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ABSTRACT 

The ex t rac t ion  o f  thermal energy from la rge  LWR and coa l - f i r ed  p lants for  

long distance transport t o  i ndus t r i a l  and residential/comnercial users i s  ana- 

lyzed. Transport as high temperature water i s  considerably cheaper than trans- 

p o r t  as steam, ho t  o i l ,  o r  molten s a l t  over a wide temperature range, The 

del ivered heat i s  shown t o  be competit ive w i th  user-generated heat from o i l ,  

coal, o r  electrode bo i l e rs  a t  distances we1 1 over 50 km when the pipe1 ine  oper- 

ates a t  high capacity factor .  Thermal energy storage makes meeting o f  even very 

low capacity f ac to r  heat demands economic and feasible. Storage gives the 

u t i l i t y  f l e x i b i l i t y  t o  meet coincident e l e c t r i c i t y  and heat demands e f fec t i ve l y .  



SUMMARY 

It has long been recognized tha t  there are thermodynamic benef i ts  t o  the 

j o i n t  production o f  e l e c t r i c i t y  and heat, and i t s  aliases: cogeneration, Dual 

Energy Use Systems (DEUS), and Combined Heat and Power. E l e c t r i c i t y  and heat 

can be supplied by t h i s  means w i t h  less fuel  than by separate production, by 

a fac to r  o f  as much as two. Greater use o f  t h i s  technique has been i nh ib i t ed  

i n  the past. by economic, technical, and i n s t i t u t i o n a l  problems. 

Some o f  these problems can be mi t igated by economic storage and transport 

o f  thermal energy. The study here described examined the range o f  thermal 

transport media, thermal storage concepts, and system configurations, under cur- 

ren t  scenarios o f  f u tu re  energy costs, and found areas tha t  should be a t t rac-  

t i v e  t o  u t i l i t i e s  and t o  those concerned w i th  energy conservation. 

The study was performed f o r  The E lec t r i c  Power Research I n s t i t u t e  as 

RP1199-3, "Combined Thermal Storage and Transport f o r  E l e c t r i c  U t i l  i t y  Appl ica-  
* 

tions," W. Hausz, EPRI, 1979 [I] . Thermal energy transport media compared 

include high temperature water (HTW), steam, hot  o i l  (Calor ia HT-43), and molten 

sal t (HITEC) . Thermal energy storage means examined included aboveground s to r -  

age o f  HTW, dual-media hot  o i l  and rock, and below-ground storage o f  HTW i n  

excavated caverns. The economic and technical data i n  these storage concepts 

were derived from an e a r l i e r  re la ted  study [2,3]. 

* Numbers i n  brackets designate References shown a t  the end o f  the paper. 



The bas ic  methodology used was the comparison o f  the de l i ve red  cos t  o f  

heat, a t  the  end o f  a  dual p i pe l i ne  (sendout/retum), w i t h  t he  cost  o f  heat 

from a1 t e r n a t i v e  sources, i n  do1 l a r s  per  megawatt hour thermal ($/MWht - 

equiva lent  t o  m i l  ls/kWh) . Comparable. spec i f ied economic scenario assumptions 

were used f o r  a l l  a1 ternat ives.  The data and methodology i s  t h a t  o f  the EPRI 

Technical Assessment Guide (TAG) [4], except t h a t  mid-1976 do1 l a r s  were used 

Both conventional l i g h t  water reac to r  (LWR) and h igh s u l f u r  coa l - f i r ed  

steam p lan ts  (HSC) were considered as sources f o r  ex t rac ted  heat. The value o f  

the ext racted heat was equated t o  the cost  o f  the e l e c t r i c i t y  l o s t  because o f  

the heat ex t rac t ion .  Incremental costs o f  c a p i t a l  equipment such as heat ex- 

changers and the thermal t ranspor t  system, and of the  operat ing costs such as 

pumping power and thermal losses through i n s u l a t i o n  gave a cost  value t o  the  

de l ivered cost o f  heat. This was compared t o  steam o r  sens ib le  heat generated 

by the conversion from o i l  o r  coal f i r e d  b o i l e r s  o r  e lect rode bo i l e r s .  

Over a  wide range o f  temperatures, from under 100°C t o  over 300°C, h igh 

temperature water (HTW) was a more economic t ranspor t  medium than steam, h o t  o i l  

o r  molten s a l t .  For HTW a t  227OC (440°F), a  50-km p ipe l ine ,  and operat ion a t  

h igh capaci ty f a c t o r  (0.75) o f  the dual energy use system (DEUS) and the com- 

pe t ing  a l te rna t i ves ,  there was a marked advantage o f  DEUS over a l te rna t i ves .  

The margin o f  b e n e f i t  was 13 percent over l o c a l  c o a l - f i  red  bo i l e r s ,  46 percent 

over o i l - f i r e d  b o i l e r s  and over 70 percent over e lect rode bo i le rs .  

For lower capaci ty fac to rs  o f  the heat demand, the cap i t a l  cost  o f  the 

thermal t ranspor t  and terminal  equipment reduced the advantage o f  DEUS; a t  about 

0.30 capaci ty f a c t o r  (CF) , i t  became zero versus both coal and o i  1  b u t  s t i  11 

had an advantage over e lect rode bo i le rs .  

* Use 1.26 f a c t o r  f o r  rough mid-19798. 
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If thermal energy storage i s  added t o  both ends o f  the p ipe l ine  t o  main- 

t a i n  i t s  capacity f ac to r  a t  0.75 o r  higher, the advantage i s  regained f o r  low 

CF heat demand patterns. Even w i th  the added costs o f  storage, the margin of 

DEUS i s  20 percent over o i  1 f i  red bo i l e rs  a t  0.25CF and 19 percent over coal. 

The thermal storage permits completely decoupl i n g  the supply and demand 

o f  heat; a u t i l i t y  can supply maximum e l e c t r i c a l  output during peak hours and 

reduce e l e c t r i c  output i n  order t o  charge the TES during o f f  peak hours, whi le  

the heat demand peak can be a t  any time o f  day inc luding coincidence w i th  the 

e l e c t r i c  peak demand. This addi t ional  bene f i t  adds t o  the economic a t t rac t i ve -  

ness o f  the DEUS. 

JOINT PRODUCTION OF HEAT AND POWER 

U t i l i t i e s  must recover a l l  f i xed  and var iable costs through revenues re-  

ceived from e l e c t r i c i t y  generated. When some pa r t  o f  the steam mass flow 

through the turb ine system i s  extracted before the shaft-work o f  normal opera- 

t i o n  has a l l  been delivered, the e l e c t r i c  output i s  decreased. The thermal 

energy extracted must re tu rn  revenues a t  l eas t  equal t o  those l o s t  from elec- 

t r i c  output. A reduction o f  one megawatt o f  e l e c t r i c i t y  may accompany the 

ex t rac t ion  o f  from 3 t o  10 megawatts thermal (MWt). The r a t i o  o f  e l e c t r i c i t y  

l o s t  t o  thermal energy gained, an equivalence fac tor  Fe, determines the min- 

imum cost t h a t  must be charged f o r  heat: Ct = Fe x ce. 

Using the 1 i t e r a t u r e  on d i s t r i c t  heat ing w i th  HTW gives a sca t te r  d i  a- 

gram of values o f  Fe versus temperature, f o r  unspecif ied technical conditions. 

I n  add i t ion  t o  t h i s  data, conventional LWR and HSC plants, used as reference 

p lants.  i n  C2,31 were computer analyzed w i th  the assistance o f  General E l e c t r i c ' s  

Large Steam Turbine Division, t o  f i n d  Fe as a funct ion o f  both the amount o f  

thermal energy extracted and the temperatures and s ta te  (HTW o r  steam) a t  



which i t  i s  extracted from and returned t o  the steam cycle. .F igure  1 

sumnarizes these resul ts .  
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Figure 1. Equivalence fac to r  r e l a t i n g  heat cost t o  e l e c t r i c i t y  cost. 

The value o f  Fe i s  independent o f  the amount o f  thermal energy extracted, 

except t h a t  design constraints o f  the turb ine system l i m i t  the maximum safe 

extract ion. Extract ion as HTW appears l i n e a r  versus temperature f o r  the small 

sample o f  ext ract ion points analyzed; there i s  sound thermodynamic reasoning 

t o  confirm t h i s  over a reasonable range o f  temperatures. Since the coa l - f i r ed  

p lan t  has a higher cycle e f f i c i ency  than the LWR, the equivalence fac to r  i s  

higher, ie,  i t  takes fewer Mlt t o  lose a 8,. For both p lants the water 

extracted i s  returned t o  a convenient po in t  between feedwater heaters a t  a 

re tu rn  temperature c i r ca  80°C. 

The economic methodology used [4] assumes 6 percent annual i n f l a t i o n  

i nde f i n i t e l y ,  and provides a scenario f o r  each fue l  ; nuclear, coal, and o i l  

w i th  a higher escalat ion r a t e  than the general i n f l a t i o n  rate.  This r e f l e c t s  

i n  the investment costs as a f i xed  charge ra te  (FCR) o f  0.18, t o  give uniform 



l e ve l i zed  annual costs over the  30-year l i f e  o f  the  plants.  Fuel and O&M costs 

a re  a l so  l eve l i zed  t o  an equivalent value between the f u e l  cos t  i n  the year  o f  

i n i t i a l  operat ion and 30 years l a t e r .  This roughly doubles the  u n i t  cos t  o f  

f ue l s  compared t o  cur ren t  f u e l  pr ices, making the cos t  o f  e l e c t r i c i t y  and heat 

look h igh t o  someone used t o  using cur ren t  values. For the reference power 

p lan ts  operat ing a t  0.75 CF, the u n i t  cos t  of e l e c t r i c i t y  i n  1976 d o l l a r s  f o r  

1990 i n i t i a l  operat ion i s  42.48 $/MWhe (same as m i l  1s per kwh) from the LWR and 

53.21 $/Muhe from the  HSC. As an example then, the equiva lent  cos t  o f  heat 

ext racted a t  227°C (440°F) i s  9.56 $/MWht from the LWR and 13.40 $/MWht from 

the HSC. 

Above about 300°C i t  i s  d i f f i c u l t  t o  consider HTW. The dash l i n e  for  the  

HSC extending t o  538°C (1000°F) i s  an estimate o f  Fe f o r  steam. Since steam i n  

la rge  quan t i t i es  can on ly  be ext racted a t  a few points, between turbines, f o r  

any p a r t i c u l a r  t u rb i ne  design, i n t e rpo la t i on  i s  d i f f i c u l t .  For steam tempera- 

tures below 300°C, the value o f  Fe does no t  d i f f e r  g rea t l y  from the curves f o r  

HTW, depending on the d e t a i l s  o f  ex t rac t i on  and re tu rn .  

THERMAL TRANSPORT 

For a1 1 t ranspor t  f l u i d s  considered, dual pipe1 ines (sendout and re tu rn )  

were assumed t o  be buried, w i t h  per iod ic  U-shaped bends inser ted  f o r  thermal 

expansion, and thermal i n s u l a t i o n  w i t h  a moisture p ro tec t i ve  outer  layer  around 

each pipe. Computer op t im iza t ion  o f  pipe1 i ne  cost  was performed f o r  every case 

considered. For each p ipe  diameter considered, the thermal i nsu la t i on  thickness 

i s  var ied i n  steps t o  minimize the sum of the annual costs f o r  cap i t a l  charges 

on the i nsu la t i on  and the cos t  o f  heat l o s t  through the insu la t ion .  I n  an i t e r a -  

t i v e  ca lcu la t ion ,  p ipe  diameter i s  incremented i n  2-inch steps ( f o r  convention- 

a l l y  ava i lab le  p ipe  sizes),  and the annual costs f o r  c a p i t a l  charges on the pipe- 

1 i n e  and i t s  i n s t a l l a t i o n  and on the pumps o r  compressors requi red a re  added t o  

the cos t  o f  pumping power ( e l e c t r i c i t y )  and t o  the costs of the insu la t ion-p lus-  



losses to find a minimum. Allowable stresses i n  the pipe are limited to 60 per- 

cent of the yield strength, as for moderately populated open country. The yield 

strength i s  derated per handbook data for the required pipe temperature. 

With this  program, transport media compared were HTW, steam ( w i t h  condensate 

return), a hot oil. such as Exxon Caloria HT-43, and a molten s a l t  such as DuPont 

HITEC (eutectic of sodium and potassium nitrates and n i t r i tes ) .  Each was exam- 

ined over i t s  useful temperature range; each was examined over a range of trans- 

ported thermal power levels from under 100 MUt to 1000 MWt. Figure 2 sumnarizes 

the results. 
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Figure 2. Cost of thermal energy transport dual pipeline. 

The curves shown are for a sendout thermal power of 300 MWt. The mass flow 

required for this  level varies with the temperature and enthalpy difference 

between the sendout and return flows. As the return temperature i s  80°C i n  a l l  

cases, the requfred mass flow, hence the annual costs, r i se  sharply as the 

sendout temperature decreases toward this limit. A t  h i g h  temperatures, high 

pressure containment i s  required for HTW or steam, so for these fluids the 

cost rises rapidly w i t h  temperature in the upper range. Oil and molten sa l t  



do not  requi re high pressure a t  high temperature, but the cost o f  temperature 

derat ing ( o r  use o f  more exot ic  pipe materials) does tend t o  counterbalance 

the ef fect  o f  increasing enthalpy di f ference w i th  temperature. 

For steam, saturated steam was considered up t o  300°C; above tha t  4.5 MPa 

(650 ps i )  steam a t  var iable superheat was considered up t o  538°C (lOOO°F). The 

spec i f i c  volume increases w i th  temperature, cont r ibu t ing  t o  the r i se .  i n  annual 

cost. 

The ordinate f o r  these curves i s  the annual cost  i n  thousands o f  do l la rs  

per ki lometer (K$/km/yr). A t  roughly the temperature of minimum transport cost 

o f  HTW, i.e. 227°C (440°F) the b o i l e r  feedwater temperature f o r  the LWR, annual 

costs a t  0.75 capacity f ac to r  are 141 K$/km inc luding the cost o f  heat losses 

through insu la t ion  o r  116 K$/km without it. This l a t t e r  t o t a l s  4.8 M$ f o r  50 km 

and adds 2.94 $/MWht cost increment t o  the cost o f  heat extracted. Both the 

del ivered heat and the pumping energy required are proport ional t o  capacity fac- 

tor; the other cost components are independent o f  it. A t  lower capacity factors 

the p ipe l ine  annual costs must be al located over fewer MWht del ivered so the 

cost o f  del ivered heat increases. The cost increment per MWht del ivered would 

decrease w i th  the power leve l  o f  the pipe1 ine, roughly as ~ / ( ~ o w e r ) ' / ~  over the 

range 100-1 000 MWt. 

COST OF ALTERNATIVES 

Cononly used loca l  sources o f  i ndus t r i a l  process heat are o i l -  o r  gas- 

f i r e d  bo i l e rs  ( f o r  steam) o r  heat exchangers ( f o r  sensible heat), and coal- 

f i r e d  bo i l e rs  where environmental constraints permit. For lower temperatures i n  

res ident ia l  and comnercial use, o i l  and gas dominate. 

O i l  and natura l  gas as sources are high cost  fuels, bu t  permit r e l a t i v e l y  

low cap i ta l  costs f o r  the boi ler /heat  exchanger. Using s im i l a r  leve l  i z i n g  

assumptions, the fuel costs o f  o i l  and gas based on [4] g ive 6.64. $/MBtu f o r  



1 percent su l fu r  residual .  o i l ,  and 7.55 $/MBtu f o r  gas, o r  22.66 and 25.76 

$/MWht. Fixed charges on the o i l -  o r  gas-fired capi ta l  equipment a r e  only 1.13 

$/Wht a t  0.75 CF. A t  85 percent bo i l e r  eff ic iency,  and including variable  O&M, 

the  variable  costs  f o r  o i l  a r e  26.86 $/MWht and t o t a l  costs  a r e  28 $/MWht. Costs 

a r e  c l ea r ly  dominated by the  cos t  of f u e l  and the bo i l e r  eff ic iency.  For small 

s izes ,  eg, res ident ia l  use, the boi le r  eff ic iency wi l l  be much lower, hence the 

cos t  of heat higher. 

Coal-fired boi le rs  have a lower fuel  cos t  but higher capi ta l  plant costs  

f o r  the boi le rs ,  fuel handling and storage, and f l u e  gas desulfur izat ion and 

cleanup. With a level ized fuel cos t  of 2.08 $/MBtu o r  7.09 $/MWt, a bo i l e r  

eff ic iency of 82 percent, and variable  O&M including consumables of 2.82 

$/MWht, the variable  charges t o t a l  11.47 $/MWht. Exxon [5] provides a basis  

f o r  capi ta l  costs of small coal-f i red plants  (100 t o  400 thousand pounds of 

steam per hour) which, adjusted t o  1976 do1 l a r s  and an investment cos t  basis  

comparable t o  t h a t  used f o r  the reference e l e c t r i c  plants ,  gives fixed charges 

of 6 $/MWht a t  0.75 CF. These to t a l  t o  17.47 $/MWht. 

For very small boi 1 e r s ,  industry may use electrode boi 1 e r s ,  using e l e c t r i c -  

i t y  a s  "fuel. t t  For these the fixed charges a r e  t r i v i a l ,  but the variable  

charges very high. The to t a l  must  be over 45 $/Wht, and counting transmission 

and d is t r ibu t ion  fixed charges and losses may be over 65 $/MWht even a t  high 

capacity fac tor .  

COMPARISON WITH ALTERNATIVES 

A method of comparing the del i vered cos t  of heat  w i  t h  the  a1 t e rna t i  ves 

avai lable  t o  users i s  displayed by the example in  Figure 3. The cost  of heat 

delivered (COHd) is found by adding the cost  increments incurred in  each s tep.  

For t h i s  base case example, the  u t i l i t y  supplies 300 MWt heat extract ion a t  

227OC sendout, 80°C return.  The capacity f ac to r  is  0.75, depicted as  18 hours 
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Figure 3. Approach t o  COHd base case. 

a day, although the actua l  outages may be forced outage o r  maintenance d i s t r i b -  

uted through the year. The consumer demand f o r  heat i s  a lso a t  0.75 CF, match- 

i ng  the  u t i l i t y  output  i n  t ime so no storage i s  needed. 

For these condit ions, i t  was ind ica ted  t h a t  the equivalence f a c t o r  Fe f o r  

the LWR gives a cost  o f  heat a t  the sendout po in t  (ConS) of 9.56 $/MWt. Some 

terminal  equipment i s  requi red a t  both ends f o r  su i t ab le  in ter faces.  A t  the  

sendout end, add i t iona l  feedwater heater capaci ty must be added t o  handle the 

mass and heat f lows o f  heat ex t rac t ion .  The cost  o f  these heat exchangers i s  

the 0.60 $/MWht increment shown as H X .  Assuming t h a t  the pipe1 i n e  i s  a closed 

loop of h igh p u r i t y  water, a s i m i l a r  heat exchanger capaci ty i s  needed a t  the 

user end f o r  steam o r  sens ib le  heat product ion f o r  the user 's  processes. 

The cost  increment f o r  50 km o f  p i pe l i ne  i s  2.94 $/MWht as described. A1 1 

these components t o t a l  13.70 $/Mllht. However, thermal energy losses through 

the optimized i n s u l a t i o n  reduce the amount o f  heat delivered; the assigned COHd 

must be l a rge r  t o  produce the revenues requi red t o  recover a l l  costs. For 50 

km o f  pipe1 ine, and 300 MWt the pipe1 i n e  losses a re  23 MWt o r  7.8 percent. 



Heat losses  occur continuously; power output is assumed a t  0.75 CF so  a l a rge r  

percentage a s  indicated in  the  denominator in  Figure 3 is required t o  cor rec t  

COHd. The corrected COHd is 15.30 $/Wht. This can be compared t o  the  cos t  of  

heat from o i l - f i r e d  bo i le rs  of 28 $/MWht a s  shown, o r  the 17.47 $/MWht found 

f o r  coal -f i red boi 1 e r s  a t  t h i s  CF. The benef i t  over oi 1 ,  gas, o r  e lectrode 

boi le rs  is  great ;  t h a t  over coal-f i red bo i le rs  is small. 

To get  a s imi la r  comparison f o r  both the  LWR and HSC plants  over a range 

of temperatures of  HTW t ransport ,  Figure 4 shows the COHd from both plants  over 

the temperature range t o  over 300°C, and the cos t  of t he  o i l  and coal a l terna-  

t i ve s ,  which a r e  e s sen t i a l l y  independent of temperature over t h i s  range. The 

low temperature of t he  minimum cos t  points r e f l e c t s  not only pipel ine cos t s  

(Figure 2)  but the equivalence f a c t o r  (Figure 1 ) .  There is a s ign i f i can t  tem- 

perature  range f o r  which the COHd from both LWR and HSC plan ts  i s  lower than 

local coal-f i red bo i le rs .  

Figure 4. Delivered cos t  of  heat vs sendout temperature 
f o r  high capacity f a c t o r  case (CF = 0.75). 
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THE USES OF TES 

For lower capacity factors o f  the user 's heat demand, the cost  o f  de l i v -  

ered heat from the p ipe l ine  w i l l  increase i f  the p ipe l ine  must operate a t  the 

user 's capacity fac tor .  Thermal energy storage should be considered. 

Thermal energy storage (TES) has two functions: To keep the pipe1 i ne  and 

terminal equipment capacity f a c t o r  high, and t o  provide f l e x i b i l i t y  i n  supply 

management t o  the u t i l i t y  t o  meet heat and e l e c t r i c i t y  demands. For the former 

use, only TES a t  the user end o f  the p ipe l ine  i s  needed t o  buffer the difference 

between supply and demand. For the l a t t e r  use, TES a t  both ends i s  desirable t o  

decouple the e l e c t r i c i t y  demands on the u t i l i t y  from user demands f o r  heat. 

Earl i e r  studies [2,3] found tha t  underground storage o f  HTW i n  excavated 

caverns, and dual-media TES using insulated tanks f i l l e d  w i th  rocks o r  taconite, 

w i th  the voids p a r t l y  f i l l e d  w i th  hot o i l  used as a heat transfer f lu id,  were 

the two lowest cost forms o f  TES. Caverns are lowest cost bu t  only feas ib le  

where the geology i s  sui table; dual-media storage has a low technical r i s k  w i th  

taconi te and complete f i l l i n g  o f  the voids w i th  o i l ,  but  would be considerably 

lower cost w i th  r iverbed gravel and reduced use of o i l  by dra in ing each tank 

except during the charging and discharging period. 

The cap i ta l  costs o f  TES have energy-dependent and power-dependent parts.  

For the cavern storage these components were found t o  be [I]: 4500 $/MWht 

stored and 13,000 $/Wt maximum charge o r  discharge rate. For the dual-media 

storage, they are: 1740 $/M4ht, 66,000 $/MWt. Clearly, the cavern storage i s  

superior f o r  rap id  charging and discharging; dual-media storage becomes supe- 

r i o r  when slow charge.rand discharge o f  15 hours o r  more i s  needed. 

An example portrayed i n  Figure 5 i l l u s t r a t e s  the method and benef i ts  o f  

storage fo r  low capacity f ac to r  heat demands. The same 300 MWt, 50 b pipe- 

l i n e  i s  assumed; the same sendout and re turn  temperatures o f  HTW (227/80°C), 

and source, an LWR, are assumed. The heat demand pat tern i s  made extreme; 



900 MWt i s  requ i red  f o r  s i x  hours a t  mid-day, o r  t he  capaci ty  f a c t o r  i s  0.25: 

Ex t rac t ion  o f  heat from the  u t i l i t y  p l a n t  i s  assumed t o  be completely mis- 

matched, ie ,  occurs s o l e l y  dur ing 12 n igh t t ime hours when.e lec t r i c  loads are 

l i g h t .  

To meet the load and keep the  p i pe l i ne  capaci ty  a t  0.75, storage o f  a 

day's heat ex t rac t i on  i s  necessary, 5400 MWht, w i t h  two- th i rds a t  the user end 

and one- th i rd  , a t  the u t i l i t y  end. The t r a i n  o f  incremental costs i n  COHd are 

as shown. The sendout cost  o f  heat and the pipe1 i n e  cos t  a re  unchanged. 

Because o f  the  reduced capaci ty f a c t o r  a t  each end, terminal  equipment (HX) 

costs r i se ,  corresponding t o  0.50 CF a t  the u t i l i t y  .and 0.25 a t  the user end. 

The cost  o f  5400 M4ht storage, dischargeable over s i x  hours i s  6.20 $/MWht 

w i t h  dual-media storage, o r  3.24 $/MWht w i t h  cavern storage. F igure 5 uses 

the former, more expensive bu t  more avai lab le .  As w i t h  F igure 3, a cor rec t ion  

t o  the sum o f  these costs i s  made t o  account f o r  the 10.5 percent energy losses 

dur ing transmission. The r e s u l t i n g  COHd of 23.90 $/MWht i s  t o  be compared t o  

t h a t  f o r  o i l - f i r e d  b o i l e r s  a t  0.25 CF, 30 $/MWht o r  f o r  c o a l - f i r e d  b o i l e r s  a t  

the same CF, 29.47 $/MWht. 

- --  

- - -  

- PIPELINE 300 MWt 

UTILITY 
I - 

CF = 0.75 - 
, THERMALENERGY -1 L c K A d E  - 
3 STORAGE 3 BOILERS - 

VERSUS 30.00 $/MWh 

Figure 5. E f f e c t  of storage on COHd. 



Figure 6 depicts the comparable results  for  other. transport temperatures 

f o r  both the LWR and the HSC sources. T h i s  case of extreme mismatch and low 

capacity factor also shows considerable margin fo r  COHd over the al ternatives 

f o r  both sources over a wide range of temperatures. Designs fo r  specific u t i l i -  

t i e s  and s i t e  areas will usually fa1 1 between the no storage and maximum storage 

cases w i t h  intermediate margins of benefit. 

ALTERNATIVES: 

i 
5 
3 
I" 

Figure 6. Delivered cost of heat vs  sendout temperature 
w i t h  storage, and demand CF = 0.25. 

BENEFITS AND PROBLEMS 

CONSERVATION. DEUS or joint  production of heat and power conserves 

energy. A 1000 We LWR can, w i t h  near-term available technology, produce 775 

MUe and 920 Wt del fvered, a t  21S°C, w i t h  14 percent less primary energy than 

separate production of t h i s  heat and e lect r ic i ty .  The savings i s  s t i l l  greater 

if lower temperature heat is wanted or i f  backpressure turbine technology is 

used t o  ra ise  the ra t io  of heat t o  e lec t r i c i ty  output. A concomitant u t i l i t y  

benefit is the reduction of the waste heat discharge requirements. 

MARKET. A significant portion of the industrial process heat market and 

the need i n  a l l  sectors for  space heating and hot water, which total  t o  roughly 



44 percent of t he  U.S. primary fuel  usage, can be served. Temperature requ.ire- 

ments data  of t he  thermal energy use, both past  and fo recas t ,  a r e  sparse  and 

disparate .  A project ion derived from several sources [6,7,8] was projected f o r  
, .  

t he  year  2000 a s  shown i n  Figure 7. 

SOURCES: Reistad, 1975 
Behling, '1977 
Puttagunta, 1975 
G.E. Co. ( i n t e rna l )  
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Figure 7. Estimated U.S. energy use by temperature range AD 2000. 

In 25OC increments the  expected annual use in  exajoules (EJ) o r  quads is 

shown. Residential and comnercial space heating and hot water needs a r e  in the 

50-100°C range; some comnercial use, eg absorption a i r  cooling, is in  the  100- 

125OC range. About 40 percent of the  indus t r ia l  heat  use is d i r e c t  heat o r  

steam above 250°C, which is not the  most l i k e l y  market f o r  transported heat. 

While some indus t r ia l  heat  use below 250°C is sens ib le  heat most of i t  is 

process steam. One d i spa r i t y  found is t h a t  between t h e  temperature a t  which 

heat is  generated and t h a t  a t  which i t  is used. The sol  i d  bars ind ica te  the  

estimated temperature d i s t r i bu t ion  of steam produced; t he  dotted bars ind ica te  

the  temperature d i s t r i bu t ion  a t  which i t  is used. I t .  is convenient where multi- 

p le  steam temperatures a r e  needed t o  generate a t  t he  highest  temperature and 



t h r o t t l e  some pa r t  o f  the f low t o  the other temperatures and pressures needed. 

The - and + indicate the estimated t rans fer ra l  o f  pa r t  o f  the thermal energy to  

a lower temperature regime by t h r o t t l i n g  o r  cascaded processes. 

Transport o f  HTW a t  227OC can meet a l l  sensible heat needs a t  200°C and 

lower. For conversion o f  HTW t o  steam a f a i r l y  high temperature drop i s  

required i n  the heat exchanger t o  convert most o f  the del ivered energy t o  steam. 

HTW a t  227OC can be 75 percent converted t o  0.2 MPa (30 ps ia)  steam w i th  the 

remainder as sensible heat f o r  water and space heating, o r  can be 15 percent 

converted t o  1.55 MPa (225 psia) steam a t  200°C, 30 percent converted t o  0.50 

MPa (70 psia) steam a t  150°C, 30 percent a t  0.2 MPa and the 25 percent remain- 

der as sensible heat. A major por t ion  o f  the steam needs below 200°C depicted 

i n  Figure 7 can be met from HTW a t  227"C, but a problem of matching the mu l t i -  

temperature needs o f  each consumer may ex is t .  Transport a t  277°C o r  higher 

w i l l  o f  course permit higher conversion rates t o  the higher temperatures o f  

steam w i th  only moderate penalt ies as i n  Figures 4 and 6. 

PEAK POWER BENEFITS 

The use o f  TES t o  decouple u t i l i t y  supply from user demand f o r  heat 

permits the u t i l i t y  t o  load storage and supply heat needs during off-peak 

hours. It can produce f u l l  ra ted e l e c t r i c  output during peak hours, say for 

6 hours a day, 2200 hours per year. Generation o f  such e l e c t r i c i t y  a t  0.25 CF 

normally costs the u t i l i t y  about twice as much as base load e l e c t r i c i t y ,  

counting the increase i n  the f i x e d  charges per MWhe required by the low CF, 

and the more expensive fue l  and/or lower e f f i c i ency  p lan t  used f o r  peaking 

generation. With the peaking f l e x i b i l i t y  o f  the DEUS system described by Fig- 

ures 5 and 6, peaking e l e c t r i c i t y  isC'made a t  the base load cost. A1 te rna t i ve l y  

the bene f i t  can be credi ted t o  the thermal output, decreasing the COHd by 6 t o  

10 $/MWht. 



The use o f  TES d i r e c t l y  for  e l e c t r i c  peaking power was studied i n  depth i n  

[2,3] and found not  t o  be a t t r a c t i v e  t o  u t i l i t i e s  unless major cost reductions 

were possible. Using the same cost data and storage methods, t h i s  study [I] 

finds TES a t t r a c t i v e  f o r  peak power production. The reasons f o r  t h i s  d i f f e r -  

ence should be b r i e f l y  explained. 

The d i r e c t  approach was t o  ex t rac t  steam off-peak, s tore i t  as HTW o r  dual 

media, and discharge i t  by converting t o  b o i l e r  feedwater o r  t o  steam t o  run 

through a peaking turbine. The turnaround e f f i c i ency  was low (40-80 percent), 

because o f  the degradation i n  steam condit ions enter ing the peaking turb ine 

compared t o  t h a t  extracted f o r  storage. The cost  per kWe o f  peaking turbines 

and re la ted  equipment was high because o f  low e f f i c i ency  from the degraded 

steam. The cost o f  storage l i m i t e d  discharge t o  the number o f  hours l i k e l y  t o  

be used frequently. When discharged, there was no f l e x i b i l i t y  t o  maintain 

power i f  the peaking requirement continued, so u t i l  i t y  reserve capacity could 

not  be reduced. 

I n  the DEUS approach, the turnaround e f f i c i ency  f o r  peaking power i s  100 

percent and the turb ine e f f i c i ency  i s  maximum, not  degraded during peaking 

hours. The tu rb ine  cost f o r  rated capacity i s  included i n  the foregoing 

analyses, and i s  not an extra. If the peaking requirement continues beyond 

s i x  hours, rated e l e c t r i c  output can be continued, so there i s  f u l l  capacity 

c r e d i t  for  i t  i n  determining reserves. I t  i s  only  necessary t o  assure tha t  

the storage i s  replenished before the next day's peak heating demand. 

CONCLUSIONS 

We conclude t h a t  not  only  are DEUS systems economically v iab le  w i t h  ava i l -  

able technology but  also they can provide added benef i ts  t o  u t i l i t i e s  i n  peak- 

ing  power f l e x i b i l i t y  and reduced thermal discharges. This route t o  energy 

conservation could provide the la rges t  cont r ibu t ion  t o  energy savings, scarce 



f u e l  displacement, and urban p o l l u t i o n  reduct ion ava i lab le  t o  us w i t h i n .  the  

next two decades. 

Imp1 ementation wi 11 no t  proceed r a p i d l y  wi thout  a 1 arge and convincing 

demonstration. Are there s i t e s  where the concentrat ion o f  i n d u s t r i a l  process 

heat, and res iden t ia l / connerc ia l  heat requirements can use DEUS e f f e c t i v e l y ?  

A study by Dow Chemical Co. [9] found 119 loca t ions  i n  the U.S. which requ i re  

a t  l e a s t  160 MWt as process heat w i t h i n  a two-mile radius.  An add i t iona l  24 

loca t ions  needed 650 MWt w i t h i n  a f i ve -m i l e  rad ius and another 19 loca t ions  

requi red over 1300 MWt w i t h i n  a ten-mil e radius.  The study covered steam use 

a t  under 200°C (400°F) and omit ted p lan ts  smal ler than 70 MWt. The s i t e s  

occur i n  36 States; about h a l f  o f  them are i n  the Gul f  Coast States. 

A recent study o f  d i s t r i c t  heat ing i n  the Twin C i t i e s  area, Minneapolis 

and S t .  Paul, [ l o ]  showed a po ten t i a l  need f o r  3000 t o  4500 MWt peak thermal 

energy product ion i n  two growth scenarios. The study shows benef i t s  i n  cost  

and energy savings f o r  up t o  2000 t o  3000 MWt o f  seasonal energy storage. 

Opportuni t ies abound. The next step however must be a s i t e - s p e c i f i c  study 

and design w i t h  the  cooperation and p a r t i c i p a t i o n  o f  the responsible u t i  1 i t y ,  

l oca l  indust ry ,  l o c a l  and State regu la to ry  agencies, and the Department of 

Energy. 
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