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LEE SIDE FLOW FOR SLENDER DEETA WINGS
OF FINITE THICKNESS

Joachlm Szodruch

Summary J1%%

An experimental and theoretical investigation was carried
out to determine the lee side flow field over delta wings at
supersonic speeds. The experiments were performed with models
of the same slenderness s/l = 0.3 but different cross-section
shape. The known types of flow, separated by the Stanbrook-
Squire boundary into leading edge and shock-induced separation
have been verified. However, further types of flow exist and a
detailed survey of the boundaries is necessary.

The influence of the cross-sectional shape on the lee side
flow 1s discussed for the thick wing inside the reglon of shock-
induced separation. In detall parameters like wedge angle at the
center line, angle between upper and lower surface as well as the
lower side shape are consildered.

A theoretical method to describe the flow field is lined out,
where boundary conditions as a result of the experimental study
are needed. The computed flow field with shock-induced separatibn
is satisfactory.

¥TILR Report 23, Institute for Av1ation and Spaceflight, Technical
University, Berlin, 1977.

¥¥Numbers in the margin indicate pagination of original foreign
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Notation
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speed of sound

magnitudes of the components of the vector

magnitudes of the components of the vector

thickness parameter

pressure coefficilent

base area of delta wing
diffusion cross-section area
test sectlon cross-section area
helght of delta wing
iteration factor

wing length

Mach number

critical Mach number

statlc pressure

total pressure

Reynolds number

half span width

temperature

volume

aerodynamle coordinate system

body fixed coordinate system

body flxed coordinate system fixed at the leading

edge shock
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Subscripts

A
CL

tangential plane vectors /5

normal vector

unlt vectors in aerodynamlc system

unit vectors in body flxed coordinate system

Mach number vector
velocity vector

angle of attack

trace angle of internal shock
displacement boundary layer thickness
density ratlo over shock

wedge angle

form angle (wedge angle for delta wing in the
symmetry plane)

ratio of specific heats
sweep angle

Mach cone angle
Prandtl-Meyer angle

volume parameter
inclination angle of shock
local flow direction
separation line angle
leading edge angle
transformed semi-span

values in the region of the nondetached flow
symmetry plane values




e values perpendicular to internal shock

K values for wake wedges

N normal component values

p values behind perpendicular shock (Pitot values)

PZ value of the primary vortex center

S leading edge shock values

SO values for zero intensity of internal shock

SZ values of the secondary vortex center

T tangential component values

00 incident flow values

0 rest varilables

1 values upstream of the leading edge shock

2 values in the expansion region

3 values downstream of the internal shock

4 values 1n the central region (internal expansion)
1. Introduction /7

The aerodynamlc deslign of hypersonle alrcraft led to slender
configurations with delta-shape plan form, strong sweepback of
the leading edges and a substantlal relative thickness. The aero-
dynamlc properties of such alrcraft shapes are determlned primarily
in the case of supersonic flight by the flow condltions along the
lower slde. The 1lift is produced almost exclusively by the over-
pressure along the underside. Suction forces along the upper slde
(lee side) have a very small influence. This makes 1t understand-
able why only a small degree of attentlon was given to the flow
fleld along the lee side of delta wings in the supersonic range.
There were only a few surprising results in the determination of
the aerodynamic heating on the top side of reentry bodles and
space shuttle models which led to work on lee side flow. Measure-
ments in the wind tunnel and in free flight tests [1-8] showed that
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the temperature values on the upper silde of a reentry body have
a maximum value for zero incidence angle (o = 0°) at the tip.
Along the symmetry plane, the temperature decreases according
to a hyperbollc law to the tralling edge. However, completely
different conditions exlst when the body has an incildence angle.
For example, 1f the incldence angle is o = 200, there 1s strong
temperature drop immediately behind the tip, which 1s followed
by a temperature increase. The maximum value corresponding to

o = 0° 1s then exceeded. Within 20% of the wing chord, tempera-
ture differences of AT = 250° K have been measured. Depending
on the inclident flow conditions, several temperature peaks could
be determlned.

The results contrast to a certain extent with conventional
1deas about the flow conditlons along the lee slde of delta-
shape bodles. Up to the present 1t was always assumed, for the
most part, that conlcal flow conditions prevail over delta wings,
i.e., the state varlables remain constant along rays through the
tip of the wing. If one considers a continuous boundary layer
development, one expects only slight and basically equivalent tem-
perature varlations. The results of the heating measurements show
that the flow along the lee side of delta wings was important.

Previously known investigations about the l:e side flow re- /8
ferred primarlly to thin delta wings. They showed that as the
incident Mach number increases, there 1s a change in the type of
flow =~ from a flow with a leadlng edge vortex to a flow with
vortices caused by shock-induced boundary layer separations. This
type of flow with shock-induced separations, which only occurs at
the higher incldent Mach numbers, is especially interesting because
of the practical heating problems.

The purpose of the present paper was to make a contribution to
the problem of understanding the processes along the lee side of
delta wings. The experiments attempt to make a close analysis about
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the transition from the leading edge Lo the shock-Induced separa-
tion. By using thick delta wings with different cross-sections,
we wilish to investigate the influence of different geometric
parameters on the flow field. Using the experimental results, we
developed a computation method with whilch one can describe the
lee slde flow for shock-induced separation.

2. Present status of the results of lee side flow

The flow fleld of a delta wing with an incldence angle in a
supersonic flow can be broken down Into two characteristic regions.
The pressure silde or underside faces the incident flow and 1s
dominated by the influence of the leading edge shock. The lee
slde or top side is ir. the wake of the model, and this is the
region which will be described in the followlng according to our
present state of knowledge.

Figure 1 shows four flow models for the lee slde of thin,
slender delta wings with straight and sharp leading edges. The two
flgures on the left show the conditlons for supersonic flow of the
leading edges for both a small and a large angle of attack of the
wing. The two sketches on the right show the corresponding condi-
tlons for supersonlc inclident flow of the leading edges. We can
then glve the following general descriptlon of the lee side flow
according to Squire [9]. TFor Mach numbers normal to the leadilng
edge which are substantlally below the speed of sound and for small
angles of attack, the flow is not separated along the entlre top
side (Flg. 1a). By increasing the angle of attack, leading edge
flow separation occurs with conically, rolled-up vortices and
secondary separations (Fig. 1b).

Completely different conditions are found when the flow at
the leadlng edge occurs at Mach numbers which are close to the
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speed of sound or even above it. Figure lc¢ shows that for small
angles of attack there 1s an expansion around the leading edge
with nonseparated flow along the top slde, ~ wesk shock which
runs through the £ilp of the delta wing 1s responsible for the
deflection of the flow. At higher angles of attask, the shock

1s so strong that 1t induces a separation of the boundary layer
with conical vortices again (Fig. 14). In both cases, the separa=-
tion in the central region of the wing shows a reattachment of the
flow.

Figure 2 shows the flow regilons of thin delta wings as a funec-
tion of the angie of attach Ay and the Mach number MN, both normal
to the leading edge. TFour flow reglons can be distingulshed here,
which were first dlscussed by Squire [10] in this dlagram with the
boundaries shown. Vortex formation at the leading edge and shock-
induced separation with attuched and separated leading edge shock
are known phenomena.

The Stanbrook-Squlire region Indlcates where the transition
from the leadlng edge separation to shock-induced vortex formation
ocecurs. Thils boundary was determined from experiments with models
of different cross-section shapes and sweepback, but with a sharp
or a round leading edge. TFor small angles of attack, the results
agree with those of Squire [9] using the investigations of Lindsay
and Landrum [11] for profiles with sharp or round leading edges
and the Mach number range 0.6 < My < 0.8. The agreement is good.

Considering the papers dlscussed above, we can see that the
two flow types, leading edge separation and shock-induced separa-
tion, are very important. Therefore, it seems appropriate to dis-
cuss these in more detail in the following and to present exlsting
theories. Furthermore, we would like to discuss a flow field which
1s very important for this work. At very high angles of attack,
the vortex flow above the wing can explode and can produce large
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area turbulent fi#lds. This "vortex breakdown" 1s of interest

especlally because of certain experimental results in thie paper. /10

In the last section we willl briefly describe aerodynamlic aspects
in the heating reglon along the lee side, because Important In-
formation about the top side flow willl be glven from it.

2.1. Leadling edge separation

The leadlng edge separatlion of delta wings with a sharp lzad-
ing edge cah be explalned In the following physical terms. There
1s a flow around the leading edge from the pressure side to the
leeward side. In this way, a high negative pressure forms in the
reglon directly adjacent to the leadlng edge. The large pressure
gradlent which 1s produced in this way between the top side and
the bottom side produces a flow separation. It starts from the
leading edge and develops into a spiral conlcal vortex above the
lee slde. A flow component 1s produced along the bottom side of
the primary vortex, which Is alighed with the leading edge. How-
ever, 1t is not large enough to overcome the pressure increase be-
tween the underpressure peak induced by the vortex and the leading
edge. There 1s a secondary separation which occurs, and again 1t
rolls up into a conical vortex. Figure 3 shows the entire flow
fleld together with the characteristic stream lines and the pressure
distribution.

First, we will discuss the vortex as the main element of the
lee side flow of leading edge separation. According to measurements
of Earnshaw {12], the primary vortex can be primarily separated into
three parts. First of all, there 1s a vortex surface which emerges
from the leading edge and which "supplies" the second part, the vor-
tex 1tself. This can be assumed to be frictionless and conlcal.

The third part is the vortex chord, a small region In the center of
the vortex in whilch friction influences are not negligible. 1In this
region, large gradients of total pressure, statlic pressure and
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velocities have been measured. Experiments show, in comparison
with the theoretical analysls of the vortlices by Hall [13]), that
there is good agreement with respect to the vortex shape and
veloclity distributilon.

In general, thils vortex structure was confirmed in most ex-
periments, for example, the flow fleld investigatlions of Drougge
and Larson [14], as well as Thomann [15]. One detall effect we
wish to ilnvestigate 1s how the vortex positlion and pressure dis-
tribution or life coefflclent change under the influence of varl-
ous parameters.

According to Okerbloom and Sarantsev [16], an increase in
the Mach number for fixed angle of attack leads to a dilsplacement
of the vortex centers from the leading edge towards the central
plane. On the other hand, the helght of the vortex core above
the model surface remains about the same. From this behavior,
we can see that the underpressure peak also decreases with in-
creasing Mach number and angle of attack. Since the size and
position of the underpressure maximum varies greatly in the vari-
ous experiments and theories, Hurley [17] attempted to find a
correlation of the varlous data, using the angle of attack, sweep
angle and Mach number.

Influences of geometry of delta wings on the flow conditions
have been reported by Fellows and Carter [18] for wings and wing-
body combinations. Greenwood [19] showed that wlth differing
sweep angle, large negative pressure coefflcients are 1induced near
the leading edge for all Mach numbers, and there is only a slight
change in the central reglon of the delta wing.

According %o Fig. 1 and oil film image photographs, there
are wall stream lines parallel to the incldent flow in the region
of the attach flow near the central plane. In contrast to this,
Morrls and Couch [20] found in wind tunnel tests an additional
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component in the direction of the symmetry line in the central
reglon after reattachment of the flow with very thick reentry
bodies. The oil lines then run tangentially to the central
plane downstream. ‘

In the case of asymmetric vortex separations from the top
side, one finds a further deviation from the normal behavior of
the fibw, which can occur primarily for wings in a symmetric,
incident and slipping flow.  Gapeynski [21] investigated this
with elliptical cylinders, for which the asymmetric states were
determined when a certaln angle of attack was exceeded.

In general, most results show a high similarity of the flow
conditions in the subsonic and supersonic range when there is
leading edge separation, as experiments of Lee [22] have con-
firmed.

Most of the calculation methods for the slender delta wing
with subsonic leading edg are based on the theory cf Jones [23].
The flat delta wing 1s treated in planes perpendicular to the
incident flow, just like a plate with vertical incident flow,
using potential theory. 1In thils first paper, the leading edge vor-
tex was not included; therefore, the following theoretical models
of Legendre [2U4], Adams [25] and Edwards [26] were concerned with
the extension of the problem to two concentric vortex cores above
the lee side in a potential flow. Brown and Michael [27] intro-
duced a further substantial improvement of the vortex model, by
connecting the concentric vortex cores with the leading edge using
a vortex surface, and the vortex cores are represented as vortex
lines starting from the tip of the model. Mangler and Smith [28]
extended this model further. In this case a spiral-shaped vortex
Is dilvided into an outer part which emanates from the leading edge
and an inner part which forms the foundation of the calculations.

10
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The two last models, however, dild not bring about any substan-
tial improvement in spite of the fact that different models were
used, so that both were used as the foundations for further cal-
culations of Smith [29] and Nenni and Chee Tung [30]}. The formed
and thin delta wings were calculated by Carafoll and Staicu [31],
by superimposing known flow flelds and flow flelds calculated
wlth the method shown above. A refinement of the vortex model is
achlieved by simulation of the secondary vortex, which is re-
placed by a stagnation point flow by Pershing [32].

The above models for calculating the leading edge separation
are based on the thecry of slender bodles and Mach number influ-
ences are not considered. In experiments 1t was shown that as the
Mach number increases, the vortex becomes flatter and its helght
over the leeward slde decreases. These results were used by
KlUchemann [33] and Squire [34] and they replaced the real flow
by vortices which are dlrectly above the top slde of the wing in
thelr theoretical calculations.

Polhamus [35) glves a completely different solution method.

The method is based on the "intuitive" assumption that the normal
forces 1n the case of leading edge separation with flow reattach-
ment in the central range are equal to the suction forces when
there is flow around the leading edge with reattachment on the

top side. Thils trial solution also considers Mach number influ-
ences. Very similar equations are obtalined for the 1lift coeffi-
clent from a mathematical model of Coe [36], even though here the
model of concentrated vortex cores is used agaln. Along the axils
of these vortex lines, the effects of mass supply are introduced
in the calculatlon using additional sinks. Even though the results
of Polhamus agree much better with experiments compared with those

calculated by Coe, the latter method seems to Justify the "intultive"

procedure of Polhamus. An addilitlonal method of calculating conical
flows 1s the method given by Hummel [37], which determines the flow
varlables according to the theory of slender bodles in cross-sec-
tlonal planes with source distributions and vortex distributions

) 11
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along the contour. In this method, arbitrary body shapes can be
used, but the leading edge vortices were not considered in the
flow model of this theory.

Table la 1s a summary of the various theories for leading
edge separation which deals with new flow models.

Summarlzing, we can say that there is a vast amount of
knowledge about lee side flow in the case of leading edge separa-
tion. In experiments, Lt was possible to clearly identify the
dominating vortex systems. However, simpliflied flow models were
Introduced 1ln the theory. The agreement between the theory and
the experiments regarding the pressure distribuhion and position
of the vortlices ls par$ly unsatisfactory.

2.2. Shock-induced separation /14

St

Shock-induced separatlion along the top side of delta wings
occurs in most cases of a supersonlic leadlng edge. If the lead-
Ing edge shock 1s attached, then 1t is possible to conslder the
top slde and the bottom slde separately. There is no flow around
the lzadling edge, bub Instead there is an expansion which can be
well-described using the Prandtl-Meyer flow. In this reglon the
flow 1s attached on the top slde. The expansion then causes a
deflection in the directlion of the central line. Because of
symmetry, the flow must be parallel to it in the central plane,
l.e., the transverse speed must be zero there. Since this back-
ward deflection 1s to occur in a supersonic flow, i1t is created
by a compression shock which runs through the tip of the delta
wing. If the Intensity of the shock i1s large enough, then there
ls a separatlon of the boundary layer downstream and a vortex
forms whlch has a structure similar to the case of leadlng edge
separatlion (Fig. 4). This model is supported by the investiga-
tions of the flow fleld with speclal regard for the position and
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appearance of the internal shock, whlch was carried out by Bannink
and Nebbeling [38-39]. The pressure measurements of Larcombe [40]
clearly show the exlstence of thé expansion with the subsequent in-
ternal shock 1n the vicinity of the symmetry plane. Also, the
pressure distributions of Squire [41-42] on delta wings with
different cross-sectlion shape and sweepback show thils. Here, it
was posslble to show that changes i ¢he cross-section geometry

of the delta wings does not bring about any substantial changes in
the overall flow fleld, which has also been confirmed by investiga-
tions on the space shuttle [8, 43-44],

Pike [45], in experiments with round and sharp leading edges,
showed that blunt edges change the 1ift only slightiy, but the
high pressure in these reglons does contribute to the drag. The
lowering of the peak of the delta wing [10-=12] to reduce the heat-
ing also influences the flow in the symmetry plane.

Rao and Whitehead [5] established a flow model for the better
understanding of the processes at high Mach numbers. It 1s shown
in Fig. 5 and shows that the flow 1s not conical over a large part
of the delta wing. The basls of this 1s a hypersonic "two-layer"
boundary layer with varlous momenta. The pressure increase through
the internal shock 1s different for the two layers and in this way
a vortex 1s created inside the boundary layer. The vortex again
in turn brings about a rarefaction of the boundary layer in the
central region, which is related to a reattachment of the flow in
the inner part of the wing. The flow model of Rein [U46], shown in
Fig. 6, is also not conical. It is the result of oll film photo-
graphs. If the leading edge shock is separated, one can observe
leading edge vortices in the tip region, which, however, have to
be explained here as the result of the mutual influencing of the
shock and the separation bubble. The separation bubbles then form
downstream at the leading edge, and agailn internal shocks can ocecur
on them. Since the vortices can no longer be "supplied" by the
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leadlng edge, they appear as free vortlces in the central reglon
of the wing. Experiments wlth two-dlmenslonal wedges have shown
that at least qualitatively there is a simlilar behavior between
the flows perpendicular to the leadlng edge of a delta wing and
the flow around a wedge with the same aperture angle, at least
in the reglon of the leading edge.

Large wedge angles between the top slde and the bottom side
perpendicular to the leading edge or hligh angles of attack lead
to a separated leading edge shock. Because of the subsonlc region
which 1s downstream from the shock, leading edge separation can
again occur, according to Ghoral [47]. Since the subsonic region
Is limlted to a relatively small reglon in the vieinity of the
leading edge, a shock-induced separation occurs, as was confirmed
by investigations of Collis (48) with six delta wings. Figure 7
glves a comparison of the flow models and shows the cross-section
flow over a thick (Collis) and a thin (Cross [49]) delta wing in
the hypersonic range. The boundary layer shape is different and
thls 1s related to the number of internal shocks, which can be one
or two along each half of the wing. In both models, the shape of
the boundary layer in the region of the symmetry plane seems un-
realistic, because here one can assume a continuous transition from
one half of a wing to the other. The most important data of the
experiments described above are collected in Table 2.

In the following we will now present the most important
theories for describing the lee side flow for supersonic léading
edges and will compare them with experiments. Maslen [50] dis-
cusses the top side flow only as a speclal case of the general flow
around a delta wing with the sclution of the nonlinear equations
for conical flow. The calculation has no shocks and is divided in-
to Prandtl-Meyer expansion and hyperboliec or elliptic regions,
within which it iIs possible to glve a solution of the differential
equation using characteristics or relaxation. The conical flow
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over a plane delta wing with supersonis leading edge was solved
by Clarke and Wallace [51] using an inyegral method in second
order terms wlth respect to the angle'ﬁf attack. Internal shocks
cannot occur here. On the other hand, Fowell [52] calculated both
the continuous case wilthout a shock as well as the discontinuous
case which, under some conditions, ls ‘he only possible solutlion.
Babayev [53] has proven that continuoas flow cannot occur. This
solution consists of Prandtl-Meyer expansion, determination of

the shape of the internal shock and the shape of the adjacent
central region using iteration methods. Pike [54] calculated the
pressure distribution along the top side of a surfboard using the
linearized theory. From parameter studles, he concludes that wlth
increasing sweepback of the leading edge, the internal shocks 1n-
crease In intensity. 1In order to give a correct interpretation of
this result, we have to mention again that the internal shock de-
pends on the additionally induced component during expansion around
the leading edge. The Prandtl-Meyer expansion, in turn, depends
on the angle of attack and Mach number perpendicular to the lead-
ing edge. For a large sweepback, however, the MN is reduced, but
the angle of attack GN becomes larger, and in thls way the estlma-
tion of the intensity of the internal shock ls made more diffilcult.

A three-dimensional characteristic method in which the internal
shock 1is represented by ilsentropic compression was established by
Beeman and Powers [55]. The special difference method of Kutler
and Lomax [56] is used in order to solve the three-dimensional,
frictionless and nonlinear basic equations for the top side as well.
An extension by Walkden, et al. [57], using boundary values from
the characteristic method,‘did result in Improvements to the calcul-~
ation program, but the internal shocks with a real intensity are
not calculated. Miyazawa [58], using comparisons between experi-
ments and modifled theory of Kutler and Lomax, showed that on the
lee side of cones, no good agreement could be expected. In par-
ticular, for the hyperbolic region of the cross-section plane,
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Christophel [59] determines the flow fleld using the characteristic
method. This seems to be limited to the localization of the in-
ternal shock. To a limited extent, the "method of lines" of South
and Klunker [60] can also be used for the lee side, but poor com-
parison possibilities result for high angles of attack, because in
the real flow friction effects prevall. Extensive flow fleld in-
vestigations of Cross [49] were the foundation of a calculatlon
method which, however, 1s based in part on empirical data. A model
is used in which the flow expands at the boundary layer and 1t is
deflected by a shock. The shock which 1s attached to the boundary
layer produces a separatlon directly on the surface, whlch again
results in a substantial thickening of the boundary layer behind
the shock. The calculation method, however, 1s restricted only to
expansion over the boundary layer, the internal shock and the ad-
Jacent central reglon. The vortex formation inside the boundary
layer 1is ilgnored. The shape of the boundary layer and a parameter
of the area eqguation 4f the internal shock must be introduced into
the calculation as empirical data.

Table 1b shows the various theories of shock-induced separa-
tion as well as the different flow models.

Numerous experiments in the area of shock-induced separation
haye heen carried out, but in only a few papers was it possible to
detect the internal shocks. This already indicates that the knowl-
edge about the processes in thils type of flow i1s still deficlent
and is usually limited to high Mach numbers and thin and flat delta
wings. The theoretical models which attempt to calculate the flow
field with closed solutions have no shocks. Also, the few papers
which include the internal shocks are not satisfactory compared
with experiments. As far as 1is known, the model of Cross is the
closest to the real flow, which was selected in the present paper
as the basis of the theoretical analysis.
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2.3. Transition from leading edge separation to shock-induced
separation

Up to the present there 1s no systematic investigation about
the transition from vortex formation at the leading edge to the
shock~-induced separation. This change in the flow type 1s very
lilkely continuous and as a first approximation can be assumed to
occur within the Stanbrook-Squire region (Fig. 2). This reglon
was determined by considering the different vortex formations from
all of the avallable experliments, both directly at the leading edge
as well as inside through an internal shock. However, we should
point out that it 1s difflcult to carry out an exact analysis of
the flow type because of ambigulties in the experimental investiga-
tion methods. For example, oil film photographs have very similar
characteristics for leadlng edge separation and shock-induced
separation. This could be the reason why a few experiments, for
example, those of Whltehead and Keyes [1l], cannot be classified
in the boundary region.

Figure 8 gives a possible model on how the transition of the
flow fields could occur. It was given by Squire [61] , supported
by "vapor screen" photographs. Starting with shock-induced vortex
formation, the flow perpendicular to the leadling edge at small Mach
numbers 1s no longer capable of completely expanding. A separation
at the leading edge occurs and, in addition, there is an expansion
with subsequent internal shock. If the Mach number drops again,
then the leading edge vortex 1s enlarged, whereas the expansion
and the shock decrease in intensity, until finally only leading
edge separation occurs with the secondary vortex.

An additional representation of the processes at the bottom
side which can be related to the change in the flow type along the
top silde was also derived by Squire [61] from the "thin shock
layer" theory. For a separated leading edge shock, the theoretical

17

RN 1o e B e peiare

bt




analysis results in a dilscontinuous transiltion from a stagnation
line in the symmetry plane to an addltional one in the vieinity

of the leadling edge. The number of stagnatlon lines depends on
the flow reglon, so that according to the leading edge (1 stagna-
tion line) or the shock-induced separation (2 stagnation lines),
we can identify the flow range. The projected stream lines of

the bottom side are also shown in Flg. 8, and a continuous transi-
tlion was assumed there.

The change from leading edge-induced separation to shock-
induced separation and the related flow processes at the bottom
side are only to be interpreted as a working hypothesls, because
no experimental investigations have been concerned specifically
with this problem.

2.4, 7vVortex breakdown

The flow field on the lee side of a delta wing with leading
edge separation can collapse for certaln changes in the parameters,
for example, 1f one increases the angle of attack. This phenomenon,
also called yvortex explosion, was explained by Werle [62] as an
expansion of the free, splral-shaped vortex because of transition
from laminar to turbulent flow. Brooke-Benjamin [63] also does
not interpret the collapse as an instabllity, as was stated in
other investigations, but as a second dynamic state of the flow.
The "vortex breakdown" usually starts downstream from the trailing
edge and wanders upstream wilth increasing angle of attack. If a
position is then reached in the viecinity of the tralling edge,
then even small angular changes are sufficient to influence the
position of the bursting point. If the trailing edge 1ls exceeded
and if the angle of attack is increased further, then according to
Lawson [64], a stable position in the vicinity of the tip of the
delta wing occurs and for sweep angles between A =70 and 850,
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they are about at 37% of wing length. Peckham [65] determined
that the bursting posltion depends on a combination of angle of
attack and sweep angle. Since inverse proportionality exists be-
tween the two, in practlce thls means that "vortex breakdown" is
antupper limit wlth respect to angle of attack, and a lower limit
with respect to sweep angle for the flow with leading edge separa-
tion.

The results of Wentz [66]), Sarpkaya [67] are of interest for
the present experiments. In the critical range, the bursting of
the vortices apparently 1s very sensitive to disturbances in symme-
try, whereas an increase in the pressure in the direction of the
vortex axls has a destabilizing effect. Even though relatively
little is known about the process of bursting and only a few
parameters can be recognized with certainty, Brooke-Benjamin [68]
and Jones [69] performed a theoretical analysis of this problem.

These phenomena are observed in all subsonic ineident flows
and only Elle [70] and Lambourne and Bryer [T71] carried out ex-
periments near the speed of sound. For supersonic Mach numbers,
in [72-73] similar flow conditions were found in experiments.
Here agaln the "vortex breakdown" was noticed because of pressure
fluctuations and a decrease in the underpressure peak downstream
of the bursting point. 01l film photographs of burst vortices in
the subsonle and supersonic range have the same characteristics.
From thls we can conclude that supersonic flow shows essentially
the same parameters and flow processes when there is'collapse of
the vortex.

Here we have attempted to discuss briefly the speciél state
of the fiow over the delta wing, which can only oceur for certain
incident flow conditions. Even in the framework of the present
investigation, the occurrence of the "vortex breakdown" is think-
able,véo that experimental results also have to be evaluated from
this point of view.
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2.5. Heating

Already in the introduction we mentloned that many problems
of lee side flow are the result of heating investigations. The
high local temperatures which occur in the central reglon of the
wing are of speclal interest. Experimental investigations of
Whitehead and Keyes [1] led to a flow model for explaining these
heating peaks. On the lee slde, splral-shaped vortices are
ereated, and their circulating motions induce components directed
downwards in the vicinlty of the symmetry plane. On the other
hand, near the body surface, a tangential veloclity component 1s
produced by the vortices which removes layers with low energy
from the central reglon in the directlon of the leading edge.
The temperature peaks then result from the type of stagnation
point flow In the symmetry plane and the boundary layer thickness
which 1s reduced there. Whitehead [2] was essentlally able to
confirm these tests and even found two peaks in the temperature
distribution along the central plane. One maximum was in the
vieinity of the vortex origin and the other was produced by transi-
tion of the boundary layer. /21

The complete suppression, or at least reduction, of the high
local temperature peaks by forming of the lee side or the leading
edge or by dropping the model tlip was not completely possible
[3'5] .

The essentlal parameters which influence the temperature peaks
were investigated by Whitehead, Hefner and Rao [6] and were summar-
ized by Hefner [8l. 1In the lower hypersonic range (M < 6), the
temperature maxima depend greatly on the Reynolds number, but its
local position can only be influenced by the angle of attack. 1In
addition, there is a limiting Reynolds number below which the heat-
ing peak is reduced greatly and abruptly with decreasing Re number.
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All of the previous experiments have shown that the greatest
temperature increases occur along the top side in the low hyper-
sonlc range. At higher Mach numbers, the reduction in the bound-

ary layer thlckness discussed above 1n the central reglon does not

occur, and instead there 1s a thickening. In this way, the flow
conditions change so that the temperature peaks are greatly sup-
pressed.

Thils summary does not assume to be complete, instead we only

wanted to indlcatve the aerodynamic aspects in the area of heating
problems.

3. Experimental facllitles

The analysls of the flow fleld on the lee side 1s essentlally
based on experiments in the wind tunnel using models wlth various
deslign parameters. In the following we will present the wind
tunnels, models and varlous test methods.

3.1. Wind tunnels

Three different wind tunnels were used for the tests discussed
in this report. The flrst experiments were performed in the super-
sonic wind tunnel of the Cambridge University Engineering Department
(CUED). The tunnel is a blow-down type with a test section cross-
section of 0.12 x 0.18 m and was operated at a Mach number Moo = 3.5
and a Reynolds number Re = 5.0 x 107 1/m.

Additional investigations were performed in the supersonic wind

tunnel of the Royal Aircraft Establishment (RAE) in Bedford with a
0.9 x 1.2 m test section and for Mach numbers of Moo = 3,5 - 4,5
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and Reynolds numbers of Re = 2.2 x 107 - 2.6 x 107 1/m.,

The high speed wind tunnel of the Institute for Aerodynamics
and Spaceflight (ILR) with a test section of 0.15 x 0.15 m was
used in the speed range of M, = 2.0 to 4,0 and for Reynolds num-
bers around Re = 1.0 x 107 1/m to test new and geometrilcally
similar models.

Since we expected large Interferences between the quasi-
frictlonless flow regions and the regions with friction, i1t is
approprlate to compare the order of magnitude of the Reynolds
numbers for free flight and in wind tunnels. Figure 9 shows
the Reynolds numbers of the wind tunnel models using the present
report as well as those of SST alreraft with design Mach numbers
between MD = 2.2 and 3.5 as well as for two reentry bodles. The
differences which occur are considered in the discussion of the
experimental results.

3.2. Models

All of the models investigated are delta wings wilth straight
and sharp leading edges and conical surfaces. Figure 10 shows
the different cross-section shapes of the Models I. These bodiles
were measured in the Cambridge and RAE wind tunnels and have a
slenderness ratio of s/1 = 0.31. Therefore, flve different top
slde shapes are availlable: two delta shapes and two conical
shapes, as well as a flat leeward side. The wind tunnel Models II
in Fig. 11 have a slenderness ratio of s/1 = 0.30 and were tested
in the ILR wind tunnel. Two cross=-section shapes are the same as
for Model I, and in addition several experiments were carried
out using the Nonweller wave rider.

The slightly modified conical model shown in Fig.kEQ has a
shape which 1s probably close to a practical shape and it also has
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a conlesal surface.

The pressure traps in the span direction were located at a
relative wing chord of x/1 = 0.55, 0.70 and 0.80. Further de-
talls are shown in the filgures.

In all cases of this investigation, the angle of attack is

measured wlth respect to the rldge line or the highest line of
the top side.

3.3. Model suspension

The type of model suspension in the wind tunnel can create
a distuarbance to the flow around the delta wing under some condi-
tlons. 1In order to estimate possible influences, we show the sus-
pensions in the three wind tunnels in Fig. 13. In the CUED tunnel,
the wedge-shaped sting only penetrates into the wake on the pres-
sure silde of the model. In the RAE wind tunnel, there 1s a rela-
tlvely thick suspension wedge, both on the pressure side and on
the lee side. In the ILR tunnel, the relatively thin sting 1is
located about three model lengths xK/I = 3,0 downstream of the
trailing edge.

3.4, Test methods and errors

In addition to statlec pressure measurements in the longl-
tudinal and span directions on the model surface, Pitot pressure
measurements were carried out at various helghts above the body
using a probe. It 1s diffilcult to estimate the influence on the
flow fleld and the resulting measurement errors if the probe enters
the reglon of the boundary layer or into a reglon of local subsonic
flow. If one uses Pltot rakes, as In the present case, then we
also have to consider the interference between the individual
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measurement tubes. Quincey and Callinon [74], at a Mach number of
Moo = 1,6, carried out experiments with rakes of different geome-
tries. According to this, the intermediate space should be at
least three times the external diameter of the tubes in order to
avold influences. The present experiments were performed with a
rake where the spacing between the individual Pitot tubes was four
times the exteri.al diameter, and so that there should be no inter-

ferences even for local Mach numbers smaller than Me = 1.,6.

In addition, the error which is the result of oblique incident
flow to the Pltot tubes has to be estimated, because the probe had
the same angle at all points of the flow fleld wlth respect to the
incident fiow. Figure 1l shows the calibration of a Pitot tube for
two Mach numbers for angles of attack of up to o = 23°. The Pitot
pressure measured at different angles of attack deviates by a maxi-
mum of 3% comparéd with the value for o = 0. For small angles of
attack of up to about a = Mo, no Pitot pressure losses could be de=-
tected.

In addition, errors occur in the measurements because of the
nonuniform flow in the wind tunnel and also because of the measure-
ment apparatus, such as the manometer, pressure transducer, scanner
and pressure lines. Also, errors caused by asymmetry in manufactur-
‘ing the model or nonexact alignment in the wind tunnel can lead to
different results on the two wing halves.

An error estimation for the pressure coefflcient in the CUED
tunnel resulted in Acp=i4m2 and even smaller values for the RAE
wind tunnel.

At low pressures, the measurement is much more problematical,
but in the atmospheric ILR tunnel for static pressure of the in-
cident flow of Poo = 34 torr, we only detected a maximum error of
Acp"i 0015 . If we consider all of the error sources, it seems
that a deviation of a maximum of Acp=i .0025 seems realistic in
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all tunnels.

Investigatlion methods for the visuallzatlion of the flow in-
cluded oil film photographs, shadowgraph photographs and Schlleren
photographs. In the Cambridge wind tunnel we took oil fillm photo-
graphs after each test run, but before we observed to make sure
that no large changes had occurred because the tunnel was turned
off. In the ILR wind tunnel, all of the oil film images were
taken during the test even though here there ls the dlsadvantage
of a reduced contrast and sharpness. Instead, in thils method one
15 able to better recognize the dead-water reglons in which the oil
collects to form drops ln some areas.

Even though we cannot make any definite statements from the
analysis of the o1l film photographs; we can st11l make a comparil.
son of several characteristics. If we conslder the vortex forma-
tion at the leading edge wlth the secondary vortices and attached
flow in the central range, then we give the deflnitions from an
oil film photograph of Fig. 15. The positions shown have been
examlned using other investligatlon methods. When speclfylng the
vortex intensity, we assumed that the lncrease in the vortex in-
tensity was related to a large radlal speed, which again makes
the wall stream lines run at a larger angle .

L, Discussion of experimental results

Statlc and Pltot pressure measurements, as well as flow
visualization methods, were used as the most important test
methods in the experiments. The resnlts will be used in the
followlng to analyze the flow reglons for the delta wings under
discussion and.to devel~p models of the processes on the lee slde.
We assume the already described two flow models for the leading
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edge separation and the shock-induced separation.

When analyzing the test results, it has been found to be
appropriate to use the components of the inc¢ident Mach number
M, and the angle of attack o in the plane perpendicular to the
leading edge of the wings instead of the values themselves.

These components are found from

e . ,
MN v M /I-s!n2 A cosz(d + ©®)

tan (a +,@) lan @
cos

o ) - -~ v~
@y @ are tan ( are tan ( —met- )

The angle 0 1s In the symmetry plane between the plane of
the leading edges and the ridge line, or the highest 1lilne on the
top side through the tip of the model. Therefore, for the flat /26
lee side we have © = 0° and the equatlons given reduce to the
equations for the flat delta wing. The equations are given in
Fig. 16. The upper part of the figure shows the normal angle of :
attack for different top sides and the lower diagram shows the
normal components of Mach number for the flat top sides as a func-
tion of angle of attack. Filgure 17 shows the reglions for the
angles ay and the Mach number My which were selected in the ex-
periments. The tests with delta wing for a flat top side coilncide
directly with the Stanbrook-Squire region; therefore, they can be
subJected to a detalled analysis. For all other models, the Oy
and My values are to the right of the Stanbrook-Squire region. The
experiments with these models attempt to determine the influence
of the cross-sectlon area for shock-induced separation. Before we
can dlscuss these problems, however, we must clarify whether conical
flow can be assumed under the prevalling conditions.
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4,1. Conical and non-conical flows

Irom the present state of knowledge of the lee slde flow, we
can see that conical and also non-conlcal flow flelds can be dis-
tinguished. For most investigations with conlcally shaped sur-
faces, conical flow can be assumed as a good approximation. How-
ever, Cross [49], Squire [41], based on the models of Whitehead,
et al. [6] and Rein [46), assumed non-conical flow over most of
the wing. 1In the followling we will examine to what extent these
statements apply for the delta wilngs and the incident flow conditions l
Investigated here. -

Figure 18 shows the result of statie pressure measurements
for six different wing chords on the delta-shaped lee slde of
Model I. The results are the 1sobars for two angles of attack.
These figures wlll be assoclated with the corresponding oill film
photographs and can be considered representative for all of the
other models. For both angles of attack, there 1s approximately
conlcal flow, but we have to point out that this assumption is
only vallid to a limited extent. Deviations from conical flow
were found for very small angles of attack as well as for very
large angles of attack, especlally in the tip region or in the
reglon of the trailing edge. Since the models were relatively /2
small, it is not possible to exactly examine the tlp region.
Therefore, the investigation was concentrated on the central

ﬂ

|

region, in which to a good degree of approximation there is conical
flow for most of the incildent flow conditions. It is assumed that
in spite of this restriction, the results are representative for
the entire flow field.

For wind tunnel tests wlth fixed model suspensions, one has
to especially consider the influence of disturbances in the wake,
which, Just like the tail flow, can 1induce a deviation from conical
conditions in the region of the tralling edge. This was established
in tests and is discussed in a special chapter.
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4,2. Results on the transition from leading edge-induced
separation to shock-induced separation

The processes involved in the transition from the leading
edge-induced to shock-induced separation are, for the most part,
unknown and will be discussed in the followling. Based on an
evaluation of experimental results, Squire [10]) gave a transi-
tlon region called the Stanbrook-Squire region. Figure 17 shows :
that the models used here with the flat top side cover the :
Stanbrook~Squire region well for Mach numbers between Mbo = 2,5 %
and 3.5. The flat lee side was selected so that the normal Mach
number 1s clearly 1ln the supersonilc region and also because there
1s sufficient comparison material from other investigations.

First of all, we analyzed the flat top slde of the delta model

and its flow field on both sides of the Stanbrook-Squire regilon,
in order to then describe the change in the flow types with in-
creasing incident Mach number for a representative angle of attack
of the wing.

4.,2.1. Separation with leading edge vortex

Leading edge vortices, according to Fig. 17, can be expected
at a Mach number of Moo = 2.5 and angles of attack between ai'= 5°
and 15°. Very large angles of attack were first not observed be-
cause the Stanbrook-Squire limit up to the present was only limited
to values smaller than Oy = 50°. /28

According to known experiments, the following model prevails :
for the lee side flow for leading edge separation. Directly at ;
the leading edge, a primary vortex separates, which again induces
a secondary vortex along the outer wing region. Near the symmetry !
plane, there is a similar flow which reaches this region from
above the vortex. Because of these conditions, a constant pressure
is established in the central region, whereas the primary and :
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secondary vortices produce underpressure peaks. Thls model was
confirmed by our own experiments, which 1s shown in the following
for a delta wing with a flat lee side at M_= 2.5 and a = 10°.

Figure 19 shows the different available Information for this
incldent flow case. A direct comparison allows one to compare
the statements many times. Attach flow in the central reglon was
confirmed by oill film tests, Pltot tests and statlc pressure tests.
The position of the primary vortex is found at about y/s = 0.55
and z/s = 0.20 and can be localized just like the secondary vortex
at about y/s = 0.78 and z/s = 0.08, as well as from oll film photo-
graphs and from the dlifferent Schlieren photographs. Based on the
low intenslty of the secondary vortex and the closeness to vacuum
conditions, one does not observe any second underpressure peak in
the pressure distribution. Therefore, we can establish that the
well-known ldeas about leading edge separation have been confirmed
by the avallable test material.

From this comparison of the varlous experiments, we obtailned
two important indications for interpreting olil film photographs
and Schlieren photographs. In oil film photographs, the vortex
center has to be assumed above the separation line, so that the
typical oil lines only show half of the vortex flow. This is in
contrast to the evaluation method of Rao and Whitehead I51, which
places the vortex core exactly in the center between the separation
line and the attached flow. In Schlieren photographs, we can ob-
serve a similar condition. There the dark gray and not-sharply-
defined regions only are indicatlons of the upper part of the vor-
tex to the core. The lower vortex reglon in the vieinity of the
wing surface can no longer be seen because of interferences and the
fact that the body surface 1s so close. These observations about
the vortex position in oil film photographs and Schlieren photo-
graphs are also supporbted by investigations of Mannerie and Werle
[75], as well as of Drougge and Larson [14].
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From the result for M_ = 2.5 and o = 10°, we can now investi-
gate the influence of angle of attack for the same ilncldent Mach
number on the flow fleld. We can expect that leading edge separa-
tion in the sense defined above willl occur, and only the geometry
of the flow field will change. The Schlieren observations for
angles of attack between o = 10° and 25° allow one to analyze
the relationship with the Pltot isobars over the wing cross-section.
Figure 28 shows that up to o = 150, the primary vortex separates
from the surface, whereas the secondary vortex essentially keeps
the same position. The region influenced by the vortlices expands
further into the dilrection of the symmetry plane and there reduces
the reglon of attached flow. Thls development of the flow fleld
up to average angles of attack 1s normal in the regions of leading
edge separatlon and was to be expected. From Fig. 20b we now find
that for higher angles of attack after o = l7.5°, there are some-
times substantial deviations from the initial flow conditions.

The primary vortlces move away further from the surface and then
increase thelir area of influence, so that no more attached flow
occurs in the central region. The vortlces on both wing halves

are close to one another in the symmetry plane and in this way in-
duce a very large veloclty component in the dlrectlion of the top
side. The flow, however, must again be parallel to the surface in
the vicinity of the lee slde and therefore is deflected through a
shock which can only be found In the direct surroundings of the
central plane. As can be seen from the Pitot isobars, for example,
at a = 200, this central plane shock 1s approximately parallel to
the surface of the wing. When the shock occurs or when the Vortices
meet In the symmetry plane, the secondary vortex could not be found
elther in oill film photographs and Schlieren photographs or in the
Pitot pressure distributions. A dead-water region is formed in the
outer wing area which is shown as a shaded region in the Pitot liso-
bars.
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The continulty of the flow for transition from small angles /30
of attack to large angles of attack 1s confirmed by the pressure
distributions over the span in Fig. 21. From the curves, we show
the positions determined from oll film photographs for attached
flow in the central region (A), secondary vortex (SZ) and primary
vortex center (PZ). Up to a = 100, one observes typlecal pressure
varlations for leading edge separation with a constant central
region and a strong pressure drop in the region of the vortex
center. This result was also obtained from the CUED wind tunnel
and shows good agreement with the ILR tests conslidering the dif-

‘ ferent tunnels and measurement methods. For the higher angle of

attack range, these clear statements can no longer be made. The

entire pressure level lles very close to the vacuum limit, so that
the effect of vortex flows on the pressure distribution is limited ;

; by this. (The pressure increase in thie outer wing area at o = 25° %

3 is already an influence of the disturbance which comes from the *
tall region, recognized in Schlieren photographs.) The result ‘
from oil film photographs can be compared very well with the pres- |
sure distribution and support previous results and models.

Figure 22 shows the result of oll film photographs in Schlieren
photographs and gives the poslitions of the attached flow in the
central region and the position of the vortices above the wing for
M, = 2.0 and 2.5. The typical change in the position of leading
edge vortices with increasing angle of attack is known from tests
by Monnerile and Werle 75 and the theoretical analysls of Pershing

32 . The agreement with the present vortex positions determined
and these results show that for M 2.0 we can draw the coneclu-

sion that there 1s leading edge separatlon for the angle of attack

region " up to o = 20°. TFor M_= 2.5, on the other hand, above
| a = 15° there is an unexpected change in the vortex position, which
| indicates that then there is no . classical leading edge
' separation.
t : : 31
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Summarizing, we can say that to the left of the Stanbrook-

Squire region between 0 = 5° and 15° there is leading edge separa-
tlon wilth primary and secondary vortices. From a further increase ;
of the angle of attack, a flow field results which differs very |
greatly from the previous ldeas, which show a dead-water region
in the region of the former secondary vortex and which has a shock
in the symmetry plane parallel to the surface. Since similar
changes also occur for M_ = 2.0 but at higher angles of attack
(¢ > 20°), here we have to specify a new limit. This result is
given here in thls paper only as an indlcation, because the pur-

. pose of our Investigation is to give a detalled analysis of the

: flow regions inside and to the right of the Stanbrook-Squire bound-
ary.

N\
0
i

4.,2.2. The Stanbrook-Squire region

Since the flow regions to the left of the Stanbrook-Squire
region have now been discussed and the typilcal characteristics
of leadlng edge separation have been mentioned, we willl now in-
vestigate the transitlion to shock-induced separation. For this
purpose we will again assume the same incident flow conditions
with the angle of attack of o = 10° and the Mach number M, = 2.5.

The pressure coefficients on the flat lee side are shown in
Filg. 23 over the span for different Mach numbers but for a fixed
angle of attack a = 10°. One can see large differences in the
pressure distributions only along the outer wing reglon where the
vortex dominates. The pronounced underpressure peak, already dis-
cussed somewhat for M = 2.5, becomes flatter for higher Mach num-
bers until finally the entire region only has a constant pressure.
Even at higher Mach numbers outside of the Starbrook-Squire limit,
the form of the pressure distribution no longer changes but the
pressure level only is displaced to higher values. In the central
region where attached flow is assumed, the position of the separa-
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tion point (A) only changes slightly. The pressure in this region
1s constant and is only changed slightly with a change in Mach
number. An additional evaluation of the pressure distribution

1s given in Fig. 24, Here the pressure in the reglon of attached
flow, as well as the minimum pressure coeffilclent (vortex center),
i1s shown for lncreasing normal Mach numbers My. 1In the region of
the Stanbrook-Squire boundary, the pressure coefficients reach a
maximum in the central plane. The pressure in the vicinlity of the
vortex center decreases ahead of and behind the Stanbrook-Squire
boundary more steeply than inside of thils region. In addition, we
show the corresponding values for the delta-shaped lee side, which
can be correlated with the other results, at least for the pressure
near the symmetry plane.

From the pressure distribution we can see that the central
region with the parallel flow remains unchanged with increasing
Mach number, which 1s indicated by the combined oil film photo=-
graphs and Schllieren photographs of Flg. 25. The vortex center, on
the other hand, 1s displaced towards the central plane so that the
diameter of the vortex must become correspondingly smaller. 1In
addition, these figures show that inside the Stanbrook-Squire bound=-
ary, the intensity of the secondary vortex becomes smaller and it
1s hardly perceptible at M_ = 2.8. When the secondary vortex
vanishes, only a dead-water reglon exlists between the leading edge
and the primary vortex.

In addition, the Schllieren photographs show the approach of
the leading edge shock to the wing. In this way the Mach number
cqmponent My reaches values above one. It 1s to be expected that
immediately downstream of the leading edge there will be supersonic
conditions above the dead-water region and the character of the
lee slde flow is changed in this way.

Two Schlieren photographs of the flow at a = 100 and different
Mach numbers are given in Fig. 26. The dark regions which can be
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Interpreted as the upper halves of the vortices on the lee side
are qulte sharply limlted first at M, = 3.0 in the direction of
the wing surface, but become more diffused at higher speeds.

Two dark lines emerge from the tralling edge at the lee side of
the model, which have to be the result of different wing reglons.
The upper region is in the form of a fan and can be interpreted
as an expansilon of the flow in the central reglon at the trailing
edge. The second narrow line 1s almost parallel to the top side
and can be Interpreted as a wake dead water from the leading edge
region of the wing.

Filgure 27 shows an evaluation of the Schlieren and oil film
photographs as a function of Mach number and gives the position
of the vortices. We should mention that up to the present only
little information about the Mach number dependence of the vortex
poslition 1s avallable. The only systematic investigation of /33
Okerbloom and Sarantsev [16] showed an almost constant height of
the vortex above the wing between M_ = 2.0 and 4.0. This result
was not confirmed here but one can observe that the vortex moves
closer to the top side, which agrees with Monnerie and Werle [75].
Only when the Stanbrook-Squire region 1s crossed does the position
become fixed for a fixed angle of attack.

Summarizling, we can establish the following for the transi-
tion region (Stanbrook-Squire region). The present results for
an angle of attack o = 10° and different Mach numbers confirm a
change in the type of flow above the Stanbrook-Squire region.
This 1s a continuous process which 1s characterlized by the follow-
ing flow behavior: At iow incident Mach numbers there is clearly
a leading edge separation with primary and secondary vortices, as
well as a parallel flow in the regilon of the symmetry plane. The
Increase in the incident speed and the increase in the normal com-
ponent with respect to the leading edge means that the higher
energy flow can resist the separation at the leading edge longer
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and then a deflection around the leading edge becomes possible.
In this way the separation angle between the surface and the
feeding vortex surface becomes smaller and the entire vortex be-
comes flatter. 1In this way the dlameter of the primary vortex
becomes smaller and therefore the region of attached flow near
the central plane can remain constant for the most part. Because
the height as well as the intensity of the primary vortex de-
creases with increasing Mach number, the veloclty components
which trigger the secondary vortices are greatly reduced. About
in the center of the S-S region (M°° » 3.0), the secondary vortex
can no longer exist and the reglon between the leading edge and
the primary vortex has to be interpreted as a dead-water region.

In addition to the flow conditions in these reglons with high
friction, one can also observe changes in the external flow. 1In
the investigated models, there 1s a separated leadlng edge shock,
but within the S-S region the speed of sound 1s reached at the
leading edge. Above the layers wlth friction, a supersonic ex-
pansion occurs in the vicinity of the leading edge which determines
the pressure level in thls reglon.

The greater the incldent flow speed, the flatter the layer [33
with friction becomes over which the expansion occurs. 1In this
way the expansion 1s intensified and there 1s a substantlal deflec-
tion of the flow in the direction of the central plane. The symmetry
condition in the central plane can be satisfled by the deflected flow
only by means of a shock. During the increase in Mach number, the
shock intensity increases and the vortex intenslty decreases.

Summarizing, we can say that the followlng events characterize
the transition region for constant angle of attack and increasing
Mach number:

-- The vortex is flatter above the surface and reduces 1ts
influence region whereas at the same time the intensity
of the secondary vortices 1s decreased.
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-- When the secondary vortex no longer occurs, a dead-
water reglon 1s formed inslde the layer with friction.

-= The flow in the leading edge reglon reaches supersoni.
condltions and the starting expansion over the friction
layer results in an internal shock.

-=- Even though a contlnuous transition occurs and therefore
one cannot glve a filxed boundary for the change in the
flow types, at least for M= 3.0 we established that
thils results In the most noticeable changes in experi-
ments.

A detalled analysis of the flow conditlions to the right of

the Stanbrook-Sguire region has to be added to the above and will
therefore be carried out in the following section.

4,2.3. Separation wilth a shock

In the following we glve an example of an analysls of the
flow field in the reglon of the so-called shock-induced separa-
tion for a = 10° and M, = 3.5 and 1in a discussion of the present
experiments. Figure 28 shows dlfferent test results for the
multiple comparisons. From thls we can see that a dead-water
reglon exists directly on the surface in the outer wing reglon.
Between 1t and the external flow there 1s g type of boundary
layer which i1s probably highly turbulent. 1In the centrul regilon,
there 1is attached flow which 1s aligned parallel to the symmetry
plane.

Flgure 29 gives an additional evaluatlon of Pitot pressure
measurements and also an additional model. We show the Pitot
pressure ratlos over height for different span positions. In
these experiments one can assume that the Pitot probes aligned
parallel to the incident flow will provide reliable measurements
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because of the hlgh incldent flow speed and the slender models,
because in thls case the transverse speeds are of secondary im-
portance. This means that Pitot pressure ratios of Pp¢gn”‘~°
represent condltions like in the reglon of undisturbed incident
flow or if the value 1s zero, they can be interpreted as dead-
water regions. Figure 29 gives an evaluation in the flow model.

Based on the experimental results, we can establish the
following model. At the leadling edge there 1s flow separation
Just like before, but 1ts intensity and momentum is very small
and therefore can be called dead water. Since the separation is
assumed to be a turbulent boundary layer, one can count on a re=-
attachment (according to the separation bubble in profile theory).
On the other hand, the processes in the outer flow also influence
the boundary layer. The supersonic flow which exists at the lead-
ing edge expands over the contour of the separated layers and for
symmetry reasons, has to be deflected backwards again by means of
a shock. The pressure jump through the inner shock affects the
boundary layer and results in a reattachment of the separated flow.
Because of thls forced premature reattachment, according to profile
theory we can speak of a separation bubble. Therefore, a stagna-
tlon results, which separates the dead-water region from the
attached flow in the central region. Within the separation bubble
there 1s a reverse flow whilch occurs, which has a certain circula-
tion and which again can be called a vortex.

Therefore, we have established that in contrast to the original
assumption, there 1s no shock-induced separation. In the case of
the wings Investigated here, the flow separation is not produced by
4 compression shock, but 1s a leading edge separation and the sepa-
rated flow 1s made to reattach because of the shock in the external
flow. It 1s qulte possible, as found for small angles of attack,
that a separation can occur at the leading edge without a shock.

On the other hand, Just like for high Mach numbers, a supersonic
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expanslon at the leading edge and a deflection over a weak internal
shock 1s thinkable wilthout having a separation occur». The wings
whlich are belng discussed have been investigated in exactly this
state range, where there 1s both separation at the leading edge as
well as supersonlc expansion with subsequent internal shoeck. Both
flow components occur independent of one anothar, but influence
each other until an equilibrium state is established between them.

Therefore, we have shown that for the wings under discussion,
the Stanbrook-Squire reglon 1s only a boundary wlth respect to the
flow in th? frictionless reglon, because to the left and the right
of the boundary there is a separation at the leadling edge. The
region to the right of the transition region will be called "separa-
tion with shock" reglon according to the results discussed.

Based on the previously developed flow model, we will now in-
vestigate the changes which occur for a variation of the angle of
attack if we assume'a fixed incident Mach number M = 3.5. As
shown from Flg. 2, experiments are located in the reglon which up
to the present was called "shock-induced separation" reglon. The
oll film photographs 1ln Fig. 30 show the development of the lee
side flow for M_ = 3.5 fo~ small-to-medium-sized angles of attack.
For angles of o = 1° the flow field appears to be non-conical and
is quite similar to the experiments of Rein [U6], and 1ts flow
model shown in Fig. 6. A second interpretation of these oll film
photographs is that the transition from laminar to turbulent bound-
ary layer causes the observed differences. However, for each of
these possibllities, we can assume a vortex formation at the lead-
ing edge, until an angle of attack of o = 5.5° 1s reached. For
this angle of attack, the oil film photographs already have charac-
teristics which were found when crossing the S-S boundary. For
o ='8°, we again have the typical situation of a separatlon bubble
with an internal shock, which exists up to angles of attack of
o = 16.5°. However, at these angles there 1s already a great in-
fluence of the tail region, so that only the region near the tip
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has to be conslidered as not belng Iinfluenced.

The observations of the oil film photographs made are well-
confirmed by the pressure distributions in Fig. 31. The vortex
positions (WZ) taken from the oil film photographs and the regilons
of attached flow in the central plane (A) are shown on the corre-
sponding curves. For small angles (a = 1° - 3.50), one obtains
pressure varlations along the leadling edge whlch are typical for
vortex formation. At a = 5.5° the transition to the solution
bubble with iInternal shock seems to appear. The discrepancy in
the pressure distribution and the oll film photograph can be ek=
plained by the testing technique, because in all experiments the
models have almost zero angle of attack when the wind tunnel 1s
starced and later on the desired angle 1s regulated using the
pneumatic system, 1l.e., in the start-up posltion certaln oll lines
already form which will hardly change afterwards. At higher angles
of attack, again the influence of the tall becomes noticeable,
which at o = 12° produces a pressure increase first in the outer
wing area. Thls disturbance from the wake ls lnvestigated in a
special chapter as far as it 1s relevant for the present experi-
ments, and will be critically analyzed.

Figure 32 shows the vortex positions for different angles of
attack. The position of the attached flow ir the central region
is also shown and only has a large change for small angles. The
further development decreases contlnuously up to the angle of
attack a = 130, where the vortex extends to the symmetry plane.

The position of the vortex is displaded between a = 3.5%(or
5.5°) and 8° very greatly towards the central plane, and when
there is a further increase in the angle of attack, 1lts posltion
remains almost urichanged. This indicates a different flow field.
For small angles of attack, the posltion in the span directlon is
comparable with incompressible (M, = 0) results, so that here vor-
tex formation at the leading edge can be assumed. Thls was con-
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firmed by experiments of Squire ([41], as well as Monnerie and
Werle [75]1, in which both the pressure distribution as well as
the oil fllm photographs show the same characteristics, as occur
here when the angle of attack ls increased between o = 4° ang 8°.

For o = 8° we can already expect the separation bubble with
the internal shock. Up to o = 12° there is only parallel attached
flow in the central plane. At hilgher angles of attack, the vortex
center again 1s displaced In the direction of the leadlng edge and
also separates from the surface, without the occurrence of parallel
flow in the symmetry plane. The vortex therefore expands its
region of influence and apparently at a = 20° agaln takes on values
according to an approximation from the avallable data as is gilven
by incompressible flow. Thls tendency of a separation line moving
downwards was also demonstrated by Cross [49), who established
leading edge separation for angles of attack of o > 209 for rela-
tively thin delta wings at M, = 10. However, this contrast wlth
the static pressure measurements in which the pressure increase
measured near the central plane 1ls displaced with increasing angle
of attack in the direction of the symmetry plane. On the other
hand, 1t is quite possible that the Internal shock in the external
flow moves somewhat lnwards and the related pressure 1s felt up to
the top side. At the same time, in this angle of attack region
the close vacuum agaln influences the pressure level.

l\
(%)
oo

We already described how one can derive information about the
vortex intensity from the oil film photographs. Figure 33 shows
the relative flow angle for the investigated Mach number range
which characterizes the vortex intensity, and 1t is plotted as a
function of angle of attack. Tor all of the regions to the right
and left of the S-S reglon, we can observe a maximum in Intensity
which is related to a meeting of the vortices in the symmetry plane
and the related displacement of the attached flow. For Mach num-
bers up to the center of the S-S boundary (M_ = 3.0), these intensity
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maxima are equivalent to the last occurrence of the shock in the
symmetry plane. This central line shock at higher Mach numbers
can no longer occur, and it 1s caused by the change in the flow
type. Thils 1s because the intensity of the vortex and therefore
the veloclty component towards the surface 1s too small. A com-
parison of the vortex intensitiles feor the different incident Mach
numbers allows one to guess that at about M, = 2 the maximum vor-
tex Intensity 1is reached.

Summarizing, we can describe the flow type "separation with
shock" as follows for the case of a varying angle of attack:

-- For small angles of attack the vortex separation from
the leading edge could be observed (a = 0° to 3.5°).

-- After a transition region similar to the S-S region,
there 1s a separation bubble at the leading edge and
an internal shock (o = 8° to 14°) up to medium-sized
angles of attack.

-- For high angles of attack we found an enlargement of
the vortex and a new vortex formation from the leading
edge. However, clear data are not available in this
case, because the strong tall influences falsify the
investigations (a < 14°).

b 2.4, Classification of the flow types

i

In the previous sections, we investigated the flow region for
the flat leeward side, which according to Fig. 17 includes the
Stanbrook-Squlre region. The consequences drawn from this and the
models developed are shown in Fig. 34 in a @N - MN diagram. In
contrast to the previous S-S region, the region differs for small
angles of attack. Here there is leading edge separation also on
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the right side of the S-S region, and the new transition region
approaches the MN axls with Increasing Mach number. Accordingly,
there 1s also an upper boundary at which the transition from the
separation bubble with internal shock to the leading edge vortex
formation occurs. However, here we can alsc assume that above
the vortices, shocks are produced. These models can be derived
from the extreme case a = 900, where the dead water 1s closed off
by shocks, similar to a taill flow.

Comparisons between the discontinuities in the "thin shock
layer" theory and experiments made Squire [61] assume that for
thicker wings, the boundary between the regions B and D is dis-
placed to smaller angles of attack Oy With the present results,
we can draw the conclusion that wlth increasing wing thickness,
i.e., greater angle between the top side and the bottom side per-
pendicular to the leading edge, the Stanbrook-Squire boundary
runs into the region B for large and small angles of attack, as
1s also shown in Fig. 34. The region B of the "shock-induced
vortex formation" is limited on the left side for all wing thick-
nesses primarily by the Mach number, but for thick wings 1t is
also limited upwards and downwards by the angle of attack.

Summarizing, we can therefore delimit the complex lee side
flow field, not only by the Stanbrook-Squire region but also by
reglions which depend primarily on o or M .

l\
=
o

4.3. The influence of the cross-section shape on the flow
for separations with internal shock

In the previous discussion, the flow fleld of the delta wing
wac treated with a flat (plane) leeward side. The bottom side of
the wing was delta-shaped. 1In the following, we will consider
delta wings with non-flat (delta shaped or conical) top side. The
purpose of this investigation is to obtain information about the
influence of the cross-section shapé on the lee side flow. The ex-
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periments are restricted to the range "separation bubble with in-
ternal shock," l.e., to the reglon to the right of the Stanbrook-
Squlire reglon. In most results 1t was assumed that the bottom
and top slde can be treated separately in the analysis. In a
further sectlion we willl briefly discuss the influence of the
bottom slde on the lee side flow.

4.3.1. The delta shaped lee side

The delta shaped lee slde was selected as the representative
top side for investigating the influence of geometry. The shape
was used primarily in the few known experiments, so that there 1s
some capability of making comparisons. For a delta-shaped lee
slde, there are two plane model halves and therefore it can be
assumed that only the angle 0 (between the leading edge plane and
the ridge line) is a geometric parameter which has any influence.

In the description of the flow fields for the delta-shaped
lee slde, we select an incident state with M = 2.5 and a = 10° as
the initial example. After this we will demonstrate the\influence
by changlng the angle of attack and increasing Mach number.

Flgure 35 shows a flow model for the initial case which 1s the
result of experliments. In the plane perpendicular to the leading
edge, we find an angle between the incident flow and the top side
of dN = 17°, The angle of attack Oy 1s therefore about half as
large as was was the case for the corresponding incident flow
states with the flat lee side. Among other things, this means that
at the leading edge there is a Prandtl-Meyer expansilon with attached
flow on the top side, l.e., in the region of the leading edge there
is no separation. The flow is deflected by means of the Prandtl-
Meyer expansion, however, so that the resulting flow direction goes

- towards the symmetry plane. An internal shock, i.e., a series of
compression waves, provides the reverse deflection which is required
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to satisfy the symmetry condition. The compression, however, re-
sults in a separation with the vortex. These processes are re-
stricted to the outer wing regions and the vortex has a relatively
small size, so that again there is attached flow in the vieinity
of the ridge line.

This model is only partly applicable for the flow, if the
angle of attack 1s changed together with a constant Mach number.
Figure 36 shows the results of Pitot pressure measurements for
Mo = 2.5 and different angles of attack, and it also gshows the
results of oil film photographs and Schlieren photdgréphs. For
small angles of attack up to o = 7°, there 1s leading edge vortex
formation. Theilr feeding vortex surfaces approach the surfaces
with increasing angle of attack and finally they attach. Between
a = 7° and 11°, the normal component of the incident speed 1s so
large that there is no leadling edge separation and the attached
flow exists in the outer wing reglon. Up to an angle of attack
of a = 1u°, we can therefore assume a simllar flow, as already de-
seribed for a = 10°. When the angle of attack is increased further,
the vortex center on the one hand moves in the direction of the
central plane and, on the other hand, moves away from the wing sur-
face. Since the internal shock does not change 1ts position so
much, a dead-water region forms which increases inside between the
separation line and the vortex center. The vortices of the two
wing halves are then so close to the ridge line, that there is no
attached flow in the central region anymore.

The Mach number influence on the lee side flow for a delta-
shaped surface and fixed angle of attack o = 10° will be discussed
using the pressure distribution shown in Fig. 37. An lincrease in
the Mach number here results in a correspondingly larger normal
compone:t MN’ which is decisive for the expansion at the leading
edge. Based on the greater expansion rate, the internal shock and
therefore the separation caused by it are displaced in the directlon
of the central plane. These processes can be observed for Mach
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numbers of up to M, = 3.0.

The flow conditions which prevail at higher Mach numbers /4
can best be explalned using the model shown in Fig. 38. The
most characteristic feature i1s the oll film photograph shown
there, which shows that the flow 1s only partially conical.
Here there is a certailn similarity with the flow around the flat
lee side at M, = 3.5 in the lower angle of attack range. There,
there was a partial non-conical flow field (Fig. 30) along the
flat leeward side in the tip reglon of the wing, apparently
caused by the transition of the boundary layer. Thils transition
from laminar to turbulent boundary layer is also influencing the
states on the top side in the case of the delta-shaped lee slde.
In the conical tip region, just like before, one finds an expan-
sion in the region of the leading edge with a subseguent Ilnternal
shock, which brings about a separation of the laminar boundary
layer. After about 30% of the wing chord, the transition to the
turbulent boundary layer starts. At the leading edge, a short
separation bubble 1s formed. By means of this change, the vortex
which occurs in the tip region of the wing loses its "supplying"
vortex surface and exlsts as a free vortex downstream of the transi-
tion region. This region of the wing has to be considered non-
conical.

For a critical evaluation of the flow model, we should indi-
cate that for M_ = 3.5, we carried out the greatest number of tests
with bodies having 0= 0° in the CUED wind tunnel. It is known
that the transition from the laminar to turbulent boundary layer
is influenced substantially by the Reynolds number, which in the
CUED wind tunnel is about 5 times greater in the IIR twmel. This
aspect has to be considered for the flow field analysis carried
out here, especilally for transitlon to the higher Mach numbers.
Therefore, in the following discussion we will separately discuss
the tests in each wind tunnel, in order not to have to consider
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Re number effects which also occur in this flow range.

Starting with the results for M, = 3.5 and & = 10°, using
the pressure distributions of Flg. 39, we investigate the in-
fluence of the angle of attack for a filxed Mach number. The out-
line pressure distributions are complemented by information ob-
tained from oil film photographs about the position of the
attached flow (A), the vortex center (PZ) and the separation
bubble (B). At o = 0° the flow is attached along the entire top
side and only near the leading edge does a weak expansion influence
the pressure values. Already at o = 3° one can notice a conlecal
vortex pair in the tip reglon of the wing, whose intensity, however,
is so weak that after transition in the central region there are
almost no more influences anymore. With increasing angle of attack
the intensity of the free vortex increases, but at the same time
its region of influence decreases. The separation bubble (B) at
the leading edge, on the other hand, becomes greater for higher
angles of attack, whereas the Ilnternal shock and therefore the
region of the attached flow is displaced further towards the central
plane.

The span positions of the vortex center and the attached flow
are shown in Fig. 40 for all angles of attack and Mach numbers.
From the vortex posltions and by means of a comparison with the
values for the flat lee side (M, = 0 and 2.5), we can see that for
the delta-shaped lee slde for small Mach numbers and small angles
of attack, there 1is also vortex formation at the leading edge. The
position of the vortices develops quite differently as soon as
supersonic expansion occurs at the leading edge and therefore the
internal shock and separations occur with vortex formation. It
seems possible to find a limit which characterizes the transition
between the flow typeé@ This région is shown in the diagram by a
shaded surface and shows good agreement with the transition reglons
shown in Fig. 34 from the flow around flat delta wings with small
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angles of attack. The position of the vortlces 1s relatively in-
dependent of the Re number influence because 1t 1is always created
in the vicinity of the nodel tip. When we consider the attached
flow, we again have to consider the different wind tunnels.

|

]

Summarizing, we can say the following about the flow field ﬁ

of the delta-shaped lee slde in the investlgated Mach number rarge: 1

-=- In contrast to the flat top side and caused by the shape
of the lee side, small angles of attack Oy and large Mach
' ‘ numbers MN occur perpendicular to the leadling edge. From
? ! this, attached flow results at the leading edge, together
' with a supersonic expansion. The internal shock 1induces
a separatilon.

-=- For small angles of attack, there is again vortex formation
at the leading edge.

N
=
g

-- For certain incldent flow conditions (M_-, Re-influence),
there can be a change in the flow field described above.
Near the wing tip there 1s a transitlon from laminar to
| turbulent boundary layer. Downstream of thils region, a
: short separation bubble is created which 1s closed off by
| the internal shock. The separation produced in the tip

area exlsts as a free vortex above the wing.

k 4.3.2. The influence of different shape porameters (angle 0)

F

In order to describe the influence of various top side shapes
on the flow fleld of the lee side, we first assume that the differ-
ences in the cross-section shapes are essentially described by the
angle © (between the leading edge plane and the ridge line).

Z
1
|
1
:
Four different lee side shapes with angles between @ = 0° and 1
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o 14° were available. This means we can describe the transition of

the flow flelds from the flat lee side to the delta shaped lee
side. TFigure 41 shows oil film photographs of the top sides for .,
M, = 3.5 and o = 10°, and the corresponding pressure distributions
are also shown. With increasing angle ©, the normal Mach number
MN becomes larger, whereas at the same time the normal angle of
attack oy becomes smaller. From the pressure distributions, we
can see that the pressure level also decreases with increasing €.
The values shown from the Prandtl-Meyer expansion with the cross-
flow components around the leading edge confirm this tendency.
Quantitatively, however, there are substantial differences between
these calculated pressure values and the measured pressure values,
which among other things are due to the 1nf1uénce of the leading
edge shock. All of the investigated wings have differently shaped
lower sides and therefore gilve a different posltion and shape to
the shock. In this way, behind the shock,different values for

MN and ay are created than . calculated for the incident flow in
the normal plane.

Figure 42 shows the influence of the shape angle 0 on the flow
field for different top side shapes. Both the positions of the
vortex centers as well as the attachment line vary slightly linearly
with increasing © angle in the direction of the central plane. We
should note that a reduced.semi-span has been introduced which 1is
the ratio of the lee side span for flat (© = 0°) and super-
elevated wing (o > 0°).

N
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For the transition from a flat to a delta-shaped lee side, we
can develop the following model for the flow processes. Starting
with the flow model with separation bubble at the leading edge,
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internal shock and attached flow in the central regilon (Fig. 39),
the Mach number in the normal plane MN becomes greater as the
shape angle 0 increases, whereas the angle oy decreases. The
flow therefore has more energy and the separation bubble at the
leading edge becomes flatter. In this way the intensity of the
circulation inside the separation 1s changed, so that the radial
velocities decrease compared with the velocities in the axlal
direction. The reattachment line of the separation bubble is
dlsplaced toward the central plane and the reglion of the attached
flow is reduced in size. Using the previous flow models, we must

conclude that the internal shock changes 1ts position only slight-

ly. For sufflciently high transverse speeds, the transition of
the boundary layer starts and determines the processes on the lee

side already dlscussed in the previous chapter. The boundary layer
transition is such that already for € = 9° 1t can be observed along

the rear part of the wlng.

The following can be stated about the influence of the shape
parameter € for plane top sildes:

-=- With increasing angle @ the separation bubble becomes
flatter and moves in the direction of the central plane.
The intensity of vortex motlon decreases. The inner
shock harely changes 1its position.

-=- For higher angle © incident flow states are reached
which can bring about a transition of the boundary layer.

-~ The geometric changes of the flow field are linear in the
shape parameter 0.

-=- For the same incident flow conditions oy and MN, we observe

basic changes in the flow field for the top slides, with
different angle © (within the boundaries mentioned here).
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The present experiments were all carried out in the range of
flow with the separation bubble and internal shock. For the in-
vestigation of these wings inside the Stanbrook-Squire region, we
can therefore no longer assume a linear dependence on the shape
parameter. The boundaries in the ay - MN dlagram therefore can only
be assumed to be valid for a single angle .

4.3.3. The influence of different leading edge shapes (angle ¥)

In the previous section we dlscussed the effects of different
top side shapes on the lee side flow fleld in such a manner that
we found a direct dependence on the shape angle €. In the follow-
ing we willl fix the angle © and discuss the influence of different
leading edge angles ¥ (measured perpendicular to the leading edge
between the top side and the bottom side), 1.e., different curva-
tures of the lee side. Two wind tunnel models were used for thils:
the cone model (Fig. 43) and the modified cone model (Fig. uli).
The results are compared with those for the delta model because all
three wings have the same shape angle (0 = 14°), The leading edges
of the individual wings are shaped in such a manner that the conical
delta wing has the largest angle (¥ = 75°) and the modified cone
model has the smallest angle (v = 18°), whereas in the delta model
we measured ¥ = 40°,

The delta wings described here all have flat undersides and
the plane of the leading edge 1s the same as the lower slde plane.
If one assumes a delta model with a plane lee side half, then the
angle of attack in the plane perpendicular to the leading edge 1s
described by the angle between the normal speed and the lee side.
Therefore, for 0 = 0° we also have on = Y, If we have curved sur-
faces for a fixed shape angle ©, then we also find different angles
between the normal speed and the tangential plane in the region of
the leadling edge.
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Very large leadlng edge angles ¥, as are found for the cone
model, result in a flow in the reglon of the leading edge where
the lee slde 1s seen under a negative angle. In this way, as JuT
shown in Fig. 43, a stagnation point 1s formed on the top side.
Downstream of 1t, the flow fleld rfound from Pitot isobars and
oill film photographs show mostly agreement with the flows along
the lee side of circular cones with angles of attack. From these
investigations, we can see that at least for small and medium
angles of attack the leading edge no longer belongs to the lee
slde. In contrast to the delta wings used up to the present with
a sharp leading edge and therefore a fixed separation line, the
leadlng edge 1s of secondary Importance for the lee slde.

The other extreme case 1s a very small leadling edge angle V¥,
as for example occurs for the modified cone model (Fig. 12). In
the vieinity of the leading edge, the cross-sectlon shape 1s conl-
cal with the angle ¥ = 180, whereas the central part consists of
a cone segment. Here again the size and direction of the incident
flow component perpendicular to the leading edge 1s unchanged com-
pared with the delta shaped lee side, so that for an angle of attack
of & = 10° an expansion angle of Oyex © 38° is achleved in the lead-
ing edge region. As an example, Fig. 44 shows the pressure distribu-
tion and the characteristic flow model for two angles of attack.
For angles of attack around a = 100, there 1s an expansion at the
leading edge which induces a low pressure. Downstream the flow 1is
uniform and the pressure distribution is constant. Only a very
strong change in the flow direction caused by the body contour re-
sults in an internal shock whose intensity 1s greater than that
found for previously observed delta wings. 1In the conlcal central
region, we can agailn observe the vortex system which 1s typical for
thils shape. For angles of attack of o > 150, we can only achileve
an incomplete deflection and expansion of the flow, so that total
separation starting at the leading edges occurs. Inside of the
separated region, there is subsonic flow and neither the internal
shock nor other influences change the distribution here, which is
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approximately constant over the wing. For higher Mach numbers,
this flow fleld can already be observed for smaller angles of
attack than o = 15°,

From these examples we already can see that for a thick delta
wing with a fixed shape parameter © the angle Y between the top
slde and the bottom side perpendicular tc the leading edge sub-
stantially influences the aerodynamic properties such as 1ift, drag
and efficiency of the control elements. Excessively large angles
can lead to stagnation points in the leading edge regilon and there-
fore to overpressures on the lee side. On the other hand, the flow

™.
=
(@]

for small angles ¥ and therefore large flow angles of the leading
edge have a tendency to incomplete expansion or to complete separa-
tion at the leading edge. )

4.3.4, The influence of the cross-section shape of the lower side

The lee side i'low can only be influenced by the underside if
the leading edge shock is separated. This applies for all delta
wings in the investigated measurement range and means that 1t 1s
necessary to estimate the influence of the lower slde shape on the
lee side flow. The position of the leading edge shock 1s primarily
determined by the shape of the underside. Therefore, the inclinatlon
of the shock near the leading edge is, for the most part, determined
by the shock distance in the vicinity of the central plane of the
delta wing. Since the separated shock causes a deflection of the
incident flow, different inclination angles of the leading edge
shock can lead to substantial changes in the flow fleld on the lee
side.

Figure 45 shows the different shock shapes of concave (wave
rider) and flat (delta model) undersides for the identlical lee side
shape. At the same time, the Pitot 1sobars allow an analysils of
the flow field on the top side for different shapes of the leading
edge shock. For small angles of attack (a * 907 and .for the flat
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delta model, there 1s already a separatlon with an internal shock
and vortex formation above the wing. On the other hand,the wave
rider has a completely dlfferent behavior. On 1lts top slde, there
1s a type of separation bubble in the vicinity of the leadlng edge,
and there 1s attached flow over large parts of the wing. This
discrepancy must result primarlly from the position and shape of
the leading edge shock. For a flat underside, this lies both in
the plane of the leading edge as well as in ' » symmetry plane at
the same dlstance from the wing. The shock 1s almost perpendicular
to the leading edge plane in the reglon of the leading edge plane
and therefore brings about a deflection of the flow. The deflec~-
tion angle at the leading edge becomes larger, whereas the corre-
sponding local Mach number is reduced but remains in the supersonilc
range. For the wave rider, the shock 1s relatively close to the
plane of the leading edges and ls barely curved. The {low compo-
nent perpendicular to the leading edge therefore reaches an almost
perpendicular shock and retalns its initial dilrection, approximate-
ly. At the leading edge, there is no expansion but a separation
bubble is formed. For average angles of attack (a = 14°), the
shock for the wave rider 1s substantially more curved in %he reglon
of the leading edges, so that we find a simllar flow plcture as

was found for the lee side of the delta model. Nevertheless, be-
cause of the separation of the shock from the leadlng edges, we
st1ll find differences whilch are characterized by the vortex posi-
tion and the size of the attached flow 1n the central reglon.

Theoretical results of Squire [61] represent a further indica-
tion about the relationship between the flow flelds on the top side
and the bottom side. The calculations showed that on the underside

of thin delta wings, there is a sudden transitlion from a stagnation

line in the symmetry plane to a second one which is near the lead-
ing edge. This change only occurs for certaln incidence angle con-

ditions and from comparisons wilth known experiments we can correlate

this result with the transition from leading edge separation to
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shock-induced separation on the lee side. These theoretical re-
sults are supported in the followlng by means of an example for
the delta model. Assumlng that the change in the flow type on the
lee slde 1s dlrectly related to the change from the case with a
staghation line in the symmetry plane to two stagnation lilnes on
the lower slde, the change has to be continuous in contrast to

the theoretical results. Thils assumption 1s supported by Fig. U6,
which glves the stagnation llne positions on the flat pressure
side as a function of Mach number. According to this, because of
symmetry reasons, a stagnation line in the central plane is ob-
tained and, depending on the incident flow conditions, there is an
additional one in the reglon of the leading edge. For the region
of separation with Internal shock, we have two stagnation lines.
For attached leading edge shock as well as in the region of the
leading edge vortex, there 1ls only the symmetry stagnation line.
These changes, flrst of all, only depend on the incident Mach num-
ber. However, there 1s also a tendency that an lncrease in the
angle of attack agaln leads to flow fields with a stagnatlon line,
which is at least apparent for small Mach numbers. However, the
proof that agaln leading edge vortlces are created has not yet been
glven.

For the flat pressure side, we can glve the following physical
explanation for the position changes of the stagnation line. For
large Mach numbers, the shock 1s almost parallel to the underside
in the central region and is only curved in the viclnity of the
leading edge. In this outer region, the stream line has to be lo-
cated whose conbtinuation through the shock makes up the stagnation
line. For a fixed angle of attack, the increase in the Mach num- /50
ber then causes the shock to approach the bottom side. The almost
plane central part of the shock is enlarged, whereas the curved
part and therefore the stagnation line again are displaced in the
direction of the leading edge. The reverse process can be observed
both by reducing the Mach number or by increasing the angle of attack.
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The position of the stagnation line can therefore be consldered
as an element which determines the lee slds flow. The closer 1t is
to the leading edge, the less the underside shape can influence the
lee side flow. This is clarified by a result from experiments. In
the region of separation with internal shock, a comparison of the
flat lee sldes showed that both the pressure distrilbution of the
top side as well as the flow fleld (oil film photographs) are almost
ldentical for the delta model and the cone model. Here we can see
that for higher Mach numbers, the stagnation line 1s immedlately
adjacent to the leading edge and the Influence of different under-
sides (delta shape with Y = 40° and conical with ¥ = 75°) is not
important for the lee side flow.

Summarizing, we can say that depending on the incident flow
conditions the shape of the bottom side has a non-negligible in-
fluence on the lee side flow. TFor the higher Mach number range,
because of the position of the stagnation lines, the influence is
small, so that the top and bottom side can be considered separately.

4.3.5. Additilonal remarks about the influence of the cross-section
shape

We have previously discussed speclal geometrlc varlables of the
cross-sectlon shape and in the followlng we will compare the investi-
gated shapes.

An evaluation of the oil film photographs (according to Fig. 15)
can be done here by interpreting the inclination angle of the wall
stream lines ¢p in the vortex reglon as the intensity of circula-
tion. With this assumption, Fig. U7 shows the vortex intensities
on the top side of various delta wings as a function of the angle of
attack. We find a good correlation of the values shown wilth the
angle Yy > which 1s measured in the cross-section plane between the
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plane of the leading edges and the separatlion point. The angle
md 1s used as an average value in Fig. 47 for the different

lee sides and for a fixed angle of attack (o # 100), even though

in general it depends on the angle of attack because of the posi-

tion change of the separatlon line. Nevertheless, up to average

angles of attack (o ~ 12°) the vortex intensities of different lee

sldes can be compared. Higher angles of attack then lead to the

already mentioned collapse of the top slde flow and the values

can no longer be correlated.

In the previous sections, we have shown that the flow fields
for example for delta shape lee sldes basically do not change, but
are only influenced by means of the angle © , which changes the
geometry. This is also supported by the separation line angle Voo
whlch apparently is directly dependent On the shape angle for the
plane top side shapes with Pe=22+0 ., Such a relationship can
no longer be derived for curved lee sldes, because then additional
influences modify the flow field because of the shape.

The effects of the different cross-section shapes of the delta
wings can also be felt in a collective representation of the pres-
sure dlstributions for’ two angles of attack, shown 1n Fig. 48, 1In
the separation regioh with leading edge vortex (M = 3.5 and a =
5.50), the pressure distributions are very different in the ex-
ternal wing regions up to %the leading edge, because the shape,
position and intensity of the primary vortices vary greatly. 1In
the central region, on the other hand, one finds attached flow for
almost all wings and one finds comparable pressure coefficients.

In the region of separation wlth internal shock (M, = 3.5, © =
100), the pressure distributions over the bodies with different
angle @ are very similar qualitatively, but do have clear quanti-
tative differences. This has to be interpreted in the following
way. In spite of different cross-—sectlon shapes, the individual
elements of the flow field, such as expansion, internal shock, ete.
are fixed more at certain positions in this reglon. The vortex is
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no longer the dominant element and only has a small influence on
the pressure dilstribution. In contrast to thils model, the delta
wings have a dlfferent behavior wlth speclal cross-section shapes.
The cone model with a stagnation point on the lee slde only reaches
the pressure level of the other wings in the central plane. For
the modified cone model, in the vicinity of the leading edges we
find pressure values whilch are comparable with other models. Be-
hind the steep pressure increase caused by the internal shock, we
find a similar tendency and a simllar pressure drop as 1ln the cone
model. This Indicates that for delta wings wlth cross-sections
whlch are constructed from simple geometric shapes, in part the
corresponding flow fields can be superimposed in order to obtain
models of the flow processes.

The aerodynamlc coefficients are important for the practical
use of delta wings as aerodynamlec bodles. As an example shown in
Fig. 49, we will demonstrate how from the Integration of the pres-
sure distributions, certain 1ift coefficlents of different wings
will change with angle of attack. Four different cross-sectlion
shapes were selected and for two cases, we show the additlonal 1lift
gain on the lee side. The comparison of the convex delta model and
the flat delta model shows that in the region of separation with
vortex formation (o < 5.5°), the lee side 1ift of the flat surface
(e = 0°) 1s greater than that of the delta-shaped wing (o = 9°y.

On the other hand, the values in this region of separation with
internal shock are almost equal in size, as can already be con-
cluded from the already mentioned similarity of the flow filelds.
Most of the 1lift coefficient 1s the result of the pressure side,

of course, so that flat or slightly curved shapes wlll result in
the hlghest CA value, whereas delta shape and conical undersides
lie substantlally below these values. Therefore, it is understand-
able that out of the wings considered here, those with a slightly
convex bottom side (o = 5°) and a delta-shaped lee side (@ = 9°)
willl have the highest 1lift coefficlent in the investligated angle of
attack range. In order to evaluate the wing shapes, however, one
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has to consider further aerodynamlc coeffilcients and speed ranges.
Therefore, 1t seems that this cross-section area 1s a favorable
deslign for the underside and the top side with simultaneously an
acceptable volume distribution.

The 1ift coefflclent which 1s also shown for two theories
for flat delta wings-~shows good qualltative agreement for the
linearized supersonic theory and good quantitative agreement for
the "thin shock layer" theory. For o = 0, we already have finite
1ift coefflcients, because only in this way can one make a com-
parison with thick delta wings where the underside already has an
inclination towards the incident flow because of its form (@ > 0°).

Additional Information in Fig. 50 shows the different develop-
ment of the vortex positions for different wing shapes. For the
wave rilder, the influence of the leading edge shock is very dominant
for the lee side flow, so that compared with other wings, the vor-
fex 1Is displaced only slightly in the directlion of the central plane
for moderate angles of attack. 01l film photographs show that large
area separations occur more easily than for other delta wings. On
the other hand, there is a very stable flow field over the cone model.
The internal shock changes its position hardly at all for average
angles of attack, so that there i1s an almost constant vortex posi-
tion. It is Interesting that at the high angles of attack, in the
present case 0 = 200, the vortex separations are abhout the same for
all of the wings. From this we have to conclude that here again
we have a phenomenon which is independent of the delta wing geometry,
which was already observed elsewhere.

Summarizing, we can state the following important influences
of cross-section shape on the lee side flow field:

—-- For a fixed shape angle 0, the leading edge angle Y has
to be selected for stable flow states in such a manner
that neither excessive flow angles occur at the front
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side (total separation on the lee side) nor do negative
values occur (stagnation point on the lee side).

-= Strong and dlscontinuous changes in the cross-section
area can lead to substantlal pressure increases and
temperature increases.

-- By a favorable combination of the surface shape and the
volume distribution, we find the maximum 11£t coefficient
for the convex delta model (with delta-shaped lee side)
out of the delta wings investigated here.

The transfer of the results obtalned here for practical applica-
tions of thick delta wings as alrcraft body forms has to be comple-
mented by the following remark. Basically a certain volume has to
be available for an alrcraft. One characteristic quantity might
Y2 (v = volume, F = base area).
If one assumes that in practice one requires at least a volume
parameter of v = 0.08, and the values of T > 0.65 are no longer
of interest, then this can be specified for a wing with a delta-
shaped cross-section by means of the angle © . For a delta wing
with a sweepback of A =73° , we then find Tg.g=0.085 ang

o = 0,658,

be the volume parameter v o= V/F

N,
6
e

Yo =20

If we consider the example of a crulse Mach number of M = b,
then the flow reglion of iInterest on the lee side in the MN - Q
diagram can first be limited by curves corresponding to © = 8°
and 0 = 200, Fig. 51. 1In order to provide stable flow states with-
out large area separations, we conclude from the present discussion
that a maximum normal angle of attack of ONmax = 30° cannot be ex-

ceeded. In addition, experiments have shown that on the one hand

N

no baslc changes of the flow field can be expected when the angle
© 1is varied and, on the other hand, for angles of attack of

o ~ 250, large separated regions occur on the lee side. 1In this
case, thére was a tendency to separations already for small angles
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of attack in contrast to thin wings, so that there is a further re-
striction caused by the angle of attack amax' As the lower limlt
for this example, we wlll assume the case where UN becomes nega-
tive and a stagnation line wlth a high pressure is created on the
lee side. Therefore, we have speclfiled aNmin = 0°. The remain-
ing region inside the shaded lines 1s characterized by two differ-
ent flow types, which are divided between separation with vortex
formatlion and internal shock by means of the boundarles established
in the present report. The sketched dlagram is only an example for
two parameters which have to be consldered as restrictions for the
top slde in the deslgn of delta wings ln order to obtaln stable

flow states.

S
U
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5. Influencing of the lee side flow by disturbances in the
tall region

|

Some of the experiments showed that even for supersonic speeds
the flow on the lee side can be influenced by disturbances down
stream of the trailing edge. TFor example, experiments in the Cam-
bridge wind tunnel at angles of attack of a = 150 showed an increase
in the static pressure on the lee side, which sometimes was above
the incident flow values [76]. Possible causes of this might be the
interference or blocking in the tunnel or changes in the lec¢ side
flow, for example the bursting of the vortices and formatlon of
shock systems. In order to clarify these questions and in order to
avoid influences of the tunnel itself, we performed experiments in
different wind tunnels. In the following we give a brief summary
about these tests.

As an introduction, Fig. 52 shows the pressure coefficilent
along the flat and delta-shaped lee side as a function of angle of
attack. The results are from the three wind tunnels and show a
pressure increase for certaln angles of attack, which sometimes is
above the values for the incident flow. One remarkable feature of
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the results from the RAE tunnel 1s that higher angles of attack
again lead to underpressures on the lee side. A comparison of
the suspensions of the models shows that in the Cambridge channel
there is a relatively thilck sword with a wedge in the pressure
side wake. On the other hand, in the RAE tunnel the wings were
suspended on a wedge wlth a very large aperture angle, which
penetrates into the lee slde wake as well as into the pressure
side wake (Fig. 13). The ILR measurements were carried out with
a suspension configuration similar to that whlich was used in
Cambrlidge and therefore show comparable results. Experiments
for other longiltudinal positions show that first 1n the vicinilty
of the tralling edge, the pressure values increase but further
upstream one still cannot find any Influences.

The statlc pressure on the underside of the wings, the pres-
sure at the channel wall upstream and downstream of the model, as
well as Schlieren photographs, prove that these phenomena cannot
be contributed to a collapse of the flow in the test section. Ex-
periments in different wind tunnels show that this cannot be ex-
plained by specific tunnel disturbances. As Flg. 52 allows one
to conclude, and from experiments with similar models [41], in
which such a phenomenon was not observed, the different wing sus-
pensions can be looked upon as a possible explanation for this.
First of all, we have to assume that there 1is an influence on the
lee side flow because of disturbances from the tall reglon.

In order to estimate possible disturbances of the lee side
by the influences of the flow in the tail region, we carried out
two groups of experiments: First of all, the effects of perturb-
ing bodies on the lee side flow were investigated and then we in-
vestigated the influence on the tail flow. In the followilng, we
give a brief summary about the results, and some of them were al-
ready reported in [77].

First of all, experiments were performed with and without
pressure hoses or coverings to simulate these hoses. We were able
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to show that already by means of changes in the lmmedlate vicinity
of the tall, 1.e., without any obstacles which penetrate beyond
the top side, the iInfluence on the :ee slde vortices 1s great.
Similar observations were made by Rlchards [78] with a cone model
(2). It was found that the vortices are non-conical for a certain
angle of attack and then become conical again for higher angles

of attack. Already Lukosiewlcz [79] indicated conical separation
on a Piltot tube.

Turther experiments were performed with wedges or blunt bodles

[80] directly on the lee side or in the wake of the bottom side or
the top side. Both the aperture angle and the helght of the wedges
as well as their position upstream and downstream of the trailling
edge were varied. However, in these experiments it was not possible
to obtain qualitative information about the influences of the d4if-
ferent parameters. In all of the cases with perturbing bodles, we
founid an increase in the statlc pressure as well as a bursting of
the lee side vortex. The pressure lncrease also occurred on one
symmetry half of the wing even for asymmetric incident flow states,
and overall it was dependent on whether the perturbing body was lo-
cated in the wake of the underside or the top side.

In addltion, the effects of perturbing bodies on the tall flow
were Investigated (see also [81]). As a function of angle of attack
in all cases there is a substantial increase in the tall pressure
when wedges are installed eilther in the underside wake or the top
side wake.

6. Calculation of the flow field

Up to the present there has been no theoretical calculation
method known which gives a complete and realistic description of
the flow field on the lee side in the reglon of "separation with
shock." This is essentially based on the fact that very complex
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processes occur on the top side, such as boundary layer separation
with vortex formation and compression shocks with interaction with
the boundary layer, and this makes 1t difficult to obtain a closed
system of equations which can be solved.

It will be shown that a calculatlon based on a flow model de=-
termined from the experiments 1s very difficult. For thils reason
1t zeems appropriate to introduce models which are based on a
highly simplifled flow model. A comparison of the two calculations
and a comparison with the experimental results will verify that the
great effort to determine the lee side flow 1s justified.

6.1. Determination of the flow variables based on a highly-
simplified lee slde model

In order to compare and estlimate the present experimental
and theoretical results, we will determine the Mach numbers, pres=-
sure coefflclents and the positlon of the internal shock using a
gsimple calculation method.

The flow model shown in Fig. 66 1is similar to the one of
Fowell [52], where 1n a plane perpendlcular to the leading edge
the flow varlables are first determined. These are then the basis
for the subsequent Prandtl-Meyer expansion around the leading edge.
The additlonal component in the direction of the central plane
which 1is created must then be equalized again by means of an in-
ternal shock, as already mentioned. The internal shock 1s assumed
to be flat in this case and perpendlcular to the wing surface.

The Mach number perpendicular to the leading edge 1s already
known as

M= M ]/l-sin’ A cost o
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with the corresponding angle of attack

fan

Uy * arctan
N s A

With the assumption that the expansion 1is complete, as already
shown in Tig. 66, we obtain the Mach number Mye from the Prandtl-
Meyer functlon

P

\{(M“') z V(M")OGN

The pressure coefflcient 1s then

2
E’a o . ,,M,’j. 112
” p 3
Cpe® ,.'_"‘....T mit - = m.%.-
DTML Pw | M

The angle at which the flow 1s inclined in the direction towards
the central plane 1s found to he

MNe
Me * €05 & Sin A

y = arctan ( )-(00-/‘\)

Since thls 1s also the deflection angle for the internal shock,we
have & =¥ , and therefore from

M, = }’Mfu + (M, cosasinA)?

we czn determine the remaining quantitiles through the shock, such
as the Mach number fi. , the shock angle @ and the static pressure
ratio

p _ 7 Misin?@-1

M.

Pe 6

The pressure coefficient is then
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The position of the internal shock 1s found from the angle which 1t
forms with the symmetry plane Y =#@-0

tan {3C-A) |
18 & eoelZll |
and therefore Ys tan v |

From these quantities, we have specified the pressure distribu-
tlon over the wing and this i1s then avallable for comparison with
experiments and the calculation method now described.

6.2. Determination of the flow fleld based on an experimental lee
side model

Before we discuss the developed calculation methods, we will
first gilve the baslc flow model. In order to remain within the
reglon of separation with the shoclk and also to obtain comparison /59
possibillities which are known from other calculation methods and
experiments, the range of validity of the calculation is restricted
as follows. We will only consider delta wings with a plane flat
lee side and sweep angles between A=¢5% and 85°. Over the entire
flow reglon, we assume supersonic leading edges (¢ = 0°) so that we
always have

cos A
sin {1

where tin P = L/Mw

The calculation method 1s therefore only valid for Mach numbers
between M_ = 3.5 and 7, as well as for angles of attack of & = 12°
to 250. The shape of the underside is then introduced in the cal-
culation only for determining)the separated or the attached leading
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edge shock, because in this Mach number range the lee side flow 1is,
for the most part, independent of the underside (see Sec. 4.3.4)
because of the fact that the stagnation lines are adjacent to the
leading edge. The assumption of conical flow has been conflrmed,
for the most part, by experiments (see Sec. 4.1), so that in the
calculation we can assume a cross-section area perpendicular to
the leading edge. The experimentally determined flow model 1s
shown in' Fig. 67 in this plane, and only for one-half of the wing
because of symmetry, and it can be divided into the following
regions.

1. Incident flow in the cross section plane;

2. separated leading edge shock;

3. flow behind the shock perpendicular to the leading edge;

i. boundary layer above the wing within which recirculation
1s formed;

5. Prandtl-Meyer expansion over the boundary layer in the
vieclnlity of the leading edge;

6. internal shock;

7. flow above the boundary layer which is thickened by the
internal shock in the central region of the wing;

8. parallel flow, at least in the symmetry plane.

The flow field being described can be divided into two charac-
teristic regions: The region of the boundary layer with friction
is ccnusidered in the calculation as the surface of the wing, so
that only the contour is determined, and the flow inside the bound-
ary layer is ignored. When determining the Pitot pressure isobars
in planes perpendicular to the wing surface, we introduce a simple
trial solution for the state variables inside the boundary layer
in order to have a possibility of making comparisons with the ex-

periment in the region with friction. The frictionless region can /60

agslin be divided into two regilons, separated by a compression shock.
The outer region of the wing 1s limited by the leading edge shock
and the inner shock,‘whose shock front runs along conical lines
through the tip of the model. A separation of the inner and outer
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wing reglon exlsts because disturbances in the central reglon out-
slde of the boundary layer cannot propagate through the inner shock.
The calculation of the flow field 1s done separately and in the
order of regions shown above. Essentially, the theory contailns

the computation steps shown in the macro-flow dlagram of Fig. 68,
which wlll now be dlscussed. The incldent flow conditions and the
geometry of the body ere introduced as input data. After thls, one
decldes about the leading edge type and the question of whether
there ls an attached leadling edge shock or a separated one. After
the shock relatlionships have been used using the leading edge shock,
the calculation of the expansion above the boundary layer has to be
carried out in three dimensilons, in order to finally obtaln a veloc-
1ty field parallel to it in the symmetry plane. Since the expansion
creates an additlon:nl veloclity component, an internal shock 1s
created from the mentloned symmetry conditions on the wing, which
causes a deflection of the flow. The subsequent flow around the
"thickened" boundary layer ls calculated wlth different methods,
depending on the speed range. In the supersonic range, the Prandtl-
Meyer expansion 1ls used, but in the subsonlc range the panel method
1s used. The final flow fleld can only be determlned by means of

an iteration.

Coordinate systems

The ccordinate system ls selected according to various criteria.

First of all, it should be possible to have a direct comparison be-
tween theoretical and experimental results, but on the other hand
one should obtain the simplest possible solution of the equations
in the calculation method.

First of all, we will select an aerodynamic and cartesian co-
ordinate system whose origin is at the type of the model. The x-
axis with a unit vector 1 is parallel to the incident flow, the
y- and z-axes with the unit vectors T and Kk are shown in Fig. 69.
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The analytical treatment of the flow field 1s carried out in a /61

plane perpendicular to the leading edge of the model. Therefore,
1t seems appropriate to introduce a body-flxed coordinate system,
and the x-axls 1ls parallel and the y-axis 1ls perpendicular to the
leading edge., Thls second coordinate system ls obtained from the
aerodynamic system in which the X-Z plane 1ls rotated by the angle
(90°- A) and the X-Y plane is rotated by the angle a. The unit
vectors here are I, m, n The transformation equations from

the body-fixed system to the aerodynamic system are therefore:

X = X+c08 @ sin A+y cos d cos A~z sin ¢
¥ = =xcos A+ysin A (1)
Z = xsindsin A+ysina cos Arzcos a

If we include the separated leading edge shock in the calcula-
tion, we find a third coordinate system whose x-axis 1s parallel
and its y-axis is perpendicular to the shock trace in the plane
on the top side of the model. The rotation angles for a similar
coordinate transformation as in (1) are the angle of attack o and
the shock angle Ag -

The leading edge shock

The questlion of whether there is an attached or a separated
leading edge shock at the leading edge 1ls made based on the "thin
shock layer" theory of Squire [82]. PFirst of all, two new parame-
ters are introduced by using a density ratlo through a shock

- K=} 2 L' |
&= o] (nel) M2 sin? o (2)

as well as the transformed seml-span

b
Q'eV2dan o (3)

and the thickiess parameter
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From boundary layer conslderatlions, we then find that in the
C-Q plane, as shown in Fig. 70, the lineQ - C = 2 delimits sepa-
rated and attached leadlng edge shocks.

For the attached leading edge shock, we can have no influence
of the top side on the bottom slde, so that we can Justify a sepa-
rate calculation. The initilal values for expansion at the leading

>
N
n

edge are found directly from the values of the undisturbed flow.
The Mach number components in the body-fixed coordinate system are
obtained from scalar multiplication of

Mg, = { Moy )°{2; m; n} .
Therefore, the component parallel to the leading edge 1s
Mgy = Mg, cos a sin A (5)

and the component normal to the leading edge in the plane of the
top side is

Mo = Mg €05 @ cos A (6)

and the component normal to the top side is

Mgy =~ Mso SiD & (7)

The Mach number component perpendicular to the leading edge
is then the vector sum of (5) and (6)

My = Moy -Vt-s‘m"/\. cos?a (8)

The important angle of attack in this plane is also found from
the Mach number components
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Moy ‘ tan a
tan o= |22 | 2 A
N 0w cos A (9 )

For the case of a separated leading edge shock with (Q - C) <2,
we have to determine the shape and the position of the shock. The
exact determination of the shock geometry ls very complex even for
simple bodles. For the present problem, we selected a simplified
approximate solution. A first support of this are experiments with
which the shock form was determined for different angles of attack.
For a rhombic delta wing at M_ = 7, the results of Collis [U8) are
shown in Fig. 71. In the plane of the leading edges, the changesin
the shock separation ys/s = 1.1 at o = 0° and ys/s = 1.2 at a = 17°
or 25° are very small. Figure 72 shows an additional example of
our own test results for M_ = 3.5. In addition to evaluations of
Schlieren photographs, we also show results of the theory of Moeckel
[83] and the "thin shock layer" theory. The latter has the disad-
vantage that only values within the wing span”ys/s < 1 can be deter-
mined and therefore the interesting reglon near the leading edge 1s
not covered. On the other hand, the theory of Moeckel only glves
the shock separation along the symmetry axis of the incident flow, 6
whereas the shock shape is assumed to be approximately a hyperbola.
Figure 73 glves an evaluation of this theory for two-dimensional

(&8}

and rotationally symmetric bodies in conjunction with our own experi-
ments. It 1s exactly in the lower Mach number range that there 1s

a strong change in the shock separation, whereas above M ~ 2.5

there 1s approximately a constant value. If weuse this knowledge

and the experimental results, we can approximate the shock separa-
tion referred to the span of the delta wing in the form of a hyper-
bola by the following relationship: i

Y , 0748

.
-

T

Therefore, it becomes possible to ealculate the shock trace angle
As in the plane of the leading edges (see Fig. 69) as a function
of the incident Mach number M_ and the angle of attack a.
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AsamlzucchM\[(Mm.cm#(%a’-‘oﬂtanIRIZ )] (10)

The variation of this curve for different sweep angles 1s
shown in Fig. 74 and is compared with available experiment data.
Equation (10) shows that the influence of the angle of attack 1s
small compared with that of Mach number which was &glready men-
tloned in the dilscussion of Fig. 71.

In addition to knowing the shock separation from the shock
trace angle As , we only have to know the inclination angle of
the shock with respect to the top side d% to continue the calcu-
lation, which is shown in Fig. 75. Thils angle 1s determined in
the plane perpendicular to the leading edge shock and ls referred
to the normal to the top side plane of the wing. The inclination
angle in general differs only slightly from zero degrees, l.e.,
the shock 1s almost perpendicular to the plane of the top silde.
For the calculation, we set Qs = 5° in all cases, which is an esti-
mation which seems to be Justified based on experimental knowledge.
This means we have specified all the parameters of the leading edge
shock required for the calculation.

In order to determine the flow variables above the separated
leading edge shock, we define a coordinate system X, ¥, X in the
plane of the top side in such.a manner that the x-axls is on the
shock trace at an angle of As , as shown in Fig. 75. Just lilke
in the attached shock, the Mach number component in the y-z-plane
is found from

'- . wBin? . ;2 l"‘
Mg, = M, 1[1 5in? Ag rC02% U (11)
and the effective angle of attack is /64
- tan o |
as = arctan (£ ) (12)
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The shock angle for the use of the oblique relationships
is

Bs = 90°-ag+ (13)

Behind the shock in whilch it is to be considered plane, we
obtain the following deflection angle

(ve1) M, _”] (14)

g =T /2 ~ arctan [‘0" B ‘2(M§‘ sin? Bs-1)

and the Mach numher

_ 36 M% sin? Bs-5(M2 sin? Bs-1)(7M§ sin? Bs+5) (15)
(7ME, sin? Bg~1 M M2, sin? g+ 5)

)

U e

The total Mach number behind the shock in the X-Y-Z coordinate
system is then

o~

M, =7 (Mg cos? t 5in? Age Mg, cos (ag«b5) zos ot cos Ag
+Mg, sin lag+ &g sina)

=) (M.c05 @ sin Ag cos Ag- Mg, cos (as+Bg) sin Ag)

okl Mesin o cos & £in?Ag+ Mg cos (ds+hg) sin & cos Ay

(16)

-ﬂs,sin {qg+ bg) cos a )

In order to determine the initial quantities for the Prandtl-
Meyer expansion, we make a scalar multiplication of Mach number
ﬁl and the unit vector of the body fixed coordinate system. From
the tangential component

M‘T =3 fﬂio{

the component perpendicular to the leading edge in the top side
plane
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MIM= M‘om

and the component perpendicular to the top side

My = Myen

we obtain from the scalar summation of MlM and M1N the magnitude
Myo of the Mach number perpendicular to the leading edge. (If in
the lower M, range there is subsonic flow perpendicular to the
VK, then nevertheless we can speclfy that the component required
for the expansion 1is at least MN2 = 1, otherwlse there would be a
flow around the VK. Squire [10] also argued that because of the
proximity of the VK shock, the sonic line starts at the VK.) The
effective angle of attack is

a = arctan (%%5), (17)

and the corresponding sweep angle is

(Mo iy (18)

A, = arccos =
N ( (14,)

In this way, from the oblique shock relationships we can determine
all of the other flow variables, for example, Pitot pressure ratio
and statlc pressure ratio.

Boundary layer

In the present calculation method, it will be found that it 1s
not necessary to carry out detalled boundary layer calculations.
As already mentioned, the displacement boundary layer 1s used as a
fixed boundary for an isentropic (Prandtl-Meyer) expansion. Within
the framework of this analysis, it seems sufficlent to assume a
simple two—dimensiohal houndary layer and to use the displacement
thickness for a flat plate, as was done in [ 84]
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T 2 Cc 112
*. g-(0.664 +1,73 -2 o~y .
6= ¢-(0.66 173 5 ) M”(Uw/vm)

Using the following rest varlables, which prevail in the ILR tunnel,

rest temperature T, = 293° K .

wall temperature T, T, (1+0.169 M2, ) With 7, =1 /0 e

speed of sound q, =343.2 ? (at To)

kinematic viscosity ., -14.9 -10° T> (at T_ and B_ = 760 torr)

H

Sutherland constant ¢ . ;3&? with § = 110° K)

"W

we obtaln

? Yo
Teef0.666+ 173 (1 17100009 ML) 12 \!C———Y—q} e

wlo

where ¢ = denslty ratio over a perpendlcular shock.

From experiments, we find that in addition to the Mach number,
the angle of attack also has a substantial influence on the dis-
placement thickness of the boundary layer. The ratio of these
thicknesses for a wing with angle of attack and without angle of
attack is found from

Scy

, / o,
A 243,31 g

=0

The overall boundary layer displacement thickness is given by

9%:& - & (2003311 e (19)

m‘c‘

In order to calculate the flow field, we require the contour
of the boundary layer displacement thickness, which is first given
by (19).




This relationship 1s only used in order to determine the dls-
placement thickness at a certain point. The position of the point
can be found in the viecinity of the base point of the internal
shock and 1s described by means of the angle Y , which 1ls between
the symmetry plane and the corresponding trace line. This angle
is found from experiments based on an evaluation of oll film photo-
graphs as follows:

Yg ® Baw-A10.305 + 2+ 0.085) (20)

Here we have R, =oresin (/M )} , which 1s the Mach angle. From

the angle y, we obtain the required distance from the leadlng edge

Y50 which is required to calculate the displacement thickness from
Yoo . ten (90-A-v)

= * TRl Al (21)

This means that from equation (19), we can determine the dis-
placement thickness 2? in the vicinity of the internal shock.

Comparison calculations, however, give a negliglbly small error if
instead of equation (19), one uses a simple parabolic shape of the
boundary layer displacement thickness, using the coordinates at the
point (y2 VA NRE determined above:

« » Y 116

£z Deg (;;;5)‘ (22)

In this way we can determine the expansion from the displacement
boundary layer determined here.

Expansion in the leading edge region

The flow variables determined in the plane perpendicular/po
the leading edge are used as initial values for the expansion above
the boundary layer. The parabolic displacement thickness along the
span given by equation (22) is replaced by straight-line segments.
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In steps, the flow variables in thls reglon of the wing are deter-
mined using Prandtl-Meyer expansion.

The local flow angle ¢ 1s equal to the angle @y for an attached
VK shock for the first value of expansion. Also, the expansion Mach
number here 1s MEl = MNQ' The corresponding positlion on the bound-
ary layer ls determined using the inelination

dé™ 1 . . -5/6
tan Qg5 = Gy~ = B Psot 1Y so) (23)

in such a manner that ¢ = ¢

The division of the boundary layer into segments by speclfying
a flxed angular amount Ad allows one to determine the veloclty dis-
tribution. The local flow dlrectlon 1ls specifiled by

@ = Py~
The Prandtl-Meyer angle 1s therefore
Vi = Vi o5 95,)

and the Prandtl-Meyer function is

hrel / 2 A2 ‘
Vs m.a(c(qn X=1{M2%1) -~ arc tan Y M*=1 (24)
*=) K+l

and we can then determine the Mach number Mp, through an iteration
as discussed in Appendix 1.

This does specify the required flow variables in the cross-
section plane, but we still have to introduce the tangential com-
ponent into the calculation. This three-dimensional analysis is
required because in the reglon of the symmetry plane, the flow d4i-

rection must again be parallel to the incident flow, 1l.e., the scalar
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multiplication of the veloclty vector and the unit vector perpendlcu-
lar to the central plane has to egual Zzero.

The vector of the incident flow can be divided into the follow- /68
ing components

U;, 2 DTO ¢ Dhmo* Uno
and also behind the leading edge shock

0y = Oy * U+ O

The tangentlial component 1s constant over the shock and is

Uy = Uy
ana we obtain
U‘ ® Uvo * ‘Uml - Eno)"(.a“nl' U:»O’ (25)

By dividing through the magnitude of the lncldent flow speed,
we find

,,9,3_‘, U«n . ‘Bm’ "Gmg) . (UM ~Uro )
10! 10! ol 1O

(25a)

The unit vectors are given by

- -

._-..nlg_:m und __._.U"" « iﬁ
U Un,

as well as ‘_ﬁd L}‘!
Yoo .7 ung You ait
{Uno ! fUns}

>
For the y-direction, we refer these unit vectors m to the




absolute magnitude of 10,1

U Gro [ G O] Uy | 10
V.l [Bmil  [Umal  [Umol| U, |

where
[Um) | Boycos o | a5, Ma cos o
lt’-mc‘ MS\ £ €03 Oy 65; Mgy COS dg (26)
and
r vl
‘:’:‘3‘5 ® €05 Og: €OS Ag .
Uy |

Here, ¢ is the local flow angle which 1s defined directly
behind the shock with 9 = ug 6, and which 1s reduced by A¢
during the Prandtl-Meyer expanslon. Also, the Mach number MS1
directly behind the leading edge shock 1s gilven by equation (15),
but during the expansion the prevalling Mach number MEi 1s sub-
stituted in equation (26).

If this trial solution 1s also introduced in the z-dlrectlon
and 1f we conslder that

then for the vector in the outer region of the wing, we find

Y,

bt =T. [’m‘" {g{Mg) cos @ - cos tig)

(27)

-1 (glHe) . sin @ - sin @5)} cos Ag

According to equation (26), the function g(M;) is defined by
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(M) 2 —5-
§™% Msy

In the aerodynamlc coordinate system with the transformation

and

-
!

i €os ¢+ cos Ag ¢] sin Asfk‘ 5in A cos As

-l‘ Ed byel
s~} SN C+ K €05 &

we obtain the equation (27) shown completely in Appendix II.

In order to determine the overall Mach number M2 in this

region, we explolt the fact that the critical speed of sound does
not change above the shock. Therefore, we have the following re-
latlonship between the local and the critical Mach number:

where

and

Mg'l}";%‘i‘}“z'M;-(]. {.&:f_%..M;l)-HZ (28)
M= juat - ‘__llgj . tU@_‘
A VR
A Y-V a2y
R A (282)

The internal compression shock

During expansion over the boundary layer in the outer wing
reglon, an additional velcocity component 1s created in the direction

of the central plane. Since symmetric flow fields occur for the

delta wing under consideration, the direction of the velocity must

be parallel to the incident flow at least in the symmetry plane.

et i

i e
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Accordingly, in the central region of the wing, there has to be a
deflectlion of the flow through a shock. The shock shape and posi-
tion are not known a priorl and are determined from «n iteration.
The different velocity ranges which are the result of the expan-
sion (sce Fig. 67) lead to a curved shock surface. Since we have
assumed conical flow, the shock surface 1s formed by straight lines
which all run through the model tip. 1In the following, we will de-
termine the position and shape of the shoeck and the vector of the
speed behind the shock. With the assumptlion that the tangential
component over the shock 1s constant, we obtain the following for
the speed:

N
-Q
o

Us s Uz ¢ “G‘_a"ﬁez’ (29)

where Uez and 563 are the components perpendicular to the shoeck
front. 1In order to evaluate equation (29), we first have to specify
the dlrecticn of the normal components. In an arbitrary point on
the shock surface, we can define a tangential plane using two vec-
tors &' and £ whilch are perpendicular to one another.

a:Tc%y-?ﬁny
Beisiny sinde]cosy sin $-k cos ®

Here vy 1s the projection of the shock trace angle in the x-y-plane
and ¢ 1s the local inclination angle of the shock with respect to
the y-z-plane rotated by Y. The vector product is then the normal
vector which is perpendicular to any point of the shock front‘

&x.&?—:g:Tsiny cos &+ cos y cos & + K sin @ (30)

The velocity components using equation (29) are then found
from

Uea =Ur3° ¥ and Uea = a7_°'f*

and therefore

(U,fﬁ,z)-:-(ﬁgdf"-ﬁzof)o t
80 '
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The Prandtl relationship gives the relationship between the
normal components in front of and behind the shock
Uyug - oy = 0™

If we agaln introduce unit vectors, then we obtaln the follow-
ing for equation (29)

P e,
F‘B{f,i”iu:f(mrf )(wml £)et (31)

With the relationshlp between the local and critical Mach num-

ber
M””‘ n-1 MM:........
2 W= a2
\E 3 M
and equation (27)
iﬁ--d?+b?*c§
lUCnl

we can then write

_IZ!. s al s bl i;. _.2'.—.,‘._:':122. -":!2 oﬁ‘e.‘{:’
gy e R Gl ) ol

JIf we use the condition that in the central region behlnd the
shock the flow 1s parallel to the symmetry plane, 1l.e.,

Yy oT-0 (32)
Vel
we then obtain
/
2 ‘MN U; o ) cos Y cos (33)
O=b+\37 \(;u ) cos Y cos &

For the solutiod, we can express the term (é%ﬁo%)» In two
81
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different equations, which when substituted in (33) then result
in two equations for the unknowns Me2, Y and ¢ . By using equa-
tion (30, we have

L
o3
3
o]
n

inycos +bcosycos ®acsind (34)

If we use the magnitudes of the Mach numbers, then we obtain

U; o L2 :!Up! . Me20; , .l - Mez | !..‘.'..lj..l (35)
UL Tl My, My UG

Then we obtain the following two equations

2 Mi-1 b:M;

o

+cos y cos @ (36)

and

: 2 v , ,

Al Mz o ocostycos? o £ cos y sin & cos
2 M2, .

(37) .

. % sin y cns y cos?
!

By specifying an initial value, we can determine the unknowns
in (36) and (37) using an iteration (Appendix III). The leading
edge shock glves an additional velocity component in the negative
y=direction, whereas the subsequent Prandtl-Meyer expansion gives
components in the positive y-direction. Therefore, an expansion
surface has to exist on which the direction vectors are parallel
to the incident flow. Wherever the expansion surface intersects
the shock surface, the shock intensity has to be zero. At this

position, we have M_, = 1 and 3&0'{30, , 80 that from equations

(34) and (35), we find

————
asinycos ¢+ c 5in @ = :i. . -‘/az‘cz (38)

[LP)
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The veloclty vector is

- e
e 3 Qg # csn * k'

and 1s parallel to the symmetry plane with the inclination

o
@so= arctan (-89,
Qse

The corresponding Mach number M2 forms a Mach cone, and the
tip of the model or the coordinate origin is located on its genera-
| tor. 1In this way the shock angle‘yso can be glven as follows in
» the x-y-plane

' N —denbay
1 Ysn & arc tan Vtonzp.so -tan? dgg

The inclination angle Qso has to be determined from a solution
of equation (38). If we calculate the corresponding positions in
the coordinate system, then all initial values are given for itera- ;
tion to determine the internal shock. §

In this iteration, we first assume that the inclination of the
T shock ¢ 1s constant, or the value 1s used from the previous cal-
| | culation. From equations (36) and (37), we then find an adii-
tional point of the shock surface in the cross-section plane. The
connection line between the new and the old shock points produces
the inclination angle which has to be varied until the value used
in the calculation equations and which is the result of the geometry
coincldes within certain limits.

The shock shape and positions can then be determined in the /73

manner descrlibed. The velocity vector behind the internal shock
is then found from equations (31), (35) and (36)
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Uy _ .7 0 b T - s Bolsi
Ys . *b,‘ckw—-—«-—-—-ocosvmsq’(wnnvcoséo,cosycos +k sin ¢)

from which 1t follows that

|%L| =ila-btanylek {c-b i‘:: & } (39)

The magnhitude of Mach number is determined in a similar way
as was done with equation (28), so we obtailn

02 uz_ " l(____ =12
My =020 M 0 2Ly (40)

where

IUsl Ul MU
My s o3 IUSI' u*J

and |U,}/«* is defined by equation (28a).

The pressure increase above the internal shock is the reason
for the thickening of the boundary layer in the central region.
Here there is an expansion which results in a velocity component
in the direction towards the symmetry plane. Therefore, the equa-
tlons for the internal shock have to be expanded so that a larger °

deflection of the flow is achieved and so that U oT:o only occurs

4
after the expansion.

Using the condition {.sj#0=-K , instead of equation (33)
we obtain

- e ' M" { UZ spns vy cos @ b1
-l(-b+(m1 7 )g“ | of) - cosy co (41)
and therefore for equation (36), we obtaln

2 Mi-1 (beK) M,

KT M Uyl
T

<cosycos d
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and flnally the veloclty vector behind the internal shock is

T T P Y

Ys o Tla=(beK)tany)egib=(beK))
(42)

\
~3
i

3nn¢
cosy

eklc-lb+K)

With an appropriate lteration, we have to determine the value
K 1In such a manner that after the internal expansion, one obtains
a vector parallel to the symmetry plane, as discussed above.

The inner expansion

The dlsplacement boundary layer downstream of the internal

! shock 1s again considered as a fixed body surface at which the in-
| ternal expansion occurs. The form of the boundary layer in this
region 1s given in various ways (Cross, Collis: Fig. 7) and will
be described by means of an ellipse with a principal axis in the
symmetry plane. The equation of the ellipse can be determined from
two points. PFrom the intersection point between the internal shock
and the boundary layer, we find the "separation point" which is
also on the thickened boundary layer. The second point is defined
by the displacement thickness in the symmetry plane 5§L which
was determined in various experiments. Figure 76 shows the de-
pendence of the thickening on angle of attack for different Mach
numbers. As an approximation, we can obtain the following equation
from %inis:

%

|

'I. = 0,97 M;o/l.a + 0,001 M2 (43)

[1)

If the coordinates of the separatlon point S( y,./ 24 ) |
and of the point on the symmetry plane S (y., /8l ) are known,
then the ellipse equation is
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a? 6ol (43a)

where

GrL )

a? = yge- Yo )P ( T z
&

In the continued c¢alculation in the central reglon of the
wing, we have to distingulsh whether the velocity components
reach supersonic or subsonlc speeds in the cross-section plane.
We wlll discuss both cases.

In the case of supersonic speeds, the calculation is similar
as already given for the expansion above the boundary layer l1n
the outer region, in which first the ellipse is replaced by small
straight-line segments. Starting from variable. behind the in-
ternal shock,the Prandtl-Meyer expansion then glves the Mach num-
ber Ml&e and the local flow angle ¢u.

The velocity vector and the total Mach number are then found
from the following trial solutlion. The veloclty vector behind the
internal shock was

.9_7(_ z-i.‘dO-!.(.ﬂ.‘
U]

where d and e are defined by equation (39).

In the cross-section plane perpendicular to the inner shock.
we than find

wepe

IDQ-' -z‘m cos asiny + ¢ sinasiny)

+m {d cos a cesy+e sinacosy) (44

s+ (-d sina ¢ cos a)
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Since agaln we assume that the tangential component above
the internal shock does not change, we obtain the followlng for
the speed

6‘ = Efa ’(UGC-U30’

If we define

—

ULQ
e 3 m,‘ coLn (.{)4 - n Sll"t *.p,

i,

setbe - .
and if ‘he,/lU“§ 1s given by the my- and zq-components in equa-
tion (U44), then we find

LISLTEIL 2 (m cos wAeSin @, ) alt,,)
- {d cos o cos y+e sin @ cos y)

,~K$emsa~dmww

with o R

34 i“- l\’z

1’ “....—...- Mke

g (Ml.e)

In this way, we can write the veloclty vector in the central
reglon of the wing as follows:

U o T (dcos asinyee sinasiny)
[ Uoi

stn, lgitd,,) cos @A}Jﬁ (g(M,,) sin @) (45)

~
-3
(@)

The complete equation in the aerodynamic coordinate system
is contained in Appendix IV.

The magnitude of the Mach number is found from
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M, <'Kﬂ) M‘ (‘- Mzz) "V (46)

with

M" -3 L‘:’.ﬁ-l - ,-‘-Jw‘h] » '-th-?-‘
a* ULt e

For low incident speeds, around N, %= U4, we obtain subsonic
speed in the central part of the wing in the plane perpendlcular
and downstream of the internal shock. The calculation of the flow
variables in thls case 1s done using th: panel method and will now
be described. ‘

The veloclty field can be represented as the sum of the veloc-
ity behind the shock U3 and the perturbation veloecity U given by
the elliptical thickening of the displacement boundary layer,

The calculatlion of the perturbation fleld ES is done using
potential theory, and a disturbance potential 1s introduced, whilch
for example can be produced by a source dlstribution on the surface
of the boundary layer. Then we can establlish an integral equation

2nq; - }/ ( ) q;d0 2 -1y Uy (47)

whose physical meaning is shown in Fig. 77. The right side of this
equation is the normal component of the incident flow at the point 1.
The left side, first of all, consists of the term 2wq, , which

is the normal velocity component directed outwards, caused by the
source intensity in the immediate vicinity of the same point. The
surface integral, on the other hand, is the component which results
from the source distribution at the points J on the remaining body
surface at the point 1.
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Since equation (47) cannot be solved analytically for arbi-
trary body shapes, the panel method [85] is used, and the body
surface 1s divided into a number of plane surfaces. On each of
these panels, one assumes a constant source intensity with an un-
known value, and then qy can be placed ahead of the integral. The
integral over the individual point 1s then reduced to a geometric
problem which can be solved simply. We then find a system of
linear equations

N — ol
2, 9 g Uy (48)
j:

—

which is an approximation to the integral equation (47). The
physical meaning of the individual terms 1s also shown in Fig. 77.
An additional description of the method used here is given in [86].

The solution of equation (48) gives the veloclty fleld in the
cross-section plane so that together with the tangential speed, the
total vector ﬁu can be represented by

CirC&

I= ¢(dcos asiny+esindsiny)

V.,

o R (Ugoimg)e 7, (Uso ) (49)
The corresponding Mach number distribution 1s then found again from
equation (46).

In the previous section, we already discussed that the flow
around the boundary layer thickening induces an additional component
in the directilon of the symmetry plane and therefore ngf’ﬁ 0 ist,
The shock has to be iterated in such a manner that it produces an
additional component in the directlon of the leading edge. Accord-
ing to equation (42), in the calculation of the inner expansion
we have to include the 3—component of the vector %3. The speed
ﬁu then only changes in the E; direction. Thls equation 1s also
discussed for the aerodynamic coordinate system in Appendix V.
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Static pressure and total pressure in the flow reglons

In the previous sectlons, we discussed the veloeclty vectors
and Mach numbers in the entire flow fleld, and therefore we can
now calculate the static pressures and the total pressures in the
individual regions. 1In the following the index (», 1,2,3,4) re-
fers to the flow regilon and (p) refers to the Pitot pressure behind
a normal shock.

Behind a leading edge shock, we obtain the following for the
statlc pressure ratio:

Py .2 Meyrsin? Bo =(1-1) (50)
., - Nel

For the total pressures, 1t makes more sense to glve the ratio
of the Pltot pressures in order to make comparlson with experiments

Py Pm P Po (51)

-

‘F-;;::: Pl P Ppm

so that according to the shock relationships, we have

-~ Pm .
——z{ (M

B f (Mg)
g":- = § (Mg - sin 2)
Pe

In the outer expansion region in the vicinity of the leading
]
edge, the static pressure ratio 1ls found from a series expansion

for an expansion over small deflection angles Av . The Mach num-
ber ME 1s the one of the preceding expansion

i-1
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1) .
el oxie meon il s AV w142 Avi=....
Py M S a1 (52)

Prom which we find

() () (B -2

(B3 o;

For the Pltot ratio, we can then essentlally use equation
(51). The outer expansion only causes the Mach number behind the
leading edge shock to change and therefore we have

Poe P P B
BB RR R (53)
T & ¥ i (» r P -

where

Por y ot (M
P

and P2/Pl = 1 1s an lsentroplc state change.

The static pressure ratlo over the internal shock 1s agaln
given by the shock relationships and i1s the followhi, referred to
the 1incident flow pressure:

Bebh B (54)

where 1’3/1:?=~'f(:'v‘»ez) s where M_, 1s the perpendicular component

ahead of the internal shock. The Pitot pressure ratio can then be

determined from

Poy P P P P2 (55)
Pr, P P2 P FPeg

where
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.'-,f’ium,,)
and

Py

— % Me2)
Pz 7.‘ n)

where MeB 1s the normal component behind the internal shock,

In the region of internal expansion in the vicinity of the
symmetry plane, as already discussed in the previous section,
there will be subsonic speeds and supersonlc speeds. Therefore,
in the case Mue > 1, we use the equations of Prandtl-Meyer
expansion for the static pressure, as already done in (52).

If subsonic speed prevaills Mﬂe < 1, then we find

P’- - 2 _}1}‘24_ iri}—- (56)
el M2y (1 ;2 N -y

[

The Pltot pressure ratio in supersonic flow i1s

ol P P Py By

F;: P:. ?;; PFJ Pf*m

where

Pre - (M)
P,

and pu/pB =:;1, because here agaln an isentropic state change has
occurred. For the case where subsonic Mach numbers Mue < 1l exists,
the Pitot pressire ratio does not change and then corresponds to

I,(’B/Ppw ‘

In all regions of the wing, we wrote the static pressure as a
coefficlent Cp to better compare it with experiments, which is
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defined by

This means we have now given the most important flow vari-
ables for a comparison wlth experimental results and other
theoretical results on the lee side.

7. Dilscussion of the theoretlical results and comparison with
experiments

In the discussion of the theoretilcal results, we will first
descrlbe the influence of the simplifications used in the calcula-
tions in the form of emplrical equations or fixed data. For an
example, we will then describe the complete theoretical flow field
whilch was determined and will carry out a variation of the most im-
portant linput variables. TFinally, we wlll give a comparison with
other theories and experiments, lncluding those which are outside
of the definitlon reglon of the present calculation.

The empirically determined equations which were used in the
calculation method agree gquite well with the various experiments,
but at this pnint we have to examlne whether deviations have an
effect on the theoretically calculated flow field. Four components
of the flow model have been determined empirically: thickening of
the boundary layer behind the internal shock, displacement thick-
ness ahead of the internal shock, inclination angle @S and trace
angle A, of the leading edge shock.

The thickenlng of the boundary layer downstream of the internal
shock in the vicinity of the symmetry plane has a very small effect
on the remaining flow field. We will discuss the effects on the
pressure coefficient due to this when we make comparisons with ex-

periments.
93
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The determination c¢f the displacement boundary layer upstream
of the inlernal shock was based only in part on empirieal knowl-
edge, because the thickness was derived from the simplified bound-
ary layer equations [84]. This trial sciution seems to be justi-
fled for the flow model, as the evaluation of control calculations
in Fig. 78 shows. Here, we summarize the influences of various . /81
displacement thicknesses q;/s on the pressure coefficlents and
the positlon of the internal shock. In addition to the value 6;,&
from equation (19), which in the figure is indicated by ()), we
show a comparison value which is about twice as large, 1ndicated
by @ . Trom the sketch on the left of the figure in the upper
diagram, we can see that the initial point of the internal shock A
varies greatly in the z-direction, which however barely has an in-
fluence on the further calculation. The base point of the internal
shock F (a measure for the trace angle y) changes only slightly in
the y-direction. In the upper dlagram, we show a pressure coeffi-
elent upstream of the internal shock which changes only a maximum
of 3% with respect to the value at (1) . The greatest influence
when varying the displacement thickness is exerted on the pressure
coefflcient just downstream of the internal shock. Here we can
observe deviations from the value at (D which amount to between
5% and 10%, which however still lie within the order of magnitude
of the measurement accuracy of the experiments.

The influence of the inclination angle @S of the leading edge
shock 1s treated in the same way in Flg. 79. The average empirilcal
yalue 1is %_= 50, which was used in the calculations, and it 1s

marked 1in the figure. The lower dlagram shows the eflects of vari-
ous inclination angles on the position of the internal shock. The

initial point A changes 1its position in the z-direction only incon-
sequentially. Also, the base point of the lnternal shock is almost

constant and only at large inclination angles ¢, can we find devia-
tions of around 10% in the average value. This is also true for
pressure coefficilents in front of and behind the internal shock

which are shown in the upper dlagram. As already shown in the dis-
placement thickness varlation dlscussion, influences on the pressure
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coefflclent are greater downstream than upstream of the internal
shock. Nevertheless, we can 3%ti1ll find a small deviation in the
pressure coefficlents compared with the comparison values. The
angle 4% = 5° can therefore be further used in the calculation
equations, because even for changes in the real flow by Af#= + 5°
we only find small influences on the flow field determined from
theory.

The greatest effects on the pressure coefficients and posi-
tlcu of the internal shock are obtained when one varies the trace
angle A, of the leading edge shock. This is understandable if

we consider that the values perpendicuvlar to the shock plane form /82

the departure values for the entire calculation. PFigure 80 shows

an evaluation made for the other parameters, and the trace angle

A, Was varled between 65° and 70°. The value determined from
equation (10) for the prevailing incident flow conditions. and
geometric conditlons is A5=é7ﬂ° . From FPig. 73, in which accord-
ing to equation (10) the angle A, 1s represented as a function

of Mach number, we can see that for the selected delta wing sweep-
back, in the range A, »43° , small changes in the trace angle lead
to a strong increase in Mach number. For 1K5>6§° , & change 1in

the trace angle has a small influence. This result is also re-
flected 1n the lower diagram of Fig. 80 for the position of the in-
ternal shock. For A5>689 » the initial point and base point change
more with increasing trace angle than in the range A »68° . For
the pressure coefficlents (upper diagram), this means that the values
ahead of the internal shock are influenced relatively little, but
according to the position change, stron:s pressure differences down-
stream of the internal shock occur. Th's means that we have a sub-
stantlal influencing of the flow field by the parameter A, , so
that it seems unavoidable to carry out the most accurate calculation
of this value possible. On the other hand, Fig. 73 has shown that
with equation (10), we can obtain quite a good approximation, which
results in a deviation of AA5=114’ with respect to experiments.
The resulting error is justifiable for the pressure distributions

ST | . .95
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but for the base point of the internal shock, we obtaln position
changes of a maximum of 30% referred to the comparison value.

At thils point, with the avallable Informatlion we cannot yet declde
about the feasibillity of the calculation method, Only a subse-
quent comparison of theoretical and experimental results will allow
a8 complete evaluatlon.

The theoretically detersiined flow field on the lee side of a -
delta wing 1s shown in Fig. 81 for M, = 3.5 and o = 14.5°,  For
the selected incldent flow condltions, we have a separated lead-
ing edge shock, through which the veloelty component in the cross-
sectlon plane undergoes an additional deflectlon. Along the dils-
placement boundary layer, the flow expands, and over the wlng,
reglons with different velocity result. On the first expansion
wave shown, we find the initial point A of the internal shock,
which here at the same time ls part of the Mach cone of the inei-
dent flow. The further course of the internal shock is desecribed
by a curved line. Downstream of the internal shock, we agaln have
a deflection of the flow because of the thickened boundary layer,
until symmebry conditions are achleved in the central plane.
Arrows indlcate the most linteresting positions and they indlcate
the size and direction of the speed. This {low field is, in princl-
ple, maintained for all of the incldent flow conditlons specified.

Figure 82 shows the pressure coefficlents over the span from
experiment and theory at two Mach numbers. We can see that for an
average angle of attack (o . 120), the pressure coefflclents are
comparable both in the expanslon region and in the central reglon.
At high angles of attack (o ~ 20°) in the expansion of the wing,
we st1ll flnd a similar pressure level for the experiment and the
theory, but from the theory we find pressure increases over the in-
ternal shock which ore too high. In contrast to the theoretlcal
results, the pressure distributions which are the result of experi-
ments are contlinuous aver the span. Discontinuous pressure in-
creases from the calculation are obtalned in the reglon of the
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Internal shock. In the real flow, there is a pressure equalization
inslde the boundary layer in thils reglon. If we also assume that
the shock in the vicinity of the boundary layer consists of indivi-
dual compressilo: waves, then we find the variation of an isentropile
compression which is indicated in the upper dlagram.

When introducing the calculation method in the previous chapter,
we first presented a simple method based on expansion equations and
shock equations. The flow model was greatly simplified. For M, = 4
and a = 12.2° we then obtained a result which is also glven as an
example in Fig. 82. It willl be shown that compared with experiment,
we have an expanslon which 1s too great and that the shock positions
and pressure increases are not comparable.

A comparison wilth the theory of Babayev [53] is shown in Fig.
83. On the basis of the inclusion of the displacement boundary
layer in the previous report and the centered Prandtl-Meyer expan-
slon at the leading edge in the theory of Babayev, we find substan-
tial differences in this wing region. Ahead of the internal shock,
we achlieve almost the same pressure coefficlents but different posili-
tions and lntensltles of the internal shock. The other pressure
distributions shown are gqulte close to one another in the expansion
region and are very different in the central reglon. On the other
hand, the linear theory is already outside of its validity range
(Mi < 10) and results in pressure coefficients which are below those
of a vacuum. O0il film photographs of Rao and Whitehead [5] (with
somewhat changed sweepback and angle of attack) glve an indilcation
of the position of the internal shock. This is Iindlcated by an
arrow in the dlagram. We have shown, therefore, that the individual
theories glve completely similar results. However, in this calcula-
tion example, we hayve no experimentally determined presssure dis-
tributlions and we cannot evaluate the individual trial solutions.

In the previously discussed pressure distributions, 1t has he-
come clear that the vortex position and shock position cannot he
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determined uniquely. The pressure distributlons show a pressure
equalizatlion over the boundary layer and the oll {llm photographs
also only gilve wall stream lines within the boundary layer. It
can be assumed that the positlon of the vortex and the shock will
occur in the same directlon when the incldent flow condltlons are
changed. On this basis, Fig. 84 glves a comparison of the posi-
tlon of the base point of the internal shock and the positions of
the vortex centers determined from oil film photographs. The
basls for thls are the results from the CUED wind tunnel sghown in
Fig. 32 for a flxed Mach number and different angles of attack.

We find a good agreement between the change in the vortex center
and the internal shock in the span direction. The assumptlon of
Cross [49]) that the separation lines are displaced in the
direction of the leadlng edge 1s therefore supported. This is not
necessarily contradlctory to the avallable pressure distributions
1f one assumes that because of the thicker boundary layers, the in-
fluence of a shock on the surface 1s greatly decreased. The pres-
sure increase In the central reglion 1ls created essentlially by the
vortices inside the boundary layer and is substantially below the
values which were achleved above the lnternal shock. We have to
point out that with increasing angle of attack, the shock Intensity
in the present calculation as well as according to the theory and
experiments of Fowell [52] increase.

When one varles the angle of attack, one finds qulte good
agreement (see lower diagram in Fig. 84) between the helght posi-

tlons of the vortex center and of the base point of the internal

shock. Based on the flow model, 1t is understandable that the
base point of the shock wlll always be above the vortex center.

From the previous results, we can already see that the calcu- /85
lation results In usable results even for angles of attack of
o < 120, i.e., oubside of the definition range, As an example of
this, we show the experimental Pitot isobars determined by Monnerle
and Werle [75]1 as well as the theoretical flow field, Fig. 85. As

e

98




TR RS TEITTTERT 2UTY TR e

P e dE AR ke LT

Lo

o

already described above with the ILR results, even here the Pitot
pressure values show a separation bubble (Manrierie and Werle,
separated regilon) at the leading edge and attached flow in the
central reglon, and thelr positions from oll fllm photographs and
Schlleren photographs are also indicated. From the theory, we
find that the displacement thilckness ahead of the internal shock
1is almost ldentlcal wlth the dimenslions of the separation bubble,
but downstream of the internal shock we assumed a boundary layer
(1.e., a thickening) which is parallel to the surface. Overall,
we find good agreement between the expansion region and the posil-
tion of the internal shock, but for the central region we cannot
make any determination except the indication flow direction (in a
plane perpendicular to the internal shock).

Finally, in Fig. 86 we show how the flow field changes when
one varles the angle of attack or the incident Mach number. For
a fixed angle of attack ®; = 14.5°, the figure shows on the left
side the Mach number which was increased from M, = 4 to 7. The
leading edge shock moves in the directlon towards the wing and
therefore slightly increases the normal angle of attack (AaN ~ 30).
The simultaneous increase in the normal component of Mach number
brings about a strong increase in the deflection angle through
the leading edge shock, so that a stronger expanslion 1s necessary
until that expansion surfsce 1s reached on which the internal
shock has zero intensity. The expansion of the internal shock in
the z-directlon 1s smaller based on the thicker displacement bound-
ary layer, whereas at the same time there is a slight displacement

in the direction of the symmetry plane.

As already mentioned, the influence of the angle of attack on
the leading edge shock is small, so that for it we have an almost
constant position on the right sketch of Fig. 86. The variation
in the angle of attack from a = 12.5° to 20° brings about a rela-
tively continuous increase in the normal angle of attack, whereas

99

. - B U S U S P A, I A L i ] TR T




the corresponding Mach number changes only slightly. Based on
these conditions, even behind the leading edge shock one obtains
an almost continuously changing flow parameter collection, so
that the internal shock i1s displaced uniformly in the direction
of the leading edge. In thils way we were able to show how the
flow fleld behaves when one varies two incident flow parameters.
The trends whilch were found have been sonfirmed by experiments.

Summarizing, we can say here that the empirically determined
equatlions used in the calculation for the most part have a small
influence on the most important quantitiles of the flow fleld. One
exception to this 1is the trace angle of the leading edge shock fh,,
which greatly influences the position of the internal shock. How-
ever, comparisons with the experiments have shown that the position
of the internal shock i1s well represented by the present calculation
method. As far as the pressure distribution is concerned, over the
entire definitlon region we find good agreement for the pressure
level in the expanslon reglon. The pressure values downstream of
thie Internal shock in the central regilon of the wing are comparable
up to a maximum angle of attack of & ~ 15°, The relatively high
complexity of the calculation method compared with other theories
with greatly simplified flow models is therefore justified, because
both the flow fleld as well as the pressure dlstributlon, for the
most part, agree better with experiments.

8. Summary

In the present report we dlscussed lee side f” w over delta
wings under supersonic conditions, both experimentally and theoretlc-
ally. Since not much work has been done in this area, it was the
purpose of thils investigation to review present-day knowledge and
to extend the information known abaut the flow field.

The experimental part included thick delta wings with different
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cross-sectlon shapes, and the experiments were essentially carried
out in two different wind tunnels. The experiments with the delta
wing with a flat top slde were used to analyze the flow types for
the different incident flow conditions. The Stanbrook-Squire
region was used as a basls of thils, which separates leading edge
vortex formation and shock-induced vortex formation. The evalua-
tlon of the experiments showed the following:

0 Confirmation of the region to the left of the Stanbrook-
Squire region (M, = const, o = variable) with leading edge
separation into primary and secondary vortices. However,
at the higher angles of attack, we found a change in the
type of flow. Here we find a shock which 1s almost
parallel to the surface in the symmetry plane, which is
the result of the downwards directed veloelty components
of the primary vortex. Instead of the secondary vortex,
we only observe a dead-water reglon here.

B
0o
3

|

0 Inside the Stanbrook-Squire region (M_ = variable, o = const)
the flow fileld changes continuously, so that no fixed bound-
ary for the change in the flow types can be given. However,
the most notilceable change in the experiments was observed
around the center of the transition region (M, » 3.0).

0 To the right of the Stanbrook-Squire region (M, = const, @ =

variable), we agailn found leading edge vortex formation for
small angles of attack. When the angle of attack is in-
creased, we find a flow type which deviates from the shock-
induced vortex formation flow type after crossing a transi-
tion region. Here we find a separation bubble at the lead-
ing edge and an internal shock on top, for the most part in-
dependent of one another. This type of flow is called
"separation with shock" and lies to the right of this
Stanbrook-Squire boundary only for average angles of attack,
because at higher angles of attack we agaln assume vortex
formation from the leading edge.
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The experimental Investipgatlions with delta wings for non-
flat (conical, delta-shaped) top sides were performed in the
"separation bubble with internal shock" reglon. Ve were able
to establish the following:

o] The lee side shape glves changed Incldent flow conditions
in the cross-section plane. From this we flnd attached
flow at the leading edge for the delta-shaped lee side
together with a supersonic expansion. Downstream, the
internal shock induces a separation with vortex forma-
tilon.

0 The angle © between the ridge line and the plane of the
leading edges can be defined for flat top sides and can
define how "greatly delta-shaped" a lee side Zs. A change
in this parameter only has a small influence on the geome~-
try of the flow field.

0] In general the cross-section shape of the delta wings in-
fluences the aerodynamic properties very greatly. Excesslve-
ly large angles Y between the top slde and the bottom side
perpendicular to the leading edge lead to stagnatlion points
on the lee side, whereas the flow leads to complete separa-
tion over the wing for small angles Y .

o) For separated leading edge shocks, the shape of the under-
side has an influence on the lee side flow which should not
be ignored. However, in the higher Mach number range, be-
cause of the position of the stagnation lines on the under-
side, 1t is Justified to treat both sldes separately.

In a few experiments, we observed strong pressure increases

above the entire span which had not been previously observed and
therefore we made additional investigations of this phenomenon.
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For certain incident flow condltions, we found that even for super-
sonlc speeds, disturbances in the tail region can influence the lee
side flow downstream of the tralling edge.

The theoretical results were restricted to the "separation
bubble with internal shock" regilon and are based on a flow model
whilch was determined from the avallable experimental data. Em-
pirically determined equations for the positlon and shape of the
leading edge shock, as well as for the displacement boundary layer,
were substltuted. The resulting calculation equations for the
veloclty distribution over the lee side had to be solved using an
iteration process. Comparisons with experimental pressure dis-
tributions and flow filelds show good agreement for the expansion
region and for the pousition of the internal shock up to medium-
sized angles of attack (& . 15°). At higher angles of atback, on
the other hand, the pressure jump over the internal shock is very
strong and can hardly be compared wlth the measured pressure dis-
tributions over the span which are almost uniform. However, the
flow condltions are, for the most part, not clarified for this
reglon.

For future work, therefore, we have shown that the Stanbrook-
Squire reglon 1s not the only limlt between the varlous flow types.
In particular, we should point out the region of small or very large
angles of attack, in which apparently substantlal changes in the
flow fileld exlst. 1In addition, we have to point out the influence
of the Re number, which in the present report was only dlscussed
wlth regard to the different wind tunnels. In addition, the knowl-
edge of the flow fields allows one to Investigate the influence of
the tall region dilsturbances on the lee side flow. We have not
obtained a thorough understanding about the mechanism of this
phenomenon.
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APPENDIX 1

N
=
o
H

The lteratiorr of Mach number from the Prandtl-Meyer functilon
for specified angle v flirst requires the exact knowledge of the

function V = f (M). The first and second derivative is gilven in
the following for M =1.4

2
v=}/€-arctan VMGI ~arc tan VM’-I

dv. = 5YM2-

dM M (M2 +5)

<5 Varor [ Mi3-2mhes }

Q.Q.
Zi

| M2(M25)2 - (M2-1)

From this 1t results that for v = 0 the function runs tan-
gentlally into the M-axis at M = 1 and has an Inflection point
for M, = 1.5812 (at VW). Therefore, using the following flow
dilagram, any Mach number can be determined from the specified
Prandtl-Meyer angle Vg

No
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. 2

Here € 1s a freely selectable accuracy constant.

APPENDIX II

The determination ejquation for the vector in the outer ex-
panslon range for the aervdynamic coordinate system according
to equation (27) is:

v, = |
IULI =i [14cos a cos A cos As(giMg) cos 9 -cos ag)
+sin  cos Ag [g(Mg)-sin ¢ ~sin Cfs)]

+j [sin A cos Ag(g(Mg) cos ¢ ~cos as)]

+k [sin a cos A cos Ag[gIMg) cos ¢ -cos ag)

~cos & cos Ag {9 M) sin @ -sin c:ts)]

APPENDIX III

Summarizing equations (36) and (37) results in an expression
which only depends on the shock parameters Y and ¢:

cos? $(cos3y+ —&;- sin?y cosy)+cos2y (2 {;—sin y cos? ¢

€ e B o ac 6 cos & X2l Qg
+2bcos <I\>s|n<b)+2b2 sin y cos y sin § cos ¢ 7 5 Sy

ME.Z_ S IUZI/IUQ,.__I__'MI_E_Q =0 =
2» zsun(§+ b2M§ ) > b and=0=¢

-cos vy

When ¢ is specified, this equation is solved so that it satils-
fies € <10°* . The corresponding Mach number component My can
then be solved with equation (36).
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APPENDIX IV

The veloclty vector the medlum range in the aerodynamlc
coordinate system 1is glven as follows in detall according to
equation (45):

Y . T [cos a cos Y{A1+B1)+cos a siny(gi{M,.) cos ¢)

+sin a{g(Mse) sin cp)]
:T [cos Y{giM,.) cos @) -siny lA1+BI)]

ok [sin a cos Y(Al+Bl1)+sin a sin ylg{M,,) cos ¢)-cos d cos xp]

(45a)
Al and B 1 are glven by
Al=cos d cosy (a-btany)

{Gné,

Bl=sin €« cosy {c-b cos Y

APPENDIX V

In the case where the internal shock i1s to produce an addi-
tlonal component in the direction of the leading edge, then
'U;;r¢ 0=z-K. - Then the velocity in the medium range is
glven by equation (45a), and in addition to A 1 and B 1 we have

Cl=(b-b-K) cosy

Therefore, the sum (A 1 + B 1) in equation (45a) is the expanded
into (A1 +B1-C1).
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Fig. 1. ¥Flow models on the lee side of slender delta wings.
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Fig. 2. Flow regions over the thin flat delta wing.
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Section perpendicular to leading edge (VK

A -~ attached flow
SL- separation line
SA- secondary separation

Vortex formation and

stream line course

Pressure distribution
Presgure part of secondary vortex

Fig. 3. Lee side flow over slender delta wing with subsonic
leading edge.
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Section perpendicular to leading edge (VK
A - attached flow

SL - separation line

SA - secondary separation

VS - leading edge shock

My

Vortex formation and
stream line course

Pressure distribution

Fig. 4. Lee side flow over slender delta wing with supersonic
leading edge.
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Fig. 5.

The hypersonic flow model of Whitehead/Heftner/Rao [6].
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Fig. 7. Flow models for delta wings in the hypersonic regions
for medium angles of attack.
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Slenderness s/l = 0.31

1 Convex delta model with
leading edge angle Y = 55°

2 Flat delta model with
leading edge angle ¥ = 40°

3 Flat cone model with
leading edge angle | = 75°

Fig. 10. Wind tunnel Model I
(CUED, RAE)

Slenderness s/1 = Q.30

4 Flat delta model with
leading edge angle | = 38.9°

5 Flat cone model with
leading edge angle ¥ = 75

6 Nonweiler wave rider with
leading edge angle ¥ = 39,5°
(initial parameter M°=2)

0

Fig. 1l. Wind tunnel Model IIL
(ILR)
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Fig. 12. Modified cone model (ILR)

Cambridge wind

tunnel
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Fig. 13. Model suspension in
various wind tunnels

124

AN —_ e e B mmaiiire n e e e v ek D N QR L BT A g Ny, pr— A mianshad -




i T RSN T S T R e e e e A R e AT

o M el
o M 2.0)
1,00

0.99

o
©
~

(54
-
-

(=
b -d
[ ]

- Fig. 14.

(-]
"3
»

Qo
ol
-

o.F'AvI
-

Pitot pressure ratio o, 7, ..,

10° 20° 10°

o T SR R

Angle of attack ®

DA et

Flow field in the
Tranverse plane

@D

1‘/ g L‘~— ;ergbf" -

¢, = position of attachd flow
%; = primary vortex center

0;; = secondary vortex center

*%» = primary vortex intensity
o’ = gecondary vortex intensity
T = primary vortex parameter

S =

secondary vortex parameter

Pitot probes, cali-
bration as a function
of incident flow angle.

Fig. 15. Definition of oil film
image evaluations




-
o

Model
Model o

~
3
b 4

Modela __

L
Modelaa/

tack perpendicular to L.E...

™~
4
1

[ SOOI S

T
|
w1

Subsonic ™ éﬁpersonic
Leading edge

~

Fig. 16.Angle of attack and Mach number
perpendicular to leading edge
for delta wings with different
cross-section shapes.

< o
Flat lee side

Mach number
perpendicular to L.E. MN Angle of at

Il
o " 200

Angle of attack ®

D - e
o

Subsonic ... Sunersonic é
% Leading edge

b LI Q 1 ; E
F o IM,-J: T v T ;
| f—g s ¢ross-section shap]es
> < Flat lee side |
9 A delta-shaped lee side
oty - . ,f
0 |
%0 |
> "
g 8 o .
- s
<
: |y 1 8
Gt 2 . 1 Fig. 17. o, , M diagram
8 g g g g . N’ N 4
& o4 ¥l ol
L HH )
| 8 i g for investigations of delta
° . 8 o1 8 . wings with different cross-
%4'; & ' 3 ! section shapes.
g |- e
13
Attached leading. ORIGINAL PAGE IS
o S : . °dse shock, OF POOR QUALITY.
] ? b ] § 3 :
126 Mach number component MN

i
1 ;
e v st o e e e L . H ;
stie
ol o e e i e v - e MDY & ad Sy —— s




asi)y

Fig. 18. Isobars on delta~
shaped lee side of
the Model T,

: -
f M_ = 3.5

x BENEPN L APAE 2

,":xr,

: Seconaary vortex

0il filmPrimary vortex
: Attached flow

Schiieren

Schiieren 1
"y |
Pressure distribution ; '“‘-}}gf?:’
A - attachment line =~ ——— i
PZ - primary vortex center 1 f’- ‘A
SZ - secondary vortex center Ee A
~0l01- ] Pz
e’ |
. o ;
ij"f‘x'?@@ 2
Fig. 19. Flow field analysis over the flat lee side of the delta "f{ L
= 100 =
127




i e TR ST AT R R AT L R s R T e BRSNS
. .:;. K] ¥ ol
. ‘*Q{:«.f A
:
‘ ' T . ' ' oo 4t AR o
- : L e N '
: o ‘?B’J';,(’?;"E‘%??'r*".f? e
, .
F : s 1
. 3 :
? t C
g : i !
ii ’ RE
E Fig. 20a and b. Schlieren photographs for flat lee side of
] delta wing for different angles of attack
| M_ = 2.5.
| (%)
' i
F [ L Y T T
» Lee side
] e L
‘ » RSy 7 { ]
g o
by .
3 z
3} ‘:
spnf j
b %
q&‘ a0
0
3]
Cw
5
@ - Fig. 21. Pressure coefficients over span
g for different angles of attack
Ay M = 2.5.
v o
048 ;
838 ;
s Y m e m e ’
‘Relative half- |
128 1f-span




M_20, Av75°:

s Monnerle, 120
Werie [ 75) ——
=== Peishing {32)
‘0l o
! -} 1R
g
3" '
! Mos 2.0
(-4

0 ]

\

N

&

05 Fig. 22. Position of primary (PZ)
3 and secondary (SZ) vor-
< tex over.the delta wing.
- .

& Mox 2.5

1 a Relative half span Y/s

.\‘\

C e,
3] T T J
= u&
+ Lee side |-=- cueo
d 8 = Monnerie / Werie {A27)
,?5
M_»
o B L]
© 1,26
o
N 123
@ 120
0
)
H
R 11§ g)o
diliida:
Jr00 §
i
v
O'ggg Fig. 23. Pressure coefficients
& over span for differ-
3 ent Mach. numbers,
i
| a=10°
a,, =20°
(@ =20°)
0,83
(o)
» or n,
. L i { ] ¢ bo e
0.203 0.2 0% 0.8 0.8 1.0 R (o) RS

‘rel. half-span y/s 04‘/7;} ; 129

TTE S EAATL A ST T I S Se BT RS ARy TS BT RS T A TN ORGSR R e s e




SR R

EEREEE 17 i et

T FT TR TR

8
Q L4 rs o Y
N
N
N\ 2 N 21
g 2 Oy ,ﬂ" g v
(-9 ve ,~~ P
Y 0.0t A % ° gide
o 118 1ee s
§ R pedt® 4
- g N 3 /
:‘5 Flat lee side /0
[] "0 Y 0‘3 >
g e 3 '= "t N
Q. 7 @@
@ “g 8:[-——-—— 9
] -1 wi
@ n 0 [/
a 2 4 8 3 Reference
-0.8f § . 2 T K
% YOULILR -UV
% :g rsl’o‘:\‘v'v:vi‘:ln\vuu(?ﬂ 2 |
g 4o!lcuen £ ’
% ﬁ salin I3 i
% a $ | CcuED 18
~0.20 N, 4 :
(4] [X.] 1A 30
Normal Mach No. HN
Fig. 24. Changes of minimum and maximum pressure on lee side of delta wings
as a function of Mach number, — 10
,a=10
LA o
My e s8] N 0 e 1.95) 1is) e L ;

Fig. 25. 0il film and Schlieren photographs with the flat lee side for
different Mach numbers, g = 10°

130

Nt xtad R — o L-QMAJ




E
u,‘ ‘J Vi\

Nyt )0
IN,‘;\O)

Mgt 3§
IMy 2 12}

. s
b tmd s

/122

Vortex formation over flat
lee side for different
Mach numbers

a= loo ( C!N = 290)

Fig. 26.

w
~
N
5 T T l ¥
o E 1 stanbrook-Squitest Regiot'l
o S lead :
H oosop = e onic leading edge A
ez : v ik
> ' %"“% { & cueD
Ui o RAE, Richards (78]
Q e O= Monnerie /Werle (78}
=o {A+78%)
2 ﬂksc s10°
» ~\
8 et ~ .
0]
©
W
£
-
2o : 1 5 |
" 0 ) 2 3 13
]
~ ¥ T T
. — it
4 LI el
& 003 -y
12
8
w r‘""'w..._‘mlo'
o] \\ —~— ‘h
= ST~ ¢l°//v
O ost NG aa1sty 4 : A A
~ a10° . 4
i - 15°*
: =
B 0,44~ } l | 10
« 0 1 2 ¢

Fig. 27. Vortex positions w

Mach number M
()

hen crossing the Stanbrook-Squire region

131

e R S i R o7 Y A G 2 . e

i

N Ty P T T T T O TOTTIT ST T T




S S TR TR AT T R R 4 o - B e Cacatl et cad it bt At o0l v e

0il film Dead water region

Vortex region
Attached flow,

!
|
l
I
I
|
i

Sehieren ) o
Fig., 28. TFlow field analy= . jemeieirismenomronmsmsi e
sis over flat lee _ }m ?im ' lm ’ =
side of the delta Y :
wing at . :
- - ;‘;’"“::::
Pressure distribution 4
(A - attachment line [l = Wil
(W - vortex separation line) Vacuum
N u» Lol . vos ok
I
{ ! W A 8 l,‘.’s:‘y":h"";:s"
§ﬂ%§~ ERNST LAY
\\' , k - {ﬁ'.'l e,
’ ‘“i \': bu' ‘ 5:2
Interpal shock \
Pitot pressure ratio 1 ,,,' : N \\ \ Expansion
%u- y ~ Attached flow /I‘\ \ . \ \
u 4 Lrr7 A2 SO\
5 Separation bubble\‘%\,\
] ' ‘ o v \ ’
g0 7,00 //oso 018 ST 7 2% 74
. Zj///'%///“/é YA, gy // / /5/ 7 ";
2 54/,'7’//?:';,379'1 span y/s / ////////// 3
vl
o
Fig. 29. Experimentally determined flow model, M = 3.5 a= 10
132

Pitot isobars

’*5

L

TS T VR TP PR

e
5
( ]
P
% |
Ei?<ﬁ<b |
i
‘,
L
|




[t P e A C At i s o
C T T T T e R Co o T e TR TR TR BTN R T R LT e R e L Q
- Wi

[ 3 m
L O U e
B ol i ™M
v &0 6d faa!
o] (-3~ ] - ™
WU I w -
(=BT 3 w > o
C -1 [-14]
BT AT u e .
Bl M & & )N
- U QU =1 .
BW% TN U U™
fax .fa in
R 0o
O LU e i N
rx iy} ] Hu 8
i |l Y G
- C Y O el
O C oW O O
QT o~
2
. o Ny
o M Oom
o -3 SR
m ks
- 0N 2
80 . [
od [ = T}
Fre & 0 O

—
o «
o 3 & 5
Sy SR
Tl g S
;;mwpfmww.mw o] . - - — P e
v S wd o - o .
- ; 0 [M = [/)]
ook a . a® = A M ~
= Les i el 2 PN
-] 4 ] 1 4 ¢00 Qﬂ J=
° ° g .
3 5 a
v ¢ %0 =X
@ \ w 0“ /2] A
-+ o “ TJo 1&
9 o
|
| .« &
s o
e
_ o
. \vﬂ .l\,f,‘i“ - ._ d 7L“ R
* LR 2 =
T S R . 1
§ ﬁﬂ“. 5 et X - a . = i
| e ety 2322325 & 2 H
| T ey g -
| P ,mMMMk 2 ° 3 <
| S Qu S o d <

UBTdTII000 danssaxg -2




rel. height z/s

‘.0 i . » “_ﬂ‘ "-, )"
W =% Mannetie [ Wate [75), My 140
smi>= ONERA, M ¢ 0
=0« Cross 1491, M. »10
attached flow vortex
A —~ AL NN, oW
P s ﬁiﬁﬁi?r
0.5
0
o.
1.0
051 7]

rel. flow angle o«

0.21

134

Angle of attack *

Fig. 32.

o {11
~- CUED
sssse Mamima

I

) T +

@ ONERA 175 M
&  Monnetie ! Werle (78}

111 Stanbrack-Sauite- Region

S
'/.\\- ¥
M0

s

20 N
25 } 2
{ 3 L d 1 b1
o 5 10° 15 200 25° 0°
Angle of attack a.

Fig. 33.

Vortex position for different
angles of attack

Vortex intensity repre- }
sented by delta flow i
angle in the oil film ¢
photograph for different
Mach numbers




B a0t

Lo TN AR e R TR TR

v pew TR gt

KK

Angle of att.a

1

G e o A s

D |\\
&

50° OB ' /;\\ II.‘\\
] s : :
CZany - 4
&/ g f - W

%/ % 50" / — 5

» / :

/ Attached shock

(¢ =39.57) i

C i

04 ; h t P O?f: Stanbrook-Squire limit

/ 0 ! 2 ,3 6 11 Expansion for small o
Mach number My _, - gxpension for large ©

/ ) % ' ---8Squire [41-42] for thick
NG & = %
~—— Symmetry plane shock
=ee¢~Transition: separation with shock
to separation induced by shock
. Strong, weak shock
“ Expansion

»> Vortices, weak circulation
Attached flow

Fig. 34. Regions and models of the flow over the flat lee side of thick
delta wings.

A

L3580 I /
Pz .
‘ w“‘ Pressure distribution

0il film and Schlieren

Pitot isobars

Fig. 35. Collection of experi-
ments on the delta-
shaped lee side

Flow model Mo = 2'5"1:,100

e ittt i ORIG!INAL PAGE IS
OF POOR QUALITY




r RIS < s o o S s e I TR

as5®
trem .
f 4
) .,.TPitot probe .a
' weli/ryrhne - 3
‘A 1 -
/P2
3 .
' s . 5
g A ]
yis g 2 vis
o
7
a7 ';’, as?
‘ R '2
’ -'-ﬂl-‘ll-;conn -l -
< PPutor
‘ R e
v 37
3l .
14 gp
aY; 2
- |7 /

t rel. span ve ¢ yel. span:'s

R - nc: L Al

zls
? s
;‘ 2~
' P2
r

{Sehlieron) ?

Vs

e .

o x 20°

tunnel wall

Relative span y/s

Fig. 36. Pitot isobars on the top side of a delta wing for different angles
of attack. Measurement plane x/l =0.8, M°° =2.6 (MN =1.39)

ORIGINAL PAGE IS
OF POOR QUALITY.

136




AT T = e SRS

OSSR SSSUS e

TR R

o Y /128
Lee side
N,o
Q‘ 8
o 109
;ﬁa 0.0
_3 170
(2}
K
Yt
9 i
8 182
»000 1

8 126
=}

7]

7

ﬁ IR 25

A —— CUED P

i wmae Prandi) -Meyer Expansion |
R | 4 ' -
[ 0.2 [ 0.8 0.8 10

Relative half span y/s

Fig. 37. Pressure coefficients over span for different Mach numbers

a=10° (aN = 17°)

Attached flow Shock—inducé@fvortices

. Internal shock

i f . ‘,L “ :/ Expansion - }
conical flow : 4@‘  Boundary ;aygr
. ' }"‘,T T ""."!m" R‘!

PR S e R

Transition regio oot Sy,

Free vortices

" Attached flow
/¢ Internal shock

Separation bubble

vt
3

:

M

Fig. 38. Model of the flow over the delta-shaped lee side for the example
of M_ = 3.5 and a =10°

137

TP

— it e e b " — v W BRI o d ot i PRI




0105 M I I ‘L jtd
ea side
o™ AX
L]

2 . . s 188

.3' o . e 1 129

&

e

s °TF

Q

9 p X

3 5.5 |
| a %
x ; a* ;

A i

v

A~

0,08 4
¥
% ]
1 t-‘.,...l-o.l!s
i | | 1
0103 0.2 0.t 0.8 0.8 1C

Relative semi-span y/s

Dt A S

Fig. 39. Pressure coeificients over span for different angles of attack,

M_ =3.5
(o)

ST e

3 . 1.00 e
: l Y
‘ + y side
: Separation with vortex 7%&% —F % | pelta 16€
k - LK l

“f(;)mation ’ A

J ¢ - ONERA

4 "

Yflat lee side

3
i
;

o~

o

~3

Aol
P

o
»
@

Fig. 40. Position of vortex center
as a function of angle of

attack.

Span position of vortex
»

Separation with 'R e oL
ingernal shpck. ; ' .
0 o* 5 10 180 20°

Angle of attack o

138 | | : | | | -




»° e

oﬂ- 0 Y T
“ -0'} CUED ]
o ‘ =
"3 == Prandtl-Meyer expansion
o at leading edge
0o 4
[3]
o e
a a
0 — et
8 =9
-y ; ) Al
9.0 5 02 '3 0s os 10

Relative half span y/s

Fig. 41. 0il film photographs and pressure distributions with different
top side shapes and fixed incident flow conditions

Mg =3.5, a~10°

M:‘ - :@ i

o ¥ Exp. CUED, M35 da310°
0§ Exp.Squire [41], M:40, c2 7°

Ys G0
¥s, 050"

5
o' ost v N
ort .
% ——_°X Center
o S — __:"__?__5—.\_:
- Attachment line
L —— - e r e
o ==+ +
\*._,.-.—______.__._.Q.._
(L, e e
o* 5° 10° 15

Shape angle e

Fig. 42. Position of vortex center and attachment line as a function of
shape parameter @'

139




/131
E,
|
|
|
Olfim
Fig. 43: Influence of
j extreme leading nock
: edge angles for shoc
* the example of !
the cone model, Lo Erparnion
{ M_ =26 - ints |
| © .stagnation P |
. . 1
? a=12° |
; My }
: 5
r |
| 1
SRR -0 ' ' lst measurement |
3 ~ i
o . Lee side 5p4 measurement i
| UQ‘D 0054 " j
8
g :
g o R/
= o : 7/
o separated flow Op 405
o -0054- 7 4 / T MEn h 004 48
) ‘ Vi P, | .shock
=} U Eeparamn '
§ -00.} Z} "
¥ . 4/ N
[ %\
c’mn&\sls
-01s. $ ¢ + %
Q2 X3 08 o0 My
Rel. semi-span y/s . 3
Fig. 44. Flow around the modified cone model shown with pressure distrihutions
and flow models, My, = 3.06.

140




|

ER-Sl F

ST e A

Fig. 45.

Fig. 46.

1T--—-, Mach cone, 2

\ ' asl®
|
)
/

)E‘tcoml

-

Comparison of flow
fields of two delta

wings with identical
lee side but differ-
ent bottom side
shape M_ = 2.6.

R A e

Ve

ot

Position of stagna-

u&ﬁr4‘§§kﬂ&}ﬁﬁfﬁﬁﬁﬁgg‘ﬁ

:.‘{Q._y,.. i o ﬁ'{""-‘ T 3 )!
by WO ?"‘z s v’)@ SPTe
b f ' , ik 22N ” .
Thargv st an, ‘%igg{gﬁé&’ Lé:"\'-x" 5
oA =

- EA e g

-

| Leading edge vortex

tion lines on the ° 1 6 R BT
flat pressure side ig‘ R o fewe ~T§(1 ?FéFnation line)
of the delta wing ‘ L 17 [ esawenn | ! o
in the region of 2 \ by © Average of Stanbrook-Squire
separation with in- H L [rewas i | bound

hef \ \ ] | ‘boundary
ternal shock. g (o} LT iy '

g osd L \ vSeparati9n with internal shock

g \\ L \{"\i" (2 stagnation lines)

- \ S ‘ e 1

g 100 >~ S ~ '

ﬁ N\\s\:'?\\ '

9. 10 } : o ’

& ? 3 "1*%'

o

3 R

) . Fr o eee -

Attacned leading
Mach No. M edge shock (1 stag-

nation line)

It T T




Fig. 47. Vortex inten-
sity as a func-
tion of angle
of attack,

M_ = 3.5,
o

Vortex intemsity (oil
film evaluation)

0° I8 0o e

Angle of attack *

20°

j e
"y

o
2
i §

[ astoe
Separation with

v wm B el e

¢w.in£ernalshock§:

0

T

Pressure coefficient t

»005+

ECTI

Separation with

.oy. internal shock
6 o2 04 06 0e

Pressure coefficient

Relatiye semispan y/s

4
O ,
!
<
v ‘
‘ ) 10

Fig. 48, Comparison of pressure distrihutions on the lee side with different

cross-section shapes, M_ = 3.5.

142

iy . Sy arie d Wity gy




/334

rel. spanV“
e ILRTNECAS o 173} 0meo Brown s Michast {1

09
] o
H € Fig. 49, Lift coefficients
1 ‘8 of various delta wings,
§ b Moo = 3,5
| 9
0
il o
\ oo
[} %]
| 4
; =
, e ]o Model l. Delra lee side
! ot Y Model 2. Delta lee side
| v’ \v Model 3, Flat lee side
'Y Model 2. Flat lee side
‘l% Linearized supersonic theory
"Thin shock layer" theory
Solid points symbolize only
| | the lift fr?m the pressure side
°3 + T e
Angle of attack ©
| Height position
24 )
-2 e O 700 °0° 20°
Span position J
2 ‘ 1 s r ®
& Position of vortex
i centers: for different
A 0 + e O : =
I A c— - 20 o Angle of Mttack O delta wings, M_ 2.6
Height § spa“r”s""ﬁ.““s o |
T Tdue
uN ;
)
o
Q
= 1
-
@
2]

143

R RIS A T IR oA i essisi



§0%e - : . b e ey
: Y
x A. l?,.
; (L
N \ Ve
Y mZS\ \ :
\ \ \ \ 20°°
Y 2 \V A\ A
z 30."'- . & Itll\,t#:’ N7 pr g k2 /a\ ﬁ' R
y ‘ r, ﬂ\..
'g - 1
U |
3 !
&
] a
Yy f‘O”
© 2% oS R
]
3 m! VAR VAR
&0 w5 me s
-1 . \
< g NS
- NN
‘o"‘r' § : N 5“ »y
s, N N\
01§ S
" R
i Fesene re
. Por¢
’ S5 mn
0.4 T L s ; ; !

Mach number MN

Fig. 51. Restrictions for the design of the top side of a delta wing for
cruise flight,

'or-

Measurement point
1

0054

Fig. 52, Pressure coefficients of

RAE
the symmetry plane as a

"NSGProndii-Meyer

Pressure coefficient ¢

Expansion
: function of angle of attack
TRV TEIED_Metis) i for different delta wings,
™% TR Ngrl8 !
o TRl : M~ 3.5
oot ol - 4 - © :
- |OJ ‘xo. N 200 x0°

Angle of attack «




R £ e B e

Fig. 53. Geometry of the simplified lee
side flow model.

/Leading edge shock

P o EXpontion

Internal shock

»

Fig. 54. Flow Model

Mach cone
Boundary layer

thickening
Circulation
"\~ _ Internal shock

-~

. Erpannan

" \__ Boundary layer

U
Base point of internal shock

TLeading edge shock

.\f"/ Section A-A '

/ 145

e

i




TR S TR et

R

k

Angle of attack and model values

Sonic - L.E.

l_ M:-G:"lvaI l

EE:E;;Q edge
cype .

Supersonic L.ﬁ.
; —

%ctached shock:

Flow perpendicular
to leading edge

Leading edge
shock

App
shoce

1 Subsonic - L.?.

separated ahéck

rox. solution for
k posit%on and shape

Oblique shock,

Approx. solution for

Supersonic behind internal shock .|

[
l

expansion over B.E. -

Prandi)- Meyer 1

—

boundary fayer
| 6SstiM,,0)

Prandii-Meyer ! o
expansion over B.L.

First characteriécic,
which has to intersect
the internal shock

)

Tnitial point of
L internal shock

relatiiTShiPSJ

Flow perpendicular

-

to leading edge

Iteration of |, Tnfluencing of shock __

internal shock |

Boundary layer thickening

behind internal shock

Mach number component

L-intensity~—~J

Subsonic .

!

Panel method

]

v

0

‘
Output ,..j

N~

Flow components

perpendicqlagm;o‘j>

V; £ 90

syggffizfiffé/;»

Fig. 55. Macro-flow diagram for calculating lee side flow.

146

AR i etk et

R ARt eETR R e an AL s s ok e g e eemd e e i e e age o T ek g i




Fig. 56,

Fig. 57.

emi-span g

Transformed s

-

Coordinates and unit vector system.

»

Attached shock
{fiegl « 2

6’5‘

AN

8325 De.lta l?e
side 7 "
Separat

L

/

ed shock

cia

ard®

i

o 2 stagnation lines

o

Flat‘i\\\\ ]

side gryse
Mk

/

=

Thickness parameter C

Flow region represented in the
the "flat delta models."

C=f(Q)

* 1 stagnation line

diagram for

147

{138




-

In the plane

/139

Mach cone in
symmetry plane

>

perpendicular
to leading edge 1 E&fne of
T [ leading edges Fig. 58. Leading edge shock
00 L profiles for different
. ':”//’ Shock + angles of attack,
o ~ ~~ separation M_ = 7.0.
Ma,t33 oo
# Measured towards the plane
of the leading edges
t
1 o, .Mach cone
i "
| ,
}
E,»Estimated variation of
leading edge shock
Fig. 59. Profile of leading edge

NN NS

*

o
e tcsvnrsnansesmen e
[ ]

shock compared with
different theories,
Mbo = 3.5

a = 15°.

Shock separations acccrding to:
Moeckel [83]
Squire's thin shock layer theory (82)

* Cone shock for equivalent rotational body
without boundary layer

{¢9.1%
Conical shock for equivalent revolution body

with boundary layer i« 105"
Conical shock with cone angle i«

o Schlieren photographs

148

Ao e S b 5 5 AR i I "




rel. shock separation Ly,

- ——
Theory ace. tc Moeckel
o Delta lee side )
v flat lee side] Erptriment ILR
rhombi
delta ?u?ng Coilis [48)
. thi&,‘,‘g““ }Cross {49}
104 v plate wither ]Liopmann Fieey ]
flat nose Roshko
2-dirensional
Ty Vse
.‘.‘_2. —
L
5.... -
°\e rotationally symmetric
Jh & o ' [ &
0 - ~+
1.0 2,0 3.0 4.0
Mach number M
00
7%° T T T T T
Al"s.. .

Leadiné edge shock angle A,

~3
<
Fad .

[~1d

o

-
-t

~—— Equation (10)

Experiment :

flat lee side

/

bq

delta lece side
®  Collis (48}

Fig. 60. Separation of the separated
leading edge shock as a
function of Mach number,

Fig. 61. Angle of leading adge

shock as a function of
Mach number.

149

BRI



e R AT s vt o, e o s e RN ot s 3 v <

/141

- ) Fig. 62. Geometry for the separated
; léading edge shock.
\ Internal shock
r—— . Displacement
o A\ .boundary layer
\ \ ~ ; » “‘.
N
s
20 | T 1
O Cross (49)
© -Nasa (7]
o Rao » Whiteheod [S)
. e ILR -
-f;d Ll g Approx. equation (43)
®
i Mas10 5"
g ot s Fig. 63. Thickening of the bound-
ﬁ » ﬁ?f‘z{o ary layer behind the
i //"/ 35,1 internal shock from vari-
o - _eF ous experiments.
e 05+ /a’ e
@ - s
g /SD{G'B =
b
O } z L
R 5 [ CER | 20° 5
. Angle of attack ¢ ORIGINAL PAGE s
POOR QuaLTy
150

[y

ma S o G E Y B Y A T e L e B




| ee—
Integ
[V F—-— 8 f/at_l_”' .40 . 0
- in o 9 -y Uy

Forelgn induction
Fore g* incident flow

o et b i eigen induction component
Linear equation system &
tnsuf s

v,

< DZayq

I W4

iz.:'“'l 9 = 0t U0

Fig. 64, Solution of the displacement problem using the Panel method.

0,10 T O Do . d
“pressure coefficient c

1
. ahead of
internal shock *

ot

icients
o
s

O /ae F' l§ 4 : ‘\M—-_LM
. ‘,—i, . pressure coefficient ¢ 9 behind internal shock
- oy on H approx. value co arisod)a
9 g 0.0 o equation (19).; P @ )
g i~ .01 Q ok value ¥ |
R o 0 0.0% 0.0 0.4% 020 . 025
qoe o p
e Q m boundary layer =
BT &
& S 8 .
”
- : 3
@
0 o v
! 10:, (& g
l g e 4
| @preet 8 R~
y Op~ 2y . &"§°3° beginning shock point A;E
!\\\\\\\\\\\\\\\\Y S M . h
N PR B :
s { S shock base e
y o o B point F b
5 E '§ s approx. comparjson e
S ™ value eq, (19)5 value * A 4
e L cw ey '- s Q Q
0.28 gt 0 a0 018 020, 0% &
boundary layer thickness =% g
a
S
o
5
Fig. 65. Influence of boundary layer displacement thickness on pressure :©
coefficients and position of internal shock, N%n = 3,55,
[ J
a= 15

151




P

1)
‘é /143
b
s Jaka ool r r o spmm—
! c_ (ahead of internal shotck)
g P2
‘ -0054
| R - b I
| ,; g,,‘ c.p (behind internal shock)
! Internal @ t 3 |
% -9 0 + T + 1
|
‘ ‘ ° 07 ] U
| > “
1 iy 'é 08T +1 073
| o ’ﬁ Initial pointa | j%
i 05t Base 412 oo £
i g'f_'g point ¢ ~ -
: 9o A A3
: sl 0T o T ﬁ £
; Tad Average o 9
w“ Tem irfcal o -
] 0.3 L value - o
0 250 50° 75° 10°

Inclination angle %
{,

| Fig. 66: ‘Influence of inclination angle ¢s of leading edge shock on {
* ' pressure coefficients and positfon of internal shack, Moo = 3,55,

; ' a =14.5°
: |
| o
u
k - |
| e |
| ‘N. o ¢ (ahead of internal shock) |
: S P2 - '
; Ylaost o ol -
| [ cp (behind internal
a 3 shock) \
2 } .
o 0 - {
Ay
08 — '
'5. Initial ' K
8|~ "N
CBy ~14 (<) e
By 0]
w8 I a
& 0o . 4= :
oS ot 128 2
9% 0 T'S vl
- .Base . R
0 g8 g
o E C
9 10
A I ! e ded
o P88
ntornal  \teading. - } Equation (10) | & ?
shock. edge 0- ; T
shock 65° 62.5° 7o
. trace angle a,

Fig. 67: Influence of trace angle A’s of the leading edge shock on pressure i
coefficients and position of internal shock, Moo = 3.55, q =14.5° '

152

- . o e el ot i ke Seb A g s e 2 - . Mt By o T R i

Y A T S O RIS T PRt



Exponwon
Fig. 68,
thickening %,
of boundary 7 iR _1§ad§3g edge
laver Displacement \ -~ shocks A
R boundary K o\
R
N

Section A-A

°~ 13 L3 L2 " ﬁ
I @ CUED, M35 A28
Ma~ 36 O IR, M.s36, AIY®
7. Present renort
L'-—'Isem:ropic compression
&
dd
=
Q
B
ot Fig. 69.
b
- 4‘111177 '
Q H
o pullii o4 ¢
g —_~ i
8 - T ""4"1
7
o O Squny, Mgek As7t® X
i My 2 b et 1
Ry ——Present report
TR T T T ) Isentropic compression
N a2® __I
= e
8‘005 220 I |
o !
: "'*l \ i
o e 3
o T~ wpe | oo o
8 _ fffzg;m_~_m—__ pa
© ¢, 2-0089
o]
g-nm + + +
2 0 02 06 ‘06 08 10
3 Relative half span”*
3::,
e —— T T T I, D . . SR S it T ¢

. e Ra e

~
-
F -

|

sheoretically determined
flow field on the lee side
cf the delta wing AA = 3,55,

=14,5%, A= 72.50

Comparison of theory and
experiment: pressure co-
efficients over the span.

153




e oL S

% °F'Tncernal shoek '
o Internal shock
Z 7
]
Q
0 e e s Tt M. Exp.
g [T
= \-————-—————————.-—-—.’:b"u(
@.0.08 |-
@ Mach cone . 7
] -=—= Linear theory
= = Bgbaysy {53}
== LR, Mit.9 (73)
—=—Shock expansion
«. 5. FYESENE Teport,
S = separation line from oil film
-0.10 : - for 8 and 8a!
0 0.2 0.4 s 0.8 1o,
Relative semi-span y/s
Fig. 70. Comparison of lee side theory, M_ = 6.0,
sweep angle A= 600,7
angle of attack a=7°
10 qo—e—r— Base point of -
shock in ' ™
y-direction L &
g (theory)
& vortex center 7
::4 (experiment)
,g Qer. 4
g
i~
L
o
[}
0
v
0 = + }
o 05 [ 1 T ]
'an K e o ' i
:g‘ \\‘\nii"' }
hase point of dr__._,ar———f:::z
@
2 |shock in 0’/,xr’°’ '
4 z=direction (theory) f
% 1}5§ght Cf vortex center (experiment)
~ 100 150 20°

angle of attack

Fig. 71. Vortex positions compares with theory and experiment,
My =3.5, A=72.5

154

: et M e Y W B Y AT s



T T T WY 2

»~ .
-
P

Mach cone

internal

08

|
)

as
projection
0// of incident
06 4 flow

Fig. 72: Comparison theory =

0.2
vortex experiment: Pitot iso-
from -/ bars measurement of
Schlieren Monnerie and Werla,
photographs Néoo =4.0, a= loo
A=75
Mo variation for -Alpha-variation for M, = 4.0

Mach cone
]

initial point ,
of internal shock ~

| leading displacement‘boundary leading edge shock
edge layer - ﬂzu
shock {L ik

i?\

S SRR [z

E IS
ORIGINAL PAG
OF POOR QUALITY

Fig. 73. Influence of Mach number and angle of attack variation on the
flow field of the lee side of delta wings with A.=72,5°

155




BT T e e p—

10.

ll .

12.

13.

14,

156

PREVIOUS. REPORTS WHICH HAVE BEEN PUBLISHED (ISSN 0341-0587):

Johannes Wiedemann, Michael Glahn: Disc or membrane wlth a
hole and applled plaster with stress in all directilons
(Berlin 1974), ISBN 37983 0531 5.

Manfred Ziegner: Theoretical and experimental investigation
of the aerothermodynamic monitoring of aviatlon jJet engines
(Berlin 1974), ISBN 3 7983 0532 3.

Joachim Wernicke: Experimental investlgations of a new digital
angular actuator (Berlin 1974), ISBN 3 7983 0535 8.

Klaus-Dieter Pautz: Air tolerant actuators (Berlin 1974),
ISBN 3 7953 0539 0.

Klaus Hllnecke: A calculation method for separated flow over
slender swepthack wings (Berlin 1974), ISBN 3 7983 0541 2.

Dieter Dey, Uwe Kirchhoff: Description possibilities for
multiple variable regulation propertles of human beings for
vehilcle driving (Berlin 1975), ISBN 3 7983 0547 1.

Michael Glahn: Influences of viscoelasticlity on adheslve com-
pounds (Berlin 1975), ISBN 3 7983 Q545 5.

Robert Gasch: A contributlon for the treatment of the dynamic
behavior of a rotating shaft with a notched cross-section
(Berlin 1975, ISBN 3 7983 0551 X.

Separation and wind feedback ot radial wall jets (Berlin 1975),
ISBN 3 7983 0552 8.

Frank K8hler: A semi-analytical approximation method for de-
termining the unsteady temperatures in skin-step compounds
(Berlin 1975), ISBN 3 7983 0553 6.

Klaus Knothe/Walter Kik: LINDA 1 - A program system for in-
vestigating the dynamic behavior of track vehicles (Berlin
1976), ISBN 3 7983 0560 9.

Wolfgang Holzapfel. Laser devices and optoelectrical systems
in flight control and satellite technology (Berlin 1976),
ISBN 3 7983 0561.

Christoph Haberland, Frank K8hler. Semi-analytical calculation
of unsteady temperatures in skin step compounds for arbitrary
heating over time (Berlin 1976), ISBN 3 7983 0562 5.

Leonidas Kamarinopoulos. Application of Monte Carlo methods
for determining liability characteristics of technical systems
(Berlin 1975), ISBN 3 7983 0563 3.




P20 0 7

15.

16.

17.

18.

19.

20.

21.

22.

Johannes Wledemann, Curt Kranz: Effects of an adheslve plaster
on notch stress intensity and dynamie strength of a disc with
a notch (Berlin 1976), ISBN 3 7983 0567 6.

Christoph Haberland, Frank K8hler. Calculation of unsteady
thermal sftresses in skin-step units for heating limlted in
time (Berlin 1976), ISBN 3 7983 0568 4,

Alfred Hofler. Form optimal light constructlon frames by usling
an evolution strategy (Berlin 1976), ISBN 3 7983 0569 2.

Hans-Jlirgen Deeg. Theoretical an experimental Investigatlons
of pressure shafts in gas-solid flows (Berlin 1976), ISBN
3 7983 0571 4,

Joseph Sternberg. Investigations of crack propagatlon and
crack strength in sheet metal made of Al Cu Mg 1 and Al Zn
Mg Cu 1.5 with dynamic bending stress (Berlin 1977), ISBN
3 7983 0584 6.

Klaus D. Kricke. The situation of air trafflic compared to
ground vehlcles with speclal consideration of energy prob-
lems (Berlin 1977), ISBN 3 7983 0588 9.

Hans J. Sternfeld. Performance and heat transport of hilgh-
energy rocket engines with thrust varilation (Berlin 1977),

ISBN 3 7983 0590 0.

Christoph Haberland, Wolfgang Nitsche. Investigations of the
influence of a hydrodynamic starting sectlon on the heat
transfer to flat channel walls (Berlin 1977), ISBN 3 7983
0591 9.

ORIGINAL PAGE 19
OF POOR QUAUTY

Universititshibliothek der Technischen Universitat Berlin, Abteilung

Obtainable from:

Publikationen, 1 Berlin 12, Strafle des 17, Juni 133

157




	1980014764.pdf
	0013A02.tif
	0013A03.tif
	0013A04.tif
	0013A05.tif
	0013A06.tif
	0013A07.tif
	0013A08.tif
	0013A09.tif
	0013A10.tif
	0013A11.tif
	0013A12.tif
	0013A13.tif
	0013A14.tif
	0013B01.tif
	0013B02.tif
	0013B03.tif
	0013B04.tif
	0013B05.tif
	0013B06.tif
	0013B07.tif
	0013B08.tif
	0013B09.tif
	0013B10.tif
	0013B11.tif
	0013B12.tif
	0013B13.tif
	0013B14.tif
	0013C01.tif
	0013C02.tif
	0013C03.tif
	0013C04.tif
	0013C05.tif
	0013C06.tif
	0013C07.tif
	0013C08.tif
	0013C09.tif
	0013C10.tif
	0013C11.tif
	0013C12.tif
	0013C13.tif
	0013C14.tif
	0013D01.tif
	0013D02.tif
	0013D03.tif
	0013D04.tif
	0013D05.tif
	0013D06.tif
	0013D07.tif
	0013D08.tif
	0013D09.tif
	0013D10.tif
	0013D11.tif
	0013D12.tif
	0013D13.tif
	0013D14.tif
	0013E01.tif
	0013E02.tif
	0013E03.tif
	0013E04.tif
	0013E05.tif
	0013E06.tif
	0013E07.tif
	0013E08.tif
	0013E09.tif
	0013E10.tif
	0013E11.tif
	0013E12.tif
	0013E13.tif
	0013E14.tif
	0013F01.tif
	0013F02.tif
	0013F03.tif
	0013F04.tif
	0013F05.tif
	0013F06.tif
	0013F07.tif
	0013F08.tif
	0013F09.tif
	0013F10.tif
	0013F11.tif
	0013F12.tif
	0013F13.tif
	0013F14.tif
	0013G01.tif
	0013G02.tif
	0013G03.tif
	0013G04.tif
	0013G05.tif
	0013G06.tif
	0013G07.tif
	0013G08.tif
	0013G09.tif
	0013G10.tif
	0013G11.tif
	0013G12.tif
	0013G13.tif
	0013G14.tif
	0014A02.tif
	0014A03.tif
	0014A04.tif
	0014A05.tif
	0014A06.tif
	0014A07.tif
	0014A08.tif
	0014A09.tif
	0014A10.tif
	0014A11.tif
	0014A12.tif
	0014A13.tif
	0014A14.tif
	0014B01.tif
	0014B02.tif
	0014B03.tif
	0014B04.tif
	0014B05.tif
	0014B06.tif
	0014B07.tif
	0014B08.tif
	0014B09.tif
	0014B10.tif
	0014B11.tif
	0014B12.tif
	0014B13.tif
	0014B14.tif
	0014C01.tif
	0014C02.tif
	0014C03.tif
	0014C04.tif
	0014C05.tif
	0014C06.tif
	0014C07.tif
	0014C08.tif
	0014C09.tif
	0014C10.tif
	0014C11.tif
	0014C12.tif
	0014C13.tif
	0014C14.tif
	0014D01.tif
	0014D02.tif
	0014D03.tif
	0014D04.tif
	0014D05.tif
	0014D06.tif
	0014D07.tif
	0014D08.tif
	0014D09.tif
	0014D10.tif
	0014D11.tif
	0014D12.tif
	0014D13.tif
	0014D14.tif
	0014E01.tif
	0014E02.tif
	0014E03.tif
	0014E04.tif
	0014E05.tif
	0014E06.tif
	0014E07.tif
	0014E08.tif
	0014E09.tif




