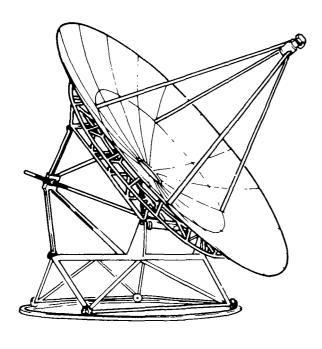
THERMAL ENERGY STORAGE EFFORT AT JPL

Donald L. Young Jet Propulsion Laboratory

OUTLINE OF THE PRESENTATION

- JPL INTEREST IN THERMAL ENERGY STORAGE
- IMMEDIATE APPLICATIONS
- METHODOLOGY FOR JPL EFFORT
- TASKS FOR JPL SUPPORT TO SLL
- JPL IN-HOUSE WORK
- PLANNED PROCUREMENTS
- SCHEDULE


JPL PARABOLIC DISH PROGRAM OBJECTIVES

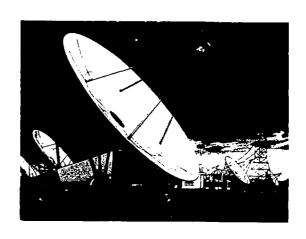
- TO ESTABLISH TECHNICAL, OPERATIONAL & ECONOMIC READINESS OF PARABOLIC DISH SYSTEMS FOR ELECTRIC AND THERMAL APPLICATIONS
- TO DEVELOP PARABOLIC DISH SYSTEMS TO THE POINT AT WHICH SUBSEQUENT COMMERCIALIZATION ACTIVITIES CAN LEAD TO SUCCESSFUL MARKET PENETRATION

JPL INTEREST IN THERMAL ENERGY STORAGE

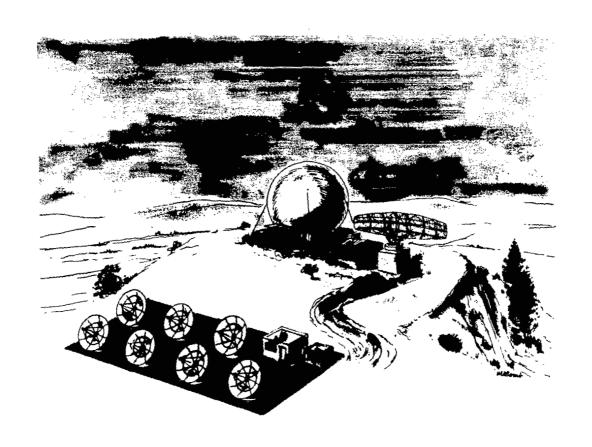
- PROVIDE TECHNICAL SUPPORT TO THE THERMAL ENERGY STORAGE FOR SOLAR THERMAL APPLICATIONS (TESSTA) PROGRAM
- IDENTIFY CONCEPTS, ASSESS THEIR FEASIBILITY, AND DEVELOP ENGINEERING DESIGNS OF PARABOLIC DISH LATENT THERMAL ENERGY STORAGE ELEMENTS
- PLAN AND CONDUCT SUBSYSTEM RESEARCH EXPERIMENTS AT PARABOLIC DISH TEST SITE (PDTS, EDWARD) TO DEMONSTRATE THE READINESS OF THE LATENT HEAT ENERGY STORAGE
- IDENTIFY CONCEPTS AND ASSESS THEIR FEASIBILITY FOR ADVANCED, HIGH TEMPERATURE (1500-2800°F) THERMAL STORAGE

CURRENT APPLICATIONS

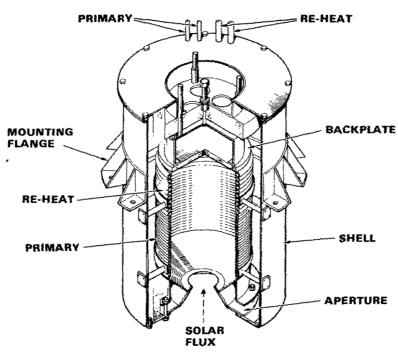
- SMALL COMMUNITY SOLAR THERMAL POWER EXPERIMENT (EE-1)
- ISOLATED LOAD EXPERIMENTS SERIES (EE-2 ETC)
- THERMAL APPLICATIONS EXPERIMENTS SERIES (EE-3)
- ADVANCED DISH STIRLING


ENERGY STORAGE REQUIRED TO BUFFER THE ENERGY CONVERSION SYSTEM FROM HARMFUL TRANSIENTS & PROVIDE BETTER SYSTEM CONTROL

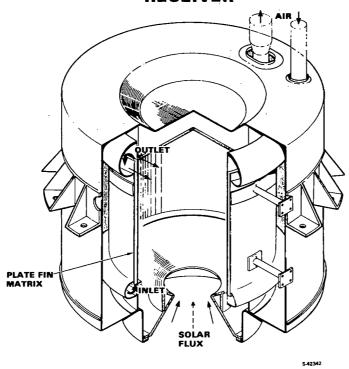
CURRENT APPLICATIONS


SYSTEM	ECS/SIZE	STORAGE TEMP RANGE	APPLICATION/TIME PERIOD
EE-1	RANK INE/15 KWe	800—1300 ⁰ F	GRID CONNECTED, SMALL COMMUNITY/1981
EE-2	BRAYTON/15 KWe	1200~1700 ⁰ F	ISOLATED/1981
EE-3	THERMAL LOADS	TBD	ISOLATED/1982
STIRLING	STIRLING/20 KWe	1500—1600 ⁰ F	ENGINEERING EXPERIMENTS 1981 SYSTEM TESTS 1984

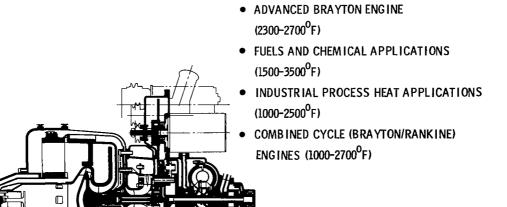
BRIEF DESCRIPTION OF PLANT

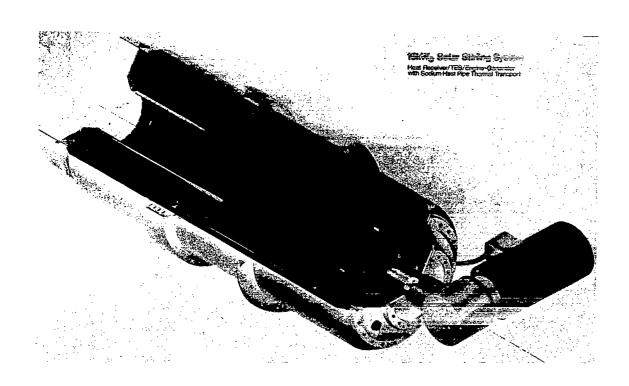

- 1 MW PLANT USING NEAR TERM TECHNOLOGY
- APPROXIMATELY 10 ACRE SITE WITH 65 PARABOLIC CONCENTRATORS, EACH 11 METERS IN DIAMETER AND EACH HAVING ITS OWN:
 - RECEIVER
 - ENGINE
 - GENERATOR

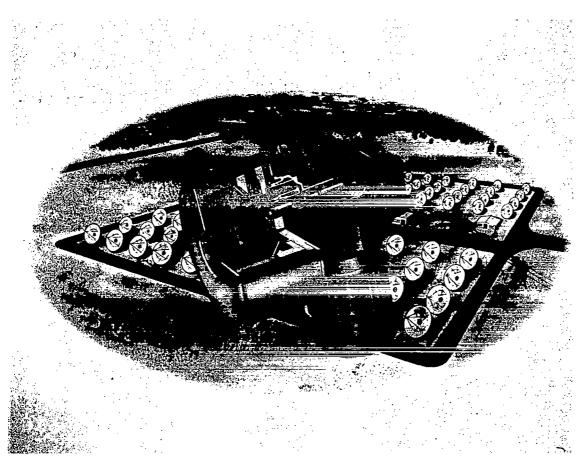
THE ELECTRICAL OUTPUT OF THE INDIVIDUAL GENERATORS IS COMBINED AND CONNECTED TO A SMALL COMMUNITY DISTRIBUTION SYSTEM

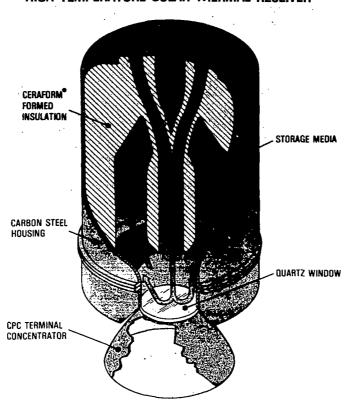


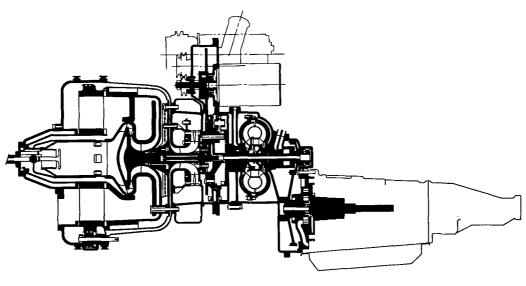
STEAM-RANKINE SOLAR RECEIVER



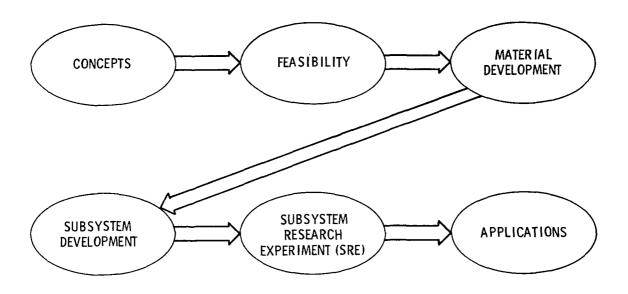

S-4305


PLATE FIN BRAYTON SOLAR RECEIVER

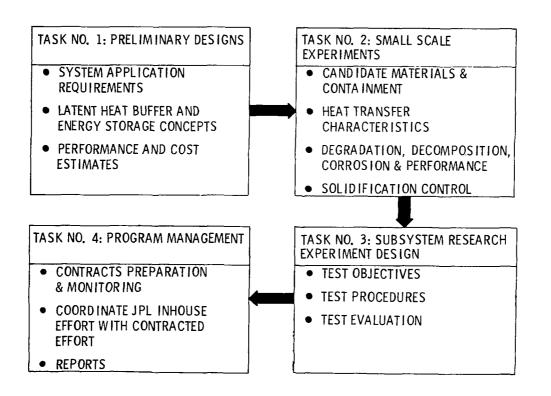

FUTURE APPLICATIONS



PRESSURIZED MATRIX HIGH TEMPERATURE SOLAR THERMAL RECEIVER



ADVANCED GAS TURBINE POWERTRAIN



MS 5241-1

METHODOLOGY FOR THE JPL EFFORT

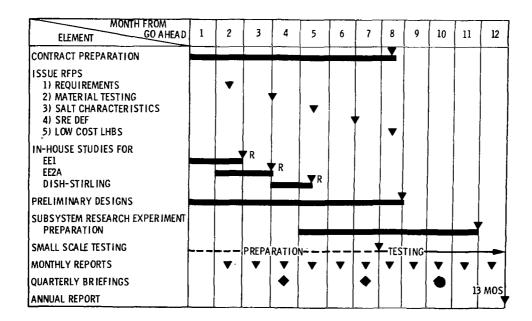
TASKS FOR JPL SUPPORT TO SLL

JPL IN-HOUSE EFFORT

PURPOSE: TO DEVELOP THE NECESSARY BACKGROUND, DATA BASE, AND CAPABILITY TO WRITE AND MANAGE INDUSTRIAL CONTRACTS FOR THE DEVELOPMENT OF THERMAL ENERGY STORAGE FOR DISH-APPLICATIONS.

PLANNED EFFORT IN:

- APPLICATION REQUIREMENTS
- CONCEPTS SELECTION OF ~50 KWHT TES USING PCM FOR 800-2400⁰F TEMPERATURE RANGE
- NOVEL IDEAS OF HEAT TRANSFER AT HIGH TEMPERATURES
- STORAGE MEDIA SCREENING & SELECTION
- CONTAINMENT MATERIALS, CORROSION, AND STABILITY OF PCM
- DEVELOPMENT OF COMPUTER CODES FOR THE TRANSIENT ANALYSES OF LATENT HEAT STORAGE SYSTEMS
- DEFINE AND PLAN SUBSYSTEM RESEARCH EXPERIMENTS


A LIST OF PRELIMINARY THERMAL ENERGY STORAGE COMPONENTS

- 1. PHASE CHANGE MATERIALS
 - NaF (~1810⁰F)
 - NaF + MgF₂ (\sim 1526⁰F)
 - NaF + KF + MgF₂ (~1265⁰F)
 - $K_2CO_3 + Li_2CO_3 + LiOH (\sim 800^0 F)$
- 2. HEAT EXCHANGER CONCEPTS
 - FLEXING SURFACES
 - HEAT PIPES
 - FLUIDIZED BEDS
 - TUBE & SHELL WITH SCRAPING
- 3. CONTA INMENT
 - RECEIVER INTEGRATED .
 - ENGINE INTEGRATED
 - SEPARATE TANK

PLANNED PROCUREMENTS

- 1. DEFINITION OF REQUIREMENTS FOR DISH MOUNTED LATENT HEAT BUFFER ENERGY STORAGE FOR THE FOLLOWING ENERGY CONVERSION SYSTEMS:
 - RANK!NE
 - BRAYTON
 - STIRLING
- 2. NOVEL CONCEPTS OF LATENT HEAT STORAGE OF SMALL SIZES
- 3. MEASUREMENT OF THERMAL PROPERTIES OF SELECTED PHASE CHANGE MATERIALS
- 4. DEGRADATION AND DECOMPOSITION OF THE SELECTED PHASE CHANGE MATERIALS FOR CYCLIC THERMAL LOADING
- 5. SOLIDIFICATION CONTROL OF THE SELECTED PHASE CHANGE MATERIALS
- 6. CORROS ION CONTROL OF THE SELECTED HIGH TEMPERATURE PHASE CHANGE MATERIALS
- 7. SUBSYSTEM RESEARCH EXPERIMENT DESIGNS

SCHEDULE

