane flame, so that the fiber fragments were released. The convection of hot
air surrounding the fire carried the fiber fragments upward to reach the grid so

that they could initiate sparks in the grid and thus be counted.

Figure 12 shows some test results obtained in this manner. The peak current
of the spark as monitored by the current shunt is plotted as a function of the

grid bias voltage. It can be seen that a linear relationship holds for both
grids. The extrapolated zero current bias voltages were about 300 to 400 V due

to the contact resistance problem as discussed previously. Later, small-spacing
(1 mm to 2 mm) grids made from small i—tal wires (diameters 0.25 mm and 0.51 mm)
were tested in a similar manner and the rexults are shown in Figure 13. In these
cases, the linear relationship between the peak current and bias voltage
remained. However, the extrapolated zero current grid bias voltages were lower,
of the order of 100 V to 200 V. This was due to the fact that larger electrical
fields were achievable at a relatively low bias voltage for small diameter

electrodes.

In the above tests, the air flow rate was not precisely controlled; neither

was the length of the fiber fragments. As a result, for a fixed grid bias
voltage, the peak spark current followed a wide distribution. This result was

anticipated because if a fiber was not landed perpendicular to the electrode

axes, a 1,,iger fiber length across a given pair of electrodes would occur. The
larger resistance of the long fiber would result in a lower peak current. In
Figures 12 and 13, the highest peak current for a given bias voltage was used in

the plot. It is assured this current corresponded to the fiber which bridged a

pair of electrodes in the shortest possible distance, i.e., perpendicular to

them.

2. Static Tests

In order to obtain mare controlled experimental results, expecially in

regard to the fiber length effect and the cases when the fibers were landed

obliquely across the electrodes, a static test was necessary. The fiber segments
were manually placed on an extension card which is normally used for electronic

test and service and covered by a microscope slide. The parallel metal strips on
the card which were 2.3 mm wide and 1.5 mm apart served as electrodes for the
discharge. In this way, fiber segments could be oriented at any angle oblique to

18



DYNAMIC TEST
TEST SETUP

H I GH-VOLTAGE,
H IGH-CURRENT
SPARK PRODUCED
BY FIBERS

x r	

`
tito	 r

DYNAMIC TEST
TEST CIRCUIT

i

Yi.,.	 I I .	 I t up c 	 t In- [)Yimntir Test

10

i



f-^
W

U
Y
a
w
CL

6

3

3.8 mm

+	 1.6 mm

9

^0	 1	 2
	

3

Vo , W

Fig. 12. Typical Dynamic. Test Result, Peak Current (Measured

by Oscilloscope Voltage V, where 1 V = 115.5 amps)
as a Function of Grid Bias Voltage, V0

4

20



3

Z
W
ac
CC
D
U
Y
Q
W 2

1 mm

///
♦

/
/

♦

2 mm

4

0
0 200	 400	 600	 800	 1000

Vol volts

1) y n:Ullic Test Results. ut Smal l Spacing Grids, Peak Current
(Measttred by Osc illuscope Vu1tzige V, where 1 V = 115.`
amps) a;; 13 Pnnrtiun of Grid I;ias Volta};e, V

21

. 4:	 -	
m



the strip electrodes. A different fiber length under discharge could be selected

by selecting any pair of strips on the card as the discharging electrodes (Figure
14).

The electrodes, in this case, could not be directly connected to the energy
storage capacitor; the discharge through the fibers would prevent the electrical

charge from accumulating in the capacitor. A spark gap was needed to allow the
capacitor to charge up. Subsequently one could dump the energy into the grid by
sending an external trigger command to the spark gap.

A eircuiL based upon a EG & G KN-22 krytron is shown in Figure 15. The 30
kV trigger pulse can be supplied by a trigger module such as the EG & G TM-11.

The current trace of the discharge, shown in Figure 15, was essentially similar
to those obtained in the dynamic test. However, some features, especially the
turnoff of the discharge,-were affected b y the characteristics of the krytron.

Figure 16 shows the peak current of the discharge as a function of the
discharge voltage, with the fiber length as a study parameter. For short fiber

lengths of 3.86 mm and 7.72 mm, the results were similar to those obtained in the
dynamic test. For longer fibers, the responses were very different in the lower
voltage region. Figure 17 shows the peak current as a function of the fiber
length for a fixed discharge voltage of 1 kV. A distinct functional relationship
is established. Therefore it appears feasible to distinguish the fiber length by
its corresponding peak current in the spark. A commercial multichannel-pulse-
height-analyzer can be used to measure the fiber length distribution.

However, the H.V. electrical field is capable of orienting the fiber

fragment; thus, at an optimized bias voltage on the grid, one can minimize the
oblique incidence of the fibers on the grid. Therefore, the pulse height

analyzer approach, which is more complicated, was not considered absolutely
necessary. For fiber fragment size measurement, one can use grids of different
spacings. This was the design philosophy adopted for the JPL H.V. grid spark
carbon fiber detection system.
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V. PHYSICAL DESCRIPTION OF THE SPARK PHENOMENON

The peak currents observed in the fiber-induced spark discharge were of the
order of several hundred amperes. They were definitely too high to be accounted

for by a current flowing through the fiber under the grid bias voltage. As
mentioned previously, the resistance of a carbon fiber is typically 3000 O/cm.

Therefore, at the test voltage in the kilovolts region, current should be only
several amperes. Some other mechanisms were believed to exist to carry these
abnormally high currents. After careful examination, the phenomenon manifests

itself as follows:

1) When the fiber makes initial contact with a pair of electrodes in the
grid, the high voltage imposed on the grid will overcome the contact
resistance by forming arcs around the points of contact. There are
then currents flowing through the fiber. Supposedly if the high

voltage was current limited this would be the complete story of the
discharge.

2) The arc resistance of the air between two electrodes under a high
voltage is much smaller than that of a fiber laid between the
electrodes. Therefore the initial arc at the contact points tends to
grow along the surface of the fiber until it has completely bridged the

space between the two electrodes along the direction of the fiber when
• high current condition is allowed by the dischary! circuit. This is

• transient process in which the arc resistance is not constant as
indicated by the slow rise time of the current pulse ( Figure 2).
According to a simple RLC discharge in which R is constant, this rise
time should be much shorter in duration. The peak arc resistance of

the spark was several ohms.

Some visual features of the spark are shown in the photographs in Figures 18

and 19. They were taken under a microscope as described in the static tests.
The broad but relative faint light was emitted by the plasma in the spark. The

bright filaments were the light emitted by the fiber. Indeed, prior to and

immediately after the spark, low currents were flowing in the fiber. Therefore
it was heated up to incandescence. Even though it had much lower light intensity
as compared to the spark plasma, it had a much longer duration. Under the long
integration time of the camera film, it appeared to be brighter. It is apparent
in these photographs that the position of the fiber changed a number of times,

presumably due to the disturbance caused by the spark.

It is also apparent that the direction of the spark followed that of the
fiber. The fiber was a spark initiator as well as a guide for the spark.
Because there are no detailed previous studies on the spark phenomenon,
theoretical predictions of more fundamental aspects of the plasma are not

available. The plasma is not confined. The variable dimension of the spark made

it difficult to estimate the plasma ' s specific resistance as a function of
voltage. Relationships of this kind are usually complicated and depend upon a

v&:Iety of parameters. Therefore, it is not surprising that the peak current
(arc resistance) is a nonlinear function of the fiber length ( arc length) as
shown in Figure 17.

Upon the polarity reversal in the capacitor, the spark discharge died out
rapidly. Due to the short duration of the phenomenon, a shock wave was produced
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in the air at the end of the spark. This disturbance was strong enough to

release the fiber from the grid electrodes, the fiber debris being carried away

by the air flow. Self cleaning of the grid was thus accomplished.
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VI. PHYSICAL DESTRUCTION OF THE CARBON FIBER

There is significant graphitization in a carbon fiber. Thus the combustion

of a carbon fiber requites A high temperature, a long time of reaction and

sufficient oxygen background. When a carbon fiber composite is being combusted,
the relatively low temperature generated by the epoxy combustion and the depleted
oxygen background prevent the complete oxidation of the fiber. Therefore carbon
fiber fragments are released from the fire and can cause carbon fiber pollution

problems. Heatitj of the fiber can be done in the laboratory either by passing
electrical current through it or by placing it into a high temperature oven. It
was found that the complete consumption of tht fiber usually took minutes to

accomplish under these circumstances.

Severe damage and consumption of carbon fibers by the high voltage spark
discharge across a grid have been observed. Figure 20 shows a number of
pest-spark examinations of carbon fiber segments after the static discharge

tests. The fibers were laid across the metal strip electrodes on the extension
card and covered by a microscope slide as previously described. The pulse
discharge circuit had a 0.05 yF discharge capacitor, and bias voltages ranging

from 0.5 to 1.0 kV were used.

Figure 20 a) shows a fiber after the first pulse discharge. The fiber

appeared to be intact phi-.-tcally. The discoloration on the glass slide was
probably caused by the vaporization of impurities on the fiber surface. Figure
20 b) shows the same fiber after the second pulse discharge. The fiber had
broken open and a burn mark on the fiberglass board of the extension card was

visible. Because the gap at the break point was small, a third spark discharge
still could be initiated by the fiber but a considerably higher voltage across
the grid was necessary to achieve the spark. After the third discharge, as shown
in Figure 20 c), the fiber was severely damaged. It showed large curvature and
broke widely open due to the mechanical shock produced by the spark. Figure 20
d) shows the post spark examination of a longer fiber laid across the electrodes

obliquely.

Serious physical change had taken place in the curly shape fibers produced
after several discharges. They become less conductive and their ability to
Initiate a spark across the grid was apparently reduced. The interpretations are
as follows: Currently, it is understood that carbon fibers have a graphite-type

structure on their exterior surface. This is the main reason why the fiber is
electrically conductive. The inner part of the fiber consists more or less of
amorphous carbon materials which are not conductive. The low current but long
duration discharge through the fiber, which occurs at the beginning and the end
of the spark, can heat up the fiber but probably will not damage the fiber. The
real damage is due to two mechanisms related to the spark in the air. First, the

plasma of the spark has a high temperature (>5000 K). Therefore it can heat up
the fiber surface to a much higher temperature than that done by a fire or low
current discharge. The estimated thermal penetration depth in the fiber surface
is of the order of one micrometer for the duration of the spark (ti1.0 us). It is
felt this may be sufficient to accelerate the oxidation and gasification of the
exterior graphitized structure of the fiber.

The second possible damage mechanism is that of plasma etching. The high
energy ions and electrons in the plasma are capable of bombarding a solid surface
in contact with it and eroding it away. This process can take off a
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significantly thick layer of material from the surface, especially if the plasma
of a spark possesses a high current and high density.

The rate and degree of the damage of the fiber can be accelerated if higher

discharge energy and/or voltage were used in the discharge. In the former case,
due to the inductance in the discharge circuit, a large capacitance was used to
store more electrical energy so as to i ntroduce more current oscillations into

the discharge. This, in fact, is equivalent to multiple pulsing of the fiber
except that it occurred in a much faster sequence than in the manually triggered
operations (these results were shown in Figure 20).

For the carbon fiber detection system development, the objective was the

accuracy of counting of fiber fragments. Fiber destruction was an important
parameter for the trade-off in the system design. The phenomenon was not studied

in great detail due to the complicated nature of the process. As a result, the
de'-ecCion system was designed to have independent grids to detect different sizes

o `ie fibers. The idea of assembling different size grids in series flow was

n( pursed further. In order to make that approach work, one would have to make
sure that a fiber fragment was completely destroyed after it had been sparked and

couated by a given grid in the stack of grids.
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VII. DESIGN CONSIDERATIONS

A.	 System Level

The following is a complete list of physical parameters which need to be

optimized in order to complete the design of the H.V. grid spark carbon fiber
detection system. Many of them have been discussed previously.

1)	 Major Parameters

a) Voltage of the H.V. discharge circuit.
b) Energy storage (capacitance) of the discharge unit.

c) Sampling air flow rate.
d) Depth of the grid electrode.
e) Length of the fiber fragments.
f) Repetition rate and the effect of fiber clusters.

2)	 Minor Parameters

a) Width of the electrode.
b) Size of the grid aperture.

As has been discussed previously, in order to overcome the contact
resistance problem, one has to use a bias voltage higher than 400 V. A higher

voltage tends to increase the counting efficiency as it is more effective in
orienting the fiber fragment relative to the grid electrodes. However, too high
a grid bias voltage will introduce the self-discharge of the grid, i.e., sparks
will be initiated even though the fiber is shorter than the grid spacing. The

spark will first form between the ends of the fiber and the electrodes;

subsequently it will grow across the entire fiber.

A larger capacitance in the discharge circuit tends to reduce the risk of
multiple counting of a single fiber segment. The higher electrical energy will

damage the fiber and cause it to lose its ability to initiate the spark as has

bee n discussed previously. However, too large a capacitance will result in a too
long cipactor recharging time and, as a result, an unsatisfactorily low counting,

rate capability. It will force one to use a higher current H.V. power supply
which could increase the operational safety risk.

The air flow rate and the depth of the electrode are working together. The

real physical parameter here is the residence time of the fiber in the electrical
field of the grid. This time is approximately equal to the ratio of the grid
depth D to the air flow velocity v through the grid (t = D/v). For a given grid

bias voltage, the longer the residence time, the more effective will be the
electrical field in orienting the fiber fragments toward the electrodes to
achieve a better fiber counting efficiency.

The length of the fiber fragment is important. If it is very long as

compared to the grid spacing, it will run across multiple pairs of electrodes in
the grid. Multiple counting from one single long fiber will be the result. The
fibers in a fiber cluster tend to arrive at the grid at the same time. A
short-circuit of the system could occur which can preveat the successful recharge

of the capacitor in the discharge circuit. Both problems can he minimized by
installing a prescreen in front of the grid. The mesh size of the screen shc,:ld
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be comparable to the grid spacing. The effect of the electrode width is that

a thick electrode tends to restrict the air flow through the grid. On the
other hand, for a better mechanical stability of the electrode spacing, a

larger grid width is desirable. The size of the grid aperture will have
some minor effect on the counting rate of the system. All the electrodes
are connected in parallel electrically, and for a given fiber exposure rate
the larger the aperture the greater will be the number of counts registered.

B. Electronics Design

Two prominent problems affect the design:

1) The pulse signal from the spark may have several peaks. By using a

conventional high frequency digital counter, several counts may be
recorded for a single discharge pulse produced by a single fiber.
Therefore a signal conditioner is needed, i.e., a technique which

counts the first peak of the signal;then it is blanked-out for a
brief period of time to discount the immediately following peaks
from the same spark signal.

2) The exposure rate of fibers in most tests is low, of the order of

several pulses per minute. Therefore counting in the frequency mode
is not very useful. It is preferable to sum the total fiber counts
over a prolonged period of time (hours). In this case, it is
difficult to obtain a straightforward analog signal for recording
and visual display. Conventional laboratory electronic instruments
are too cumbersome and inconvenient for use in field tests. An analog

pulse integrator of high stability and portability is needed.

An electronic system with these features was successfully developed and
fabricated during this project. It will be described in detail in a later

section (Section iii D).
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VIII. COUNT EFFICIENCY

A.	 Test Technique

The principle of the test is simple. One has to inject a known number of
fiber segments into the grid-windbox assembly and compare it with the counts

registered by the electronics. A percentage count efficiency figure can thus be

obtained. In practice, it is very difficult to perform such a test. If a
massive number of fibers is being used at one time and the total number of fibers

is known beforehand (e.g., chop a section of a standard fiber bundle which
contains 3000 individual fibers), one has to control the injection rate and
efficiency, and prevent fiber conglomeration from occurring. If the total number

is not known beforehand, one has to collect the fibers after they have passed
through the grid and perform elaborate visual counting. Both procedures are
formidable and difficult; besides, in the latter case, there are complications

due to possible fiber breakages induced by the spark as have been discussed

previously.

For this project, we adopted a relatively simple calibration technique. We

injected the fibers into t1te grid-windbox assembly one at a time under controlled

conditions. A single-fiber !­ gment handler was constructed (Figure 21). It

consisted of a vacuum lead	 a . .uction jet which can pick up, transport and

release a single fiber. The test procedure was:

1) Using set of razor blades that are carefully mounted in pairs with
prescribed spacer width, cut out a length segment of a fiber bundle.

2) Spread the fibers on a tray with proper color background to enhance the

visibility of the fibers.

3) Pick out a single fiber under a magnifier using the fiber handler.

4) Align and release the fiber into the grid-windbox assembly. The last
two steps are illustrated in Figure 22.

5) Observe the indication of the fiber being counted by the occurrence of

the spark.

The need of a windbox became evident in an early stage of the calibration.
The air currents in the laboratory due to the room air conditions were
considerable, of the order of 0.1 to 0.22 m/s (20 to 40 ft/min.). In a large
scale fiber test such as the NSWC Dahlgren shock tube test or small-scale tests

such as the JPL glass chimney burn test and Ames box burn test, the air flow
rates were higher and variable with time. In order to minimize the effects of
uncontrollable air flow rates and direction, a fan was used to provide a
controlled and known air flow rate through the grid. An AC-operated fan commonly
used for instrument cooling and controlled by a Variac autotransformer was used
for this purpose. The windbox was 15.2 cm long with one end to accept the 11.9

cm x 11.9 cm fan and the other end to accept the grids which were 8.9 em x 12.1
cm in size. The air flow speed between the fan and the grid was measured by a
commercial air flow meter, Hastings-Raydist Model AB-27. It was inserted in the
windbox through an uncoverable port on the top of the box.

Figure 23 shows typical air flow speed measurements for three brass-rod

(diameter 2.3 mm) grids. The grid No. 1 was a double-layer grid with 3.82 mm
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separation distance between the central axes of the rods. The grid No. 2 was
also a double-layer grid and had 7.6 mm grid spacing. Grid No. 3 was the same as
grid No. 1 except that it had only one layer of electrodes. The measured air
flow speeds inside the windbox did not vary significantly among these three
grids. This indicated that their impedance loadings to the air flow were small.

B. Results for the Round-Electrode Grids

The tests were normally performed by varying the bias voltage on the

discharge circuit. For a given grid and voltage, fibers of different sizes were
tested. Figure 24 shows tie smoothed-out results for the round-electrode grid
No. 1. Each curve consists of at least five data points and each data point
represents the results of 20 tests at the fixed experimental conditions, i.e.,
the same grid, same bias voltage, same fiber length and same air flow speed.
Similarly, Figure 25 shows the results for the round-electrode grid No. 2.

As has been mentioned previously, it is evident from these figures that the
sparks could be initiated by fiber segments shorter than the grid spacing if the

bias voltage was sufficiently high. The results indicated that the count

efficiency was poor for these grids. There existed no optimized bias voltage to
provide the fiber length discrimination, i.e., at any bias voltage, significant
counts of fibers of all different lengths were registered. Ideally, one wishes
that at an optimized bias voltage, the grid will count all fibers that exceed a

certain length and will not count fibers shorter than this length.

It was reasoned that this inefficiency was possibly caused by the limited
grid depth, since the diameter of the round electrodes was small. In order to

increase this parameter to achieve a better counting efficiency through a longer
fiber residence time in the grid, metal-strip electrodes of proper width could he

used to construct the grid. This approach has proven to he a solution to the

problem.

C. Results for the Strip-Electrode Grids

Four experimental grids with straight metal strip electrodes were
constructed. The electrodes were made from 1.6 mm (0.065 in.) thick copper
plates. They were machined to about 9.3 cm (3.65 in.) long and 1.9 cm (0.75 in.)

wide. They were secured in Micarta frames 8.9 cm x 12.1 em (3.5 x 4.75 in.).

The air gap spacings between the electrode pairs were 1.52 mm (0.06 in.), 2.28 mm

(0.09 in.), 3.17 mm (0.125 in.) and 4.44 mm (0.175 in.),
respectively.

Figures 26 to 29 show the test results pre.^nted with the count efficiency

as a function of the grid bias voltage and using the fiber length as a study
parameter. The tests were performed in the same way as in the round electrode

grid tests. As in those cases, fibers shorter than the grid spacing; could
introduce spark counts. However, the count efficiency had been drastically
improved. Optimized bias voltage to achieve the desirable fiber length
discrimination did exist for each grid. For instance, if one biased the 1.52 mm

(0.06 in.) grid at 600 V, it would count fibers longer than 1.25 mm (0.050 in.)

and would not count fibers shorter than this length. Similarly, optimized bias

39



0

20

25

> 30

35
Z 40

F45

t^ 50
s 70

80

90

0

20

r 25

30

0 35

Z 40

45

u 50
70

> 80
90

GRID No. 1

GRID No. 2

a

0

9 20

r 25

> 30

35
Z 40

F 45N
u 50

g 70OG

80

90 0
50	 100	 150	 200	 250	 300	 350	 400	 500 600

GRID AIR FLOW READING, feet per min

Fig. 23. Typical Air Flow Speeds in the Windbox for Round-Electrode
Grids as a Function of Variac Setting for the Fan

40



M

_X

O

>o

'Wn
V
Q
N
J

O

Q

m

rS	 bd	 $	 ^	 Ri	 ^

'A7N31'IJA.3 1Nno:)

c0

AJ
u
00

d
a

>
w
vo
a Ln

w If

4 op
Ai c

3 u
ai v
00 to
tv

O
>

U)>
al ^-

.,4
as ,i

'a O
1i z

b
W •rl

O N
C.^

•H b
u O
U S.r
G AjZ u
w v

co w

(n b

0
>, O
u w
G
v N
•^ o
u w

.,4
w N
4-4 y
W u

G cC
O H
O ro
v w

N

00

w

41



v E

E K
N 0 + W X

0

E 0 AA

N
o

H
aG

E V a
M
M N Q

tnT 0+

`O	 it

% 'A:)N31J1333 1NnoD



E	 I	 +

E 
J+•-Ln

-O

+

EE

	 +

ppt7
O^

L

M
F,
v

•'i N
LL vy

.^ H
4J u

8 •.1
3 H
v
00 o

p̀ .-4 •o
>

>
u

O N

LLJ rQ	 4
q

b

-j V"	 to

O
O8

W >

L _̂ O C7 O^
m p

u	 M	 II

uG^	 C
-4	 •.4
w 4.J

Q cn a v
^$ R1 •^ t!1

^ >, u u
u Ln	 ro
C	 •rl
O1	 H	 Ir

O mu w >
•r-i	 v
w W
4+ v .^

8
W i.+	 Op

Lf7 r Fj •d
^^u	 u
Vr~m
O	 a
u

^ON
O

O .^
w

E
E E

E
N
N

E
E
	

— a,- now

N
N

8	 09	 S	 IV

	

N

% 'A:)N31J1333 1Nno:)

43



N
N

8

_-r

O

,O

W

Q

J

O
N

Q

^
m

fr.i

oc

8LMcl

cn

-O	 v	 cQ

	 0

AjcoG
a
w 00
Ql N

L
N

4. v

= N
u
•4

sz
W
6D b
c9 •.a
u t+

O

O
N u
^C yC

oq 8 yy@

b 1r

>

wo
W	 It)
O Q!

^ II
F O

.H u C

u u •rA
u 4r u
C..-a L
o w vw I cn

M.
u

tia ro

ro cn w

sw

u O v
G 44

QJ n
••a N GO
u Q) C
•rr L.+ •.a

4a 41 u
w ^j cp
w ^ a

a a. •o
otns.v tv to

r;
N

GQ

% 'ADN31D1333 iNnOJ

4



qf	

Q	 O _

,C
w
00
C

Yr 1^
a ^
.0

v

32
^0 M

r 41lw

y>
0 IJ

L J
aq	

.a
*a	 M F.

!— u x
'J Lil Op
>3 Boa

n o u o0

u u •.Ci—
m U v u

C .^ L

OL ^ I^ N

•: u
$.w	 ;a

V7 L 

I 

w 

m

u o v'
C w
C1	 .-.

•'^	 ti+	 00
U y C
ri L .4

uw	 ^
W w

> y

> >av

U <C 00

r^

cC

96 'JlJN31:)1AA3 1Nno:)

45



E

N

E
E

ri

E

NO

ru
co
C

J

CV) O s
.O
^ S
k• v

L d
uMsz
o^

y

e c
r ^^
> ^ o
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voltages that can count fibers longer than 0.84 times the grid air gap spacing
exist for the other three grids.

Figure 30 shows a plot of these optimized bias voltages as a function of the
grid air gap spacing for the strip electrode grids. A straight-line curve was

thus established for the design of grids used for fiber sizing measurements.
From these data, the optimized grid spacing and bias voltage for detecting fiber
fragments with lengths exceeding 1 mm, 2 mm, 3 mm, 4 mm and 5 mm are 1.19 mm,
2.38 mm, 3.58 mm, 4.77 mm and 5.97 mm; 510 V, 690 V, 870 V, 1020 V and 1200 V (as

listed in Table 1), The grids were constructed according to these design
parameters for field tests and delivered to the NASA LaRC.

These test results were obtained with the Variac setting of 50 V rms. This
corresponded to air flow speeds of 1.52 m/s to 2.41 m/s (300 ft/min to 475

ft/min.) in the windboxes, depending upon the grid spacing. Limited tests at
other Variac settings and air flow speeds were performed. The results showed

that for a Variac setting between 40 to 60 V rms, the changes in flow rate in the
windboxes were small and the counting efficiencies remained constant.
Significant changes in these quantities started to occur when the Variac setting
reached 75 V rms (air flow speed 4.1 m/s or 800 ft/min). Drastically changed
counting efficiencies were observed when the Variac setting reached 90 V rms (air

flow speed 4.5 m/s or 1100 ft/min).

The reason for this insensitivity of count efficiency to the air flow speed
was due to the large depth of the grids, i.e., electrode depth of 1.9 cm (0.75
in.). A long electrode depth tends to offset the effect of high air flow speed

so that a sufficiently long residence time to obtain a fiber count in the grid

was always achievable.
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IX. DESCRIPTION OF AARDWARE

A.	 Grid

The construction of the grid is shown in a self-explanatory photograph in
Figure 31. The strip electrodes were machined from 1.65 mm (0.065 in.) thick
copper plates. They had step shoulders so that they could be pushed and
registered in precise milled slots in the Micarta grid frame. One end of the
plate had a small slotted tab to allow the soldering of bare copper wires to them
to obtain the parallel voltage bias. All frames, except that for the No. 1 grid,

were made from the Micarta. The No. 1 grid, due to its small electrode spacing,
introduced considerable electrical conduction in the Micarta. The Micarta web

spacer between the electrode plates formed by the slots had some porosity so that
it could absorb considerable amounts of moisture and therefore created a leak
current path between the electrodes biased at 500 V. Low insulation resistance
(as low as 50 ka) was observed, which depended upon the humidity. This problem
was resolved by using Teflon to fabricate the frame for the No. 1 grid. The
fabrication procedure in this case was more involved, because Teflon is quite
flexible and lacks mechanical stability.

It was also found that electrodes made from 1.65 mm (0.065 in.) thick copper

plate were not very suitable for the fabrication of No. 1 grid. They created too

much impedance to allow easy air flow through the grid-windbox assembly. Thinner
copper plates of 0.5 mm (0.020 in.) thickness were used to fabricate the
electrodes for this grid. A better flow rate through No. 1 grid was achieved
this way.

B.	 Discharge Circuit

As explained previously, in order to minimize the inductance of the lead
wires connecting the capacitor to the grid, the H.V. circuit has to be placed
very close to the grid. The components of the circuit were contained in a small
aluminum box in a very compact manner as shown in Figure 5. This approach allows
one to directly attach the circuit onto the windbox. The circuit consisted of
three 0.047 u F high-voltage capacitors (CDC PKM16S47, 1600 VDC rating) connected
in parallel. The current limi t ing resistor was a 1 kQ, 1 W Allen Bradley carbon
resistor. It was chosen to act also as a safety component. In case the grid is
short-circuited, i.e., by a fiber cluster, the continuous current passing through
the resistor can cause the resistor to burn open, acting as a fuse. Thus, the
charging of the discharge circuit will  be terminated automatically.

The current shunt was made from a 0.1 Q Delco precision resistor. It was
connected to the PULSE-OUTPUT 50 Q terminal via a 220 0 precision resistor. The
latter, combined with the 50 0 load, formed a voltage divider, which reduced the
output pulse amplitude by a factor of 270/50 A 5.4. The 220 o resistor can be
replaced by a resistor of appropriate resistance, so that PULSE-OUTPUT amplitude

can be modified to match the input requirement of a pulse integrator or other
counting instrument. Under the designed arrangement, the amplitude of the pulse
output was about -5 V for all five grids. These were appropriate for interfacing
to the JPL ptslse integrator.

The current shunt and the 200 0 resistor were contained in a Pomona

Electronics Model 2397 aluminum box. The purpose of this design was to isolate
this parr of the circuit from the main discharge circuit so that interference
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from the grid through a electromagnetic induction could be avoided. The pulse
output amplitude so obtained has a quantitative meaning which can be used to
calculate the discharge current in the spark.

C. Fan and Wind Speed

The fans used to construct the windbox were 14 watt Muffin fans manufactured
by Rotron, Inc., and are commonly used for electronic equipment cooling. They
had physical dimensions of 11.9 cm x 11.9 cm x 3.8 cm. The air flow speed in the
windbox was measured by the technique described previously--by inserting a

resistance flow rate probe (Hastings-Raydist Model AB-27) in the box as shown in
Figure 10. The air fluw speed as a function of Variac setting for the five
grid-windbox assemblies is shown in Figure 32. These measurements were performed
with negligible background air flow speeds. When there was a strong background
air flow comparable to the zero background flow rate in the windbox, there was an
add-on effect; i e., the apparent air flow speed in the windbox was increased.

However, due to the impedance of the grid, the increases were much smaller than

the direct arithmetical addition of these two speeds.

This is a good design feature of the JPL carbon fiber de.3ction system. For
small variations of the background air flow speed, the flow speed in the windbox
can be considered constant. Some quantitative results are shown in Table 2.

A DC voltage-operated fan which has the identical physical dimensions as the
AC Muffin fan is available commercially. It is manufactured by PAMOTOR, INC. and
has a designation of Model 4124X. It has a 24 V rating and its rotational speed

(therefore the air flow speed) is variable as controlled by the DC voltage. It
can be handily used to replace the AC fan so that the system can be used in the

field tests in which AC power is not available.

D. Pulse Integrator

Figure 33 shows the schematic diagram of the pulse integrator. It was
fabricated on a single 10.1 cm x 10.1 cm printed circuit board. The letters X,

Z, C, E, K and N correspond to the interface terminal locations on the board.
The following is a brief description of the circuit features.

1) The incoming pulse signal from the H.V. discharge circuit is negative
(-5 V, 0.511s). The function of the diode D 1 (1N5240B) is to
eliminate any positive inputs arid. limit negative pulse amplitude to be

not larger than -10 V in order to protect the IC CA555CG timer. The

isolation capacitor C 1 further protects the IC from any DC voltages.

2) The timer IC CA555CG produces a +5 V positive square pulse upon

receiving the trigger pulse, the spark signal. The duration of the
square pulse is determined by the RC time of R22 and C 2 , the timing

tank circuit. For the values of 9.1 k<2and 0.O1pF shown in the figure,

this duration was about 100 Us. Furthermore, the IC will ignore nny
trigger command during this period of time. The Waximum pulse rate of
the output under the arrangement is thus about 10 pulses per second.
In this manner the IC acts as a pulse conditioner. Also, the longer
pulse duration of the output pulse provides more electrical charge to

increase the sensitivity of integration.
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1	 0
50

2	 0
50

3	 0
50

4	 0
50

5	 0
50

- 5 20 40
275 275 300 400

- 20 40 60
300 310 340 450

- 45 60 100

350 350 395 550

- 50 75 110
390 390 450 550

- 55 85 120
475 475 505 650

TABLE, 2. Air Flow Speed in the Windbox (ft/min) as a
Function of the Vartac Setting and the Background Air Flow Speed

Background Air Flow Speed
(ft/min.)

Variac Settina	 0	 100	 150	 200

Grid No.	 ( Volts RMS)

NOTES: 1) The small inconsistencies in this table are believed

to be introduced by the poor resolution of the air

flow meter readout.

2) Data shown in English units ( rather than SI) because

the flow probe reads only in these units.

3)	 The IC LM308AN is an operational amplifier. It Integrates the output

of the IC CA555CC timer and produces a negative output according to the
following formula:

_ _1	 t2Vo R
6 C4 

f 

f	 V1 dt

 t 

The output can be nulled by either manually closing the push switch
"RESET" which will discharge the integration capacitor Cq, or when

the output reaches approximately -10 V. Then it will in the
avalanche conduction of the untjunctton transistor T (2N6027). This

will in turn actuate the miniature relay Teledyne 71^D-9 to discharge
the integration capacitor C 4 . The automatic reset voltage of -10 V
was chosen in order to assure the linearity of the integration. The
LM308AN was chosen over other similar operational amplifier IC's, such
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as LM108AN, because it possesses a greater temperature stability and is
readily available.

4) Severe drift of the integrator output normally exists due to the
leakage in the IC CA555CG. The purpose of the diode D 2 (1N4006) is
to isolate this effect from the integrator. The remaining minor drifts
in the output, due to the current leakage through the diode D 2 and
the LM308AN itself can be compensated for by a small controlled leak
current provided by the potential divider formed by the resistors R7
and R9 and the 100 kSZ potentiometer R A via a high impedance
resistor R (1 Mil). Depending upon the temperature environment,
output drift can be alleviated by adjusting R 8 ,

0
 the "ZERO"

adjustment. Output stability of the order of .1 V per hour can be
achieved this way. The test setup for one grid is shown in Figure 34.

5) The isolated circuit showed in the lower-left corner of the circuit
diagram (Figure 33) is a regulated DC power supply. The zener diodes
D4 and D 5 and the capacitors C7 and C8 convert the input DC
voltage ranging from 35 V to 45 V into a regulated +/-15 V output, for
the power source for the entire integrator circuit. This design allows
for the use of a battery power supply for field tests in which AC power
may not be available.

6) The sensitivity of the circuit, i.e., the output voltage increments per
each occurrence of the input-pulsed trigger signal, was approximately
-0.1 V/pulse. Since the maximum magnitude of the output voltage was
about -10 V, this sensitivity gave about 100 input pulses for the full
output range of the pulse integrator. The calibration can be easily
performed by incorporating a pulse generator, which can provide a pulse
of -5 V in amplitude and 0.05 us to 0.5 us in duration, to the input of
the pulse integrator. The generator could be a low-repetition rate
unit or even a manually commanded pulser. The sensitivity factor can
be changed to other values suitable for the carbon fiber counting at
different exposure rates. This can be accomplished by one of the
following two simple modifications of the circuit: (1) Change the
value of the capacitance of the integration capacitor C 41 or (2)
change the RC time constant of the timing circuit of the IC CA555CG as
described previously (i.e., change the value of R2 and/or C2).
Experience has shown that with the designed 0.1 V sensitivity, the
integrator is suitable for use for most tests in which counting of
carbon fiber fragments is necessary.

7) The output power of the integrator is self-regulated. Therefore it can
be used to interface with most recording instruments such as a chart
recorder, an oscillograph, a Simpson meter or a vacuum tube voltmeter.
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X.	 APPLICATIONS

A. JPL Chimney Test

Independent of the carbon fiber detection instrument developments, JPL also
worked on carbon fiber gasification. The objective of the assignment from NASA

HQ was to study the effect of catalysts on enhancing the consumption of carbon
fibers in a fire of carbon fiber composites. The test method has been described
previously, i.e., a small amount of carbon fiber composite fabricated from
catalyst-treated carbon fibers was burned under a glass chimney with the aid of a

propane flame. The com^osite piece was mo»nted on a mechanical vibrator which can
generate agitation up to 100 Hz and about 1 g of peak acceleration. The H.V.
grid was mounted on top of the chimney to detect the fiber fragments released
from the fire as they were carried upstream by the convection of the hot air.
Figure 35 snows the typical result. The untreated fiber composites had large
fiber counts. The full scale was about 250 counts. On the other hand,

catalyst (calcium acetate 2% to 10% wt)-treated fiber composites did not cause
any significant fiber counts.

The H.V. grid detection system can be applied to many research projects in
which fiber release or consumption mechanisms are being studied. The instrument
can directly provide information on the fiber fragment release rate, therefore it

is also beneficial to the understanding of the fiber release chemical reaction

kinetics.

B. Ames Box Test

JPL has modified the widely used laboratory carbon fiber composite burner

developed by the NASA Ames Research Center (Reference 6). A grid equipped with
its associated H.V. discharge circuit was mounted in line with the vacuum exhaust
of the box (see Figure 36). The system was used to test the gasification of
carbon fiber with catalyst treatments. Results similar to the JPL chimney tests
were verified. Later, it was used to obtain information on the capture
efficiency of the sticky tape. Sticky tape cylinders (13 mm in diameter and 40

mm long, Reference 1) were mounted in front of the grid so that the exposure

measured by both systems could be directly compared. Preliminary results
indicated that the capture efficiency of the tape was low, ranging from 5% to 107,
(depending upon the fiber length and the air flow rate) for nominal air flow rate

of 0.5 to 2 m/s in the grid.

C. Dahlgren Shock Tithe Test No. 52 (Aug. 22, 1979)

The description of this test and the test facility is included in References

1 and 2 . The tube was a 7.3 m (22 ft.) diameter, 244 m (800 ft.) long tunnel
made from cast steel. The carbon composite, about 10 kg (22 lb.) in weight, was

burned at the open end of the tube with the aid of about 302 liters (80 gallons)
of jet fuel. The plume and carbon fiber fragments released from the fire were
caused to flow toward the other end of the shock tube by the flow induced by a

number of large fans installed at this end.

The flow pattern and the fiber flux field were relatively uniform in the
center of the tube where electronic equipments were exposed to determine the

critical failure exposure. In Test No. 52, the equipment under test was
commercial audio amplifiers. They were placed on the left-hand side of a wooden
platform across the center of the shook tube and at about 244 m downstream from
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the fire. The JPL H.V. grid-wind box assemblies were placed on the right-hand
side of the platform (Figure 37). Also seen in the same figure, in front of the
platform, was a wooden stand upon which the Bionetics grid counter and the TRW

optical counter were supported.

The top view of the layout of the JPL H.V. grid carbon fiber counters is

shown in Figure 38. The five -channel output H.V. battery pack was connected to
the five H.V. discharge circuits on the grid-windbox assemblies by insulated lead
wires. The pulse signal output of the discharge circuits were conveyed by 26.6 m

(80 ft) long RC58C transmission cables to an instrumentation trailer stationed

outside the shock tube. The pulse integrators and recorders were stationed

inside the trailer.

Figure 39 shows the raw data as recorded by several strip chart recorders.
It plots the number of fiber counts received by each grid as a function of time.

The'time zero was the time when the fire was first established in the pile of
carbon fiber composites. For a period of five to six minutes, no counts in the
grids were observed. This was an indication that the air flow speed in the shock
tube was of the order of 0.6 to 0.76 m/s (120 to 150 ft/min), because the
distance between the fire and the grids was about 244 m (800 ft).

The total counts increased rapidly with the time at nearly constant rates.

The count rates slowed down between the 17th and 27th minutes. At the later
time, a mishap occurred: the rotary metal basket in which the carbon fiber
composites were held broke loose from its axis of rotation. It fell down on the
floor of the shock tube. This induced a fast fiber release in the time period of
27th to 37th minutes. After that, the count rate slowed down once again. The
test was terminated at the 45th minute. Continuous counting after that time

showed a very small number of fiber counts.

The data reduction proceeded as follows:

1) Convert the counts f  obtained by the grid number i to the exposure
e i by using the formula which defines ei:

fi/Ai
e -

where	 i	 vi

Ai 	the area of effect ve aperture of the
grid number i (m )

v i . the air flow rate in the windbox number

i (m/s)

The zero background air flow speeds at 50 V rms drive voltage for the

fan are listed in Table 1. Flow speeds for Variac settings other than
50 V rms are shown in Figure 32. To account for the add-on effect of
the background air flow speed, values of the flow speeds extrapolated
from Table 2 were used.

2) The next step is to perform some simple arithmetical manipulations to

account for the multiple counting effect due to long fibers.
Obviously, if a fiber is much longer tLan the grid spacing upon which
it landed, then several spark counts will he generated by the same
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Fib;. 37. JPI, H.V. Grid Spark Carbon Fiber Counters Layout

on the Te s=t Platform in the Dahlgren Shock

Tube Test No. 52
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Fib;. 38.	 i up Vie%17 of the Layout of JPL Spark Carbon

Fiber Counters in the DahJgren Shock
Tube Test No. 52
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fiber. With prescreens installed in front of the grids to reduce the
chance of fiber clusters as well as long fibers from reaching the grid,

the manipulations proceed as follows:

E 5 - exposure due to fibers 5 mm tc 10 mm in length
= e

E4 - exposure due to fibers 4 mm to 5 mm in length

E 3 - exposure5due to fibers 3 mm to 4 mm in length

E 2 	expos	 4ure due to fibers 2 mm to 3 mm in length

= e2 - E3 - 2e4
E l = exposure due to fibers 1 mm to 2 mm in length

= e l 
- E 2 - 2E3

The multiplication coefficients were determined empirically
from the experiments. For instance, when a fiber 4 mm to 10 mm in length was
injected into the grid No. 2 with the prescreen installed in front of it, usually
an average of two counts was recorded. A fiber 3 mm to 4 mm long usually will

Louse two counts in the No. 1 grid. A simple computer program included in
Appendix B can be used to perform these calculations and plot the results.

The test data of the Dahlgren shock tube test No. 52 after this data
reduction procedure are shown in Figure 40. These values of exposure were about
one order in magnitude higher than those measured by the sticky tape used in the

same test which was placed near the wooden platform. Later, as has been
mentioned previously, it was found that the tape has very poor fiber capture
efficiency, of only about 5% to 10% at the air flow speed of several meters per
second. Our data were essentially in agreement with the Bionetics grid system,
if a corrected air flow speed is used in the data reduction of the latter
results.

D.	 Soot Effects on the Grid Counting - Dahl.gren Shock

Tube Test fro. 54 (Sept. 26 1 1979)

In a simulated aircraft fire test in which carbon fiber composite is being
consumed by a jet fuel fire, a large amount of soot is produced by the fuel as
well as by the epoxy resin in the composite. The soot seriously impacts the

accuracy of an optical fiber counting system since the cross section of a soot
particle may be much .larger than that of a fiber fragciient. It was wondered what
would be the effect of soot on the H.V. grid fiber counting system.

'

	

	 In the laboratory, it was soon found that soot produced by a propane or
kerosene flame did not generate spark counts in the H.V. biased grid. One can
observe this by directly impinging a propane or kerosene flame onto the grid

'	 (Figure 41). The soot produced by the epoxy can initiate some spark counts in
the grids with small grid spacing, especially the No. 1 grid (Figure 42).
Small-scale burn tests of glass fiber composite made from epoxy, performed in the
Ames box equipped with H.V. grid, have shown that the soot-induced counts were
less than 1% as compared to the counts due to carbon fibers released from a

carbon fiber composite of the same resin/fiher ratio composite.

Apparently, the soot particles produced by the epoxy had poor electrical
conductivity, therefore they were very inefficient to initiate sparks in the
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Fib;. 41.	 Soot Effect on the .1PI. II.V. Grid Spark
Carbon Fiber Counter. Tested by a
Kerosene Flame
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Fi b;. 41. Soot Effect on the JPL II.V. Grid Spark

Carbon Fiber Counter. T stud b y an

Epoxy Resin Flame
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grid. Larger soot particles were more potent in the initiation of sparks. The
ability of a soot particle to initiate the spark was a random phenomenon. After

the soot was collected for about 15 minutes and then fed through the grid, its

ability to generate sparks in the grid decreased drastically, possibly due to the
loss of water content from the soot particle.

In order to clarify these uncertainties, a rest was performed in the
Dahlgren shock tube facility. About 13.6 kg (30 pounds) of fiberglass epoxy
composite was burned with the aid of a jet fuel. The test configuration for the

grid system was the same as in the Test No. 52 (Figure 43). Figure 44 shows the
test results. It can be seen that grid No. 1 (the 1 mm grid) had the highest
soot count registrations. Grids No. 2 and 3 had minor soot counts. Grids No. 4

and No. 5 had no counts at all, therefore no data are shown in the figure.

Comparing this with the Test No. 52 data shown in Figure 39, one can conclude
that the interference of the soot on the H.V. grid count eccuracy was less than
11. One should also note that Test No. 52 burned for only 45 minutes while Test
No. 54 had a.burn time of 105 minutes.

Post-test examination of the grid from both Dahlgren tests showed heavy soot
deposits (coatings). However the grid bias voltages used, ranging from 510 V to
1200 V, depending on the grid spacing, were sufficiently high to overcome the

contact resistance problem. Thus, spark and counting could be reliably initiated

by the carbon fiber fragments.

A better understanding of the air flow speed in the shock tube was obtained.
The Hastings-Raydist air flow gage (Model AB-27) was used to measure the flow

speed in the tube. The gauge was located near the main downstream view port of
the shock tube and was about 0.6 m (2 ft.) away from the wall of the tube as
shown in Figure 45. The air flow speed history during the test was as follows:

TIME (min)	 FLOW RATE (ft/min)

-5 120

0 180
9 100

30 110

39 130
54 170

79 145
93 130

102 130
135 185

Therefore during the major part of the test the air flow speed in the shock
tube was about 0.6 m/s (120 ft/min).
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Fig-	 Datilgren Shark Tube 'T, : No. 54, 'Pest layout of
JPII II.V. Spark Carbon Fiber Counters
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FIB;. 45.	 Test Setup of Hastin.	 Ravdist Air
Flow Gauge (Model AB 7) in Dah1gren
Shock Tube Test No. 54
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XI. CONCLUDING REMARKS

In this project we have successfully accomplished the following tasks:

1) We have achieved a general understanding of the carbon fiber-initiated
spark phenomenon across a N.V. biased grid.

2) We have obtained sufficient data for the optimized design of a H.V.

spark carbon fiber counting and sizing system.

3) We have developed prototype hardware and demonstrated their
satisfactory performance in a number of laboratory and field tests.

The current system is suitable for the majority of test needs of interest to
NASA, i.e., for monitoring the fiber exposure from a simulated fire of carbon
composites due to the crash of an aircraft that is fabricated from parts made of

carbon fiber composites. It can also be used for military applications, e.g., to
monitor carbon fiber release around the crash site of a military aircraft. In
this case, higher portability of the detection system is needed and the system
should be further miniaturized. The system can be modified and further developed
for a number of special applications. Two examples are given below:

1) If the grid is made from high-temperature resistant materials, it can
be used as an in-situ grid; i.e, it can be put into the fire of a
carbon fiber composite. Information on total fiber release by a given
carbon fiber source can thus be determined.

2) The system can be modified to detect submillimeter fiber fragments.

Normally, fires of carbon fiber composite do release f large percentage
of fiber fragments in this length range. In a composite fabrication
location, due to machining processes, short fiber fragments will
similarly be released in large quantities. These fibers possess much
lower electrical resistance and higher mobility. Therefore they can
pose a serious threat to microelectronics. There is indeed a need to

further develop the system for detecting these short fiber fragments.
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APPENDIX A

OPERATING PROCEDURES

The following operating procedures should be observed:

1) Beware of the exposed high voltage in the system, handle it with the

precautions used for any high voltage device.

2) Check grid insulation by connecting a Simpson or other multimeter

across the lead wires of the grid. On the x10,000i1scale, the

insulation resistance should be larger than 2 MS2.

3) With all power off, assemble the prescreens in front of the grids. Use

nylon straps to tie dcwn the screen from the top Lucite insulation

plate which has two holes for this purpose. Tape the edge of the

screen with masking tape so that the grids are sealed behind the

screen.

4) Verify that the lead wires of the grid are securely locked in the H.V.

OUTPUT banana terminal on the H.V. discharge circuit.

5) Place the grid-windbox assemblies on a supporting platform with the

grids facing perpendicular to the air flow.

6) Connect the H.V. lead wires from the H.V. power supply to the H.V.
INPUT terminal on the N.V. Pulser. Make sure that the H.V. power

supply is off before performing this procedure. It is preferable to
place the H.V. power supply close to the grid-windboxes.

7) Connect a BNC Cable (RG58C) from the PULSE OUTPUT of the N.V. discharge
circuit on the windbox to the SIGNAL INPUT on the pulse integrator.

The length of the cable can be as long as 33 meters.

8) Connect the 40 VDC power supple to the DC INPUT terminal on the pulse

integrator. (Power On-Off switch 'n the OFF position.)

9) Connect the DC signal (RECORD) on the pulse integrator to the recording
system. The latter should have a rant;(- of 0 to -20 V.

10) Turn the ON-OFF switch to ON position. A clicking noise should he

audible from the pulse integrator. This is due to the rela y in the

pulse integrator which automaticall y resets signals generated by

transient response in the system. Wait for ahout half a minute, the
noise should go away and normall y the recorder should indicate .1 rear

zero reading;.

	

11?	 If the recorder is not indicating; zero, push the RESET
button to achieve the zero reading.

	

12)	 If the discharge of the 	 pulsor is not actuated, the integ nitor

will not receive anv tri };ger signal, awi the recorder should remain at

its zero rending. The long-term zero drift recorded on the recorder

should not exceed 0.1 V11hr.

7i



13) In case the drift is large, uncover the button metal cap labelled ZERO.

Using a small jewelers screwdriver, turn the miniature potentiometer
and notice the improvement on the stability. Do it in 1/8 of a turn
increments.

14) Connect the AC power cords of the fans in the grid-windbox assemblies

to a Variac set at 50 V rms. A single Variac can be used for all fans.

Verify that the fans are working.

15) A calibration of air flow speed can be performed at this point. Remove
the metal cap on top of the windbox. Insert a Hastings-Raydist air
flow probe into the box, and make sure that the sensing element of the

probe is centered in the box (Figure 10). Read the flow speed on the

readout console of the gauge. Also one should measure the background
air flow speed outside the windbox as a reference.

16) Actuate the H.V. power supply. In this process, a few sparks could be
generated in the grid due to some residual carbon fibers collected from

the previous test that were not completely cleaned out.

17) A system check-out can be performed at this point. A carbon fiber
brush is useful for the check-out. It can be made by attaching to one
end of a 15 cm (6-in) wooden stick, a carbon fiber tow or bundle with

pressure- sensitive tape. By inserting the brush into the prescreen

and touching the grid electrodes, sparks will be generated. The
recorder should register a negative voltage increase, indicating that
the counting and integration circuits are working properly.

18) The system is *_hen ready for live action. One may turn off the H.V.
power supply and turn it on just prior to the live test.

19) Select a convenient chart speed on the recorder; the total counts will
be recorded automatically, since the relay circuit in the pulse

integrator will automatically reset the recorder for about every 100

counts.

20) After the test, turn off all power to the system. Disassemble the

system in the reverse order of that described above.

21) Disassemble the grids from the windboxes by removing the nylon screws.

Clean them by air jet, acetone or minor grit blasting as necessary.

22) Wipe clean the rest of the system with acetone or similar solvent.

23) Reassemble the grids onto the windboxes.

24) In case of emergency, the first step of system shutdown is to turn off
all power switches. Discharge the H.V. pulser by touching the grid
with the carbon fiber brush before disassembling and diagnosis.
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APPENDIX B

A computer program has been developed to read in five sets of data, perform

a set of calculations and plot the results. The program consists of five
subroutines in addition to the main program and uses two in-house library
routines. The main program is primarily a calling routine; only one calculation

is performed in it.

The first routine called is named SETUP; it is called only once. This
routine reads in the data and establishes the basic parameters. The first two

arguments represent the dependent and independent variable arrays respectively

and the last argument is the number of points in these arrays. The next routine

called is BCNPLT. It initializes the plotter and must appear before the first
call to PLT, the plotting routine. The next set of routines are always called

together with the same arguments but may be called separately if desired. The
first argument represents an array containing the values of the dependent

!	 variable and the second argument represents an array containing the values of the
independent variable. The third argument represents the number of points to be
plotted or printed, and the final argument is a flag for the titles. PLT uses

many routines from the JPL library. CAL is the data reduction routine. The
first argument of this subroutine is the array of raw data and the second is the
array of reduced data. The final argument represents the total number of data

points. A smoothing routine, SMTH, has been included to adjust the curves of the
reduced data. The first and second arguments are the arrays containing the
values of the dependent and independent variables respectively. The last
argument represents the number of points in these variable arrays. The values of
the independent and dependent variables are altered in the subroutine. SMTH uses

an IMSL (International Mathematical and Statistical Libraries) routine called
IQHSCLI. This routine smooths the curves by using three points to fit a straight
line. IQHSCV generates the coefficients for the straight lines through each
point, and then values for the dependent variable may be determined for new

values of the independent variable. The final subroutine called is ENDPLT; this

routine closes the graphic. package.

Several cards must follow the @ MAP card prior to the @XQT in order to use
the IMSL routine and the graphics routines. Each line startz in cclumn one.

LIB LIB* IMSL$
LIB LIB* JPL$
CLASS P
LIB PLOT* PLOT, VECTOR* VECTOR, LI * CLIB$
@SYM, P PUNCH$ „G9PLTL

Some of tnese cards may have to be changed for other systems.

The data cards must be organized in the following way. The first card sets
the number of points read into the variable arrays. This card is formatted by
13. The maximum number of points that may be read is 61. The next three cards
contain the alphanumerics for the data table titles and the plot titles. Fach
title may be up to 80 characters; the values in the first 18 colamns of each
title are used as the v-axiq labels for the graphs. After the title cards come
the values for the areas (m`) and the wind speeds (m/s) for the five different
grids. Only one card is necessary to describe each grid, totaling five cards.
The area is always listed first and the format specification is EIO.2, F5.2. 11!e

remaining cards contain the raw data for each of the five grids. line format
specification is 1OF8.l.	 If the number of points is greater than ten, the values

may be continued o:; subsequent cards until the data set is complete.
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