NASA Reference Publication 1046 N80-24296 HI # Measurement of Aircraft Speed and Altitude William Gracey CASSILLE **MAY 1980** | | <u> </u> | | | | | | |--|----------|--|---|--|--|---| • | • | # NASA Reference Publication 1046 # Measurement of Aircraft Speed and Altitude William Gracey Langley Research Center Hampton, Virginia Scientific and Technical Information Office 1980 #### PREFACE The problem of devising instrument systems for the accurate measurement of the speed and altitude of aircraft has been the subject of a great many research investigations during the past 50 years. The greater part of this research has been performed by a variety of organizations in Great Britain, Germany, and the United States. In the United States, investigations have been conducted by government agencies (National Aeronautics and Space Administration (NASA), its predecessor, the National Advisory Committee on Aeronautics (NACA), the Federal Aviation Administration (FAA), the National Bureau of Standards (NBS), the U.S. Air Force, and the U.S. Navy), by aeronautical schools in the universities, and by aircraft manufacturers, instrument manufacturers, and air carriers. Studies relating to one area of the altitude-measuring problem (the vertical separation of aircraft) have been promoted by international organizations such as the International Civil Aviation Organization (ICAO) and the International Air Transport Association (IATA). The results of this research have been published in several hundred reports, each of which deals with only one, or a few, of the many facets of the speed- and altitude-measuring problem. In this text, the information in these reports has been combined and is presented in a condensed, organized form. In the presentation of the material on some of the topics, only enough data have been included to define a concept or illustrate a point. For a more detailed discussion of these subjects, the reader is referred to the reference reports which are listed at the end of each chapter. The scales of the instruments described in this text and all of the test data derived from their calibration and operational use are in U.S. Customary Units. Accordingly, it appeared inappropriate in this text to adhere to the prevailing practice of giving test values in the International System of Units (SI) as well as in the U.S. Customary system. For those readers having a need to convert any of the data to metric units, a table of conversion factors and metric equivalents is included in appendix A. Also included in appendix A are tables of airspeed and altitude in SI Units. In writing this book, I received considerable help and support from many of my former associates at NASA Langley Research Center. I would like to acknowledge this assistance and to thank, in particular, the following: John P. Campbell, Laurence K. Loftin, Jr., and Joseph W. Stickle who reviewed the original manuscript. John C. Houbolt, Howard B. Edwards, Albert W. Hall, Thomas M. Moul, Virgil S. Ritchie, and Robert T. Taylor who, as members of a technical review committee, made many valuable suggestions for improving and expanding the book. The staff of the Langley Technical Library who were most helpful in supplying reference material. The staff of the Langley Scientific and Technical Information Programs Division who prepared the manuscript for publication. I would also like to acknowledge the contributions of the following members of the aviation industry: James Angus of the Kollsman Instrument Company, who provided information on servoed instruments and photographs of mechanical instruments. O. E. E. Anderson of United Airlines, who provided information on pressuresystem leak experiments and static-pressure-installation maintenance problems. Jerome M. Paros of Paroscientific, Inc., who provided information and diagrams on digital pressure transducers. Herbert Sandberg of Harowe Systems, Inc., who provided information on pressure-transducer systems. William Gracey Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 December 6, 1979 # CONTENTS | PREFACE | | | • • | | | iii | |---|-------|-----------|------|-------|-----|-----| | SYMBOLS AND ABBREVIATIONS | | | | | v: | iii | | CHAPTER I - INTRODUCTION | | | | | | 1 | | CHAPTER II - INSTRUMENT SYSTEMS AND ERRORS | | | | | | 3 | | References | | | | | | 6 | | Figures | | | | | | 7 | | CHAPTER III - STANDARD ATMOSPHERE AND EQUATIONS | S FOR | AIRSPEED. | MACH | | | | | NUMBER, AND TRUE AIRSPEED | | | | | | 1.1 | | Standard Atmosphere | | | | | | 11 | | Airspeed Equations | | | | | | 14 | | Mach Number Equations | | | • • | • • • | • | 17 | | True-Airspeed Equations | • • • | | • • | • • • | • | 18 | | Conversion Factors | • • • | | • • | • • • | • | 19 | | References | • • • | | • • | • • • | • • | 20 | | Figures | | | • • | • • • | • • | - | | Figures | • • • | | • • | • • • | • • | 22 | | CHAPTER IV - TOTAL-PRESSURE MEASUREMENT | | | | | | 25 | | Tubes Aligned With the Flow | | | | | | 25 | | Tubes Inclined to the Flow | | | | | | 26 | | References | | | | | | 30 | | Figures | | | | | | 31 | | CHAPTER V - STATIC-PRESSURE MEASUREMENT | | | | | | 47 | | Reference | | | | | | 51 | | Figures | • • • | | • • | • • • | • • | 52 | | | • • • | | • • | • • • | • • | 32 | | CHAPTER VI - STATIC-PRESSURE TUBES | | | | | | 59 | | Tubes Aligned With the Flow | | | | | | 59 | | Tubes Inclined to the Flow | | | | | | 61 | | Orifice Size and Shape | | | | | | 62 | | References | | | | | | 63 | | Figures | | | | • • | | 64 | | CHAPTER VII - STATIC-PRESSURE INSTALLATIONS | | | | | | 75 | | Fuselage-Nose Installations | | | • • | • • | • • | 75 | | | | | • • | • • | • • | 75 | | | • • • | | • • | • • | • • | 77 | | Vertical-Fin Installations | | • • • • | | • • • | | 78 | | Fuselage-Vent Installations | | | | • • | • • | 79 | | Combined Calibrations at Low and High Altitud | des . | | | • • | | 80 | | Calibration Presentations | | | | | | 81 | | Installation-Error Tolerances | | | | | | 81 | | Installation Design Considerations | | | | | | 82 | | References | | | | | | 83 | | Figures | | | | | | 85 | | CHAPTER VIII - AERODYNAMIC COMPENSATION OF POSITION ERROR | 109 | |---|------------| | | 111 | | Figures | 112 | | | 101 | | CHAILER IN LEIGHT CHEEDING HELLOOD | 121
121 | | Calibration methods for beliving robition beliving | | | Italifing bomb Meenod | 124 | | italing cone method | 125 | | racer Afferare Method | 125 | | TOWCI PICCHOO | 127 | | Tracking Radar received | 128 | | Radal Michael Michael Control | 128 | | Ground-Camera Method | 129 | | Tracking-Radar/Pressure-Altimeter Method | 130 | | Accelerometer Method | 131 | | | 133 | | | 134 | | | 137 | | | 137 | | Total-Temperature Method | 138 | | Calibrations by Ground-Camera and Tracking-Radar Methods | 139 | | References | 144 | | Table 9.1 | 146 | | | 149 | | Figures | 149 | | CHAPTER X - ERRORS DUE TO PRESSURE-SYSTEM LAG AND LEAKS | 165 | | System Lag | 165 | | System Leaks | 168 | | References | 169 | | Table 10.1 | 170 | | Table 10.1 | | | CHAPTER XI - AIRCRAFT INSTRUMENT ERRORS | 171 | | Mechanical Instruments | 171 | | Electrical Instrument Systems | 174 | | Accuracy of Calibration Equipment | 177 | | References | 178 | | Tables | 180 | | Figures | 186 | | | | | CHAPTER XII - OPERATIONAL ASPECTS OF ALTIMETRY | 199 | | Barometric Scale Settings | 199 | | Flight Technical Error | 202 | | Overall Altitude Errors | 203 | | References | 206 | | Table 12.1 | 208 | | | 200 | | CHAPTER XIII - OTHER ALTITUDE-MEASURING METHODS | 215 | |---|-----| | Radio and Radar Altimeters | 215 | | Laser Altimeter | 217 | | Sonic Altimeter | 217 | | Capacitance Altimeter | 217 | | Density Altimeter | 218 | | Limited-Range Pressure Altimeter | 218 | | Hypsometer | 218 | | Cosmic-Ray Altimeter | 219 | | Gravity Meter | 219 | | Magnetometer | 220 | | References | 221 | | APPENDIX A - TABLES OF AIRSPEED, ALTITUDE, AND MACH NUMBER | 223 | | APPENDIX B - SAMPLE CALCULATIONS | 279 | | Part I - Static-Pressure Errors and Flight Quantities | 279 | | Determination of Position Error Δp | 279 | | Calculation of V_C and ΔV_C , H and ΔH , and M and ΔM | 281 | | Calculation of C_{I_1} | 282 | | Calculation of V | 283 | | Part II - Pressure Increments in the International System of Units | 284 | | - | 285 | | Part III - Pressure-System Lag and Leaks | 285 | | Calculation of Airspeed and Altitude Errors Due to Pressure Lag | | | Calculation of Altitude Error Due to a Leak | 286 | | TNDEV | 201 | # SYMBOLS AND ABBREVIATIONS | a | speed of sound | |------------------|--| | a_V | vertical acceleration | | $a_{\mathbf{x}}$ | longitudinal acceleration | | a_Z | normal acceleration | | b | wing span of airplane | | b' | wing span of airplane image on camera film | | С | wing chord | | С | total
volume of instrument chambers | | $C_{\mathbf{L}}$ | lift coefficient | | CL | confidence level | | d,D | diameter | | E | elevation of airport | | f | compressibility factor; focal length of camera lens | | g | acceleration of gravity | | h | height of aircraft above camera | | Н | pressure altitude, geopotential feet | | H ' | <pre>indicated (or measured) pressure altitude (barometric scale set to QFE)</pre> | | ${\tt H_{i}}$ | indicated altitude (barometric scale set to QNH) | | Δн | altitude error, H' - H | | K | recovery factor of temperature probe | | l | length of aircraft | | 1' | length of aircraft image on camera film | | L | length of pressure tubing | | М | free-stream Mach number | | M' | indicated (or measured) Mach number | viii ΔM Mach number error, M' - M N_{Re} Reynolds number, $\rho \frac{V\ell}{\mu}$, where ℓ is a linear dimension p free-stream static pressure p' measured static pressure Δp static-pressure error or position error, p' - p; pressure drop in tubing δp static-pressure increment pa pressure at altitude ${\bf p}_{\bf C}$ cabin or compartment pressure p; pressure inside instrument p_l local static pressure Δp_l pressure error due to leak pt free-stream total pressure for subsonic flow and total pressure behind normal shock wave for supersonic flow p₊ measured total pressure Δp_t total pressure error, $p_t' - p_t$; total pressure loss through normal shock wave \mathbf{p}_{T} test pressure q dynamic pressure q_{C} free-stream impact pressure q_C^{\prime} measured impact pressure QFE standard altimeter setting (barometric scale set to 29.92 in. Hg) QNE barometric scale setting for altimeter to indicate zero at airport elevation QNH barometric scale setting for altimeter to indicate elevation of airport R gas constant for air, ft-lb/slug-OR R gas constant for air, ft-lb/lb-mol-^OR R* universal gas constant - S wing area of aircraft - t free-air temperature, ^OC or ^OF; thickness of wing or mounting strut of pitot-static tube; time - T free-air temperature, ^OK or ^OR - T' indicated (or measured) total temperature, ${}^{O}K$ or ${}^{O}R$ - ΔT temperature error, T' T; temperature rise due to adiabatic heating - T_{m} mean temperature of column of air, ${}^{O}K$ or ${}^{O}R$ - u horizontal component of induced velocity - v vertical velocity - V free-stream velocity; true airspeed - V_C calibrated airspeed (indicated airspeed corrected for static-pressure error) - V equivalent airspeed - V_i indicated airspeed (corrected for instrument scale error) - V₁ local velocity - ΔV_{C} airspeed error, $V_{i} V_{C}$ - W weight of aircraft - W_m mean molecular weight of air - x axial location of orifices (1) along static-pressure tube, (2) ahead of strut or collar of tube, (3) ahead of aircraft, or (4) to center of wave on fuselage skin - y height of protuberance at fuselage vent - Z height, geometric feet - Δz height increment - Δz vertical displacement of aircraft image from center line of film frame - β angle of conical entry on total pressure tube - γ ratio of specific heats of air, 1.4 - θ pitch attitude of airplane - λ pressure lag constant - λ_{l} pressure lag of leak ``` \mu coefficient of viscosity ``` - ρ density (mass), slugs/ft³ - $\bar{\rho}$ density (weight), lb/ft³ - σ standard deviation - T acoustic lag time - radial location of orifices around static-pressure tube or fuselage # Subscripts: - l initial - a altitude; actual - c critical; computed; camera - local; leak - m measured; midpoint - o sea level - s standard #### Abbreviations: AAEE Aeroplane and Armament Experimental Establishment (British) AFCRC Air Force Cambridge Research Center AFMTC Air Force Missile Test Center ANA Air Force-Navy Aeronautical A.R.C. Aeronautical Research Committee (British) FAA Federal Aviation Administration NACA National Advisory Committee for Aeronautics (predecessor to NASA) NAES Naval Air Experimental Station NASA National Aeronautics and Space Administration NBS National Bureau of Standards NOAA National Oceanic and Atmospheric Administration R.A.E. Royal Aircraft Establishment (British) WADC Wright Air Development Center (USAF) NACA and NASA Reports: ARR Advanced Restricted Report RM Research Memorandum SP Special Publication TM Technical Memorandum TN Technical Note TP Technical Paper TR or Rep. Technical Report WR Wartime Report #### CHAPTER I #### INTRODUCTION Accurate measurements of speed and altitude are essential to the safe and efficient operation of aircraft. Accurate speed measurements, for example, are needed to avoid loss of control at low speeds (stall condition) and to prevent exceedance of the aerodynamic and structural limitations of the aircraft at high speeds, whereas accurate altitude measurements are needed to insure clearance of terrain obstacles and to maintain prescribed vertical separation minima along the airways. The instruments that are used to measure speed and altitude include the altimeter, the airspeed indicator, the true-airspeed indicator, the Machmeter, and the rate-of-climb (or vertical-speed) indicator. All these instruments are actuated by pressures, while one, the true-airspeed indicator, is actuated by air temperature as well. Two basic pressures, static pressure and total pressure, are used to actuate the instruments. The static pressure is the atmospheric pressure at the flight level of the aircraft, while the total pressure is the sum of the static pressure and the impact pressure, which is the pressure developed by the forward speed of the aircraft. The relation of the three pressures can thus be expressed by the following equation: $$p_t = p + q_C \tag{1.1}$$ where \textbf{p}_{t} is the total pressure, p the static pressure, and \textbf{q}_{C} the impact pressure. The static pressure is used to actuate both the altimeter and the rate-of-climb indicator. Although this pressure varies from day to day, the decrease in static pressure with height is generally continuous at any one time and place. Accordingly, a pressure-height relation based on average atmospheric conditions has been adopted as a standard (see "standard atmosphere" in chapter III). Measurements of static pressure are then used to provide indications of height in terms of pressure altitude (chapter XII) and indications of vertical speed in terms of rate of change in the pressure altitude. For the three forward-speed indicators, impact pressure is derived as a differential pressure from measurements of total pressure and static pressure in accordance with equation (1.1). The airspeed indicator is actuated solely by impact pressure and is calibrated to indicate true airspeed at sea-level density in the standard atmosphere; at altitude, however, the indicated airspeed is lower than the true airspeed (chapter III). The true-airspeed indicator, on the other hand, combines the measurement of impact pressure with measurements of static pressure and temperature to indicate true airspeed independent of altitude. The Machmeter (named for the Austrian physicist, Ernst Mach) combines measurements of impact pressure and static pressure to provide indications of true airspeed as a fraction or multiple of the speed of sound (sonic speed). The airspeed indicator, true-airspeed indicator, and Machmeter measure speed with respect to the air mass. Since the air mass can move with respect to the ground, the measurement of ground speed, the speed of basic importance to air navigation, must be derived from inputs from ground navigational aids. The pressures and temperatures that actuate the instruments are derived from pressure and temperature sensors located at positions on the aircraft which are remote from the instruments. The problem of designing and locating the sensors for the accurate measurement of pressure and temperature is complicated by many factors. As a consequence, the pressures and temperatures registered by the sensors can be in error by amounts which, in some cases, produce sizable errors in the indications of the instruments. The indications of an instrument can also be in error because of imperfections in the instrument itself. Additional errors may be introduced because of a time lag in the transmission of the pressures to the instruments whenever the pressure at the pressure source is changing rapidly, as in the case of high-speed climbs or dives. In the following chapter, a typical instrument system is described, and the various errors associated with the system are defined. In succeeding chapters, the errors relating to the design of the total- and static-pressure sensors and to the location of the sensors on an aircraft are discussed, and the flight calibration methods for determining the pressure errors are described. Information is then presented on ways of applying corrections for these errors and on methods of keeping the other errors within acceptable limits. #### CHAPTER II #### INSTRUMENT SYSTEMS AND ERRORS The five types of instruments which are used to measure speed and altitude and the pressure and temperature sensors which actuate the instruments were described in chapter I. This chapter describes a typical instrument system (instruments and sensors) and the errors associated with the various parts of the system. As noted in the first chapter, the two basic pressures that are employed in the measurement of speed and altitude are total pressure and static pressure. Total pressure is sensed by an opening in a forward-facing tube called a total-pressure tube or pitot tube (named for the French physicist, Henri Pitot). The static pressure is sensed by orifices in the side of another type of tube, called a static-pressure tube, or by a set of holes in the side of an aircraft fuselage, called fuselage vents or static ports. Since the pitot tube and the static-pressure tube can be combined into a single tube, two types of pressure-measuring installations are
possible: a pitot-static tube installation or a pitot tube in combination with a fuselage-vent system. Diagrams of a pitot tube, a static-pressure tube, a pitot-static tube, and a pitot-tube/fuselage-vent installation are shown in figure 2.1. The pressures that are sensed by the pitot tube and the static-pressure tube (or fuselage vents) are conveyed through tubing to pressure-sensing elements which are generally in the form of capsules, diaphragms, or bellows. All of these types of sensing elements are used in the electrical instrument systems to be described in chapter XI. The capsule-type sensing element is used in simpler, mechanical instruments described in this chapter. The pressure capsules are formed by joining together two corrugated diaphragms which are about 2 in. in diameter. Two types of capsule are used in aircraft instruments: one for measuring absolute pressure and the other for measuring differential pressure. The absolute-pressure (or aneroid) capsule is evacuated and sealed, while the differential-pressure capsule has an opening that is connected to a pressure source. As indicated in figure 2.2, the absolute-pressure capsule reacts to the pressure inside the instrument case, while the differential-pressure capsule reacts to the difference between the pressure inside the capsule and the pressure in the instrument case. Thus, for both types of capsule, the instrument case is used as a pressure chamber to form one element of the pressure-measuring system. Also shown in figure 2.2 are the directions of the deflection of the capsules for a given pressure change. These deflections, which are very small, are amplified through a system of gears and levers (gear train) to rotate a pointer in front of the scale on the dial of the instrument. The routing of the pressure tubing from a total-pressure tube, static-pressure tube, and temperature probe to a set of the five types of instruments is shown in figure 2.3. The static-pressure tube is connected to all the instruments, whereas the total-pressure tube is connected only to those instru- ments that measure forward speed. The temperature probe, which is connected to the true-airspeed indicator, is a type used with liquid-pressure thermometers. The pressure tubing from the total-pressure and static-pressure tubes is generally about 0.2 to 0.3 in. in inside diameter, whereas the capillary tubing from the temperature probe is about 0.01 to 0.02 in. The pressure-sensing element of the altimeter (fig. 2.3) is an aneroid capsule that expands as the static pressure inside the instrument case decreases with increasing altitude. (See fig. 2.2(a).) In the rate-of-climb indicator, the static-pressure tube is connected to a differential-pressure capsule and to a capillary tube that opens into the instrument case. With a change in static pressure, the simultaneous flow of air into, or out of, the capsule and the capillary tube is adjusted (by the size of the capillary leak) so that the capsule deflects in terms of a rate of change of pressure, which is calibrated to yield a measure of vertical speed. The pressure-sensing element of the airspeed indicator is a differential-pressure capsule that expands as the total pressure increases. Since the pressure inside the case is the static pressure, the instrument performs a mechanical subtraction of total and static pressures to yield a measure of impact pressure in accordance with equation (1.1). (See fig. 2.2(b).) The Machmeter contains both an aneroid capsule and a differential-pressure capsule to provide measures of static pressure and impact pressure. The deflections of the two capsules are coupled to yield, mechanically, the ratio of impact pressure to static pressure ($q_{\rm C}/p$) which, as discussed in the next chapter, is a function of Mach number. The true-airspeed indicator contains (1) two differential-pressure capsules to provide measures of impact pressure and air temperature and (2) an aneroid capsule to provide a measure of static pressure. Since the true airspeed is a function of dynamic pressure, derived from the measured impact pressure and static pressure as discussed in chapter V, and the air density, derived from static pressure and temperature, the deflections of the three capsules can be coupled to yield a measure of true airspeed. Also shown in figure 2.3 are the pressures (p_t^+ and p^+) sensed by the total- and static-pressure tubes and the temperature (T') sensed by the temperature probe. For any one flight condition, the differences between p_t^+ and the free-stream total pressure p_t^- and between T' and the free-air temperature T depend primarily on the design characteristics of the pitot tube and the temperature probe. The difference between p^+ and the free-stream static pressure p^+ depends on both the design of the static-pressure tube and on the location of the tube in the pressure field surrounding the aircraft (chapter V). The difference between p_t and p_t , called the total-pressure error Δp_t , is defined by $$\Delta p_{t} = p_{t}' - p_{t} \tag{2.1}$$ Similarly, the difference between $\,\,p^{\, \text{l}}\,\,$ and $\,\,p,$ the static-pressure error $\,\,\Delta p_{\, \text{l}}\,\,$ is defined by $$\Delta p = p' - p \tag{2.2}$$ The difference between T' and T, the temperature error ΔT , is defined by $$\Delta T = T' - T \tag{2.3}$$ As noted in the previous chapter, the indications of the instruments may be affected by errors due to the time lag in the transmission of the pressures and to imperfections in the instrument mechanism. The errors associated with the instrument mechanism depend on (1) the elastic properties of the pressure capsule (scale error, hysteresis, and drift) and (2) the effects of temperature, acceleration, and friction on the linkage mechanism. The scale error is the difference, for a given applied pressure, between the value indicated by the instrument and the correct value corresponding to the applied pressure. From the foregoing discussion, the overall error of an instrument system is a combination of - 1. Total- and static-pressure errors of the pitot-static installation and the temperature error of the temperature probe - 2. Errors due to time lag in the transmission of the pressures - 3. Errors relating to the operation of the instrument mechanism The magnitude and nature of the errors vary widely, so that different means are used to minimize different errors. The total-pressure, static-pressure, and temperature errors, for example, are systematic; that is, for a given flight condition, the errors are essentially repeatable and hence can be determined by calibration. The static-pressure error can be quite large, whereas the total-pressure error is generally negligible (chapters IV and VII). The magnitude of the temperature error, expressed in terms of a recovery factor, is discussed in chapter III. The errors due to pressure lag are transitory and vary with the rate of climb or descent of the aircraft. For a given rate of change of altitude, the magnitude of the lag error depends primarily on the length and diameter of the pressure tubing and on the volume of the instruments connected to the tubing. Accordingly, the lag errors of a particular pressure system are kept within acceptable limits by proper design of the system (chapter X). Of the various instrument errors, the scale error is systematic, while the other errors are generally random. The scale error is usually the largest of the instrument errors and can be determined by laboratory calibration. The remaining errors are kept within acceptable limits by careful design, construction, and adjustment of the instrument mechanism. The instrument errors and the errors of the pitot-static installation are required to meet specified tolerances (allowable errors). The tolerances for the instrument errors can be combined to yield an "instrument error," and this error can be combined with the tolerance for the static-pressure error to yield an "instrument system error" (chapter XII). Mathematical procedures for combining the tolerances for the instrument errors and the static-pressure error are described in references 1 through 4. Since the scale error of the instrument and the static-pressure error of the installation can be determined by calibration, corrections for these two errors can be applied. With mechanical instrument systems, corrections for these errors are applied by means of correction charts, or cards, that are supplied to the pilot. With electrical instruments, the corrections are applied automatically by some form of computer (chapter XI). For systems in which corrections for the two errors are applied, the instrument system error is usually much lower than the error derived from a summation of the instrument and static-pressure error tolerances. The laboratory procedures for determining the scale error are described in chapter XI and the flight procedures for determining the static-pressure error are described in chapter IX. Since the procedures for determining the scale error are well established, this text emphasizes flight procedures by which static-pressure installations are calibrated. #### References - 1. First Interim Report of the Panel on Vertical Separation of Aircraft. Doc. 7672-AN/860, Int. Civ. Aviat. Organ. (Montreal), Feb. 14-22, 1956. - 2. Gracey, William: The Measurement of Pressure Altitude on Aircraft. NACA TN-4127, 1957. - 3. Altimetry and the Vertical Separation of Aircraft. Int. Air Transp. Assoc. (Montreal), Jan. 1960. - 4. Gilsinn, Judith F.; and Shier, Douglas R.: Mathematical Approaches to Evaluating Aircraft Vertical Separation Standards. Rep. No. FAA-EM-76-12, May 1976. (a) Pitot tube. (b) Static-pressure tube. (c) Pitot-static tube. (d) Pitot-tube/fuselage-vent installation. Figure 2.1.- Diagrams of pressure tubes and a pitot-tube/fuselage-vent installation. (a) Aneroid capsule. For a decrease in static pressure inside the
instrument case, the capsule deflects in the direction indicated by the large arrow. (b) Differential-pressure capsule. For an increase in total pressure inside the capsule, the capsule deflects in the direction indicated by the large arrow. Figure 2.2.- Aircraft instruments with the two types of pressure capsule. Figure 2.3.- Diagram of routing of pressure tubing from pressure and temperature sensors to five types of instruments measuring altitude and speed. #### CHAPTER III # STANDARD ATMOSPHERE AND EQUATIONS FOR AIRSPEED, #### MACH NUMBER, AND TRUE AIRSPEED As noted in chapter I, the pressure altimeter is calibrated in accordance with the pressure-height relation in the standard atmosphere. In the first section of this chapter, the equations and the atmospheric properties on which the standard atmosphere is based are presented. In succeeding sections, the equations relating (1) impact pressure to airspeed, (2) impact pressure and static pressure to Mach number, and (3) impact pressure, static pressure, and temperature to true airspeed are described. These equations are of fundamental importance to both the laboratory calibrations of the instruments and the deduction of flight parameters from measured pressures and temperature. In the following sections, reference is made to tables of airspeed and altitude in U.S. Customary Units (appendix A). As noted in the Preface, tables of the same quantities in the International (metric) System of Units (SI) are also included in appendix A. #### Standard Atmosphere The so-called standard atmosphere is a representation of the atmosphere based on average conditions at a latitude of 45° north. A number of standard atmospheres have been developed through the years (refs. 1 through 13). Each new standard has differed from the previous standard because of the adoption of revised values of some of the physical constants on which the atmospheres are based or because of the acquisition of new information on some of the atmospheric properties (particularly at the higher altitudes). All the atmospheres are based on mean values of pressure, temperature, density, and the acceleration of gravity at sea level and on a mean value of the variation of temperature with height. In the construction of a standard atmosphere on the basis of these mean values, assumptions are made that 1. The air is a dry, perfect gas that obeys the laws of Charles and Boyle, $$\rho = \rho_{o} \frac{pT_{o}}{p_{o}T}$$ (3.1) and thus the perfect gas law, $$\rho = \frac{pW_{m}}{R*T} = \frac{p}{RT} \tag{3.2}$$ 2. The atmosphere is in hydrostatic equilibrium, so that the relation between the pressure p and the geometric height Z can be expressed by the equations, $$dp = -g\rho \ dZ = -\bar{\rho} \ dZ \tag{3.3}$$ $$dp = -g \frac{p}{RT} dZ = -\frac{p}{R} dZ$$ (3.4) where ρ (or $\bar{\rho}$) is the density, p the pressure, T the temperature, g the acceleration of gravity, W_m the mean molecular weight of air, R^* the universal gas constant, and R (or \bar{R}) the gas constant for air. The two symbols given for density and the gas constant for air denote differences in units which are found in some of the reference reports. For the symbols given in this text, the unit of ρ is slugs per cubic foot and the unit of $\bar{\rho}$ is pounds per cubic foot. The value of R is 1716.5 ft-lb/slug- ^{O}R and the value of \bar{R} is 53.352 ft-lb/(lb mol) ^{O}R . The earlier atmospheres (refs. 1 through 5) were based on the assumption that the acceleration of gravity remained constant at its sea-level value g_0 . For the later atmospheres (refs. 6 through 13), the decrease of g with height was taken into account by the formation of a new height parameter called geopotential altitude H. The relation between H and Z is given by $$dZ = \frac{g_0}{g} dH ag{3.5}$$ The value of Z/H varies uniformly from 1.0 at sea level to 1.0048 at 100 000 ft. The relation between p and H is given by the following equations: $$dp = -g_0 \rho dH = -\frac{g_0}{g} \bar{\rho} dH$$ (3.6) or $$dp = -g_0 \frac{p}{RT} dH = -\frac{g_0}{g} \frac{p}{RT} dH$$ (3.7) Pressure-altitude tables for the calibration of altimeters in terms of geopotential feet are given in references 6 through 13. All these tables are the same for altitudes up to 65 800 ft, and the tables of references 11 through 13 are the same for altitudes up to 100 000 ft. The tables of reference 11 (the U.S. Standard Atmosphere, 1962) have been selected for presentation in this text because the pressures and altitudes are given in both U.S. Customary Units (the system of units used in this text) and SI Units. The pressure-altitude tables of references 12 and 13 are in SI Units. The sea-level values of pressure, temperature, density, and the acceleration of gravity for the atmosphere of reference 11 are as follows: $$p_0 = 29.9213$$ in. Hg or 2116.22 lb/ft² $$t_0 = 59.0^{\circ} \text{ F or } 15.0^{\circ} \text{ C}$$ $$T_{O} = 518.67^{\circ} \text{ R or } 288.15^{\circ} \text{ K}$$ $$\rho_{O} = 0.0023769 \text{ slug/ft}^{3}$$ $$\bar{\rho}_0 = 0.076474 \text{ lb/ft}^3$$ $$g_0 = 32.1741 \text{ ft/sec}^2$$ The temperature gradient or lapse rate dT/dH is -0.00356616° F per geopotential foot from sea level to 36 090 geopotential feet. From this altitude to 65 800 ft, the temperature is constant at -69.7° F and then increases to -50.836° F at 100 000 ft. Tables of pressure, density, temperature, coefficient of viscosity, speed of sound, and the acceleration of gravity are given in appendix A for geopotential altitudes up to 100 000 ft: In table Al, values of pressure are given in inches of mercury (0° C) (to correspond with the scales of mercury-in-glass barometers used for calibration of altimeters); in table A2, the values are given in pounds per square foot. In table A3, values of air density are given in pounds per cubic foot. Values in units of slugs per cubic foot can be derived by dividing the values of table A3 by the acceleration of gravity. In tables A4 and A5, values of free-air temperature are given in degrees Fahrenheit and Celsius. Values of absolute temperature in degrees Rankine and Kelvin can be derived by means of the following equations: $$T(^{O}R) = t(^{O}F) + 459.67$$ (3.8) $$T(^{O}K) = t(^{O}C) + 273.15$$ (3.9) In table A6, values of the coefficient of viscosity are given in pound-seconds per square foot. Values in pounds per foot-second (the unit used in ref. 11) can be derived by multiplying the values in table A6 by the acceleration of gravity. In table A7, values of the speed of sound are given in miles per hour and knots. In table A8, values of the acceleration of gravity are given in feet per second squared. ### Airspeed Equations In incompressible flow, the pressure developed by the forward motion of a body is called the dynamic pressure q, which is related to the true airspeed V by the equation, $$q = \frac{1}{2} \rho V^2$$ (3.10) where ρ is the density of the air and V is the speed of the body relative to the air. Air, however, is compressible, and when airspeed is measured with a pitot-static tube, the air is compressed as it is brought to a stop in the pitot tube. As a consequence of this compression, the measured impact pressure q_C (eq. (1.1)) is higher than the dynamic pressure of equation (3.10). The effects of compressibility can be taken into account by determining the relation between the true airspeed V and the impact pressure q_C by means of the following equations: 1. The equation for the total pressure (eq. (1.1)), $$p_t = q_c + p \tag{1.1}$$ 2. The equation for the speed of sound a in air, $$a = \sqrt{\frac{\gamma p}{\rho}}$$ (3.11) where γ is the ratio of the specific heats of air. 3. Bernoulli's formula for total pressure in compressible flow, $$p_{t} = p\left(1 + \frac{\gamma - 1}{2\gamma} \frac{\rho}{p} V^{2}\right)^{\frac{\gamma}{\gamma - 1}}$$ (3.12) 4. The formula for total pressure behind a normal shock wave (for $V \stackrel{>}{=} a$), $$p_{t} = \frac{1 + \gamma}{2\gamma} \rho V^{2} \left[\frac{(\gamma + 1)^{2}}{\frac{\gamma}{p}} \frac{\rho}{p} V^{2} \right]^{\frac{1}{\gamma - 1}}$$ $$(V \stackrel{\geq}{=} a)$$ (3.13) With the substitution of equation (1.1) in equation (3.12) and equations (1.1) and (3.11) in equation (3.13), V can be expressed in terms of ${\bf q}_{\rm C}$ by the following equations: $$q_{c} = p \left[\left(1 + \frac{\gamma - 1}{2\gamma} \frac{\rho}{p} V^{2} \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right]$$ (3.14) and $$q_{C} = \frac{1 + \gamma \left(\frac{V}{a}\right)^{2} p \left[\frac{(\gamma + 1)^{2}}{4\gamma - 2(\gamma - 1)\left(\frac{a}{V}\right)^{2}}\right]^{\frac{1}{\gamma - 1}} - p \qquad (V \stackrel{>}{=} a) \qquad (3.15)$$ For the calibration of airspeed indicators, the concept of calibrated airspeed V_{C} is introduced and, by definition, V_{C} is made equal to V at sea level for standard sea-level conditions. Thus, by substituting the standard sea-level values of ρ , ρ , and a in equations (3.14) and (3.15), V_{C} can be related to q_{C} by the following equations: $$q_{C} = p_{O} \left[\left(1 + \frac{\gamma - 1}{2\gamma} \frac{\rho_{O}}{p_{O}} v_{C}^{2} \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right] \qquad (V_{C} \leq a_{O})$$ (3.16) and $$q_{c} = \frac{1 + \gamma \left(\frac{V_{c}}{a_{o}}\right)^{2} p_{o} \left[\frac{(\gamma + 1)^{2}}{4\gamma - 2(\gamma - 1)\left(\frac{a_{o}}{V_{c}}\right)^{2}}\right]^{\frac{1}{\gamma - 1}} - p_{o} \quad (V_{c} \stackrel{\geq}{=} a_{o})$$ (3.17) Airspeed indicators are calibrated in accordance with equation (3.16) for subsonic speeds ($V_C \leq a_O$) and equation (3.17) for supersonic speeds ($V_C \geq a_O$). The sea-level values of pressure, density, and speed of sound used in these equations are those given in reference 11, namely, $$p_{o} = 2116.22 \text{ lb/ft}^{2}$$ $\rho_{o} = 0.0023769 \text{ slug/ft}^{3}$ $a_0 = 1116.45 \text{ ft/sec}$ The value that has been adopted
for γ is 1.4. Note, however, that at high altitudes, the value of γ may vary slightly from 1.4 (refs. 11 and 14). For subsonic speeds, the true airspeed V can be deduced from the calibrated airspeed $V_{\rm C}$ and the air density ρ by means of the following equation which is derived by dividing equation (3.14) by equation (3.16): $$V = V_C \frac{f}{f_O} \sqrt{\frac{\rho_O}{\rho}}$$ (V \leq a) (3.18) where f is a compressibility factor defined by $$f = \sqrt{\frac{\gamma}{\gamma - 1}} \frac{p}{q_c} \left[\left(\frac{q_c}{p} + 1 \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]$$ (3.19) Values of f and f (the compressibility factor for standard sea-level conditions) are given in figure 3.1 for values of $q_{\rm C}/p$ up to 0.893 (the ratio for M = 1.0 for which V = a). The value of ρ for use in equation (3.18) can be determined from equation (3.1) and measured values of static pressure and air temperature. In aircraft structural design, use is made of an airspeed that equates the dynamic pressure at altitude $\left(q=\frac{1}{2}\;\rho V^2\right)$ to the dynamic pressure at sea level for standard sea-level density $\left(q=\frac{1}{2}\;\rho_0 V_e^{\;2}\right)$. This airspeed V_e is called the equivalent airspeed and is related to V by the following equation): $$V_{e} = V \sqrt{\frac{\rho}{\rho_{o}}}$$ (3.20) Another airspeed term, indicated airspeed, is generally defined as the indication of an airspeed indicator uncorrected for instrument error and the error of the pitot-static installation. In this text, however, the indicated airspeed $\rm V_i$ is defined as the airspeed indication corrected for instrument scale error (chapter II). Thus, since the calibrated airspeed $\rm V_C$ is the indication of an airspeed indicator corrected for both instrument scale error and static-pressure error, the difference between $\rm V_i$ and $\rm V_C$ is a measure of the static-pressure error. To summarize the relations between V_i , V_C , and V in simple terms, V_i is the indication of an airspeed indicator corrected for instrument scale error, V_C is V_i corrected for static-pressure error, and V is the true airspeed, which is equal to V_C at sea level. Tables relating calibrated airspeed to impact pressure are presented in references 4, 10, 12, 15, 16, and 17. The tables of reference 10 are given in this text because they are based on a revised value of the nautical mile adopted in 1959 and because the units of $\rm V_C$ and $\rm q_C$ are in U.S. Customary Units. Values of impact pressure $\, q_{_{\rm C}} \,$ for calibrated airspeeds $\, V_{_{\rm C}} \,$ (or $\, q_{_{\rm C}}^{^{\rm I}} \,$ for indicated airspeeds $\, V_{_{\rm I}} \,$) up to 1100 mph and 1000 knots are given in tables A9 through A12 of appendix A. The values in miles per hour are based on a statute mile equal to 5280 ft, and the values in knots are based on the 1959 value of the nautical mile (6076.12 ft). ## Mach Number Equations As noted in chapter I, the Mach number $\, \, M \,$ is the ratio of the true airspeed $\, \, V \,$ to the speed of sound $\, \, a \,$ in the ambient air; that is, $$M = V/a \tag{3.21}$$ By substituting in this expression the equation for the speed of sound given in equation (3.11), M can be related to V by the following equation: $$V = M \sqrt{\frac{\gamma p}{\rho}}$$ (3.22) The Mach number may then be expressed in terms of p_{t} by substituting equation (3.22) in equations (3.12) and (3.13), which then become $$p_{t} = p\left(1 + \frac{\gamma - 1}{2} M^{2}\right)^{\frac{\gamma}{\gamma - 1}}$$ (3.23) and $$P_{t} = \frac{1 + \gamma}{2} M^{2} p \left[\frac{(1 + \gamma)^{2} M^{2}}{4 \gamma M^{2} - 2 (\gamma - 1)} \right]^{\frac{1}{\gamma - 1}}$$ (M \geq 1) With the additional substitution of equation (1.1) in equations (3.23) and (3.24), M can be expressed as a function of $q_{\rm C}/p$ as follows: $$\frac{q_{\rm C}}{p} = \left(1 + \frac{\gamma - 1}{2} \,{\rm M}^2\right)^{\frac{\gamma}{\gamma - 1}} - 1 \qquad (M \le 1) \qquad (3.25)$$ and $$\frac{q_{c}}{p} = \frac{1 + \gamma}{2} M^{2} \left[\frac{(1 + \gamma)^{2} M^{2}}{4\gamma M^{2} - 2(\gamma - 1)} \right]^{\frac{1}{\gamma - 1}} - 1 \qquad (M \ge 1) \qquad (3.26)$$ Machmeters are calibrated in accordance with equation (3.25) for subsonic speeds (M $\stackrel{\leq}{=}$ 1) and equation (3.26) for supersonic speeds (M $\stackrel{\geq}{=}$ 1). In table A26 of appendix A, values of q_C/p for given values of M (or values of q_C'/p' for given values of M') are tabulated for Mach numbers up to 5.0 (from ref. 4). ### True-Airspeed Equations As noted earlier, true airspeed can be derived from calibrated airspeed in the subsonic range by means of equation (3.18). The true airspeed can also be determined, at both subsonic and supersonic speeds, from its relation to Mach number and the speed of sound in equation (3.21). For this case, M is determined from equations (3.25) and (3.26) and a is determined by combining equations (3.1) and (3.11) which yields the following equation relating a to the temperature of the ambient air: $$a = \sqrt{\gamma \frac{P_O}{\rho_O} \frac{T}{T_O}}$$ (3.27) where T is the absolute temperature in degrees Rankine or Kelvin. For ρ_0 in slugs per cubic foot and ρ_0 in pounds per square foot, the value of a is in feet per second. For values in terms of miles per hour or knots, the speed of sound can be calculated from any of the following equations derived from equation (3.27): 1. If a is in miles per hour and T is in degrees Rankine, $$a = 33.424 \sqrt{T}$$ 2. If a is in knots and T is in degrees Rankine, $$a = 29.045 \sqrt{T}$$ 3. If a is in miles per hour and T is in degrees Kelvin, $$a = 44.844 \sqrt{T}$$ 4. If a is in knots and T is in degrees Kelvin, $$a = 38.968 \sqrt{T}$$ The value of T required for the calculation of a is the temperature of the free stream. While some aircraft temperature probes register free-stream temperature directly, the temperature registered by other types of probes is higher than the stream value because of the adiabatic heating effect of the airflow on the sensor. The extent to which the probe measures the adiabatic heating effect is stated in terms of a recovery factor, which ranges from zero (no adiabatic heating) to 1.0 (full adiabatic temperature rise). The recovery factor of a temperature probe can be determined from calibration tests in a wind tunnel. An electrical-type temperature probe having a recovery factor near unity (0.99) is shown in figure 3.2 (from ref. 18). If the recovery factor of the probe is 1.0 or if the probe is located in a region where the local velocity of the air is equal to the free-stream velocity, the free-air temperature T can be calculated from the following equation: $$T = \frac{T'}{1 + \frac{\gamma - 1}{2} \text{ KM}^2}$$ (3.28) where T' is the measured (or total) temperature and K is the recovery factor of the probe. For the more general case in which the recovery factor is less than 1.0 and the probe is located in a region where the local velocity differs from the free-stream value, the free-air temperature can be calculated from the following: $$T = \left(\frac{T'}{1 + \frac{\gamma - 1}{2} \kappa M_1^2}\right) \left(\frac{1 + \frac{\gamma - 1}{2} M_1^2}{1 + \frac{\gamma - 1}{2} M^2}\right)$$ (3.29) where $M_{\tilde{l}}$ is the local Mach number, which can be determined from measurements of the local impact and static pressures in the region in which the probe is located. Values of the speed of sound a in miles per hour and knots are given in table A7 of appendix A for geopotential altitudes up to 100 000 ft. The values of a are based on the values of T in the standard atmosphere of reference 11. Values of true airspeed V for calibrated airspeeds from 0 to 1000 knots and geopotential altitudes from 0 to 100 000 ft are given in table Al3 of appendix A. The values of V, $V_{\rm C}$, and H in this table are based on the standard atmosphere of reference 11. A chart showing the relations of calibrated airspeed, true airspeed, and Mach number for altitudes up to 60 000 ft and temperatures from -100° F to 120° F is presented in figure 3.3 (from ref. 19). #### Conversion Factors For applications requiring the conversion of the pressure units in tables Al and A2 and A9 through Al2 of appendix A to other units, conversion factors for a variety of other pressure units are given in table A27 of appendix A. For conversion of U.S. Customary Units to SI Units, conversion factors and metric equivalents are given in table A28 of appendix A (ref. 20). #### References - 1. Gregg, Willis Ray: Standard Atmosphere. NACA Rep. 147, 1922. - 2. Diehl, Walter S.: Standard Atmosphere Tables and Data. NACA Rep. 218, 1925. (Reprinted 1940.) - 3. Brombacher, W. G.: Altitude-Pressure Tables Based on the United States Standard Atmosphere. NACA Rep. 538, 1935. - 4. Tables and Data for Computing Airspeeds, Altitudes, and Mach Numbers Based on the WADC 1952 Model Atmosphere. Volume I Altitude, Calibrated Airspeed, and Mach Number Tables. Battelle Mem. Inst. (Contract AF 33(616)82), 1953. - 5. Williams, D. T.; Bell, J. C.; and Nash, W. F.: A New Standard Atmosphere: The WADC 1952 Model Atmosphere. WADC Tech. Rep. 54-215, U.S. Air Force, Mar. 1954. - 6. Standard Atmosphere Tables and Data for Altitudes to 65,800 Feet. NACA Rep. 1235, 1955. (Supersedes NACA TN 3182.) - 7. Minzner, R. A.; and Ripley, W. S.: The ARDC Model Atmosphere, 1956. AFCRC TN-56-204, U.S. Air Force, Dec. 1956. (Available from DTIC as AD 110 233.) - 8. Minzner, R. A.; Ripley, W. S.; and Condron, T. P.: U.S. Extension to the ICAO Standard Atmosphere Tables and Data to 300 Standard Geopotential Kilometers. Geophys. Res. Dir. and U.S. Weather Bur., 1958. - 9. Minzner, R. A.; Champion, K. S. W.; and Pond, H. L.: The ARDC Model Atmosphere, 1959. AFCRC-TR-59-267, U.S. Air Force, Aug. 1959. - 10. Livingston, Sadie P.; and Gracey, William: Tables of Airspeed, Altitude, and Mach Number Based
on Latest International Values for Atmospheric Properties and Physical Constants. NASA TN D-822, 1961. - 11. U.S. Standard Atmosphere, 1962. NASA, U.S. Air Force, and U.S. Weather Bur., Dec. 1962. - 12. Benner, Margaret S.; and Sawyer, Richard H.: Revised Tables of Airspeed, Altitude, and Mach Number Presented in the International System of Units. NASA SP-3082, 1973. - 13. U.S. Standard Atmosphere, 1976. NOAA, NASA, and U.S. Air Force, Oct. 1976. - 14. Deleo, Richard V.; Cannon, Peter J.; and Hagen, Floyd W.: Evaluation of New Methods for Flight Calibration of Aircraft Instrument Systems. Part I: Analysis of Altimeter, Airspeed and Free-Air-Temperature Systems. WADC TR 59-295 Pt. I, U.S. Air Force, June 1959. (Available from DTIC as AD 239 767.) - 15. Zahm, A. F.: Pressure of Air on Coming to Rest From Various Speeds. NACA Rep. 247, 1926. - 16. Aiken, William S., Jr.: Standard Nomenclature for Airspeeds With Tables and Charts for Use in Calculation of Airspeed. NACA Rep. 837, 1946. (Supersedes NACA TN 1120.) - 17. Differential Pressures. ANA Bull. No. 418, Nov. 21, 1952. - 18. Lina, Lindsay J.; and Ricker, Harry H., Jr.: Measurements of Temperature Variations in the Atmosphere Near the Tropopause With Reference to Airspeed Calibration by the Temperature Method. NACA TN 2807, 1952. - 19. Baals, Donald D.; and Ritchie, Virgil S.: A Simplified Chart for Determining Mach Number and True Airspeed From Airspeed-Indicator Readings. NACA WR L-473, 1943. (Formerly NACA RB.) - 20. Standard for Metric Practice. E 380-76, American Soc. Testing & Mater., 1976. Figure 3.1.- Compressibility factors. Figure 3.2.- Electrical-type temperature probe having a recovery factor of 0.99. (Adapted from ref. 18.) Figure 3.3.- Chart of calibrated airspeed, true airspeed, and Mach number. (Adapted from ref. 19.) # CHAPTER IV ### TOTAL-PRESSURE MEASUREMENT The equations for airspeed, Mach number, and true airspeed given in the previous chapter are all based on the measurement of impact pressure. As shown by equation (1.1), however, the impact pressure is derived from measured values of total pressure and static pressure. In this and the following chapters, therefore, the problems relating to the measurement of total pressure with pitot tubes and the measurement of static pressure with static-pressure tubes or fuselage vents are considered in some detail. As noted in the next chapter, the static pressure at successive points along lines of airflow past a body can vary widely, whereas the total pressure along these lines of flow remains constant. For this reason, the measurement of total pressure is much less difficult than the measurement of free-stream static pressure. The measurement of total pressure is also easier because the problem of total-pressure tube design is less difficult than the design problem for static-pressure tubes. The principal difficulty encountered in the measurement of total pressure relates to the change in the measured pressure when the pitot tube is inclined to the airflow. Since the magnitude of this change is largely dependent on the design, or configuration, of the pitot tube (which can take a wide variety of forms), the problem of measuring total pressure with tubes inclined to the flow is considered separately from the simpler case of tubes aligned with the flow. # Tubes Aligned With the Flow When aligned with the flow in the subsonic speed range, almost any open-end tube registers total pressure correctly provided that the tube is located away from any boundary layer, wake, propeller slipstream, or engine exhaust. For operations at high subsonic speeds, the tube should be located away from any area of high curvature on the structure where shock waves form when the local speed becomes sonic. As all these locations can usually be avoided, there is generally little problem in measuring total pressure at subsonic speeds when the tube is aligned with the flow. Locations which have proved satisfactory for pitot-tube installations include positions ahead of the fuselage, wing, or vertical fin for tubes mounted on short horizontal booms or positions along the fuselage or under the wing for tubes mounted on short struts. Examples of service-type pitot tubes designed for end-mounting and strut-mounting are shown in figure 4.1. For operations in the supersonic speed range, the tube should be located ahead of shock waves emanating from any part of the aircraft. The location that best meets this requirement is, obviously, a position ahead of the fuse-lage nose. When located ahead of the fuselage bow shock, however, the tube is still influenced by a shock, for a small normal shock wave forms ahead of the tube. The presence of this shock is important to the measurement of total pressure because the total pressure decreases through the shock, so that the pressure measured by the tube is lower than the free-stream value ahead of the shock. The magnitude of the total-pressure loss through the shock Δp_t as a fraction of the free-stream total pressure p_t is given by the following expression derived by subtracting equation (3.24) from equation (3.23), dividing the resulting quantity by equation (3.23), and assigning the value of 1.4 to γ : $$\frac{\Delta p_{t}}{p_{t}} = 1 - \frac{1.2M^{2} \left(\frac{5.76M^{2}}{5.6M^{2} - 0.8}\right)^{2.5}}{(1 + 0.2M^{2})^{3.5}}$$ (4.1) where M is the free-stream Mach number. The variation of $\Delta p_t/p_t$ with Mach number for the Mach range from 1.0 to 3.0 is shown in figure 4.2. For the laboratory calibration of airspeed indicators and Machmeters in the supersonic speed range, the total-pressure loss through the shock is taken into account in the computation of the pressure tables by which the instruments are calibrated (see eqs. (3.17) and (3.26)). ## Tubes Inclined to the Flow When a pitot tube is inclined to the flow, the total pressure begins to decrease at some angle of inclination. The angular range through which the tube measures total pressure correctly is called the range of insensitivity to inclination. In this text, the range of insensitivity is defined as the angular range through which the total-pressure error remains within 1 percent of the impact pressure. For a criterion based on a smaller total-pressure error, the range of insensitivity would, of course, be smaller than that quoted for the tubes to be described in this chapter. The configurations of the total-pressure tubes to be described are of two general types: simple pitot tubes and pitot tubes enclosed in a cylindrical shield. For the simple pitot tubes, the range of insensitivity is shown to depend for the most part on the shape of the nose section of the tube and on the size of the impact opening relative to the frontal area of the tube. Early designers favored tubes with hemispherical nose shapes and small impact openings. An example of the use of small-bore, round-nosed tubes was the pitot-static tube designed by the German physicist, Ludwig Prandtl. The pitot part of this tube (fig. 6.5) was very sensitive to inclination, for the range of insensitivity was only $\pm 5^{\circ}$ (ref. 1). Of interest here is the fact that the sensitivity of the pitot tube to inclination was considered to be of little concern, because the static-pressure portion of the tube was equally sensitive to inclination in a compensating manner. As a result, the impact pressure measured by the tube remained unaffected by inclination through an angular range of about $\pm 12^{\circ}$. As discussed in this chapter and in chapter VI, later designers have tried to reduce the sensitivity to inclination of both total- and static-pressure tubes. In an investigation of a number of pitot-static tubes in 1935 (ref. 2), tests of pitot tubes having cylindrical nose shapes disclosed a significant design feature, namely, that the range of insensitivity could be increased by increasing the size of the pitot opening. An extrapolation of test results indicated that maximum insensitivity to inclination should be achieved with a thin-wall tube. In another investigation in 1935, G. Kiel, a German aerodynamicist, showed in reference 3 that the range of insensitivity could be extended considerably by placing the pitot tube inside a venturi-like shield, as shown in figure 4.3. In tests of this tube at low speeds, the range of insensitivity was found to be $\pm 43^{\circ}$. Later tests of the tube in a NASA wind tunnel confirmed this range of insensitivity, but showed that the tube could not be used at Mach numbers greater than 0.6 because of excessive vibrations caused by the airflow around the mounting strut. The errors of simple tubes due to inclination can be avoided by equipping the tube with a pivot and vanes to align the tube with the airstream (fig. 4.3). While swiveling tubes are satisfactory for flight-test work at subsonic speeds, they are impractical for service use on operational aircraft. In an effort to devise fixed (as opposed to swiveling) total-pressure tubes that would be insensitive to inclination and suitable for use on both operational and flight-test aircraft, the NACA conducted a series of wind-tunnel tests on a variety of tube designs from 1951 to 1954 (refs. 4 through 9). The tests were conducted in five wind tunnels at Mach numbers ranging from 0.26 to 2.40 and at angles of inclination up to 67° . Diagrams of the tube configurations that were investigated are presented in figure 4.4. As indicated by the six series of tube designs, the configurations included shielded tubes based on the Kiel design and simple tubes with cylindrical, conical, and ogival nose shapes. For the simple tubes, the principal design variables, aside from the nose shape, were the shape of the entry to the impact opening (cylindrical, hemispherical, and conical) and the relative size of the impact opening on the face of the tube. The shielded tubes were all designed with vent holes along the aft portion of the tube to allow mounting at
the end of a horizontal boom. The variables tested with the shielded tubes included (1) the shape of the entry to the throat (conical and curved), (2) the relative size of the throat (D_2/D) , (3) the position of the pitot tube from the face of the shield (a/D), and (4) the area of the vents with respect to the frontal area of the shield (A_{v}/A_{o}) . The results of the tests of a few of the tubes have been selected for this text to show the effects of some of the more significant design features. An assessment of all of the design variables is given in the summary report of the investigation in reference 9. In the presentation of the results in the figures to follow, the angle of inclination of the tube is the angle in the vertical plane (angle of attack). For symmetrical tubes, the variation of the total-pressure error is the same in the horizontal plane (angle of yaw). For unsymmetrical tubes A-6, A_S-10 , A_S-11 , E-3, and E-4 of figure 4.4, however, the error variation at angles of attack and angles of yaw are different. The effect of varying the size of the impact opening with respect to the frontal area of cylindrical tubes is shown by a comparison of the test results of tubes A-1 and A-2 at a Mach number of 0.26 (fig. 4.5). For the small-bore tube, the range of insensitivity is $\pm 11^{\circ}$, while for the thin-wall tube, it is $\pm 23^{\circ}$. These results confirm the data from reference 2 in showing the range of insensitivity to increase with an increase in the size of the impact opening. The test data on figure 4.6(a) show the effect of cutting the nose of the thin-wall tube at a slant angle of 10° . The range of insensitivity is increased (from the $\pm 23^{\circ}$ value for the thin-wall tube) to 32° at positive angles of attack but decreased to 13° at negative angles. The effect of the 10° slant profile, therefore, is simply to shift the curve of figure 4.5(b) 10° along the angle-of-attack axis. At angles of yaw, the range of insensitivity is $\pm 23^{\circ}$, the same as that for the thin-wall tube. For some applications, the use of a slant-profile tube could be advantageous, since the angle-of-attack range through which an aircraft operates is greater at positive angles than at negative. The effect of changing the shape of the internal entry of cylindrical tubes can be shown from a comparison of the test data of tubes A-2, A-5, and A-7 through A-11. Changing the entry from a cylindrical shape (tube A-2) to a hemispherical shape (tube A-5) increased the range of insensitivity by about 3° . A change to a 50° conical entry (tube A-11) showed no improvement over the value for the cylindrical entry. By decreasing the internal cone angle to 30° , however, the range of insensitivity increased to a value of $\pm 27^{\circ}$ (tube A-9 in fig. 4.6(b)). Decreasing the cone angle to 20° (tube A-8) and to 10° (tube A-7) produced no further extension in the range of insensitivity. The 27° range of insensitivity for the tube with the 30° conical entry is 5° lower than that for the thin-wall, slant-profile tube at positive angles of attack. However, because of the relative fragility of the slant-profile tube and the lack of space for the installation of a deicing heating element, the tube with the 30° conical entry would be a more practical tube for service operations. Some effects of the external nose shape on the range of insensitivity can be shown from a comparison of the data for the tubes having conical and ogival nose sections. For the tube with a 15° conical nose (tube B-1), the range of insensitivity is $\pm 21^{\circ}$ (fig. 4.7(a)); for the 30° nose (tube C-1), the range is $\pm 17.5^{\circ}$; and for the 45° nose (tube D-1), it is $\pm 14^{\circ}$. The ogival-nose tube in figure 4.7(b) is a service-type tube which, in the production model, had a small wall thickness at the impact opening. To make the pitot configuration of this tube comparable with that of tubes B-1, C-1, and D-1, the impact opening was reamed to a sharp leading edge. As shown in figure 4.7(b), the range of insensitivity of this modified tube was $\pm 16^{\circ}$, which is about midway between that for the 30° and 45° conical-nose tubes. The test data for a Kiel-type shielded tube having a vent area equal to the frontal area of the shield are shown on figure 4.8(a). The range of insensitivity of this tube is $\pm 41^{\circ}$, which is very nearly the same as that for the original Kiel design. These tests are significant, therefore, in showing that a shielded tube can be vented along the walls of the shield, as opposed to the straight-through venting of the Kiel shield, without loss in performance. The test data presented thus far were all obtained at a Mach number of 0.26. When tubes A-2, A-6, A-9, and B-1 (figs. 4.5, 4.6, and 4.7) were tested at M = 1.62, the range of insensitivity was greater than that at M = 0.26 by as much as 4° to 10° . In contrast, the range of insensitivity of shielded tube A_{S} -3 (fig. 4.8(a)) was lower at M = 1.62 by about 3° . In tests of the shielded tubes with the curved entries, the entry with the highest degree of curvature (tube A_s -12) provided the greatest range of insensitivity. At M = 0.26, for example, the range was $\pm 63^{\circ}$ (fig. 4.8(b)). With increasing Mach number, the range of insensitivity decreased to about 58° at M = 1.0 and to about 40° at M = 1.61 (fig. 4.9). Despite this loss in performance with increasing Mach number, however, the range of insensitivity of this shielded tube is still greater than that of any of the simple tubes at both subsonic and supersonic speeds. In the foregoing discussion, only the aerodynamic aspects of the design of pitot tubes have been considered. For a tube intended for operational use, the nose configuration would have to allow for the installation of an electric heating element for deicing and drain holes for the removal of any water that may be ingested. In at least two cases, pitot configurations examined in the NASA investigation have been successfully incorporated in the design of service-type pitot and pitot-static tubes; the configuration of tube A-9 is incorporated in the pitot tube shown in figure 4.10 and the configuration of tube B-4 is incorporated in the pitot-static tube described in reference 10 and shown in figure 6.14. #### References - 1. Eckert, B.: Experience With Flow-Direction Instruments. NACA TM 969, 1941. - 2. Merriam, Kenneth G.; and Spaulding, Ellis R.: Comparative Tests of Pitot-Static Tubes. NACA TN 546, 1935. - 3. Kiel, G.: Total-Head Meter With Small Sensitivity to Yaw. NACA TM 775, 1935. - 4. Gracey, William; Letko, William; and Russell, Walter R.: Wind-Tunnel Investigation of a Number of Total-Pressure Tubes at High Angles of Attack - Subsonic Speeds. NACA TN 2331, 1951. (Supersedes NACA RM L50G19.) - 5. Gracey, William; Coletti, Donald E.; and Russell, Walter R.: Wind-Tunnel Investigation of a Number of Total-Pressure Tubes at High Angles of Attack Supersonic Speeds. NACA TN 2261, 1951. - 6. Russell, Walter R.; Gracey, William; Letko, William; and Fournier, Paul G.: Wind-Tunnel Investigation of Six Shielded Total-Pressure Tubes at High Angles of Attack Subsonic Speeds. NACA TN 2530, 1951. - 7. Gracey, William; Pearson, Albin O.; and Russell, Walter R.: Wind-Tunnel Investigation of a Shielded Total-Pressure Tube at Transonic Speeds. NACA RM L51K19, 1952. - 8. Russell, Walter R.; and Gracey, William: Wind-Tunnel Investigation of a Shielded Total-Pressure Tube at a Mach Number of 1.61. NACA RM L53L23a, 1954. - 9. Gracey, William: Wind-Tunnel Investigation of a Number of Total-Pressure Tubes at High Angles of Attack Subsonic, Transonic, and Supersonic Speeds. NACA Rep. 1303, 1957. (Supersedes NACA TN 3641.) - 10. Pitot Static Tube TRU-1/A, Electrically Heated. Mil. Specif. MIL-P-25757B(ASG), Jan. 26, 1960. (a) End mounting. (b) Strut mounting. L-79-356 Figure 4.1.- Examples of service-type pitot tubes. Figure 4.2.- Total-pressure loss through a normal shock wave. (a) Shielded total-pressure tube designed by G. Kiel. (Adapted from ref. 3.) (b) Swiveling total-pressure tube. Figure 4.3.- Shielded and swiveling total-pressure tubes. (a) Series A - cylindrical nose. Figure 4.4.- Diagrams of total-pressure tubes examined in NACA investigations. (Adapted from ref. 9.) (b) Series ${\rm A_S}$ - shielded. Vent area ${\rm A_V/A_O}$ of tubes ${\rm A_S-4}$ through ${\rm A_S-16}$ is 1.5. Figure 4.4.- Continued. (b) Concluded. Figure 4.4.- Continued. (c) Series B - 15° conical nose. Figure 4.4.- Continued. (d) Series C - 30° conical nose. Figure 4.4.- Continued. (e) Series D - 45° conical nose. β 30° 40° 50° D-4 D-5 D-6 .125 in. Figure 4.4.- Continued. (f) Series E - ogival nose. Figure 4.4.- Concluded. (a) Small-bore cylindrical tube. (b) Thin-wall cylindrical tube. Figure 4.5.- Variation of total-pressure error with angle of attack for cylindrical tubes with different size impact openings. M = 0.26. (Adapted from ref. 4.) (a) Cylindrical tube with slant profile. (b) Cylindrical tube with 30° conical entry. Figure 4.6.- Variation of total-pressure error with angle of attack for cylindrical tubes with impact openings of different shapes. M = 0.26. (Adapted from ref. 4.) (a) 15° conical-nose tube. Figure 4.7.- Variation of total-pressure error with angle of attack for tubes having conical- and ogival-nose shapes. M = 0.26. (Adapted from ref. 4.) (b) Ogival-nose tube. (a) Kiel-type tube with vent holes at rear of shield. (Adapted from ref. 4.) (b) Shielded tube with curved entry to shield. (Adapted from ref. 6.) Figure 4.8.- Variation of total-pressure error with angle of attack for two shielded tubes. M = 0.26. Figure 4.9.- Variation of range of insensitivity with
Mach number for shielded tube $\rm A_S{-}12.~$ (Adapted from ref. 8.) L-79-3568 Figure 4.10.- Service-type pitot tube incorporating pitot configuration of tube A-9. ### CHAPTER V #### STATIC-PRESSURE MEASUREMENT For a steady flow condition, the flow of the air over a body creates a pressure field in which the static pressures vary from point to point, while the total pressure at all points remains the same. For this reason, the measurement of free-stream static pressure on an aircraft is much more complicated than the measurement of free-stream total pressure. The pressure field created by the airflow may change with the configuration of the aircraft and with Mach number and angle of attack. For a given aircraft configuration, therefore, the problem of designing a static-pressure-measuring system is primarily one of finding a location where the static-pressure error varies by the least amount throughout the operating range of the aircraft. The variation of the pressures in the flow field can be described by Bernoulli's equation for the total pressure p_{t} in incompressible flow: $$p_t = p_l + \frac{1}{2} \rho V_l^2 = Constant$$ (5.1) where \mathbf{p}_l is the local static pressure and \mathbf{V}_l is the local flow velocity. This equation states that the total pressure remains constant (at the freestream value) at all points along lines of flow, whereas the local static pressure varies inversely with the square of the local velocity. The variation of local static pressure expressed by equation (5.1) is illustrated by the diagram of the flow around a fuselagelike body in figure 5.1. The five lines of flow (streamlines) shown in this figure represent the paths of the individual particles of the air. At a great distance ahead of the body, the streamlines are parallel and the total pressure p_t , static pressure p_t , and velocity of the particles V on each of the streamlines are the free-stream values. As the air particles move closer to the body, the streamlines begin to diverge and the velocities of the particles begin to increase as the air flows past the body. At some considerable distance behind the body, the streamlines return to parallel flow and the pressures and velocities return to their free-stream values. Relative magnitudes of the local pressure and the local velocity at three points near the nose of the body are also shown in figure 5.1. At a position just aft of the nose, the local velocity is higher than the free-stream velocity and the local static pressure is lower than the free-stream static pressure. At a position directly ahead of the nose, the local velocity is lower than the stream velocity, so that the local static pressure is higher than the stream value. At a point on the leading edge of the nose, where the air particles come to a stop, the local static pressure is equal to the free-stream total pressure. The flow pattern, or field, shown in figure 5.1 applies to incompressible flow or to compressible flow at very low speeds. For higher speeds in compressible flow, the flow field changes markedly, particularly at transonic and supersonic speeds. In the subsonic speed range, the flow field extends in all directions from the aircraft. The difference between the local static pressure and the free-stream static pressure is greatest in the vicinity of the aircraft and decreases with distance from it. In the transonic speed range, the flow field is altered by shock waves that form along the lines of maximum curvature of the fuselage, wings, and tail surfaces. At supersonic speeds, the flow field is confined to the regions behind the shock wave that forms ahead of the nose of the fuselage (fuselage bow shock). As discussed in the next two chapters, the changes in the characteristics of the flow fields in the three speed ranges can produce large variations in the pressures measured by a static-pressure installation. An orifice on a surface oriented parallel to the airstream has been universally used to measure static pressure on aircraft. The orifice may be located on the surface of the fuselage or on a static-pressure tube attached to some part of the aircraft. For fuselage-vent installations, the orifices are usually installed in pairs (one on each side of the fuselage) and are generally located some distance aft of the nose of the fuselage. With the static-pressure tube, the orifices are ordinarily located well aft of the nose of the tube and may either encircle the tube or be oriented in unsymmetrical arrangements described in the next chapter. On some early static-pressure tubes, the orifices were in the form of rectangular slots; on present-day tubes, the orifices are circular. Like the total-pressure tubes described in the last chapter, the static-pressure tubes are designed with either a transverse strut for attachment to some part of the aircraft structure or with end fittings for mounting on a horizontal boom. Since the diameter of the boom is generally larger than that of the tube, the aft end of the tube is enlarged to form a collar of the same diameter as the boom. As shown in the next chapter, the mounting struts and the collars of the tubes can have a marked influence on the pressures measured by the tubes. The tubes with strut supports have generally been attached either to the underside of the wing or, in pairs, to the sides of the fuselage. The tubes designed for end-mounting on booms have been installed on the nose of the fuselage, the outboard section of the wing, and the tip of the vertical fin. Examples of service-type pitot-static tubes designed for end-mounting and strutmounting are shown in figure 5.2. A diagram showing four types of static-pressure-measuring installations (static-pressure tubes ahead of the fuselage nose, wing tip, and vertical fin and fuselage vents on the side of the fuselage) is presented in figure 5.3. Also shown are the local static pressures p_l and the measured static pressures p' at the four pressure sensors. For each installation, the difference between the measured pressure and the free-stream static pressure p is defined by equation (2.2): $$\Delta p = p' - p \tag{2.2}$$ where Δp is the static-pressure error of the installation, or installation error; this error is also called the position error because the magnitude of the static-pressure error depends primarily on the position of the pressure sensor in the flow field of the aircraft. For the fuselage-vent installation, the measured static pressure is essentially the same as the local static pressure at the vents. With the static-pressure-tube installations, on the other hand, the local static pressure is altered by the presence of the tube, because the tube creates a small flow field of its own. Since the flow of the air causes the pressures along the tube to vary in a manner similar to that described for flow about the aircraft, some part of the position error of a static-pressure-tube installation is due to the configuration of the tube (size, shape, and location of the orifices). The errors of a static-pressure tube vary primarily with Mach number and angle of attack, while the position errors of a static-pressure installation vary primarily with Mach number and lift coefficient (a function of angle of attack). The errors of a static-pressure tube are determined by wind-tunnel tests, whereas the position errors of a static-pressure installation are determined by flight calibrations. In steady, level flight, the lift coefficient C_{L} is normally a linear function of angle of attack at speeds above the stall. For this condition, C_{L} is defined by the following equation: $$C_{L} = \frac{W}{gS} \tag{5.2}$$ where W is the weight of the aircraft, S the area of the wing, and q the dynamic pressure. Values of q can be determined from measured values of the impact pressure $q_{\rm C}$ and the static pressure p and the following equation derived from equations (3.10) and (3.22): $$q = \frac{\gamma p M^2}{2} \tag{5.3}$$ where M is determined from the ratio $\,{\rm q}_{\rm C}/{\rm p}\,$ as discussed in chapter III. In wind-tunnel calibrations of static-pressure tubes and flight calibrations of static-pressure installations, the static-pressure errors are usually presented as fractions of the static pressure, $\Delta p/p$, or as fractions of the impact pressure, $\Delta p/q_{\rm C}$. For calibrations at high Mach numbers, the static-pressure error is often converted to an error in Mach number ΔM and expressed as a fraction of the Mach number, $\Delta M/M$. In this text, the static-pressure errors for all of the wind-tunnel and flight calibrations are presented in terms of $\Delta p/q_{\rm C}$. For a comparison of a position error calibration in terms of $\Delta p/q_{\rm C}$, $\Delta p/p$, and $\Delta M/M$, see figure 7.23. Values of $\Delta p/q_C$ can be converted to values of $\Delta p/p$ by means of the q_C/p values given in table A26 of appendix A. A graph showing the relation of $\Delta p/p$ to $\Delta p/q_C$ for Mach numbers up to 2.0 is presented in figure 5.4. Values of $\Delta p/q_{\text{C}}$ and $\Delta p/p$ can be converted to values of $\Delta \text{M/M}$ by means of the following equations from reference 1: $$\frac{\Delta p}{p} = -\frac{1.4M^2}{1 + 0.2M^2} \frac{\Delta M}{M}$$ (5.4) and $$\frac{\Delta p}{q_c} = -\left[\frac{1}{(1+0.2M^2)^{3.5}-1}\right] \frac{1.4M^2}{1+0.2M^2} \frac{\Delta M}{M}$$ (5.5) for $M \leq 1$, and $$\frac{\Delta p}{p} = \left(\frac{4.0}{5.6M^2 - 0.8} - 2\right) \frac{\Delta M}{M} \tag{5.6}$$ and $$\frac{\Delta p}{q_{\rm C}} = \left(\frac{4.0}{5.6 \text{M}^2 - 0.8} - 2\right) \frac{1}{1.2 \text{M}^2 \left(\frac{5.76 \text{M}^2}{5.6 \text{M}^2 - 0.8}\right)^{2.5} - 1}$$ (5.7) for M $\stackrel{>}{=}$ 1. A graph of the relation between $\Delta p/p$ and $\Delta M/M$ and between $\Delta p/q_C$ and $\Delta M/M$ for Mach numbers up to 5.0 is presented in figure 5.5. The altitude error
ΔH , airspeed error $\Delta V_{\rm C}$, and Mach number error ΔM that are associated with the position error ΔP are defined by the following equations: $$\Delta H = H' - H \tag{5.8}$$ where H' is the indicated altitude and H is the pressure altitude, $$\Delta V_{C} = V_{i} - V_{C} \tag{5.9}$$ where $V_{\dot{1}}$ is the indicated airspeed and V_{C} is the calibrated airspeed, $$\Delta M = M' - M \tag{5.10}$$ where M' is the indicated Mach number and M is the free-stream Mach number. To provide an indication of the errors in airspeed and altitude that result from a given static-pressure error, the altitude errors ΔH and the airspeed errors ΔV_C corresponding to a static-pressure error equal to 1 percent of the impact pressure $(\Delta p/q_C=0.01)$ are presented in figure 5.6 for Mach numbers up to 1.0 and altitudes up to 40 000 ft. The altitude errors corresponding to an error of 1 percent of the static pressure $(\Delta p/p=0.01)$ are presented in figure 5.7 for altitudes up to 50 000 ft, and the altitude errors corresponding to an error of 1 percent of the Mach number $(\Delta M/M=0.01)$ are presented in figure 5.8 for Mach numbers up to 1.0 and altitudes up to 40 000 ft. For positive static-pressure errors $(\Delta p/q_C$ or $\Delta p/p)$, the signs of both ΔH and ΔV_C are negative; for positive values of $\Delta M/M$, the signs of ΔH and ΔV_C are positive. In appendix B, sample calculations are given for the determination of ΔH , $\Delta V_{\rm C}$, and ΔM from a given value of Δp and the indicated altitude H', the indicated airspeed $V_{\rm I}$, and the indicated Mach number M'. ## Reference Zalovcik, John A.: A Radar Method of Calibrating Airspeed Installations on Airplanes in Maneuvers at High Altitudes and at Transonic and Supersonic Speeds. NACA Rep. 985, 1950. (Supersedes NACA TN 1979.) Figure 5.1.- Diagram showing local pressures and velocities in vicinity of fuselagelike body. local velocity (b) End mounting. Figure 5.2. - Examples of service-type pitot-static tubes. free-stream static pressure local static pressure p' pressure sensed by static-pressure tube or fuselage vent Δp position error, p'- p Figure 5.3.- Diagram showing various types of installations for the measurement of static pressure on an aircraft. Figure 5.4.- The relation between $\Delta p/p$ and $\Delta p/q_{\rm C}.$ Figure 5.5.- The relation between $\Delta p/p$ and $\Delta M/M$ and between $\Delta p/q_C$ and $\Delta M/M$. (Adapted from ref. 1.) (a) ΔH corresponding to $\Delta p/q_c = 0.01$. (b) ΔV_{C} corresponding to $\Delta p/q_{C} = 0.01$. Figure 5.6.- Altitude errors ΔH and airspeed errors $\Delta V_{\rm C}$ corresponding to a static-pressure error of 1 percent of impact pressure ($\Delta P/q_{\rm C}=0.01$). Figure 5.7.- Altitude errors ΔH corresponding to a static-pressure error of 1 percent of the static pressure ($\Delta p/p = 0.01$). Figure 5.8.- Altitude errors ΔH corresponding to a Mach number error of 1 percent ($\Delta M/M = 0.01$). #### CHAPTER VI #### STATIC-PRESSURE TUBES As discussed in the previous chapter, the flow of the air past a static-pressure tube causes the pressures along the surface of the tube to vary from one point to another. These variations in static pressure can be described in terms of pressure distributions along the tube (when the tube is aligned with the flow) and pressure distributions around the tube (when the tube is inclined to the flow). The difference between the pressure sensed by the orifices and the free-stream static pressure is the static-pressure error of the tube, sometimes called the error of the isolated tube. In the following sections, the errors of tubes aligned with the flow are considered separately from the errors of tubes inclined to the flow. At the end of the chapter, data are presented on the effects of orifice size and shape on the pressure sensed by the tube. ## Tubes Aligned With the Flow Theoretical pressure distributions along cylindrical bodies (fig. 6.1, from ref. 1) are useful in understanding the problem of locating orifices along a static-pressure tube. For both the subsonic and supersonic flow conditions shown in the figure, the static-pressure errors are negative at a station just beyond 1 tube diameter from the nose of the tube. The pressures at this point on the tube are, therefore, below the free-stream pressure. With increasing distance from the nose, the pressures approach the free-stream pressure and should reach that value at a distance of about 5 tube diameters in subsonic flow and about 8 tube diameters in supersonic flow. In using the theoretical data to design a tube to measure free-stream pressure, many designers place the orifices a greater distance from the nose than that indicated by the theoretical distributions. A typical example is the 10-diameter location on the tube in figure 6.2. As shown by the calibration data, the static-pressure error is near zero throughout most of the subsonic speed range. In the subsonic speed range, the pressure at the orifices can be influenced by the presence of a strut or collar downstream from the orifices. The effect of a strut is illustrated by figure 6.3 which shows the pressure distribution for incompressible, two-dimensional flow ahead of a body of infinite length transverse to the flow. For application to pressure measurements with a static-pressure tube, this body can be considered to represent the support strut of a tube. The curve on this figure shows that the pressure errors ahead of the strut are positive (measured pressures above free-stream pressure) and that they diminish toward the free-stream value with increasing distance from the strut. This effect of a strut or other body in creating a positive pressure field upstream from the body is called the blocking effect. Wind-tunnel tests of the blocking effect of a strut at a number of distances behind a set of static-pressure orifices were reported in reference 2. The results of the tests (fig. 6.4) confirm the theoretical variation by showing the errors to be greatest for the shortest strut position (x/t = 3.6) and least for the longest (x/t = 10.5). The rise in the errors at Mach numbers above 0.5 shows that the blocking effect increases in the upper subsonic speed range. Early designers of static-pressure tubes favored short tubes for strutmounting, because the blocking effect of the strut could be used to balance the negative errors incurred by locating the orifices near the nose of the tube. The outstanding example of this design concept was the Prandtl pitot-static tube (fig. 6.5) on which the orifices were located 3 tube diameters aft of the nose and 10 strut thicknesses ahead of the strut. This tube, and variations of the original design, has been the subject of many wind-tunnel investigations (refs. 3, 4, and 5, for example). In the most extensive of these tests (ref. 5), the error was essentially zero in the Mach range up to 0.5 (fig. 6.5), but increased at higher Mach numbers in the same manner as the errors of the tubes in figure 6.4. In contrast to early tubes designed for strut-mounting, later tubes were designed for end-mounting on horizontal booms. These designs permitted the use of longer tubes on which the orifices could be located a greater distance from the nose. In addition, the collars at the rear of the tube could be so located that the blocking effect would be smaller than that of a strut. Thus, the positive and negative pressure errors at the orifices could both be made smaller than those of the strut-mounted tubes. The blocking effect of a collar on the pressures at orifices at three locations ahead of a collar was investigated in the tests of reference 2. The results of the tests (fig. 6.6) show that even for orifices located as close to the collar as 1.8 collar diameters, the errors are relatively small (1.5 percent \mathbf{q}_{C}) and essentially constant for Mach numbers up to 0.8. A number of service-type tubes have been designed for end-mounting on booms. On one of the most widely used of these tubes (fig. 6.7), the orifices are located 5.5 tube diameters from the nose and 2.8 collar diameters ahead of the collar. As shown by figure 6.7, the static-pressure error of this tube is constant at about 0.5 percent $\mathbf{q}_{\mathbf{C}}$ up to a Mach number of about 0.9. Another end-mounted tube, designed for use on high-speed research aircraft, has the orifices located 9.1 tube diameters behind the nose and 5.3 collar diameters ahead of the collar. The calibration of this tube (fig. 6.8, from ref. 6) at both subsonic and supersonic speeds shows an error of 1 percent \mathbf{q}_{C} at M = 0.6, a sharp rise in error at Mach numbers around 0.9, and an abrupt decrease to errors near zero at a Mach number just beyond 1.0. The abrupt fall of the error is due to the passage over the orifices of a shock wave that forms ahead of the collar when the flow reaches sonic speed. A similar decrease in static-pressure error at low supersonic speeds is experienced with fuselage-nose installations, as is discussed in some detail in the next chapter. ### Tubes Inclined to the Flow The pressures sensed by a static-pressure tube inclined to the flow depends not only on the location of the orifices along the tube but also on their spacing around the tube. When the orifices encircle the tube, the measured pressure decreases as the tube is inclined, and the static-pressure error reaches a value of -1 percent \mathbf{q}_{C} at angles of attack and yaw of about $\mathbf{5}^{\mathrm{O}}$. The range of insensitivity of a tube at positive angles of attack can be extended by spacing the orifices around the tube in one of two unsymmetrical arrangements. The selection of the proper spacing can be illustrated by the pressure distribution around a circular cylinder at
an angle of attack of 45° and a Mach number of 0.2 (fig. 6.9, from ref. 7). This distribution shows the static-pressure error to be positive at the bottom of the tube ($\varphi=0^{\circ}$), negative on the top ($\varphi=180^{\circ}$), and zero at radial stations of about 35° . These data suggest that a tube could be made less sensitive to inclination at positive angles of attack by (1) locating two orifices approximately $\pm 35^{\circ}$ from the bottom of the tube or (2) locating a number of orifices on the top and bottom of the tube to achieve a balance of the positive and negative pressures in these regions. Since the pressure distribution, and thus the radial position for zero pressure error, varies with angle of attack and Mach number, null-type (dual orifice) tubes have been designed with a number of orifice stations ($\pm 30^{\circ}$ to $\pm 41.5^{\circ}$) in an attempt to produce a configuration that would be satisfactory through a range of angles of attack and Mach numbers. In tests of a tube with orifices at the $\pm 30^{\circ}$ station (ref. 8), the range of insensitivity at positive angles of attack was found to be 20° at M = 0.3 and about 9° at M = 0.65 (fig. 6.10). Note that for the static-pressure tubes, the range of insensitivity is defined as the angular range through which the static-pressure error remains within 1 percent $q_{\rm C}$ of its value at an angle of attack of 0° . This definition is different from that given for the total-pressure tubes because the errors of static-pressure tubes at an angle of attack of 0° are usually not zero. However, whenever corrections are applied for the errors of static-pressure-tube installations at or near an angle of attack of 0° , the definition of the range of insensitivity for static-pressure tubes becomes the same as that for the total-pressure tubes, namely, the range through which the error remains within 1 percent $q_{\rm C}$. In an investigation to determine the errors at a number of orifice stations (ref. 9), a cylindrical tube was tested with orifices located at the $\pm 30^{\circ}$, $\pm 33^{\circ}$, $\pm 36^{\circ}$, $\pm 37.5^{\circ}$, and $\pm 40^{\circ}$ stations. The tests were conducted with the tube at an angle of attack of 12° through a Mach range from 0.4 to 1.2. The results of the tests (fig. 6.11) show the errors to be positive at the $\pm 30^{\circ}$, $\pm 33^{\circ}$, and $\pm 36^{\circ}$ stations and negative at the $\pm 40^{\circ}$ station. For the $\pm 37.5^{\circ}$ station, the errors were near zero through the Mach range up to 1.2. A top-and-bottom orifice arrangement is used on the service-type tube shown in figure 6.7. With this arrangement, four orifices are spaced within a radial angle of $\pm 20^{\circ}$ on the top of the tube and six orifices within a radial angle of $\pm 30^{\circ}$ on the bottom. Tests of this tube at a Mach number of 0.2 (ref. 10) showed the range of insensitivity to be -10° to $+22^{\circ}$ (fig. 6.12(a)). At angles of yaw, the range of insensitivity was $\pm 5^{\circ}$. In an attempt to extend the range of insensitivity of this tube at positive angles of attack, the orifice configuration was altered by progressively increasing the orifice area on the bottom of the tube. For the final configuration tested (fig. 6.12(b)), the two orifices at the $\pm 30^{\circ}$ station on the bottom were enlarged from 0.043 in. in diameter to 0.052 in., and an additional orifice, 0.052 in. in diameter, was drilled at the 0° station just aft of the six orifices. With this configuration, the range of insensitivity was extended to $\pm 45^{\circ}$ at M = 0.2, but to only $\pm 20^{\circ}$ at M = 0.68. The modified orifice configuration on the service tube in figure 6.12(b) was incorporated in the design of the research-type tube in figure 6.8. In tests of this tube through a Mach range from 0.6 to 2.87 (fig. 6.13), the range of insensitivity at positive angles of attack was found to be about 15° at both subsonic and supersonic speeds. A service-type pitot-static tube exemplifying modern design trends is shown in figure 6.14 (ref. 11). For small errors at zero inclination, the orifices are located 13 tube diameters aft of the nose and 3.6 collar diameters ahead of the collar (x/(D-d)=7.2). The radial position of the two orifices is $\pm 37.5^{\circ}$ which, as shown by the data of figure 6.11, minimizes the error at positive angles of attack up to at least 12° . The pitot configuration is the same as that of tube B-4 (chapter IV) which is insensitive to inclination (to within 1 percent $q_{\rm C}$) at angles of attack and yaw of $\pm 21^{\circ}$. ## Orifice Size and Shape The influence of orifice diameter and edge shape on the pressures measured by a static-pressure tube can be seen in figure 6.15 (from ref. 12). The variation of the static-pressure error with orifice diameter for a square-edge orifice at Mach numbers of 0.4 and 0.8 is shown in figure 6.15(a). These errors can be related to the orifice size of static-pressure tubes by noting that for tubes with multiple orifices, the orifice diameter is usually on the order of 0.04 in. and for dual orifice tubes, the orifice diameter is 0.06 to 0.08 in. The effect of orifice size is, of course, included with the other effects (axial and radial location of the orifices and blocking effects of strut or collar) that contribute to the error of a static-pressure tube. The effect of varying the edge shape of a 0.032-in.-diameter orifice for a Mach range from 0.4 to 0.8 is shown in figure 6.15(b). The errors for the rounded and angled edge shapes are referenced to the error of the square-edge orifice (which can be found from fig. 6.15(a)). The data for the various orifice configurations show the effect of edge shape to be relatively small except for the orifice with the wide curved entry. With present-day tubes, it is considered good practice to drill orifices with clean, sharp edges, free from burrs, and to make certain that the orifices are not damaged or deformed in operational use. #### References - 1. Kumbruch, H.: Pitot-Static Tubes for Determining the Velocity of Air. NACA TM 303, 1925. - Lock, C. N. H.; Knowler, A. E.; and Pearcey, H. H.: The Effect of Compressibility on Static Heads. R. & M. No. 2386, British A.R.C., Jan. 1943. - 3. Walchner, O.: The Effect of Compressibility on the Pressure Reading of a Prandtl Pitot Tube at Subsonic Flow Velocity. NACA TM 917, 1939. - 4. Merriam, Kenneth G.; and Spaulding, Ellis R.: Comparative Tests of Pitot-Static Tubes. NACA TN 546, 1935. - 5. Hensley, Reece V.: Calibrations of Pitot-Static Tubes at High Speeds. NACA WR L-396, 1942. (Formerly NACA ACR.) - 6. Richardson, Norman R.; and Pearson, Albin O.: Wind-Tunnel Calibrations of a Combined Pitot-Static Tube, Vane-Type Flow-Direction Transmitter, and Stagnation-Temperature Element at Mach Numbers From 0.60 to 2.87. NASA TN D-122, 1959. - 7. Bursnall, William J.; and Loftin, Laurence K., Jr.: Experimental Investigation of the Pressure Distribution About a Yawed Circular Cylinder in the Critical Reynolds Number Range. NACA TN 2463, 1951. - 8. Smith, W. E.: Wind Tunnel Calibration of Two Static-Pressure Sensing Devices. Rep. No. AF-682-A-6 (WADC Contract No. AF 33(038)-10709), Cornell Aeronaut. Lab., Inc., Dec. 1952. - 9. Ritchie, Virgil S.: Several Methods for Aerodynamic Reduction of Static-Pressure Sensing Errors for Aircraft at Subsonic, Near-Sonic, and Low Supersonic Speeds. NASA TR R-18, 1959. - 10. Gracey, William; and Scheithauer, Elwood F.: Flight Investigation at Large Angles of Attack of the Static-Pressure Errors of a Service Pitot-Static Tube Having a Modified Orifice Configuration. NACA TN 3159, 1954. - 11. Pitot Static Tube TRU-1/A, Electrically Heated. Mil. Specif. MIL-P-25757B(ASG), Jan. 26, 1960. - 12. Rayle, Roy E., Jr.: An Investigation of the Influence of Orifice Geometry on Static Pressure Measurements. M.S. Thesis, Massachusetts Inst. Technol., 1949. Figure 6.1.- Theoretical pressure distributions along cylindrical bodies. (Adapted from ref. 1.) Figure 6.2.— Calibration of a static-pressure tube aligned with the flow. Support for this tube was located about 30 in. downstream from the orifices. Figure 6.3.- Theoretical pressure distribution ahead of a body of infinite length transverse to the flow. (Adapted from ref. 1.) Figure 6.4.- Blocking effect of a transverse strut for a static-pressure tube aligned with the flow. (Adapted from ref. 2.) Figure 6.5.- Calibration of Prandtl pitot-static tube aligned with the flow. (Adapted from ref. 3.) Figure 6.6.- Blocking effect of a collar for static-pressure tube aligned with the flow. (Adapted from ref. 2.) Figure 6.7.- Calibration of a service-type pitot-static tube aligned with the flow. Figure 6.8.- Calibration of research-type pitot-static tube aligned with the flow. (Adapted from ref. 6.) Figure 6.9.- Pressure distribution around a cylinder at an angle of attack of 45° and a Mach number of 0.2. The two pressure distributions are for flow conditions below and above the critical Reynolds number $N_{\text{Re,c}}$ at which flow separation occurs. (Adapted from ref. 7.) Figure 6.10.- Calibration at angles of attack of a static-pressure tube with orifices at radial stations of $\pm 30^{\circ}$. (Adapted from ref. 8.) Figure 6.11.- Static-pressure errors of a tube with orifices at radial stations between $\pm 30^\circ$ and $\pm 40^\circ$. (Adapted from ref. 9.) (a) Original orifice configuration. (b) Modified orifice configuration. Figure 6.12.- Calibration of a service-type pitot-static tube at angles of attack. (Adapted from ref. 10.) (a) Subsonic speed range. (b) Supersonic speed range. Figure 6.13.- Calibration of research-type pitot-static tube at angles of attack. (Adapted from ref. 6.) Figure 6.14.- Diagram of modern pitot-static tube. (Adapted from ref. 11.) (a) Effect of
orifice diameter. Square-edge orifice. (b) Effect of orifice edge shape. Errors of rounded and angled edge shapes referenced to error of square-edge orifice. Figure 6.15.- Effect of orifice diameter and edge shape on measured static pressure. (Adapted from ref. 12.) #### CHAPTER VII #### STATIC-PRESSURE INSTALLATIONS As noted in chapter V, the position error of a static-pressure installation varies with Mach number and lift coefficient. In the low subsonic speed range, where large changes in lift coefficient can occur over a small Mach number range, the error depends largely on lift coefficient. In the high subsonic speed range, the change in lift coefficient is usually quite small, so that the error in this range depends mainly on Mach number. The errors at the low Mach numbers are determined from calibration tests at low altitudes, whereas the errors at the higher Mach numbers are determined in calibrations at high altitudes (because of the speed limitations of the aircraft at low altitudes). When the low-altitude calibration tests are conducted at heights near sea level, the curves are labeled "sea-level calibration" on the calibration charts. As the variations of the errors with lift coefficient and Mach number differ markedly for different types of installations, the characteristics are described for four typical installations: static-pressure tubes ahead of the fuselage nose, the wing tip, and the vertical fin and fuselage-vent installations. For each installation, the variations of the errors in the low and high Mach ranges are considered separately. For one of the installations, however, the errors at low altitudes are combined with the errors at high altitudes to form a complete calibration throughout the lift coefficient and Mach number ranges. All the calibrations to be presented apply to level-flight, cruise conditions. For the landing configuration, the calibration is generally different because of changes in the flow field that result from deflection of the flaps and extension of the landing gear. The types of static-pressure tubes used on the fuselage-nose, wing-tip, and vertical-fin installations are shown in figure 7.1, and the type of tube used on each of the installations (tube A, B, etc.) is noted on each of the calibration charts discussed in this chapter. ## Fuselage-Nose Installations For a given position of the orifices ahead of a fuselage, the magnitude and variation of the static-pressure error depend on the shape of the fuselage nose and the maximum diameter of the fuselage. The effect of nose shape can be seen from wind-tunnel tests of bodies of revolution having circular, elliptical, and ogival nose shapes (ref. 1). The tests were conducted at M = 0.2 with the bodies at an angle of attack of 0° . The results of the tests (fig. 7.2) show that, for a given distance x/D ahead of the bodies, the blocking effect, indicated by the magnitude of the errors, is greatest for the circular nose and least for the ogival nose. At a distance of 1 body diameter (x/D = 1.0), for example, the error is 9 percent $q_{\rm C}$ for the circular nose, 4 percent $\boldsymbol{q}_{\text{C}}$ for the elliptical nose, and 1 percent $\boldsymbol{q}_{\text{C}}$ for the ogival nose. The magnitude of the static-pressure error at three positions ahead of an airplane having an elliptical nose section is shown in figure 7.3. Also shown in the figure is the curve for the wind-tunnel model with the elliptical nose in figure 7.2. The errors for the airplane installations were determined at a low speed (M = 0.37) and a low angle of attack ($C_L = 0.3$), a condition comparable with that of the wind-tunnel tests. As shown by the two curves, the variation of the error with orifice position (x/D) is about the same for the two tests. The variation of the error with Mach number at low subsonic speeds for each of the three boom lengths on the airplane in figure 7.3 is shown in figure 7.4. As this is the speed range in which the effects of lift coefficient (or angle of attack) predominate, the lift coefficients at the stall speed ($C_L = 1.2$) and at the maximum speed of the tests ($C_L = 0.3$) are noted in the figure. As shown by the three curves, the errors for nose-boom installations decrease with increasing lift coefficient. The variation of the error of a nose-boom installation in the transonic speed range can be illustrated with calibrations of static-pressure probes ahead of a body of revolution (fig. 7.5, from ref. 2) having a profile like the X-1 research airplane (fig. 7.6). The errors were determined at three positions ahead of the body through a Mach range from 0.68 to 1.05 (fig. 7.5). For each orifice position, the errors increase rapidly in the upper subsonic range, reach peak values at Mach numbers just beyond 1.0, and then decrease abruptly to values near zero. The initial increase in the error is caused by a shock that forms around the body at its maximum diameter when the flow at that point becomes sonic. This shock isolates the negative pressure region along the rear of the body, so that the pressures at the orifices are then determined by the positive pressures along the nose section. When the free-stream flow becomes sonic, a shock wave forms ahead of the body (bow shock), and the error continues to increase as the shock moves toward the body. When the bow shock passes over the orifices, the static pressure at the orifices becomes that of the free stream, because the pressure field of the body is then confined to the region behind the shock. For all higher Mach numbers, the pressure ahead of the shock is that of the free stream, and the pressure measured by a static-pressure tube is that of the isolated tube. In flight tests of the X-1 airplane with a type A static-pressure tube located 0.6D ahead of the nose (ref. 3), the variation of the error in the transonic speed range (fig. 7.6) was found to be similar to that of the model tests (fig. 7.5). After shock passage, the error becomes +0.5 percent $q_{\rm C}$, which is the tube error of the type A tube. In later tests of the X-15 research airplane with a nose-boom installation with a type B tube, the installation error after shock passage was also found to be that of the isolated tube at Mach numbers up to 2.87 (refs. 4 and 5). That the sharp rise in the static-pressure error in the Mach range from 0.8 to 1.0 is characteristic of fuselage-nose installations is shown by the calibrations of installations on five other airplanes (fig. 7.7, from ref. 6). The data on this figure also show a fairly consistent decrease in the error with increasing boom length, despite the variations in the shapes of the nose sections. The variation with Mach number of the static-pressure error ahead of fuse-lages with nose inlets has been determined from both model tests (ref. 2) and flight tests (ref. 7). The results of the two tests (figs. 7.8 and 7.9) show the same general variation of the error in the transonic speed range as for the X-1 model in figure 7.5 and the X-1 airplane in figure 7.6. The calibrations of nose-boom installations on five other airplanes with nose inlets (fig. 7.10, from ref. 6) show the errors in the Mach range from 0.8 to 1.0 to rise sharply in a manner similar to those for the airplanes on figure 7.7. ## Wing-Tip Installations For a given position of static-pressure orifices ahead of a wing, the magnitude and variation of the error depend on the shape of the airfoil section, the maximum thickness of the airfoil, and the spanwise location of the boom. In order to lessen the influence of the pressure field of the fuselage, the change in the flow field about the wing due to flap deflection and landing-gear extension, and the effect of propeller slipstream or jet engine exhaust, the static-pressure tube should be installed on the outboard span of the wing. For the installations to be described here, the booms were in all cases located near the wing tip. The magnitudes of the errors ahead of a wing tip are shown in figure 7.11 for six orifice locations expressed in terms of the maximum wing thickness t. The errors were measured with the airplane at a low angle of attack ($C_{\rm L}=0.2$) at a Mach number of 0.30 (ref. 8). The test data show that the error is highest at the position closest to the wing and it decreases rapidly to a value of about 1 percent $q_{\rm C}$ at an orifice location of x/t = 10. Beyond this point, further reduction in the error is minimal. The distance x/t=8 for the wing in figure 7.11 is the same as the chord length of the wing at the spanwise location of the boom. For a comparison with the error at this location, the errors of 1-chord installations on nine other airplanes are included in figure 7.11. The static-pressure tube for all the installations was the same (tube A) and the errors were all measured at about the same lift coefficient. Although the airfoil sections of the various wings differed, the static-pressure errors are all in the same range. Thus the shape of the airfoil section appears to have little effect on the magnitude of the errors at a distance of 1 chord length (or greater) ahead of the wing. The variations of the errors in the low Mach range for each of the six boom lengths on the airplane in figure 7.11 are shown in figure 7.12. In this figure, the orifice locations are given in terms of the local wing chord c. For boom lengths of 1 chord or greater, the error is very nearly constant at Mach numbers above 0.15. As speeds decrease below this Mach number, the errors for all the boom lengths become increasingly negative and reach a value of about -6 percent ${\bf q}_{\bf C}$ at the stall speed. For such large variations of the error over a small Mach range, the problem of applying corrections for the errors would be quite difficult. In order to show the relative decrease of the error with lift coefficient for comparable boom lengths of fuselage-nose and wing-tip installations, the calibration
of the 1.5D boom of the airplane in figure 7.4 is compared in figure 7.13 with that of a 1-chord wing-tip boom on the same airplane. For both of the installations, the static-pressure tube was the same (tube A) and the tests were conducted through the same lift coefficient range. As shown by the two calibrations, the magnitude of the error of the fuselage nose installation is higher than that of the wing-tip installation, but the variation of the error with lift coefficient is considerably greater for the wing-tip installation. Thus, corrections for the errors of the nose-boom installation could be applied more accurately, even though the magnitudes of the errors are higher than those of the wing-tip installation. The variation of the errors of a wing-tip installation in the transonic speed range can be described from the calibration of a 1-chord installation on the X-1 airplane (fig. 7.14, from ref. 3). It is apparent from this calibration that the variation of the error is the same as that for the fuselage-nose installations up to the Mach number at which the discontinuity due to shock passage occurs. At this point, however, the error falls to a large negative value and then, with increasing Mach number, begins to increase to positive values. explanation for this behavior may best be illustrated by diagrams of the shock waves ahead of the airplane (fig. 7.15). At a Mach number of 1.02, the wing bow shock has passed the orifices, and thus has effectively isolated them from the pressure field of the wing. The pressure at the orifices is then influenced by the negative pressures around the rear portion of the fuselage nose, the effect of which extends outward from the surface of the fuselage behind the Mach cone. As the Mach number increases, the cone slants backward, and the orifices come under the influence of the positive pressures around the forward portion of the fuselage nose and behind the fuselage bow shock. At some higher Mach number, the fuselage bow shock traverses the orifices, which are then isolated from the flow fields of both wing and fuselage. At this and higher Mach numbers, the static-pressure error, like that for the fuselage-nose installations, is the error of the tube itself. ## Vertical-Fin Installations The factors that affect the measurement of static pressure ahead of a vertical fin are similar to those for wing-tip installations. Calibrations of a 0.55-chord vertical-fin installation at low and high subsonic speeds are presented in figure 7.16. In the low subsonic range, the error is 1.5 percent $\mathbf{q}_{\mathbf{C}}$, a value that is about 1 percent lower than that for the 0.5-chord wing-tip installation in figure 7.12. In the high subsonic range, the error increases with Mach number in a manner similar to that for the wing-tip installation in figure 7.14. At some higher Mach number above 1.0, the error would be expected to decrease abruptly when the shock wave ahead of the fin passes over the orifices. ## Fuselage-Vent Installations For the purpose of selecting a location for static ports, the fuselage can, in a general way, be likened to a static-pressure tube. When the fuselage is aligned with the flow, the pressure at a vent is determined by its location along the body, and when the fuselage is inclined to the flow, the pressure is dependent on the radial position of the orifice around the body. The pressure at any given point on the body may, of course, be modified by the effects of the wing or other protuberance on the fuselage. Because of the complex nature of the pressure distribution along the fuse-lage, it is difficult to predict, with any degree of certainty, those locations where the static-pressure error is a minimum. It is customary, therefore, to make pressure-distribution tests in a wind tunnel with a detailed replica of the aircraft and to choose from the results a number of vent locations that appear promising. These locations are then calibrated on the full-scale aircraft and the best location is chosen for the operational installation. In the midsubsonic speed range, the errors of the three static-pressuretube installations (fuselage nose, wing tip, and vertical fin) are in all cases positive. In contrast, the errors of fuselage-vent installations can be either positive or negative. This fact is illustrated by the calibrations of the fuselage-vent systems on three transport airplanes (fig. 7.17, from ref. 9). In the high subsonic speed range, the errors of fuselage-vent installations can vary with Mach number in the same general way as the errors of the static-pressure-tube installations. For the installation on the turbojet transport shown in figure 7.18 (ref. 10), for example, the error rises in the Mach range above 0.8 (due to the blocking effect of the wing) in a manner similar to that for each of the static-pressure-tube installations. With another vent installation, for which the vents were located just aft of the fuselage nose (fig. 7.19, from ref. 11), the error exhibits a discontinuity similar to that of the wing-tip installation of figure 7.14. With the fuselage-vent system, however, the discontinuity in the calibration occurs at a Mach number below 1.0 and through a range of Mach numbers (as opposed to the abrupt discontinuity of the wing-tip installation at Mach 1.02). The discontinuity occurs below Mach 1.0 because of passage of local shocks over the vents, and the measured pressures fluctuate because of instability of the shocks. To minimize the errors due to angle of attack, the fuselage vents on modern turbojet transports are installed in pairs at radial positions of $\pm 35^{\rm O}$ to $\pm 45^{\rm O}$ from the bottom of the fuselage. This vent arrangement also reduces to some extent the effects of angle of yaw or sideslip. In unpublished tests of a vent system on a transport aircraft, for example, the error remained within 1 percent ${\bf q}_{\rm C}$ at angles of sideslip up to $\pm 7^{\rm O}$ at a Mach number of 0.3. The static ports on present-day aircraft are in the form of either a single large hole (on the order of 3/8 in. in diameter) or a number of small orifices arranged in a salt-shaker pattern. With the single large port, the measured pressures can be altered by deformations of the edge of the vent. With the salt-shaker pattern, the measured pressures can be affected by deformations of the orifices as discussed in chapter VI. For both types of ports, the measured pressures can also be altered by changes in the contour of the fuselage skin in the vicinity of the port; such changes can result from damage caused by ground handling, repairs to the skin, or aging of the aircraft. The effects of simulated damage to the ports (in the form of protuberances and changes in edge shape) and of skin waviness in the vicinity of the ports were determined in tests reported in reference 12. The results of the tests (fig. 7.20(a)) show that even relatively small deformations at the edge of the vent can produce sizable changes in the measured pressure. For a vent located close to a wave in the fuselage skin, the effects can also be appreciable (fig. 7.20(b)). To avoid the possibility of the kind of skin waviness that can occur with thin skins and to provide a uniform vent configuration, some manufacturers install a thick plate having a machined surface that extends some distance around the vents. Such plates also provide a higher degree of consistency in the calibrations of a given type aircraft (ref. 10). ## Combined Calibrations at Low and High Altitudes As mentioned earlier, the calibrations of installations at low and high altitudes usually are not joined (e.g., fig. 7.16), because the low-altitude calibration is not carried to sufficiently high Mach numbers and the high-altitude calibration is not carried to sufficiently low Mach numbers. In one case, however, the calibration of a wing-tip installation was extended down to the stall at a series of altitudes by means of a high-speed trailing bomb to be described in chapter IX. The calibrations at five altitudes are shown in figure 7.21 (from ref. 13). For the sea-level calibration, the variation of the error with lift coefficient in the low Mach range is the characteristic variation expected of wing-tip installations. Of interest with this set of calibrations, however, is the fact that the error variation at each of the altitudes above sea level is essentially the same. Of further interest is the fact that the calibrations all converge at a Mach number of about 0.75. At Mach numbers beyond this point, where the errors are basically a function of Mach number, the error variation for all the altitudes can be represented by a single curve. In the lower Mach range where the error is primarily a function of lift coefficient (below M=0.75 for this installation), the lift coefficient for a given value of the error should be the same at each altitude. For an error of -0.075, for example, the lift coefficient at M=1.9 at sea level should be the same as that at M=2.3 at 10 000 ft, M=2.7 at 20 000 ft, etc. Computations of the lift coefficients at each altitude show that they are, in fact, approximately the same. The primary dependence of the static-pressure error on lift coefficient in the lower Mach range has led a number of investigators to devise analytical methods for predicting the errors at altitude from the errors measured in a sealevel calibration. In two methods proposed by British investigators (refs. 14 and 15), the errors at altitude are computed from a consideration of the Mach number as well as the lift coefficient at which the sea-level value was determined. Other investigators have extrapolated the sea-level values on the simpler assumption that the errors are dependent solely on lift coefficient. Each of these methods is limited, of course, to the Mach range below that at which shocks form on the body. An example of the application of the extrapolation method based only on the lift
coefficient dependence is shown in figure 7.22 (from ref. 16). In this example, the extrapolation of a sea-level calibration to 25 000 ft is compared with the flight-test calibration at 25 000 ft. The test data from which the sealevel and 25 000-foot calibrations were derived are discussed in chapter IX. As indicated by the agreement between the measured and computed errors at altitude, the simpler computational method would appear to be adequate for the prediction of the errors at altitude. ### Calibration Presentations The errors of the static-pressure installations described in this chapter have in all cases been expressed as fractions of the impact pressure, as $\Delta p/q_c$. As noted in chapter V, however, the static-pressure errors are sometimes presented as fractions of the static pressure, $\Delta p/p$, or the Mach number, $\Delta M/M$. Comparable values of $\Delta p/q_{\rm C}$, $\Delta p/p$, and $\Delta \text{M/M}$ for a hypothetical Δp variation based on calibrations of fuselage nose installations are shown in figure 7.23 for a Mach number range from 0.2 (the stall speed) to 2.0. For this example, the variations in terms of $\Delta p/p$ and $\Delta \text{M/M}$ were derived from the $\Delta p/q_{\rm C}$ variation by using figures 5.4 and 5.5. In the high subsonic range (above M = 0.8), the variation of the errors with Mach number for each of the three calibrations is roughly the same and the peak values of the errors are generally of the same magnitude. In the low subsonic range, however, the variation of the error with lift coefficient, as shown by the decrease in the magnitude of the error from M = 0.4 to 0.2, is greatest for the $\Delta p/q_{\rm C}$ calibration and least for the $\Delta p/p$ calibration. In the supersonic range, where $\Delta p/q_{\rm C}$ is constant, the magnitudes of $\Delta p/p$ and $\Delta M/M$ both increase with increasing Mach number. Even though the position error of an installation in terms of $\Delta p/q_C$ in the supersonic range may be small, the altitude error corresponding to the static-pressure error can be quite large. For a value of $\Delta p/q_C$ of 1 percent, for example, the altitude error at M = 2.0 and an altitude of 40 000 ft is 965 ft. ## Installation-Error Tolerances The errors of static-pressure installations on civil and military aircraft are required to conform to specified tolerances (refs. 17 and 18). For civil transport aircraft, the allowable static-pressure error is stated in terms of an altitude error of 30 ft per 100 knots indicated airspeed, corrected to sea-level conditions. For military aircraft, the static-pressure error is stated in the same terms, except that the allowable altitude error is 25 ft per 100 knots. The altitude errors corresponding to the civil and military requirements for a Mach range up to 1.0 and for altitudes up to 40 000 ft are presented in figure 7.24. # Installation Design Considerations From a consideration of the variations of the errors of the four types of static-pressure installations with lift coefficient and Mach number, it should be evident that a primary consideration in the selection of an installation for a new aircraft is the Mach range through which it is designed to operate. If the operating range extends to supersonic speeds, the fuselage-nose installation is obviously the best choice, because the installation error at supersonic speeds will be that of the tube itself. The error of the tube at supersonic speeds can be determined from wind-tunnel tests, so that the flight calibration of the installation could be limited to the subsonic speed range. The errors in the subsonic range might be relatively large, but the variation of the errors with Mach number and lift coefficient follows a consistent pattern for which corrections for the errors can be applied by means of air data computers to be described in chapter XI. The errors of fuselage-nose installations at subsonic speeds can also be minimized by use of specially designed contoured tubes to be discussed in the next chapter. Aircraft designed for operations in the subsonic speed range ordinarily cruise at Mach numbers below 0.9. For this Mach range, any of the other three installations - wing tip, vertical fin, and fuselage vent - should prove satisfactory. If the shape of the fuselage approximates that of a circular cylinder, satisfactory locations can usually be found in areas where the static-pressure errors will be small and where the measured pressures will not be adversely affected by local shocks in the upper subsonic range. With the wing-tip and vertical-fin installations, very small (and consistent) errors can be realized when the boom length is about 0.5 chord length at the vertical fin or 1 chord length at the wing tip. With all the installations, the pressure sensor should be designed and located to prevent obstruction of the static-pressure orifices or fuselage vents by debris, water ingestion, or ice. The distance of the pressure source from the cockpit should also be considered because long lengths of pressure tubing can introduce pressure lag errors, a subject to be discussed in chapter X. These considerations, together with the many other factors that must be taken into account in the design of pitot-static systems, are discussed in considerable detail in reference 19. #### References - Letko, William: Investigation of the Fuselage Interference on a Pitot-Static Tube Extending Forward From the Nose of the Fuselage. NACA TN 1496, 1947. - 2. O'Bryan, Thomas C.; Danforth, Edward C. B.; and Johnston, J. Ford.: Error in Airspeed Measurement Due to the Static-Pressure Field Ahead of an Airplane at Transonic Speeds. NACA Rep. 1239, 1955. (Supersedes NACA RM's L9C25 by Danforth and Johnston, L50L28 by Danforth and O'Bryan, and L52A17 by O'Bryan.) - 3. Goodman, Harold R.; and Yancey, Roxanah B.: The Static-Pressure Error of Wing and Fuselage Airspeed Installations of the X-l Airplanes in Transonic Flight. NACA RM L9G22, 1949. - 4. Larson, Terry J.; and Webb, Lannie D.: Calibration and Comparisons of Pressure-Type Airspeed-Altitude Systems of the X-15 Airplane From Subsonic to High Supersonic Speeds. NASA TN D-1724, 1963. - 5. Richardson, Norman R.; and Pearson, Albin O.: Wind-Tunnel Calibrations of a Combined Pitot-Static Tube, Vane-Type Flow-Direction Transmitter, and Stagnation-Temperature Element at Mach Numbers From 0.60 to 2.87. NASA TN D-122, 1959. - 6. Larson, Terry J.; Stillwell, Wendell H.; and Armistead, Katherine H.: Static-Pressure Error Calibrations for Nose-Boom Airspeed Installations of 17 Airplanes. NACA RM H57A02, 1957. - 7. Roe, M.: Position Error Calibration of Three Airspeed Systems on the F-86A Airplane Through the Transonic Speed Range and in Maneuvering Flight. Rep. No. NA-51-864, North American Aviation, Inc., Oct. 5, 1951. - 8. Gracey, William; and Scheithauer, Elwood F.: Flight Investigation of the Variation of Static-Pressure Error of a Static-Pressure Tube With Distance Ahead of a Wing and a Fuselage. NACA TN 2311, 1951. - 9. Silsby, Norman S.; and Stickle, Joseph W.: Flight Calibrations of Fuselage Static-Pressure-Vent Installations for Three Types of Transports. NASA TN D-1356, 1962. - 10. Brumby, Ralph E.: The Influence of Aerodynamic Cleanness of Aircraft Static Port Installations on Static Position Error Repeatability. Rep. No. DAC-67485, Douglas Aircraft Co., Nov. 1968. - 11. Thompson, Jim Rogers; Bray, Richard S.; and Cooper, George E.: Flight Calibration of Four Airspeed Systems on a Swept-Wing Airplane at Mach Numbers up to 1.04 by the NACA Radar-Phototheodolite Method. NACA TN 3526, 1955. (Supersedes NACA RM A50H24.) - 12. Somerville, T. V.; and Jefferies, R. L.: Note on Model Tests of Static Vents. Effect of Degrees of Flushness, Waviness of Skin and Proximity of Rivets. B. A. Dep. Note Wind Tunnels No. 531, British R.A.E., Sept. 1941. - 13. Smith, K. W.: The Measurement of Position Error at High Speeds and Altitude by Means of a Trailing Static Head. C. P. No. 160, British A.R.C., 1954. - 14. Weaver, A. K.: The Calibration of Air Speed and Altimeter Systems. Rep. No. AAEE/Res/244, British Min. Supply, Aug. 18, 1949. - 15. Charnley, W. J.; and Fleming, I.: Corrections Applied to Air-Speed Indicator and Altimeter Readings for Position Error and Compressibility Effects. Rep. No. Aero. 2299, British R.A.E., Feb. 1949. - 16. Gracey, William; and Stickle, Joseph W.: Calibrations of Aircraft Static-Pressure Systems by Ground-Camera and Ground-Radar Methods. NASA TN D-2012, 1963. - 17. Static Pressure Systems. Airworthiness Standards: Transport Category Airplanes, FAR Pt. 25, Sec. 1325, FAA, June 1974, pp. 104-105. - 18. Instrument Systems, Pitot Tube and Flush Static Port Operated, Installation of. Mil. Specif. MIL-I-6115A, Dec. 31, 1960. - 19. Design and Installation of Pitot-Static Systems for Transport Aircraft. ARP 920, Soc. Automot. Eng., Oct. 15, 1968. Tube D Tube E Figure 7.1.- Diagrams of static-pressure tubes used on aircraft installations. Figure 7.2.- Static-pressure errors at various distances ahead of three bodies of revolution aligned with the flow at M = 0.21. (Adapted from ref. 1.) D = Maximum effective fuselage diameter Figure 7.3.- Static-pressure errors at three positions ahead of the fuselage nose of an airplane. (Adapted from ref. 8.) Tube A Figure 7.4.- Variation of static-pressure errors of fuselage-nose installations in low subsonic speed range. (Adapted from ref. 8.) Figure 7.5.- Variation of static-pressure error ahead of a model of an airplane fuselage in the transonic speed range. (Adapted from ref. 2.) Figure 7.6.- Variation of static-pressure error of fuselage-nose installation in transonic speed range. (Adapted from ref. 3.) Figure 7.7.- Calibrations of fuselage-nose installations on five airplanes. (Adapted from ref. 6.) Figure 7.8.- Variation of static-pressure error ahead of model with nose inlet in transonic speed range. (Adapted from ref. 7.) Figure 7.9.-
Variation of static-pressure errors in transonic speed range of fuselage-nose installations on airplane with nose inlet. (Adapted from ref. 7.) Figure 7.10.- Calibrations of fuselage-nose installations on five airplanes with nose inlets. (Adapted from ref. 6.) Figure 7.11.- Static-pressure errors at various positions ahead of wing tips of ten airplanes. (Adapted from ref. 8.) Figure 7.12.- Variation of static-pressure errors of wing-tip installations in low subsonic speed range. (Adapted from ref. 8.) Figure 7.13.- Variation of static-pressure errors of wing-tip and fuselage-nose installations of same boom length. (Adapted from ref. 8.) Figure 7.14.- Variation of static-pressure error of wing-tip installation in transonic speed range. (Adapted from ref. 3.) Figure 7.15.- Diagram showing position of shock waves with respect to a wing-tip installation in transonic speed range. Figure 7.16.- Variation of static-pressure error of vertical-fin installation in low and high subsonic speed range. Figure 7.17.- Variation of static-pressure errors of fuselage-vent installations of three airplanes. (Adapted from ref. 9.) Mach number . 2 .6 -.04 Figure 7.18.- Variation of static-pressure error of a fuselage-vent installation in high subsonic speed range. (Adapted from ref. 10.) Figure 7.19.- Variation of static-pressure error of a fuselage-vent installation in transonic speed range. (Adapted from ref. 11.) (a) Effect of protuberances and indentations. (b) Effect of waviness of skin in vicinity of vent. Figure 7.20.- Effect of protuberances and skin waviness on static pressures measured by a fuselage vent. (Adapted from ref. 12.) Figure 7.21.- Variation of static-pressure error of a wing-tip installation at five altitudes. (Adapted from ref. 13.) Figure 7.22.- Comparison of calibration of a static-pressure installation at altitude with extrapolation of sea-level calibration to that altitude. (Adapted from ref. 16.) Figure 7.23.- Hypothetical calibration of a nose-boom installation expressed in terms of $\Delta p/q_{_{\rm C}},~\Delta p/p$, and $\Delta M/M$. Figure 7.24.- Altitude errors corresponding to allowable static-pressure errors of installations on civil and military aircraft. (Adapted from refs. 17 and 18.) | en e | | | | | |--|---|---|--|--| | | | | | | | | | | | | | · | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | | | • | | | #### CHAPTER VIII ### AERODYNAMIC COMPENSATION OF POSITION ERROR For research-type static-pressure installations, corrections for the position errors are normally applied during the reduction of the test data after the flight. For service-type installations, corrections for the position errors are applied during the flight by means of correction cards or automatic computing systems (chapter II). With some service installations, however, the position errors are effectively canceled at the static-pressure source, so that the need for manual or automatic corrections is eliminated. This cancellation or reduction of the position errors at the static-pressure source is accomplished by applying the concept of aerodynamic compensation to be discussed in this chapter. With fuselage-vent installations, the position errors of the original vent configuration are compensated by installing small ramps or projecting plates in the vicinity of the vents (ref. 1). These devices are designed to alter the local flow in such a way that the local static pressure at the vents is changed to a value more nearly equal to the static pressure of the free stream. With static-pressure-tube installations, the conventional tube is replaced with a specially contoured tube, called a compensated tube, that is designed to nullify the position errors of the conventional tube installation. The shape of the compensated tube and the location of the orifices along the tube are so designed that the static-pressure errors of the tube are equal and opposite to the position errors of the conventional tube installation. The concept of compensation of position error is illustrated in figure 8.1 by hypothetical calibrations of a fuselage-nose installation. The curve labeled "position error" represents the calibration of a conventional tube at a given position ahead of the fuselage nose, the curve labeled "compensated tube error" represents the variation of the static-pressure error of the isolated compensated tube, and the dashed line along the zero axis represents the calibration of the compensated tube when installed at the same position as the conventional tube. In an investigation of compensated tubes designed to reduce the position errors of fuselage-nose installations in the subsonic speed range (ref. 2), the negative tube errors required to balance the positive position errors were created with a tube having a collar with a conical afterbody and orifices at the base of the afterbody. In a more extensive investigation (ref. 3), the negative tube errors were developed with two types of tubes having ogival nose shapes. In one type, the orifices were located along the ogive near the nose, while in the other type they were located on a contoured contraction of the tube some distance behind the nose. With both types of tubes, the shape of the tube and the location of the orifices along the tube can be designed to compensate the position errors at a given position ahead of a fuselage having a given nose shape. In the investigation of reference 3, three compensated tubes (a long ogival tube, a short ogival tube, and a contoured contraction tube (fig. 8.2)) were tested on a body of revolution having an ogival nose shape. The calibration of the long ogival tube with its orifices 0.95 of the body diameter (D) ahead of the body is shown in figure 8.3. The data for the curve labeled "position error" were obtained with a conventional (i.e., cylindrical) tube with orifices 10 tube diameters aft of the nose of the tube. The data obtained with the compensated tube (circular test points) show the position error to be effectively compensated throughout the subsonic speed range. To determine how well the larger position errors at a shorter distance ahead of the body could be compensated, tests were conducted with the short ogival tube with the orifices at a distance of 0.27D ahead of the body. As indicated by the data from these tests (fig. 8.4), the position error for this location was also compensated throughout the subsonic speed range. In tests of the contoured contraction tube with orifices at a distance ahead of the body, comparable with that of the tube with the long ogival nose (fig. 8.5), the position error was compensated to the same extent throughout the subsonic speed range. Since the tube errors of the compensated tubes are negative in the subsonic speed range, the position errors of the nose-boom installations in figures 8.3, 8.4, and 8.5 would be expected to become negative at the low supersonic speed at which the body bow shock traverses the orifices. In tests of the installations of figures 8.3 and 8.5 at low supersonic speeds, the position errors at a Mach number just beyond 1 were found to be -3 percent ${\bf q}_{\rm C}$ for the installation in figure 8.3 and -4 percent ${\bf q}_{\rm C}$ for the installation of figure 8.5. However, for a tube having a shape similar to that of the long ogival tube but with orifices nearer the nose (fig. 8.6 from ref. 4), the error is only -0.5 percent ${\bf q}_{\rm C}$ at the Mach number following shock passage (M \approx 1.01). At M = 1.2 the error is still small, but at M = 1.65 the error is about 1 percent ${\bf q}_{\rm C}$, a sizable error in terms of altitude error (550 ft, for example, at 40 000 ft). In other tests in reference 3, the nose of the long ogival tube was cut to form a pitot opening having a conical entry of 82° . Cutting the tip of the tube was found to change the error compensation by less than 0.3 percent q_{C} at Mach numbers up to 1.2. In further tests of the long ogival tube, orifices were located at a radial station of $\pm 37.5^{\circ}$ to reduce the errors at positive angles of attack. The results of the tests of this tube (fig. 8.7) show the error to be essentially zero at angles of attack up to 15° at a Mach number of 0.6. Note that the errors on this figure are incremental errors from the error of the tube at an angle of attack of 0°. Compensated static-pressure tubes similar to those tested in the investigation of reference 3 have been used on the fuselage-nose installations of at least three airplanes (refs. 4, 5, and 6). The calibration of an installation on an F-104 fighter is shown in figure 8.8(a), on a B-70 bomber in figure 8.8(b), and on a British Harrier VTOL airplane in figure 8.8(c). For each of the installations, the static-pressure errors with the compensated tubes are within about l percent ${\bf q}_{\rm C}$ throughout the subsonic speed range. The tubes used on these installations were pitot-static tubes with pitot openings similar to that of the tube in figure 8.6. Although compensated tubes have been designed to minimize the errors of fuselage-nose installations at Mach numbers as high as 1.2, the errors of these tubes would be expected to be larger than those of conventional tubes at higher supersonic speeds. As a means of achieving small errors at both subsonic and supersonic speeds, it was suggested in reference 3 that a tube could be designed that would combine the features of the compensated tube for subsonic operation and the conventional tube for supersonic operations. With this type tube, one set of orifices would be located on the ogival nose of a cylindrical tube and a second set of orifices at least 10 tube diameters aft of the nose. A tube of this type would, of course, require an automatic pressure switch which would be activated at the speed at which the shock passes over the rear set of orifices. ### References - 1. Howard, J. R.: Wind Tunnel Tests of Alternate Static
Source Protuberances for the F-86A Airplane. Rep. No. NA-49-449, North American Aviation, Inc., June 16, 1949. - 2. Smetana, Frederick O.; Stuart, Jay Wm.; and Wilber, Paul C.: Investigation of Free-Stream Pressure and Stagnation Pressure Measurement From Transonic and Supersonic Aircraft. Interim Phase Report III Development and Flight Test of Aerodynamic Static Pressure Compensation for a Service Type Aircraft. WADC Tech. Rep. 55-238, U.S. Air Force, July 1957. - 3. Ritchie, Virgil S.: Several Methods for Aerodynamic Reduction of Static-Pressure Sensing Errors for Aircraft at Subsonic, Near-Sonic, and Low Supersonic Speeds. NASA TR R-18, 1959. - 4. Carrillo, J. G.: Flight Calibration of the F-104 Compensating Airspeed Head. Rep. No. LR-16959, Lockheed California Co., June 18, 1963. - 5. Webb, Lannie D.; and Washington, Harold P.: Flight Calibration of Compensated and Uncompensated Pitot-Static Airspeed Probes and Application of the Probes to Supersonic Cruise Vehicles. NASA TN D-6827, 1972. - 6. Du Feu, A. N.: Altimeters The Way Ahead? Proceedings of the 8th International Aerospace Instrumentation Symposium (Cranfield, England), Mar. 1975. Figure 8.1.- Illustration of concept of aerodynamic compensation of position error. (a) Long ogival tube. (b) Short ogival tube. (c) Contoured contraction tube. Figure 8.2.- Diagrams of compensated static-pressure tubes. (Adapted from ref. 3.) Figure 8.3.- Calibration of long ogival tube with orifices 0.95D ahead of body. (Adapted from ref. 3.) Figure 8.4.- Calibration of short ogival tube with orifices 0.27D ahead of body. (Adapted from ref. 3.) Figure 8.5.- Calibration of contoured contraction tube with orifices 0.79D ahead of body. (Adapted from ref. 3.) Figure 8.6.- Calibration of service-type compensated tube at supersonic speeds. (Adapted from ref. 4.) Figure 8.7.- Variation of errors with angle of attack of compensated tubes with orifices encircling the tube and at a radial station of $\pm 37.5^{\circ}$. M = 0.6. Errors on this figure are incremental errors from the error at zero angle of attack. (Adapted from ref. 3.) (a) F-104 airplane. (Adapted from ref. 4.) (b) B-70 airplane. (Adapted from ref. 5.) (c) Harrier airplane. (Adapted from ref. 6.) Figure 8.8.- Calibrations of compensated static-pressure-tube installations on three airplanes. | 15 | · | | | |----|---|--|--| #### CHAPTER IX # FLIGHT CALIBRATION METHODS The accuracy with which altitude, airspeed, and Mach number are determined from pitot-static measurements depends for the most part on the accuracy with which the position error of the static-pressure installation is established by a flight calibration of the installation. The accuracy of airspeed and Mach number also depends on the accuracy of the total-pressure measurement, but as noted in chapter IV, the total-pressure error at low angles of attack is generally negligible. For flight tests in which accurate measurements of total pressure at high angles of attack are required, the total-pressure installation can be calibrated against a test installation (swiveling or shielded total-pressure tube) which is insensitive to angle of attack. Since the difference between the pressures of the two installations can be measured with a sensitive differential-pressure instrument, the errors of the aircraft total-pressure installation can be determined with a high degree of accuracy. In contrast to the ease with which the total-pressure error can be determined, the position error of the static-pressure installation can be quite difficult to determine. This difficulty is reflected in the wide variety of calibration methods that have been devised for the determination of this error. These methods are first discussed in terms of the measuring principles that form the basis of the calibration techniques. Application of each of the methods is then described in terms of accuracies, operational limitations, and instrumentation requirements. In a final section, the calibration of an airplane installation by two of the methods is described in some detail. # Calibration Methods for Deriving Position Error As an introduction to the description of the various methods for determining the position error Δp , the calibration techniques are classified in terms of four parameters from which position error is derived: (1) free-stream static pressure p, (2) free-air temperature T, (3) true airspeed V, and (4) Mach number M. A listing of the calibration methods in accordance with this classification is as follows: - 1. Free-stream static-pressure methods (Δp derived from measurements of p' and p) - (a) p measured at reference pressure source Trailing-bomb method Trailing-cone method Pacer-aircraft method - (b) p derived from height of aircraft and measured pressure gradient Tower method Tracking-radar method Radar-altimeter method - (c) p at height of aircraft calculated from p and T at ground Ground-camera method - (d) p derived from change in height of airplane from initial height Tracking-radar/pressure-altimeter method Accelerometer method - 2. Temperature method (Δp derived from T' and pressure-temperature survey) Recording-thermometer method 3. True-airspeed methods (Δp derived from values of V) Trailing-anemometer method Speed-course method 4. Mach number methods (Δp derived from values of M' and M) Sonic-speed method Total-temperature method Note that although the names given to most of the methods are based on specific measuring equipment, the measuring principles of some of the methods can be applied with other types of equipment. For the free-stream static-pressure methods, Δp is determined as the difference between the static pressure p' measured by the aircraft installation and the free-stream static pressure p at the flight level of the aircraft. The four basic techniques for determining the value of p at the flight level are illustrated by the diagrams in figure 9.1. With the first of these techniques, p is measured from a reference pressure source moving with the aircraft, but located where the effect of the pressure field of the aircraft is negligible. As shown in figure 9.1(a), the reference pressure source is either (1) a pressure sensor trailed below the aircraft (trailing bomb) or behind it (trailing cone) or (2) a calibrated static-pressure installation on another aircraft (pacer aircraft) flying along-side the test aircraft. In the second technique (fig. 9.1(b)), the value of p at the flight level Z is obtained from an interpolation of the measured pressure gradient through the test altitude range. For the tower method, the pressure gradient is measured through a small height range near the ground, while for the tracking-radar and radar-altimeter methods, the gradient is determined through a wide height range at high altitudes. In the third technique (fig. 9.1(c)), p at the height Z of the aircraft is calculated from measurements of p and T at the ground and an assumed standard temperature gradient up to the flight level. To minimize the errors that might be introduced by the assumption of the standard temperature gradient, the height of the aircraft should be less than about 500 ft. With the fourth technique (fig. 9.1(d)), p at the height Z of the aircraft is derived from (1) measurements of the change in height from an initial height, (2) measurements of p' and T' at the initial height and at an airspeed for which Δp is known, and (3) either an assumption of a standard temperature gradient or an integration of equation (3.4). For the tracking-radar/pressure-altimeter method, the height increment is determined from a tracking radar, whereas with the accelerometer method, the height increment is derived from measurements of the aircraft accelerations and attitude. In the temperature method (recording thermometer), values of Δp are determined from measurements of p' and values of p derived from (1) measurements of p' and (2) a pressure-temperature survey of the test altitude range. For the true-airspeed methods, values of Δp are derived from measured values of V, p', q', and T'. The values of V are determined by two techniques: from measurements with a wind-driven anemometer suspended below the aircraft or by timed runs over a prescribed ground course. With the Mach number methods, Δp is derived from values of ΔM , which are determined from measurements of M' and M. In the sonic-speed method, the values of M are derived from measurements of V and the speed of sound a, while in the total-temperature method, the values of M are determined from measurements of T' and T (derived from a temperature-height survey of the test altitude range). Of the various methods outlined in the foregoing paragraphs, some can be applied only at low altitudes, while others can be applied only at high altitudes. For the low-altitude calibration methods, the maximum speed at which the tests can be conducted is restricted by the speed capability of the aircraft at the test altitude or by some limitation in the calibration method. For the high-altitude methods, the speed range of the calibration is determined by the minimum and maximum Mach numbers at which the aircraft can be flown at the test altitude. Thus, for some airplanes, a complete calibration throughout the Mach range may require tests at a number of altitudes using more than one calibration method. With some of the methods, the tests must be conducted in steady, level flight, whereas with others, the tests can be conducted in dives and accelerated maneuvers as well as in level flight. In the first case, indicating instruments can be used for the measurement of the flight quantities, whereas in the second, recording instruments must be employed. Recording instruments provide measurements
of the flight quantities against a time scale and, in addition, generally provide greater accuracy than indicating instruments. In the following sections, the operational limitations (speed and altitude), instrumentations requirements, and accuracy (or precision) of each method are discussed in detail. As an aid in comparing the various calibration techniques, the characteristics of each method are summarized in table 9.1. From an examination of this table, it is evident that the selection of a method for the calibration of an installation on a particular airplane requires consideration of a variety of factors, such as (1) the desired accuracy in the determination of Δp , (2) the speed and altitude range for which calibration data are required, and (3) the available instrumentation. In general, greater accuracy, and thus more complex instrumentation, is required for the calibrations of flight research installations than for the installations on service aircraft. ## Trailing-Bomb Method With the trailing-bomb method, the static pressure measured by the aircraft installation is compared directly with the static pressure measured by orifices on a bomb-shaped body suspended on a long length of pressure tubing below the aircraft (refs. 1 and 2). With one type of bomb (fig. 9.2), the orifices are on the body of the bomb, while with another type (fig. 9.3), they are on a static-pressure tube ahead of the bomb. The type of bomb shown in figure 9.2 is a weighted body (15 lb), whereas the type shown in figure 9.3 has small wings set at a negative angle of incidence to keep the bomb below the aircraft. Both types are equipped with vanes on the afterbody to keep the orifices aligned with the airflow. Since a trailing bomb, like static-pressure tube, may have static-pressure error, this error should be determined (by calibration in a wind tunnel) so that corrections for the error can be applied. For both of the bombs in figures 9.2 and 9.3, the static-pressure error is 0.5 percent $\mathbf{q}_{\mathbf{C}}$. The length of tubing required to place the bomb in a region where the local static pressure approximates free-stream static pressure was shown in reference 1 to be about 2 times the wing span of the aircraft (fig. 9.1(a)). Since the bomb is below the aircraft, the static pressure at the bomb is higher than the static pressure at the flight level of the aircraft. However, as the decrease in pressure with height inside the suspension tubing is the same as that of the outside air, the pressure measured by the instrument in the aircraft is the pressure at the flight level. The accuracy with which Δp is determined with the trailing-bomb method depends on (1) the accuracy of the measurement of the difference between p' and the local pressure p_l at the bomb and (2) how closely the value of p_l approximates p. Since Δp is very small compared with p' and p_l , the difference between the two pressures is measured most precisely with a sensitive differential-pressure indicator or recorder. With trailing bombs, calibrations can be conducted through a wide range of altitudes and through a speed range from the stall speed to the maximum speed at which the bomb can be towed. This limiting speed is determined by the speed at which the suspension tubing develops unstable oscillations (ref. 3). For the bomb in figure 9.2, instability of the suspension tubing is encountered at a Mach number of about 0.4. The bomb in figure 9.3, on the other hand, has been towed successfully at Mach numbers as high as 0.85 (at an altitude of 38 000 ft). The accuracy of the trailing-bomb method with the equipment used in the tests of reference 4 varied from about ± 2.0 percent q_C at 60 knots (M = 0.1) to about ± 0.2 percent q_C at 220 knots (M = 0.35). ## Trailing-Cone Method With the trailing-cone method (ref. 5), the static pressure measured by the aircraft installation is compared with the pressure measured by a set of orifices near the end of a long length of pressure tubing trailed behind the aircraft (figs. 9.1(a) and 9.4). A lightweight drag cone is attached to the end of the tube to keep the tubing taut. The accuracy with which free-stream static pressure is measured with a trailing-cone system depends on the configuration of the cone system (size and shape of the cone and position of the orifices ahead of the cone (ref. 6)), on the distance of the cone behind the aircraft, and on the type of the aircraft (size, configuration, and propulsion system). Because of the uncertainties associated with each of these variables, trailing-cone systems have not been considered suitable for the basic calibration of an aircraft static-pressure installation. However, since the difference between the pressures of the cone system and the aircraft installation can be measured with good precision (i.e., repeatability), a calibrated cone system is useful as a secondary standard for production line testing. In practice, a cone system at a given trail length behind a particular airplane is calibrated by methods such as the tower or tracking-radar methods for which values of the free-stream static pressure are determined with a higher degree of certainty. The calibrated cone system is then used for the periodic recalibration of the installation on that airplane or for the original calibrations on airplanes of the same model (ref. 7). With trailing-cone systems, calibrations can be conducted through a wide range of altitude and from relatively low speeds (defined by the minimum speed at which the pressure tubing trails straight back) to speeds as high as M = 1.5 (ref. 8). In unpublished tests of a variety of cone systems, conducted by NASA Langley Research Center, the precision of the measurement of Δp was found to be ± 0.2 percent q_C at M = 0.7 to 0.88. ### Pacer-Aircraft Method With the pacer-aircraft method, a measure of the free-stream static pressure is derived from the calibrated static-pressure installation of a pacer aircraft flying alongside the test aircraft being calibrated (refs. 9 and 10). The difference ΔH between the altimeter indication H' in the test aircraft and the corrected altimeter indication H in the pacer aircraft is found from equation (5.8): $$\Delta H = H' - H \tag{5.8}$$ where ΔH is the altitude error. The pressures p' and p corresponding to the values of H' and H can be found in table A2 of appendix A. The difference between p' and p is then the position error Δp for the test aircraft. The value of Δp can also be found from the value of ΔH and equation (3.6). An example of the determination of Δp by the two procedures is given in part II of appendix B. Since the value of Δp (a small quantity) is determined as the difference between two large quantities (p' and p), the altimeters in the two aircraft should be precision instruments which, to minimize hysteresis errors, should be calibrated only to the altitudes at which the tests are to be conducted. The precision with which Δp is determined, however, depends not only on the accuracy of the two altimeters, but also on the degree to which the two aircraft maintain formation flight. At very low speeds, the precision of the measurements generally deteriorates because of an inability to maintain formation flight. At high speeds, on the other hand, where speed and position control are more precise, the value of Δp can be determined with good precision (±0.2 percent M for M up to 1.0 and altitudes up to 35 000 ft (ref. 10)). The corresponding precision in terms of $\Delta p/q_c$ is about ±0.7 percent at M = 0.5 and about ±0.2 percent at M = 1.0. For best results with the pacer-aircraft method, the speed capability of the pacer aircraft should be very nearly that of the test aircraft. The speed range of the calibration tests is limited to speeds well above the stall of either aircraft and to the maximum level-flight speed of either aircraft. In a variation of the pacer-aircraft method, a reference aircraft is flown at constant altitude at a low airspeed for which the position error is known (refs. 11 and 12). The test aircraft is then flown past the reference aircraft in a series of level-flight, constant-speed runs. The indications of the altimeters in the two aircraft are noted at the instant the test aircraft flies past, and the position error of the test aircraft is determined from the difference between the indications of the two altimeters. The reference-aircraft method differs from the pacer-aircraft method in that the installation in the reference aircraft requires a calibration at only one airspeed, and the speed range of the calibration of the test aircraft is not limited to the speed capability of the reference aircraft. The accuracy of this method is generally lower than that of the paceraircraft method because of the difficulty in synchronizing the altimeter indications in the two aircraft and because the height of the test aircraft at the time of the fly-by may differ from that of the reference aircraft. #### Tower Method For calibrations with the tower method, the aircraft is flown at constant speed and constant altitude past the top of a tall tower (ref. 11). For each test run, the position error Δp is determined as the difference between (1) the static pressure p' as measured by the cockpit altimeter at the instant the aircraft passes the tower and (2) the free-stream static pressure p at the height of the aircraft determined by interpolation of measured values of p at a number of points along the tower height (fig. 9.1(b)). A movie camera mounted with the axis of the lens aligned with the horizontal is often used to determine the airplane height. With this technique, the height increment ΔZ of the airplane with respect to the lens axis is computed from the equation: $$\Delta Z = \frac{l}{l!} \Delta z \tag{9.1}$$ where l is the length of
the aircraft, l' is the length of its image, and Δz is the displacement of the image from the center line of the film frame. The aircraft height Z is then determined from the elevation of the camera and the height increment ΔZ . It may be noted that precise measures of Δz are more important in determining Δp in terms of $\Delta p/q_{C}$ than in terms of $\Delta p/p$. For an error of 1 ft in Δz , for example, the error in $\Delta p/p$ would be only 0.004 percent, whereas the error in $\Delta p/q_{C}$ would be 1 percent at 50 knots, 0.2 percent at 100 knots, and 0.1 percent at 150 knots. The reference point on the aircraft for the Δz measurements should be the vertical position of the altimeter in the aircraft. For accurate measurements of p', the cockpit altimeter should be a precision instrument, and to minimize hysteresis errors, the laboratory calibration of the instrument should be limited to an altitude range only slightly greater than the tower height. Since the altimeter is used to measure pressure rather than altitude, it is convenient to calibrate the instrument as a pressure gage, that is, in terms of pressure versus altimeter indication. The accuracy of the tower method depends primarily on the accuracy of the pressure measurements p' and p, since the height measurements (aircraft and pressure gradient) can be measured with good accuracy. To retain the advantage of the limited-range calibration of the altimeter in the laboratory, the height of the aircraft during the calibration tests should at all times be restricted to the same limited altitude range. The speed range for calibrations by the tower method is limited to air-speeds well above the stall speed and up to the maximum level-flight speed of the aircraft at the tower height. In tests (unpublished) of the tower method at the NASA Langley Research Center, the accuracy of the measurement of Δp was found to range from ± 1.0 percent q_C at 90 knots (M = 0.15) to ± 0.2 percent q_C at 190 knots (M = 0.3). ## Tracking-Radar Method With this high-altitude calibration method, the position error Δp is determined as the difference between the measured static pressure p' and the free-stream static pressure p which is determined from measurements of the height of the aircraft by the tracking radar and from a pressure-height survey of the test altitude range (ref. 13). The pressure-height survey is conducted prior to the calibration tests in one of two ways: (1) by tracking a radiosonde (transmitting pressure measurements) as it ascends through the test altitude range or (2) tracking the aircraft through the test altitude range while flying at a low indicated airspeed for which the position error Δp is known from a calibration by a low-altitude method (fig. 9.1(b)). With the aircraft tracking procedure, the value of p at each height is determined from equation (2.2) expressed here as $$p = p' - \Delta p \tag{9.2}$$ where p' is the static pressure measured by the aircraft installation and Δp is the position error of the installation at the airspeed of the ascent. For the higher speeds of the calibration test runs, the height of the aircraft is measured continuously by the tracking radar. The position error Δp at the test airspeed is then determined from equation (2.2) here restated as $$\Delta p = p' - p \tag{2.2}$$ where p' is the pressure of the aircraft installation during the test run and p is the free-stream static pressure at the height of the aircraft determined from the pressure-height survey. Because the pressure-height relation may change during the period of the tests, it is advisable to repeat the survey at the conclusion of the test runs. With the tracking-radar method, calibrations can be conducted in dives as well as in level flight. The accuracy of the method, as determined by calibration tests to be described later in the chapter, is about ± 0.2 percent q_C at M = 0.5 and ± 0.1 percent q_C at M = 0.88. It may be noted that this calibration method has also been used with other types of ground-tracking equipment such as the radar-phototheodolite of references 14 and 15 and the phototheodolite of reference 16. # Radar-Altimeter Method With this high-altitude method, the position error of the aircraft installation is derived from the height of the aircraft measured with an onboard radar altimeter and from a pressure-height survey of the test altitude range (ref. 17). The pressure-height survey is conducted by flying the aircraft at a low, constant airspeed for which the position error is known from a calibration by one of the low-altitude methods. Because of the height-measuring characteristics of the radar altimeter, the calibration tests are restricted to level-flight runs and to test areas over a level ground reference plane, such as a large body of water. The accuracy of the method at a Mach number of 0.8 and an altitude of 30 000 ft is about ± 1 percent $q_{\rm C}$ (ref. 17). #### Ground-Camera Method For calibrations with this method, the aircraft is flown in a series of constant-speed, level-flight runs over a camera located on the ground (ref. 13). For each test run, the position error Δp is determined as the difference between (1) the static pressure p' measured by the aircraft installation when the aircraft is directly above the camera and (2) the free-stream static pressure p computed from the measured height of the aircraft, measured values of p and p at the camera station, and the assumption of a standard temperature gradient. The height of the aircraft above the camera is calculated on the basis of the dimensions of the aircraft and its film image and the focal length of the camera lens (fig. 9.1(c)). The calibration tests with the camera method are limited to speeds well above the stall and up to the maximum level-flight airspeed of the aircraft at the height of the tests. Since the application of the method requires the assumption of a standard temperature gradient, accurate measurements of the free-stream static pressure can be realized at heights no greater than about 500 ft. The accuracy of the method, as determined in calibration tests to be described later in the chapter, is about ± 0.2 percent q_C at 200 knots (M = 0.3) and ± 0.1 percent q_C at 320 knots (M = 0.5). In another method for determining the height of an aircraft with a camera, a movie camera is installed in the aircraft with the camera lens facing downward (ref. 18). The camera photographs reference marks on a runway as the aircraft flies at a constant speed and altitude along the runway. Its height above the runway is then determined from the geometry of the camera lens system as in the ground-camera method. With another calibration technique for measuring aircraft heights near the ground, the height is determined from measurements of elevation angles with a theodolite (ref. 19). With two theodolites located an equal distance on each side of a ground course, the height of an aircraft flying at constant altitude along the ground course is determined from the intersection of the two lines of sight to the aircraft. The theodolite used in the tests of reference 14 was a simple angle-measuring device called a sighting stand. # Tracking-Radar/Pressure-Altimeter Method For calibration tests with this high-altitude method, the aircraft is first stabilized at a selected height and at a low airspeed for which the position error Δp is known from a calibration by one of the low-altitude methods. The aircraft is then accelerated at a constant altitude (constant p') indicated by the cockpit altimeter (ref. 10). During the calibration test run, the variation of Δp with airspeed causes the pilot to vary the height of the aircraft in order to maintain constant p'. At any given airspeed, therefore, the change in height corresponds to a change in free-stream static pressure from which the position error Δp can be determined from the following equation: $$\Delta p = p_1' - (p_1 - \delta p)$$ (9.3) where p_1^{\prime} is the initial (and constant) value of the static pressure measured by aircraft installation, p_1 is the free-stream static pressure at the initial height, and δp is the change in free-stream static pressure corresponding to the change in height (fig. 9.1(d)). The initial height Z_1 of the aircraft and the change in height ΔZ from the initial height are determined from continuous measurements with a tracking radar. The free-stream values of p, q_c , and T at the initial height are determined from the initial indicated values p', q_c , and T' corrected for the known position error Δp_1 at the initial airspeed. The pressure increment δp corresponding to a height increment ΔZ is computed from equation (3.3), expressed here as $$\delta p = -g \rho_1 \Delta z \tag{9.4}$$ where ρ_1 is the density at the initial height and is calculated from equation (3.1), expressed here as $$\rho_1 = \rho_0 \, \frac{p_1^T o}{p_0^T 1} \tag{9.5}$$ where P_O and T_O are the standard sea-level values. Since $p_1' = p_1 + \Delta p_1$, p_1' can be substituted in equation (9.3) to yield $$\Delta p = \Delta p_1 + \delta p \tag{9.6}$$ Since the values of $\,p\,$ during the calibration test run are based on a constant value of $\,\rho\,$ determined at the initial height, the accuracy in the determination of $\,\delta p\,$ varies with $\,\Delta z\,.$ Whenever $\,\Delta z\,$ is too great for accurate determinations of $\,\delta p\,$ from a single initial height, successive sets of initial conditions can be established at various points during the flight. The accuracy of this method, as determined in the tests reported in reference 10, varies from about $\pm 0.01 M$ at M=0.5 to about $\pm 0.02 M$ at M=3.0. The corresponding errors in terms of $\Delta p/q_C$ are ± 3.5 percent and
± 0.1 percent. ## Accelerometer Method In the accelerometer method (ref. 20), the value of Δp is determined from the measured static pressure p' and the free-stream static pressure p calculated from the value of p at an initial reference height. The value of p at the reference height is established by flying the aircraft at a constant, low airspeed for which the position error Δp is known from a calibration by a low-altitude method. The change in p from its initial value is derived from the change in height from the initial height which is calculated from measurements of the accelerations and pitch attitude of the aircraft (fig. 9.1(d)). The application of the method is restricted to vertical-plane maneuvers from the initial stabilized condition. During the maneuver, the variation of p with height Z is obtained from equation (3.4): $$dp = -\frac{p}{RT} dZ \tag{3.4}$$ The value of T can be derived approximately from the measured temperature T' and equation (3.28). Since the value of M in this equation is not known, the value of T at any given airspeed in the test run can be stated in terms of M' as follows: $$T \stackrel{\cong}{=} \frac{T'}{1 + 0.2KM'^2} \tag{9.7}$$ where K is the recovery factor of the temperature probe and γ in equation (3.28) is 1.4. Since the use of M' in equation (3.28) results in a small error in the value of p in equation (3.4); two or more approximations may be necessary. The integration of equation (3.4) results in the following equation: $$\left(\frac{p}{p_1}\right)^n = 1 - n \int_{Z_1}^{Z} \left(\frac{p}{p_1}\right)^n \frac{dZ}{RT}$$ (9.8) where the subscript 1 refers to initial conditions. Substitution of p' for p in the right side of equation (9.8) and further substitution of equation (9.7) for T results in $$\left(\frac{p}{p_1}\right)^n = 1 - n \int_{Z_1}^{Z} \left(\frac{p'}{p_1}\right) \left(\frac{1 + 0.2KM'^2}{RT'}\right) dZ$$ (9.9) The values of n may be selected so that only one approximation is required for the determination of p (appendix A of ref. 20). For a value of K near unity and for subsonic and low supersonic speeds, a value of n of $\frac{\gamma-1}{\gamma}$ or 0.286 gives satisfactory results. The change in height dZ in equation (9.9) may be determined from the vertical velocity computed from (1) values of p' and T' for an initial condition where Δp is known and (2) the vertical acceleration computed from measurements of normal and longitudinal accelerations and pitch attitude angles: $$dZ = \left(v_1 + \int_{t_1}^{t} a_v dt\right) dt \tag{9.10}$$ where t is time and the initial vertical velocity v_1 is $$v_1 = \frac{-\overline{R}T_1}{p_1} \left(\frac{dp}{dt}\right)_1 \tag{9.11}$$ and $$a_{y} = a_{z} \cos \theta - a_{x} \sin \theta - g \tag{9.12}$$ where a_V is the vertical acceleration, a_Z is the normal acceleration, a_X is the longitudinal acceleration, and θ is the pitch attitude angle of the aircraft For any given instant during the calibration test run, the difference between the value of p determined from equation (9.9) and the measured value of p' is the position error Δp of the aircraft installation at that instant. The application of the accelerometer method requires the continuous measurement of p', q_c , T', a_z , a_x , and θ against a time scale. The pressures, temperatures, and accelerations should be measured with research-type recording instruments. For the measurement of T', the recovery factor K of the temperature probe should be very nearly 1.0. The attitude angle θ can be measured with a horizon camera, a Sun camera, or an attitude gyroscope. A detailed discussion of the problems associated with the use of each of the three attitude-angle measuring instruments is given in reference 20. The accuracy of the method depends primarily on the accuracy in the determination of θ and the accuracy of the acceleration measurements. In a flight evaluation of the accuracy of the method (ref. 20), the position error Δp of an aircraft installation was determined with an accuracy of about ± 0.5 percent $q_{\rm C}$ in shallow dives from an altitude of 31 000 ft at Mach numbers from 0.6 to 0.8. With the restriction that maneuvers during the test runs be conducted in a vertical plane, calibration data can be obtained with the aircraft in level flight, climbs, dives, push-downs, pull-outs, or any combination of these maneuvers. The test maneuver should cover as short a time interval as practical (less than 2 minutes) in order to avoid an accumulation of errors in the measurements. ## Recording-Thermometer Method With this high-altitude method, values of Δp are determined from values of p' measured by the aircraft installation and values of the free-stream static pressure p derived from a pressure-temperature survey of the test altitude range (ref. 21). The p/T relation is determined by flying the aircraft at a low airspeed for which the value of Δp of the static-pressure installation is known from a calibration by a low-altitude calibration method. The value of T at the survey airspeed is determined from measurements of T' and equation (3.28) with $\gamma = 1.4$: $$T = \frac{T'}{1 + 0.2KM^2}$$ (9.13) where K is the recovery factor of the temperature probe and M is derived from values of q_C^{\dagger} and p' (both corrected for the value of Δp at the survey speed). As noted in chapter III, the use of equation (3.28) requires that K be near unity. For the calibration test runs, continuous recordings are made of p', q_c , and T'. Then, at any given instant during the test run, the value of p can be obtained as a function of T from the measured value of T', equation (9.13), and equations (3.23) and (3.24), expressed here (with $\gamma = 1.4$) as $$\frac{p_{t}}{p} = (1 + 0.2M^{2})^{3.5}$$ and $$\frac{p_{t}}{p} = 1.2M^{2} \left(\frac{5.76M^{2}}{5.6M^{2} - 0.8}\right)^{2.5}$$ $$(M \le 1)$$ $$(9.14)$$ where p_t is derived from measured values of p' and q_c' . Combining equations (9.13) and (9.14) and eliminating M yields the following equations: $$p = \frac{P_t}{\left[1 + \frac{1}{K}\left(\frac{T'}{T} - 1\right)\right]^{3.5}}$$ and $$p = \frac{P_t}{\frac{6}{K}\left(\frac{T'}{T} - 1\right)} \frac{\left[\frac{28}{K}\left(\frac{T'}{T} - 1\right) - 0.8\right]^{2.5}}{\frac{28.8}{K}\left(\frac{T'}{T} - 1\right)}$$ $$(9.15)$$ Equation (9.15) is an expression of another p/T curve which, when compared with the p/T survey plot, yields an intersection that defines the values of p and T for the test condition. The accuracy of the recording thermometer method depends, for the most part, on the variation of the free-air temperature T with time and distance (both vertical and horizontal), on the value of the recovery factor K, and on the accuracy with which K is known. The effects of atmospheric temperature variations can be minimized by conducting the calibration tests on days when the thermal currents at the test altitudes are very small or at altitudes where the thermal currents are negligible (generally above 35 000 ft). The effects of air temperature variations can also be reduced by repeating the p/T surveys at various times during the calibration tests. Since there is no temperature gradient at altitudes above 35 000 ft, the accuracy of this calibration method improves appreciably at these altitudes. At altitudes below 35 000 ft, for example, an error of 1° F in the measurement of T' at M = 0.8 corresponds to an error in M of about 0.02. Above 35 000 ft, the error in M for a temperature error of 1° F would be 1/3 of this value. For altitudes below 35 000 ft, an error of 0.01 in the value of K (for K of unity) corresponds to an error in M of about 0.01 at M=0.8. For higher altitudes, the error in M is appreciably lower. With pressure recorders having an accuracy of 0.25 percent of full scale, the combined error in the measurement of p' and q_C' produces an error in M of about 0.004 at M = 0.8 and 30 000 ft (ref. 21). The accuracy of the method at M=0.8 and an altitude of 30 000 ft based on the errors given for T', K, p', and q_C' is estimated to be about ± 2.3 percent M. The corresponding error in $\Delta p/q_C$ is about ± 4.5 percent. # Trailing-Anemometer Method With this calibration method, the position error Δp of the aircraft installation is derived from measured values of true airspeed V, impact pressure q_C^{\prime} , static pressure p', and air temperature T'. The true airspeed is measured with a wind-driven anemometer suspended on a long cable below the aircraft (ref. 22). For speeds below $\,\mathrm{M}=0.2$, the effects of compressibility are sufficiently small that $\,\mathrm{q}_{\mathrm{C}}\,$ can be approximated (within 1 percent) by $\,\mathrm{q}_{\mathrm{c}}\,$ Therefore, from equation (3.10), $$q_C \approx q = \frac{1}{2} \rho V^2$$ (9.16) In equation (1.1), p_{+} can usually be considered correct, so that $$q_{c}' = p_{t} - p'$$ (9.17) From equation (2.2), $$p' = p + \Delta p \tag{9.18}$$ By combining equations (9.17) and (9.18), $$q_C' = p_+ - (p + \Delta p)$$ (9.19) Then, since $q_c = p_t - p$, $$q_C = q_C' + \Delta p \tag{9.20}$$ Equation (9.16) can then be written as $$q_{c}' + \Delta p \approx \frac{1}{2} \rho V^{2}$$ (M \le 0.2) (9.21) With the substitution of equation (3.2), $$\rho = \frac{p}{RT} \tag{3.2}$$ for ρ in equation (9.21), $$q_C^{\dagger} + \Delta p \approx \frac{pV^2}{2RT}$$ $(M \le 0.2)$ (9.22) With the further substitution of p' - Δp for p (eq. (9.2)) and T' for T (since, for M \leq 0.2, T' \approx T), equation (9.22) becomes $$q_{C}' + \Delta p \approx \frac{(p' - \Delta p)V^{2}}{2RT'} \qquad (M \leq 0.2) \qquad (9.23)$$ The position error Δp can then be found from the following equation: $$\Delta p = \frac{\frac{p'V^2}{2RT'} - q'_{C}}{1 + \frac{V^2}{2RT'}}$$ (M \leq 0.2) The anemometer assembly of reference 22 consists of (1) a small
six-bladed, low-inertia propeller that activates a self-generating tachometer, (2) a low-drag housing with tail fins to keep the body aligned with the airstream, and (3) a support cable that transmits the tachometer signals to a magnetic tape recorder in the aircraft (fig. 9.5). The rotational speed of the anemometer propeller is proportional to true airspeed. Accurate measurements of true airspeed are realized, however, only when the anemometer is trailed in a region where the local velocity is that of the free stream, that is, where the velocity induced by the flow around the aircraft is zero (or nearly so). An example of an induced velocity field below an airplane is presented in figure 9.6 as contours of constant velocity ratios u/V, where u is the horizontal component of induced velocity. The vertical and horizontal distances below the airplane are given in terms of the fractions z/b and x/b, where b is the wing span. Also shown in the figure are anemometer positions (with a 100-ft cable length) for the airplane at a low speed with flaps down and at a high speed with flaps up. For both anemometer positions, the induced velocity is essentially zero and, since $V_l = V - u$, the local velocity, is very nearly the free-stream velocity. The usable speed range of the anemometer system of figure 9.5 is from 7 knots to about 165 knots (the speed at which the suspension cable develops unstable oscillations). Because of the M=0.2 limitation of this method, however, the maximum speed of the calibration tests is restricted to airspeeds of about 130 knots at altitudes near sea level. In tests of the anemometer of figure 9.5 with impact pressure recorders of widely differing sensitivities, the accuracy of the calibration tests with the most sensitive recorder was ±0.5 knot at 40 knots, while that with the least sensitive recorder was ±3.0 knots at 50 knots. The effect of this single element of the instrumentation on the accuracy of the test results illustrates the fact that the stated accuracy of a calibration method is dependent not only on the inherent accuracy of the calibration technique, but also on the accuracies of each of the component instruments. For an insight into the contribution of the various component errors for the anemometer tests of reference 22, the reader is referred to table I of that report. For the anemometer system having an accuracy of ± 0.5 knot at 40 knots (M = 0.08), the accuracy at 100 knots (M = 0.16) was also ± 0.5 knot. The corresponding accuracies in terms of $\Delta p/q_C$ are ± 2.5 percent and ± 1 percent. # Speed-Course Method The measured quantities and equations for the measurement of Δp by the speed-course method are the same as those for the trailing-anemometer method. With the speed-course method, however, the true airspeed is derived from measurements of the ground speed of the aircraft and the wind speed at the flight level (ref. 23). The ground speed is determined by measuring the time for the aircraft to fly, in a constant indicated airspeed and altitude, between landmarks a known distance apart. The wind speed at the flight level can be measured by a wind-speed indicator or the effects of the winds can be effectively canceled by flying a triangular course or by flying in opposite directions along a straight-line course. For best results, the tests should be conducted when the wind speed is near zero, such as the period just after sunrise or before sunset. The values of q_C^{\prime} , p', and T' needed for the solution of equation (9.24) can be derived from measurements with an airspeed indicator, pressure altimeter, and indicating thermometer. From values of the indicated airspeed V_i , the value of q_C^{\prime} can be calculated from the equation, $$q_c' = \frac{1}{2} \rho_o v_i^2$$ (9.25) where the unit of $\,\rho_{o}\,$ is slugs per cubic foot and the unit of $\,V_{\,\dot{1}}\,$ is feet per second. The application of the speed-course method is limited to airspeeds well above the stall speed and up to maximum speeds defined by the M=0.2 limitation referred to in the preceding discussion, namely, about 130 knots at altitudes near sea level. The accuracy of the method is largely dependent on the accuracy of the time measurements of the speed run, the constancy of the wind speed, and the constancy of the airspeed throughout the speed run. ## Sonic-Speed Method With the sonic-speed method (ref. 15), the position error Δp is derived from the Mach number error ΔM which is defined as $$\Delta M = M' - M \tag{5.10}$$ where M is the free-stream Mach number and M' is the indicated Mach number which is derived from measurements of $\mathbf{q}_{C}^{'}$ and $\mathbf{p}^{'}$. The value of M is derived from equation (3.21): $$M = V/a \tag{3.21}$$ where V is the true airspeed of the aircraft and a is the speed of sound at the level of the test runs. The true airspeed V is determined from the ground speed of the aircraft and the wind speed at the flight level, and the speed of sound a is derived from the free-air temperature T at the flight level and equation (3.27). For the calibration tests, the aircraft is flown in a series of constant-speed, level-flight runs during which the ground speed and the height of the aircraft are measured with a tracking radar. Prior to the test runs, the variations of wind speed and free-air temperature with height are determined by tracking a rawinsonde through the test altitude range. The values of ΔM determined by this method can be converted to values of $\Delta p/p$ or $\Delta p/q_C$ by means of equations (5.4) through (5.7). The accuracy of the method depends on the accuracy of the rawinsonde thermometer and the accuracy of the ground-tracking equipment in measuring the speed and height of the aircraft and the rawinsonde. In calibration tests with the sonic-speed method using a radar-phototheodolite for ground tracking (ref. 15), the accuracy in the measurement of the ground speed of the airplane was found to be 50 to 75 ft/sec. The accuracy of the measurement of wind speed was found to depend on the height and elevation angle of the rawinsonde from the tracking station; at a height of 50 000 ft and an elevation angle of 20° , the accuracy of the wind-speed measurement was 1.8 knots. The accuracy of the measurements of the height of the airplane and the rawinsonde was about 100 ft, and the accuracy of the temperature measured by the rawinsonde thermometer was about 1° C. In an analysis based on the foregoing accuracies, the accuracy in the measurement of Mach number was estimated, in reference 15, to be about 0.06M at M = 1.0 and altitudes between 50 000 and 80 000 ft. The corresponding error in $\Delta p/q_C$ at M = 1.0 is about 8 percent. #### Total-Temperature Method With the total-temperature method (ref. 24), the position error Δp is derived from $\Delta M = M' - M$, where M' is determined from q_C^{\dagger} and p' and M is calculated from equation (3.28) with $\gamma = 1.4$, here expressed as $$M = \sqrt{\frac{1}{0.2K} \left(\frac{T'}{T} - 1\right)}$$ (9.26) where T is the free-air temperature, T' the measured (or total) temperature, and K the recovery factor of the temperature probe. As noted in chapter III, equation (3.28) is valid only when K=1 or when the probe is located in a region where the local velocity V_l is equal to the free-stream velocity V_l . Since V_l in the regions near the aircraft where a probe might be located is usually different from V_l , the application of this method requires, essentially, that the recovery factor of the probe be 1. The calibration tests are conducted by flying the aircraft in a series of speed runs during which the height of the aircraft is measured with ground-tracking equipment and T^{\prime} , $q_{\rm C}^{\prime}$, and p^{\prime} are measured with recording instruments. The value of T at the height of the test run is derived from a temperature-height survey which is made prior to the calibration tests by tracking a radiosonde (transmitting temperature measurements) through the test altitude range. As in the case of the sonic-speed method, the values of ΔM derived from M' and M can be converted to values of $\Delta p/p$ or $\Delta p/q_C$ by use of equations (5.4) through (5.7). The accuracy of the calibration method depends, for the most part, on the accuracies in the measurement of T' and T. In one series of calibration tests using the total-temperature method (ref. 24), the overall accuracy in the measurement of T (including accuracies of radiosonde thermometer and ground-tracking equipment) was estimated to be $\pm 2.5^{\circ}$ F. The accuracy of the measurement of T' by the recording thermometer was about $\pm 1^{\circ}$ F. For these two accuracies in the temperature measurements, the accuracy of the value of M was estimated to be about ± 0.02 M. In a later series of tests (ref. 10), the accuracy of the determination of M was found to range from ± 0.01 M at M = 1.5 (30 000 ft) to ± 0.04 M at M = 3.0 (60 000 to 70 000 ft). The corresponding errors in terms of $\Delta p/q_C$ are ± 0.5 percent and ± 2.0 percent. # Calibrations by Ground-Camera and Tracking-Radar Methods In this section, a series of tests designed to determine the accuracies that can be realized with the ground-camera and tracking-radar methods is described. These two methods were selected for accuracy tests (ref. 13) because (1) the ground-camera method like the tower method provides accurate determinations of the free-stream static pressure at heights near the ground, while at the same time allowing greater flexibility in the choice of test heights and locations, and (2) the tracking-radar method, using the aircraft tracking procedure for measuring static pressure in the pressure-height survey, provides the most direct means of deriving precise measures of free-stream static pressure at high altitudes.
The tests of the two calibration methods were conducted using a large turbojet transport as the test vehicle. The calibration tests with the ground-camera method were conducted at heights of about 500 ft and those with the tracking-radar method at altitudes of about 25 000 ft. Test instrumentation.— The pressure-measuring instruments used for both calibration methods consisted of an airspeed-altitude recorder and a recording statoscope (fig. 9.7). The airspeed-altitude recorder was connected to the service pitot-static installation of the airplane and the recording statoscope to the static-pressure source (fuselage vents) of that installation. The recording statoscope is a sensitive differential-pressure instrument which, for these tests, measured the difference between the pressures from the fuselage-vent system and a constant reference pressure in a thermostatically controlled chamber. Since the reference pressure in the chamber could be fixed at any selected height, the difference between the static pressure at that height and the static pressure at other heights could be measured more precisely with the statoscope than with the recording altimeter. The pressures measured by both the recording statoscope and the airspeed-altitude recorder were recorded as traces along a moving photographic film. Each of the recorders was equipped with an event-marking device for synchronizing the measured pressures with the heights of the airplane measured with the ground camera or tracking radar. The instrumentation for the ground-camera method consisted of a 5 by 5 in. single-exposure camera having a 7-in. focal length, a mercury-in-glass thermometer, a precision altimeter, and a radio transmitter (fig. 9.8). The camera was mounted with its optical axis aligned with the vertical and was equipped with a sighting device to aid in photographing the airplane when it was directly overhead. By transmitting a radio signal the instant he actuated the camera, the photographer synchronized the records of the instruments in the airplane with the photograph of the airplane. At the time of each test run, the atmospheric pressure and temperature at the camera station were measured with the altimeter and the thermometer. The precision-tracking radar was used for the ground-radar method (fig. 9.9). This radar provided measurements of elevation angle and slant range from which the geometric height of the airplane could be computed. The elevation angle and slant range were recorded on a magnetic tape which was synchronized with the records of the airborne instruments by radio signals. Ground-camera tests.— With the airplane at rest on the ground prior to the test runs, the statoscope chamber was sealed and the pressure in the chamber recorded. The airplane was then flown over the camera at an altitude of about 500 ft at a succession of test airspeeds. When the airplane returned to the ground, the pressure in the statoscope was recorded again to measure any difference from the initial recording. The pressure recorded by the statoscope when the airplane is above the camera is the sum of (1) the difference between the static pressure at the ground level where the statoscope was sealed and the static pressure at the flight level of the airplane and (2) the position error of the static-pressure installation. As shown in figure 9.10, the flight level Z of the airplane is determined from the elevation $E_{\rm C}$ of the camera station, the height $h_{\rm C}$ of the camera lens above $E_{\rm C}$, and the height h of the airplane above the camera lens, measured at the level of the wing tips. For airplanes with wings that flex upward in flight, the value of h is adjusted by an amount Δh to account for the deflection of the wing tips. The height h is calculated from $$h = \frac{bf}{b'}$$ (9.27) where b is the wing span of the airplane, b' the span of the airplane image on the photographic film, and f the focal length of the camera lens. Since the reference height at which the statoscope is sealed is Z_r , the difference between this height and the flight level is $Z - Z_r = \Delta Z$. The decrease in the static pressure δp_C through this height increment is computed from equation (3.3) expressed here as $$\delta P_{\rm C} = -\bar{\rho}_{\rm m} \Delta z$$ (9.28) where $\bar{\rho}_m$ is the density at the midpoint between Z_r and Z. The density at the midpoint is computed from the following equation: $$\bar{\rho}_{\rm m} = \bar{\rho} - (\bar{\rho}_{\rm S} - \bar{\rho}_{\rm S,m}) \tag{9.29}$$ where $\bar{\rho}$ is the density at the camera (determined from measurements of p and T at that elevation), $\bar{\rho}_{\rm S}$ is the standard density at the camera elevation, and $\bar{\rho}_{\rm S,m}$ is the standard density at the midpoint. The position error $\,\Delta p\,$ of the aircraft installation is then determined from $$\Delta p = \delta p - \delta p_{C} \tag{9.30}$$ where δp is the pressure increment measured by the statoscope and δp_{C} is the pressure increment computed from equation (9.28). A sample calculation of the determination of Δp by the ground-camera method is given in part I of appendix B. In the tests to determine the accuracy of the ground-camera method, four test runs were made at each of four airspeeds (150, 200, 260, and 320 knots) during one flight and at two airspeeds during a second flight. Since the weight of the airplane varied by as much as 15 percent during a flight, the weight for each test run was computed (from indications of the fuel consumed) so that the static-pressure errors at each test speed could be compared directly on the basis of lift coefficient. The results of the tests are presented in figure 9.11 in terms of the variation of the position error of the aircraft installation with lift coefficient. The standard deviation σ of these data, determined from measurements of the displacement of the data points from the faired curve, is about 0.3 lb/ft², which corresponds to an altitude error of about 4 ft at sea level. For this value of σ , the maximum probable error (defined as 3 times the standard deviation and having a probability of 99.7 percent) is about 1 lb/ft², or about 12 ft at sea level. The corresponding error (1 σ) in terms of $\Delta p/q_{\rm C}$ is ± 0.2 percent at 200 knots (M = 0.3) and ± 0.1 percent at 320 knots (M = 0.5). The confidence with which the mean value of the data was determined is given by the following equation for a confidence level CL of 99 percent: $$CL_{99} = 5.84 \frac{\sigma}{\sqrt{n-1}} \tag{9.31}$$ where n is the number of measurements for a given test condition. For the value of σ of 4 ft and for four measurements at each of the test airspeeds, the confidence level of the data is 10 ft. Thus, for a given position error in terms of an altitude error, the accuracy of the value of the altitude error, for a confidence level of 99 percent, is ± 10 ft. Tracking-radar tests.— For the pressure-height survey required of the tracking-radar method, the airplane was flown in a series of level-flight runs at each of three altitudes (24 000, 25 000, and 26 000 ft) through an area about 10 miles in diameter. For each survey run, the geometric height of the airplane was measured by the radar. Prior to the first survey run, the statoscope was sealed at an altitude of 24 000 ft with the airplane at an indicated airspeed of 200 knots. With the airplane remaining at 200 knots, survey runs were then made at six locations at each of the three test altitudes. For each survey run, the value of the pressure measured by the statoscope was corrected for the position error at the 200-knot speed determined by the ground-camera tests. These corrected pressures thus provided a measure of free-stream static pressure at each measured geometric height. After the initial pressure-height survey, four calibration test runs were made at each of three airspeeds (235, 320, and 370 knots) at an altitude of about 25 000 ft. Immediately after the last test run, a second pressure-height survey was made at the same airspeed and altitudes as in the initial survey. Figure 9.12 is a plot of the initial pressure-height survey and of the second survey 72 min later. For each calibration test run, the free-stream static pressure was determined from the geometric height of the airplane, the time of the run after the initial survey, and an interpolation of the two surveys for the pressure at that time. Note that the pressure and height scales on the figure are broken to provide expanded scales for the two measurements. For the evaluation of the data of the tests, the surveys were plotted on a much larger chart to form continuous curves throughout the height range. The results of the high-altitude calibration tests are presented in figure 9.13 in terms of the variation of the position error of the aircraft installation with lift coefficient. For these data, the standard deviation is about 0.34 lb/ft² with a corresponding altitude error of about 10 ft at an altitude of 25 000 ft. The maximum probable error, therefore, is about 1 lb/ft² or about 30 ft at 25 000 ft. The corresponding error (10) in terms of $\Delta p/q_{\rm C}$ is ± 0.2 percent at 235 knots (M = 0.5) and ± 0.1 percent at 370 knots (M = 0.88). The confidence level of the mean of the data (for CL = 99 percent) is ± 34 ft. The variation of the static-pressure errors of figures 9.11 and 9.13 as a function of M rather than C_{L} was shown previously in figure 7.22. Since the flight manual for the test airplane gives the position errors of the fuselage-vent system in terms of altitude errors, the position errors in figures 9.11 and 9.13 have been converted to altitude errors and plotted in figure 9.14. For sea-level calibrations, the flight-manual values and the calibration with the ground-camera method are essentially the same. At an altitude of 25 000 ft,
the flight-manual values and the tracking-radar calibration differ by less than 50 ft for airspeeds up to 350 knots. In the description of the tracking-radar method given in this chapter, some details relating to the experimental procedure and the test data evaluation have been omitted. For a complete discussion of the application of this method, the reader is referred to reference 13. #### References - 1. Thompson, F. L.: The Measurement of Air Speed of Airplanes. NACA TN 616, 1937. - 2. Smith, K. W.: The Measurement of Position Error at High Speeds and Altitude by Means of a Trailing Static Head. C.P. No. 160, British A.R.C., 1954. - 3. Phillips, William H.: Theoretical Analysis of Oscillations of a Towed Cable. NACA TN 1796, 1949. - 4. Gracey, William; and Scheithauer, Elwood F.: Flight Investigation of the Variation of Static-Pressure Error of a Static-Pressure Tube With Distance Ahead of a Wing and a Fuselage. NACA TN 2311, 1951. - 5. Ikhtiari, Paul A.; and Marth, Verlyn G.: Trailing Cone Static Pressure Measurement Device. J. Aircraft, vol. 1, no. 2, Mar.-Apr. 1964, pp. 93-94. - 6. Jordan, Frank L., Jr.; and Ritchie, Virgil S.: Subsonic Wind-Tunnel Tests of a Trailing-Cone Device for Calibrating Aircraft Static-Pressure Systems. NASA TN D-7217, 1973. - 7. Brumby, Ralph E.: The Influence of Aerodynamic Cleanness of Aircraft Static Port Installations on Static Position Error Repeatability. Rep. No. DAC-67485, Douglas Aircraft Co., Nov. 1968. - 8. Trailing Cone Method of Measuring Static Source Position Error (F-4B Airplanes); Second Interim Report. Rep. No. FT2122-27R-65, Naval Air Test Center, Apr. 26, 1965. (Available from DTIC as AD 462 821.) - 9. Levon, K. C.: Pressure Error Measurement Using the Formation Method. C.P. No. 126, British A.R.C., 1953. - 10. Webb, Lannie D.; and Washington, Harold P.: Flight Calibration of Compensated and Uncompensated Pitot-Static Airspeed Probes and Application of the Probes to Supersonic Cruise Vehicles. NASA TN D-6827, 1972. - 11. Thompson, F. L.; and Zalovcik, John A.: Airspeed Measurements in Flight at High Speeds. NACA ARR, 1942. - 12. Fuhrman, R. A.; Wheatley, J. P.; Lytle, W. J.; and Doyle, G. B.: Preliminary Report on Airspeed-Altimeter System Calibration at High Mach Numbers. Phase A - The Altimeter Depression Method Using a Base Airplane at Altitude. Test Pilot Training Div., U.S. Naval Air Test Center, Mar. 3, 1952. - 13. Gracey, William; and Stickle, Joseph W.: Calibrations of Aircraft Static-Pressure Systems by Ground-Camera and Ground-Radar Methods. NASA TN D-2012, 1963. - 14. Zalovcik, John A.: A Radar Method of Calibrating Airspeed Installations on Airplanes in Maneuvers at High Altitudes and at Transonic and Supersonic Speeds. NACA Rep. 985, 1950. (Supersedes NACA TN 1979.) - 15. Larson, Terry J.; and Webb, Lannie D.: Calibrations and Comparisons of Pressure-Type Airspeed-Altitude Systems of the X-15 Airplane From Subsonic to High Supersonic Speeds. NASA TN D-1724, 1963. - 16. Smith, Eugene S.: Askania Cine-Theodolite Data Reduction Manual. AFMTC-TR-60-1, U.S. Air Force, Jan. 1960. - 17. Thompson, Jim Rogers; and Kurbjun, Max C.: Evaluation of the Accuracy of an Aircraft Radio Altimeter for Use in a Method of Airspeed Calibration. NACA TN 3186, 1954. - 18. Hesse, W. J.: Position Error Determination by Stadiametric Ranging With a 35 mm Movie Camera. Tech. Rep. No. 2-55, Test Pilot Training Div., U.S. Naval Air Test Center, June 24, 1955. - 19. Schoenfeld, L. I.; and Harding, G. A.: Report on the Dual Sighting Stand and Other Methods of Calibrating Altimeter and Airspeed Installations. Rep. No. NAES-INSTR-16-44 (Project No. TED NAM 3335), NAES, Philadelphia Navy Yard, Bur. Aeronaut., Aug. 15, 1944. - 20. Zalovcik, John A.; Lina, Lindsay J.; and Trant, James P., Jr.: A Method of Calibrating Airspeed Installations on Airplanes at Transonic and Supersonic Speeds by the Use of Accelerometer and Attitude-Angle Measurements. NACA Rep. 1145, 1953. (Supersedes NACA TN 2099 by Zalovcik and NACA TN 2570 by Lina and Trant.) - 21. Zalovcik, John A.: A Method of Calibrating Airspeed Installations on Airplanes at Transonic and Supersonic Speeds by Use of Temperature Measurements. NACA TN 2046, 1950. - 22. Fisher, Bruce D.; Holmes, Bruce J.; and Stough, H. Paul, III: A Flight Evaluation of Trailing Anemometer for Low-Speed Calibrations of Airspeed Systems on Research Aircraft. NASA TP-1135, 1978. - 23. Thompson, F. L.: Procedure for Determining Speed and Climbing Performance of Airships. NACA TN 564, 1936. - 24. Brunn, Cyril D.; and Stillwell, Wendell H.: Mach Number Measurements and Calibrations During Flight at High Speeds and at High Altitudes Including Data for the D-558-II Research Airplane. NACA RM H55J18, 1956. TABLE 9.1.- FLIGHT CALIBRATION METHODS FOR DETERMINING | | Operational limits | | | Method accuracy or precision ^a (approximate 10 values) | | | |---|--------------------|-----------------------|------------------------------|---|--|--| | Calibration
method | Test
altitude | Speed restrictions | | Accuracy, | Precision, | | | | range | Minimum | Maximum | percent q _C | percent q _c | | | Trailing bomb | Low/high | Stall
speed | $c_{M} = 0.4$ to 0.85 | $\pm 2.0 (M = 0.1)$
$\pm 0.2 (M = 0.35)$ | | | | Trailing cone | Low/high | Min. LFS ^d | e _M = 1.5 | | ± 0.2 (M = 0.7 to 0.88) | | | Pacer aircraft | Low/high | Min. LFS | Max. LFS | | $\pm 0.7 (M = 0.5)$
$\pm 0.2 (M = 1.0)$ | | | Tower | Very low | Min. LFS | Max. LFS | ± 1.0 (M = 0.15)
± 0.2 (M = 0.30) | | | | Tracking radar | High | Min. LFS | Max. dive speed | $\pm 0.2 (M = 0.5)$
$\pm 0.1 (M = 0.88)$ | · | | | Radar altimeter | High | Min. LFS | Max. LFS | $\pm 1.0 (M = 0.8)$ | | | | Ground camera | Very low | Min. LFS | Max. LFS | $\pm 0.2 (M = 0.3)$
$\pm 0.1 (M = 0.5)$ | | | | Tracking-radar/
pressure-
altimeter | High | Min. LFS | Max. LFS | ±3.5 (M = 0.5)
±0.1 (M = 3.0) | | | | Accelerometer | High | Min. LFS | Max. dive speed ^g | ± 0.5 (M = 0.6 to 0.8) | | | | Recording
thermometer | High | Min. LFS | Max. dive | $\pm 4.5 (M = 0.8)$ | | | | Trailing
anemometer | Low | Stall
speed | $h_{M} = 0.2$ | ± 2.5 (M = 0.08)
± 1.0 (M = 0.16) | | | | Speed course | Low | Min. LFS | $h_{M} = 0.2$ | | | | | Sonic speed | High | Min. LFS | Max. LFS | ±8.0 (M = 1.0) | | | | Total temperature | High | Min. LFS | Max. dive | ± 0.5 (M = 1.5)
± 2.0 (M = 3.0) | | | See page 148 for footnotes. | | Calibrat | ion mother | a | | | | |--------------------------------------|---------------------------------------|--|--------------------|---|----------------------------------|---------| | Calibration method requirements | | | | | | | | Initial
reference
pressure, p, | Survey of | Measurements | | Instruments
(b) | | Refs. | | obtained
from - | atmosphere | Aircraft | Ground | Aircraft | Ground | | | | | q',p',p | | ASI, Alt, DPI | | 1,2,3,4 | | | | q_,p',p | | ASI, Alt, DPI | | 5,6,7,8 | | | | q _c ,p' | | ASI, Alt | | 9,10 | | | Pressure-
height | q',p' | z _c ,∆z | ASI, Alt | Camera in tower | 11 | | Low-speed calibration ^f | Pressure-
height | q',p' | Z | IPR, APR | Tracking
radar | 13 | | Low-speed calibration | Pressure-
height | q',p',Z | | ASI, Alt,
Radar alt. | | 17 | | | | q _c ,p' | P,T,Z | ASI, Alt | Camera, Alt or barograph, IT | 13 | | Low-speed calibration | | q _c ,p',T' | Z | Alt, IPR,
APR, RT | Tracking
radar | 10 | | Low-speed
calibration | | $q_{c}', p', T', a_{x}, a_{z}, \theta$ | | IPR, APR, RT,
RA, AAR | | 20 | | Low-speed calibration | Pressure-
temperature | q',p',T' | | IPR, APR, RT | | 21 | | | | q',p',
T',V | | IPR, APR, RT,
Trailing
anemometer | | 22 | | | | q'_,p',T' | i _{Vq} ,T | ASI, Alt, IT | Stop watch | 23 | | | Temperature-
height,
Wind speed | q _c ,p' | V _g ,Z | IPR, APR | Tracking
radar,
Rawinsonde | 15 | | | Temperature-
height | q _c ,p',T' | Z | IPR, APR, RT | Tracking
radar,
Radiosonde | 10,24 | # FOOTNOTES FOR TABLE 9.1 a_{Values} quoted have been achieved. With different instrumentation and experimental techniques, the accuracy or precision obtained may vary from these values. bThe following abbreviations are used in this column: | AAR | attitude-angle recorder | | | | | | | |-----|----------------------------------|--|--|--|--|--|--| | Alt | altimeter | | | | | | | | APR | absolute-pressure recorder | | | | | | | | ASI | airspeed indicator | | | | | | | | DPI | differential-pressure instrument | | | | | | | | IPR | impact-pressure recorder | | | | | | | | IT | indicating thermometer | | | | | | | | RA | recording accelerometer | | | | | | | | RT | recording thermometer | | | | | | | $c_{\mbox{\scriptsize Maximum}}$ speed at which bomb can be trailed without unstable oscillations in suspension cable. d_{LFS} level flight speed $e_{M} = 1.5$ is the highest speed at which tests have been conducted (ref. 8). $\ensuremath{\mathrm{f}_{\mathrm{Low}}}\xspace$ calibration is necessary if radiosonde is not used to make pressure-height survey. gManeuvers must be conducted in vertical plane. $h_{M} = 2.0$ limitation determined by a requirement that $q_{c} \approx q$. $^{i}V_{g}$ ground speed of aircraft (a) p measured at reference pressure source below, behind, or alongside aircraft. (b) p derived from measurement of height of aircraft and pressure gradient at test altitude range. Figure 9.1.- Four techniques for determining free-stream static pressure p at flight level of aircraft. (c) p at height of aircraft calculated from p and T at ground and assumption of standard temperature gradient. (d) p at height of aircraft derived from change in height from an initial height. Figure 9.1.- Concluded. Figure
9.2.- Trailing bomb. Weight = 15 lb. (Adapted from ref. 1.) L-79-357 (b) Photograph. Figure 9.2.- Concluded. Figure 9.3.- Trailing bomb with wings at negative angle of incidence. (Adapted from ref. 2.) Figure 9.4.- Trailing static-pressure cone system. Figure 9.5.- Trailing anemometer. V = 52 knots, flaps down V = 135 knots, flaps up Figure 9.6.- Anemometer trail positions for two flight conditions superimposed on induced velocity field below airplane. z is vertical distance, x is horizontal distance, and b is wing span. (Adapted from ref. 22.) Figure 9.7.- Instruments installed in airplane for calibrations of the aircraft static-pressure installation. (Adapted from ref. 13.) Figure 9.8.- Ground-based equipment used for calibrations at low altitudes. (Adapted from ref. 13.) Figure 9.9.- Tracking radar used for calibrations at high altitudes. (Adapted from ref. 13.) Figure 9.10.- Diagram showing dimensions required for determining flight level of airplane with ground-camera method. (Adapted from ref. 13.) Figure 9.11.- Calibration of fuselage-vent system at an altitude of 500 ft. (Adapted from ref. 13.) Z, ft Figure 9.12.- Pressure-height survey at altitudes from 24 000 to 26 000 ft. (Adapted from ref. 13.) Figure 9.13.- Calibration of fuselage-vent system at an altitude of 25 000 ft. (Adapted from ref. 13.) Figure 9.14.- Comparison of flight-manual calibration with calibrations determined by ground-camera and tracking-radar methods. (Adapted from ref. 13.) ### CHAPTER X ## ERRORS DUE TO PRESSURE-SYSTEM LAG AND LEAKS As noted in chapter II, the pressure at an instrument can be different from the pressure at the pressure source because of a time lag in the transmission of pressures. The pressure at the instrument can also differ from that at the pressure source when there is a leak in the pressure system. For both cases, the instrument indications will be in error by an amount corresponding to the pressure drop in the system. In this chapter, analytical and experimental methods for determining the errors due to pressure-system lag and leaks are discussed. Sample calculations of an estimation of the lag and leak errors of a given pressure system are given in part II of appendix B. # System Lag When the pressure at the pressure source is changing rapidly, as in the case of high-speed dives or climbs, air flows into, or out of, the pressure source (pitot tube, static-pressure tube, or fuselage vents). Under these conditions, the pressure at the instruments lags behind the pressure at the source because of (1) the time for the pressure change to propagate along the tubing (acoustic lag) and (2) the pressure drop associated with the flow through the tubing (pressure lag). In the following sections, mathematical expressions for both forms of lag are described. Acoustic lag. As noted in reference 1, the speed of the pressure propagation along the pressure tubing is the speed of sound. The magnitude of the acoustic lag thus depends only on the speed of sound a and the length of the tubing L as expressed in the following equation: $$T = L/a \tag{10.1}$$ where T is the acoustic lag time. Since the speed of sound at the lower altitudes is on the order of 1000 ft/sec, errors due to acoustic lag are of concern only for pressure systems having very long lengths of pressure tubing. For the tubing lengths of the instrument systems in service aircraft, errors associated with acoustic lag are of no significance. Pressure lag.— When air in tubing between a pressure source and an instrument is flowing, the pressure at the instrument is different from the pressure at the source, and the indication of the instrument is in error by an amount equivalent to the pressure drop between the two ends of the tubing. For a rate of pressure change dp/dt at the pressure source, the pressure drop Δp and the lag of the pressure system are related by the following equation: $$\Delta p = \lambda \frac{dp}{dt} \tag{10.2}$$ where λ is the lag constant of the system defined by the following equation from reference 2: $$\lambda = \frac{128\mu LC}{\pi d^4 p} \tag{10.3}$$ where L and d are the length and internal diameter of the tubing, C is the total volume of the instrument chambers, p is the pressure, and μ is the coefficient of viscosity of air. This equation assumes laminar flow in the tubing and applies rigorously only to straight tubing of constant diameter. Once the value of λ of an instrument system is known, the errors in airspeed and altitude associated with any given rate of climb or descent of the aircraft can be determined from equation (10.2) and the appropriate pressure tables in appendix A. The condition of laminar flow required by equation (10.2) is met when the pressure drop Δp along the tubing remains lower than that given by the following equation from reference 2: $$\Delta p = -\frac{32\mu^2 L N_{Re}}{\rho d^3} \tag{10.4}$$ where N_{Re} is the Reynolds number. Since airflow in a straight tube remains laminar for N_{Re} no greater than about 2000, the limiting pressure drop for laminar flow at sea level can be expressed as $$\frac{\Delta p}{L} = \frac{6.5 \times 10^{-3}}{d^3} \tag{10.5}$$ where $\Delta p/L$ is in pounds per square ft per ft and d is the internal diameter of the tubing in inches. At altitude, the limiting pressure drop for laminar flow is given by $$\frac{\Delta p}{L} = \frac{p_o}{p_a} \left(\frac{\mu_a}{\mu_o}\right)^2 \left(\frac{6.5 \times 10^{-3}}{d^3}\right) \tag{10.6}$$ where the subscripts o and a refer to sea level and altitude. In table 10.1, the limiting pressure drops for laminar flow at sea level and 30 000 ft are given for four tubing diameters. For relatively simple pressure systems with few bends and tees in the tubing, the lag constant can usually be calculated with satisfactory accuracy from equation (10.2) and a knowledge of the geometry of the system. For more complex pressure systems, and especially for those research installations in which lag is an important factor, the lag constant of the system can be determined experimentally by one of the three test procedures described in refer- ence 1. The computational procedures for correcting measured pressures for pressure-lag errors are also given in reference 1. For pitot-static pressure systems, the lag characteristics of mechanical instrument systems differ markedly from those of systems incorporating electrical pressure transducers. With the mechanical instruments, for example, the lag of the pitot system is very much smaller than that of the static-pressure system because of the great difference in the volumes at the ends of the two pressure lines. The volume at the end of the pitot line is very small (the volume of the differential-pressure capsule), whereas the volume at the end of the static-pressure line is the combined volume of all instrument chambers connected to the line (fig. 2.3). Thus, for those instruments connected to both the pitot and static-pressure lines, the errors in the indications due to lag are determined primarily by the lag in the static-pressure system. For the measurement of airspeed (or impact pressure) in research investigations, the lags of the pitot and static-pressure systems are sometimes "balanced" in an attempt to eliminate the airspeed error due to the difference in the lag of the two systems. This balancing of the lag of the two systems is accomplished by adding tubing to the pitot system until the lag of that system equals the lag of the static-pressure system. However, while balancing the pressure lines can often eliminate airspeed errors in rate-of-climb testing, airspeed errors in dive testing can be larger than those that were present before balancing (ref. 1). With systems employing electrical pressure transducers (figs. 11.13 and 11.14), the lag in the pitot and static-pressure lines is essentially the same because the volumes at the ends of the two lines are very nearly equal. Since the volumes of the transducers are also very small and since the length of tubing between the transducer and the pressure source is generally short, the lag of this type system is usually so small that it is of no concern. Means of reducing lag. - In the design of a pressure system incorporating mechanical instruments, the principal means of reducing the acoustic lag and pressure lag are related to the size of the tubing and the instrument volume. For example, the acoustic lag (eq. (10.1)) can be minimized by simply keeping the pressure tubing line reasonably short, while the pressure lag (eq. (10.2)) can be reduced by reducing tubing length, increasing tubing diameter, or reducing instrument volume. For installations requiring more than one set of instruments, the volume at the end of each pressure line can be reduced by installing a separate pressure source for each set of instruments. For a system with a given instrument volume, the lag can generally be reduced by increasing the diameter of the tubing. However, if the tubing is connected to a staticpressure tube, any increase in the tubing diameter should be related to the number and size of the orifices, because usually the total area of the orifices should be about the same as the cross-sectional area of the tubing. Finally, for any pressure system, the pressure lag can be reduced by minimizing the number of bends and connections in the tubing system. For a more extensive discussion of the influence of the various design parameters on the lag of pressuremeasuring systems, the reader is referred to reference 3. With systems employing electrical pressure transducers, both forms of lag are small because of the small volume of the pressure chambers and the short lengths of tubing ordinarily used with this type system. # System Leaks The pressure at the instrument can be different from that at the pressure source if there is a leak in the system and if the pressure outside the system is different from that inside. A
leak within the cockpit of a pressurized cabin, for example, can alter the pressure inside the instrument when the aircraft is at a high altitude. On the other hand, a leak in a part of the system in an unpressurized area might have little effect. The magnitude of the pressure error due to a leak, therefore, depends not only on the size of the leak but also on the pressure drop across the leak. To minimize pressure errors resulting from leaks, the civil and military agencies require leak tests of individual instruments (for case leaks) and of the complete instrument system installed in the aircraft. The tests of the static-pressure system are conducted by applying suction to the static-pressure source until the pressure in the system reaches a specified pressure altitude. With the pressure held constant, the effects of any leaks appear as rates of change in airspeed and altitude indicated by the cockpit instruments. Tests of the pitot system are conducted in the same manner, except that pressure is applied to the pitot tube. A number of different leak tolerances for the systems have been specified, from time to time, by the civil and military agencies. The most stringent of these tolerances requires the leak rate for the static-pressure system to be not more than 100 ft/min (indicated by the altimeter) when the system pressure corresponds to the maximum pressure altitude for which the aircraft is certified. For the pitot system, the tolerance is 1 knot/min (indicated by the airspeed indicator) when the system pressure equals the impact pressure corresponding to the maximum speed of the aircraft. The errors in airspeed and altitude that result from a leak of a given size and a given pressure differential across the leak can be determined from (1) the leak rate (i.e., the rate of pressure change dp/dt) determined from a ground test of the system, (2) the lag constant λ computed from equation (10.3), and (3) the lag constant $\lambda_{\hat{l}}$ of the leak. The value of $\lambda_{\hat{l}}$ can be calculated from the following equation: $$\lambda_{l} = \left(\frac{p_{T,O} - p_{T,A}}{dp/dt}\right) \left(\frac{p_{T,O} + p_{T,A}}{p_{C} + p_{A}}\right)$$ (10.7) where $p_{\mathrm{T,O}}$ ambient pressure during ground test $p_{\mathrm{T,a}}$ test pressure in system during ground test dp/dt rate of pressure change due to leak measured in ground test Pa pressure at pitot or static-pressure source at flight altitude P_{C} compartment or cabin pressure at flight altitude The pressure error $\Delta p_{\tilde{l}}$ due to the leak can then be computed from $$\Delta p_{l} = p_{i} - p_{a} = \frac{\lambda}{\lambda_{l} + \lambda} (p_{c} - p_{a})$$ (10.8) where p_{i} is the pressure inside the instrument. From the value of Δp_{l} , the corresponding errors in airspeed and altitude can be determined from the tables in appendix A. The errors in the instrument indications that result from a leak in the pressure system can also be determined experimentally in flight. In tests reported in reference 4, for example, a calibrated leak device, capable of introducing five different size leaks into a pressure system, was connected to the static-pressure line in the cockpit of a transport airplane. The altitude error produced by each leak was then determined at a number of altitudes and for different cabin pressures. After the flight tests, ground tests were conducted to measure the leak rate of each leak in terms of altitude change per minute. The ground and flight tests thus provided a means of directly relating the altitude error and leak rate of a given size leak. The results of these tests showed that for leaks producing altitude errors as small as 10 ft, the leak rate was much larger than the 100 ft/min rate specified for the leak tolerance discussed earlier. In other words, the altimeter errors of systems complying with this leak tolerance would be essentially negligible. # References - 1. Huston, Wilber B.: Accuracy of Airspeed Measurements and Flight Calibration Procedures. NACA Rep. 919, 1948. (Supersedes NACA TN 1605.) - 2. Wildhack, W. A.: Pressure Drop in Tubing in Aircraft Instrument Installations. NACA TN 593, 1937. - 3. Lamb, J. P., Jr.: The Influence of Geometry Parameters Upon Lag Error in Airborne Pressure Measuring Systems. WADC Tech. Rep. 57-351, U.S. Air Force, July 1957. (Available from DTIC as AD 130 790.) - 4. Wheatley, J. L.: Relation of Static System Leakage to Altitude Error. Rep. No. F 1096 A, Eng. Dep., United Air Lines, Inc., June 20, 1967. TABLE 10.1.- LIMITING PRESSURE DROP PER FOOT FOR LAMINAR FLOW IN TUBING | Tubing dia | ameter, | Limiting Δp/L,
(lb/ft ²)/ft, at - | | | |----------------------------|-------------------------------|--|----------------------------|--| | Outside | Outside Inside | | 30 000 ft | | | 1/8
3/16
1/4
5/16 | 0.060
.114
.188
.250 | 30.1
4.4
1.0
.4 | 69.4
10.0
2.3
1.0 | | #### CHAPTER XI ## AIRCRAFT INSTRUMENT ERRORS Aircraft instruments are required to meet specified standards of accuracy. These accuracies are expressed in terms of error tolerances (allowable errors) which may be stated as a percent of the measured quantity, as a percent of the full-scale range of the instrument, or as a series of individual tolerances for given values of the measured quantities. The specified accuracies of the instruments vary depending on the type of instrument and on the state of the art at the time the instrument was developed. The accuracy of the "precision" mechanical altimeter, for example, is greater than that of the older "sensitive" altimeter. Similarly, the accuracies of electrical instruments are greater than those of the mechanical types, and of the two electrical instrument systems, the electronic pressure-transducer system is somewhat more accurate than the servoed instrument systems. Until recent years, mechanical instruments were used in all types of aircraft; they are still widely used in general aviation aircraft and in older civil transport and military aircraft. Servoed instrument systems, a later development, have been used for some years in turbojet transport and military jet aircraft, while electronic pressure-transducer systems, an even later development, are now being used in some turbojet transport and military jet aircraft. The Federal Aviation Administration specifies the accuracy of instruments used in civil aircraft, while the U.S. Air Force, Army, and Navy specify the accuracy of instruments used in military aircraft. For the instruments discussed in this chapter, the accuracies have, for the most part, been extracted from instrument standards specified by the Air Force. ## Mechanical Instruments As noted in chapter II, the scale error (i.e., the difference between an instrument indication and the correct value) is generally the largest of the various instrument errors. Thus, the determination of this error is the primary concern of the laboratory testing of the instruments. When it has been determined that the scale errors of a particular instrument conform to the specified tolerances, the instrument is considered acceptable for operational use. However, since the scale error is systematic (repeatable), many aircraft operators require that corrections for the error be applied in order to achieve an accuracy greater than the specified accuracy. In this section, the specified tolerances for the errors of each type of instrument are presented and the laboratory test procedures for the calibration of the instruments are outlined. Altimeter. The altitude display of the mechanical altimeter is a circular scale with one or more rotating pointers. Examples of dial-type altitude displays are the three-pointer display of figure 11.1(a) and the drum-pointer (or similar counter-pointer) display of figure 11.1(b). With the three-pointer display, the long pointer rotates one revolution per 1000 ft, the short pointer one revolution per 10 000 ft, and the pointer with the triangular index one revolution per 100 000 ft. With the drum-pointer (or counter-pointer) display, the pointer rotates one revolution per 1000 ft and the drum (or counter) rotates to indicate 1000-ft or 10 000-ft increments. Thus, for altimeters with an 80 000-ft range, the long pointer on both types of displays rotates 80 times. Since the scale of the altimeter is uniform, whereas the decrease in pressure with height is exponential, the pressure increment corresponding to a given height increment decreases with altitude (for example, the increment is $76~\mathrm{lb/ft^2}$ per 1000 ft at sea level, $19~\mathrm{lb/ft^2}$ per 1000 ft at 40 000 ft, and $3~\mathrm{lb/ft^2}$ per 1000 ft at 80 000 ft). As a result, measurement of pressure altitude becomes increasingly difficult at higher altitudes. As is shown later, this measurement difficulty is reflected in the much larger scale errors that are allowed at higher altitudes. As a consequence of the great scale sensitivity of the altimeter, errors due to hysteresis and drift can be of significance. These errors, together with the errors due to aftereffect (hysteresis at sea-level pressure) and recovery (drift at sea-level pressure), are illustrated in a description of a scale error calibration (fig. 11.2). For the scale-error calibration of an altimeter, the instrument is connected to a mercury barometer and a suction pump. The barometric subdial of the altimeter is set to 29.92 (fig. 11.1(a)), and the system pressure is adjusted to 29.92 in. Hg. The altimeter indication at this initial test point is noted, and then the pressure is reduced, at a rate corresponding to about 3000 ft/min, to the next test point (fig. 11.2). At each test point, the pressure is held constant for about 2 min and the instrument is vibrated before the altimeter indication is noted. When the test point at the maximum test altitude has been reached, the pressure is increased to two
hysteresis test points, and thereafter to the initial test pressure. The altimeter indication at this point is higher than the initial indication (because of aftereffect) and decreases slowly toward the initial indication (because of recovery effect). After a sufficient time lapse, the indication returns to the initial indication (called the rest point). The recovery error is the extent of this return during a specified time period. As indicated in figure 11.2, the hysteresis is the difference, at a given test pressure, between the instrument indications determined when the pressure is decreasing and when it is increasing. If the pressure is held constant at a given value during the pressure cycle (as at point A in fig. 11.2), the instrument indication drifts toward point B. This drift is always in a direction to "close" the hysteresis loop. For the certification of an altimeter for operational use, the scale errors determined at decreasing pressures are required to fall within the scale-error tolerance band (fig. 11.2) defined by the specified error tolerances. These scale errors (circular test points in fig. 11.2) are the values used in the preparation of correction charts or for the scale-error corrections in air data computers. The scale-error tolerances for two types of sensitive altimeters (refs. 1 and 2) and two types of precision altimeters (refs. 3, 4, and 5) are presented in table 11.1. Also tabulated are the hysteresis tolerances at two test altitudes and the aftereffect tolerance at sea-level pressure. Note that the calibration standards for these instruments do not require tests for the drift and recovery errors. A comparison of the scale-error tolerances for the four altimeters provides an indication of the improved accuracy that has been achieved through the years. Determination of the hysteresis at two test points, specified by standard test procedures, defines only a part of the hysteresis cycle. In tests to determine the complete hysteresis cycles of three types of altimeter (ref. 6), a number of type C-12, C-13, and MA-1 altimeters were calibrated throughout the hysteresis cycle. The calibrations of representative instruments of each altimeter type are presented in figure 11.3. In table 11.2, values of hysteresis errors (at the standard test points) for all the instruments are compared with the hysteresis tolerances. Also tabulated are the aftereffect errors and tolerances. These results are of interest in showing the hysteresis and aftereffect errors of the precision-type altimeter to be very much lower than the specified tolerances. In further tests of the three types of altimeter, the drift errors were determined through 1-hour and 6-hour test periods. The drift errors of a representative instrument of each altimeter type are shown in figure 11.4. These data show the major part of the 6-hour drift occurs within a short period after the start of the test. Airspeed indicator. An example of a mechanical-type airspeed indicator is the disk-pointer instrument shown in figure 11.5. The range of this indicator is 50 to 650 knots and the scale-error tolerances through this speed range are given in table 11.3 (from ref. 7). The airspeed indicator is calibrated by applying pressures to the pitot port of the instrument and measuring the difference between these pressures and the existing atmospheric pressure with a mercury manometer. The differential pressures corresponding to given values of calibrated airspeed are listed in tables A9 and All of appendix A. <u>True-airspeed indicator.-</u> Since the true-airspeed indicator requires inputs of impact pressure, static pressure, and temperature, an instrument having a given range of true airspeed must be designed for specific ranges of altitude and temperature. With the indicator of reference 8, for example, the true-airspeed range is 450 knots, the altitude range is 0 to 35 000 ft, and the temperature range is -60° C to 40° C. A photograph of this instrument is shown in figure 11.6. For the laboratory calibration of the instrument, the temperature probe is immersed in a temperature-controlled bath, and the pressure inside the instrument case is adjusted to a specified value of pressure altitude (measured with a barometer). Pressures corresponding to given values of calibrated airspeed, measured with a manometer, are then applied to the pitot port of the instrument. As the tables of the scale-error tolerances for the true-airspeed indicator are too extensive to be included in this text, only a few of the extreme values are listed in table 11.4 to indicate the specified accuracy of the instrument. <u>Machmeter.</u> An example of a mechanical-type Machmeter, having a range from 0.5 to 1.5, is shown in figure 11.7. Of the 43 test points required for calibration of this Machmeter, the differences between the indicated and test Mach numbers are required to meet the following tolerances (ref. 9): ±0.008M for 32 test points ±0.010M for 7 test points ±0.015M for 4 test points Since the Machmeter is actuated by impact pressure and static pressure, the instrument is calibrated with the static pressure in the instrument case held constant while pressures corresponding to given values of calibrated airspeed are applied to the pitot port. An abbreviated list of the test Mach numbers specified for the scale-error calibration is given in table 11.5 (from ref. 9). Rate-of-climb indicator. As noted in chapter II, the rate-of-climb indicator is designed with a capillary tube that controls the rate of flow of air from the static-pressure source into the instrument chamber. This device provides correct measures of vertical speed when the aircraft is in a steady climb or descent. For the rapid changes in vertical speed that can occur at the start and finish of a climb or descent, however, the indicated vertical speed lags the correct value. To overcome this lag, a vertical acceleration element has been incorporated in later models called instantaneous (or inertial) vertical-speed indicators. An example of a simple rate-of-climb indicator is shown in figure 11.8 and described in reference 10. For the calibration of this instrument, the indicator is placed in a vacuum chamber together with a precision altimeter. Suction is applied to the chamber to establish a given rate of change of altitude, indicated by the altimeter and timed with a stop watch. The scale error of the indicator is then determined as the difference between the measured rate of change of altitude and the rate indicated by the rate-of-climb indicator. The tolerances for an indicator having a range of ±6000 ft/min are listed in table 11.6 (from ref. 10). # Electrical Instrument Systems To illustrate the differences between mechanical and electrical instrument systems, diagrams of a mechanical system and of the two types of electrical systems are presented in figure 11.9. With the mechanical instrument system, the pressure-sensing element (capsule) is located in the instrument, the instrument indications are not corrected for scale error or the position error of the static-pressure installation, and the flight information is presented on dial-pointer displays (single or multiple pointer, drum-pointer, or counter-pointer). With the servoed instrument system, the pressure-sensing element (capsule) is located in a computer (central air data computer (ref. 11)) which can correct for both the scale error of the capsule and the position error of the static-pressure installation. The output signals of the computer thus represent corrected flight quantities (pressure altitude, calibrated airspeed, etc.). These computer-corrected signals are transmitted to the instrument where the flight information is presented on dial-pointer displays (including the counter-drumpointer display in fig. 11.10) or on vertically moving scale displays such as those in figure 11.11. With electronic pressure-transducer systems, the pressure-sensing element (diaphragm or bellows) is located in the electrical pressure transducer. The signals generated in the transducer are linearized in a microprocessor (computer) which can also apply corrections for the position error of the static-pressure installation. These corrected signals can then be presented on dial-pointer displays, vertical scale displays, LED (light emitting diode) displays, or CRT (cathode ray tube) displays. As noted previously, the accuracy of servoed instrument systems is greater than that of mechanical instruments and the accuracy of electronic pressure-transducer systems is generally greater than that of servoed instrument systems. In the following sections, the accuracies of a servoed instrument system and of two types of electronic pressure-transducer systems are discussed. Servoed instrument system. The servoed instrument system is a form of servomechanism incorporating feedback between the computer and the instrument (fig. 11.12). In the computer, a synchrotel is actuated by the deflections of a capsule, while in the instrument, the pointer or other type display is actuated (through a gear train) by a servomotor that is controlled by signals generated by the differences in the electrical fields of the synchrotel in the computer and another synchrotel in the instrument. Additional synchrotels in the computer are controlled by two-dimensional cams to generate the correctional signals for the scale error of the capsule and the position error of the static-pressure installation. The accuracy of a servoed instrument system is determined by (1) the basic accuracy of the computer (which includes the accuracy of the scale-error correction), (2) the accuracy of the position-error correction, and (3) the accuracy with which the corrected signals from the computer are transmitted and displayed in the instrument. The basic accuracy of an air data computer stated in terms of the error tolerances for each of the flight quantities is as follows: Altitude ±15 ft at
sea level to ±80 ft at 50 000 ft Airspeed ±2 knots at 100 knots to ±4 knots at 500 knots True airspeed ±4 knots throughout the range of the instrument Mach number ± 0.01 at Mach 0.2 to ± 0.005 at Mach 0.95 Vertical speed ±2 percent of the indicated value The accuracy with which the position error is corrected in the air data computer varies depending on the slope of the calibration curve. For position-error calibrations with low slopes, the accuracy of the position-error correction is greater than for calibrations with steep slopes. The accuracy with which the computer-generated signals are transmitted and displayed on the various servoed instruments (refs. 12 through 15) is given by the following specified error tolerances: Altimeter ±15 ft Airspeed indicator ±1 knot True-airspeed indicator ±1 knot Machmeter ±0.001M Vertical-speed indicator ±2 percent of indicated value For installations incorporating servoed systems, a mechanical counterpart of each servoed instrument is installed on the instrument panel for emergency use whenever the servoed system becomes inoperative because of electrical power failure. With one type of altimeter (a servopneumatic type in which the capsule is located in the instrument), the mechanical transmission is activated by a monitoring circuit whenever the servoed system becomes inoperative. Electronic pressure-transducer systems.— An electrical pressure transducer is a small pressure-sensing device that produces electrical signals proportional to the deflection of a capsule, diaphragm, bellows, or other pressure-sensing element (ref. 16). Depending on the characteristics of the transducer element, the output signal can be either digital (variable frequency) or analog (variable voltage). In the digital transducer described in reference 17, the pressure-sensing element is a single bellows in the absolute-pressure transducer and two opposing bellows in the differential-pressure transducer (fig. 11.13). The transducer element in these units is a quartz crystal oscillating beam which is driven at its resonant frequency through piezoelectric excitation. The variation in this resonant frequency with load applied by the bellows provides a digital output signal that is porportional to the applied pressure. When these output signals are linearized in a microprocessor as noted earlier, they can be transmitted to either a cockpit display or a magnetic tape recorder (in flight-test applications). The repeatability of the transducer is ± 0.005 percent of the full-scale pressure range, while the accuracy of the transducer system is about ± 0.05 percent of full scale. If corrections for the position error of the static-pressure installation are applied, the additional error for this correction depends on the slope of the position-error calibration curve, as in the case of servoed systems. For analog transducers, the pressure-sensing element is a flat, circular diaphragm that divides the transducer assembly into two chambers (fig. 11.14). The transducer element most commonly used in this type of transducer is either a variable-capacitance or a variable-reluctance device. These and other transducer elements (strain gage, variable-resistance device, etc.) are described in reference 16. Analog transducers are used primarily in flight-test recording systems, for which the output signals of the transducers are recorded on magnetic tape either in analog form (frequency modulation) or in digital form (analog-to-digital conversion). For analog recording, the output signal is processed in a signal control unit and a voltage-controlled oscillator, whereas for digital recording the signal is processed in a signal control unit and a pulse code modulator. The accuracy of analog recording systems is about ±1 percent of the full-scale pressure range, while the accuracy of analog-to-digital recording systems is about ±0.4 percent of full scale. # Accuracy of Calibration Equipment The accuracy with which instrument errors are determined depends fundamentally on the accuracy of the calibration test apparatus and the calibration test technique. With high-grade barometers and manometers and skilled operators, it is possible to duplicate pressure measurements with a precision of 0.001 in. Hg (ref. 18). For routine calibrations, however, the accuracy is probably no better than 0.005 in. Hg at sea-level pressure and 0.003 in. Hg at pressures corresponding to altitudes on the order of 70 000 ft. The altitude errors corresponding to these pressure accuracies are 5 ft at sea level and 50 ft at 70 000 ft. For the tests of reference 6, two different types of barometers were used to measure scale errors and drift errors. The barometer for the scale-error tests was equipped with an automatic system for measuring the height of the mercury column, whereas the barometer for the drift tests had an automatic mechanism for maintaining the pressure in the system at a selected value. With the first barometer, the pressures were indicated by a digital counter in pounds per square foot, and the repeatability of the readings was found to be 0.1 lb/ft 2 . With the second barometer, the scale was graduated in inches of mercury, and the accuracy of the pressure controller was found to be 0.001 in. Hg. Altitude increments corresponding to pressure accuracies of 0.1 lb/ft 2 and 0.001 in. Hg are given in figure 11.15. #### References - 1. Technical Manual Overhaul Sensitive Altimeters. T.O. 5F3-4-2-3 (Formerly 05-30-17), U.S. Air Force, Mar. 15, 1946; Change 10, Mar. 25, 1977. - 2. Altimeter, Pressure Actuated, Sensitive Type. TSO-ClOa, CAA, Mar. 1, 1949. - 3. Technical Manual Overhaul Sensitive Altimeter, AF Type MA-1. T.O. 5F3-2-4-3, U.S. Air Force, May 1, 1955; Change 9, Oct. 1, 1977. - 4. Technical Manual Overhaul Pressure Altimeter, AF Type No. AAU-8/A. T.O. 5F3-3-9-3, U.S. Air Force, Mar. 31, 1960; Change 6, Sept. 30, 1976. - 5. Altimeter, Pressure Actuated, Sensitive Type. TSO-Clob, FAA, Sept. 1, 1959. - 6. Gracey, William; and Stell, Richard E.: Repeatability, Drift, and After-effect of Three Types of Aircraft Altimeters. NASA TN D-922, 1961. - 7. Technical Order Overhaul Instructions Sensitive Airspeed Indicator. T.O. 5F8-2-8-3 (Formerly 05-10-30), U.S. Air Force, Aug. 1, 1953; Changed Dec. 15, 1967. - 8. Technical Manual Overhaul True Airspeed Indicators, AF Type M-lA. T.O. 5F8-2-7-3, U.S. Air Force, June 26, 1959; Change 3, Dec. 1, 1977. - 9. Technical Manual Overhaul Transonic Machmeter, AF Type A-2B. T.O. 5F8-8-3-3 (T.O. No. 05-20JA-2), U.S. Air Force, Sept. 15, 1952; Change 7, Dec. 30, 1977. - 10. Technical Manual Overhaul Rate of Climb Indicator. T.O. 5F8-9-2-13, U.S. Air Force, July 15, 1956; Change 6, Nov. 25, 1976. - 11. Dickman, Thomas J.: A Standard Digital Air Data Computer. 1976 Air Data Symposium Proceedings, S. Kalatucka, D. M. Layton, L. V. Schmidt, and L. Thomas, eds., U.S. Naval Postgraduate School, Sept. 1976, pp. 111-138. - 12. Technical Manual Overhaul Instructions Counter-Drum-Pointer Servoed Altimeter, Type No. AAU-19/A. T.O. 5F3-3-15-13 and NAVAIR 05-30-82, U.S. Air Force and Naval Air Systems Command, Jan. 15, 1971; Change 11, July 5, 1978. - 13. Technical Manual Field Maintenance Instructions Altitude-Vertical Speed Indicating System A/A24G-11. T.O. 5F4-18-2, U.S. Air Force, Sept. 16, 1968; Change 5, Nov. 15, 1978. - 14. Technical Manual Overhaul Sensitive Servoed Mach Number Indicator, A.F. Type ME-5. T.O. 5F8-2-4-63, U.S. Air Force, Apr. 28, 1961; Change 5, May 31, 1978. - 15. Amplifier-Indicator Group, Indicated Airspeed A/A24G-10. Mil. Specif. MIL-A-27670C(USAF), Aug. 16, 1965. - 16. Norton, Harry N.: Handbook of Transducers for Electronic Measuring Systems. Prentice-Hall, Inc., c.1969. - 17. Paros, Jerome M.: Digital Pressure Transducers. Meas. & Data, vol. 10, no. 2, Mar.-Apr. 1976, pp. 74-79. - 18. Brombacher, W. G.; Johnson, D. P.; and Cross, J. L.: Mercury Barometers and Manometers. NBS Monogr. 8, U.S. Dep. Commer., May 20, 1960. TABLE 11.1.- ERROR TOLERANCES FOR FOUR TYPES OF ALTIMETERS $^{\mathrm{a}}$ [From refs. 1 to 5] | Congitize | | | | | | | |---------------------------|---|---
---|--|--|--| | sensitive | altimeters | Precision altimeters | | | | | | b _{Type C-12} | b _{Type C-13} | b _{Type MA-1} | b _{Type} AAU-8/A | | | | | Scale-error tolerance, ft | | | | | | | | ±50 | ±50 | ±30 | ±30 | | | | | ±150 | ±100 | ±55 | ±55 | | | | | ±175 | ±150 | ±80 | ±80 | | | | | ±235 | ±200 | ±105 | ±105 | | | | | ±300 | ±200 | ±130 | ±130 | | | | | ±375 | ±300 | ±155 | ±155 | | | | | ±450 | ±300 | ±180 | ±180 | | | | | ±525 | ±300 | ±205 | ±205 | | | | | ±600 | Ì | ±300 | ±230 | | | | | ±675 | | ±400 | ±255 | | | | | ±750 | | ±500 | ±280 | | | | | | | ±800 | ±800 | | | | | | | ±1200 | ±1200 | | | | | | | ±1500 | ±1500 | | | | | Hysteresis tolerance, ft | | | | | | | | | ±70 | | | | | | | | ±70 | | | | | | | ±150 | | ±100 | ±100 | | | | | ±150 | | ±100 | ±100 | | | | | Aftereffect tolerance, ft | | | | | | | | ±60 | ±50 | ±50 | ±50 | | | | | | b _{Type C-12} Scal ±50 ±150 ±175 ±235 ±300 ±375 ±450 ±525 ±600 ±675 ±750 Hyst ±150 ±150 | b_Type C-12 b_Type C-13 Scale-error tolera ±50 ±50 ±150 ±100 ±175 ±150 ±235 ±200 ±375 ±300 ±450 ±300 ±525 ±300 ±600 ±675 ±750 Hysteresis toleran ±70 ±150 ±150 Aftereffect tolera | bType C-12 bType C-13 bType MA-1 \$\frac{\pmath{\text{total state of total erance}}{\pmath{\text{total state of total erance}}}\$ \$\frac{\pmath{\text{total state of total erance}}{\pmath{\text{total state of total erance}}}\$ \$\frac{\pmath{\text{total erance}}{\pmath{\text{total erance}}}\$ \$\frac{\pmath{\text{total erance}}{\pmath{\text{total erance}}\$ erance}}}{\tex | | | | ^aAbbreviated list of test points. ^bU.S. Air Force types. TABLE 11.2.- HYSTERESIS AND AFTEREFFECT OF THREE TYPES OF ALTIMETERS [From ref. 6] | Altimeter type | Minimum | Minimum Maximum | | Tolerance | |----------------------|----------------|------------------|-----------------|------------------| | | Hyst | eresis, ft | - | | | C-12
C-13
MA-1 | 80
60
10 | 160
110
45 | 112
87
25 | 150
70
100 | | | Afte | reffect, ft | | | | C-12
C-13
MA-1 | 25
25
5 | 60
55
20 | 41
33
10 | 60
50
50 | TABLE 11.3.- SCALE-ERROR TOLERANCES OF AIRSPEED INDICATOR^a [From ref. 7] | Calibrated airspeed,
knots | Tolerance,
knots | |-------------------------------|---------------------| | 50 | ±4.0 | | 80 | ±2.0 | | 150 | ±2.5 | | 250 | ±3.0 | | 300 | ±4.0 | | 550 | ±5.0 | | 650 | ±5.0 | ^aAbbreviated list of test points. TABLE 11.4.- SCALE-ERROR TOLERANCES OF TRUE-AIRSPEED INDICATOR^a [From ref. 8] | Altitude, | Calibrated
airspeed, | True airspeed, knots,
for bulb temperature of - | | | | |-----------|-------------------------|--|--------------------|------------------|-------------------| | ft | knots | -60 ⁰ C | -40 ⁰ C | 0 ⁰ С | 40 ⁰ C | | . 0 | 100
450 |
373 ± 8 |
390 ± 8 |
423 ± 9 | 104 ± 7 | | 5 000 | 100
450 |
403 ± 8 |
421 ± 8 | 160 ± 7 | 114 ± 7 | | 10 000 | 100
450 | 103 ± 7
434 ± 9 | 108 ± 7 | 117 ± 7 | | | 15 000 | 100 | 114 ± 7
424 ± 9 | 119 ± 7
444 ± 7 | 129 ± 7 | | | 20 000 | 100
350 | 126 ± 7
410 ± 8 | 132 ± 7
429 ± 7 | | | | 35 000 | 100
250 | 174 ± 6
 | 182 ± 6
423 ± 9 | | | ^aAbbreviated list of test points. TABLE 11.5.- SCALE-ERROR TOLERANCES FOR THE MACHMETER [From ref. 9] (a) Tolerances | Tolerance | No. of test
Mach numbers | | | |-----------------------------|-----------------------------|--|--| | ±0.008M
±.010M
±.015M | 32
7
4 | | | | Total | 43 | | | (b) Test Mach numbers for scale-error calibration a | Altitude,
ft | Calibrated airspeed,
mph | Test
Mach number | |-----------------|-----------------------------|---------------------| | 0 | 400
1100 | 0.526
1.445 | | 5 000 | 400
1000 | .573
1.418 | | 10 000 | 400
900 | .625
1.378 | | 15 000 | 300
900 | .518
1.498 | | 20,000 | 300
800 | .570
1.443 | | 35 000 | 200
600 | .528
1.430 | | 50 000 | 200
450 | .732
1.476 | ^aAbbreviated list of test points. TABLE 11.6.- SCALE-ERROR TOLERANCES FOR THE # RATE-OF-CLIMB INDICATOR [From ref. 10] | | Altitude,
ft | | | Test altitude
rate of change,
ft/min | Tolerance,
ft/min | | |----|-----------------|----|----|--|----------------------|------| | 1 | 000 | to | 1 | 500 | 500 | ±100 | | 1 | 000 | to | 2 | 000 | 1000 | ±200 | | 2 | 000 | to | 4 | 000 | 2000 | ±300 | | 2 | 000 | to | 4 | 000 | 3000 | ±300 | | 2 | 000 | to | 4 | 000 | 4000 | ±400 | | 2 | 000 | to | 4 | 000 | 5000 | ±500 | | 15 | 000 | to | 17 | 000 | 2000 | ±300 | | 15 | 000 | to | 17 | 000 | 4000 | ±400 | | 28 | 000 | to | 30 | 000 | 2000 | ±300 | | 28 | 000 | to | 30 | 000 | 4000 | ±400 | (a) Three-pointer display. (b) Drum-pointer display. L-79-358 Figure 11.1.- Pressure altimeters with different altitude displays. (Courtesy of Kollsman Instrument Co.) Also shown Figure 11.2.- Illustration of scale-error calibration of a pressure altimeter. are the errors due to hysteresis, drift, aftereffect, and recovery. (a) Type C-13. (b) Type C-12. Figure 11.3.- Scale errors and hysteresis of three types of altimeters. (Adapted from ref. 6.) (a) Type C-13. (b) Type C-12. (c) Type MA-1. Figure 11.4.- Drift errors of three types of altimeters. (Adapted from ref. 6.) L-79-359 (Courtesy of Figure 11.5.- Airspeed indicator. (Courtesy Figure 11.6.- True-airspeed indicator. of Kollsman Instrument Co.) Kollsman Instrument Co.) L-79-361 Figure 11.7.- Machmeter. (Courtesy of Kollsman Instrument Co.) (Courtesy Figure 11.8.- Rate-of-climb indicator. of Kollsman Instrument Co.) Figure 11.9.- Diagram of mechanical and electrical instrument systems. (c) Electronic pressure-transducer system. Dial-pointer Vertical scale LED CRT Cable 7 Microprocessor Cable \neg Transducer Pressure tubing — Figure 11.10.- Counter-drum-pointer servoed altimeter. (Courtesy of Harowe Systems, Inc.) (a) Altitude/vertical-speed indicator. L-79-364 Figure 11.11.- Servoed instruments with vertical-scale displays. (Courtesy of Kollsman Instrument Co.) Figure 11.12.- Simplified diagram of a servoed altimeter system. (a) Absolute-pressure transducer. (b) Differential-pressure transducer. Figure 11.13.- Quartz crystal digital pressure transducer. (Courtesy of Paroscientific, Inc.) (a) Absolute-pressure transducer. (b) Differential-pressure transducer. Figure 11.14.- Analog pressure transducers. Figure 11.15.- Altitude errors corresponding to two pressure accuracies. (Adapted from ref. 6.) #### CHAPTER XII ## OPERATIONAL ASPECTS OF ALTIMETRY In the description of the altimeter test procedures in chapter XI, it was noted that altimeters are calibrated with the barometric subdial scale set at 29.92 in. Hg, the sea-level pressure in the standard atmosphere. If the barometric subdial is also set at 29.92 in. Hg for operational use, the altimeter indicates pressure altitude above sea level. This pressure altitude differs from the geometric height whenever the sea-level pressure or temperature gradient of the atmosphere differs from the standard value. To account for these variations in pressure and temperature, the barometric subdial can be adjusted so that the altimeter indicates either the elevation of the airport or zero height at the airport elevation. Thus, in service operations, the barometric subdial may be set at one of three settings, which are assigned the following Q signals in the Aeronautical Code: - QFE barometric subdial set at 29.92 in. Hg - QNH barometric subdial setting for altimeter to indicate elevation of airport - QNE barometric subdial setting for altimeter to indicate zero at the airport The QNH settings are used by all aircraft for take-off and landing and for the vertical separation of aircraft at altitudes below 18 000 ft (ref. 1). The QNE settings are used by some airline operators during landing approaches to provide a cross-check with another altimeter set to QNH. The QFE settings are used by all aircraft for vertical separation at altitudes above 18 000 ft. In practice, the pilot adjusts the barometric scale prior to take-off until the altimeter indicates the elevation of the airport (QNH value). Before landing at his destination, he resets the barometric scale to the existing QNH value for that area so that the altimeter indicates the elevation of that airport when
the aircraft lands. The current QNH settings are measured at the airport weather stations and are reported to the pilots by radio. # Barometric Scale Settings The mechanisms that rotate the barometric scale and the pointers of the altimeter are linked together so that adjusting the barometric scale rotates the pointer. The correspondence between the two scales is the same as the pressure-height relation in the standard atmosphere. The interaction between the barometric scale and the altimeter pointer can be illustrated with the two hypothetical atmospheric conditions shown in figure 12.1. The curve to the right in both charts represents the pressure-height relation in the standard atmosphere. Since the barometric scale and the altitude scale of the altimeter have the same relation, an identical curve, representing the two altimeter scales, can be thought to lie on top of the atmospheric curve. Thus the abscissa of the charts can be labeled barometric subdial scale as well as atmospheric pressure, and the ordinate can be labeled altimeter scale as well as geometric height. The curve to the left in figure 12.1(a) represents an atmospheric condition in which the temperature gradient is standard and the sea-level pressure is 28.75 in. Hg. For this condition, the altimeter indicates 1100 ft if the barometric scale is set at 29.92 in. Hg. When the scale is adjusted to 28.75 in. Hg, the altimeter scale curve is moved down until it intersects 28.75 in. Hg on the zero-height axis. The altimeter pointer will then indicate zero, and the altimeter will indicate geometric height throughout the altitude range. The curve to the left in figure 12.1(b) depicts an atmospheric condition in which the sea-level pressure is standard and the temperature gradient is below standard. For this condition, the altimeter indicates zero height at sea level when the barometric scale is set at 29.92 in. Hg (the existing sea-level pressure). At heights above sea level, however, the altimeter indications are higher than the geometric heights. For example, if the altimeter is taken to a height of 15 000 ft where the existing pressure is 14.82 in. Hg, the altimeter will indicate 18 200 ft (as shown by the intersection of this pressure with the altimeter scale curve). When the airport elevation is at sea level, the QNH value is the same as the existing sea-level pressure. When the airport elevation is an appreciable height above sea level, however, the QNH value differs from the sea-level pressure whenever the temperature gradient differs from that in the standard atmosphere. This difference can be illustrated by the example shown in figure 12.2. For the case shown, the airport elevation is 5000 ft, the sea-level pressure is 29.92 in. Hg, and the temperature gradient is below standard. When an altimeter at the airport is adjusted to indicate 5000 ft, the barometric scale indicates 28.30 in. Hg (as shown by the intersection of the altimeter scale curve with the zero-height axis). For this case, therefore, the barometric subdial indicates a QNH value that is different from the actual pressure at sea level. When the barometric scale is set to the QNH value at an airport, the altimeter should provide approximate measures of geometric height through the relatively small height range required to clear ground obstacles during take-off and landing. In an investigation to determine how accurately the altimeters in service aircraft measure geometric height in routine operations (ref. 2), the geometric heights of a wide variety of aircraft (civil transport, military, and general aviation) were measured by a ground camera at a point 3500 ft from the end of the runway of a commercial airport. The altitudes indicated by the cockpit altimeters over this point were observed by the pilots and reported to the ground station. The results of the tests showed that for an average geometric height of 280 ft in the landing approach, the distribution of the altimeter system errors of all of the aircraft had a bias of +10 ft and a maximum probable error (99.7 percent probability) of ±159 ft about the bias. For an average geometric height of 440 ft during take-off, the bias of the error distribution was -33 ft and the maximum probable error was ± 207 ft. The signs of the bias values of the two error distributions were in directions that could be accounted for by pressure-system lag and instrument friction lag. The QNH setting is also used on cross-country flights where altitude information is needed for terrain clearance in mountainous areas and for the vertical separation of aircraft below 18 000 ft. On such flights, the pilots are required to continually reset the barometric scales to the QNH values reported by stations along the route. Even with altimeters set to the latest reported QNH settings, however, the vertical separation between two aircraft may be less than the prescribed minimum. The separation may be reduced, for example, when two aircraft approach each other from airports reporting different QNH settings. The separation may also be reduced if there is a change in the atmospheric conditions after an altimeter has been set to a QNH value. The effects of atmospheric changes depend on the distance between the QNH reporting stations and on the variation of the atmospheric pressure with time. In an analysis of these effects in reference 3, the following conditions were assumed: a distance of 130 miles between stations, a pressure variation of 4 millibars per hour, and a time lapse of 1/2 hour from the time of the QNH report. At the midpoint between the stations, the altitude error under these conditions was estimated to be 200 ft. As noted in the study, however, even this value might be too conservative, for errors of as much as 500 ft have been reported at the boundaries of QNH reporting stations in some areas of Europe. To avoid the uncertainties in the indications of altimeters set to QNH for high-altitude and transoceanic flights, the altimeters of all aircraft operating above 18 000 ft are set to the QFE value (29.92 in. Hg). With this setting, the altimeters in the aircraft above any given point on the Earth are referenced to the same pressure. If the reference pressure changes, the flight level of each of the aircraft moves up or down by the same amount, so that the relative separation remains the same (assuming that the temperature gradient of the air is standard). If the temperature gradient varies from the standard, the distance between the flight levels decreases when the gradient is below standard and increases when the gradient is above standard. During flights over mountains, the difference between the indicated altitude and the geometric height presents the greatest hazard when the atmospheric temperature is extremely low, for then the altimeter indication is higher than the geometric height. To determine the altimeter errors that might be encountered at extremely low temperatures, the geometric heights at given flight levels were computed for the coldest day in the winter of 1961-62 at three airports in the northwestern United States. The temperature-height profiles for this day at the three airports are shown in figure 12.3 together with the temperature variation in the standard atmosphere. For each of the airport locations, the aircraft was considered to be flying at the minimum en route altitude specified by the civil regulations (2000 ft above the highest peak in the region). The barometric scale was assumed to be set to the existing QNH value, so that the indicated altitudes were measures of the pressure altitude above the airport. The geometric height $\, {\bf Z} \,$ of the aircraft was computed from $$Z = E + (H_{i} - E) \frac{T_{m,a}}{T_{m,s}}$$ (12.1) where E is the elevation of the airport, H_i the indicated altitude, and $T_{m,a}$ and $T_{m,s}$ the actual and standard mean temperatures of the air between the airport and the flight level. The results of these computations, listed in table 12.1, show the difference between the indicated altitude and the geometric height, H_i - Z, to be as much as 950 ft. The preceding discussion has considered only the effects of atmospheric variations on the indications of altimeters set to QNH. The accuracy of the altitude indications, however, also depends on the accuracy with which the QNH value is measured at the ground station and on how closely the pilot adjusts the barometric scale to the reported value. The altitude perceived by the pilot in turn depends on his interpretation of the altitude displayed on the instrument dial. With the three-pointer altitude display (chapter XI), pilots sometimes misread the displayed altitude by one or more thousands of feet. The drumpointer and counter-pointer displays, with digital readouts in 1000-ft increments, were developed to overcome this kind of reading error. # Flight Technical Error The actual flight level of an aircraft during cruising flight usually differs from its assigned flight level by an amount equal to the instrument system error (defined in chapter II). Because of difficulties in constantly maintaining level flight (either because of the characteristics of the elevator control system or deficiencies in the autopilot and its altitude-hold, or height-lock, system), the aircraft may occasionally deviate from the flight level the pilot is attempting to maintain. These occasional deviations from level flight are called flight technical error (ref. 3). Efforts to collect statistical information on the magnitude and frequency of the flight technical error were initiated by the International Civil Aviation Organization (ICAO) in 1956. Additional investigations were conducted by the British Ministry of Transport and Civil Aviation (MTCA) in 1957, the U.S. Civil Aeronautics Administration (CAA) in 1958, the National Aeronautics and Space Administration (NASA) in 1961-63, and the International Air Transport Association (IATA) in 1962, 1963,
and 1965 (refs. 4 through 9). In the initial ICAO study, and in the later CAA and MTCA studies, the pilot of civil aircraft were asked to keep records of all excursions of the aircraft from level flight as indicated by the cockpit altimeters. In these three studies, pilot observations of altitude deviations were collected from a wide variety of aircraft in cruising flight at altitudes up to 28 000 ft. The pilots' reports were correlated in terms of the magnitudes of the deviations and the frequency of their occurrence. The deviations were randomly distributed about the flight level and had values that would conform, approximately, to a normal distribution curve. The probability of the occurrence of a deviation of a given magnitude could, therefore, be calculated. The magnitude selected by ICAO was the maximum probable error, defined as the value equal to three times the standard deviation (σ) of the data. This maximum probable error represents the altitude deviation that would be equaled or exceeded for 0.3 percent of the deviations. The data collected in the ICAO, CAA, and MTCA studies showed the flight technical error to increase with altitude and to have a 3 σ value of about 500 ft at an altitude of 40 000 ft (ref. 3). In the IATA investigations (refs. 5 and 6), pilot reports of altitude deviations were obtained in routine flights of commercial transports flying across the North Atlantic Ocean at altitudes above 29 000 ft. The data from these flights were analyzed, as in the ICAO study, to yield a 30 value which was found to be 190 ft for these particular operations. The much lower value from these tests (compared with 500 ft found in the earlier studies) can be accounted for by the fact that the transports in the IATA tests were equipped with autopilots with altitude-hold systems, whereas the aircraft in the earlier tests were operated, for the most part, under manual control. In the NASA investigations (refs. 8 and 9), the flight technical errors were determined from an evaluation of the altitude traces obtained from NASA recording altimeters. These recorders were installed in a variety of civil transports flying both domestic and transoceanic routes at altitudes up to 40 000 ft. The altitude recordings were analyzed in terms of the altitude deviation beyond which the airplane would be expected to operate for 0.3 percent of the cruise time. Since this criterion provides an indication of the length of time the airplane was away from its flight level, it represents a more meaningful measure of collision exposure than that provided by the 30 errors. The results of the NASA analysis are presented in figure 12.4. The values of the altitude deviations are plotted at the middle of each 5000-ft altitude bracket within which the values were recorded. The deviations were all experienced when the airplanes were under autopilot altitude-hold control. With the exception of one airplane, the deviations in the altitude range below 25 000 ft were within 160 ft. The deviations in the altitude range above 25 000 ft were within 225 ft. #### Overall Altitude Errors The overall altitude error is the deviation of an aircraft from its assigned altitude, that is, the sum of the altimeter-system error and the flight technical error (fig. 12.5). A number of attempts have been made to estimate the overall altitude errors of aircraft (refs. 3, 4, 6, and 10 to 13) to see whether these overall errors provide adequate clearance within the prescribed vertical separation minima (1000 ft for altitudes up to 29 000 ft and 2000 ft for altitudes above 29 000 ft (ref. 1)). For the altitude range from 29 000 to 40 000 ft, assessments have also been made to see whether the overall altitude errors would permit a reduction in the separation minimum from 2000 to 1000 ft. As shown in the following discussion, the validity of these assessments depends on the accuracy of the values assigned to the altimetersystem and flight technical errors and on the procedure by which these errors are combined. In an early assessment of the errors of aircraft operating in the 29 000-ft to 40 000-ft range (ref. 10), the overall altitude error was determined by combining the altimeter-system and flight technical errors by statistical summation. With this procedure for combining the errors, the maximum probable value (30) of the overall altitude error was determined as three times the square root of the sum of the squares of the standard deviations of the individual errors. The value of the altimeter-system error was derived from a survey of the available data on the instrument and static-pressure errors of the aircraft in service at the time of the study. An analysis of these data showed the two errors to be normally distributed, to increase with altitude, and to have maximum probable values at an altitude of 40 000 ft of 250 ft for the instrument error and 265 ft for the static-pressure error. The maximum probable value for the flight technical error was the 500-ft value determined in the studies discussed in the previous section. From these three values, the maximum probable overall alti- tude error was calculated to be $$3\sqrt{\left(\frac{250}{3}\right)^2 + \left(\frac{265}{3}\right)^2 + \left(\frac{500}{3}\right)^2}$$ or 618 ft. This 618-ft value was considered to represent the deviation that would be equaled or exceeded by 0.3 percent of the aircraft assigned to a flight level of 40 000 ft. For aircraft flying adjacent flight levels, the overall altitude errors of the aircraft on the two levels were calculated by combining two of the 618-ft values by statistical summation. This calculation, $$3\sqrt{\left(\frac{618}{3}\right)^2 + \left(\frac{618}{3}\right)^2}$$, which can also be expressed as $618\sqrt{2}$, yields a value of 874 ft, which was then considered to represent the loss in vertical separation that would be experienced by 0.3 percent of the aircraft assigned to the two flight levels. When this separationloss figure was increased by 50 ft to account for the vertical dimensions of the aircraft, the actual separation for an assigned separation of 1000 ft was 76 ft. A more conservative approach to the vertical separation problem would require that the maximum probable overall altitude errors of the aircraft on adjacent flight levels be less than one-half of the vertical separation minimum, or 500 ft for an assigned separation of 1000 ft. This approach was taken by IATA in its assessment of the altimeter and flight technical errors in reference 6. The altimeter-system errors for this study were determined experimentally during the same tests, discussed in the previous section, that the flight technical errors of commercial transports were measured over the North Atlantic in the altitude range above 29 000 ft. In these tests, the combined altimetersystem errors of two aircraft were determined from a comparison of the geometric and indicated altitudes of aircraft on adjacent flight levels. The indicated altitudes were measured with the cockpit altimeters, while the geometric altitudes were measured with radar altimeters. The results of the tests showed the combined altimeter-system errors to have a normal distribution with a maximum probable value (30) of 510 ft. From this value for two aircraft, the maximum probable value for one aircraft was calculated to be $510/\sqrt{2}$, or 360 ft. The overall altitude error for one aircraft was then determined as the statistical sum of this 360-ft value and the maximum probable value of the flight technical error (190 ft) which had also been measured in the IATA tests. The resulting error, $3\sqrt{\left(\frac{360}{3}\right)^2+\left(\frac{190}{3}\right)^2}$ or 408 ft, is thus 92 ft less than one-half the 1000-ft separation minimum. While the vertical separation problem is a major part of the collision avoidance problem for aircraft flying at adjacent flight levels, the longitudinal and lateral separations of the aircraft must also be taken into account in any assessment of collision risk. A mathematical model for estimating collision probabilities is described in references 14 and 15. An assessment of this model and of other methods of evaluating collision risk is contained in reference 16. #### References - 1. Aeronaut. Staff: Airman's Information Manual. Part 1 Basic Flight Manual and ATC Procedures. Aero Publishers, Inc., 1977. - 2. Gracey, William; Jewel, Joseph W., Jr.; and Carpenter, Gene T.: Measurement of the Errors of Service Altimeter Installations During Landing-Approach and Take-Off Operations. NASA TN D-463, 1960. - 3. First Interim Report of the Panel on Vertical Separation of Aircraft. Doc. 7672-AN/860, Int. Civ. Aviat. Organ. (Montreal), Feb. 14-22, 1956. - 4. Panel on Vertical Separation of Aircraft: Summary of the Work of the Vertical Separation Panel. VS P-WP/57, Int. Civ. Aviat. Organ. (Montreal), Feb. 15, 1961. - 5. Report on Pressure Altimeter System Accuracy Study North Atlantic Region. DOC. GEN. 1922, Int. Air Trans. Assoc. (Montreal), July-Aug. 1962. - 6. Report on Vertical Separation Study NAT Region. DOC. GEN. 1951, Int. Air Trans. Assoc. (Montreal), Mar. 1964. - 7. Anderson, R. G.: Results of the 1965 Flight-Deck Data Collection on Height Keeping Over the North Atlantic. Tech Rep. No. 65268, British R.A.E., Nov. 1965. - 8. Gracey, William; and Shipp, Jo Ann: Random Deviations From Cruise Altitudes of a Turbojet Transport at Altitudes Between 20,000 and 41,000 Feet. NASA TN D-820, 1961. - 9. Kolnick, Joseph J.; and Bentley, Barbara S.: Random Deviations From Stabilized Cruise Altitudes of Commercial Transports at Altitudes up to 40,000 Feet With Autopilot in Altitude Hold. NASA TN D-1950, 1963. - 10. Altimetry and the Vertical Separation of Aircraft. Int. Air Trans. Assoc. (Montreal), Jan. 1960. - 11. Gracey, William: The Measurement of Pressure Altitude on Aircraft. NACA TN 4127, 1957. - 12. Altimetry. Paper 215-58/DO-88, Radio Technical Commission for Aeronautics, Nov. 1,
1958. - 13. Gracey, William: Recent Developments in Pressure Altimetry. J. Aircraft, vol. 2, no. 3, May-June 1965, pp. 161-165. - 14. Reich, P. G.: A Theory of Safe Separation Standards for Air Traffic Control. Tech Rep. No. 64041, British R.A.E., Nov. 1964. - 15. Reich, P. G.; and Anderson, R. G.: Separation Standards in the Long Range Air Traffic Control Region, With Special Reference to Vertical Separation. Tech. Memo. Math 68, British R.A.E., Oct. 1965. - 16. Gilsinn, Judith F.; and Shier, Douglas R.: Mathematical Approaches to Evaluating Aircraft Vertical Separation Standards. Rep. No. FAA-EM-76-12, May 1976. TABLE 12.1.- INDICATED ALTITUDES AND GEOMETRIC HEIGHTS FOR LOW-TEMPERATURE ATMOSPHERES AT THREE AIRPORTS | QNH station | а _{Ні,} ft | ^b z, ft | H _i - Z, ft | |----------------------|---------------------|--------------------|------------------------| | Seattle, Washington | 12 000 | 11 225 | 775 | | Great Falls, Montana | 13 000 | 12 150 | 850 | | Spokane, Washington | 14 000 | 13 050 | 950 | $^{^{\}rm a}\!\text{Altitude}$ indicated by altimeter with barometric subdial set to QNH. ^bGeometric height computed from equation (12.1). (a) Sea-level pressure below standard and temperature gradient standard. (b) Sea-level pressure standard and temperature gradient below standard. Figure 12.1.- Two hypothetical pressure-height variations in the atmosphere. Atmospheric pressure and barometric subdial scale, in. Hg - Ε elevation of airport barometric scale setting at elevation E QNH pressure at sea level Po Z geometric height of airplane - P_a height indicated by altimeter at Z $H_{\mathbf{i}}$ pressure at height Z Figure 12.2.- Pressure-height variation in an atmosphere in which the sea-level pressure is standard and the temperature gradient is below standard. Altimeter at elevation E is set to the QNH value at that elevation. Great Falls, MontanaSpokane, WashingtonSeattle, Washington Figure 12.3.- Low-temperature atmospheres at three airports in the northwestern United States. Figure 12.4.- Flight technical errors of 19 civil transports. Altitude deviations for each airplane are plotted at the midpoint of each 5000-ft altitude bracket within which the data were recorded. (Adapted from ref. 9.) Figure 12.5.- Overall altitude error. (Adapted from ref. 13.) Altimeter system error Flight technical error Overall altitude error | S. | | | | |----|--|--|--| #### CHAPTER XIII #### OTHER ALTITUDE-MEASURING METHODS Thus far, the only altitude-measuring method that has been discussed is based on the measurement of atmospheric pressure and the pressure-height variation in the standard atmosphere. Because of the exponential decrease of pressure with height in this atmosphere and the decreased accuracy of the pressure altimeter at altitudes above 50 000 ft, a variety of other methods have been investigated for measuring altitude at high altitudes (refs. 1 and 2). A number of low-range altimeters have also been investigated for measuring height above the terrain during landing approaches. For a discussion of both the high-range and low-range methods, the various altimeters are grouped according to the following classification: Measurement of height above the terrain Radio and radar altimeters Laser altimeter Sonic altimeter Capacitance altimeter Measurement of altitude (pressure or density) above sea level Density altimeter Limited-range pressure altimeter Hypsometer Measurement of height above sea level Cosmic-ray altimeter Gravity meter Magnetometer Of all the altimeters in the foregoing list, only the radio and radar altimeters have been developed for operational use in service aircraft. The limited-range pressure altimeter has been used in flight tests of an experimental airplane, while the hypsometer has been used in radiosondes, rocketsondes, and balloons. The remaining altimeters have been developed as experimental models to test the feasibility of the altitude-measuring principles. #### Radio and Radar Altimeters Measurement of height by radio and radar altimeters is accomplished by transmitting a radio-frequency wave from the aircraft to the ground and measuring some characteristic of the reflected wave. With radio altimeters, a continuous wave, modulated in either frequency or amplitude, is transmitted from the aircraft, and the return signal is compared with a sample of the instantaneous signal being transmitted. In the frequency- modulated type, the difference between the frequencies of the transmitted and received signals, which is a function of the modulation rate and time, provides a measure of the height. In the phase-comparison-type altimeter, the phase relation between the transmitted signal (which may be either frequency or amplitude modulated) and the received signal provides a measure of the signal transit time and, thus, of height. The accuracy of radio altimeters is generally ± 2 ft for heights up to 40 ft and ± 2.5 percent of the height for heights above 40 ft. The height range is usually limited to 3000 ft because the errors become excessive at greater heights. With the radar altimeter, the radiation is transmitted as a series of discrete pulses, and the distance between the aircraft and the ground is determined by measuring the time for the reflected wave to be received at the aircraft. Since the accuracy of the instrument depends on the width of the transmitted pulse and on the accuracy of the time measurement, measurements at low heights require ultrashort pulses and extremely precise time measurements. For this reason, the lower limit of the range of radar altimeters is generally at least 500 ft above the ground. The accuracy of radar altimeters is $\pm (25 \text{ ft} + 0.025 \text{ percent})$ of the height) and the height range is 500 ft to 60 000 ft. To provide height measurements below 500 ft, some manufacturers have developed radio-radar altimeters in which the radio altimeter operates from 0 to 3000 ft and the radar altimeter from 3000 ft to 60 000 ft. The accuracy and the maximum range of radar and radio altimeters depend not only on the characteristics of the instrument but also on the nature of the terrain below the aircraft. With the exception of very smooth and dense surfaces (such as calm lakes and paved runway surfaces), the reflection of the transmitted wave from the terrain is diffuse rather than specular (mirror reflection). This diffused scattering of the wave results in a loss in power of the reflected wave which, in combination with the power lost by the absorption of wave energy by the terrain, limits the maximum altitude capability of the altimeter. The accuracy of the height indications can also be affected when the transmitted signal is captured and reflected by the terrain nearest the aircraft. Thus, when the aircraft is flying in the vicinity of mountains, the altimeter may measure the distance to some part of the nearest hill. Radar and radio altimeters have a high order of accuracy and are valuable instruments for indications of terrain clearance. They would be unsuitable for the vertical separation of aircraft at high altitudes, however, because they measure height above the terrain rather than above sea level. Furthermore, the accuracy of the radar at an altitude of 50 000 ft is not significantly better than that of the best of the present-day computer-corrected pressure altimeters. 医阿弗马氏征 医二十二烷 医二氏性 医外丛 翼頭鐵鈴嘴 #### Laser Altimeter A laser-type altimeter has recently been developed for measuring height above the terrain at altitudes up to 3000 ft (ref. 3). The laser system consists of a pulsed laser transmitter and receiver and a timing device to measure the transit time of the pulse to the ground and back to the receiver. The experimental model described in reference 3 has been flight-tested over various types of terrain (farmland, wooded areas, and open bodies of water) at altitudes up to 2000 ft. Recordings of the ground profiles indicated good signal return over well-defined terrain, but some uncertainty in the height measurements over wooded areas where the laser pulses did not always penetrate the foliage to the ground level. In addition, discontinuities in the recorded data occurred over surfaces with low diffuse reflectivity, such as asphalt paving. #### Sonic Altimeter Sonic altimeters measure height above the terrain by transmitting a sound wave from the aircraft and measuring either (1) the time for the ground-reflected signal to be received at the aircraft or (2) the phase shift of the reflected signal. Because of the relatively low speed of sound, altimeters utilizing sound transmission are limited to low altitudes and low speeds. For one pulse-type altimeter, the altitude limitation is 300 ft and the aircraft-speed limitation is 150 knots. The reliability of sonic altimeters is very dependent on the character of the terrain below the aircraft. In flight tests of a pulse-type altimeter over a soft terrain such as grassland, for example, the pointer of the indicator fluctuated through a wide amplitude. Even over hard surfaces such as a concrete runway, pointer fluctuations occurred at altitudes above 100 ft because of the weak signal return at those heights. #### Capacitance Altimeter Since an aircraft and the Earth can act as the two plates of a condenser, the capacitance, which varies with the distance between the two plates, can be used as a means of measuring the height of the aircraft above the ground. In one application of this method (ref. 4), use was made of the principle that the capacitance between two insulated conductors is altered by the proximity of a third conductor. Thus, two insulated electrodes can be mounted some distance apart on an aircraft, so that the capacitance between the electrodes provides a measure of the distance between the aircraft
and the ground. The change in capacitance with height is greatest when the aircraft is close to the ground and decreases rapidly as the height of the aircraft increases. In the development of the capacitance altimeter reported in reference 4, flight tests were conducted with various types of electrodes installed on the wing tips or on the underside of the fuselage of a variety of aircraft. The results of the tests showed that the altitude range over which reliable height indications could be obtained was generally less than 200 ft. ### Density Altimeter A number of devices have been investigated for the measurement of air density on radiosondes, aircraft, and missiles. In one system, air from an airsampling sensor is brought into a chamber where the density of that air is determined by (1) measuring the breakdown potential between two electrodes, (2) measuring the change in resistance of a heated wire resulting from the cooling action of the air, or (3) ionizing the air by means of a heated or radioactive cathode and then measuring the resulting ionic current. In another system, a beta- or ultraviolet-ray emitter on the forward part of the aircraft ionizes a portion of the air immediately ahead of the aircraft; the backscatter produced by the ionization of the air is then measured by a detector located near the emitter. The altitude range of density-type altimeters begins at an altitude of about 50 000 ft, because at lower altitudes, the measurements are adversely affected by the presence of water vapor in the air. The use of a density altimeter as an operational instrument, therefore, would require an auxiliary pressure altimeter below 50 000 ft. Furthermore, since the accuracy of the density altimeters that have been developed is no greater than that of the pressure altimeter, the density altimeter offers no advantage over present-day operational systems. # Limited-Range Pressure Altimeter With the limited-range pressure altimeter, the aneroid is a so-called collapsed, or nesting, capsule that is designed to start its deflection at some high altitude. In one design of this type of instrument, the lower limit of the operating range was 50 000 ft. Thus, like the density altimeter, the use of a limited-range pressure altimeter would require an auxiliary pressure altimeter at the lower altitudes. The accuracy that can be achieved with the limited-range pressure altimeter is greater than that of the pressure altimeter in the range from 50 000 to 80 000 ft, but is no greater than the accuracy of the digital-type transducer system described in chapter XI. ### Hypsometer The operation of the hypsometer is based on the principle that the boiling point of a pure liquid is a function of the atmospheric pressure acting on the surface of the liquid (refs. 5, 6, and 7). The atmospheric pressure can thus be derived from measurements of the temperature just above the surface of a boiling liquid. The attractive feature of this instrument is that the boiling point of most liquids is approximately a logarithmic function of pressure and, thus, varies in an approximately linear manner with altitude. In its simplest form, the hypsometer consists of an insulated container which is open to the atmosphere, an evaporative liquid which boils at some reduced pressure, and a temperature-measuring element located in the vapor above the surface of the liquid. In a more advanced form, a condenser, surrounded with a coolant, is attached to the liquid container in order to reflux the vapor back to the container. This type has the advantage that the level of the evaporative fluid remains approximately constant and thereby insures more consistent measurements of the vapor temperature. It has the additional advantage of having a longer operating time for a given quantity of fluid because vapor is not lost as rapidly as with the simplified type. The accuracy that can be achieved with a hypsometer depends on the degree to which the vapor-liquid equilibrium is maintained, on the stability of the temperature-measuring element, and on the accuracy of the thermometer. Since the best accuracy that can be achieved is no greater than about 0.5 percent of the indicated altitude, the accuracy of hypsometer systems is considerably lower than that of the pressure altimeter. ### Cosmic-Ray Altimeter Measurement of altitude by means of cosmic rays is possible because the intensity of the cosmic rays in the atmosphere increases in an approximately linear manner with height through an altitude range from about 15 000 ft to 100 000 ft. Measurements below 15 000 ft are unreliable because of the marked decrease in the variation of cosmic-ray intensity with height near the Earth. A cosmic-ray altimeter utilizing two groups of five Geiger counters to detect the concentration of the cosmic radiation is described in reference 8. The outputs of the Geiger counters, which provide a statistical measure of the radiation, are registered on a galvanometer which is calibrated in terms of altitude. In flight tests of a model of this instrument through an altitude range up to 30 000 ft, the altitude indications agreed with those of a pressure altimeter to within ±500 ft at altitudes above 15 000 ft. The use of cosmic rays for the measurement of altitude would be limited by the fact that the cosmic-ray intensity at a given height varies markedly with latitude. A cosmic-ray altimeter would also be affected by the large variations in cosmic radiation that accompany solar flares and magnetic storms. ### Gravity Meter Measurement of gravity can be used as a means of deriving altitude because the acceleration of gravity decreases with height in a linear manner (for altitudes up to $100\ 000\ ft$) and because the gravitational-height relation is essentially invariant (along a line above any given point on the Earth). The change in the acceleration of gravity from sea level to 100 000 ft in the middle latitudes, however, is only about 0.0lg. With one airborne gravity meter (ref. 9), the best accuracy that could be attained was about 10^{-5} g, which is equivalent to a height error of about 100 ft. Also, the accuracy of the height measurements would be determined to a large extent by horizontal gravity gradients. The gradient between the equator and the poles, for example, is about 0.005g, or an equivalent height increment of about 50 000 ft. Horizontal gradients also occur because of gravitational anomalies due to local variations in the density of the Earth. Over some regions of the Earth the gradients can be as much as 10^{-5} g, or 100 ft, per mile (ref. 10). Although the gradients due to anomalies are attenuated with height, the effects remain severe even at appreciable altitudes. The tests of reference 9, for example, showed that, in a level flight run at 12 500 ft over a mountainous area, a gravimeter recorded a change of 10^{-4} g, or 1000 ft, over a distance of about 30 miles. The measurements of a gravity meter are also affected by accelerations resulting from (1) changes in the aircraft attitude, (2) aircraft response to air turbulence, (3) maneuvers, and (4) airspeed with respect to the Earth's rotation. The accelerations resulting from flight through turbulent air and from vertical-plane maneuvers can, of course, be very large with respect to the 0.01g increment corresponding to the 100 000-ft altitude range. The accelerations which result from the speed of the aircraft with respect to the Earth's rotation are in the form of centrifugal and Coriolis accelerations which, for some flight conditions, can be quite large (ref. 2). ### Magnetometer The magnetometer measures the total field intensity at any given point within the Earth's magnetic field. Since the magnetic field strength decreases with distance above the Earth, the magnetometer has been investigated as a possible means of measuring height (ref. 11). The measurements of a magnetometer, however, would be affected by the variation of the vertical rate of change of intensity with latitude (due to the convergence of the lines of force at the poles). This change in intensity with height varies from about 6 gammas per 1000 ft at the equator to about 10 gammas per 1000 ft at the poles. Thus, for the 3-gamma accuracy of the magnetometer described in reference 11, the error in the height measurement would vary from about 500 ft at the equator to about 300 ft at the poles. The measurements of a magnetometer would also be affected by erratic variations of the field intensity over certain portions of the Earth. Periodic variations, which occur with the solar cycle, can be as much as 80 gammas at the equator while being negligible at the poles. Aperiodic variations, associated with aurora and magnetic storm activity, can be quite severe. The effect of the aurora can cause changes of as much as 100 gammas at the poles while being negligible at the equator, whereas magnetic storm activity can account for fluctuations of as much as 200 gammas. #### References - 1. RTCA Special Committee 70: Altimetry. Paper 215-58/DO-88, Radio Tech. Comm. Aeronaut., Nov. 1, 1958. - 2. Gracey, William: Survey of Altitude-Measuring Methods for the Vertical Separation of Aircraft. NASA TN D-738, 1961. - 3. Youmans, D. G.: Flight Testing of an Airborne Laser Terrain Profiler. Rep. R-1106 (Contract No. 14-08-001-14548), Charles Stark Draper Lab., Inc., Aug. 1977. - 4. Watton, W. L.; and Pemberton, M. E.: A Direct-Capacitance Aircraft Altimeter. Proc. Inst. Electr. Eng. (London), vol. 96, pt. 3, 1949, pp. 203-213. - 5. Conover, Walter C.; and Stroud, W. G.: A High-Altitude Radiosonde Hypsometer. J. Meteorol., vol. 15, no. 1, Feb. 1958, pp. 63-68. - 6. Wagner, Walter C.: Hypsometer for Constant Level Balloon. Instrumentation for Geophysics and Astrophysics No. 14, AFCRC-TR-60-262, U.S. Air Force, June 1960. - 7. Expendable Pressure Sensor Rocketsonde Phase I. Rep. No. 1329 (Contract AF 33(600)-37984), Bendix Aviation Corp., Oct. 15, 1959. - 8.
Barghausen, John W. B.; and Van Allen, James A.: Altimeter Actuated by Cosmic Rays. U.S. Patent 2,573,823, Apr. 20, 1948. - 9. Nettleton, L. L.; LaCoste, Lucien; and Harrison, J. C.: Tests of an Airborne Gravity Meter. Geophysics, vol. 25, no. 1, Feb. 1960, pp. 181-202. - 10. Luskin, Bernard; and Davidson, Maurice J.: Geophysical Techniques for Precision Navigation at Sea. Tech Rep. No. 14, CU-40-57-NObsr 64547-Geol., Lamont Geological Observatory, Feb. 1957. (Available from DTIC as AD 139 263.) - 11. Cahill, Laurence J., Jr.; and Van Allen, James A.: High Altitude Measurements of the Earth's Magnetic Field With a Proton Precession Magnetometer. J. Geophys. Res., vol. 61, no. 3, Sept. 1956, pp. 547-558. | • | | | |---|--|--| ## TABLES OF AIRSPEED, ALTITUDE, AND MACH NUMBER Some of the tables in this appendix present the independent variable in two parts: large increments in the left column and smaller increments along the top row. In table Al, for example, the pressure at 1100 ft is 28.7508 in. Hg. The following tables are presented: | | Page | |---|------| | TABLE Al STATIC PRESSURE - in. Hg for H in geopotential ft | 225 | | TABLE A2 STATIC PRESSURE - $1b/ft^2$ for H in geopotential ft | 227 | | TABLE A3 DENSITY - $1b/ft^3$ for H in geopotential ft | 229 | | TABLE A4 TEMPERATURE - OF for H in geopotential ft | 231 | | TABLE A5 TEMPERATURE - OC for H in geopotential ft | 233 | | TABLE A6 COEFFICIENT OF VISCOSITY - lb-sec/ft ² for H in geopotential ft | 235 | | TABLE A7 SPEED OF SOUND - mph and knots for H in geopotential ft | 236 | | TABLE A8 ACCELERATION DUE TO GRAVITY - ft/sec ² for H in geopotential ft | 237 | | TABLE A9 IMPACT PRESSURE - in. Hg for V_{C} in mph | 238 | | TABLE Alo IMPACT PRESSURE - $1b/ft^2$ for V_c in mph | 240 | | TABLE All IMPACT PRESSURE - in. Hg for V_C in knots | 242 | | TABLE Al2 IMPACT PRESSURE - $1b/ft^2$ for V_c in knots | 244 | | TABLE Al3 TRUE AIRSPEED - knots for H in geopotential ft | 246 | | TABLE Al4 STATIC PRESSURE - mm Hg for H in geopotential m | 247 | | TABLE Als STATIC PRESSURE - Pa for H in geopotential m | 248 | | TABLE Al6 DENSITY - kg/m^3 for H in geopotential m | 249 | | TABLE Al7 TEMPERATURE - OC for H in geopotential m | 250 | | TABLE Al8 COEFFICIENT OF VISCOSITY - Pa-sec for H in geopotential m | 251 | | | Page | |---|------| | TABLE Al9 SPEED OF SOUND - km/hr and knots for H in geopotential m | 252 | | TABLE A20 ACCELERATION DUE TO GRAVITY - m/sec ² for H in geopotential m | 253 | | TABLE A21 IMPACT PRESSURE - mm Hg for $V_{_{\mathbf{C}}}$ in km/hr | 254 | | TABLE A22 IMPACT PRESSURE - Pa for $V_{\rm C}$ in km/hr | 257 | | TABLE A23 IMPACT PRESSURE - mm Hg for V_C in knots | 260 | | TABLE A24 IMPACT PRESSURE - Pa for V_C in knots | 262 | | TABLE A25 TRUE AIRSPEED - knots for H in geopotential m | 264 | | TABLE A26 MACH NUMBER | 265 | | TABLE A27 CONVERSION FACTORS FOR VARIOUS PRESSURE UNITS | 275 | | TABLE A28 CONVERSION FACTORS, EQUIVALENTS, AND FORMULAS FOR U.S. CUSTOMARY UNITS AND THE INTERNATIONAL SYSTEM OF UNITS (SI) | 276 | ### REFERENCES - Al. U.S. Standard Atmosphere, 1962. NASA, U.S. Air Force, and U.S. Weather Bur., Dec. 1962. - A2. Livingston, Sadie P.; and Gracey, William: Tables of Airspeed, Altitude, and Mach Number Based on Latest International Values for Atmospheric Properties and Physical Constants. NASA TN D-822, 1961. - A3. Tables and Data for Computing Airspeeds, Altitudes, and Mach Numbers Based on the WADC 1952 Model Atmosphere. Volume I Altitude, Calibrated Airspeed, and Mach Number Tables. Battelle Mem. Inst. (Contract AF 33(616)82), 1953. - A4. Brombacher, W. G.; Johnson, D. P.; and Cross, J. L.: Mercury Barometers and Manometers. NBS Monogr. 8, U.S. Dep. Commer., May 20, 1960. - A5. Standard for Metric Practice. E 380-76, American Soc. Testing & Mater., 1976. A STATE OF THE STA TABLE A1.- STATIC PRESSURE p (OR p') IN INCHES OF MERCURY (0° C) FOR VALUES OF PRESSURE ALTITUDE H (OR INDICATED ALTITUDE H') IN GEOPOTENTIAL FEET [From ref. A1] | l i | Н, | 0 | 100 | 200 | 200 | 1.00 | | | | | | |-----|-----|--------------------|---------|---------|---------|----------|---------|---------|---------|---------|---------| | : | ft | | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | | -1 | 000 | 31.0185 | | | | <u> </u> | | | | | | | | 0 | 31.0103 | 30.0295 | 30.1381 | 30.2471 | 30.3563 | 30.4659 | 30.5757 | 30.6859 | 30.7965 | 30.9073 | | | 0 | 29.9213 | 29.8133 | 29.7056 | 29.5983 | 29.4913 | 29.3846 | 29.2782 | 29.1721 | 29.0663 | 28.9608 | | | | 28.8557 | 28,7508 | 28.6463 | 28.5421 | 28.4382 | 28.3345 | 28.2312 | 28.1282 | 28.0255 | 27.9231 | | | | 27.8210 | 27.7193 | 27.6178 | 27.5166 | 27.4157 | 27.3151 | 27.2148 | 27.1148 | 27.0152 | 26.9158 | | 1 | | | 26.7179 | 26.6194 | 26.5211 | 26.4232 | 26.3256 | 26.2283 | 26.1312 | 26.0345 | 25.9380 | | 4 | | 25.8418 | 25.7460 | 25.6504 | 25.5551 | 25.4600 | 25.3653 | 25.2709 | 25.1767 | 25.0828 | 24.9892 | | 1 | | 24.8959 | 24.8029 | 24.7107 | 24.6177 | 24.5255 | 24.4336 | 24.3420 | 24.2506 | 24.1595 | 24.0687 | | 6 | | 23.9782 | 23.8880 | 23.7980 | 23.7083 | 23.6189 | 23.5298 | 23.4409 | 23.3523 | 23.2640 | 23.1759 | | | | 23.0881
22.2250 | 23.0006 | 22.9133 | 22.8264 | 22.7397 | 22.6532 | 22.5670 | 22.4811 | 22.3955 | 22.3101 | | | | 21.3881 | 22.1401 | 22.0555 | 21.9712 | 21.8871 | 21.8033 | 21.7197 | 21.6364 | 21.5534 | 21.4706 | | " | 000 | 21.3001 | 21.3059 | 21.2238 | 21.1421 | 21.0606 | 20.9794 | 20.8984 | 20.8177 | 20.7372 | 20.6569 | | ı | | 20.5770 | 20.4972 | 20.4178 | 20.3385 | 20.2596 | 20.1808 | 20.1024 | 20.0241 | 19.9461 | 19.8684 | | | | 19.7909 | 19.7137 | 19.6367 | 19.5599 | 19.4834 | 19.4071 | 19.3311 | 19.2553 | 19.1797 | 19.1044 | | | | 19.0294 | 18.9545 | 18.8799 | 18.8056 | 18.7315 | 18.6576 | 18.5839 | 18.5105 | 18.4374 | 18.3644 | | | | 18.2917 | 18.2192 | 18.1470 | 18.0750 | 18.0032 | 17.9317 | 17.8603 | 17.7893 | 17.7184 | 17.6478 | | | | 17.5774 | 17.5072 | 17.4373 | 17.3675 | 17.2981 | 17.2288 | 17.1597 | 17.0909 | 17.0223 | 16.9540 | | | | 16.8858 | 16.8179 | 16.7502 | 16.6827 | 16.6154 | 16.5484 | 16.4816 | 16.4150 | 16.3486 | 16.2824 | | | | 16.2164 | 16.1507 | 16.0852 | 16.0199 | 15.9548 | 15.8899 | 15.8252 | 15.7608 | 15.6966 | 15.6325 | | | | 15.5687
14.9421 | 15.5051 | 15.4417 | 15.3785 | 15.3156 | 15.2528 | 15.1903 | 15.1279 | 15.0658 | 15.0038 | | | | 14.3361 | 14.8806 | 14.8193 | 14.7582 | 14.6973 | 14.6366 | 14.5761 | 14.5158 | 14.4557 | 14.3958 | | 19 | 000 | 14.3361 | 14.2766 | 14.2173 | 14.1582 | 14.0993 | 14.0406 | 13.9821 | 13.9238 | 13.8657 | 13.8078 | | 20 | 000 | 13.7501 | 13.6926 | 13.6353 | 13.5782 | 13.5212 | 13.4645 | 13.4079 | 13.3516 | 13.2954 | 13.2395 | | | | 13.1837 | 13.1281 | 13.0727 | 13.0175 | 12.9625 | 12.9076 | 12.8530 | 12.7985 | 12.7443 | 12.6902 | | ı | | 12.6363 | 12.5826 | 12.5291 | 12.4757 | 12.4226 | 12.3696 | 12.3168 | 12.2642 | 12.2118 | 12.1595 | | | | 12.1075 | 12.0556 | 12.0039 | 11.9524 | 11.9010 | 11.8499 | 11.7989 | 11.7481 | 11.6974 | 11.6470 | | | | 11.5967 | 11.5466 | 11.4967 | 11.4469 | 11.3974 | 11.3480 | 11.2987 | 11.2497 | 11.2008 | 11.1521 | | | | 11.1035 | 11.0552 | 11.0070 | 10.9589 | 10.9111 | 10.8634 | 10.8159 | 10.7685 | 10.7213 | 10.6743 | | | | 10.6275 | 10.5808 | 10.5343 | 10.4879 | 10.4417 | 10.3957 | 10.3499 | 10.3042 | 10.2587 | 10.2133 | | ı | 000 | 10.1681 | 10.1230 | 10.0782 | 10.0335 | 9,98889 | 9.94450 | 9.90026 | 9.85619 | 9.81227 | 9.76851 | | ı | 000 | 9.72491
9.29750 | 9.68147 | 9.63818 | 9.59505 | 9.55208 | 9.50926 | 9.46660 | 9.42410 | 9.38174 | 9.33955 | | 23 | 000 | 9.29730 | 9.25561 | 9.21388 | 9.17229 | 9.13086 | 9.08958 | 9.04845 | 9.00747 | 8.96665 | 8.92597 | | 30 | 000 | 8.88544 | 8.84506 | 8.80483 | 8.76475 | 8.72481 | 8.68502 | 8.64539 | 8.60589 | 8.56654 | 8.52734 | | 31 | 000 | 8.48829 | 8.44938 | 8.41060 | 8.37199 | 8.33351 | 8.29517 | 8.25698 | 8.21893 | 8.18102 | 8.14326 | | 32 | 000 | 8.10563 | 8.06815 | 8.03081 | 7.99360 | 7.95654 | 7.91961 | 7.88283 | 7.84618 | 7.80967 | 7.77330 | | | 000 | 7.73707 | 7.70097 | 7.66501 | 7.62919 | 7.59350 | 7.55794 | 7.52253 | 7.48724 | 7.45209 | 7.41708 | | | 000 | 7.38219 | 7.34744 | 7.31283 | 7.27834 | 7.24399 | 7.20977 | 7.17568 | 7.14172 | 7.10789 | 7.07419 | | | 000 | 7.04062 | | 6.97386 | | 6.90762 | | 6.84189 | | 6.77667 | | | | 000 | 6.71195 | | 6.64775 | | 6.58415 | | 6.52116 | | 6.45878 | | | | 000 | 6.39699 | | 6.33579 | | 6.27518 | | 6.21515 | | 6.15569 | | | | 000 | 6.09680 | | 6.03847 | | 5.98071 | | 5.92349 | | 5.86682 | | | 29 | 000 | 5.81070 | | 5.75511 | | 5.70005 | | 5.64552 | | 5.59151 | | | 40 | 000 | 5.53802 | | 5.48504 | | 5.43257 | | 5.38060 | | 5.32912 | | | 41 | 000 | 5.27814 | | 5.22765 | | 5.17763 | | 5.12810 | | 5.07904 | | | | 000 | 5.03045 | | 4.98233 | | 4.93466 | | 4.88746 | | 4.84070 | | | | 000 | 4.79439 | | 4.74852 | | 4.70310 | | 4.65810 | | 4.61354 | | | | 000 | 4.56941 | | 4.52569 | | 4.48240 | | 4.43951 | | 4.39704 | 1 | | | 000 | 4.35498 | | 4.31332 | | 4.27205 | | 4.23118 | | 4.19070 | İ | | | 000 | 4.15061 | | 4.11091 | | 4.07158 | | 4.03263 | | 3.99405 | | | | 000 | 3.95584 | | 3.91800 | | 3.88051 | - | 3.84339 | | 3.80662 | | | | 000 | 3.77020 | | 3.73414 | | 3.69841 | | 3.66303 | | 3.62799 | | | 49 | 000 | 3.59328 | | 3.55891 | | 3.52486 | | 3.49114 | | 3.45774 | | TABLE Al.- Concluded | | т | Т | | | | |----------|---------|---------|---------|---------|---------| | H,
ft | 0 | 200 | 400 | 600 | 800 | | 50 000 | 3.42466 | 3.39190 | 3.35945 | 3.32731 | 3.29548 | | 51 000 | 3.26395 | 3.23273 | 3.20180 | 3.17117 | 3.14083 | | 52 000 | 3.11079 | 3.08103 | 3.05155 | 3.02236 | 2.99344 | | 53 000 | 2.96481 | 2.93644 | 2.90835 | 2.88053 |
2.85297 | | | 2.82568 | 2.79865 | 2.77187 | 2.74535 | 2.71909 | | 54 000 | | 2.66731 | 2.64180 | 2.61652 | 2.59149 | | 55 000 | 2.69308 | 2.54215 | 2.51783 | 2.49374 | 2.46988 | | 56 000 | 2.56670 | | 2.31763 | 2.37672 | 2.35398 | | 57 000 | 2.44625 | 2.42285 | 2.39967 | 2.26519 | 2.24351 | | 58 000 | 2.33146 | 2.30916 | | 1 | 2.13823 | | 59 000 | 2.22205 | 2.20079 | 2.17974 | 2.15889 | 2.13623 | | 60 000 | 2.11778 | 2.09752 | 2.07745 | 2.05758 | 2.03789 | | 61 000 | 2.01840 | 1.99909 | 1.97996 | 1.96102 | 1.94226 | | 62 000 | 1.92368 | 1.90528 | 1.88705 | 1.86900 | 1.85112 | | 63 000 | 1.83341 | 1.81587 | 1.79850 | 1.78129 | 1.76425 | | 64 000 | 1.74737 | 1.73066 | 1.71410 | 1.69770 | 1.68146 | | 65 000 | 1.66538 | 1.64944 | 1.63366 | 1.61803 | 1.60256 | | 66 000 | 1.58723 | 1.57206 | 1.55703 | 1.54216 | 1.52742 | | 67 000 | 1.51284 | 1.49840 | 1.48410 | 1.46994 | 1.45591 | | 68 000 | 1.44203 | 1.42828 | 1.41467 | 1.40119 | 1.38784 | | 1 | | 1.36154 | 1.34858 | 1.33575 | 1.32304 | | 69 000 | 1.37463 | 1.30134 | 1.34030 | 1.33373 | | | 70 000 | 1.31046 | 1.29800 | 1.28567 | 1.27345 | 1.26135 | | 71 000 | 1.24938 | 1.23751 | 1.22577 | 1.21414 | 1.20262 | | 72 000 | 1.19122 | 1.17992 | 1.16874 | 1.15767 | 1.14670 | | 73 000 | 1.13584 | 1.12509 | 1.11444 | 1.10389 | 1.09345 | | 74 000 | 1.08311 | 1.07287 | 1.06273 | 1.05269 | 1.04274 | | 75 000 | 1.03290 | 1.02314 | 1.01349 | 1.00392 | .994453 | | 76 000 | .985074 | .975787 | .966589 | .957481 | .948461 | | 77 000 | .939529 | .930682 | .921922 | .913248 | .904656 | | 78 000 | .896148 | .887722 | .879377 | .871114 | .862931 | | 79 000 | .854826 | .846799 | .838851 | .830979 | .823183 | | | 035460 | 007016 | 000043 | .792744 | .785317 | | 80 000 | .815462 | .807816 | .800243 | .756317 | .749241 | | 81 000 | .777962 | .770677 | .763463 | .721612 | .714870 | | 82 000 | .742233 | .735293 | .728419 | | .682119 | | 83 000 | .708192 | .701579 | .695029 | .688543 | L . | | 84 000 | .675756 | .669454 | .663213 | .657031 | .650910 | | 85 000 | .644846 | .638841 | .632893 | .627003 | .592824 | | 86 000 | .615390 | .609667 | .603999 | .598385 | .565809 | | 87 000 | .587317 | .581862 | .576460 | .571109 | | | 88 000 | .560560 | .555361 | .550212 | .545112 | .540060 | | 89 000 | .535056 | .530101 | .525192 | .520330 | .515515 | | 90 000 | .510745 | .506021 | .501342 | .496707 | .492117 | | 91 000 | .487570 | .483066 | 1 | i | 469810 | | 92 000 | .465475 | .461182 | Į. | | l | | 93 .000 | | .440316 | | 1 | | | 94 000 | .424324 | .420421 | | 1 | 1 | | | | .401449 | | | | | 95 000 | .405172 | | 1 | 1 | | | 96 000 | | | | | | | 97 000 | 1 | 1 | | 1 | | | 98 000 | | | 1 | 1 | | | 99 000 | .337035 | .333955 | .330904 | .327882 | .324888 | | 100 000 | .321922 | | | | | TABLE A2.- STATIC PRESSURE p (OR p') IN POUNDS PER SQUARE FOOT FOR VALUES OF PRESSURE ALTITUDE H (OR INDICATED ALTITUDE H') IN GEOPOTENTIAL FEET [Derived from ref. A1] | | Τ | Γ | 1 | | T | r | T | | 1 | 1 | |------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------|--------------------|---------|--------------------|---------| | H,
ft | 0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | | -1 000 | 2193.82 | | | | | | | | | | | -0 | | 2123.87 | 2131.55 | 2139.26 | 2146.99 | 2154.74 | 2162.50 | 2170.29 | 2178.12 | 2185.96 | | 0 | | 2108.58 | 2100.96 | 2093.38 | 2085.81 | 2078.26 | 2070.74 | 2063.23 | 2055.75 | 2048.29 | | 1 000 | | 2033.43 | 2026.04 | 2018.67 | 2011.33 | 2003.99 | 1996.69 | 1989.40 | 1982.14 | 1974.89 | | 2 000 | | 1960.48 | 1953.30 | 1946.14 | 1939.01 | 1931.89 | 1924.80 | 1917.73 | 1910.68 | 1903.65 | | | 1896.64 | 1889.66 | 1882.69 | 1875.74 | 1868.81 | 1861.91 | 1855.03 | 1848.16 | 1841.32 | 1834.50 | | i i | 1827.69
1760.79 | 1820.92 | 1814.16 | 1807.42 | 1800.69 | 1793.99 | 1787.31 | 1780.65 | 1774.01 | 1767.39 | | | 1695.89 | 1754.21 | 1747.65 | 1741.12 | 1734.60 | 1728.10 | 1721.62 | 1715.15 | 1708.71 | 1702.29 | | 7 000 | 1632.93 | 1689.51
1626.75 | 1683.14 | 1676.80 | 1670.48 | 1664.17 | 1657.89 | 1651.62 | 1645.37 | 1639.14 | | 8 000 | | 1565.89 | 1620.57
1559.90 | 1614.42 | 1608.29 | 1602.17 | 1596.08 | 1590.00 | 1583.95 | 1577.91 | | 1 | 1512.70 | 1506.89 | 1501.08 | 1553.94 | 1547.99 | 1542.06 | 1536.15 | 1530.26 | 1524.39 | 1518.53 | | | 1312170 | 1500.05 | 1301.08 | 1495.30 | 1489.54 | 1483.79 | 1478.06 | 1472.36 | 1466.66 | 1460.98 | | | 1455.33 | 1449.69 | 1444.07 | 1438.46 | 1432.88 | 1427.31 | 1421.77 | 1416.23 | 1410.71 | 1405.22 | | l l | 1399.74 | 1394.28 | 1388.83 | 1383.40 | 1377.99 | 1372.59 | 1367.22 | 1361.85 | 1356.51 | 1351.18 | | | 1345.88 | 1340.58 | 1335.30 | 1330.05 | 1324.81 | 1319.58 | 1314.37 | 1309.18 | 1304.01 | 1298.84 | | | 1293.70 | 1288.57 | 1283.47 | 1278.38 | 1273.30 | 1268.24 | 1263.19 | 1258.17 | 1253.16 | 1248.16 | | | 1243.18 | 1238.22 | 1233.27 | 1228.34 | 1223.43 | 1218.53 | 1213.64 | 1208.77 | 1203.92 | 1199.09 | | | 1194.27 | 1189.47 | 1184.68 | 1179.90 | 1175.14 | 1170.41 | 1165.68 | 1160.97 | 1156.27 | 1151.59 | | | 1146.92 | 1142.28 | 1137.65 | 1133.03 | 1128.42 | 1123.83 | 1119.26 | 1114.70 | 1110.16 | 1105.63 | | | 1101.11
1056.80 | 1096.62 | 1092.13 | 1087.66 | 1083.21 | 1078.77 | 1074.35 | 1069.94 | 1065.55 | 1061.16 | | 19 000 | | 1052.45 | 1048.11 | 1043.79 | 1039.48 | 1035.19 | 1030.91 | 1026.65 | 1022.40 | 1018.16 | | 13 000 | 1013.94 | 1009.73 | 1005.54 | 1001.36 | 997.190 | 993.038 | 988.901 | 984.777 | 980.668 | 976.573 | | 20 000 | 972.492 | 968.426 | 964.373 | 960.334 | 956.303 | 952.293 | 948.290 | 944.308 | 940.333 | 936.380 | | 21 000 | 932.433 | 928.501 | 924.582 | 920.678 | 916.788 | 912.905 | 909.044 | 905.189 | 901.356 | 897.530 | | 22 000 | 893.717 | 889.919 | 886.136 | 882.359 | 878.603 | 874.855 | 871.120 | 867.400 | 863.694 | 859.995 | | 23 000 | 856.317 | 852.647 | 848.990 | 845.348 | 841.713 | 838.098 | 834.491 | 830.898 | 827.313 | 823.748 | | 25 000 | 820.191
785.308 | 816.647 | 813.118 | 809.596 | 806.095 | 802.601 | 799.114 | 795.649 | 792.190 | 788.746 | | 26 000 | 751.643 | 781.892
748.340 | 778.483 | 775.081 | 771.701 | 768.327 | 764.968 | 761.615 | 758.277 | 754.953 | | 27 000 | 719.151 | 715.961 | 745.051
712.793 | 741.769 | 738.502 | 735.248 | 732.009 | 728.777 | 725.559 | 722.348 | | 28 000 | 687.806 | 684.734 | 681.672 | 709.631
678.621 | 706.476 | 703.337 | 700.208 | 697.091 | 693.985 | 690.890 | | 29 000 | 657.577 | 654.614 | 651.663 | 648.721 | 675.582
645.791 | 672.554 | 669.537 | 666.531 | 663.535 | 660.551 | | | | | 031.003 | 040.721 | 645.791 | 642.871 | 639.962 | 637.064 | 634.177 | 631.300 | | 30 000 | 628.433 | 625.577 | 622.732 | 619.897 | 617.073 | 614.258 | 611.456 | 608.662 | 605.879 | 603.106 | | 31 000 | 600.344 | 597.593 | 594.850 | 592.119 | 589.397 | 586.686 | 583.985 | 581.294 | 578.612 | 575.942 | | 32 000
33 000 | 573.280 | 570.630 | 567.989 | 565.357 | 562.736 | 560.124 | 557.523 | 554.930 | 552.348 | 549.776 | | 34 000 | 547.214
522.114 | 544.660 | 542.117 | 539.584 | 537.059 | 534.544 | 532.040 | 529.544 | 527.058 | 524.582 | | 35 000 | 497.956 | 519.657 | 517.209 | 514.769 | 512.340 | 509.920 | 507.509 | 505.107 | 502.714 | 500.331 | | 36 000 | 474.711 | | 493.235 | | 488.550 | | 483.901 | | 479.288 | | | 37 000 | 452.435 | | 470.170 | | 465.672 | | 461.217 | | 456.805 | | | 38 000 | 432.433 | | 448.106
427.078 | | 443.820 | | 439.574 | | 435.369 | | | 39 000 | 410.969 | | 427.078 | | 422.993
403.143 | | 418.946
399.286 | | 414.938
395.466 | | | 40 000 | 201 (00 | | | | : | | 333.200 | | 373.400 | | | 41 000 | 391.683 | | 387.936 | | 384.225 | 1 | 380.549 | | 376.908 | | | 42 000 | 373.303
355.785 | | 369.732 | | 366.194 | | 362.691 | | 359.221 | 1 | | 43 000 | 339.089 | | 352.381 | | 349.010 | | 345.671 | | 342.364 | 1 | | 44 000 | 323.177 | | 335.845 | | 332.632 | | 329.450 | | 326.298 | | | 45 000 | 308.011 | | 320.084
305.065 | | 317.023 | | 313.990 | | 310.986 | | | 46 000 | 293.557 | - | 290.749 | | 302.146 | | 299.255 | | 296.392 | | | 47 000 | 279.781 | İ | 277.105 | | 287.967
274.454 | | 285.213 | | 282.484 | ŀ | | 48 000 | 266.652 | İ | 264.102 | | 261.574 | | 271.828 | | 269.228 | | | 49 000 | 254.139 | | 251.708 | | 249.300 | | 259.072 | | 256.594 | | | Ll | | | | | 240.300 | | 246.915 | | 244.553 | | APPENDIX A TABLE A2.- Concluded | H,
ft | 0 | 200 | 400 | 600 | 800 | |------------------|---------|---------|--------------------|---------|---------| | 50 000 | 242.213 | 239.896 | 237.601 | 235.328 | 233.077 | | 51 000 | 230.847 | 228.639 | 226.451 | 224.285 | 222.139 | | 52 000 | 220.014 | 217.910 | 215.825 | 213.760 | 211.715 | | 53 000 | 209.690 | 207.683 | 205.697 | 203.729 | 201.780 | | 54 000 | 199.850 | 197.938 | 196.044 | 194.168 | 192.311 | | 55 000 | 190.471 | 188.649 | 186.844 | 185.057 | 183.286 | | 56 000 | 181.533 | 179.797 | 178.077 | 176.373 | 174.685 | | 57 000 | 173.014 | 171.359 | 169.720 | 168.096 | 166.488 | | 58 000 | 164.895 | 163.318 | 161.755 | 160.208 | 158.675 | | 59 000 | 157.157 | 155.654 | 154.165 | 152.690 | 151.229 | | 60 000 | 149.783 | 148.350 | 146.930 | 145.525 | 144.132 | | 61 000 | 142.754 | 141.388 | 140.035 | 138.696 | 137.369 | | 62 000 | 136.055 | 134.753 | 133.464 | 132.187 | 130.923 | | 63 000 | 129.670 | 128.430 | 127.201 | 125.984 | 124.779 | | 64 000 | 123.585 | 122.403 | 121.232 | 120.072 | 118.923 | | 65 000 | 117.785 | 116.659 | 115.543 | 114.437 | 113.343 | | 66 000 | 112.259 | 111.186 | 110.123 | 109.071 | 108.029 | | 67 000 | 106.997 | 105.976 | 104.965 | 103.963 | 102.971 | | 68 000 | 101.989 | 101.017 | 100.054 | 99.1008 | 98.1566 | | 69 000 | 97.2224 | 96.2966 | 95.3800 | 94.4725 | 93.5736 | | 70 000 | 92.6839 | 91.8026 | 90.9306 | 90.0663 | 89.2105 | | 71 000 | 88.3639 | 87.5244 | 86.6941 | 85.8715 | 85.0567 | | 72 000 | 84.2505 | 83.4513 | 82.6605 | 81.8776 | 81.1017 | | 73 000 | 80.3336 | 79.5733 | 78.8201 | 78.0739 | 77.3356 | | 74 000 | 76.6043 | 75.8800 | 75.1628 |
74.4528 | 73.7490 | | 75 000 | 73.0531 | 72.3628 | 71.6803 | 71.0034 | 70.3339 | | 76 000 | 69.6705 | 69.0137 | 68.3632 | 67.7190 | 67.0810 | | 77 000 | 66.4493 | 65.8236 | 65.2040 | 64.5906 | 63.9829 | | 78 000 | 63.3811 | 62.7852 | 62.1950 | 61.6106 | 61.0318 | | 79 000 | 60.4586 | 59.8909 | 59.3287 | 58.7720 | 58.2206 | | 80 000 | 57.6745 | 57.1338 | 56.5981 | 56.0678 | 55.5425 | | 81 000 | 55.0223 | 54.5071 | 53.9969 | 53.4914 | 52.9910 | | 82 000 | 52,4953 | 52.0045 | 51.5183 | 51.0369 | 50.5601 | | 83 000 | 50.0877 | 49.6200 | 49.1568 | 48.6980 | 48.2437 | | 84 000 | 47.7937 | 47.3479 | 46.9065
44.7621 | 44.3455 | 43.9329 | | 85 000 | 45.6075 | 45.1828 | 44.7621 | 42.3215 | 43.9329 | | 86 000 | 1 | 43.1194 | 40.7708 | 40.3924 | 40.0175 | | 87 000
88 000 | 41.5387 | 39.2786 | 38.9144 | 38.5537 | 38.1964 | | 89 000 | 1 | 37.4920 | 1 | 36.8009 | 36.4604 | | 90 000 | 36.1231 | 35.7889 | 35.4580 | 35.1302 | 34.8056 | | 91 000 | 1 | 34.1654 | i . | N . | 33.2279 | | 92 000 | | 32.6176 | | | 31.7237 | | 93 000 | l . | 31.1419 | - ' | 1 | 30.2896 | | 94 000 | 1 | 29.7348 | | 1 | 28.9221 | | 95 000 | i . | 28.3930 | 1 | l . | 27.6180 | | 96 000 | 1 | 27.1135 | 26.8648 | 26.6184 | 26.3744 | | 97 000 | L | 25.8932 | | 25.4210 | 25.1883 | | 98 000 | 1 | 24.7294 | 24.5032 | 24.2791 | 24.0571 | | 99 000 | l. | 23.6194 | 23.4036 | 23.1898 | 22.9781 | | 100 000 | 22.7683 | | | | | Table a3.- density $\overline{\rho}$ in pounds per cubic foot for values of Pressure altitude $\,$ H $\,$ in Geopotential Feet $\,$ [From ref. Al] | | H,
ft | 0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | |----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | | 0 | 0.076474 | 0.076251 | 0.076028 | 0.075805 | 0.075583 | 0.075362 | 0.075141 | 0.074920 | 0.074700 | 0.074480 | | 1 | 000 | .074261 | .074043 | .073825 | .073607 | .073390 | .073174 | .072957 | .072742 | .072527 | .072312 | | 2 | 000 | .072098 | .071884 | .071671 | .071458 | .071246 | .071034 | .070823 | .070612 | .070402 | .070192 | | 3 | 000 | .069983 | .069774 | .069566 | .069358 | .069150 | .068943 | .068737 | .068531 | .068325 | .068120 | | 1 | 000 | .067916 | .067712 | .067508 | .067305 | .067102 | .066900 | .066698 | .066497 | .066296 | .066096 | | 1 | 000 | .065896 | .065696 | .065497 | .065299 | .065101 | .064903 | .064706 | , | ! | | | 1 | 000 | .063922 | .063727 | .063532 | .063339 | .063101 | .062952 | .062759 | .064509 | .064313 | .064117 | | 7 | | .061993 | .061803 | .061613 | .061424 | .061235 | .062932 | .062759 | .062567 | .062376 | .062184 | | 8 | | .060110 | .059924 | .059739 | .059554 | .059369 | l . | | .060670 | .060483 | .060296 | | 9 | | .058271 | .058089 | .057908 | .057727 | .057547 | .059185 | .059001 | .058818 | .058635 | .058453 | | | 000 | .030271 | .038009 | .037908 | .03//2/ | .05/54/ | .057367 | .057188 | .057009 | .056830 | .056652 | | 10 | 000 | .056475 | .056297 | .056121 | .055944 | .055768 | .055593 | .055418 | .055243 | .055069 | .054895 | | 11 | 000 | .054721 | .054548 | .054376 | .054203 | .054032 | .053860 | .053689 | .053519 | .053349 | .053179 | | 12 | 000 | .053010 | .052841 | .052673 | .052505 | .052337 | .052170 | .052003 | .051837 | .051671 | .051505 | | 13 | 000 | .051340 | .051175 | .051011 | .050847 | .050683 | .050520 | .050357 | .050195 | .050033 | .049871 | | 14 | 000 | .049710 | .049549 | .049389 | .049229 | .049070 | .048910 | .048752 | .048593 | .048435 | .048278 | | 15 | 000 | .048120 | .047964 | .047807 | .047651 | .047496 | .047340 | .047185 | .047031 | .046433 | .046723 | | 16 | 000 | .046570 | .046417 | .046264 | .046112 | .045961 | .045809 | .045658 | .047031 | .045357 | .045723 | | 1 | 000 | .045058 | .044909 | .044760 | .044612 | .044464 | .043809 | .043636 | .043308 | .043357 | .043207 | | 18 | 000 | .043584 | .043438 | .043293 | .043149 | .043005 | .042861 | .042717 | .041574 | .042431 | .042289 | | 1 | 000 | .042147 | .042005 | .041864 | .041723 | .041582 | .042801 | .042717 | .041374 | | | | | | .012117 | 1042005 | .041004 | .041723 | .041362 | .041442 | .041302 | .041163 | .041024 | .040885 | | | 000 | .040746 | .040608 | .040471 | .040333 | .040196 | .040060 | .039923 | .039787 | .039652 | .039517 | | | 000 | .039382 | .039247 | .039113 | .038979 | .038846 | .038713 | .038580 | .038448 | .038316 | .038184 | | 22 | 000 | .038052 | .037921 | .037791 | .037660 | .037530 | .037401 | .037271 | .037143 | .037014 | .036886 | | 23 | 000 | .036758 | .036630 | .036503 | .036376 | .036249 | .036123 | .035997 | .035872 | .035746 | .035622 | | 24 | 000 | .035497 | .035373 | .035249 | .035125 | .035002 | .034879 | .034757 | .034634 | .034512 | .034391 | | 25 | 000 | .034270 | .034149 | .034028 | .033908 | .033788 | .033668 | .033549 | .033430 | .033311 | .033193 | | 26 | 000 | .033075 | .032957 | .032840 | .032723 | .032606 | .032490 | .032374 | .032258 | .032142 | .032027 | | 27 | 000 | .031912 | .031798 | .031684 | .031570 | .031456 | .031343 | .031230 | .031117 | .031005 | .030893 | | 28 | 000 | .030781 | .030670 | .030559 | .030448 | .030338 | .030227 | .030118 | .030008 | .029899 | .029790 | | 29 | 000 | .029681 | .029573 | .029465 | .029357 | .029250 | .029143 | .029036 | .028929 | .028823 | .028717 | | 30 | 000 | .028611 | .028506 | .028401 | .028296 | .028192 | .028088 | 027004 | 007000 | 000000 | 007674 | | 1 | 000 | .027571 | .027469 | .027367 | .027265 | .027164 | | .027984 | .027880 | .027777 | .027674 | | 1 | 000 | .026561 | .026461 | .026362 | .026263 | | .027062 | .026961 | .026861 | .026760 | .026660 | | 1 | 000 | .025578 | .025482 | .025385 | .025289 | .026164 | .026066 | .025968 | .025870 | .025773 | .025675 | | 34 | | .024624 | .023482 | .023383 | .023289 | .025193 | .025098 | .025003 | .024908 | .024813 | .024718 | | 1 | 000 | .023697 | .024550 | .023515 | .024343 | .024250 | .024157 | .024065 | .023973 | .023881 | .023789 | | | 000 | .023097 | | | | .023334 | | .023154 | | .022975 | | | 37 | | .022798 | | .022598 | | .022382 | | .022168 | | .021956 | | | | 000 | | | .021538 | | .021332 | | .021127 | | .020925 | | | | 000 | .020725 | | .020527 | | .020330 | | .020136 | | .019943 | | | 39 | 000 | .019753 | | .019564 | | .019376 | | .019191 | | .019007 | | | 1 | 000 | .018826 | | .018646 | | .018467 | | .018291 | | .018116 | | | 1 | 000 | .017942 | | .017771 | | .017601 | | .017432 | | .017265 | | | | 000 | .017100 | | .016937 | | .016775 | | .016614 | | .016455 | | | 1 | 000 | .016298 | | .016142 | | .015987 | | .015835 | | .015683 | | | 1 | 000 | .015533 | | .015384 | | .015237 | | .015091 | | .014947 | | | 1 | 000 | .014804 | | .014662 | | .014522 | | .014383 | | .014246 | | | 46 | 000 | .014109 | | .013974 | | .013841 | | .013708 | | .013577 | | | 47 | 000 | .013447 | | .013319 | | .013191 | | .013065 | | .012940 | | | 48 | 000 | .012816 | | .012694 | | .012572 | | .012452 | | .012333 | | | 49 | 000 | .012215 | | .012098 | | .011982 | | .011868 | i | .011754 | | | Щ. | 1 | | | | | L | L | 1.022000 | | .011/34 | <u></u> | TABLE A3.- Concluded | Н, | 0 | 200 | 400 | 600 | 800 | |---------|----------|----------|----------|----------|----------| | ft | | | | | | | 50 000 | 0.011642 | 0.011530 | 0.011420 | 0.011311 | 0.011202 | | 51 000 | .011095 | .010989 | .010884 | .010780 | .010677 | | 52 000 | .010575 | .010473 | .010373 | .010274 | .010176 | | 53 000 | .010078 | .0099820 | .0098865 | .0097919 | .0096982 | | 54 000 | .0096055 | .0095136 | .0094226 | .0093324 | .0092431 | | 55 000 | .0091547 | .0090671 | .0089804 | .0088945 | .0088094 | | 56 000 | .0087251 | .0086416 | .0085590 | .0084771 | .0083960 | | 57 000 | .0083157 | .0082361 | .0081573 | .0080793 | .0080020 | | 58 000 | .0079254 | .0078496 | .0077745 | .0077001 | .0076265 | | 59 000 | .0075535 | .0074813 | .0074097 | .0073388 | .0072686 | | 60 000 | .0071991 | .0071302 | .0070620 | .0069944 | .0069275 | | 61 000 | .0068612 | .0067956 | .0067306 | .0066662 | .0066024 | | 62 000 | .0065393 | .0064767 | .0064147 | .0063534 | .0062926 | | 63 000 | .0062324 | .0061728 | .0061137 | .0060552 | .0059973 | | 64 000 | .0059399 | .0058831 | .0058268 | .0057711 | .0057159 | | 65 000 | .0056612 | .0056070 | .0055534 | .0055003 | .0054462 | | 66 000 | .0053926 | .0053396 | .0052871 | .0052351 | .0051836 | | 67 000 | .0051327 | .0050823 | .0050323 | .0049829 | .0049340 | | 68 000 | .0048856 | .0048376 | .0047902 | .0047432 | .0046967 | | 69 000 | .0046507 | .0046051 | .0045600 | .0045154 | .0044712 | | 70 000 | .0044274 | .0043841 | .0043412 | .0042988 | .0042567 | | 71 000 | .0042151 | .0041740 | .0041332 | .0040928 | .0040529 | | 72 000 | .0040133 | .0039742 | .0039354 | .0038970 | .0038590 | | 73 000 | .0038214 | .0037842 | .0037473 | .0037108 | .0036747 | | 74 000 | .0036389 | .0036035 | .0035685 | .0035338 | .0034994 | | 75 000 | .0034654 | .0034318 | .0033984 | .0033654 | .0033327 | | 76 000 | .0033004 | .0032684 | .0032367 | .0032053 | .0031742 | | 77 000 | .0031434 | .0031130 | .0030828 | .0030530 | .0030234 | | 78 000 | .0029942 | .0029652 | .0029365 | .0029081 | .0028800 | | 79 000 | .0028521 | .0028246 | .0027973 | .0027703 | .0027435 | | 80 000 | .0027171 | .0026908 | .0026649 | .0026392 | .0026137 | | 81 000 | .0025885 | .0025636 | .0025389 | .0025144 | .0024902 | | 82 000 | .0024663 | .0024425 | .0024190 | .0023958 | .0023727 | | 83 000 | .0023499 | .0023273 | .0023050 | .0022828 | .0022609 | | 84 000 | .0022392 | .0022177 | .0021964 | .0021754 | .0021545 | | 85 000 | .0021339 | .0021134 | .0020932 | .0020731 | .0020533 | | 86 000 | .0020336 | .0020141 | .0019949 | .0019758 | .0019569 | | 87 000 | .0019382 | .0019197 | .0019013 | .0018832 | .0018652 | | 88 000 | .0018474 | .0018297 | .0018123 | .0017950 | .0017779 | | 89 000 | .0017609 | .0017441 | .0017275 | .0017110 | .0016948 | | 90 000 | .0016786 | .0016626 | .0016468 | | .0016156 | | 91 000 | .0016003 | .0015851 | | | .0015403 | | 92 000 | .0015257 | .0015112 | .0014969 | | .0014686 | | 93 000 |
.0014547 | .0014409 | .0014272 | 1 | .0014003 | | 94 000 | .0013870 | .0013739 | | | .0013353 | | 95 000 | .0013226 | .0013101 | | 1 | .0012733 | | 96 000 | .0012613 | .0012494 | .0012376 | .0012259 | | | 97 000 | .0012029 | .0011916 | .0011803 | .0011692 | | | 98 000 | .0011473 | .0011365 | .0011258 | .0011152 | 1 | | 99 000 | .0010943 | .0010840 | .0010738 | .0010637 | .0010537 | | 100 000 | .0010438 | | | | | TABLE A4.- TEMPERATURE t IN DEGREES FAHRENHEIT FOR VALUES OF # PRESSURE ALTITUDE H IN GEOPOTENTIAL FEET [From ref. Al] | Fit | | | | | ···· | | | | | | | |--|----------------|---------|---------|-------------|----------------|---------|---------|---------|---------|---------|---------| | 1 000 | 1 | 0 | 100 | 200 | ,300 | 400 | 500 | 600 | 700 | 800 | 900 | | 1 000 | 0 | 59.000 | 58.643 | 58,287 | 57.930 | 57.574 | 57.217 | 56.860 | 56.504 | 56.147 | 55.790 | | 2 000 | | | | | | | | | | | | | 4 000 | | | | ! | | | | | | | 1 | | 4 000 | 3 000 | 48.302 | 47.945 | 47.588 | 47.232 | 46.875 | 46.518 | 46.162 | 45.805 | 45.449 | 45.092 | | 6 000 | 4 000 | 44.735 | 44.379 | 44.022 | | | | | 42.239 | | | | 7 000 | 5 000 | 41.169 | 40.813 | 40.456 | 40.099 | 39.743 | 39.386 | 39.029 | 38.673 | 38.316 | 37.960 | | 8 000 30.471 30.114 29.757 29.401 29.044 28.688 28.331 27.974 27.618 27.261 26.905 26.548 26.191 25.835 25.478 25.121 24.765 24.408 24.052 23.695 10 000 23.338 22.982 22.625 22.269 21.912 21.555 21.199 20.842 20.485 20.129 11 000 19.772 19.416 19.059 18.702 18.346 17.989 17.633 17.276 16.919 16.563 12.000 16.206 15.849 15.493 15.136 14.780 14.423 14.066 13.710 13.353 12.997 13.000 12.640 12.283 11.927 11.570 11.213 10.857 10.500 10.144 9.787 9.430 14.000 9.074 8.717 8.361 8.004 7.647 7.291 6.934 6.577 6.221 5.864 15.000 5.508 5.151 4.794 4.438 4.081 3.725 3.368 3.011 2.655 2.298 16.000 1.941 1.585 1.228 8.72 5.155 5.158 -1.98 -5.555 -9.911 -1.268 17.000 -1.265 -1.981 -2.338 -2.695 -3.051 -3.408 -3.764 -4.121 -4.478 -4.834 19.000 -8.757 -9.114 -9.470 -9.827 -10.184 -10.540 -10.897 -11.253 -11.610 -11.967 -11.253 -11.610 -11.967 -12.232 -12.680 -13.036 -13.333 -13.750 -14.106 -14.463 -14.820 -15.176 -15.533 -12.080 -19.456 -19.812 -20.169 -20.525 -20.882 -21.239 -21.955 -21.955 -22.308 -22.665 -23.000 -23.022 -23.378 -23.735 -24.092 -24.448 -24.805 -25.161 -25.518 -25.875 -26.231 -25.000 -30.154 -30.511 -30.867 -31.224 -31.580 -31.1937 -32.294 -32.650 -33.070 -33.364 -31.224 -31.580 -31.1937 -32.294 -32.650 -33.070 -33.667 -31.224 -31.580 -31.937 -32.294 -32.650 -33.070 -33.667 -31.224 -31.580 -31.937 -32.294 -32.650 -33.070 -33.667 -31.224 -31.580 -31.937 -32.294 -32.650 -33.070 -33.667 -31.224 -31.580 -31.937 -32.294 -32.650 -33.070 -33.667 -33.200 -37.286 -37.643 -38.000 -38.356 -38.713 -39.009 -39.426 -39.783 -40.992 -44.495 -40.496 -40.495 -40.496 -40.495 -40.496 -40.495 -40.495 | 6 000 | 37.603 | 37.246 | 36.890 | 36.533 | 36.177 | 35.820 | 35.463 | 35.107 | 34.750 | 34.393 | | 9 000 | 7 000 | 34.037 | 33.680 | 33.324 | 32.967 | 32.610 | 32.254 | 31.897 | 31.541 | 31.184 | 30.827 | | 10 000 | | 30.471 | 30.114 | 29.757 | 29.401 | 29.044 | 28.688 | 28.331 | 27.974 | 27.618 | 27.261 | | 11 000 | 9 000 | 26.905 | 26.548 | 26.191 | 25.835 | 25.478 | 25.121 | 24.765 | 24.408 | 24.052 | 23.695 | | 11 000 | 10 000 | 23.338 | 22.982 | 22.625 | 22.269 | 21.912 | 21.555 | 21.199 | 20.842 | 20.485 | 20.129 | | 13 000 | 11 000 | | 19.416 | 1 | | | | | l : | | | | 13 000 | 12 000 | 16.206 | 15.849 | 15.493 | | 1 | | | 13.710 | 13.353 | | | 15 000 | 13 000 | I | 12.283 | 11.927 | 11.570 | 11.213 | 10.857 | 10.500 | 10.144 | 9.787 | 9.430 | | 16 000 | 14 000 | 9.074 | 8.717 | 8.361 | 8.004 | 7.647 | 7.291 | 6.934 | 6.577 | 6.221 | 5.864 | | 17 000 | 15 000 | 5.508 | 5.151 | 4.794 | 4.438 | 4.081 | 3.725 | 3.368 | 3.011 | | 2.298 | | 18 000 -5.191 -5.547 -5.904 -6.261 -6.617 -6.974 -7.331 -7.687 -8.044 -8.400 19 000 -8.757 -9.114 -9.470 -9.827 -10.184 -10.540 -10.897 -11.253 -11.610 -11.967 20 000 -12.323 -12.680 -13.036 -13.393 -13.750 -14.106 -14.463 -14.820 -15.176 -15.533 21 000 -15.889 -16.246 -16.603 -16.959 -17.316 -17.672 -18.029 -18.386 -18.742 -19.099 22 000 -19.456 -19.812 -20.169 -20.525 -20.882 -21.239 -21.595 -21.952 -22.308 -22.665 23 000 -23.022 -23.378 -23.735 -24.092 -24.448 -24.805 -25.161 -25.518 -25.875 -26.231 24 000 -26.588 -26.944 -27.301 -27.658 -28.014 -28.371 -28.728 -29.084 -29.441 -29.797 25 000 -30.154 -30.511 -30.867 -31.224 -31.580 | 16 000 | 1.941 | 1.585 | 1.228 | .872 | .515 | .158 | 198 | 555 | 911 | -1.268 | | 19 000 | 17 000 | -1.265 | -1.981 | -2.338 | l . | -3.051 | -3.408 | -3.764 | -4.121 | -4.478 | -4.834 | | 20 000 | 18 000 | -5.191 | -5.547 | -5.904 | - 6.261 | -6.617 | -6.974 | -7.331 | -7.687 | -8.044 | -8.400 | | 21 000 -15.889 -16.246 -16.603 -16.959 -20.16 | 19 000 | -8.757 | -9.114 | -9.470 | -9.827 | -10.184 | -10.540 | -10.897 | -11.253 | -11.610 | -11.967 | | 21 000 -15.889 -16.246 -16.603 -16.959 -20.169
-20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.169 -20.16 | 20 000 | -12.323 | -12.680 | -13.036 | -13.393 | -13.750 | -14.106 | -14.463 | -14.820 | -15.176 | -15.533 | | 22 000 -19.456 -19.812 -20.169 -20.525 -20.882 -21.239 -21.595 -21.952 -22.308 -22.665 23 000 -23.022 -23.378 -23.735 -24.092 -24.448 -24.805 -25.161 -25.518 -25.875 -26.231 24 000 -26.588 -26.944 -27.301 -27.658 -28.014 -28.371 -28.728 -29.084 -29.441 -29.797 25 000 -30.154 -30.511 -30.867 -31.224 -31.580 -31.937 -32.294 -32.650 -33.007 -33.364 26 000 -37.286 -37.643 -38.000 -38.356 -38.713 -39.069 -39.426 -39.783 -40.139 -40.496 28 000 -40.852 -41.209 -41.566 -41.922 -42.279 -42.636 -42.992 -43.349 -43.705 -44.062 29 000 -47.985 -48.341 -48.698 -49.055 -52.261 -52.977 -53.334 -50.124 -50.481 -50.838 -51.194 30 000 -55.117 -55.474 -55.830 -56. | 21 000 | -15.889 | -16.246 | 1 | | -17.316 | -17.672 | -18.029 | -18.386 | -18.742 | -19.099 | | 23 000 -23.022 -23.378 -23.735 -24.092 -24.448 -24.805 -25.161 -25.518 -25.875 -26.231 24 000 -26.588 -26.944 -27.301 -27.658 -28.014 -28.371 -28.728 -29.084 -29.441 -29.797 25 000 -30.154 -30.511 -30.867 -31.224 -31.580 -31.937 -32.294 -32.650 -33.007 -33.364 26 000 -33.720 -34.077 -34.433 -34.790 -35.147 -35.503 -35.860 -36.216 -36.573 -36.930 27 000 -37.286 -37.643 -38.000 -38.356 -38.713 -39.069 -39.426 -39.783 -40.139 -40.496 28 000 -40.852 -41.209 -41.566 -41.922 -42.279 -42.636 -42.992 -43.349 -43.705 -44.062 29 000 -47.985 -48.341 -48.698 -49.055 -49.411 -49.768 -50.124 -50.481 -50.838 -51.194 31 000 -55.151 -51.908 -52.264 -52.261 -52. | 22 0,00 | -19.456 | -19.812 | 1 | ! | | | | | | 1 | | 25 000 -30.154 -30.511 -30.867 -31.224 -31.580 -31.937 -32.294 -32.650 -33.007 -33.364 26 000 -33.720 -34.077 -34.433 -34.790 -35.503 -35.860 -36.216 -36.573 -36.930 27 000 -37.286 -37.643 -38.000 -38.356 -38.713 -39.069 -39.426 -39.783 -40.139 -40.496 28 000 -40.852 -41.209 -41.566 -41.922 -42.279 -42.636 -42.992 -43.349 -43.705 -44.062 29 000 -47.985 -48.341 -48.698 -49.055 -49.411 -49.768 -50.124 -50.481 -50.838 -51.194 31 000 -51.551 -51.908 -52.264 -52.261 -52.977 -53.334 -53.691 -54.404 -54.761 32 000 -55.117 -55.474 -55.830 -56.187 -56.544 -56.900 -57.257 -57.613 -57.970 -58.327 33 000 -62.249 -62.606 -62.963 -63.319 -63.676 -64.033 -64. | 23 000 | -23.022 | -23.378 | -23.735 | -24.092 | -24.448 | | | -25.518 | -25.875 | -26.231 | | 26 000 -33.720 -34.077 -34.433 -34.790 -35.147 -35.503 -35.860 -36.216 -36.573 -36.930 27 000 -37.286 -37.643 -38.000 -38.356 -38.713 -39.069 -39.426 -39.783 -40.139 -40.496 28 000 -40.852 -41.209 -41.566 -41.922 -42.279 -42.636 -42.992 -43.349 -43.705 -44.062 29 000 -47.985 -48.341 -48.698 -49.055 -49.411 -49.768 -50.124 -50.481 -50.838 -51.194 31 000 -51.551 -51.908 -52.264 -52.261 -52.977 -53.334 -53.691 -54.047 -54.404 -54.761 32 000 -55.117 -55.474 -55.830 -56.187 -56.544 -56.900 -57.257 -57.613 -57.970 -58.327 33 000 -62.249 -62.606 -62.963 -63.319 -63.676 -64.033 -64.389 -64.746 -65.102 -65.459 35 000 -65.816 -66.529 -66.529 -63.319 -63. | 24 000 | -26.588 | -26.944 | -27.301 | -27.658 | -28.014 | -28.371 | -28.728 | -29.084 | -29.441 | -29.797 | | 27 000 -37.286 -37.643 -38.000 -38.356 -38.713 -39.069 -39.426 -39.783 -40.139 -40.496 28 000 -40.852 -41.209 -41.566 -41.922 -42.279 -42.636 -42.992 -43.349 -43.705 -44.062 29 000 -44.419 -44.775 -45.132 -45.488 -45.845 -46.202 -46.558 -46.915 -47.272 -47.628 30 000 -47.985 -48.341 -48.698 -49.055 -49.411 -49.768 -50.124 -50.481 -50.838 -51.194 31 000 -51.551 -51.908 -52.264 -52.261 -52.977 -53.334 -53.691 -54.047 -54.404 -54.761 32 000 -55.117 -55.474 -55.830 -56.187 -56.544 -56.900 -57.257 -57.613 -57.970 -58.327 33 000 -62.249 -62.606 -62.963 -63.319 -63.676 -64.033 -64.389 -64.746 -65.102 -65.459 35 000 -65.816 -66.529 -66.529 -63.319 -63. | 25 000 | -30.154 | -30.511 | -30.867 | -31.224 | -31.580 | -31.937 | -32.294 | -32.650 | -33.007 | -33.364 | | 28 000 | | 1 | 1 | P. | | -35.147 | -35.503 | -35.860 | -36.216 | -36.573 | -36.930 | | 29 000 -44.419 -44.775 -45.132 -45.488 -45.845 -46.202 -46.558 -46.915 -47.272 -47.628 30 000 -47.985 -48.341 -48.698 -49.055 -49.411 -49.768 -50.124 -50.481 -50.838 -51.194 31 000 -55.117 -55.474 -55.830 -56.187 -56.544 -56.900 -57.257 -57.613 -57.970 -58.327 33 000 -62.249 -62.606 -62.963 -63.319 -63.676 -64.033 -64.389 -64.746 -65.102 -65.459 35 000 -65.816 -66.529 -66.529 -67.242 -67.955 -67.955 -66.569 -66.549 | | | ı | -38.000 | -38.356 | -38.713 | -39.069 | -39.426 | -39.783 | -40.139 | -40.496 | | 30 000 -47.985 -48.341 -48.698 -49.055 -49.411 -49.768 -50.124 -50.481 -50.838 -51.194 31 000 -51.551 -51.908 -52.264 -52.261 -52.977 -53.334 -53.691 -54.047 -54.404 -54.761 32 000 -55.117 -55.474 -55.830 -56.187 -56.544 -56.900 -57.257 -57.613 -57.970 -58.327 33 000 -68.683 -59.040 -59.397 -59.753 -60.110 -60.466 -60.823 -61.180 -61.536 -61.893 34 000 -62.249 -62.606 -62.963 -63.319 -63.676 -64.033 -64.389 -64.746 -65.102 -65.459 35 000 -65.816 | T . | 1 | 1 | I. | | | l | 1 | -43.349 | -43.705 | -44.062 | | 31 000 -51.551 -51.908 -52.264 -52.261 -52.977 -53.334 -53.691 -54.047 -54.404 -54.761 32 000 -55.117 -55.474 -55.830 -56.187 -56.544 -56.900 -57.257 -57.613 -57.970 -58.327 -58.327 -58.683 -59.040 -59.397 -59.753 -60.110 -60.466 -60.823 -61.180 -61.536 -61.893 -62.249 -62.606 -62.963 -63.319 -63.676 -64.033 -64.389 -64.746 -65.102 -65.459 -67.242 -67.955 -68.669 -68.669 | 29 000 | -44.419 | -44.775 | -45.132 | -45.488 | -45.845 | -46.202 | -46.558 | -46.915 | -47.272 | -47.628 | | 31 000 -51.551 -51.908 -52.264 -52.261 -52.977 -53.334 -53.691 -54.047 -54.404 -54.761 32 000 -55.117 -55.474 -55.830 -56.187 -56.544 -56.900 -57.257 -57.613 -57.970 -58.327 -58.327 -58.683 -59.040 -59.397 -59.753 -60.110 -60.466 -60.823 -61.180 -61.536 -61.893 -62.249 -62.606 -62.963 -63.319 -63.676 -64.033 -64.389 -64.746 -65.102 -65.459 -67.242 -67.955 -68.669 -68.669 | 30 000 | -47.985 | -48.341 | -48.698 | -49.055 | -49.411 | -49.768 | -50.124 | -50.481 | -50.838 | -51.194 | | 32 000 -55.117 -55.474 -55.830 -56.187 -56.544 -56.900 -57.257 -57.613 -57.970 -58.327 33 000 -58.683 -59.040 -59.397 -59.753 -60.110 -60.466 -60.823 -61.180 -61.536 -61.893 34 000 -62.249 -62.606 -62.963 -63.319 -63.676 -64.033 -64.389 -64.746 -65.102 -65.459 35 000 -65.816 -66.529 -67.242 -67.955 -67.955 -68.669 | | | | | | | 1 | | | | | | 33 000 -58.683 -59.040 -59.397 -59.753 -60.110 -60.466 -60.823 -61.180 -61.536 -61.893 -62.249 -62.606 -62.963 -63.319 -63.676 -64.033 -64.389 -64.746 -65.102 -65.459 -67.242 -67.955 -67.955 -68.669 - | l . | l . | 1 | | | l | | | | 1 | | | 34 000 -62.249 -62.606 -62.963 -63.319 -63.676 -64.033 -64.389 -64.746 -65.102 -65.459 -65.816 -66.529 -67.242 -67.955 -68.669 -68.669 | 1 | | ı | | | | | | 1 | 1 | | | 35 000 -65.816 -66.529 -67.242 -67.955 -68.669 | | | | | | | | 1 | | 1 | 1 | | | 35 000 | -65.816 | | -66.529 | | | | 1 | | | | | | 1 | | | | | | | | | | | | 36 090 | 36 090 | | | | | | | | | | | | to -69.700 | to | -69.700 | | | | | | | | | | | [§5 800 | 6 5 800 | | | | | | | | | 1 | | TABLE A4.- Concluded | Н, | 0 | 200 | 400 | 600 | 900 | |---------|---------|--------------------------|-----------------|---------|---------| | ft | 0 | 200 | 400 | 600 | 800 | | 65 000 | | | | | -69.599 | | 66 000 | -69.490 | -69.380 | -69.270 | -69.161 | -69.051 | | 67 000 | -68.941 | -68.831 | -68.722 | -68.612 | -68.520 | | 68 000 | -68.392 | -68.283 | -68.173 | -68.063 | -67.954 | | 69 000 | -67.844 | -67.734 | -67.624 | -67.515 | -67.405 | | 70 000 | -67.295 | -67.185 | -67.076 | -66.966 | -66.856 | | 71 000 | -66.747 | -66.637 | -66.527 | -66.417 | -66.308 | | 72 000 | -66.198 | -66.088 | -65.978 | -65.869 | -65.759 | | 73 000 | -65.649 | -65.540 | -65.430 | -65.320 | -65.210 | | 74 000 | -65.101 | -64.991 | -64.881 | -64.771 | -64.662 | | 75 000 | -64.552 | -64.442 | -64.333 | -64.233 | -64.113 | | 76 000 | -64.003 | -63.894 | -63.784 | -63.674 | -63.564 | | 77 000 | -63.455 | -63.345 | -63.235 | -63.126 | -63.016 | | 78 000 | -62.906 | -62.796 | -62.687 | -62.577 | -62.467 | | 79 000 | -62.357 | -62.248 | -62.138 | -62.028 | -61.919 | | 80 000 | -61.809 | -61.699 | - 61.589 | -61.480 | -61.370 | | 81 000 | -61.260 | -61.150 | -61.041 | -60.931 | -60.821 | | 82 000 | -60.712 | -60.602 | -60.492 | -60.382 | -60.273 | | 83 000 | -60.163 | -60.053 | -59.943 | -59.834 | -59.724 | | 84 000 | -59.614 | - 59 . 505 | -59.395 | -59.285 | -59.175 | | 85 000 | -59.066 |
-58.956 | -58.846 | -58.736 | -58.627 | | 86 000 | -58.517 | -58.407 | -58.298 | -58.188 | -58.078 | | 87 000 | -57.968 | -57.859 | -57.749 | -57.639 | -57.529 | | 88 000 | -57.420 | -57.310 | -57.200 | -57.090 | -56.981 | | 89 000 | -56.871 | -56.761 | -56.652 | -56.542 | -56.432 | | 90 000 | -56.322 | -56.213 | -56.103 | -55.993 | -55.883 | | 91 000 | -55.774 | -55.664 | -55.554 | -55.445 | -55.335 | | 92 000 | -55.225 | -55.115 | -55.006 | -54.896 | -54.786 | | 93 000 | -54.676 | -54.567 | -54.457 | -54.347 | -54.238 | | 94 000 | -54.128 | -54.018 | -53.908 | -53.799 | -53.689 | | 95 000 | -53.579 | -53.469 | -53.360 | -53.250 | -53.140 | | 96 000 | -53.031 | -52.921 | -52.811 | -52.701 | -52.592 | | 97 000 | -52.482 | -52.372 | -52.262 | -52.153 | -52.043 | | 98 000 | -51.933 | -51.824 | -51.714 | -51.604 | -51.494 | | 99 000 | -51.385 | -51.275 | -51.165 | -51.055 | -50.946 | | 100 000 | -50.836 | | | | | TABLE A5.- TEMPERATURE t IN DEGREES CENTIGRADE FOR VALUES OF ## PRESSURE ALTITUDE H IN GEOPOTENTIAL FEET [From ref. Al] | | | | | | | | | | | r | |----------|---------|---------|-------------|---------|---------|---------|----------------|---------|----------|---------| | H,
ft | 0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | | 0 | 15.000 | 14.802 | 14.604 | 14.406 | 14.208 | 14.009 | 13.811 | 13.613 | 13.415 | 13.217 | | 1 000 | 13.019 | 12.821 | 12.623 | 12.424 | 12.226 | 12.028 | 11.830 | 11.632 | 11.434 | 11.236 | | 2 000 | 11.038 | 10.839 | 10.641 | 10.443 | 10.245 | 10.047 | 9.849 | 9.651 | 9.453 | 9.255 | | 3 000 | 9.056 | 8.858 | 8.660 | 8.462 | 8.264 | 8.066 | 7.868 | 7.670 | 7.471 | 7.273 | | 4 000 | 7.075 | 6.877 | 6.679 | 6.481 | 6.283 | 6.085 | 5.886 | 5.688 | 5.490 | 5.292 | | 5 000 | 5.094 | 4.896 | 4.698 | 4.500 | 4.302 | 4.103 | 3.905 | 3.707 | 3.509 | 3.311 | | 6 000 | 3.113 | 2.915 | 2.717 | 2.518 | 2.320 | 2.122 | 1.924 | 1.726 | 1.528 | 1.330 | | 7 000 | 1.132 | .933 | .735 | .537 | .339 | .141 | 057 | 255 | 453 | 651 | | 8 000 | 850 | -1.048 | -1.246 | -1.444 | -1.642 | -1.840 | -2.038 | -2.236 | -2.435 | -2.633 | | 9 000 | -2.831 | -3.029 | -3.227 | -3.425 | -3.623 | -3.821 | -4.020 | -4.218 | -4.416 | -4.614 | | 10 000 | -4.812 | -5.010 | -5.208 | -5.406 | -5.604 | -5.803 | -6.001 | -6.199 | -6.397 | -6.595 | | 11 000 | -6.793 | -6.991 | -7.189 | -7.388 | | -7.784 | - 7.982 | -8.180 | | 1 | | 12 000 | -8.774 | -8.973 | -9.171 | -9.369 | -9.567 | -9.765 | -9.963 | -10.161 | | | | 1 | | -10.954 | -11.152 | -11.350 | -11.548 | -11.746 | -11.944 | -12.142 | -12.341 | -12.539 | | 1 | -12.737 | -12.935 | -13.133 | -13.331 | -13.529 | | -13.926 | | | | | | | -14.916 | | | -15.510 | | -15.907 | | | -16.501 | | | | | | | -17.492 | -17.690 | -17.888 | -18.086 | -18.284 | -18.482 | | 1 | -18.680 | -18.879 | -19.077 | -19.275 | -19.473 | | | | | -20.463 | | 1 | | | | | -21.454 | | -21.850 | -22.048 | -22.247 | -22.445 | | 19 000 | -22.643 | -22.841 | -23.039 | -23.237 | -23.435 | -23.633 | -23.832 | -24.030 | -24.228 | -24.426 | | 20 000 | -24.624 | -24.822 | -25.020 | -25.218 | -25.416 | -25.615 | -25.831 | -26.011 | -26, 209 | -26,407 | | | | -26.803 | -27.001 | -27.200 | -27.398 | -27.596 | -27.794 | -27.992 | -28,190 | -28.388 | | 22 000 | -28.586 | -28.785 | -28.983 | -29.181 | -29.379 | -29.577 | -29.775 | -29.973 | -30.171 | -30.369 | | 23 000 | -30.568 | -30.766 | -30.964 | -31.162 | -31.160 | -31.558 | -31.756 | -31.954 | -32.153 | -32.351 | | | -32.549 | -32.747 | -32.945 | -33.143 | -33.341 | -33.539 | -33.738 | -33.936 | -34.134 | -34.332 | | 25 000 | -34.530 | -34.728 | -34.926 | -35.124 | -35.322 | -35.521 | -35.719 | -35.917 | -36.115 | -36.313 | | 26 000 | -36.511 | -36.709 | -36.907 | -37.106 | -37.304 | | | | | | | | | -38.691 | | -39.087 | -39.285 | -39.483 | -39.681 | -39.879 | -40.077 | -40.275 | | 28 000 | -40.474 | -40.672 | -40.870 | -41.068 | -41.266 | -41.464 | -41.662 | -41.860 | -42.059 | -42.257 | | 29 000 | -42.455 | -42.653 | -42.851 | | -43.247 | | | -43.842 | l . | -44.238 | | | | -44.634 | | | -45.228 | -45.427 | -45.625 | -45.823 | -46.021 | -46.219 | | | | -46.615 | | | -47.210 | | | -47.804 | | | | 32 000 | -48.398 | -48.597 | -48.795 | -48.993 | -49.191 | | -49.587 | | | | | 33 000 | -50.380 | -50.578 | | 7 | | | -51.568 | | | | | | -52.361 | -52.559 | | | -53.153 | | -53.550 | -53.748 | -53.946 | -54.144 | | 35 000 | -54.342 | | -54.738 | | -55.134 | | -55.531 | | -55.927 | | | 36 000 | -56.323 | | | | | | | | | | | 36 090 | | | | | | | | | | | | to | -56.500 | | | | | | | | | | | 65 800 | | | | | | | | | | | TABLE A5.- Concluded TABLE A6.- COEFFICIENT OF VISCOSITY μ in POUND-SECONDS PER SQUARE FOOT FOR VALUES OF PRESSURE ALTITUDE μ IN GEOPOTENTIAL FEET [From ref. A1] | H,
ft | μ,
lb-sec/ft ² | H,
ft | μ,
lb-sec/ft ² | |----------|------------------------------|----------|------------------------------| | 0 | 3.7372 × 10 ⁻⁷ | 36 090 | | | 1 000 | 3.7173 | to | 2.9691×10^{-7} | | 2 000 | 3.6971 | 65 800 | | | 3 000 | 3.6769 | 66 000 | 2.9704 | | 4 000 | 3.6567 | 67 000 | 2.9740 | | 5 000 | 3.6365 | 68 000 | 2.9774 | | 6 000 | 3.6163 | 69 000 | 2.9809 | | 7 000 | 3.5958 | | | | 8 000 | 3.5752 | 70 000 | 2.9844 | | 9 000 | 3.5547 | 71 000 | 2.9879 | | | | 72 000 | 2.9914 | | 10 000 | 3.5342 | 73 000 | 2.9949 | | 11 000 | 3.5134 | 74 000 | 2.9984 | | 12 000 | 3.4926 | 75 000 | 3.0018 | | 13 000 | 3.4717 | 76 000 | .3.0053 | | 14 000 | 3.4509 | 77 000 | 3.0088 | | 15 000 | 3.4301 | 78 000 | 3.0123 | | 16 000 | 3.4090 | 79 000 | 3.0157 | | 17 000 | 3.3878 | | | | 18 000 | 3.3667 | 80 000 | 3.0192 | | 19 000 | 3.3452 | 81 000 | 3.0227 | | | - | 82 000 | 3.0261 | | 20 000 | 3.3238 | 83 000 | 3.0296 | | 21 000 | 3.3027 | 84 000 | 3.0331 | | 22 000 | 3.2809 | 85 000 | 3.0365 | | 23 000 | 3.2595 | 86 000 | 3.0400 | | 24 000 | 3.2377 | 87 000 | 3.0435 | | 25 000 | 3.2160 | 88 000 | 3.0469 | | 26 000 | 3.1942 | 89 000 | 3.0504 | | 27 000 | 3.1721 | | | | 28 000 | 3.1501 | 90 000 | 3.0538 | | 29 000 | 3.1280 | 91 000 | 3.0573 | | | | 92 000 | 3.0607 | | 30 000 | 3.1060 | 93 000 | 3.0641 | | 31 000 | 3.0837 | 94 000 | 3.0676 | | 32 000 | 3.0614 | 95 000 | 3.0710 | | 33 000 | 3.0389 | 96 000 | 3.0744 | | 34 000 | 3.0164 | 97 000 | 3.0779 | | 35 000 | 2.9938 | 98 000 | 3.0813 | | 36 000 | 2.9711 | 99 000 | 3.0847 | | | | 100 000 | 3.0882 | TABLE A7.- SPEED OF SOUND a IN MILES PER HOUR AND KNOTS FOR VALUES OF PRESSURE ALTITUDE H IN GEOPOTENTIAL FEET [From ref. Al] | H,
ft | a,
mph | a,
knots | H,
ft | a,
mph | a,
knots | |------------------|------------------|-------------|---|-----------|-------------| | 0 | 761.22 | 661.48 | 36 090 | | | | 1 000 | 758.60 | 659.20 | to | 660.05 | 573.57 | | 2 000 | 755.97 | 656.92 | 65 800 | 000.03 | | | 3 000 | 753.37 | 654.62 | 66 000 | 660.23 | 573.73 | | 4 000 | 750.67 | 652.32 | 67 000 | 660.70 | 574.13 | | 5 000 | 748.01 | 650.01 | 68 000 | 661.16 | 574.53 | | 6 000 | 745.35 | 647.69 | 69 000 | 661.62 | 574.93 | | 7 000 | 742.67 | 645.35 | 0,000 | 001.01 | | | 8 000 | 739.98 | 643.03 | 70 000 | 662.09 | 575.34 | | 9 000 | 737.29 | 640.68 | 71 000 | 662.54 | 575.73 | | 9 000 | 131.29 | 040.00 | 72 000 | 663.01 | 576.14 | | 10 000 | 734.58 | 638.33 | 73 000 | 663.47. | 576.54 | | 11 000 | 731.86 | 635.97 | 74 000 | 663.93 | 576.94 | | 12 000 | 729.13 | 633.60 | 75 000 | 664.39 | 577.34 | | 13 000 | 726.40 | 631.22 | 76 000 | 664.85 | 577.74 | | 14 000 | 723.65 | 628.84 | 77 000 | 665.32 | 578.15 | | 15 000 | 720.89 | 626.44 | 78 000 | 665.77 | 578.54 | | 16 000 | 718.12 | 624.03 | 79 000 | 666.24 | 578.95 | | 17 000 | 715.34 | 621.62 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 000.21 | | | 18 000 | 713.34 | 619.19 | 80 000 | 666.70 | 579.34 | | | 709.75 | 616.76 | 81 000 | 667.16 | 579.75 | | 19 000 | 709.75 | 010.70 | 82 000 | 667.62 | 580.14 | | 20.000 | 706 04 | 614.32 | 83 000 | 668.07 | 580.54 | | 20 000 | 706.94 | 611.86 | 84 000 | 668.53 | 580.94 | | 21 000 | 1 | 609.40 | 85 000 | 668.99 | 581.34 | | 22 000 | 701.28 | 606.93 | 86 000 | 669.45 | 581.74 | | 23 000 | 698.44 | 604.44 | 87 000 | 669.91 | 582.13 | | 24 000 | 695.58 | 601.95 | 88 000 | 670.36 | 582.53 | | 25 000 | 692.71 | 599.44 | 89 000 | 670.82 | 582.93 | | 26 000 | 689.83 | 596.93 | 09 000 | 070.02 | 302.30 | | 27 000 | 686.93
684.03 | 594.41 | 90 000 | 671.28 | 583.32 | | 28 000
29 000 | 681.11 | 591.87 | 91 000 | 671.73 | 583.72 | | 29 000 | 001.11 | 391.07 | 92 000 | 672.19 | 584.12 | | 30 000 | 678.18 | 589.32 | 93 000 | 672.65 | 584.51 | | 30 000
31 000 | 675.24 | 586.76 | 94 000 | 673.10 | 584.91 | | | 672.28 | 584.20 | 95 000 | 673.55 | 585.30 | | 32 000 | | 581.61 | 96 000 | 674.01 | 585.70 | | 33 000
34 000 | 669.31 | 579.02 | 97 000 | 674.47 | 586.10 | | i . | 663.33 | 576.42 | 98 000 | 674.92 | 586.49 | | 35 000
36 000 | 660.32 | 573.80 | 99 000 | 675.37 | 586.88 | | 36 000 | 000.32 | 3,3.00 | | | | | | | | 100 000 | 675.82 | 587.28 | TABLE A8.- ACCELERATION DUE TO GRAVITY | g | IN FEET PER SECOND SQUARED FOR VALUES OF PRESSURE ALTITUDE | H | IN GEOPOTENTIAL FEET [From ref. A1] | Н, | g, | Н, | g, ₂ | |--------|---------------------|---------|---------------------| | ft | ft/sec ² | ft | ft/sec ² | | О | 32.174 | 50 000 | 32.020 | | 1 000 | 32.171 | 51 000 | 32.017 | | 2 000 | 32.168 | 52 000 | 32.014 | | 3 000 | 32.165 | 53 000 | 32.011 | | 4 000 | 32.162 | 54 000 | 32.008 | | 5 000 | 32.159 | 55 000 | 32.005 | | 6 000 | 32.156 | 56 000 | | | 7 000 | 32.150 | 1 | 32.001 | | 8 000 | | 57 000 | 31.998 | | 1 | 32.149 | 58 000 | 31.995 | | 9 000 | 32.145 | 59 000 | 31.992 | | 10 000 | 32.143 | 60 000 | 31.989 | | 11 000 | 32.140 | 61 000 | 31.986 | | 12 000 | 32.137 | 62 000 | 31.983 | | 13 000 | 32.134 | 63 000 | 31.980 | | 14 000 | 32.131 | 64 000 | 31.977 | | 15 000 | 32.128 | 65 000 | 31.974 | | 15 000 | 32.125 | 66 000 | 31.971 | | 17 000 | 32.122 | 67 000 | 31.968 | | 18 000 | 32.119 | 68 000 | 31.965 | | 19 000 |
32.115 | 69 000 | 31.961 | | 20 000 | 32.112 | 70 000 | 21 050 | | 21 000 | 32.109 | 71 000 | 31.958
31.955 | | 22 000 | | | | | 23 000 | 32.106 | 72 000 | 31.952 | | | 32.103 | 73 000 | 31.949 | | 24 000 | 32.100 | 74 000 | 31.946 | | 25 000 | 32.097 | 75 000 | 31.943 | | 26 000 | 32.094 | 76 000 | 31.940 | | 27 000 | 32.091 | 77 000 | 31.937 | | 28 000 | 32.088 | 78 000 | 31.934 | | 29 000 | 32.085 | 79 000 | 31.931 | | 30 000 | 32.082 | 80 000 | 31.928 | | 31 000 | 32.078 | 81 000 | 31.925 | | 32 000 | 32.075 | 82 000 | 31.922 | | 33 000 | 32.072 | 83 000 | 31.918 | | 34 000 | 32.069 | 84 000 | 31.915 | | 35 000 | 32.066 | 85 000 | 31.912 | | 36 000 | 32.063 | 86 000 | 31.909 | | 37 000 | 32.060 | 87 000 | · · | | 38 000 | | | 31.906 | | 39 000 | 32.057 | 88 000 | 31.903 | | 39 000 | 32.054 | 89 000 | 31.900 | | 40 000 | 32.051 | 90 000 | 31.897 | | 41 000 | 32.048 | 91 000 | 31.894 | | 42 000 | . 32.045 | 92 000 | 31.891 | | 43 000 | 32.041 | 93 000 | 31.888 | | 44 000 | 32.038 | 94 000 | 31.885 | | 45 000 | 32.035 | 95 000 | 31.882 | | 46 000 | 32.032 | 96 000 | 31.878 | | 47 000 | 32.029 | 97 000 | 31.875 | | 48 000 | 32.026 | 98 000 | 31.872 | | 49 000 | 32.023 | 99 000 | 31.869 | | | | 100 000 | 31.866 | | L | | 100 000 | 31.000 | TABLE A9.- IMPACT PRESSURE q_c (OR q_c^i) IN INCHES OF MERCURY (0° C) FOR VALUES OF CALIBRATED AIRSPEED V_c (OR INDICATED AIRSPEED V_i) IN MILES PER HOUR [From ref. A2] | | | | | r | | | | | | | |------------------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|--------------------| | V _C , | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 0 | 0.000000 | 0.000030 | 0.000147 | 0.000323 | 0.000574 | 0.000901 | 0.001299 | 0.001768 | 0.002313 | 0.002932 | | 10 | .003611 | .004377 | .005203 | .006104 | .007088 | .008136 | .009258 | .010451 | .011708 | .013049 | | 20 | .014461 | .015939 | .017501 | .019129 | .020825 | .022594 | .024440 | .026358 | .028347 | .030412 | | 30 | .032539 | .034751 | .037025 | .039382 | .041806 | .044304 | .046869 | .049508 | .052228 | .055019 | | 40 | .057871 | .060806 | .063816 | .066886 | .070034 | .073256 | .076551 | .079920 | .083358 | .086876 | | 50 | .090464 | .094126 | .097851 | .101652 | .105535 | .109485 | .113509 | .117603 | .121771 | .126016 | | 60 | .130331 | .134712 | .139179 | .143709 | .148323 | .152999 | .157751 | .162574 | .167472 | .172448 | | 70 | .177496 | .182606 | .187804 | .193064 | .198411 | .203818 | .209302 | .214859 | .220487 | .226196 | | 80 | .231977 | .237832 | .243751 | .249756 | .255824 | .261976 | .268196 | .274489 | .280853 | .287298 | | 90 | .293812 | .300397 | .307058 | .313802 | .320606 | .327488 | .334454 | .341485 | .348592 | .355770 | | 100 | .363029 | .370347 | .377756 | . 385239 | .392785 | .400406 | .408111 | .415888 | .423736 | .431659 | | 110 | .439657 | .447733 | .455874 | .464097 | .472391 | .480772 | .489213 | .497731 | .506328 | .515008 | | 120 | .523742 | .532566 | .541464 | .550443 | .559480 | .568606 | .577797 | .587070 | .596414 | .605837 | | 130 | .615334 | .624912 | .634564 | .644292 | .654085 | .663965 | .673914 | .683940 | .694039 | .704227 | | 140 | .714481 | .724804 | .735210 | .745698 | .756263 | .766894 | .777600 | .788395 | .799257 | .810199 | | 150 | .821216 | .832311 | .843483 | .854734 | .866050 | .877456 | .888931 | .900480 | .912117 | .923825 | | 160 | .935611 | .947472 | .959413 | .971424 | .983524 | .995699 | 1.00795 | 1.02028 | 1.03268 | 1.04516 | | 170 | 1.05772 | 1.07036 | 1.08307 | 1.09586 | 1.10873 | 1.12168 | 1.13470 | 1.14782 | 1.16100 | 1.17426 | | 180 | 1.18760 | 1.20103 | 1.21451 | 1.22809 | 1,24175 | 1.25548 | 1.26929 | 1.28319 | 1.29716 | 1,31120
1,45605 | | 190 | 1.32533 | 1.33953 | 1.35382 | 1.36819 | 1.38263 | 1.39716 | 1.41176 | 1.42645 | 1.44121 | 1.45605 | | 200 | 1.47097 | 1.48597 | 1.50106 | 1.51622 | 1.53146 | 1.54679 | 1.56219 | 1.57768 | 1.59324 | 1.60889 | | 210 | 1.62461 | 1.64042 | 1.65630 | 1.67228 | 1.68833 | 1.70445 | 1.72066 | 1.73695 | 1.75333 | 1.76978 | | 220 | 1.78631 | 1.80294 | 2.81964 | 1.83642 | 1.85328 | 1.87022 | 1.88725 | 1.90435 | 1.92155 | 1.93882 | | 230 | 1.95617 | 1.97362 | 1.99114 | 2.00874 | 2.02643 | 2.04419 | 2.06204 | 2.07998 | 2.09800 | 2.11609 | | 240 | 2.13429 | 2.15255 | 2.17090 | 2.18933 | 2.20785 | 2.22645 | 2.24514 | 2.26390 | 2.28276 | 2.30170 | | 250 | 2.32071 | 2.33983 | 2.35902 | 2.37829 | 2.39765 | 2.41710 | 2.43662 | 2.45624 | 2.47594 | 2.49572 | | 260 | 2.51558 | 2.53555 | 2.55558 | 2.57571 | 2.59592 | 2.61622 | 2.63659 | 2.65706 | 2.67762 | 2.69826 | | 270 | 2.71899 | 2.73980 | 2.76070 | 2.78168 | 2.80276 | 2.82392 | 2.84516 | 2.86650 | 2.88792 | 2.90943 | | 280 | 2.93102 | 2.95271 | 2.97448 | 2.99634 | 3.01828 | 3.04032 | 3.06244 | 3.08464 | 3.10695 | 3.12933 | | 290 | 3.15181 | 3.17436 | 3.19703 | 3.21976 | 3.24260 | 3.26552 | 3.28853 | 3.31163 | 3.33481 | 3.35809 | | 300 | 3.38145 | 3.40491 | 3.42845 | 3.45209 | 3.47582 | 3.49963 | 3.52354 | 3.54754 | 3.57163 | 3.59581 | | 310 | 3.62008 | 3.64444 | 3.66890 | 3.69343 | 3.71807 | 3.74279 | 3.76761 | 3.79253 | 3.81752 | 3.84262 | | 320 | 3.86781 | 3.89308 | 3.91845 | 3.94392 | 3.96947 | 3.99512 | 4.02087 | 4.04670 | 4.07262 | 4.09865 | | 330 | 4.12477 | 4.15097 | 4.17728 | 4.20367 | 4.23016 | 4.25674 | 4.28343 | 4.31020 | 4.33707 | 4.36403 | | 340 | 4.39109 | 4.41824 | 4.44549 | 4.47282 | 4.50027 | 4.52780 | 4.55544 | 4.58316 | 4.61098 | 4.63890 | | 350 | 4.66691 | 4.69502 | 4.72323 | 4.75153 | 4.77993 | 4.80843 | 4.83703 | 4.86572 | 4.89452 | 4.92339 | | 360 | 4.95238 | 4.98147 | 5.01064 | 5.03992 | 5.06931 | 5.09878 | 5.12835 | 5.15803 | 5.18780 | 5.21768 | | 370 | 5.24764 | 5.27772 | 5.30788 | 5.33816 | 5.36853 | 5.39899 | 5.42957 | 5.46024 | 5.49100 | 5.52187 | | 380 | 5.55285 | 5.58392 | 5.61510 | 5.64638 | 5.67775 | 5.70923 | 5.74080 | 5.77249 | 5.80428 | 5.83617 | | 390 | 5.86816 | 5.90025 | 5.93244 | 5.96475 | 5.99715 | 6.02965 | 6.06227 | 6.09498 | 6.12780 | 6.16071 | | 400 | 6.19373 | 6.22686 | 6.26010 | 6.29343 | 6.32688 | 6.36043 | 6.39407 | 6.42783 | 6.46169 | 6.49566 | | 410 | 6.52974 | 6.56393 | 6.59820 | 6.63260 | 6.66710 | 6.70171 | 6.73642 | 6.77124 | 6.80617 | 6.84121 | | 420 | 6.87635 | 6.91161 | 6.94696 | 6.98243 | 7.01800 | 7.05369 | 7.08949 | 7.12539 | 7.16140 | 7.19752 | | 430 | 7.23375 | 7.27009 | 7.30655 | 7.34310 | 7.37978 | 7.41656 | 7.45344 | 7.49046 | 7.52757 | 7.56479 | | 440 | 7.60213 | 7.63958 | 7.67713 | 7.71480 | 7.75258 | 7.79048 | 7.82849 | 7.86660 | 7.90485 | 7.94319 | | 450 | 7.98166 | 8.02022 | 8.05891 | 8.09772 | 8.13663 | 8.17566 | 8.21481 | 8.25407 | 8.29345 | 8.33294 | | 460 | 8.37254 | 8.41226 | 8.45209 | 8.49205 | 8.53212 | 8.57229 | 8.61261 | 8.65302 | 8.69356 | 8.73421 | | 470 | 1 | 8.81587 | 8.85688 | 8.89800 | 8.93924 | 8.98060 | 9.02208 | 9.06368 | 9.10540 | 9.14723 | | 480 | | 9.23127 | 9.27346 | 9.31578 | 9.35821 | 9.40077 | 9.44345 | 9.48625 | 9.52917 | 9.57221 | | 490 | 9.61537 | 9.65866 | 9.70207 | 9.74560 | 9.78926 | 9.83303 | 9.87693 | 9.92095 | 9.96509 | 10.0094 | | 500 | 10.0538 | 10.0983 | 10.1429 | 10.1877 | 10.2326 | 10.2776 | 10.3227 | 10.3680 | 10.4134 | 10.4589 | | | 10.5046 | 10.5503 | 10.5962 | 10.6423 | 10.6884 | 10.7347 | 10.7811 | 10.8276 | 10.8743 | 10.9211 | | | 10.9680 | 11.0151 | 11.0623 | 11.1096 | 11.1570 | 11.2046 | 11.2523 | 11.3001 | 11.3481 | 11.3962 | | | 11.4444 | 11.4927 | 11.5412 | 11.5898 | 11.6386 | 11.6875 | 11.7365 | 11.7856 | 11.8349 | 11.8843 | | | 11.9339 | 11.9836 | 12.0334 | 12.0833 | 12.1334 | 12.1836 | 12.2340 | 12.2845 | 12.3351 | 12.3859 | | | 12.4367 | 12.4878 | 12.5390 | 12.5903 | 12.6417 | 12.6933 | 12.7450 | 12.7969 | 12.8489 | 12.9010 | | | 12.9533 | 13.0057 | 13.0582 | 13.1109 | 13.1638 | 13.2167 | 13.2698 | 13.3231 | 13.3765 | 13.4300 | | | 13.4837 | 13.5375 | 13.5915 | 13.6456 | 13.6999 | 13.7542 | 13.8088 | 13.8635 | 13.9183 | 13.9732 | | 580 | 14.0283 | 14.0836 | 14.1390 | 14.1945 | 14.2502 | 14.3061 | 14.3620 | 14.4182 | 14.4744 | 14.5309 | | 590 | 14.5874 | 14.6441 | 14.7010 | 14.7580 | 14.8152 | 14.8725 | 14.9299 | 14.9875 | 15.0453 | 15.1032 | | L | | | | | | | | · | + | | TABLE A9.- Concluded | | | r | | r | | | | r | I | | |------------------|---------|---------|---------|---------------------------------------|---------|-------------|---------|---------|---------|---------| | V _c , | | | | | | | | | | | | mph | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9] | | щы | | | | | | | | | |] | | 600 | 15 1612 | 15 2105 | 35 0550 | 35 3340 | | | | | | | | 600 | | | 15.2778 | | i . | 15.4538 | | 15.5719 | 15.6312 | 15.6906 | | 610 | | | 15.8698 | 15.9298 | 15.9900 | | 16.1108 | 16.1715 | 16.2323 | 16.2933 | | 620 | | 16.4156 | | 16.5387 | 16.6004 | 16.6623 | 16.7244 | 16.7866 | 16.8490 | 16.9116 | | 630 | 16.9743 | 17.0371 | 17.1001 | 17.1633 | 17.2267 | 17.2902 | 17.3538 | 17.4176 | 17.4816 | 17.5458 | | 640 | 17.6101 | 17.6746 | 17.7392 | 17.8040 | 17.8690 | 17.9341 | 17.9994 | 18.0649 | | 1 | | 650 | 18.2622 | 18.3284 | 18.3946 | 18.4611 | | 18.5945 | | 18.7286 | l | 1 1 | | 660 | | | 19.0668 | | 19.2032 | | | | 19.4782 | (| | | 19.6167 | | | 19.8258 | | 1 | | | i | i i | | | 20.3198 | | | | | 1 | | 20.1070 | 1 | | | 690 | 1 | | | 20.5341 | | 1 | | | 1 | | | 1 090 | 21.0403 | 21.1136 | 21.1868 | 21.2602 | 21.3338 | 21.4076 | 21.4816 | 21.5557 | 21.6300 | 21.7046 | | 7.00 | | | | | | | | | | | | | 21.7793 | | 21.9292 | 22.0045 | 22.0799 | 22.1555 | 22.2313 | 22.3073 | 22.3835 | 22.4599 | | | 22.5364 | | 22.6901 | 22.7672 | 22.8446 | 22.9220 | 22.9997 | 23.0776 | 23.1557 | 23.2339 | | | 23.3124 | | | 23.5489 | 23.6281 | 23.7076 | 23.7872 | 23.8670 | 23.9470 | 24.0272 | | | 24.1076 | | 24.2689 | 24.3499 | 24.4311 | 24.5125 | | 24.6758 | | 24.8399 | | 740 | 24.9223 | 25.0049 | 25.0877 | 25.1706 | | | 25.4207 | Į. | l | | | | 25.7571 | | |) | | 1 | | 26.3535 | | 26.5258 | | | 26.6122 | | | 26.8731 | , | l | 27.1356 |) | | | | | 27.4885 | | | | | I | | | | 27.4000 | | 780 | | | 28.5665 |
27.7553 | | l | 1 | | | 28.2943 | | | | | | 28.6577 | | 28.8405 | 1 | | | 1 1 | | 790 | 29.3011 | 29.3939 | 29.4868 | 29.5799 | 29.6732 | 29.7667 | 29.8603 | 29.9542 | 30.0483 | 30.1425 | | | | | ' | | | } | | | | | | 800 | | 30.3316 | | 30.5214 | 30.6166 | 30.7120 | 30.8076 | 30.9034 | 30.9994 | 31.0955 | | 810 | 31.1918 | 31.2884 | 31.3851 | 31.4820 | 31.5791 | 31.6763 | 31.7738 | 31.8714 | 31.9692 | 32.0672 | | 820 | 32.1654 | 32.2638 | 32.3624 | 32.4611 | 32.5600 | 32.6591 | 32.7584 | 32.8579 | 32.9575 | 33.0574 | | 830 | 33.1574 | 33.2576 | 33.3579 | 33.4585 | 33.5592 | 33.6601 | | 33.8625 | 1 | 1 1 | | 840 | 34.1674 | 34.2693 | | | | | i | 34.8849 | 1 | 35.0195 | | | 35.1951 | | | | | | | | 3 | 1 1 | | 860 | 36.2403 | 36 3458 | 36 4514 | 36.5572 | | 36.7694 | l | | | I I | | 870 | 37.3027 | 37 4000 | 27 5172 | 37.6248 | | | l | 36.9822 | | | | 880 | | | | | | l | 1 | 38.0566 | | | | | | 1 | 38.6001 | | | 38.9282 | 1 | 39.1478 | l | 39.3680 | | 890 | 39.4784 | 39.5889 | 39.6996 | 39.8105 | 39.9215 | 40.0327 | 40.1441 | 40.2556 | 40.3673 | 40.4792 | | | ļ | | | | | | | | | | | | 40.5912 | | | 40.9283 | | 41.1538 | 41.2668 | 41.3799 | 41.4933 | 41.6068 | | 910 | 41.7204 | 41.8342 | 41.9482 | 42.0624 | 42.1767 | 42.2911 | 42.4057 | 42.5205 | 42.6355 | 42.7506 | | 920 | 42.8659 | 42.9813 | 43.0969 | 43.2126 | 43.3286 | | 43.5609 | | | 43.9105 | | 930 | 44.0274 | 44.1444 | 44.2616 | 44.3790 | 44.4965 | 44.6141 | | | 1 | | | 940 | 45.2049 | 45.3235 | 45,4422 | 45.4612 | 45.6803 | 1 | 45.9189 | 1 | | | | 950 | 46.3981 | 46.5183 | 46 6386 | 46 7501 | 46.8798 | | 47.1216 | | | | | 960 | 47.6070 | 47 7289 | 47 9506 | 47 0707 | 40.0798 | 40 2172 | 47.1216 | | | 47.4854 | | 970 | 40 0315 | 10 0517 | 40 0700 | 40.0010 | 40.0949 | 48.21/3 | 48.3398 | 48.4625 | 48.5853 | 48.7083 | | 9/0 | 48.8315 | 40.904/ | 49.0782 | 49.2018 | 49.3256 | 49.4495 | 49.5735 | 49.6977 | 49.8221 | 49.9467 | | 980 | 50.0/13 | 50.1962 | 50.3211 | 50.4663 | 50.5716 | 50.6970 | 50.8226 | 50.9484 | 51.0743 | 51.2003 | | 990 | 51.3265 | 51.4529 | 51.5794 | 51.7061 | 51.8329 | 51.9598 | 52.0870 | 52.2142 | 52.3417 | 52.4692 | | | | | | | | | | | | | | 1000 | 52.5970 | 52.7248 | 52.8529 | 52.9810 | 53.1094 | 53.2379 | 53.3665 | 53.4953 | 53.6242 | 53.7533 | | 1010 | 53.8825 | 54.0119 | 54.1414 | 54.2711 | 54.4010 | 54.5309 | 54.6611 | 54.7914 | 54.9218 | 55.0524 | | 1020 | 55.1831 | 55.3140 | 55.4450 | 55.5762 | 55.7076 | 55,8390 | 55,9707 | 56,1024 | 56.2344 | 56 3665 | | 1030 | 56.4987 | 56.6311 | 56.7636 | 56.8963 | 57.0291 | 57.1621 | | | 57.5619 | | | 1040 | 57.8292 | 57.9630 | 58.0970 | 58 2312 | 58 3655 | | | | | | | 1050 | 59.1744 | 59 3000 | 50.0070 | 50.2312 | | | 58.6345 | | | | | 1060 | 60 E244 | 60 6710 | 09.4402 | 22.2809 | 59.7167 | | 59.9887 | | 60.2613 | | | 1000 | 60.5344 | 60.6712 | 60.8082 | 00.9453 | o1.0826 | 61.2200 | 61.3575 | 61.4952 | 61.6330 | 61.7710 | | 1000 | 61.9091 | 02.0474 | 62.1858 | 62.3244 | | | | | | | | T080 | 63.2985 | 63.4382 | 63.5781 | 63.7181 | 63.8583 | | 64.1391 | 64.2797 | 64.4204 | 64.5613 | | 1090 | 64.7023 | 64.8435 | 64.9849 | 65.1263 | 65.2680 | 65.4097 | 65.5517 | 65.6937 | 65.8359 | 65.9783 | | | | | | | | | | | | | | 1100 | 66.1208 | | | | | | | | | | | - | | | | · · · · · · · · · · · · · · · · · · · | | | L | l | L | | Table alg.- impact pressure $~{\rm q_{c}}~~$ (or $~{\rm q_{c}'})$ in pounds per square foot for values of calibrated airspeed $~{\rm v_{c}}~~$ (or indicated airspeed $~{\rm v_{i}})$ in Miles per hour ${\rm [From~ref.~A2]}$ | | | - | | | | | | | | | |-------------------------|---------|--------------|----------|-----------|----------|----------|----------|----------|----------|-------------| | V _C ,
mph | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 0 | 0 | 0.002116 | 0.010369 | 0.022855 | 0.040631 | 0.063698 | 0.091844 | 0.125068 | 0.163584 | 0.207389 | | 10 | .255427 | .309603 | .368010 | .431708 | .501332 | .575399 | .654758 | .739195 | .828076 | .922882 | | 20 | 1.02277 | 1.12731 | 1.23778 | 1.35290 | 1.47289 | 1.59796 | 1.72853 | 1.86418 | 2.00490 | 2.15092 | | 30 | 2.30139 | 2.45777 | 2.61861 | 2.78536 | 2.95678 | 3.13348 | 3.31484 | 3.50149 | 3.69386 | 3.89130 | | 40 | 4.09298 | 4.30058 | 4.51347 | 4.73059 | 4.95322 | 5.18113 | 5.41413 | 5.65242 | 5.89557 | 6.14444 | | 50 | 6.39817 | 6.65720 | 6.92066 | 7.18942 | 7.46411 | 7.74345 | 8.02808 | 8.31758 | 8.61237 | 8.91266 | | 60 | 9.21782 | 9.52763 | 9.84358 | 10.1640 | 10.4903 | 10.8211 | 11.1571 | 11.4983 | 11.8447 | 12.1966 | | 70 | 12.5536 | 12.9151 | 13.2826 | 13.6547 | 14.0328 | 14.4152 | 14.8032 | 15.1961 | 15.5942 | 15.9980 | | 80 | 16.4068 | 16.8210 | 17.2396 | 17.6643 | 18.0934 | 18.5285 | 18.9685 | 19.4135 | 19.8637 | 20.3195 | | 90 | 20.7802 | 21.2460 | 21.7170 | 22.1940 | 22.6753 | 23.1620 | 23.6547 | 24.1520 | 24.6546 | 25.1622 | | 100 | 25.6756 | 26.1933 | 26.7172 | 27.2465 | 27.7802 | 28.3192 | 28.8641 | 29.4141 | 29.9692 | 30.5296 | | 110 | 31.0953 | 31.6664 | 32.2423 | 32.8238 | 33.4104 | 34.0032 | 34.6001 | 35.2026 | 35.8106 | 36.4245 | | 120 | 37.0423 | 37.6663 | 38.2957 | 38.9308 | 39.5699 | 40.2153 | 40.8654 | 41.5212 | 42.1821 | 42.8485 | | 130 | 43.5202 | 44.1976 | 44.8803 | 45.5683 | 46.2609 | 46.9597 | 47.6633 | 48.3725 | 49.0867 | 49.8073 | | 140 | 50.5325 | 51.2626 | 51.9986 | .52.7404 | 53.4876 | 54.2395 | 54.9967 | 55.7602 | 56.5284 | 57.3023 | | 150 | 58.0815 | 58.8662 | 59.6564 | 60.4521 | 61.2524 | 62.0591 | 62.8707 | 63.6876 | 64.5105 | 65.3386 | | 160 | 66.1722 | 67.0111 | 67.8557 | 68.7051 | 69.5609 | 70.4220 | 71.2882 | 72.1603 | 73.0372 | 73.9201 | | 170 | 74.8083 | 75.7024 | 76.6016 | 77.5062 | 78.4162 | 79.3321 | 80.2531 | 81.1806 | 82.1130 | 83.0507 | | 180 | 83.9943 | 84.9441 | 85.8979 | 86.8582 | 87.8241 | 88.7956 | 89.7723 | 90.7550 | 91.7429 | 92.7362 | | 190 | 93.7355 | 94.7401 | 95.7508 | 96.7666 | 97.7885 | 98.8161 | 99.8486 | 100.887 | 101.931 | 102.981 | | 200 | 104.036 | 105.097 | 106.164 | 107.236 | 108.315 | 109.399 | 110.488 | 111.583 | 112.683 | 113.790 | | 210 | 114.903 | 116.021 | 117.144 | 118.274 | 119.409 | 120.549 | 121.696 | 122.848 | 124.006 | 125.170 | | 220 | 126.339 | 127.515 | 128.696 | 129.883 | 131.075 | 132.274 | 133.478 | 134.688 | 135.904 | 137.125 | | 230 | 138.353 | 139.587 | 140.826 | 142.071 | 143.322 | 144.578 | 145.841 | 147.109 | 148.383 | 149.663 | | 240 | 150.950 | 152.242 | 153.539 | 154.843 | 156.153 | 157.469 | 158.790 | 160.117 | 161.451 | 162.790 | | 250 | 164.135 | 165.487 | 166.844 | 168.208 | 169.577 | 170.952 | 172.333 | 173.720 | 175.114 | 176.513 | | 260 | 177.918 | 179.330 | 180.747 | 182.170 | 183.599 | 185.035 | 186.476 | 187.924 | 189.378 | 190.837 | | 270 | 192.304 | 193.776 | 195.254 | 196.738 | 198.228 | 199.725 | 201.228 | 202.737 | 204.251 | 205.773 | | 280 | 207.300 | 208.834 | 210.374 | 211.919 | 213.472 | 215.030 | 216.595 | 218.165 | 219.742 | 221.326 | | 290 | 222.915 | 224.511 | 226.114 | 227,722 | 229.337 | 230.958 | 232.585 | 234.219 | 235.858 | 237.505 | | 300 | 239.157 | 240.817 | 242.481 | 244.153 | 245.831 | 247.516 | 249.207 | 250.904 | 252.608 | 254.318 | | 310 | 256.035 | 257.757 | 259.487 | 261.222 | 262.965 | 264.714 | 266.469 | 268.231 | 269.999 | 271.774 | | 320 | 273.556 | 275.343 | 277.137 | 278.939 | 280.746 | 282.560 | 284.381 | 286.208 | 288.041 | 289.882 | | 330 | 291.729 | 293.582 | 295.443 | 297.310 | 299.183 | 301.063 | 302.950 | 304.844 | 306.745 | 308.652 | | 340 | 310.565 | 312.485 | 314.412 | 316.346 | 318.287 | 320.234 | 322.189 | 324.149 | 326.117 | 328.092 | | 350 | 330.073 | 332.061 | 334.056 | 336.058 | 338.066 | 340.082 | 342.105 | 344.134 | 346.171 | 348.213 | | 360 | 350.263 | 352.320 | 354.384 | 356.455 | 358.533 | 360.618 | 362.709 | 364.808 | 366.914 | 369.026 | | 370 | 371.146 | 373.273 | 375.406 | 377.548 | 379.695 | 381.850 | 384.013 | 386.182 | 388.358 | 390.541 | | 380 | 392.732 | 394.930 | 397.134 | 399.347 | 401.566 | 403.792 | 406.025 | 408.266 | 410.514 | 412.770 | | 390 | 415.032 | 417.302 | 419.579 | 421.864 | 424.155 | 426.454 | 428.761 | 431.074 | 433.396 | 435.724 | | 400 | 438.059 | 440.402 | 442.753 | 445.110 | 447.476 | 449.849 | 452.228 | 454.616 | 457.011 | 459.414 | | 410 | 461.824 | 464.242 | 466.666 | 469.099 | 471.539 | 473.987 | 476.442 | 478.904 | 481.375 | 483.853 | | 420 | 486.338 | 488.832 | 491.332 | 493.841 | 496.357 | 498.881 | 501.413 | 503.952 | 506.499 | 509.053 | | 430 | 511.616 | 514.186 | 516.764 | 519.350 | 521.944 | 524.545 | 527.153 | 529.771 | 532.396 | 535.029 | | 440 | 537.670 | 540.318 | 542.974 | 545.639 | 548.311 | 550.991 | 553.679 | 556.375 | 559.080 | 561.792 | | 450 | 564.513 | 567.240 | 569.976 | 572.721 | 575.473 | 578.233 | 581.002 | 583.779 | 586.564 | 589.357 | | 460 | 592.158 | 594.967 | 597.784 | 600.610 | 603.445 | 606.286 | 609.137 | 611.996 | 614.862 | 617.737 | | 470 | 620.621 | 623.513 | 626.413 | 629.322 | 632.238 | 635.164 | 638.097 | 641.040 | 643.990 | 646.949 | | 480 | 649.916 | 652.892 | 655.877 | 658.870 | 661.871 | 664.881 | 667.899 | 670.926 | 673.962 | 677.006 | | 490 | 680.059 | 683.120 | 686.191 | 689.269 | 692.357 | 695.453 | 698.558 | 701.671 | 704.793 | 707.925 | | 500 | 711.065 | 714.213 | 717.369 | 720.536 | 723.711 | 726.895 | 730.088 | 733.290 | 736.500 | 739.719 | | 510 | 742.948 | 746.185 | 749.431 | 752.687 | 755.951 | 759.225 | 762.507 | 765.798 | 769.098 | 772.408 | | 520 | | 779.054 | 782.391 | 785.737 | 789.093 | 792.457 | 795.830 | 799.213 | 802.605 | 806.007 | | 530 | 809.418 | 812.837 | 816.267 | 819.705 | 823.153 | 826.610 | 830.077 | 833.552 | 837.038 | 840.533 | | 540 | | 847.551 | 851.075 | 854.607 | 858.149 | 861.701 | 865.263 | 868.833 | 872.414 | 876.004 | | 550 | | 883.214 | 886.833 | 890.462 | 894.100 | 897.748 | 901.406 | 905.074 | 908.751 | 912.438 | | 560 | | 919.843 | 923.560 | 927.287 | 931.024 | 934.770 | 938.526 | 942.293 | 946.070 | 949.856 | | 570 | | 957.459 | 961.275 | 965.102 | 968.939 | 972.786 | 976.642 | 980.509 | 984.386 | 988.274 | | 580 | |
996.080 | 999.998 | 1003.93 | 1007.86 | 1011.81 | 1015.77 | 1019.74 | 1023.72 | 1027.71 | | | 1031.71 | 1035.72 | 1039.75 | 1043.78 | 1047.82 | 1051.87 | 1055.94 | 1060.01 | 1064.10 | 1068.19 | | | 1-00-11 | 1-222.12 | 1-003.73 | 1-0.00.70 | 1-311-02 | 1-052.07 | 1 | 1 | 1 | | TABLE AlO.- Concluded | T 7.7 | Γ | r | T | Г | T | | | | | | |------------------|---------|---------|-------------|---------|---------|---------|---------|--------------------|-------------|---------| | V _c , | 0 | 1 | 2 | 3 | 4 | 5 | _ | 7 | | | | mph | | 1 | | ر | 4 |) 3 | 6 | 7 | 8 | 9 | | | · | | | | | | | | | | | 600 | | 1076.42 | 1080.54 | 1084.68 | 1088.83 | 1092.99 | 1097.16 | 1101.34 | 1105.53 | 1109.73 | | 610 | 1113.95 | 1118.17 | 1122.41 | 1126.65 | 1130.91 | 1135.18 | 1139.46 | | 1148.05 | | | 620 | 1156.68 | 1161.02 | 1165.36 | 1169.72 | 1174.09 | 1178.46 | 1182.85 | | 1191.67 | | | 630 | 1200.53 | 1204.97 | 1209.43 | 1213.90 | 1218.38 | | 1227.37 | | 1 | | | 640 | | | 1254.63 | 1259.21 | 1263.81 | 1268 41 | 1273 03 | | 1282.30 | | | 650 | 1291.62 | 1296.30 | 1300.98 | 1305.68 | 1310 40 | 1315 12 | 1319 86 | 1324.60 | 1 | 1334.13 | | | 1338.92 | | 1348.52 | 1353 34 | 1358 17 | | 1367.87 | | 1377.62 | | | 670 | 1 | | 1397.26 | 1402 21 | 1407 16 | 1412 12 | 1417 10 | | 1427.10 | | | | | 1442.18 | 1447.24 | 1452.21 | 1457 30 | | 1467.57 | | 1427.10 | | | 690 | | | | 1503.66 | | | | 1674.69 | 1 | 1 | | *** | | 1133.20 | 1470.40 | 1303.00 | 1300.00 | 1314.08 | 1319.31 | 1524.55 | 1529.81 | 1535.08 | | 700 | 1540 37 | 1545.66 | 1550 97 | 1556.29 | 1561 63 | 1566 00 | 1570 04 | 1522 21 | 1502 10 | 1500 50 | | 710 | | | 1604.79 | | 1561.63 | 1500.98 | 1572.34 | 15//./1 | 1583.10 | | | | 1648.80 | | 1659.94 | 1610.24 | 1615./1 | | r i | | 1637.71 | | | | 1705.04 | | 1716 45 | 1005.53 | 16/1.13 | 1676.75 | | | l | 1699.35 | | | 1762.66 | | 1716.45 | 1700 22 | 1706 10 | 1700.00 | 1739.44 | | | 1756.83 | | | 1821.70 | | | 1780.22 | 1/86.10 | 1 | 1 | 1803.84 | | 1815.73 | | 1 | | | 1833.68 | 1839.69 | 1845.72 | 1851.76 | 1857.81 | 1863.88 | | 1876.07 | | 760 | 1007.18 | 1050 42 | 1894.48 | 1900.64 | 1906.81 | 1913.00 | | 1925.42 | 1 | 1937.89 | | 770 | 1944.16 | 1950.43 | 1956.72 | 1963.02 | 1969.34 | 1975.68 | 1980.02 | | 1994.76 | 1 | | | 2007.55 | 2013.97 | 2020.40 | 2026.85 | | | | | i | 2065.82 | | 790 | 2072.36 | 2078.92 | 2085.49 | 2092.07 | 2098.67 | 2105.28 | 2111.91 | 2118.55 | 2125.20 | 2131.86 | | 000 | 0100 54 | | | | | | | | | | | 800 | 2138.54 | | | 2158.67 | | | 2178.91 | | | | | 810 | 2206.08 | | | 2226.60 | 2233.47 | 2240.35 | 2247.24 | 2254.14 | 2261.06 | 2267.99 | | 820 | 2274.94 | 2281.90 | 2288.87 | 2295.85 | 2302.85 | 2309.86 | 2316.88 | | | 2338.02 | | 830 | 2345.09 | 2352.18 | 2359.28 | 2366.39 | 2373.52 | 2380.65 | 2387.80 | 2394.97 | 2402.14 | 2409.33 | | | | 2423.74 | 2430.96 | 2438.20 | 2445.45 | 2452.71 | 2459.99 | 2467.28 | 2474.58 | 2481.89 | | 850 | | 2496.55 | 2503.90 | 2511.26 | 2518.64 | 2526.02 | 2533.42 | 2540.83 | | | | 860 | 2563.14 | 2570.60 | 2578.07 | 2585.55 | 2593.05 | 2600.56 | 2608.08 | 2615.61 | | | | 870 | 2638.28 | 2645.86 | 2653.45 | 2661.06 | 2668.68 | 2676.30 | 2683.94 | 2691.60 | 2699.26 | | | 880 | 2714.62 | 2722.32 | 2730.04 | 2737.76 | 2745.50 | 2753.24 | 2761.00 | 2768.77 | | | | 890 | 2792.16 | 2799.98 | | | 2823.50 | 2831.36 | 2839.24 | 2847.13 | | | | | | | | | | | | | | | | 900 | 2870.87 | 2878.80 | 2886.74 | 2894.70 | 2902.67 | 2910.65 | 2918.64 | 2926.65 | 2934.66 | 2942.69 | | 910 | 2950.73 | 2958.78 | 2966.84 | | 2982.99 | 2991.09 | 2999.20 | 3007.32 | | 3023.59 | | 920 | 3031.74 | | 3048.08 | | 3064.46 | | 3080.89 | 3089.13 | | | | 930 | 3113.89 | | 3130.46 | | 3147.07 | 3155.39 | l I | 3172.07 | | | | 940 | 3197.17 | | 3213.96 | 3222.37 | 3230.79 | 3239.22 | 3247.67 | 3256.13 | | 1 1 | | | 3281.56 | 3290.06 | 3298.57 | 3307.09 | 3315.63 | 3324.17 | | 3341.30 | | 1 ! | | | 3367.06 | | | 3392.93 | | 3410.23 | 3418.89 | 3427.57 | | 3444.95 | | | | 3462.38 | | 3479.86 | | 3497.37 | 3506.15 | 1 | | 1 1 | | 980 | 3541.36 | | 3559.02 | 3567 87 | 3576 72 | | | 3514.93
3603.38 | | 3532.54 | | | | 3639.07 | 3648 02 | 3656 97 | 3665 QA | 367/ 92 | 3602 01 | 3692.92 | 3701 03 | 3710 05 | | | | -003.07 | 5040.02 | 5050.97 | 5005.94 | 5074.92 | 2003.91 | 3092.92 | 3/01.93 | 3/10.95 | | 1000 | 3719 98 | 3729 02 | 3738.08 | 3747 15 | 3756 22 | 2765 21 | 2774 47 | . 2702 52 | 2700 61 | 2001 == | | 1010 | 3810 01 | 3820 06 | 3829.22 | 3030 30 | 3047 57 | | | | | | | 1030 | 3010.31 | 3012 15 | 3921.42 | 3030.39 | 3030 00 | 3856.// | 3865.97 | | | | | 1030 | 3995 94 | 7006 30 | 1014 67 | 3930.70 | 3939.98 | 3949.28 | 3958.59 | | | | | 1040 | 4090 04 | 4000.50 | 4014.67 | 4024.06 | 4033.45 | 4042.86 | 4052.27 | 4061.70 | 4071.13 | 4080.58 | | 1050 | 4105 10 | 4104 77 | 4108.98 | 4118.47 | 4127.97 | 4137.48 | 4147.00 | 4156.53 | 4166.07 | 4175.62 | | 1050 | 4703.TQ | 4194./5 | 4204.34 | 4213.93 | 4223.53 | 4233.15 | 4242.77 | 4252.41 | 4262.05 | 4271.71 | | 1060 | 4281.3/ | 4291.05 | 4300.73 | 4310.43 | 4320.14 | 4329.85 | 4339.58 | 4349.32 | 4359.07 | 4368.83 | | 1070 | 43/8.60 | 4388.38 | 4398.17 | 4407.97 | 4417.78 | 4427.60 | 4437.43 | 4447.27 | 4457.13 | 4466.99 | | | 4476.86 | | 4496.64 | | | | 4536.31 | 4546.26 | | 4566.18 | | 1090 | 4576.15 | 4586.14 | 4596.13 | 4606.14 | 4616.16 | 4626.18 | 4636.22 | 4646.27 | 4656.32 | 4666.39 | | ,, | | | | | | | | | | | | 1100 | 4676.47 | TABLE All.- IMPACT PRESSURE q_C (OR q_C^i) IN INCHES OF MERCURY (0° C) FOR VALUES OF CALIBRATED AIRSPEED V_C (OR INDICATED AIRSPEED V_1) IN KNOTS $\left[\text{From ref. A2} \right]$ | v _c , | | | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |------------------|--------------------|----------|----------|----------|----------|----------|--------------------|----------|--------------------|--------------------| | knots | 0 | 1 | 2 | 3 | 4 | 5 | Ů | <i>'</i> | | | | | | | | 0.00000 | 0.000763 | 0.001104 | 0.001726 | 0.002346 | 0.003067 | 0.003875 | | 0 | 0 | 0.000051 | 0.000189 | 0.000428 | 0.000763 | 0.001194 | .012253 | .013833 | .015508 | .017283 | | 10 | .004784 | .005790 | .006891 | .008085 | .009383 | | .012233 | .034909 | .037551 | .040274 | | 20 | .019150 | .021118 | .023171 | .025331 | .027581 | .029930 | l | .065590 | .069175 | .072867 | | 30 | .043108 | .046031 | .049047 | .052165 | .055375 | .058676 | .062087 | | .110430 | .115092 | | 40 | .076655 | .080548 | .084528 | .088606 | .092777 | .097047 | .101412 | .105870 | .161347 | .166958 | | 50 | .119841 | .124691 | .129640 | .134682 | .139822 | .145052 | .150381 | .155815 | .221929 | .228521 | | 60 | .172679 | .178492 | .184417 | .190422 | .196526 | .202732 | .209039 | .215433 | .292241 | .299811 | | 70 | .235205 | .242000 | .248888 | .255866 | .262945 | .270120 | .277409 | .284773 | .372334 | .380886 | | 80 | .307483 | .315247 | .323108 | .331067 | .339119 | .347281 | .355539 | .363887 | .462257 | .471798 | | 90 | .389530 | .398282 | .407121 | .416067 | .425109 | .434250 | .443490 | .452825 | .462257 | .4/1/90 | | 100 | .481424 | .491160 | .500993 | .510923 | .520953 | .531078 | .541317 | .551637 | .562068 | .572597 | | 110 | .583225 | .593949 | .604783 | .615708 | .626740 | .637855 | .649085 | .660413 | .671840 | .683375 | | 120 | .694996 | .706731 | .718562 | .730483 | .742511 | .754653 | .766882 | .779212 | .791651 | .804191 | | 130 | .816826 | .829561 | .842403 | .855344 | .868384 | .881528 | .894780 | .908125 | .921578 | .935129 | | 140 | .948779 | .962531 | .976394 | .990364 | 1.00442 | 1.01859 | 1.03286 | 1.04723 | 1.06170 | 1.07628 | | 150 | 1.09097 | 1.10575 | 1.12063 | 1.13563 | 1.15072 | 1.16591 | 1.18122 | 1.19663 | 1.21213 | 1.22774 | | 160 | 1.24347 | 1.25929 | 1.27521 | 1.29125 | 1.30738 | 1.32362 | 1.33996 | 1.35641 | 1.37298 | 1.38963 | | 170 | 1.40640 | 1.42327 | 1.44025 | 1.45733 | 1.47452 | 1.49181 | 1.50921 | 1.52671 | 1.54432 | 1.56205 | | 180 | 1.57987 | 1.59780 | 1.61584 | 1.63398 | 1.65223 | 1.67059 | 1.68906 | 1.70763 | 1.72632 | 1.74510 | | 190 | 1.76400 | 1.78300 | 1.80211 | 1.82133 | 1.84066 | 1.86009 | 1.87964 | 1.89930 | 1.91905 | 1.93893 | | 190 | 1.76400 | 1.78300 | 1.00211 | 1.02155 | 1.0.000 | | |] | | | | 200 | 1.95891 | 1.97900 | 1.99920 | 2.01951 | 2.03992 | 2.06045 | 2.08108 | 2.10183 | 2.12269 | 2.14366 | | 210 | 2.16473 | 2.18593 | 2.20722 | 2.22864 | 2.25016 | 2.27179 | 2.29354 | 2.31539 | 2.33735 | 2.35944 | | 220 | 2.16473 | 2.40392 | 2.42634 | 2.44887 | 2.47151 | 2.49426 | 2.51713 | 2.54011 | 2.56320 | 2.58641 | | l . | 2.60972 | 2.63315 | 2.65670 | 2.68036 | 2.70412 | 2.72802 | 2.75202 | 2.77614 | 2.80037 | 2.82471 | | 230 | 1 | 2.87375 | 2.89845 | 2.92325 | 2.94818 | 2.97321 | 2.99838 | 3.02365 | 3.04904 | 3.07455 | | 240 | 2.84918
3.10015 | 3.12590 | 3.15176 | 3.17773 | 3.20381 | 3.23003 | 3.25636 | 3.28281 | 3.30937 | 3.33605 | | 250 | | | 3.41680 | 3.44396 | 3.47124 | 3.49864 | 3.52615 | 3.55378 | 3.58154 | 3.60941 | | 260 | 3.36284 | 3.38977 | 3.41000 | 3.72212 | 3.75060 | 3.77921 | 3.80792 | 3.83678 | 3.86574 | 3.89483 | | 270 | 3.63741 | 3.66553 | | 4.01241 | 4.04212 | 4.07194 | 4.10189 | 4.13197 | 4.16216 | 4.19250 | | 280 | 3.92404 | 3.95337 | 3.98283 | 4.01241 | 4.34597 | 4.37704 | 4.40825 | 4.43957 | 4.47102 | 4.50260 | | 290 | 4.22293 | 4.25351 | 4.28421 | 4.31303 | 4.34397 | 4.57704 | 4.40023 | 11.10507 | | | | 300 | 4.53430 | 4.56613 | 4.59809 | 4.63017 | 4.66238 | 4.69473 | 4.72719 | 4.75978 | 4.79252 | 4.82537 | | 310 | 4.85834 | 4.89146 | 4.92469 | 4.95806 | 4.99156 | 5.02519 | 5.05896 | 5.09284 | 5.12687 | 5.16101 | | 320 | 5.19529 | 5.22971 | 5.26425 | 5.29892 | 5.33374 | 5.36868 | 5.40375 | 5.43896 | 5.47430 | 5.50977 | | 330 | 5.54538 | 5.58111 | 5.61699 | 5.65300 | 5.68914 | 5.72542 | 5.76183 | 5.79838 | 5.83506 | 5.87187 | | 340 | 5.90883 | 5.94592 | 5.98315 | 6.02051 | 6.05801 | 6.09565 | 6.13343 | 6.17135 | 6.20939 | 6.24758 | | 350 | 6.28590 | 6.32438 | 6.36298 | 6.40173 | 6.44061 | 6.47963 |
6.51880 | 6.55811 | 6.59755 | 6.63713 | | 360 | 6.67687 | 6.71674 | 6.75674 | 6.79690 | 6.83719 | 6.87764 | 6.91822 | 6.95894 | 6.99981 | 7.04082 | | 370 | 7.08198 | 7.12328 | 7.16472 | 7.20631 | 7.24804 | 7.28991 | 7.33194 | 7.37412 | 7.41643 | 7.45889 | | 380 | 7.50151 | 7.54427 | 7.58717 | 7.63021 | 7.67342 | 7.71677 | 7.76027 | 7.80391 | 7.84770 | 7.89165 | | 390 | 7.93575 | 7.98000 | 8.02439 | 8.06894 | 8.11363 | 8.15847 | 8.20347 | 8.24863 | 8.29393 | 8.33939 | | | 1 | | | | | | 0.66100 | 0.70056 | 0.75540 | 8.80241 | | 400 | 8.38499 | 8.43075 | 8.47668 | 8.52274 | 8.56897 | 8.61535 | 8.66188 | 8.70856 | 8.75540
9.23244 | 9.28102 | | 410 | 8.84955 | 8.89687 | 8.94434 | 8.99196 | 9.03974 | 9.08768 | 9.13578 | 9.18403 | | 9.77556 | | 420 | 9.32975 | 9.37864 | 9.42769 | 9.47691 | 9.52628 | 9.57581 | 9.62551 | 9.67536 | 9.72538 | 10.2864 | | 430 | 9.82591 | 9.87640 | 9.92708 | 9.97791 | 10.0289 | 10.0801 | 10.1314 | 10.1829 | 10.2345 | | | 440 | 10.3384 | 10.3905 | 10.4428 | 10.4953 | 10.5480 | 10.6008 | 10.6538 | 10.7070 | 10.7603 | 10.8138 | | 450 | 10.8675 | 10.9213 | 10.9753 | 11.0295 | 11.0838 | 11.1383 | 11.1930 | 11.2479 | 11.3029 | 11.3582 | | 460 | 11.4135 | 11.4691 | 11.5248 | 11.5807 | 11.6368 | 11.6931 | 11.7495 | 11.8061 | 11.8629 | 11.9199 | | 470 | 11.9770 | 12.0343 | 12.0918 | 12.1495 | 12.2074 | 12.2654 | 12.3236 | 12.3820 | 12.4406 | 12.4993 | | 480 | 12.5583 | 12.6174 | 12.6767 | 12.7362 | 12.7958 | 12.8557 | 12.9157
13.5262 | 12.9759 | 13.0363 | 13.0969
13.7130 | | 1 | 13.1577 | 13.2186 | 13.2798 | 13.3411 | 13.4026 | 13.4643 | | | | | TABLE All. - Concluded | | | | | | | | | | | I | |------------------|---------------|---------|----------|---------|---------|---------|---------|---------|---------|---------| | V _c , | 0 | , | _ | , | | _ | | _ | | | | knots | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | | | | | | | | | | | 500 | 13.7756 | 13.8385 | 13.9015 | 13.9647 | 14.0281 | 1 | 1 | 14.2195 | 14.2836 | 14.3480 | | 510 | 14.4126 | 14.4773 | 14.5423 | 14.6074 | 14.6727 | 1 | 14.8040 | 14.8699 | 14.9361 | 15.0024 | | 520 | 15.0689 | 15.1356 | 15.2026 | 15.2697 | 15.3370 | | 15.4722 | 15.5402 | 15.6083 | 15.6766 | | 530 | 15.7451 | 15.8139 | 15.8828 | 15.9519 | 16.0213 | | 16.1606 | 16.2305 | 16.3007 | 16.3711 | | 540 | 16.4417 | 16.5125 | 16.5835 | 16.6547 | 16.7261 | 1 | 16.8695 | 16.9416 | 17.0138 | 17.0863 | | 550 | 17.1590 | 17.2319 | 17.3050 | 17.3783 | 17.4518 | | 17.5996 | 17.6737 | 17.7481 | 17.8228 | | 560
570 | 17.8976 | 17.9726 | 18.0479 | 18.1234 | 18.1991 | | 18.3512 | 18.4275 | 18.5041 | 18.5809 | | 580 | 18.6580 | 18.7352 | 18.8127 | 18.8904 | 18.9683 | | 19.1248 | 19.2034 | 19.2823 | 19.3613 | | 590 | 19.4406 | 19.5201 | 19.5999 | 19.6798 | 19.7600 | | 19.9211 | 20.0020 | 20.0831 | 20.1645 | | 330 | 20.2401 | 20.3279 | 20.4099 | 20.4922 | 20.5748 | 20.6575 | 20.7405 | 20.8238 | 20.9072 | 20.9909 | | 600 | 21.0749 | 21.1591 | 21.2435 | 21.3282 | 21.4131 | 21.4982 | 21.5836 | 21.6693 | 21.7551 | 21.8413 | | 610 | (| 22.0142 | 22.1011 | 22.1882 | 22.2755 | 22.3631 | 22.4510 | 22.5391 | 22.6274 | 22.7160 | | 620 | 22.8048 | 22.8939 | 22.9833 | 23.0729 | 23.1627 | 23.2528 | 23.3432 | 23.4338 | 23.5246 | 23.6158 | | 630 | 23.7071 | 23.7987 | 23.8906 | 23.9828 | 24.0752 | 24.1679 | 24.2608 | 24.3540 | 24.4474 | 24.5411 | | 640 | 24.6351 | 24.7293 | 24.8238 | 24.9186 | 25.0136 | 25.1089 | 25.2044 | 25.3003 | 25.3964 | 25.4927 | | 650 | 25.5893 | 25.6862 | 25.7834 | 25.8809 | 25.9786 | 26.0765 | 26.1748 | 26.2733 | 26.3721 | 26.4712 | | 660 | 26.5705 | 26.6702 | 26.7701 | 26.8703 | | 27.0714 | 27.1724 | 27.2737 | 27.3753 | 27.4771 | | 670 | 27.5792 | 27.6815 | 27.7842 | 27.8871 | | | 28.1974 | 28.3013 | 28.4056 | 28.5100 | | 680 | 28.6148 | 28.7198 | 28.8251 | 28.9306 | 29.0364 | 29.1425 | 29.2488 | 29.3554 | 29.4622 | 29.5693 | | 690 | 29.6767 | 29.7843 | 29.8922 | 30.0003 | 30.1086 | 30.2173 | 30.3261 | 30.4353 | 30.5447 | 30.6543 | | | | | | | | | | | | | | 700 | 30.7642 | 30.8743 | 30.9847 | 31.0953 | 31.2062 | 31.3173 | 31.4287 | 31.5403 | 31.6522 | 31.7643 | | 710 | 31.8766 | 31.9892 | 32.1021 | 32.2151 | 32.3285 | 32.4421 | 32.5559 | 32.6699 | 32.7842 | 32.8988 | | 720 | 33.0135 | 33.1285 | 33.2438 | 33.3593 | 33.4750 | 33.5910 | 33.7072 | 33.8236 | 33.9403 | 34.0572 | | 730 | 34.1744 | 34.2918 | 34.4094 | 34.5272 | 34.6453 | 34.7636 | 34.8822 | 35.0010 | 35.1200 | 35.2393 | | 740 | 35.3587 | 35.4785 | 35.5984 | 35.7186 | 35.8390 | 35.9596 | 36.0805 | 36.2016 | 36.3229 | 36.4444 | | 750 | 36.5662 | 36.6882 | 36.8104 | 36.9329 | 37.0555 | 37.1785 | 37.3016 | 37.4249 | 37.5485 | 37.6723 | | 760 | 37.7964 | 37.9206 | 38.0451 | 38.1698 | 38.2947 | 38.4198 | 38.5452 | 38.6708 | 38.7966 | 38.9226 | | 770
780 | 39.0489 | 39.1754 | 39.3021 | 39.4290 | 39.5561 | 39.6835 | 39.8110 | 39.9388 | 40.0668 | 40.1951 | | 790 | 40.3235 | 40.4522 | 40.5811 | 40.7102 | 40.8395 | 40.9690 | 41.0988 | 41.2287 | 41.3589 | 41.4893 | | 790 | 41.0199 | 41.7507 | 41.8818 | 42.0130 | 42.1445 | 42.2762 | 42,4081 | 42.5402 | 42.6725 | 42.8051 | | 800 | 42.9378 | 43.0708 | 43.2040 | 43.3374 | 43.4710 | 43.6048 | 43.7388 | 43.8730 | 44.0075 | 44 1422 | | 810 | 44.2770 | 44.4121 | 44.5474 | 44.6829 | 44.8186 | 44.9545 | 45.0907 | 45.2270 | 45.3635 | 44.1422 | | 820 | 45.6373 | 45.7744 | 45.9118 | 46.0494 | 46.1872 | 46.3252 | 46.4634 | 46.6019 | 46.7405 | 46.8793 | | 830 | 47.0184 | 47.1576 | 47.2971 | 47.4367 | 47.5766 | 47.7167 | 47.8569 | 47.9974 | 48.1381 | 48.2790 | | 840 | 48.4201 | 48.5614 | 48.7029 | 48.8446 | | 49.1287 | 49.2710 | 49.4135 | 49.5563 | 49.6992 | | 850 | 49.8423 | 49.9857 | 50.1292 | 50.2730 | 50.4169 | 50.5611 | 50.7055 | 50.8500 | 50.9948 | 51.1397 | | 860 | 51.2849 | 51.4303 | 51.5758 | 51.7216 | 51.8676 | 52.0138 | 52.1601 | 52.3067 | 52.4535 | 52.6004 | | 870 | 52.7476 | 52.8950 | 53.0426 | 53.1904 | 53.3383 | 53.4865 | 53.6349 | 53.7834 | 53.9322 | 54.0812 | | 880 | 54.2304 | 54.3798 | 54.5293 | 54.6791 | 54.8291 | 54.9792 | 55.1296 | 55.2801 | 55.4309 | 55.5819 | | 890 | 55.7330 | 55.8844 | 56.0359 | 56.1877 | 56.3396 | 56.4918 | 56.6441 | 56.7966 | 56.9494 | 57.1023 | | | | | | | | | | | | | | 900 | 57.2554 | | 57.5623 | 57.7160 | 57.8699 | 58.0240 | 58.1783 | 58.3328 | 58.4875 | 58.6424 | | 910 | 58.7975 | 58.9528 | 59.1083 | 59.2640 | 59.4198 | 59.5759 | 59.7321 | 59.8886 | 60.0453 | 60.2021 | | 920 | 60.3591 | 60.5164 | 60.6738 | 60.8314 | 60.9892 | 61.1473 | 61.3055 | 61.4639 | 61.6225 | 61.7812 | | 930 | 61.9402 | 62.0994 | 62.2588 | 62.4183 | 62.5781 | 62.7380 | 62.8982 | 63.0585 | 63.2190 | 63.3798 | | 940 | 63.5407 | 63.7018 | 63.8631 | 64.0246 | 64.1862 | 64.3481 | 64.5102 | 64.6725 | 64.8349 | 64.9976 | | 950 | 65.1604 | 65.3234 | 65.4867 | 65.6500 | 65.8137 | 65.9774 | 66.1414 | 66.3056 | 66.4700 | 66.6346 | | 960 | 66.7993 | 66.9643 | 67.1294 | 67.2947 | 67.4602 | | 67.7918 | 67.9579 | 68.1242 | 68.2907 | | 970 | 68.4573 | 68.6242 | 68.7912 | 68.9585 | 69.1259 | 69.2935 | 69.4613 | 69.6293 | 69.7975 | 69.9659 | | 980 | 70.1344 | 70.3032 | 70.4721 | 70.6413 | 70.8106 | 70.9801 | 71.1498 | 71.3197 | 71.4897 | 71.6600 | | 990 | 71.8305 | 72.0011 | 72.1719 | 72.3430 | 72.5142 | 72.6856 | 72.8572 | 73.0290 | 73.2009 | 73.3731 | | 1000 | 73.5454 | | | | | | | | | | | 1000 | , , , , 4 , 4 | | <u> </u> | | | _, | | | | | Table Al2.- impact pressure q_c (or q_c^i) in pounds per square foot for values of calibrated airspeed v_c (or indicated airspeed v_i) in knots [From ref. A2] | 10 99,4696 100,682 101,883 113,006 114,282 115,565 116,856 118,155 119,460 120,774 122,096 190 124,761 126,105 127,456 128,816 130,183 131,557 132,939 134,330 135,727 120,000 138,546 139,967 141,396 142,832 144,276 145,728 147,187 148,655 150,130 151,103 154,602 156,108 157,623 159,145 160,675 162,213 163,759 165,312 170,020 171,606 173,199 174,800 176,410 178,027 179,652 181,285 120,240 201,511 203,250 204,996 206,750 206,550 228,513 210,284 212,064 213,851 215,647 225,219,262 221,083 222,912 224,749 226,594 228,448 230,310 232,181 234,059 260,275,260 259,249 261,246 263,252 265,266 267,289 269,320 271,361 273,409 280,277,533 279,607 281,691 283,782 285,884 287,993 290,111 292,238 294,374 320,366,43 343,612 345,954 348,304 350,665 353,034 355,413 357,801 360,197 362,604 310,343,612 345,954 348,304 350,665 353,034 355,413 357,801 360,197 362,604 310,344,578 447,300 452,070 452,808 428,460 431,122 433,794 436,476 439,166 442,588 447,300 450,030 452,770 455,500 452,770 455,500 598,058 506,253 330,553 530,553 530,553 530,553 500,675 570,685 573,846 577,018 580,200 583,394 586,598 400 593,039 596,275 599,523 602,781 600,050 609,331 612,622 615,923 619,236 640,301 698,599 596,275 599,523 602,781 600,050 609,331 612,622 615,923 619,236 640,301 698,590 698,520 702,105 705,700 709,307 712,925 716,555 720,197 723,850 702,105 705,700 709,307 712,925 716,555 720,197 723,850 702,105 705,700 709,307 712,925 716,555 720,197 723,850 702,105 705,700 709,307 712,925 716,555 720,941 400,940 400,940 400,940 400,940 400,940 400,940 400,940 400,940 400,940 400,940 400,940 400,940 400,940 400,940 400,940 400,940 400,940 400,940 400, | | т | | | | | | | | | |
--|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------------------| | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | V _c ,
knots | | 1 | 0.2740 | 0.216912 | 0.165911 | 0.122106 | 0.084437 | 0.053964 | 0.030262 | 0.012332 | 0.002500 | | | | 1. 1.35438 1.49263 1.59807 1.79159 1.95073 2.11685 2.29954 2.46899 2.65595 3.4683 3.25599 3.46890 3.6939 3.6984 3.9968 4.19190 4.39115 1.0629 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.14115 1.0202 1.0202 1.14115 1.0202 1.0202 1.0203 1 | 34 1.2223 | 1.09684 | | | | | | | 1 | - | - 1 | | 1.0 3.0 | T . | | | | | | 1 | | | | | | 10 | I | | | | | | | | | | | | 10 | | | | | | | | ŧ | | | | | 10 | | | | | | | | | I | | | | 12.12 12.024 13.034 13.036 13.971 13 | | | | | | | | | | | 1 1 | | 17.17471 22.2963 22.8522 23.4151 23.9846 24.5619 25.1459 25.7364 26.338 20.266 32.6936 32.2912 32.4946 32.9936 32.9946 32.99 | 1 | | | | | | | | | | | | 100 34,0493 34,7379 35,4333 36,1357 36,8450 37,5612 38,2853 39,0152 39,7529 31,3644 32,0266 32,6936 32,6936 34,0493 34,7379 35,4333 36,1357 36,8450 37,5612 38,2853 39,0152 39,7529 31,000
31,000 | I | | | | 1 | | | | | | 1 | | 100 34.0493 34.7379 35.4333 36.1357 36.8450 37.5612 38.2853 39.0152 39.7529 39.1514 49.9844 50.8212 51.6643 52.5150 53.3737 54.2386 55.1107 55.9904 30.7710 86.0762 69.0566 70.0447 71.0391 72.0411 73.0501 74.0665 75.0899 77.1598 78.2056 79.2576 80.3187 81.3861 82.4607 83.5443 84.6330 85.7294 79.1540 79.94696 100.662 101.863 103.071 104.287 105.510 106.741 107.978 109.224 111.738 113.006 114.282 115.565 116.856 118.155 119.460 120.774 122.096 124.761 126.105 127.456 128.816 130.163 131.557 132.939 134.330 135.727 135.103 154.602 156.108 157.623 159.145 160.675 162.213 163.759 165.312 163.564 170.020 171.606 173.199 174.800 176.410 178.027 179.652 181.285 20.0623 201.511 203.250 204.996 206.750 208.513 201.284 201.511 203.250 204.996 206.750 208.513 201.284 201.511 203.250 204.996 206.750 208.513 201.284 201.511 203.250 204.996 206.750 208.513 201.284 213.646 213.861 239.746 241.657 243.578 245.507 247.445 249.391 251.345 253.309 299.672 300.835 303.006 305.186 307.374 309.572 311.779 313.994 316.218 300.835 303.553 333.577 330.805 350.665 353.304 355.403 334.366 338.956 344.578 347.300 348.667 339.186 349.295 349.203 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.473 349.203 349.366 349.473 349.486 349.203 349.473 349.203 349.473 | | | | | | | | | | | 1 | | 100 34.0493 34.7379 33.4333 33.4333 33.4334 34.6378 34.7740 34.5467 34.3269 34.51131 34.59073 34.7085 35.1107 35.9904 30.9171 30.9181 30.9181 30.9187 30.918 | 33.300 | 32.0930 | 32.0200 | 31.3664 | 30.7129 | 30.0664 | 29.4268 | 28.7941 | 28.1690 | 27.5500 | 90 | | 110 | | 39.7529 | 39.0152 | 38.2853 | 37.5612 | 36.8450 | 36,1357 | 35.4333 | 34 7379 | 34 0493 | 100 | | 120 | | 47.5167 | 46.7085 | 45.9073 | 45.1131 | | | | | | , | | 130 57.7710 58.6717 59.5800 60.4952 61.4175 62.3471 63.2844 64.2282 65.1797 71.0391 72.0411 73.0501 74.0665 75.0899 78.2056 79.2576 80.3187 81.3861 82.4607 83.5434 84.6330 85.7294 80.9650 90.1911 91.3253 92.4658 93.6147 94.7705 95.9340 97.1054 104.287 104.287 105.510 106.741 107.978 109.224 119.117.38 113.006 114.282 115.565 116.856 118.155 119.460 120.774 122.096 124.761 126.105 127.456 128.816 130.183 131.557 132.939 134.330 135.727 132.031 135.727 135.031 135.031 135.727 135.031 135.031 135.031 135.031 135.031 135.031 135.031 135.031 135.031 135.031 135.031 135.031 135.031 135.031 135.031 135.031 135.031 135.031 135.0 | 4 56.877 | 55.9904 | 55.1107 | 54.2386 | | | | | | | 1 | | 140 67.1035 68.0762 69.0566 70.0447 71.0391 72.0411 73.0501 74.0665 75.0899 150 77.1598 78.2056 79.2576 80.3187 81.3861 82.4607 82.4607 93.5434 84.6330 85.7294 97.1054 170 99.4696 100.662 101.863 103.071 104.287 105.510 106.741 107.978 109.224 117.38 113.006 114.282 115.565 116.856 118.155 119.460 120.774 122.096 124.761 126.105 127.456 128.816 130.183 131.557 132.939 134.330 135.727 132.203 134.330 135.727 133.103 154.602 156.108 157.623 159.145 160.675 162.213 163.759 165.312 163.759 165.312 163.759 165.312 163.759 165.312 163.759 181.285 120.1511 203.250 204.996 206.750 208.513 210.284 212.064 213.851 231.845 220.2184 222.1083 222.912 224.749 226.594 226.594 261.246 263.252 265.266 267.289 269.320 271.361 273.409 298.672 300.835 303.006 305.186 307.374 309.572 311.779 313.994 316.218 338.956 330.44.578 347.092 394.374 3392.203 394.373 397.269 399.815 330.553 330.553 330.553 330.553 330.625 339.4733 337.773 337.235 339.203 344.578 347.509 344.579 347.509 344.579 347.509 347.773 377.235 379.706 382.187 334.379 346.278 347.509 347.7879 349.779 349.279 344.579 349.379 349.731 337.269 399.815 330.553 330.553 330.553 330.553 330.553 330.553 330.565 330.575 330.553 330.566 330.567 330.666 330.667 330.666 330.667 330.666 | 7 66.138 | 65.1797 | 64.2282 | 63.2844 | i | 1 | | | | | I . | | 150 77.1598 78.2056 79.2576 80.3187 81.3861 82.4607 83.5434 84.6330 85.7294 89.0650 90.1911 91.3253 92.4658 93.6147 105.510 106.741 107.978 109.2244 110.983 104.287 105.510 106.741 107.978 109.2244 111.738 113.006 114.282 115.565 116.856 118.155 119.460 120.774 122.096 124.761 126.105 127.456 128.816 130.183 131.557 132.939 134.330 135.727 122.096 138.546 139.967 141.396 142.832 144.276 145.728 147.187 148.655 163.759 165.312 168.443 170.020 171.606 173.199 174.800 176.410 178.027 179.652 181.285 120.284 120.5151 120.3250 204.996 206.750 208.513 210.284 212.064 213.851 215.647 220.01.511 203.250 204.996 206.750 208.513 210.284 212.064 213.851 234.059 226.027.520 227.760 259.249 221.083 222.912 224.749 226.594 228.448 230.310 232.181 234.059 280.775 280.672 300.835 303.006 305.186 307.374 309.572 311.779 313.994 316.218 300.835 303.006 305.186 307.374 309.575 309.203 394.731 337.269 399.815 402.371 404.937 407.512 410.097 412.692 417.909 420.533 423.166 425.808 428.460 431.122 433.794 436.476 439.191 313.994 436.476 439.916 320.895 320.895 330.802 306.733 509.675 539.655 542.710 483.569 486.429 489.299 492.179 495.070 407.512 410.097 412.692 420.598 420.598 420.598 420.598 420.598 420.598 420.598 420.598 420.598 420.598 420.598 420.598 420.598 420.599 420.598 420.599 | 9 76.121 | 75.0899 | 74.0665 | 73.0501 | | | | 1 | | | | | 160 87.9462 89.0650 90.1911 91.3253 92.4658 93.6147 94.7705 95.9340 97.1054 170 99.4696 100.662 101.663 103.071 104.287 105.510 106.741 107.978 109.224 109.117.38 113.006 114.282 115.565 118.155 119.460 120.774 122.096 124.761 126.105 127.456 128.816 130.183 131.557 132.939 134.330 135.727 132.096 138.546 139.967 141.396 142.832 144.276 145.728 147.187 148.655 150.130 154.602 175.603 175.623 159.145 160.675 162.213 163.759 165.312 138.456 139.967 174.600 173.199 174.800 176.410 178.027 179.552 181.285 120.204 184.576 186.233 187.898 189.572 191.252 192.942 194.640 196.346 189.059 240 201.511 203.250 204.996 206.5750 208.513 20.2848 230.310 232.181 234.059 240.270 257.260 259.249 261.246 263.252 265.266 267.249 269.320 271.361 273.409 280 277.533 279.607 281.691 283.782 285.884 287.993 290.111 292.238 294.374 230.383 302.203 334.5954 348.304 350.665 353.034 355.403 337.994
316.218 338.956 330.303 332.203 394.731 397.269 399.154 402.371 402.371 402.371 409.994 20.533 477.300 475.099 477.879 480.719 483.569 484.578 447.300 450.030 452.770 455.520 489.299 492.179 492.533 390.805 506.733 590.675 512.626 515.588 518.560 521.543 524.536 540.330 561.265 564.395 567.535 570.685 573.846 577.708 580.770 455.520 469.949 492.533 477.879 480.719 483.569 489.299 492.199 492.199 492.199 492.199 492.199 492.199 492.199 492.199 492.199 492.199 492.199 492.199 492.199 492.199 492.69 4 | 4 86.833 | 85.7294 | 84.6330 | 83.5434 | ł | 1 | | | | | 1 | | 170 99.4696 100.662 101.663 103.071 104.287 105.510 106.741 107.978 109.224 111.738 113.006 114.282 115.565 116.856 118.155 119.460 120.774 122.096 138.546 139.967 141.396 157.456 128.816 130.183 131.557 132.939 134.330 135.727 133.330 135.730 | 4 98.283 | 97.1054 | 95.9340 | 94.7705 | 1 | | | | | | | | 180 111.738 113.006 114.282 115.565 116.856 118.155 119.460 120.774 122.096 135.727 124.761 126.105 127.456 128.816 130.183 131.557 132.939 134.330 135.727 132.939 134.330 132.931 135.727 132.939 134.330 132.931 132.939 134.330 132.931 132.939 134.330 132.931 132.939 134.330 132.931 132.939 134.330 132.931 132.939 134.330 132.931 132.939 134.331 | 110.478 | 109.224 | 107.978 | 106.741 | · · | 1 | | | | | | | 190 124,761 126,105 127,456 128,816 130,183 131,557 132,939 134,330 135,727 | 123.424 | 122.096 | 120.774 | 119.460 | 1 ' | | | | | | | | 200 138.546 139.967 141.396 142.832 144.276 145.728 147.187 148.655 150.130 153.103 154.602 156.108 157.623 159.145 160.675 162.213 163.759 165.312 173.199 174.800 176.410 178.027 179.652 181.285 180.233 184.576 186.233 187.898 189.572 191.252 192.942 194.640 196.346 198.059 192.500 192.942 194.640 196.346 198.059 192.500 192.942 194.640 196.346 198.059 192.500 192.942 194.640 196.346 198.059 192.500 192.942 194.640 196.346 198.059 192.500 192.942 194.640 196.346 198.059 192.500 192.942 194.640 196.346 198.059 192.500 192.942 194.640 196.346 198.059 192.500 192.942 194.640 196.346 198.059 192.500 192.942 194.640 196.346 198.059 192.500 192.942 194.640 196.346 198.059 | 137.133 | 135.727 | 134.330 | | | | l | | | | | | 18.1 | | | | | | | 120.010 | 127.450 | 120.103 | 124.701 | 1 190 | | 153.103 | 151.613 | 150.130 | 148.655 | 147.187 | 145.728 | 144.276 | 142.832 | 141.396 | 139 967 | 138 546 | 200 | | 168.443 | 166.874 | 165.312 | 163.759 | 162.213 | | | | | | | | | 230 184.576 186.233 187.898 189.572 191.252 192.942 194.640 196.346 198.059 204.996 206.750 208.513 210.284 212.064 213.851 215.647 250.219.262 221.083 222.912 224.749 226.594 228.448 230.310 232.181 234.059 237.841 239.746 241.657 243.578 245.507 247.445 249.391 251.345 253.309 257.260 259.249 261.246 263.252 265.266 267.289 269.320 271.361 273.409 298.672 300.835 303.006 305.186 307.374 309.572 311.779 313.994 316.218 307.374 309.572 311.779 313.994 316.218 334.3612 345.954 348.304 350.665 353.034 355.413 357.801 360.197 362.604 320.367.443 369.877 372.320 374.773 377.235 379.706 382.187 384.677 387.177 330 392.203 394.731 397.269 399.815 402.371 404.937 407.512 410.097 412.692 444.578 447.300 450.030 452.770 455.520 486.429 489.299 492.179 495.070 370 500.881 503.802 506.733 509.675 512.626 515.588 518.560 521.543 524.536 530.553 533.577 536.612 539.656 542.712 545.778 548.854 551.941 555.038 501.265 564.395 567.535 570.685 577.068 577.261 680.776 684.301 687.839 400.977 686.613 772.421 776.241 780.073 819.062 823.029 823.008 830.999 835.003 839.020 839.020 839.099 835.003 839.020 839.099 835.003 839.020 839.099 835.003 839.020 839.099 835.003 839.020 839.020 839.099 835.003 839.020 839.020 839.099 835.003 839.020 839.020 830.099 835.003 839.020 839.020 830.099 835.003 839.020 839.020 830.099 835.003 839.020 839.020 830.099 835.003 839.020 830.099 835.003 839.020 830.099 835.003 839.020 830.099 835.003 839.020 830.099 835.003 839.020 830.000 839.020 830.000 839.020 830.000 839.020 830.000 839.020 830.000 839.020 830.000 839.020 830.000 839.020 830.000 839.020 830.000 839.020 830.000 830.000 830.000 830.000 | 182.927 | 181.285 | 179.652 | 178.027 | | | | | | | | | 240 201.511 203.250 204.996 206.750 208.513 210.284 212.064 213.851 215.647 250 219.262 221.083 222.912 224.749 226.594 228.448 230.310 232.181 234.059 260 237.841 239.746 241.657 243.578 245.507 247.445 249.391 251.345 253.309 270 257.260 259.249 261.246 263.252 265.266 267.289 269.320 271.361 273.409 280 277.533 279.607 281.691 283.782 285.884 287.993 290.111 292.238 294.374 300 320.694 322.945 325.205 327.474 329.753 332.040 334.336 336.641 338.956 310 343.612 345.954 348.304 350.665 353.034 355.413 357.801 360.197 362.604 320 367.443 369.877 372.320
374.773 377.725 379.706 < | 199.781 | 198.059 | 196.346 | 194.640 | 192.942 | | | | | | 1 | | 250 219.262 221.083 222.912 224.749 226.594 228.448 230.310 232.181 234.059 260 237.841 239.746 241.657 243.578 245.507 247.445 249.391 251.345 253.309 280 277.533 279.607 281.691 283.782 265.266 267.289 269.320 271.361 273.409 290 298.672 300.835 303.006 305.186 307.374 309.572 311.779 313.994 316.218 300 320.694 322.945 325.205 327.474 329.753 332.040 334.336 336.641 338.956 310 343.612 345.954 348.304 350.665 353.034 355.413 357.801 360.197 362.604 320 367.443 369.877 372.320 374.773 377.235 379.706 382.187 384.677 387.177 330 392.203 394.731 397.269 399.815 402.371 404.937 < | 217.451 | 215.647 | 213.851 | 212.064 | | | 1 | | | | 1 | | 260 237.841 239.746 241.657 243.578 245.507 247.445 249.391 251.345 253.309 270 257.260 259.249 261.246 263.252 265.266 267.289 269.320 271.361 273.409 280 277.533 279.607 281.691 283.782 285.884 287.993 290.111 292.238 294.374 290 298.672 300.835 303.006 305.186 307.374 309.572 311.779 313.994 316.218 300 320.694 322.945 325.205 327.474 329.753 332.040 334.336 336.641 338.956 310 343.612 345.954 348.304 350.665 353.034 355.413 357.801 360.197 362.604 320 367.443 369.877 372.320 374.773 377.235 379.706 382.187 384.677 387.177 330 392.203 394.731 397.269 399.815 402.371 404.937 < | 235.946 | 234.059 | 232.181 | 230.310 | 228,448 | | | | | 1 | 1 | | 270 257.260 259.249 261.246 263.252 265.266 267.289 269.320 271.361 273.409 280 277.533 279.607 281.691 283.782 285.884 287.993 290.111 292.238 294.374 300 320.694 322.945 325.205 327.474 329.753 332.040 334.336 336.641 338.956 310 343.612 345.954 348.304 350.665 353.034 355.413 357.801 360.197 362.604 320 367.443 369.877 372.320 374.773 377.235 379.706 382.187 384.677 387.177 330 392.203 394.731 397.269 399.815 402.371 404.937 407.512 410.097 412.692 340 417.909 420.533 423.166 425.808 428.460 431.122 433.794 436.476 439.166 350 444.578 447.300 450.030 452.770 455.520 458.280 < | 255.280 | 253.309 | 251.345 | 249.391 | | | | | | I . | | | 280 277.533 279.607 281.691 283.782 285.884 287.993 290.111 292.238 294.374 290 298.672 300.835 303.006 305.186 307.374 309.572 311.779 313.994 316.218 300 320.694 322.945 325.205 327.474 329.753 332.040 334.336 336.641 338.956 310 343.612 345.954 348.304 350.665 353.034 355.413 357.801 360.197 362.604 320 367.443 369.877 372.320 374.773 377.235 379.706 382.187 384.677 387.177 330 392.203 394.731 397.269 399.815 402.371 404.937 407.512 410.097 412.692 340 417.909 420.533 423.166 425.808 428.460 431.122 433.794 436.476 439.166 350 444.578 447.300 450.030 452.770 455.520 458.280 < | 275.467 | 273.409 | 271.361 | 269.320 | | 1 | | | | | | | 290 298.672 300.835 303.006 305.186 307.374 309.572 311.779 313.994 316.218 300 320.694 322.945 325.205 327.474 329.753 332.040 334.336 336.641 338.956 310 343.612 345.954 348.304 350.665 353.034 355.413 357.801 360.197 362.604 320 367.443 369.877 372.230 374.773 377.235 379.706 382.187 384.677 387.177 330 392.203 394.731 397.269 399.815 402.371 404.937 407.512 410.097 412.692 340 417.909 420.533 423.166 425.808 428.460 431.122 433.794 436.476 439.166 350 444.578 447.300 450.030 452.770 455.520 458.280 461.050 463.830 466.620 370 500.881 503.802 506.733 509.675 512.626 515.588 < | 296.519 | 294.374 | 292.238 | | | | l e | | | | · · | | 300 320.694 322.945 325.205 327.474 329.753 332.040 334.336 336.641 338.956 310 343.612 345.954 348.304 350.665 353.034 355.413 357.801 360.197 362.604 320 367.443 369.877 372.320 374.773 377.235 379.706 382.187 384.677 387.177 330 392.203 394.731 397.269 399.815 402.371 404.937 407.512 410.097 412.692 340 417.909 420.533 423.166 425.808 428.460 431.122 433.794 436.476 439.166 350 444.578 447.300 450.030 452.770 485.520 458.280 461.050 463.830 466.620 360 472.230 475.049 477.879 480.719 483.569 486.429 489.299 492.179 495.070 370 500.881 503.802 506.733 509.675 512.626 515.588 < | 318.452 | 316.218 | 313.994 | 311.779 | | 1 | | | | 1 | 1 | | 310 343.612 345.954 348.304 350.665 353.034 355.413 357.801 360.197 362.604 320 367.443 369.877 372.320 374.773 377.235 379.706 382.187 384.677 387.177 330 392.203 394.731 397.269 399.815 402.371 404.937 407.512 410.097 412.692 420.533 423.166 425.808 428.460 431.122 433.794 436.476 439.166 444.578 447.300 450.030 452.770 455.520 458.280 461.050 463.830 466.620 472.230 475.049 477.879 480.719 483.569 486.429 489.299 492.179 495.070 370 500.881 503.802 506.733 509.675 512.626 515.588 518.560 521.543 524.536 380 530.553 533.577 536.612 539.656 542.712 545.778 548.854 551.941 555.038 390 561.265 564.395 567.535 570.685 573.846 577.018 580.200 583.394 586.598 400 593.039 596.275 599.523 602.781 606.050 609.331 612.622 615.923 619.236 420 659.858 663.316 666.785 670.266 673.757 677.261 680.776 684.301 687.839 430 694.949 698.520 702.105 705.700 709.307 712.925 716.555 720.197 723.850 440 731.193 734.881 738.582 742.294 746.018 749.754 753.502 833.099 835.003 839.020 837.026 839.020 837.026 839.020 837.026 839.020 837.026 839.020 837.026 839.020 837.026 839.020 837.027 839.020 837.027 839.020 837.027 839.020 837.027 839.020 837.027 839.020 837.027 839.020 837.027 839.020 837.027 839.020 837.027 839.020 837.027 839.020 837.027 837.02 | | | | 1 | | | | | | | | | 310 343.812 343.804 343.804 343.804 343.804 343.804 343.804 343.804 343.804 343.804 343.804 347.773 377.235 379.706 382.187 384.677 387.177 330 392.203 394.731 397.269 399.815 402.371 404.937 407.512 410.097 412.692 340 417.909 420.533 423.166 425.808 428.460 431.122 433.794 436.476 439.166 350 444.578 447.300 450.030 452.770 455.520 458.280 461.050 463.830 466.620 360 472.230 475.049 477.879 480.719 483.569 486.429 489.299 492.179 495.070 370 500.881 503.802 506.733 509.675 512.626 515.588 518.560 521.543 524.536 380 530.553 533.577 536.612 539.656 542.712 545.778 548.854 551.941 555.038 | | | | 1 | l l | | | 325.205 | 322.945 | 320.694 | 300 | | 320 392, 203 394, 731 397, 269 399, 815 402, 371 404, 937 407, 512 410, 097 412, 692 340 417, 909 420, 533 423, 166 425, 808 428, 460 431, 122 433, 794 436, 476 439, 166 350 444, 578 447, 300 450, 030 452, 770 485, 520 458, 280 461, 050 463, 830 466, 620 360 472, 230 475, 049 477, 879 480, 719 483, 569 486, 429 489, 299 492, 179 495, 070 370 500, 881 503, 802 506, 733 509, 675 512, 626 515, 588 518, 560 521, 543 524, 536 380 530, 553 533, 577 536, 612 539, 656 542, 712 545, 778 548, 854 551, 941 555, 038 390 561, 265 564, 395 567, 535 570, 685 573, 846 577, 018 580, 200 583, 394 586, 598 400 593, 039 596, 275 599, 523 602, 7 | 1 | | | | | 1 | | 348.304 | 345.954 | 343.612 | 310 | | 340 417.909 420.533 423.166 425.808 428.460 431.122 433.794 436.476 439.166 350 444.578 447.300 450.030 452.770 455.520 458.280 461.050 463.830 466.620 360 472.230 475.049 477.879 480.719 483.569 486.429 489.299 492.179 495.070 370 500.881 503.802 506.733 509.675 512.626 515.588 518.560 521.543 524.536 380 530.553 533.577 536.612 539.656 542.712 545.778 548.854 551.941 555.038 390 561.265 564.395 567.535 570.685 573.846 577.018 580.200 583.394 586.598 400 593.039 596.275 599.523 602.781 606.050 609.331 612.622 615.923 619.236 410 625.895 629.241 632.599 635.967 639.346 642.737 < | I | | | | 1 | 1 | 1 | | 369.877 | 367.443 | 320 | | 350 444.578 447.300 450.030 452.770 455.520 458.280 461.050 463.830 466.620 360 472.230 475.049 477.879 480.719 483.569 486.429 489.299 492.179 495.070 370 500.881 503.802 506.733 509.675 512.626 515.588 518.560 521.543 524.536 380 530.553 533.577 536.612 539.656 542.712 545.778 548.854 551.941 555.038 390 561.265 564.395 567.535 570.685 573.846 577.018 580.200 583.394 586.598 400 593.039 596.275 599.523 602.781 606.050 609.331 612.622 615.923 619.236 410 625.895 629.241 632.599 635.967 639.346 642.737 646.139 649.551 652.976 420 659.858 663.316 666.785 670.266 673.757 677.261 < | I | I | | | | | | | | 392.203 | 330 | | 350 444.576 447.508 437.503 435.77 435.277 485.369 486.429 499.299 492.179 495.070 370 500.881 503.802 506.733 509.675 512.626 515.588 518.560 521.543 524.536 380 530.553 533.577 536.612 539.656 542.712 545.778 548.854 551.941 555.038 390 561.265 564.395 567.535 570.685 573.846 577.018 580.200 583.394 586.598 400 593.039 596.275 599.523 602.781 606.050 609.331 612.622 615.923 619.236 410 625.895 629.241 632.599 635.967 639.346 642.737 646.139 649.551 652.976 420 659.858 663.316 666.785 670.266 673.757 677.261 680.776 684.301 687.839 430 694.949 698.520 702.105 705.700 709.307 <t< td=""><td></td><td></td><td></td><td>I .</td><td></td><td></td><td></td><td></td><td></td><td>417.909</td><td>340</td></t<> | | | | I . | | | | | | 417.909 | 340 | | 370 500.881 503.802 506.733 509.675 512.626 515.588 518.560 521.543 524.536 380 530.553 533.577 536.612 539.656 542.712 545.778 548.854 551.941 555.038 390 561.265 564.395 567.535 570.685 573.846 577.018 580.200 583.394 586.598 400 593.039 596.275 599.523 602.781 606.050 609.331 612.622 615.923 619.236 410 625.895 629.241 632.599 635.967 639.346 642.737 646.139 649.551 652.976 420 659.858 663.316 666.785 670.266 673.757 677.261 680.776 684.301 687.839 430 694.949 698.520 702.105 705.700 709.307 712.925 716.555 720.197 723.850 440 731.193 734.881 738.582 742.294
746.018 749.754 < | | | | | | | | 450.030 | 447.300 | 444.578 | 350 | | 370 500.881 503.602 506.735 503.612 509.656 542.712 545.778 548.854 551.941 555.038 390 561.265 564.395 567.535 570.685 573.846 577.018 580.200 583.394 586.598 400 593.039 596.275 599.523 602.781 606.050 609.331 612.622 615.923 619.236 410 625.895 629.241 632.599 635.967 639.346 642.737 646.139 649.551 652.976 420 659.858 663.316 666.785 670.266 673.757 677.261 680.776 684.301 687.839 430 694.949 698.520 702.105 705.700 709.307 712.925 716.555 720.197 723.850 450 768.613 772.421 776.241 780.073 783.917 787.773 791.641 795.522 799.414 460 807.237 811.166 815.108 819.062 823.029 < | | | | · · | | | | 477.879 | 475.049 | 472.230 | 360 | | 380 330.333 333.337 333.337 333.337 335.335 567.535 570.685 573.846 577.018 580.200 583.394 586.598 400 593.039 596.275 599.523 602.781 606.050 609.331 612.622 615.923 619.236 410 625.895 629.241 632.599 635.967 639.346 642.737 646.139 649.551 652.976 420 659.858 663.316 666.785 670.266 673.757 677.261 680.776 684.301 687.839 430 694.949 698.520 702.105 705.700 709.307 712.925 716.555 720.197 723.850 440 731.193 734.881 738.582 742.294 746.018 749.754 755.502 757.262 761.034 450 768.613 772.421 776.241 780.073 783.917 787.773 791.641 795.522 799.414 460 807.237 811.166 815.108 < | | | | | | | | 506.733 | 503.802 | 500.881 | 370 | | 400 593.039 596.275 599.523 602.781 606.050 609.331 612.622 615.923 619.236 410 625.895 629.241 632.599 635.967 639.346 642.737 646.139 649.551 652.976 420 659.858 663.316 666.785 670.266 673.757 677.261 680.776 684.301 687.839 430 694.949 698.520 702.105 705.700 709.307 712.925 716.555 720.197 723.850 440 731.193 734.881 738.582 742.294 746.018 749.754 753.502 757.262 761.034 450 768.613 772.421 776.241 780.073 783.917 787.773 791.641 795.522 799.414 460 807.237 811.166 815.108 819.062 823.029 827.008 830.999 835.003 839.020 | | | | , | | | | | 533.577 | 530.553 | 380 | | 410 625.895 629.241 632.599 635.967 639.346 642.737 646.139 649.551 652.976 640.340 659.858 663.316 666.785 670.266 673.757 677.261 680.776 684.301 687.839 694.949 698.520 702.105 705.700 709.307 712.925 716.555 720.197 723.850 742.294 746.018 749.754 753.502 757.262 761.034 7450 768.613 772.421 776.241 780.073 783.917 787.773 791.641 795.522 799.414 7460 807.237 811.166 815.108 819.062 823.029 827.008 830.999 835.003 839.020 | 8 589.81 | 586.598 | 583.394 | 580.200 | 577.018 | 573.846 | 570.685 | 567.535 | 564.395 | 561.265 | 390 | | 410 625.895 629.241 632.599 635.967 639.346 642.737 646.139 649.551 652.976 420 659.858 663.316 666.785 670.266 673.757 677.261 680.776 684.301 687.839 430 694.949 698.520 702.105 705.700 709.307 712.925 716.555 720.197 723.850 440 731.193 734.881 738.582 742.294 746.018 749.754 753.502 757.262 761.034 450 768.613 772.421 776.241 780.073 783.917 787.773 791.641 795.522 799.414 460 807.237 811.166 815.108 819.062 823.029 827.008 830.999 835.003 839.020 | | | | | 609.331 | 606.050 | 602.781 | 599.523 | 596.275 | 593.039 | 400 | | 420 659.858 663.316 666.785 670.266 673.757 677.261 680.776 684.301 687.839 430 694.949 698.520 702.105 705.700 709.307 712.925 716.555 720.197 723.850 440 731.193 734.881 738.582 742.294 746.018 749.754 753.502 757.262 761.034 450 768.613 772.421 776.241 780.073 783.917 787.773 791.641 795.522 799.414 460 807.237 811.166 815.108 819.062 823.029 827.008 830.999 835.003 839.027 | | | | | 642.737 | 639.346 | 635.967 | | I | 1 | | | 430 694.949 698.520 702.105 705.700 709.307 712.925 716.555 720.197 723.850 440 731.193 734.881 738.582 742.294 746.018 749.754 753.502 757.262 761.034 450 768.613 772.421 776.241 780.073 783.917 787.773 791.641 795.522 799.414 460 807.237 811.166 815.108 819.062 823.029 827.008 830.999 835.003 839.025 | | | | | 677.261 | 673.757 | 670.266 | 1 | 1 | 1 ' | 1 | | 440 731.193 734.881 738.582 742.294 746.018 749.754 753.502 757.262 761.034 450 768.613 772.421 776.241 780.073 783.917 787.773 791.641 795.522 799.414 460 807.237 811.166 815.108 819.062 823.029 827.008 830.999 835.003 839.020 | | | | | 712.925 | 709.307 | | | | 1 | 1 | | 450 768.613 772.421 776.241 780.073 783.917 787.773 791.641 795.522 799.414 460 807.237 811.166 815.108 819.062 823.029 827.008 830.999 835.003 839.020 | | | | | 749.754 | 746.018 | | | 1 | I | | | 460 807.237 811.166 815.108 819.062 823.029 827.008 830.999 835.003 839.020 | | | | | 787.773 | 783.917 | I | | | 11.7 | 1 | | 077 770 077 770 077 075 | | | | 830.999 | 827:008 | 823.029 | 819.062 | 815.108 | 1 | | | | 470 647.090 651.145 655.210 655.361 667.165 671.145 | | | 875.732 | 871.602 | 867.485 | 863.381 | 859.289 | 855.210 | 851.143 | 847.090 | 470 | | 480 888.199 892.379 896.573 900.780 905.000 909.232 913.479 917.737 922.009 | | I | 1 - | 1 | 1 | 905.000 | 900.780 | 896.573 | 892.379 | 888.199 | 480 | | 490 930.591 934.903 939.227 943.564 947.915 952.278 956.656 961.046 965.450 | 0 969.86 | 965.450 | 961.046 | 956.656 | 952.278 | 947.915 | 943.564 | 939.227 | 934.903 | 930.591 | 490 | TABLE Al2.- Concluded | Г | | | | | | | . 1 | | - | п | |---------------------|--------------------|--------------------|--------------------|---------|---------|---------|---------|---------|---------|---------| | V _c , | 0 | 1 | . 2 . | 3 | 4 | _ | 6 | 7 | | | | knots | | 1 | . 2 . | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | F.0.0 | | | | | | | | | | | | 500 | 974.298 | 978.741 | 983.199 | 987.669 | 992.154 | 996.651 | | | 1010.23 | | | 510 | 1019.35 | 1023.93 | 1028.52 | 1033.13 | 1037.75 | 1042.38 | | | 1056.37 | | | 520 | 1065.77 | 1070.49 | 1075.22 | 1079.97 | 1084.73 | 1089.50 | | | 1103.91 | l | | 530 | 1113.59 | 1118.46 | 1123.33 | 1128.22 | 1133.12 | 1138.04 | | | 1152.89 | | | 540 | 1162.86 | 1167.86 | 1172.88 | 1177.92 | 1182.97 | 1188.04 | | | 1203.32 | l 1 | | - 550 | 1213.59 | 1218.75 | 1223.92 | 1229.10 | 1234.30 | 1239.52 | | | 1255.26 | 1260.54 | | 560 | 1265.83 | 1271.14 | 1276.46 | 1281.80 | 1287.15 | 1292.52 | | | 1308.73 | 1 1 | | 570 | 1319.61 | 1325.07 | 1330.55 | 1336.05 | 1341.56 | 1347.08 | | | 1363.76 | l I | | 580 | 1374.96 | 1380.58 | 1386.22 | 1391.88 | 1397.55 | 1403.24 | | | 1420.40 | | | 590 | 1431.93 | 1437.71 | 1443.52 | 1449.34 | 1455.17 | 1461.03 | 1466.90 | 1472.78 | 1478.69 | 1484.61 | | 600 | 1490.55 | 1496.50 | 1502.47 | 1508.46 | 1514.47 | 1520.49 | 1526.33 | 1532 58 | 1538.66 | 1544.75 | | 610 | 1550.86 | 1556.98 | 1563.13 | 1569.29 | 1575.46 | 1581.66 | | | 1600.35 | | | 620 | 1612.90 | 1619.20 | 1625.52 | 1631.86 | 1638.21 | 1644.58 | | | 1663.81 | 1 1 | | 630 | 1676.71 | 1683.19 | 1689.69 | 1696.21 | 1702.75 | 1709.30 | | 1722.46 | | 1735.70 | | 640 | 1742.35 | 1749.01 | 1755.69 | 1762.40 | 1769.12 | 1775.86 | | 1789.39 | | 1803.00 | | 650 | 1809.84 | 1816.69 | 1823.56 | 1830.45 | 1837.36 | 1844.29 | | | 1865.20 | | | 660 | 1879.23 | 1886.28 | 1893.35 | 1900.43 | 1907.54 | 1914.66 | | | 1936.15 | | | 670 | 1950.57 | 1957.81 | 1965.07 | 1972.35 | 1979.64 | 1986.96 | | | 2009.02 | | | 680 | 2023.82 | 2031.24 | 2038.69 | 2046.15 | 2053.64 | 2061.14 | | 2076.20 | | 1 1 | | 690 | 2098.92 | 2106.53 | 2114.16 | 2121.81 | 2129.47 | 2137.15 | | 2152.57 | | 2091.33 | | 0,0 | 2030.32 | 2100.55 | 2114.10 | 2121.01 | 2129.47 | 2137.13 | 2144.03 | 2132.37 | 2100.31 | 2168.06 | | 700 | 2175.83 | 2183.62 | 2191.43 | 2199.25 | 2207.09 | 2214.95 | 2222.83 | 2230.73 | 2238.64 | 2246.57 | | 710 | 2254.51 | 2262.48 | 2270.46 | 2278.45 | 2286.47 | 2294.50 | 2302.55 | 2310.62 | 2318.70 | | | 720 | 2334.92 | 2343.06 | 2351.21 | 2359.38 | 2367.56 | 2375.76 | 2382.98 | 2392.22 | 2400.47 | 2408.74 | | 730 | 2417.03 | 2425.33 | 2433.65 | 2441.98 | 2450.33 | 2458.70 | 2467.09 | 2475.49 | 2483.91 | 2492.34 | | 740 | 2500.79 | 2509.26 | 2517.74 | 2526.24 | 2534.75 | 2543.29 | | 2560.40 | | 2577.57 | | 750 | 2586.19 | 2594.82 | 2603.46 | 2612.12 | 2620.80 | 2629.49 | 2638.20 | 2646.92 | 2655.66 | 2664.42 | | 760 | 2673.19 | 2681.98 | 2690.78 | 2699.60 | 2708.44 | 2717.29 | 2726.16 | 2735.04 | 2743.94 | | | 770 | 2761.78 | 2770.72 | 2779.69 | 2788.66 | 2797.65 | 2806.66 | 2815.68 | 2824.72 | 2833.78 | 2842.84 | | 780 | 2851.93 | 2861.03 | 2870.14 | 2879.27 | 2888.42 | 2897.58 | 2906.76 | 2915.95 | 2925.16 | 2934.38 | | 790 | 2943.62 | 2952.87 | 2962.14 | 2971.42 | 2980.72 | 2990.04 | 2999.36 | 3008.71 | 3018.07 | 3027.44 | | 800 | 3036.83 | 2046 22 | 2055 65 | 3005 00 | 2074 54 | 2004 00 | 2002 40 | 2102 07 | 2222 | 2100 01 | | 810 | 3131.54 | 3046.23
3141.10 | 3055.65 | 3065.09 | 3074.54 | 3084.00 | I | | 3112.48 | | | 820 | 3227.75 | 3237.45 | 3150.67 | 3160.25 | 3169.85 | 3179.46 | | 3198.73 | 3208.39 | 3218.06 | | 830 | 3325.43 | 1 | 3247.17 | 3256.90 | 3266.65 | 3276.41 | 1 | 3259.97 | | | | I . | 1 | 3335.28 | 3345.14 | 3355.02 | 3364.91 | 3374.82 | | 3394.68 | 1 | 3414.59 | | 8 4 0
850 | 3424.57
3525.16 | 3434.56
3535.30 | 3444.57 | 3454.60 | 3464.63 | 3474.69 | | 3494.83 | 3504.93 | 3515.04 | | 860 | 3627.19 | 3637.47 | 3545.45 | 3555.62 | 3565.80 | 3575.99 | | | 3606.67 | | | 870 | 3730.64 | | 3647.76
3751.50 | 3658.07 | 3668.40 | 3678.73 | 3689.09 | | 1 | 3720.23 | | 880 | 3835.51 | 3741.06
3846.07 | 3856.65 | 3761.95 | 3772.42 | 3782.90 | 1 | | 3814.42 | | | I . | | i | | 3867.24 | 3877.85 | 3888.47 | | | | 3931.09 | | 890 | 3941.78 | 3952.49 | 3963.21 | 3973.94 | 3984.69 | 3995.45 | 4006.22 | 4017.01 | 4027.81 | 4038.63 | | 900 | 4049.46 | 4060.30 | 4071.16 | 4082.03 | 4092.92 | 4103.82 | 4114.73 | 4125.66 | 4136.60 | 4147.55 | | 910 | 4158.52 | 4169.51 | 4180.50 | 4191.51 | 4202.54 | 4213.58 | , | l | 4246.77 | | | 920 | 4268.97 | 4280.09 | 4291.23 | 4302.37 | 4313.54 | 4324.71 | | | 4358.32 | | | 930 | 4380.80 | 4392.06 | 4403.33 | 4414.61 | 4425.91 | 4437.22 | | | 4471.24 | | | 940 | 4493.99 | 4505.39 | 4516.79 | 4528.21 | 4539.65 | 4551.10 | | | 4585.53 | | | 950 | 4608.55 | 4620.08 | 4631.62 | 4643.18 | 4654.75 | 4666.33 | | | 4701.17 | | | 960 | 4724.46 | 4736.13 | 4747.81 | 4759.50 | 4771.21 | 4782.93 | | | 4818.17 | | | 970 | 4841.73 | 4853.53 | 4865.34 | 4877.17 |
4889.01 | 4900.87 | | | 4936.51 | | | 980 | 4960.34 | 4977.28 | 4984.22 | 4996.19 | 5008.16 | 5020.15 | | | 5056.20 | | | 990 | 5080.30 | 5092.36 | 5104.45 | 5116.54 | 5128.65 | 5140.78 | | | 5177.22 | | | 1000 | E201 50 | | | | | | | | | | | 1000 | 5201.59 | L | | L | | L | | | | L | TABLE A13.- TRUE AIRSPEED V IN KNOTS FOR VALUES OF CALIBRATED AIRSPEED V_C IN KNOTS AND VALUES OF PRESSURE ALTITUDE H IN GEOPOTENTIAL FEET [Computation of V based on standard temperature at each altitude] | V _C kno | ots | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | |--------------------|-----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--------------| | 5 00 | 00 | 100.0 | 200.0 | 300.0
321.6 | 400.0
427.4 | 500.0
532.2 | 600.0
635.8 | 700.0
740.3 | 800.0
847.3 | 900.0
955.2 | 1000
1064 | | 10 00
15 00 | - 1 | 116.2
125.8 | 231.6
250.0 | 345.4
371.5 | 457.2
489.4 | 566.8
603.8 | 674.5
716.3 | 785.0
835.2 | 900.5
960.9 | 1018
1089 | 1136
1218 | | 20 00
25 00 | | 137.2
148.7 | 270.5
293.4 | 400.1
431.5 | 524.4
562.0 | 643.4
686.6 | 763.0
816.2 | 892.4
958.0 | 1030
1109 | 1170
1263 | 1310
1418 | | 30 00
35 00 | | 162.4
178.0 | 318.9
347.4 | 465.9
503.5 | 602.6
646.9 | 735.4
791.6 | 877.5
948.7 | | 1201
1307 | 1370
1494 | 1541
1682 | | 40 0 | - 1 | 199.1
223.7 | 385.6
429.1 | 553.7
610.0 | 708.9
782.4 | 871.5
967.0 | 1049
1169 | 1245
1392 | 1454
1629 | 1666
1869 | 1878 | | 50 0
55 0 | | 251.0
281.3 | 476.4
527.3 | 671.6
740.3 | | 1076
1199 | 1306
1460 | 1559
1747 | 1827 | | | | 60 0
65 0 | | 314.9
351.8 | 581.8
640.4 | | 1068
1191 | 1340
1499 | 1636
1835 | 1961 | | | | | 70 0
75 0 | | 394.8
440.3 | 709.9
785.3 | 1013
1130 | 1338
1501 | 1690
1901 | 2073 | | | 1 | | | 80 0
85 0 | | 489.4
540.2 | 870.3
962.9 | 1263
1408 | 1684
1885 | 2139 | | | | - Control of the Cont | | | 90 0
95 0 | 1 | 596.2
656.2 | l | 1576
1766 | 2111 | | | | | | | | 100 0 | 000 | 722.2 | 1330 | 1979 | | | | | | | | TABLE A14.- STATIC PRESSURE p (OR p') IN MILLIMETERS OF MERCURY (OO C) FOR VALUES OF PRESSURE ALTITUDE H (OR INDICATED ALTITUDE H') IN GEOPOTENTIAL METERS [From ref. A1] | | I,
m | 0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | |-----|---------|---------|---------|---------|---------|---------|--------------------------|---------|---------|---------|----------| | -1 | 000 | 854.538 | | | | | | | | | | | | -0 | | 769.054 | 778.195 | 787.424 | 796.741 | 806.147 | 815.644 | 825.230 | 834.908 | 844.677 | | | 0 | 760.000 | 751.032 | 742.151 | 733.354 | 724.643 | 716.015 | 707.470 | 699.009 | 690.629 | 682.331 | | 1 | 000 | 674.114 | 665.978 | 657.921 | 649.943 | 642.043 | 634.222 | 626.478 | 618.810 | 611.219 | 603.703 | | 2 | 000 | 596.263 | 588.897 | 581.604 | 574.385 | 567.239 | 560.165 | 553.162 | 546.231 | 539.370 | 532.579 | | 3 | 000 | 525.857 | 519.204 | 512.620 | 506.103 | 499.654 | 493.271 | 486.954 | 480.703 | 474.518 | 468.396 | | 4 | 000 | 462.339 | 456.346 | 450.416 | 444.548 | 438.742 | 432.998 | 427.314 | 421.692 | 416.129 | 410.626 | | 5 | 000 | 405.182 | 399.797 | 394.470 | 389.200 | 383.988 | 378.832 | 373.732 | 368.688 | 363.700 | 358.766 | | | | 353.886 | 349.061 | 344.289 | 339.569 | 334.903 | 330.288 | 325.725 | 321.213 | 316.752 | 312.341 | | 7 | 000 | 307.981 | 303.669 | 299.407 | 295.193 | 291.027 | 286.909 | 282.838 | 278.814 | 274.837 | 270.906 | | 8 | 000 | 267.020 | 263.180 | 259.384 | 255.633 | 251.926 | 248.263 | 244.643 | 241.066 | 237.531 | 234.038 | | 9 | 000 | 230.587 | 227.177 | 223.809 | 220.481 | 217.193 | 213.944 | 210.736 | 207.566 | 204.435 | 201.343 | | 10 | 000 | 198.288 | 195.271 | 192.291 | 189.349 | 164.442 | 183.573 | 180.738 | 177.940 | 175.177 | 172.448 | | 1.1 | 000 | 169.754 | 167.098 | 164.484 | 161.911 | 159.377 | 156.884 | 154.430 | 152.013 | 149.635 | 147.294 | | 12 | 000 | 144.990 | 142.721 | 140.488 | 138.290 | 136.127 | 133.997 | 131.901 | 129.837 | 127.806 | 125.806 | | 13 | 000 | 123.838 | 121.900 | 119.993 | 118.116 | 116.268 | 114.449 | 112.658 | 110.896 | 109.161 | 107.453 | | 14 | 000 | 105.772 | 104.117 | 102.488 | 100.885 | 99.3064 | 97 . 752 7 | 96.2234 | 94.7179 | 93.2361 | 91.7774 | | 15 | 000 | 90.3415 | 88.9281 | 87.5368 | 86.1672 | 84.8191 | 83.4921 | 82.1859 | 80.9001 | 79.6344 | 78.3885 | | 16 | 000 | 77.1621 | 75.9549 | 74.7665 | 73.5968 | 72.4454 | 71.3119 | 70.1963 | 69.0980 | 68.0170 | 66.9528 | | 17 | 000 | 65.9053 | 64.8742 | 63.8593 | 62.8602 | 61.8767 | 60.9087 | 59.9557 | 59.0177 | 58.0944 | 57.1855 | | 18 | 000 | 56.2908 | 55.4101 | 54.5432 | 53.6899 | 52.8499 | 52.0230 | 51.2091 | 50.4080 | 49.6193 | 48.8430 | | 19 | 000 | 48.0788 | 47.3267 | 46.5862 | 45.8574 | 45.1399 | 44.4337 | 43.7385 | 43.0542 | 42.3806 | 41.7176 | | 20 | 000 | 41.0649 | 40.4226 | 39.7906 | 39.1688 | 38.5570 | 37.9550 | 37.3627 | 36.7799 | 36.2064 | 35.6421 | | 21 | 000 | 35.0869 | 34.5406 | 34.0031 | 33.4741 | 32.9536 | 32.4414 | 31.9375 | 31.4415 | 30.9536 | 30.4733 | | 22 | 000 | 30.0008 | 29.5358 | 29.0782 | 28.6279 | 28.1848 | 27.7487 | 27.3196 | 26.8973 | 26.4817 | 26.0727 | | 23 | 000 | 25.6703 | 25.2742 | 24.8844 | 24.5008 | 24.1232 | 23.7517 | 23.3861 | 23.0262 | 22.6720 | 22.3235 | | 24 | 000 | 21.9804 | 21.6428 | 21.3105 | 20.9835 | 20.6616 | 20.3448 | 20.0330 | 19.7261 | 19.4240 | 19.1268 | | 25 | 000 | 18.8341 | 18.5461 | 18.2627 | 17.9837 | 17.7090 | 17.4387 | 17.1726 | 16.9107 | 16.6530 | 16.3992 | | 26 | 000 | 16.1495 | 15.9036 | 15.6616 | 15.4234 | 15.1889 | 14.9581 | 14.7309 | 14.5072 | 14.2871 | 14.0704 | | 27 | 000 | 13.8570 | 13.6470 | 13.4403 | 13.2367 | 13.0364 | 12.8392 | 12.6450 | 12.4539 | 12.2657 | 12.0805 | | 28 | 000 | 11.8981 | 11.7186 | 11.5418 | 11.3678 | 11.1965 | 11.0279 | 10.8618 | 10.6984 | 10.5375 | 1.0.3790 | | 29 | 000 | 10.2230 | 10.0694 | 9.91825 | 1 | I . | 9.47851 | 9.33643 | | 9.05881 | 8.92321 | | 30 | 000 | 8.78968 | | | 1 | | | | | | | TABLE A15.- STATIC PRESSURE p (OR p') IN PASCALS FOR VALUES OF PRESSURE ALTITUDE H (OR INDICATED ALTITUDE H') IN GEOPOTENTIAL METERS # [From ref. Al] | | H, | | | 0 | | 100 | | 200 | | 300 | | 400 | | 500 | | 600 | | 700 | | 800 | | 900 | |------|-----|----------|-----|--------|------|--------|-----|--------|-----|--------|-----|--------|-----|--------|-----|------------------|-----------------|--------|-----|--------|-----|------------------| | -1 | | 00
-0 | 113 | 929. | 102 | 532. | 103 | 751. | 104 | 981. | 106 | 223. | 107 | 477. | 108 | 744. | 110 | 022. | 111 | 312. | 112 | 614. | | | | 0 | 101 | 325. | 100 | 129. | 98 | 945.3 | 97 | 772.5 | 96 | 611.1 | 95 | 460.8 | 94 | 321.6 | 93 | 193.5 | 92 | 076.3 | 90 | 970.0 | | 1 | 0 | 00 | | 874.5 | | 789.7 | | 715.5 | l | 651.9 | | 598.7 | | 556.0 | | 523.5 | | 501.3 | 81 | 489.2 | 80 | 487.2 | | 2 | 0 | 00 | 79 | 495.2 | | 513.1 | | 540.9 | 76 | 578.4 | 76 | 625.6 | 74 | 682.5 | 73 | 748.9 | 72 | 824.8 | 71 | 910.0 | 71 | 004.6 | | 3 | 0 | 00 | 70 | 108.5 | 69 | 221.5 | 68 | 343.7 | 67 | 474.8 | 66 | 615.0 | 65 | 764.0 | 64 | 921.9 | 64 | 088.5 | | 263.8 | | 447.7 | | 4 | 0 | 00 | 61 | 640.2 | 60 | 841.1 | 60 | 050.5 | 59 | 268.1 | 58 | 494.1 | 57 | 728.3 | 56 | 970.6 | 56 | 220.9 | 55 | 479.3 | 54 | 745.7 | | _ | ^ | | E 1 | 019.9 | E 2 | 301.9 | | 591.6 | 61 | 889.1 | E 1 | 194.1 | 50 | 506.8 | 10 | 826.9 | 10 | 154.4 | 18 | 489.3 | 17 | 831.5 | | 1 | | 00 | | 181.0 | | 537.6 | | 901.4 | | 272.2 | 1 | 650.0 | 1 | 034.8 | | 426.4 | | 824.9 | | 230.2 | | 642.1 | | | | 00 | | 060.7 | | 485.9 | | 917.6 | | 355.8 | 1 | 800.4 | | 251.4 | | 708.7 | | 172.2 | | 641.9 | | 117.8 | | 1 | | 00 | | 599.8 | | 087.8 | 1 | 581.7 | | 081.6 | | 587.4 | 1 | 099.0 | | 616.4 | | 139.4 | | 668.2 | | 202.5 | | 1 | |
00 | | 742.4 | | 287.8 | | 838.7 | | 395.0 | | 956.6 | | 523.6 | | 095.8 | | 673.2 | | 255.8 | | 843.5 | | 1 | | | | | | | | | | | | | | | ļ | | 1 | | | | ļ | | | 10 | 0 | 000 | 26 | 436.2 | 26 | 034.0 | 25 | 636.7 | 25 | 244.4 | 24 | 857.0 | 24 | 474.3 | 24 | 096.5 | 23 | 723.4 | | 355.0 | | 991.2 | | 11 | . 0 | 000 | 22 | 632.0 | 22 | 277.9 | 21 | 929.4 | 21 | 586.3 | 21 | 248.6 | 20 | 916.1 | 20 | 588.9 | 20 | 266.8 | | 949.7 | | 637.6 | | 12 | C | 000 | 19 | 330.4 | 19 | 027.9 | 18 | 730.2 | | 437.2 | | 148.8 | | 864.8 | | 585.3 | 17 | 310.2 | | 039.4 | | 772.8 | | 13 | C | 000 | 16 | 510.4 | | 252.1 | | 997.8 | | 747.5 | 1 | 501.1 | 1 | 258.6 | | 019.9 | 1 | 784.9 | | 553.6 | | 325.9 | | 14 | C | 000 | 14 | 101.8 | 13 | 881.1 | 13 | 664.0 | 13 | 450.2 | 13 | 239.8 | 13 | 032.6 | 12 | 828.7 | 1.2 | 628.0 | 12 | 430.5 | 12 | 236.0 | | 15 | | 000 | 12 | 044.5 | 1 11 | 856.1 | 111 | 670.6 | 11 | 488.0 | 11 | 308.3 | 11 | 131.4 | 10 | 957.2 | 10 | 785.8 | 10 | 617.0 | 10 | 450.9 | | | | 000 | | 287.4 | | 126.5 | 1 | 968.05 | | 812.10 | | 658.59 | | 507.48 | | 358.73 | | 212.31 | 1 | 068.18 | 1 | 926.31 | | | | 000 | | 786.66 | | 649.19 | 1 | 513.87 | | 380.67 | | 249.55 | | 120.49 | | 993.44 | | 868.38 | 7 | 745.28 | 7 | 624.10 | | | | 000 | | 504.82 | | 387.41 | | 271.83 | 7 | 158.06 | 7 | 046.07 | 6 | 935.83 | 6 | 827.32 | 6 | 720.51 | 6 | 615.36 | 6 | 511.87 | | 19 | 0 | 000 | 6 | 409.99 | 6 | 309.70 | 6 | 210.98 | 6 | 113.81 | 6 | 018.16 | 5 | 924.01 | 5 | 831.32 | 5 | 740.09 | 5 | 650.29 | 5 | 561.89 | | 20 | | | c | 474.87 | _ | 389.24 | [| 304.98 | _ | 222.08 | | 140.51 | 5 | 060.25 | 1 | 981.28 | 1 | 903.58 | 1 | 827.12 | 1 4 | 751.89 | | | | 000 | - | 677.87 | | 605.04 | | 533.37 | | 462.85 | | 393.45 | 1 | 325.17 | | 257.98 | | 191.86 | | 126.80 | | 062.78 | | | | 000 | | 999.78 | | 937.78 | | 876.78 | | 816.74 | | 757.66 | | 699.53 | | 642.31 | | 586.01 | | 530.61 | | 476.08 | | 1 | | 000 | | 422.42 | (| 369.61 | | 317.65 | | 266.50 | | 216.17 | | 166.17 | | 117.88 | | 069.91 | | 022.59 | 1 | 976.22 | | 1 | | 000 | | 930.48 | | 885.47 | | 841.17 | | 797.56 | | 754.65 | | 712.41 | 1 | 670.84 | Ł | 629.93 | 1 | 589.66 | | 550.02 | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | 000 | , | 511.01 | | 472.62 | | 434.82 | | 397.62 | | 361.01 | | 324.97 | | 289.50 | | 254.58 | | 220.21 | | 186.38 | | | | 000 | | 153.08 | | 120.31 | | 088.04 | | 056.28 | | 025.02 | | 994.25 | | 963.96 | | 934.14 | | 904.79 | | 875.89 | | | | 000 | | 847.45 | | 819.45 | | 791.89 | | 764.75 | | 738.04 | | 711.75 | | 685.86 | | 660.38 | 1 | 635.29 | | 610.60 | | 1 | | 000 | | 586.28 | 1 | 562.35 | 1 | 538.78 | | 515.59 | 1 | 492.75 | | 470.26 | | 448.13
244.76 | | 426.33 | | 404.88 | | 383.75
189.66 | | 1 29 | , (| 000 | 1 | 362.96 | 1 | 342.48 | 1 1 | 322.32 | 1 | 302.48 | 1 1 | 202.94 | 1 | 203.70 | Ί 1 | 244.70 | ` ⁺ | 220.10 | 1 | 201.14 | 1 1 | 102.00 | | 30 |) (| 000 | . 1 | 171.86 | | | | | | | | | | | | | | | | | | | Table A16.- Density ρ in Kilograms per cubic meter for values of ρ . Pressure altitude $\,$ H $\,$ in Geopotential meters [From ref. Al] | 1 | Ι, | 0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | |-----|-----|---------|----------|---------|---------|----------|---------|---------|---------|---------|---------| | n | n | | _ ~ ~ | | 300 | 100 | 300 | 000 | 7,00 | 000 | 300 | | | 0 | 1.2250 | 1.2133 | 1.2017 | 1.1901 | 1.1786 | 1.1673 | 1.1560 | 1.1448 | 1.1336 | 1.1226 | | 1 | | 1.1116 | 1.1008 | 1.0900 | 1.0793 | 1.0686 | 1.0581 | 1.0476 | 1.0372 | 1.0269 | 1.0166 | | 2 | 000 | 1.0065 | .99641 | .98641 | .97648 | .96663 | .95886 | .94716 | .93754 | .92799 | .91852 | | 3 | 000 | .90912 | .89980 | .89055 | .88137 | .87226 | .86323 | .85427 | .84538 | .83656 | .82781 | | 4 | 000 | .81913 | .81052 | .80198 | .79351 | .78511 | .77677 | .76851 | .76031 | .75218 | .74411 | | İ | | | | | | | | | | 1.0020 | | | 5 | 000 | .73612 | .72818 | .70232 | .71251 | .70478 | .69711 | .68950 | .68195 | .67447 | .66705 | | 6 | 000 | .65970 | .65240 | .64517 | .63800 | .63089 | .62384 | .61686 | .60993 | .60306 | .59625 | | 7 | 000 | .58950 | .58281 | .57618 | .56960 | .56308 | .55662 | .55022 | .54387 | .53758 | .53135 | | 8 | 000 | .52517 | .51904 | .51297 | .50696 | .50100 | .49509 | .48924 | .48343 | .47769 | .47199 | | 9 | 000 | .46635 | .46076 | .45522 | .44973 | .44429 | .43890 | .43356 | .42827 | .42304 | .41785 | | | | | | | | | | | | | | | | 000 | .41271 | .40761 | .40257 | .39757 | .39263 | .38772 | .38287 | .37806 | .37330 | .36859 | | | 000 | .36392 | .35822 | .35262 | .34710 | .34167 | .33633 | .33106 | .32589 | .32079 | .31577 | | | 000 | .31083 | .30596 | .30118 | .29647 | .29183 | .28726 | .28277 | .27834 | .27399 | .26970 | | | 000 | .26548 | .26133 | .25724 | .25322 | .24925 | .24535 | .24152 | .23774 | .23402 | .23036 | | 14 | 000 | .22675 | .22331 | .21971 | .21628 | .21289 | .20956 | .20628 | .20306 | .19988 | .19675 | | | | | <u>.</u> | | | | | | ļ | 1 | | | 1 | 000 | .19367 | .19064 | .18766 | .18472 | .18183 | .17899 | .17619 | .17343 | .17072 | .16805 | | 1 | 000 | .16542 | .16283 | .16028 | .15778 | .15531 | .15288 | .15049 | .14813 | .14581 | .14353 | | 1 | 000 | .14129 | .13908 | .13690 | .13476 | .13265 | .13058 | .12853 | .12652 | .12454 | .12259 | | 1 | 000 | .12068 | .11879 | .11693 | .11510 | .11330 | .11153 | .10978 | .10806 | .10637 | .10471 | | 119 | 000 | .10307 | .10146 | .099871 | .098309 | .096771 | .095257 | .093766 | .092299 | .090855 | .089434 | | 20 | 000 | .088035 | .086618 | .085224 | 003054 | 000506 | 001100 | | | | | | | 000 | .074873 | .073674 | .085224 | .083854 | .082506 | .081180 | .079877 | .078594 | .077333 | .076093 | | 1 | 000 | .063727 | .062711 | .061711 | .060728 | .059760 | .069069 | .067965 | .066879 | .065811 | .064761 | | | 000 | .054280 | .053418 | .052570 | .051737 | .050916 | .050109 | .057873 | .056952 | .056047 | .055156 | | ŀ | 000 | .046267 | .045536 | .044816 | .044109 | .043412 | .042727 | .049313 | .048334 | .047766 | .047011 | | | 000 | .010207 | .043550 | .044010 | .044109 | .043412 | .042727 | .042034 | .041391 | .040739 | .040097 | | 25 | 000 | .039466 | .038845 | .038234 | .037633 | .037041 | .036459 | .035887 | .035324 | .034770 | .034224 | | 1 | 000 | .033688 | .033160 | .032641 | .032130 | .031628 | .031133 | .030646 | .030168 | .029696 | .034224 | | 1 | | .028777 | .028328 | .027886 | .027452 | .027024 | .026604 | .026190 | .025782 | .025381 | .029233 | | 28 | 000 | .024599 | .024217 | .023841 | .023471 | .023107 | .022749 | .022396 | .022050 | .021708 | .024307 | | 29 | 000 | .021042 | .020717 | .020397 | .020082 | .019771 | .019466 | .019166 | .018871 | .018580 | .018294 | | | | | | | | | | | | | 1010294 | | 30 | 000 | .018012 | .017735 | .017462 | .017193 | .016929 | .016669 | .016413 | .016161 | .015913 | .015669 | | | | | L | | L | <u> </u> | | L | l | | | TABLE Al7.- TEMPERATURE t IN DEGREES CENTIGRADE FOR VALUES OF # PRESSURE ALTITUDE H IN GEOPOTENTIAL METERS [From ref. Al] | | Н ,
m | | 0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | |-----|-----------------|-----|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------| | | | 0 | 15.000 | 14.350 | 13.700 | 13.050 | 12.400 | 11.750 | 11.100 | 10.450 | 9.800 | 9.150 | | 1 | 00 | 00 | 8.500 | 7.850 | 7.200 | 6.550 | 5.900 | 5.250 | 4.600 | 3.950 | 3.300 | 2.650 | | 2 | 00 | 00 | 2.000 | 1.350 | .700 | .050 | 600 | -1.250 | -1.900 | -2.550 | -3.200 | -3.850 | | 3 | 00 | 00 | -4.500 | -5.150 | -5.800 | -6.450 | -7.100 | -7.750 | -8.400 | -9.050 | -9.700 | -10.350 | | 4 | 00 | 00 | -11.000 | -11.650 | -12.300 | -12.950 | -13.600 | -14.250 | -14.900 | -15.550 | -16.200 | -16.850 | | | | | | | | | | | | | | | | 5 | 00 | 00 | -17.500 | -18.150 | -18.800 | -19.450 | -20.100 | -20.750 | -21.400 | -22.050 | | | | 6 | 00 | 00 | -24.000 | -24.650 | -25.300 | -25.950 | -26.600 | -27.250 | -27.900 | -28.550 | -29.200 | -29.850 | | 7 | 00 | 00 | -30.500 | -31,150 | -31.800 | -32.450 | -33.100 | -33.750 | -34.400 | -35.050 | -35.700 | -36.350 | | 8 | 00 | 00 | -37.000 | -37.650 | -38.300 | -38.950 | -39.600 | -40.250 | -40.900 | -41.550 | -42.200 | 1 | | 9 | 00 | 00 | -43.500 | -44.150 | -44.800 | -45.450 | -46.100 | -46.750 | -47.400 | -48.050 | -48.700 | -49.350 | | | | 1 | • | | | | | | | | | 1 | | 10 | 00 | 00 | -50.000 | -50.650 | -51.300 | -51.950 | -52.600 | -53.250 | -53.900 | -54.550 | -55.200 | -55.850 | | 11 | . 00 | 00 | -56.500 | -56.500 | | | | | -56.500 | | | | | 12 | 00 | 00 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | | 1 | -56.500 | | 1 1 | | 13 | 00 | 00 | -56.500 | -56.500 | -56.500 | -56.500 | 1 | | -56.500 | -56.500 | 1 |) | | 14 | 00 | 00 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | | | | | | | | | | | | | | | | 1 | | | | | 1 | t . | | | -56.500 | | | | | - 1 | | - 1 | | -56.500 | I . | 1 | -56.500 | 1 | 1 | 1 | L . | 1 5 | | - 1 | | | | -56.500 | l . | | i | 1 | -56.500 | | 1 | -56.500 | | 1 | | | | -56.500 | | | -56.500 | | -56.500 | | | -56.500 | | 19 | 0 (| 00 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | -56.500 | | | | ļ | | | | | | | | | | 55 600 | | | | | | | | | | | -55.900 | | | -55.600 | | 1 | | | | -55.400 | | -55.200 | | | -54.900 | | I | -54.600 | | | | | | -54.400 | | | | | -53.900 | | | | | 1 | | | | 1 | 1 | 1 | 1 | 1 | -52.900 | | | 1 | | 24 | 1 0 | 100 | -52.500 | -52.400 | -52.300 | -52.200 | -52.100 | -52.000 | -51.900 | -51.800 | -51.700 | -51.600 | | | | | | | | | | | | F | 50 700 | 50.500 | | - 1 | | - 1 | | 1 | 1 | | | | -50.900 | | | | | | | | -50.500 | | -50.300 | | | | -49.900 | | 1 | -49.600 | | | | | | | 1 | | | | -48.900 | | 1 | 1 | | | | 000 | | | 1 | i . | 1 | 1 | 1 | | 1 | | | 29 | 9 0 | 000 | -47.500 | -47.400 | -47.300 | -4/.200 | -47.100 | -4/.000 | -46.900 | -46.800 | -46.700 | -46.600 | | | | | 46 500 | 16 100 | 16 222 |
16.000 | 46 100 | 16 000 | 45 000 | 45 000 | 45 700 | 15 600 | | 131 | <i>)</i> 0 | JUU | -46.500 | -46.400 | -46.300 | -46.200 | -46.100 | -46.000 | _45.900 | 45.800 | 1-45.700 | -45.600 | TABLE Al8.- COEFFICIENT OF VISCOSITY μ IN PASCAL-SECONDS FOR VALUES OF PRESSURE ALTITUDE H IN GEOPOTENTIAL METERS [From ref. Al] | | T T | 1 | | |--------|-------------------------|--------|-------------------------| | Н, | μ, | Н, | μ, | | m | Pa-sec | m | Pa-sec | | _ | | | E | | 0 | 1.7894×10^{-5} | 15 000 | 1.4216×10^{-5} | | 500 | 1.7737 | 15 500 | 1.4216 | | 1 000 | 1.7578 | 16 000 | 1.4216 | | 1 500 | 1.7419 | 16 500 | 1.4216 | | 2 000 | 1.7260 | 17 000 | 1.4216 | | 2 500 | 1.7099 | 17 500 | 1.4216 | | 3 000 | 1.6937 | 18 000 | 1.4216 | | 3 500 | 1.6775 | 18 500 | 1.4216 | | 4 000 | 1.6611 | 19 000 | 1.4216 | | 4 500 | 1.6447 | 19 500 | 1.4216 | | | | | | | 5 000 | 1.6281 | 20 000 | 1.4216 | | 5 500 | 1.6115 | 20 500 | 1.4244 | | 6 000 | 1.5947 | 21 000 | 1.4271 | | 6 500 | 1.5779 | 21 500 | 1.4298 | | 7 000 | 1.5610 | 22 000 | 1.4326 | | 7 500 | 1.5439 | 22 500 | 1.4353 | | 8 000 | 1.5268 | 23 000 | 1.4381 | | 8 500 | 1.5095 | 23 500 | 1.4408 | | 9 000 | 1.4922 | 24 000 | 1.4435 | | 9 500 | 1.4747 | 24 500 | 1.4462 | | | , | | | | 10 000 | 1.4571 | 25 000 | 1.4490 | | 10 500 | 1.4394 | 25 500 | 1.4517 | | 11 000 | 1.4216 | 26 000 | 1.4544 | | 11 500 | 1.4216 | 26 500 | 1.4571 | | 12 000 | 1.4216 | 27 000 | 1.4598 | | 12 500 | 1.4216 | 27 500 | 1.4625 | | 13 000 | 1.4216 | 28 000 | 1.4652 | | 13 500 | 1.4216 | 28 500 | 1.4679 | | 14 000 | 1.4216 | 29 000 | 1.4706 | | 14 500 | 1.4216 | 29 500 | 1.4733 | | | | | | | | | 30 000 | 1.4760 | TABLE A19.- SPEED OF SOUND A IN KILOMETERS PER HOUR AND KNOTS FOR VALUES OF PRESSURE ALTITUDE H IN GEOPOTENTIAL METERS [From ref. A1] | H,
m | a,
km/hr | a,
knots | H,
m | a,
km/hr | a,
knots | |---------|-------------|-------------|---------|-------------|-------------| | 0 | 1225.06 | 661.48 | 15 000 | 1062.25 | 573.57 | | 500 | 1218.13 | 657.74 | 15 500 | 1062.25 | 573.57 | | 1 000 | 1211.16 | 653.98 | 16 000 | 1062.25 | 573.57 | | 1 500 | 1204.15 | 650.19 | 16 500 | 1062.25 | 573.57 | | 2 000 | 1197.10 | 646.38 | 17 000 | 1062.25 | 573.57 | | 2 500 | 1190.01 | 642.56 | 17 500 | 1062.25 | 573.57 | | 3 000 | 1182.88 | 638.70 | 18 000 | 1062.25 | 573.57 | | 3 500 | 1175.70 | 634.83 | 18 500 | 1062.25 | 573.57 | | 4 000 | 1168.48 | 630.93 | 19 000 | 1062.25 | 573.57 | | 4 500 | 1161.22 | 627.01 | 19 500 | 1062.25 | 573.57 | | 5 000 | 1153.90 | 623.06 | 20 000 | 1062.25 | 573.57 | | 5 500 | 1146.55 | 619.09 | 20 500 | 1063.48 | 574.23 | | 6 000 | 1139.14 | 615.09 | 21 000 | 1064.94 | 575.02 | | 6 500 | 1131.69 | 611.06 | 21 500 | 1065.92 | 575.55 | | 7 000 | 1124.18 | 607.01 | 22 000 | 1067.14 | 576.21 | | 7 500 | 1116.63 | 602.93 | 22 500 | 1068.36 | 576.87 | | 8 000 | 1109.03 | 598.83 | 23 000 | 1069.58 | 577.53 | | 8 500 | 1101.37 | 594.69 | 23 500 | 1070.79 | 578.18 | | 9 000 | 1093.65 | 590.53 | 24 000 | 1072.01 | 578.84 | | 9 500 | 1085.89 | 586.33 | 24 500 | 1073.22 | 579.50 | | 10 000 | 1078.07 | 582.11 | 25 000 | 1074.44 | 580.15 | | 10 500 | 1070.19 | 577.85 | 25 500 | 1075.65 | 580.80 | | 11 000 | 1062.25 | 573.57 | 26 000 | 1076.86 | 581.46 | | 11 500 | 1062.25 | 573.57 | 26 500 | 1078.07 | 582.11 | | 12 000 | 1062.25 | 573.57 | 27 000 | 1079.27 | 582.76 | | 12 500 | 1062.25 | 573.57 | 27 500 | 1080.48 | 583.41 | | 13 000 | 1062.25 | 573.57 | 28 000 | 1081.68 | 584.06 | | 13 500 | 1062.25 | 573.57 | 28 500 | 1082.89 | 584.71 | | 14 000 | 1062.25 | 573.57 | 29 000 | 1084.09 | 585.36 | | 14 500 | 1062.25 | 573.57 | 29 500 | 1085.29 | 586.01 | | | | | 30 000 | 1086.49 | 586.66 | TABLE A20.- ACCELERATION DUE TO GRAVITY g IN METERS PER SECOND SQUARED FOR VALUES OF PRESSURE ALTITUDE H IN GEOPOTENTIAL METERS [From ref. A1] | Н, | - | TT | | |--------|--------------------------|---------|--------------------------| | m m | g,
m/sec ² | H,
m | g,
m/sec ² | | | III/ Sec | 111 | m/ sec- | | 0 | 9.8066 | 15 000 | 9.7604 | | 500 | 9.8051 | 15 500 | 9.7589 | | 1 000 | 9.8036 | 16 000 | 9.7573 | | 1 500 | 9.8020 | 16 500 | 9.7558 | | 2 000 | 9.8005 | 17 000 | 9.7543 | | 2 500 | 9.7989 | 17 500 | 9.7525 | | 3 000 | 9.7974 | 18 000 | 9.7512 | | 3 500 | 9.7959 | 18 500 | 9.7496 | | 4 000 | 9.7943 | 19 000 | 9.7481 | | 4 500 | 9.7928 | 19 500 | 9.7466 | | | | | | | 5 000 | 9.7912 | 20 000 | 9.7450 | | 5 500 | 9.7897 | 20 500 | 9.7435 | | 6 000 | 9.7881 | 21 000 | 9.7420 | | 6 500 | 9.7866 | 21 500 | 9.7404 | | 7 000 | 9.7851 | 22 000 | 9.7389 | | 7 500 | 9.7835 | 22 500 | 9.7373 | | 8 000 | 9.7820 | 23 000 | 9.7358 | | 8 500 | 9.7804 | 23 500 | 9.7343 | | 9 000 | 9.7789 | 24 000 | 9.7327 | | 9 500 | 9.7774 | 24 500 | 9.7312 | | | · | | | | 10 000 | 9.7758 | 25 000 | 9.7297 | | 10 500 | 9.7743 | 25 500 | 9.7281 | | 11 000 | 9.7727 | 26 000 | 9.7266 | | 11 500 | 9.7712 | 26 500 | 9.7250 | | 12 000 | 9.7697 | 27 000 | 9.7235 | | 12 500 | 9.7681 | 27 500 | 9.7220 | | 13 000 | 9.7666 | 28 000 | 9.7204 | | 13 500 | 9.7650 | 28 500 | 9.7189 | | 14 000 | 9.7635 | 29 000 | 9.7174 | | 14 500 | 9.7620 | 29 500 | 9.7158 | | | | | į | | | | 30 000 | 9.7143 | TABLE A21.- IMPACT PRESSURE q_c (OR q_c^i) IN MILLIMETERS OF MERCURY (0° C) FOR VALUES OF CALIBRATED AIRSPEED v_c (OR INDICATED AIRSPEED v_i) IN KILOMETERS PER HOUR [Derived from ref. A2] | V _C | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |----------------|------------|------------------|---------|------------------|---------|--------|--------|--------|--------|--------|--------| | | 0 | 0 | 0 | 0.001 | 0.003 | 0.006 | 0.009 | 0.013 | 0.017 | 0.023 | 0.029 | | | 10 | .035 | .043 | .051 | .060 | .069 | .080 | .091 | .102 | .115 | .128 | | | 20 | .142 | .156 | .172 | .188 | .204 | .222 | .240 | .258 | . 278 | .298 | | | 1 | .319 | .341 | .363 | .386 | .410 | .434 | .460 | .485 | .512 | .539 | | | 30 | | | .625 | .656 | .687 | .718 | .750 | .783 | .817 | .851 | | | 40 | .567 | .596 | 3 | .996 | 1.034 | 1.073 | 1.112 | 1.152 | 1.193 | 1.235 | | | 50 | .887 | .922 | .959 | | 1.453 | 1.499 | 1.545 | 1.592 | 1.640 | 1.689 | | | 60 | 1.277 | 1.320 | 1.364 | 1.408 | 1.943 | 1.996 | 2.049 | 2.104 | 2.159 | 2.215 | | | 70 | 1.738 | 1.788 | 1.839 | 1.891 | 1 | | 2.625 | 2.686 | 2.749 | 2.812 | | | 80 | 2.271 | 2.328 | 2.386 | 2.445 | 2.504 | 2.564 | | 3.341 | 3.410 | 3.480 | | | 90 | 2.875 | 2.940 | 3.005 | 3.070 | 3.137 | 3.204 | 3.272 | 3.341 | | 1 | | 1 | 00 | 3.551 | 3.622 | 3.694 | 3.767 | 3.841 | 3.915 | 3.990 | 4.066 | 4.143 | 4.220 | | 1 | 10 | 4.298 | 4.377 | 4.456 | 4.536 | 4.617 | 4.698 | 4.781 | 4.864 | 4.947 | 5.032 | | 1 | 20 | 5.117 | 5.203 | 5.289 | 5.377 | 5.465 | 5.553 | 5.643 | 5.733 | 5.824 | 5.915 | | | 30 | 6.008 | 6.101 | 6.194 | 6.289 | 6.384 | 6.480 | 6.577 | 6.674 | 6.772 | 6.871 | | | 40 | 6.971 | 7.071 | 7.172 | 7.274 | 7.376 | 7.479 | 7.583 | 7.688 | 7.793 | 7.899 | | | 50 | 8.006 | 8.113 | 8.222 | 8.331 | 8.440 | 8.551 | 8.662 | 8.774 | 8.886 | 9.000 | | | 60 | 9.114 | 9.228 | 9.344 | 9.460 | 9.577 | 9.695 | 9.813 | 9.932 | 10.052 | 10.173 | | - 1 | 70 | 10.294 | 10.416 | 10.539 | 10.662 | 10.787 | 10.912 | 11.037 | 11.164 | 11.291 | 11.419 | | | .80 | 11.547 | 11.677 | 11.807 | 11.938 | 12.069 | 12.202 | 12.335 | 12.468 | 12.603 | 12.738 | | | 90 | 12.874 | 13.011 | 13.148 | 13.286 | 13.425 | 13.565 | 13.705 | 13.846 | 13.988 | 14.131 | | , | :00 | 14.274 | 14.418 | 14.563 | 14.709 | 14.855 | 15.002 | 15.150 | 15.298 | 15.447 | 15.597 | | | 10 | 15.748 | 15.899 | 16.052 | 16.205 | 16.358 | 16.513 | 16.668 | 16.824 | 16.980 | 17.138 | | | 20 | 17.296 | 17.455 | 17.614 | 17.775 | 17.936 | 18.098 | 18.260 | 18.424 | 18.588 | 18.753 | | - 1 | 30 | 18.918 | 19.084 | 19.251 | 19.419 | 19.588 | 19.757 | 19.927 | 20.098 | 20.270 | 20.442 | | | 40 | 20.615 | 20.789 | 20.963 | 21.139 | 21.315 | 21.492 | 21.669 | 21.847 | 22.027 | 22.206 | | | 250 | 22.387 | 22.568 | 22.750 | 22.933 | 23.117 | 23.301 | 23.486 | 23.672 | 23.859 | 24.046 | | | | 24.234 | 24.423 | 24.613 | 24.803 | 24.994 | 25.186 | 25.379 | 25.572 | 25.767 | 25.962 | | • | 260 | | | 26.551 | 26.749 | 26.948 | 27.147 | 27.348 | 27.549 | 27.751 | 27.953 | | | 270 | 26.157 | 26.354 | | 28.771 | 28.978 | 29.185 | 29.393 | 29.601 | 29.811 | 30.021 | | | 280
290 | 28.156
30.232 | 28.361 | 28.565
30.657 | 30.870 | 31.084 | 31.299 | 31.515 | 31.731 | 31.948 | 32.166 | | ١, | 200 | 22 205 | 33 604 | 32.825 | 33.046 | 33.268 | 33.490 | 33.714 | 33.938 | 34.163 | 34.388 | | | 300 | 32.385 | 32.604 | | | | 35.759 | 35.990 | 36.222 | 36.455 | 36.688 | | | 310 | 34.615 | 34.842 | 35.070 | 35.299 | 35.529 | | 38.345 | 38.585 | 38.825 | 39.067 | | | 320 | 36.923 | 37.158 | 37.394 | 37.630 | 37.868 | 38.106 | 40.778 | | 41.274 | 41.524 | | | 330 | 39.309 | 39.552 | 39.795 | 40.040 | 40.285 | 40.531 | | 41.026 | 43.803 | 44.060 | | | 340 | 41.774 | 42.025 | 42.276 | 42.529 | 42.782 | 43.036 | 43.291 | 43.546 | 46.411 | 46.676 | | | 350 | 44.318 | 44.577 | 44.836 | 45.097 | 45.358 | 45.620 | 45.883 | 46.146 | | | | | 360 | 46.942 | 47.208 | 47.476 | 47.744 | 48.014 | 48.284 | 48.555 | 48.826 | 49.099 | 49.372 | | - 1 | 370 | 49.646 | 49.921 | 50.196 | 50.473 | 50.750 | 51.028 | 51.307 | 51.587 | 51.867 | 52.149 | | 3 | 380 | 52.431 | 52.714 | 52.998 | 53.282 | 53.568 | 53.854 | 54.141 | 54.429 | 54.717 | 55.007 | | 3 | 390 | 55.297 | 55.588 | 55.880 | 56.173 | 56.467 | 56.761 | 57.056 | 57.352 | 57.649 | 57.947 | | | 400 | 58.245 | 58.545 | 58.845 | 59.146 | 59.448 | 59.751 | 60.054 | 60.358 | 60.664 | 60.971 | | | 410 | 61.277 | 61.585 | 61.893 | 62.203 | 62.513 | 62.824 | 63.136 | 63.448 | 63.762 | 64.076 | | 4 | 420 | 64.391 | 64.707 | 65.024 | 65.342 | 65.660 | 65.980 | 66.300 | 66.621 | 66.943 | 67.266 | | 4 | 430 | 67.589 | 67.913 | 68.239 | 68.565 | 68.892 | 69.220 | 69.548 | 69.878 | 70.208 | 70.539 | | 1 4 | 440 | 70.871 | 71.204 | 71.538 | 71.872 | 72.208 | 72.544 | 72.881 | 73.219 | 73.558 | 73.898 | | 4 | 450 | 74.238
| 74.580 | 74.922 | 75.265 | 75.609 | 75.954 | 76.300 | 76.647 | 76.994 | 77.342 | | - 4 | 460 | 77.691 | 78.041 | 78.392 | 78.744 | 79.097 | 79.450 | 79.805 | 80.160 | 80.516 | 80.873 | | | 470 | 81.231 | 81.590 | 81.949 | 82.310 | 82.671 | 83.033 | 83.396 | 83.760 | 84.125 | 84.491 | | | 480 | 84.857 | 1 | 85.593 | 85.962 | 86.333 | 86.704 | 87.075 | 87.448 | 87.822 | 88.196 | | | 490 | 88.572 | 88.948 | | 89.703 | 90.082 | 90.462 | 90.843 | 91.224 | 91.607 | 91.990 | | | 500 | 92.375 | 92.760 | 93.146 | 93.533 | 93.921 | 94.310 | 94.699 | 95.090 | 95.481 | 95.874 | | | 510 | 96.267 | 96.661 | 97.056 | 97.452 | 97.849 | 98.247 | 98.647 | 99.046 | 99.447 | 99.848 | | | 520 | 100.25 | 100.65 | 101.06 | 101.46 | 101.87 | 102.27 | 102.68 | 103.09 | 103.50 | 103.91 | | | 530 | 104.32 | 104.73 | 105.15 | 105.56 | 105.98 | 106.39 | 106.81 | 107.23 | 107.65 | 108.07 | | | 540 | 108.49 | 108.91 | 109.33 | 109.76 | 110.18 | 110.60 | 111.03 | 111.46 | 111.89 | 112.32 | | | 550 | 112.75 | 113.18 | 113.61 | 114.04 | 114.48 | 114.91 | 115.35 | 115.78 | 116.22 | 116.66 | | | 560 | 117.10 | 117.54 | 117.98 | 118.42 | 118.86 | 119.31 | 119.75 | 120.20 | 120.65 | 121.09 | | | 570 | 121.54 | 121.99 | 122.44 | 122.89 | 123.35 | 123.80 | 124.26 | 124.71 | 125.17 | 125.63 | | | | | 126.54 | 127.00 | 127.46 | 127.93 | 128.39 | 128.85 | 129.32 | 129.78 | 130.25 | | | 580 | 126.08 | 131.19 | 131.66 | 132.13 | 132.60 | 133.07 | 133.55 | 134.02 | 134.50 | 134.98 | | | 590 | 130.72 | 1,21.19 | 131.00 | 1132.13 | 132.60 | 133.07 | 123.33 | 123.02 | 12330 | | TABLE A21.- Continued | V _C , | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |------------------|--------|--------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | km/hr | | _ | - | , | - | , | | ′ | O : | " | | 600 | 125 45 | 125.02 | 100 41 | 105.00 | | | | | | | | 600
610 | 135.45 | 135.93 | 136.41 | 136.89 | 137.37 | 137.86 | 138.34 | 138.83 | 139.31 | 139.80 | | 620 | 140.29 | 140.77 | 141.26
146.22 | 141.75 | 142.24 | 142.74 | 143.23 | 143.73 | 144.22 | 144.72 | | 630 | 150.25 | 150.76 | | 146.72 | 147.22 | 147.72 | 148.22 | 148.73 | 149.23 | 149.74 | | 640 | 155.38 | 155.90 | 151.26
156.42 | 151.78
156.94 | 152.29
157.46 | 152.80 | 153.31 | 153.83 | 154.34 | 154.86 | | 650 | 160.61 | 161.14 | 161.67 | 162.20 | | 157.98 | 158.51 | 159.03 | 159.56 | 160.08 | | 660 | 165.95 | 166.49 | 167.03 | 167.57 | 162.73
168.11 | 163.27
168.66 | 163.80
169.20 | 164.34
169.75 | 164.87 | 165.41 | | 670 | 171.39 | 171.94 | 172.49 | 173.04 | 173.59 | 174.15 | 174.70 | 175.26 | 170.29
175.82 | 170.84 | | 680 | 176.93 | 177.49 | 178.06 | 178.62 | 179.18 | 179.75 | 180.31 | 180.88 | 181.45 | 176.37
182.02 | | 690 | 182.59 | 183.16 | 183.73 | 184.30 | 184.88 | 185.45 | 186.03 | 186.61 | 187.18 | 187.76 | | | | | 103.73 | 101.50 | 101.00 | 103.43 | 100.03 | 100.01 | 107.10 | 187.70 | | 700 | 188.35 | 188.93 | 189.51 | 190.09 | 190.68 | 191.27 | 191.85 | 192.44 | 193.03 | 193.62 | | 710 | 194.21 | 194.81 | 195.40 | 196.00 | 196.59 | 197.19 | 197.79 | 198.39 | 198.99 | 199.59 | | 720 | 200.19 | 200.79 | 201.40 | 202.01 | 202.61 | 203.22 | 203.83 | 204.44 | 205.05 | 205.66 | | 730 | 206.28 | 206.89 | 207.51 | 208.13 | 208.75 | 209.36 | 209.99 | 210.61 | 211.23 | 211.85 | | 740 | 212.48 | 213.11 | 213.73 | 214.36 | 214.99 | 215.62 | 216.25 | 216.89 | 217.52 | 218.16 | | 750 | 218.79 | 219.43 | 220.07 | 220.71 | 221.35 | 221.99 | 222.64 | 223.28 | 223.93 | 224.57 | | 760 | 225.22 | 225.87 | 226.52 | 227.17 | 227.82 | 228.48 | 229.13 | 229.79 | 230,45 | 231.10 | | 770 | 231.76 | 232.48 | 233.09 | 233.75 | 234.41 | 235.08 | 235.75 | 236.42 | 237.08 | 237.75 | | 780 | 238.43 | 239.10 | 239.77 | 240.45 | 241.12 | 241.80 | 242.48 | 243.16 | 243.84 | 244.52 | | 790 | 245.21 | 245.89 | 246.58 | 247.26 | 247.95 | 248.64 | 249.33 | 250.02 | 250.72 | 251.41 | | | | | | | | | | | | | | 800 | 252.10 | 252.80 | 253.50 | 254.20 | 254.90 | 255.60 | 256.30 | 257.01 | 257.71 | 258.42 | | 810 | 259.12 | 259.83 | 260.54 | 261.25 | 261.97 | 262.68 | 263.40 | 264.11 | 264.83 | 265.55 | | 820 | 266.27 | 266.99 | 267.71 | 268.43 | 269.16 | 269.89 | 270.61 | 271.34 | 272.07 | 272.80 | | 830 | 273.53 | 274.27 | 275.00 | 275.74 | 276.48 | 277.22 | 277.96 | 278.70 | 279.44 | 280.18 | | 840 | 280.93 | 281.67 | 282.42 | 283.17 | 283.92 | 284.67 | 285.42 | 286.18 | 286.93 | 287.69 | | 850 | 288.45 | 289.21 | 289.97 | 290.73 | 291.49 | 292.26 | 293.02 | 293.79 | 294.56 | 295.32 | | 860 | 296.10 | 296.87 | 297.64 | 298.41 | 299.19 | 299.97 | 300.75 | 301.53 | 302.31 | 303.01 | | 870 | 303.87 | 304.66 | 305.44 | 306.23 | 307.02 | 307.81 | 308.60 | 309.40 | 310.19 | 310.98 | | 880 | 311.78 | 312.58 | 313.38 | 314.18 | 314.98 | 315.79 | 316.59 | 317.40 | 318.20 | 319.01 | | 890 | 319.82 | 320.64 | 321.45 | 322.26 | 323.08 | 323.90 | 324.71 | 325.53 | 326.35 | 327.18 | | 900 | 328.00 | 328.83 | 329.65 | 330.48 | 221 21 | 222 14 | 222 07 | 222 01 | 224 64 | 225 40 | | 910 | 336.31 | 337.15 | 337.99 | 338.84 | 331.31
339.68 | 332.14 | 332.97 | 333.81 | 334.64 | 335.48 | | 920 | 344.77 | 345.62 | 346.47 | 347.33 | 348.18 | 340.52
349.04 | 341.37
349.90 | 342.22 | 343.06 | 343.91 | | 930 | 353.36 | 354.22 | 355.09 | 355.96 | 356.83 | 357.70 | | 350.76 | 351.63 | 352.49 | | 940 | 362.09 | 362.97 | 363.85 | 364.73 | 365.62 | 366.51 | 358.58
367.39 | 359.45
368.78 | 360.33 | 361.21 | | 950 | 370.96 | 371.86 | 372.76 | 373.65 | 374.55 | 375.45 | 376.36 | 377.26 | 369.18
378.17 | 370.07
379.07 | | 960 | 379.98 | 380.89 | 381.80 | 382.72 | 383.63 | 384.55 | 385.46 | 386.38 | 387.30 | | | 970 | 389.15 | 390.07 | 391.00 | 391.93 | 392.85 | 393.79 | 394.72 | 395.65 | 396.59 | 388.22
397.52 | | 980 | 398.46 | 399.40 | 400.34 | 401.29 | 402.23 | 403.18 | 404.12 | 405.07 | 406.02 | 406.97 | | 990 | 407.93 | 408.88 | 409.84 | 410.80 | 411.45 | 412.72 | 413.68 | 414.64 | 415.61 | 416.57 | | | | | | | 1=11.10 | 112.72 | 113.00 | 111.01 | 415.01 | 110.57 | | 1000 | 417.54 | 418.51 | 419.48 | 420.46 | 421.43 | 422.41 | 423.39 | 424.37 | 425.35 | 426.33 | | 1010 | 427.31 | 428.30 | 429.29 | 430.27 | 431.26 | 432.26 | 433.25 | 434.24 | 435.24 | 436.24 | | 1020 | 437.24 | 438.24 | 439.24 | 440.25 | 441.25 | 442.26 | 443.27 | 444.28 | 445.29 | 446.31 | | 1030 | 447.32 | 448.34 | 449.36 | 450.38 | 451.40 | 452.42 | 453.45 | 454.48 | 455.51 | 456.54 | | 1040 | 457.57 | 458.60 | 459.64 | 460.67 | 461.71 | 462.75 | | 464.83 | 465.88 | 466.93 | | 1050 | 467.97 | 469.02 | 470.07 | 471.13 | 472.18 | 473.24 | 474.29 | 475.35 | 476.42 | 477.48 | | 1060 | 478.54 | 479.61 | 480.68 | 481.75 | 482.82 | 483.89 | 484.96 | 486.04 | 487.12 | 488.20 | | 1070 | 489.28 | 490.36 | 491.44 | 492.53 | 493.62 | 494.71 | 495.80 | 496.89 | 497.79 | 499.08 | | 1080 | 500.18 | 501.28 | 502.35 | 503.49 | 504.59 | 505.68 | 506.80 | 507.91 | 509.03 | 510.14 | | 1090 | 511.25 | 512.37 | 513.49 | 514.61 | 515.73 | 516.86 | 517.98 | 519.11 | 520.24 | 521.37 | | | | | , | | | | | | | | | 1100 | 522.50 | 523.64 | 524.77 | 525.91 | 527.05 | 528.19 | 529.33 | 530.48 | 531.62 | 532.77 | | 1110 | 533.92 | 535.07 | 536.23 | 537.38 | 538.54 | 539.70 | 540.86 | 542.02 | 543.19 | 544.35 | | 1120 | 545.52 | 546.69 | 547.86 | 549.03 | 550.21 | 551.38 | 552.56 | 553.74 | 554.93 | 556.11 | | 1130 | 557.30 | 558.48 | 559.67 | 560.86 | 562.06 | 563.25 | 564.45 | 564.65 | 566.85 | 568.05 | | 1140 | 569.25 | 570.46 | 571.67 | 572.88 | 574.09 | 575.30 | 576.52 | 577.73 | 578.95 | 580.17 | | 1150 | 581.39 | 582.62 | 583.84 | 585.07 | 586.30 | 587.53 | 588.77 | 590.00 | 591.24 | 592.48 | | 1160 | 593.72 | 594.96 | 596.21 | 597.46 | 598.71 | 599.95 | 601.21 | 602.46 | 603.72 | 604.98 | | 1170 | 606.24 | 607.50 | 608.76 | 610.03 | 611.30 | 612.57 | 613.84 | 615.11 | 616.39 | 617.67 | | 1180 | 618.95 | 620.22 | 621.51 | 622.80 | 624.08 | 625.37 | 626.66 | 627.96 | 629.25 | 630.55 | | 1190 | 631.85 | 633.15 | 634.45 | 635.75 | 637.06 | 638.37 | 639.68 | 640.99 | 642.31 | 643.62 | | | | | | | | | · | | | | TABLE A21.- Concluded | | | | | | | - - | | | | | |------------------|----------|---------|---------|-------------|-------------------|----------------|----------|---------|--------------------|------------------| | v _c , | | , | | , | 4 | 5 | 6 | 7 | 8 | 9 | | km/hr | 0 | 1 | 2 | 3 | 4 | 5 | 0 | ′ | | | | | | | | | | | | | | 556 00 | | 1200 | 644.94 | 646.26 | 647.59 | 648.91 | 650.24 | 651.56 | 652.89 | 654.23 | 655.56 | 656.90 | | 1210 | 658.24 | 659.58 | 660.92 | 662.26 | 663.61 | 664.96 | 666.31 | 667.66 | 669.02 | 670.37 | | 1220 | 671.73 | 673.09 | 674.46 | 675.82 | 677.19 | 678.56 | 679.93 | 681.30 | 682.68 | 684.05 | | 1230 | 685.43 | 686.81 | 688.20 | 689.58 | 690.97 | 692.36 | 693.75 | 695.14 | 696.54 | 697.04 | | 1240 | 699.33 | 700.74 | 702.14 | 703.54 | 704.95 | 706.36 | 707.77 | 709.19 | 710.60 | 712.02 | | 1250 | 713.44 | 714.86 | 716.28 | 717.71 | 719.13 | 720.56 | 721.99 | 723.43 | 724.86 | 726.30 | | 1260 | 727.73 | 729.18 | 730.62 | 732.07 | 733.51 | 734.96 | 736.41 | 737.86 | 739.32 | 740.77
755.44 | | 1270 | 742.21 | 743.69 | 745.15 | 746.62 | 748.08 | 749.55 | 751.02 | 752.49 | 753.97 | 770.30 | | 1280 | 756.92 | 758.40 | 759.88 | 761.36 | 762.85 | 764.33 | 765.82 | 767.31 | 768.80 | 785.34 | | 1290 | 771.79 | 773.29 | 774.79 | 776.29 | 777.79 | 779.30 | 780.81 | 782.32 | 783.83 | 763.34 | | 1300 | 786.85 | 788.37 | 789.89 | 791.41 | 792.93 | 794.45 | 795.98 | 797.51 | 799.04 | 800.57 | | 1310 | 802.10 | 803.63 | 805.17 | 806.71 | 808.25 | 809.79 | 811.33 | 812.88 | 814.43 | 815.98 | | 1320 | 817.53 | 819.08 | 820.63 | 822.19 | 823.75 | 825.31 | 826.87 | 828.43 | 830.00 | 831.57 | | 1330 | 833.13 | 834.71 | 836.28 | 837.85 | 839.43 | 841.01 | 842.58 | 844.17 | 845.75 | 847.33 | | 1340 | 848.92 | 850.51 | 852.10 | 853.69 | 855.28 | 856.88 | 858.48 | 860.07 | 861.68 | 863.28 | | 1350 | 864.88 |
866.49 | 868.09 | 869.70 | 871.31 | 872.93 | 874.54 | 876.16 | 877.78 | 879.40 | | 1360 | 881.02 | 882.64 | 884.26 | 885.89 | 887.52 | 889.15 | 890.78 | 892.42 | 894.05 | 895.69 | | 1370 | 897.33 | 898.97 | 900.61 | 902.25 | 903.90 | 905.54 | 907.19 | 908.84 | 910.50 | 912.15 | | 1380 | 913.80 | 915.46 | 917.12 | 918.78 | 920.45 | 922.11 | 923.77 | 925.44 | 927.11 | 928.78 | | 1390 | 930.45 | 932.13 | 933.80 | 935.48 | 937.16 | 938.84 | 940.52 | 942.21 | 943.89 | 945.58 | | | | | | | | | | | | | | 1400 | 947.27 | 948.96 | 950.66 | 952.35 | 954.05 | 955.74 | 957.44 | 959.14 | 960.85 | 962.55 | | 1410 | 964.26 | 965.96 | 967.67 | 969.38 | 971.10 | 972.81 | 974.53 | 976.24 | 977.96 | 979.68 | | 1420 | 981.41 | 983.13 | 984.86 | 986.58 | 988.31 | 990.04 | 991.76 | 993.51 | 995.24 | 996.98 | | 1430 | 998.72 | | 1002.20 | 1003.94 | | | 1009.19 | 1010.94 | | | | 1440 | | 1017.95 | | | | | 1026.75 | 1028.53 | | | | 1450 | | | 1037.38 | l | | | 1044.49 | 1046.28 | 1048.06
1065.99 | | | 1460 | | | 1055.21 | | | | | | l | i i | | 1470 | | | 1073.20 | | | | 1080.44 | 1100 48 | 1102.32 | | | 1480 | | I . | 1091.35 | 1093.17 | | 1096.83 | 1117.02 | 1 | | | | 1490 | 1105.98 | 1107.82 | 1109.66 | 1111.50 | 1113.34 | 1115.18 | 1117.02 | 1110.07 | 1120.72 | 1122.37 | | 1500 | 1124.42 | 1126.27 | 1128.12 | 1129.98 | 1131.83 | 1133.69 | 1135.55 | 1137.41 | 1139.27 | 1141.14 | | 1510 | 1 | 1144.87 | 1 | 1148.61 | 1150.48 | 1152.35 | 1154.23 | | | | | 1520 | | 1163.63 | | 1167.40 | | 1171.18 | 1173.07 | 1174.96 | 1176.85 | 1178.75 | | 1530 | | 1182.54 | | | | 1190.15 | 1192.05 | 1193.96 | 1195.87 | 1197.78 | | 1540 | | 1201.61 | | | 1207.36 | 1209.28 | 1211.20 | 1213.12 | 1215.04 | 1216.97 | | 1550 | | 1220.83 | | 1224.69 | 1 | | 1230.49 | | 1234.37 | | | 1560 | | 1240.20 | | 1244.09 | II. | 1247.99 | 1249.94 | 1251.89 | 1253.85 | 1255.80 | | 1570 | 1257.76 | 1259.72 | 1261.68 | 1263.64 | 1265.60 | 1267.57 | 1269.54 | 1271.50 | 1273.47 | 1275.44 | | 1580 | 1277.42 | 1279.39 | 1281.37 | 1283.34 | 1285.32 | 1287.30 | 1289.28 | 1291.27 | 1293.25 | 1295.24 | | 1590 | 1297.22 | 1299.21 | 1301.20 | 1303.20 | 1305.19 | 1307.18 | 1309.18 | 1311.18 | 1313.18 | 1315.18 | | | | | | | | | 1,000 05 | 1222 2: | 3222.05 | 1225 25 | | 1600 | 1317.18 | 1319.19 | 1321.19 | 1323.20 | 1325.21 | 1327.22 | 1329.23 | 1331.24 | 11333.25 | 1355.2/ | | 1610 | 1337.29 | 1339.31 | 1341.33 | 1343.35 | 1345.37 | 1347.40 | 1349.42 | 1351.45 | 1333.48 | 1375 00 | | 1620 | 1357.54 | 1359.57 | 1361.61 | 1363.65 | 1365.68 | 1367.72 | 1369.76 | 13/1.81 | 13/3.85 | 1306 43 | | 1630 | 1377.94 | 1379.99 | 1382.04 | 1384.09 | 1386.15 | 1388.20 | 1390.26 | 1412.00 | 1415 04 | 1/17 11 | | 1640 | 1398.49 | 1400.56 | 1402.62 | 1404.69 | 1406.85 | 1408.82 | 1410.89 | 1412.97 | 1415.04 | 1417.11 | | 1650 | 1419.19 | 1421.27 | 1423.35 | 1425.43 | 1427.51 | 1429.59 | 1431.68 | 1455./6 | 1455.85 | 1437.94 | | 1660 | 1440.03 | 1442.12 | 1444.22 | 1446.31 | 1448.41 | 1450.51 | 1452.61 | 1434./1 | 1477 02 | 1490.92 | | 1670 | 1461.02 | 1463.13 | 1465.23 | 1467.35 | 1409.46 | 14/1.5/ | 14/3.08 | 1407.80 | 1490 17 | 1480.03 | | 1680 | 1482.15 | 1484.28 | 1486.40 | 1488.52 | 1490.65 1511.99 | 1514 12 | 1516 22 | 1510 42 | 1520 56 | 1501.30 | | 1690 | 1503.42 | 1202.5/ | 120/./1 | 1209.85 | 1211.99 | 1,714.13 | 1310.22 | 1310.42 | 1 320.30 | | | 1700 | 1524.86 | | | | | | | | | | | 1,00 | 1-0-1-00 | | 1 | <u> </u> | | | | l | 1 | ٠ | TABLE A22.- IMPACT PRESSURE q_c (OR q_c^i) IN PASCALS FOR VALUES OF CALIBRATED AIRSPEED v_c (OR INDICATED AIRSPEED v_i) IN KILOMETERS PER HOUR [Derived from ref. A2] | V _C , | Г | | Т | | 7 | | Т | | 7 | , | _ | | | т — | | 1 | | | | , | | |------------------|---|------------------|-----|-----------------|-----|------------------|-----|------------------|----|----------------|-------|-----|------------------|-----|------------------|----|------------------|----|-------------------|----|------------------| | km/hr | 1 | 0 | | 1 | | 2 | | 3 | | 4 | | | 5 | | 6 | | 7 | | 8 | | 9 | | 0 | | 0 | | 0.0 | 5 | 0.19 | 9 | 0.43 | 3 | 0. | 76 | | 1.18 | | 1.70 | | 2.32 | + | 3.03 | - | 3.83 | | 10 | | 4.73 | | 5.7 | | 6.83 | | 7.99 | • | 9. | 26 | | 10.63 | | 12.10 | | 13.66 | | 15.3 | | 17.06 | | 20 | | 18.91 | | 20.8 | | 22.88 | - 1 | 25.00 | | 27. | 23 | | 29.54 | | 31.95 | | 34.46 | | 37.06 | | 39.75 | | 30 | | 42.54 | | 45.4 | | 48.40 | | 51.48 | 1 | 54.6 | 54 | | 57.91 | | 61.26 | 5 | 64.72 | | 68.26 | | 71.90 | | 40 | | 75.64 | | 79.4 | | 83.39 | | 87.41 | | 91. | | | 95.74 | | 100.04 | Į. | 104.44 | ι | 108.93 | 3 | 113.52 | | 50
60 | | 118.20 | | 122.98 | | 127.89 | | 132.82 | | 137.8 | | | 143.04 | | 148.29 |) | 153.63 | 3 | 159.70 | | 164.61 | | 70 | | 170.24
231.77 | | 175.9 | | 181.79 | - 1 | 187.70 | | 193. | | | 199.82 | | 206.02 | : | 212.31 | | 218.70 |) | 225.19 | | 80 | 1 | 302.79 | | 238.44 | | 245.21 | | 252.08 | | 259.0 | | | 266.09 | | 273.24 | | 280.49 |) | 287.83 | 3 | 295.26 | | 90 | | 383.33 | | 310.42
391.9 | | 318.14
400.58 | | 325.95
409.35 | | 333.8
418.2 | | | 341.87
427.17 | | 349.97
436.23 | 1 | 358.17
445.37 | | 366.46
454.62 | | 374.85
463.96 | | 100 | | 473.40 | | 482.93 | 3 | 492.55 | 5 | 502.28 | | 512.0 | 19 | | 522.01 | | 532.02 | | | | | | | | 110 | | 573.01 | | 583.50 | | 594.08 | | 604.76 | | 615.5 | | | 626.40 | | 637.37 | | 542.12 | | 552.32 | | 562.62 | | 120 | l | 682.19 | | 693.64 | 1 | 705.18 | | 716.81 | | 728.5 | | | 740.37 | | 752.30 | | 648.43
764.32 | | 659.59 | | 670.84 | | 130 | | 800.96 | 1 | 813.36 | 5 | 825.87 | 7 | 838.46 | | 851. | | | 863.95 | 1 | 876.83 | 1 | 889.82 | | 776.44 | | 788.65 | | 140 | | 929.34 | 1 | 942.7 | լ | 956.17 | | 969.73 | | 983.3 | | | 997.14 | ١, | 011.0 | 1 | 024.9 | | 902.89
L 039.0 | | 916.07 | | 150 | 1 | 067.4 | 1 | 081.7 | 1 | 096.1 | 1 | 110.6 | | 125.3 | | 1 | 140.0 | | 154.8 | | 169.7 | | L 184.7 | | 053.1 | | 160 | 1 | 215.0 | 1 | 230.3 | 1 | 245.7 | | 261.2 | | 276.8 | | | 292.5 | | 308.3 | | 324.2 | 1 | L 340.2 | | | | 170 | | 372.4 | | 388.7 | 1 | 405.1 | | 421.5 | | 438.1 | - 1 | | 454.8 | | 471.5 | | 488.4 | | 505.3 | | 356.3
522.4 | | 180 | | 539.5 | 1 | 556.8 | 1 | 574.1 | | 591.6 | | 609.1 | - 1 | | 626.7 | | 644.5 | | 662.3 | | 680.2 | | 698.3 | | 190 | 1 | 716.4 | 1 | 734.6 | 1 | 752.9 | 1 | 771.4 | | 789.9 | - 1 | | 808.5 | | 827.2 | | 846.0 | | 864.9 | | 884.0 | | 200 | | 903.1 | | 922.3 | | 941.6 | | 961.0 | 1 | 980.5 | ; | 2 | 000.1 | 2 | 019.8 | 2 | 039.6 | 2 | 2 059.5 | 2 | 079.5 | | 210 | | 099.6 | | 119.8 | | 140.0 | 2 | 160.4 | 2 | 180.9 |) | 2 | 201.5 | 2 | 222.2 | 1 | 243.0 | | 263.9 | | 284.8 | | 220 | | 305.9 | | 327.1 | | 348.4 | 2 | 369.8 | 2 | 391.2 | : | 2 | 412.8 | | 434.5 | | 456.3 | | 2.478.1 | | 500.1 | | 230 | | 522.2 | | 544.4 | | 566.7 | 2 | 589.0 | 2 | 611.5 | ; | 2 | 634.1 | | 656.8 | | 679.5 | | 702.4 | | 725.4 | | 240 | | 748.4 | | 771.6 | | 794.9 | 2 | 818.3 | 2 | 841.7 | ٠] . | 2 | 865.3 | | 889.0 | | 912.8 | | 936.6 | | 960.6 | | 250 | | 984.7 | | 008.9 | | 033.1 | 3 | 057.5 | 3 | 082.0 | ١ | 3 | 106.6 | | 131.2 | | 156.0 | | 180.9 | | 205.9 | | 260 | | 231.0 | | 256.2 | | 281.4 | 3 | 306.8 | 3 | 332.3 | . | 3 | 357.9 | | 383.6 | | 409.4 | | 435.3 | | 461.3 | | 270 | | 487.4 | | 513.6 | | 539.9 | 3 | 565.2 | 3 | 592.7 | ٠ | 3 | 619.4 | | 646.1 | | 672.9 | | 699.8 | | 726.8 | | . 280 | | 753.9 | | 781.1 | | 808.4 | 3 | 835.8 | 3 | 863.4 | | 3 | 891.0 | 3 | 918.7 | 3 | 946.5 | | 974.5 | | 002.5 | | 290 | 4 | 030.6 | 4 | 058.9 | 4 | 087.2 | 4 | 115.6 | 4 | 144.2 | | 4 | 172.8 | 4 | 201.6 | | 230.4 | | 259.4 | | 288.5 | | 300 | | 317.6 | | 346.9 | | 376.3 | 4 | 405.7 | 4 | 435.3 | | 4 | 465.0 | 4 | 494.8 | 4 | 524.7 | 4 | 554.6 | 4 | 584.7 | | 310 | | 614.9 | | 645.2 | | 675.6 | 4 | 706.2 | 4 | 736.8 | - | 4 | 767.5 | | 798.3 | | 829.2 | | 860.3 | | 891.4 | | 320 | | 922.6 | | 954.0 | 4 | 985.4 | 5 | 017.0 | 5 | 048.6 | | | 080.4 | | 112.2 | | 144.2 | | 176.3 | | 208.5 | | 330 | • | 240.7 | | 273.1 | 5 | 305.6 | | 338.2 | 5 | 370.9 | | | 403.7 | | 436.7 | | 469.7 | | 502.8 | | 536.0 | | 340 | | 569.4 | | 602.8 | 5 | 636.4 | 5 | 670.0 | 5 | 703.8 | | | 737.7 | | 771.6 | | 805.7 | 5 | | | 874.2 | | 350 | | 908.6 | | 943.1 | 5 | 977.7 | 6 | 012.4 | 6 | 047.2 | - - | 6 | 082.1 | | 117.2 | | 152.3 | 1 | 187.6 | | 222.9 | | 360 | | 258.4 | | 293.9 | 6 | 329.6 | 6 | 365.4 | 6 | 401.3 | | 6 | 437.3 | | 473.4 | | 509.6 | | 545.9 | | 582.4 | | 370 | | 618.9 | | 655.5 | 6 | 692.3 | 6 | 729.2 | 6 | 766.1 | - - | 6 | 803.2 | | 840.4 | | 877.7 | 6 | | | 952.6 | | 380 | | 990.2 | | 027.9 | | 065.8 | 7 | 103.7 | 7 | 141.8 | | | 179.9 | | 218.2 | | 256.6 | ! | 295.0 | | 333.6 | | 390 | 7 | 372.4 | 7 | 411.2 | 7 | 450.1 | 7 | 489.1 | 7 | 528.3 | | | 567.5 | | 606.9 | | 646.4 | | 685.9 | | 725.6 | | 400 | | 765.4 | | 805.3 | | 845.4 | | 885.5 | | 925.7 | . | 7 | 966.1 | 8 | 006.5 | 8 | 047.1 | 8 | 087.8 | 8 | 128.7 | | 410 | | 169.6 | | 210.6 | | 251.7 | | 293.0 | | 334.3 | | | 375.8 | | 417.4 | | 459.0 | | 500.8 | | 542.8 | | 420 | | 584.8 | | 626.9 | | 669.1 | | 711.5 | | 754.0 | 1 | 8 | 796.5 | | 839.2 | | 882.0 | | 924.9 | | 968.0 | | 430 | | 011.1 | | 054.4 | | 097.7 | | 141.2 | 9 | 184.8 | | | 228.5 | | 272.3 | | 316.2 | 9 | | | 404.4 | | 440 | | 448.7 | | 493.0 | | 537.6 | | 582.2 | 9 | 626.9 | 9 | 9 | 671.7 | | 716.7 | | 661.7 | 9 | | | 852,2 | | 450 | | 897.6 | | 943.1 | | 988.8 | | 034 | 10 | 080 | | | 126 | | 172 | | 218 | | 264 | ı | 311 | | 460 | | 358 | | 405 | | 451 | | 498 | 10 | 545 | 10 | 0 | 592 | | 640 | | 687 | | 734 | | 782 | | 470 | | 830 | | 878 | I - | 926 | | 974 | | 022 | 1: | 1 | 070 | | 118 | | 167 | | 216 | | 264 | | 480
490 | | 313
808 | | 362
859 | | 411
909 | | 461
950 | | 510 | | | 559 | 11 | 609 | 11 | 659 | 11 | 708 | 11 | 758 | | | | | | | | | -1 | 930 | 12 | 010 | 112 | 4 | 060 | 12 | 111 | 12 | 162 | 12 | 213 | 12 | 264 | | | | | | 367
887 | | 418 | | 470 | | 522 | | | 573 | | 625 | | 677 | 12 | 730 | 12 | 782 | | | | | | | |
940 | | | | 045 | | | | | 152 | 13 | 205 | 13 | 258 | | 312 | | | | 1 | | 419 | | 473 | | 527 | | 581 | | | 635 | | 690 | | 744 | 13 | 799 | | 854 | | | | | | 963 | | 019 | | | | 129 | | | 185 | | 240 | 14 | 296 | 14 | 352 | | 408 | | | | | | 520 | | 576 | | | | 689 | | | 746 | | 803 | 14 | 860 | | 917 | | 974 | | | | | | 089 | | 147 | | 204 | | 262 | | | | | 378 | 15 | 436 | | 495 | | 553 | | | | | | 670 | 1 | 729 | | | | 847 | | | | | 966 | | 025 | | 084 | | 144 | | | | | | 264 | | 324 | | | | 445 | | | | 16 | 566 | | 627 | | 688 | | 749 | | | | | | 871 | | 932 | | | | 055 | 17 | 7 . | 117 | 17 | 179 | | | | 303 | | 365 | | 590 | | | . / | 490 | 7 | 553 | 117 | 616 | | 679 | 1 | _ | 742 | | 805 | | 868 | | 932 | | 995 | TABLE A22.- Continued | V _C , | T | _ | | | _ | | 6 | 7 | 8 | 9 | |------------------|------------------|--------------------------|------------------|---------------|------------------|------------------|-----------|------------------|------------------|-------------------| | km/hr | 0 | 1 | 2 | 3 | 4 | 5 | - | | | | | 600 | 18 059 | 18 123 | | 18 251 | 18 315 | 18 379 | 18 444 | 18 509
19 162 | 18 573
19 228 | 18 638
19 294 | | 610 | 18 703 | 18 768 | 18 834 | 18 899 | 18 965 | 19 030
19 694 | 19 096 | 19 829 | 19 896 | 19 964 | | 620 | 19 361 | 19 427 | 19 494 | 19 560 | 19 627 | 20 372 | 20 440 | 20 509 | 20 577 | 20 646 | | 630 | 20 031 | 20 099 | 20 167 | 20 235 | 20 303 20 993 | 21 063 | 21 132 | 21 202 | 21 273 | 21 343 | | 640 | 20 715 | 20 785 | 20 854 | 20 923 21 625 | 21 696 | 21 767 | 21 838 | 21 910 | 21 981 | 22 053 | | 650 | 21 413 | 21 484 22 197 | 21 554
22 269 | 22 341 | 22 413 | 22 486 | 22 558 | 22 631 | 22 704 | 22 777 | | 660 | 22 125 | 22 923 | 22 997 | 23 070 | 23 144 | 23 218 | 23 292 | 23 366 | 23 440 | 23 515 | | 670
680 | 23 589 | 23 664 | 23 739 | 23 814 | 23 889 | 23 964 | 24 040 | 24 115 | 24 191 | 24 267 | | 690 | 24 343 | 24 419 | 24 495 | 24 572 | 24 648 | 24 725 | 24 802 | 24 879 | 24 956 | 25 033 | | 700 | 25 111 | 25 188 | 25 266 | 25 344 | 25 422 | 25 500 | 25 578 | 25 657 | 25 735 | 25 814 | | 710 | 25 893 | 25 972 | 26 051 | 26 131 | 26 210 | 26 290 | 26 369 | 26 449 | 26 529 | 26 610 | | 720 | 26 690 | 26 770 | 26 851 | 26 932 | 27 013 | 27 094 | 27 175 | 27 256 | 27 338 | 27 420 | | 730 | 27 501 | 27 585 | 27 666 | 27 748 | 27 830 | 27 913 | 27 996 | 28 079 | 28 162 | 28 245 | | 740 | 28 328 | 28 412 | 28 495 | 28 579 | 28 663 | 28 747 | 28 831 | 28 916 | 29 000 | 29 085 | | 750 | 29 170 | 29 255 | 29 340 | 29 425 | 29 511 | 29 597 | 29 682 | 29 768 | 29 854 | 29 941 | | 760 | 30 027 | 30 113 | 30 200 | 30 287 | 30 374 | 30 461 | 30 549 | 30 636 | 30 724 | 30 811
31 698 | | 770 | 30 899 | 30 988 | 31 076 | 31 164 | 31 253 | 31 341 | 31 430 | 31 519 | 31 609
32 509 | 31 698 | | 780 | 31 787 | 31 877 | 31 967 | 32 057 | 32 147 | 32 237 | 32 328 | 32 418 | 32 509 | 33 518 | | 790 | 32 691 | 32 783 | 32 874 | 32 966 | 33 057 | 33 149 | 33 241 | 33 333 | | 1 | | 800 | 33 611 | 33 704 | 33 797 | 33 890 | 33 984 | 34 077 | 34 171 | 34 265 | 34 359 | 34 453 | | 810 | 34 547 | 34 642 | 34 736 | 34 831 | 34 926 | 35 021 | 35 116 | 35 212 | 35 308 | 35 404 | | 820 | 35 499 | 35 596 | 35 692 | 35 788 | 35 885 | 35 982 | 36 079 | 36 176 | 36 273 | 36 371 | | 830 | 36 468 | 36 566 | 36 664 | 36 762 | 36 860 | 36 959 | 37 058 | 37 156 | 37 255 | 37 354 | | 840 | 37 454 | 37 553 | 37 653 | 37 753 | 37 853 | 37 953 | 38 053 | 38 154 | 38 255 | 38 355 | | 850 | 38 456 | 38 558 | 38 659 | 38 761 | 38 862 | 38 964 | 39 066 | 39 168 | 39 271 | 39 3,73
40 408 | | 860 | 39 476 | 39 579 | 39 682 | 39 785 | 39 889 | 39 992 | 40 096 | 40 200 | 40 304 | 41 461 | | 870 | 40 513 | 40 618 | 40 722 | 40 828 | 40 933 | 41 038 | 41 144 | 41 249 | 42 424 | 42 532 | | 880 | 41 568 | 41 674 | 41 781 | 41 887 | 41 994 | 42 101
43 183 | 42 209 | 43 401 | 43 510 | 43 620 | | 890 | 42 640 | 42 748 | 42 856 | 42 903 | | | İ | | | 14 726 | | 900 | 43 730 | 43 840 | 43 950 | 44 060 | 44 171 | 44 282 | 44 393 | 44 504 | 44 615 | 44 726
45 851 | | 910 | 44 838 | 44 950 | 45 062 | 45 174 | 45 287 | 45 399 | 45 512 | 45 625
46 765 | 1 | | | 920 | 45 965 | 46 079 | 46 192 | 46 307 | 46 421 | 46 535 | | 47 923 | 1 | 1 | | 930 | 47 110 | 47 226 | 47 342 | 47 458 | 47 574
48 745 | 47 690
48 864 | 1 | 49 101 | | i . | | 940 | 48 274 | 48 392 | 48 510 | 48 627 | 49 936 | 50 056 | | 50 297 | | 1 | | 950 | 49 458 | 49 577 | 49 696 | 51 025 | 51 147 | 51 269 | 1 | 51 513 | l l | 1 | | 960 | 50 660 | 50 78 1
52 005 | 52 129 | 52 253 | 52 376 | 52 500 | 1 | 52 749 | L | | | 970 | 51 882
53 124 | 53 249 | 53 375 | 53 500 | 53 626 | 53 752 | 1 | 54 005 | 1 | 54 259 | | 980
990 | 54 386 | 54 513 | 54 641 | 54 768 | 54 896 | 55 024 | 1 | 55 281 | . 55 410 | 55 539 | | 1000 | 55 668 | 55 797 | 55 927 | 56 056 | 56 186 | 56 317 | 56 447 | 56 577 | 56 708 | 56 839 | | 1010 | 56 970 | | 57 233 | 57 365 | 57 497 | 57 629 | 1 | | | I | | 1020 | 58 294 | 1 | 58 561 | 58 695 | 58 829 | 59 863 | 59 098 | | | | | 1030 | 59 638 | | 59 910 | 60 046 | 60 182 | 60 318 | 1 | 1 | 1 | | | 1040 | 61 004 | | | 61 418 | 61 556 | 61 695 | 61 834 | | 1 | | | 1050 | 62 391 | 1 | l . | 62 812 | 62 952 | 63 093 | | | | | | 1060 | 63 800 | I | | 64 227 | 64 370 | | | | | L | | 1070 | 65 232 | 1 | 65 521 | 65 665 | 65 810 | | | | 1 | | | 1080 | 66 685 | | I | 67 126 | | | 1 | | | 1 . | | 1090 | 68 163 | 68 311 | 68 460 | 68 609 | 68 759 | 68 909 | 69 059 | 69 20 | 9 69 359 | | | 1100 | 69 661 | | | 70 115 | 1 | t . | | | | į. | | 1110 | 71 184 | | | | | | | l l | 1 | | | 1120 | 72 730 | | | 1 | | | I . | | | 1 | | 1130 | 74 300 | | 1 | 1 | 1 | | 1 | 1 | l l | | | 1140 | 75 894 | 1 | | | | | | | | | | 1150 | 77 513 | | | 1 | | | | | | 1 | | 1160 | 79 156 | | | | | I | 1 | | | I | | 1170 | 80 885 | | | 1 | | | _ I | | 1 | | | 1180 | 82 519
84 239 | | 1 | 1 | | | 1 | | 1 | i | | 1190 | 84 23 | 2 04 413 | 04 386 | , 64 /60 | , 04 90 | 05 10 | - 1 33 20 | - 1 - 5 - 13 | | | TABLE A22.- Concluded | V _C , | (|) | | l | | 2 | |
3 | | 1 | | 5 | |
5 | | 7 | 5 | 3 | | € | |------------------|------|-----|------------|-----|------------|-----|-----|------------|-----|------------|-----|------------|------------|------------|------------|------------|------------|------------|------------|-----| | km/hr | | | | | | | | | | • | | | ` | | | | , | | | | | 1200 | | 985 | l | 161 | 86 | 338 | 86 | 514 | 86 | 691 | 86 | 868 | 87 | 046 | 87 | 223 | 87 | 401 | 87 | 579 | | 1210 | | 758 | 1 | 936 | | 115 | | 295 | 88 | 474 | 88 | 654 | 88 | 834 | 89 | 014 | 89 | 195 | 89 | 376 | | 1220 | | 557 | l . | 738 | | 920 | l | 102 | 90 | 284 | 90 | 467 | 90 | 650 | 90 | 833 | 91 | 016 | 91 | 200 | | 1230 | | 383 | 1 | 568 | 1 | 752 | | 937 | 92 | 122 | 92 | 307 | 92 | 492 | 92 | 678 | 92 | 864 | 93 | 050 | | 1240 | | 237 | 1 | 424 | 1 | 611 | i | 798 | l . | 986 | i | 174 | 94 | 362 | 94 | 550 | 94 | 739 | 94 | 928 | | 1250 | | 117 | 1 | 307 | 1 | 496 | | 686 | 1 | 877 | | 067 | 1 | 258 | l | 449 | | 640 | 96 | 832 | | 1260 | | 024 | l . | 216 | 1 | 408 | | 601 | 1 | 793 | | 987 | | 180 | | 374 | ı | 567 | 98 | 762 | | 1270 | | 956 | 1 | 151 | 1 | 346 | | 541 | | 736 | | 932 | 1 | 128 | | 324 | | 520 | 100 | | | 1280 | 100 | | 1 | 111 | 1 | 309 | | | 101 | | | | 102 | | 102 | | 1 | 498 | | 698 | | 1290 | 102 | 897 | 103 | 097 | 103 | 297 | 103 | 497 | 103 | 697 | 103 | 898 | 104 | 099 | 104 | 300 | 104 | 502 | 104 | 703 | | 1300 | 104 | 905 | 105 | 107 | 105 | 310 | 105 | 513 | 105 | 715 | 105 | 919 | 106 | 122 | 106 | 326 | 106 | 529 | 106 | 734 | | 1310 | 106 | 938 | 107 | | | 347 | 107 | | | 758 | | | 108 | | 108 | | | | | 788 | | 1320 | 108 | 995 | 109 | 202 | 109 | 409 | 109 | 616 | 109 | 824 | 110 | 032 | 110 | 240 | 110 | 449 | 110 | 657 | 110 | 866 | | 1330 | 111 | | l . | | 111 | | 111 | | 111 | 914 | 112 | 125 | 112 | 335 | 112 | 546 | 112 | 757 | 112 | 969 | | 1340 | | | 113 | | 113 | | | | 114 | 028 | 114 | 241 | 114 | 454 | 114 | 667 | 114 | 881 | 115 | 094 | | 1350 | | 308 | | | 115 | | | | l | 166 | | | 116 | 596 | 116 | 811 | 117 | 027 | 117 | 243 | | 1360 | | 459 | | 676 | 117 | | 118 | | | 326 | l | 544 | ı | | 118 | | 119 | 197 | 119 | 415 | | 1370 | | 634 | | | 120 | | | | 1 | 509 | | | 120 | | 121 | | ľ | 389 | 121 | 610 | | 1380 | | 831 | 1 | | 122 | | 122 | | 1 | 716 | l . | | 123 | | | 382 | | 605 | 1 | | | 1390 | 124 | 050 | 124 | 2/4 | 124 | 497 | 124 | 721 | 124 | 945 | 125 | 169 | 125 | 393 | 125 | 618 | 125 | 842 | 126 | 067 | | 1400 | | 293 | | | | 744 | | 970 | | 196 | l . | 422 | 1 | 648 | | | 128 | 102 | 128 | 329 | | 1410 | | | 128 | | 129 | | | | 129 | | 129 | | | 926 | | | | 384 | 130 | 614 | | 1420 | | 843 | ! | | 131 | | | | | 764 | 1 | 995 | 1 | 226 | | | 1 | 688 | 132 | | | 1430
1440 | | 152 |) | | 133 | | 133 | | | 081 | | | 134 | | 134 | | 135 | | 135 | | | 1450 | 137 | 482 | 135
138 | | 135 | | | | | | | | 136 | | | | | | 137 | | | 1460 | | 206 | | | 138
140 | | | | | 780 | | 017 | | | 139 | | | 730 | i | | | 1470 | 142 | | | | 143 | | | | | 161
563 | | | 141
144 | | 141 | | 142 | | 142 | | | 1480 | 145 | | 145 | | 145 | | 145 | | | 988 | | | 144 | | 144
146 | | | 531
963 | 144
147 | | | 1490 | 147 | | 147 | | 147 | | | | | 433 | | | 148 | | 149 | | 149 | | 149 | | | 1500 | 149 | 010 | 150 | 157 | 150 | 404 | 150 | 651 | 150 | gaa | 151 | 146 | 151 | 304 | 151 | 642 | 161 | 901 | 150 | 120 | | 1510 | 152 | | | | 152 | 886 | 153 | 135 | 153 | 885 | 153 | 635 | 121 | 224 | | | 151
154 | | 152
154 | | | 1520 | 154 | | 155 | 138 | 155 | 389 | 155 | | | 892 | | | 156 | | | | | 901 | | | | 1530 | | | 157 | | 157 | | | | | | | | 158 | | 159 | | | 436 | 159 | | | 1540 | 159 | 946 | 160 | | | | 160 | | | | | | 161 | | 161 | | | 993 | 162 | | | 1550 | 162. | 506 | 162 | 763 | 1 | 021 | 163 | | | 536 | 163 | | 164 | | 164 | | | 569 | 164 | | | 1560 | 165 | 087 | 165 | 346 | 165 | 605 | | | | | | | 166 | | 166 |
| | 166 | 167 | | | 1570 | | | 167 | 949 | 168 | 210 | 168 | 472 | 168 | 733 | 168 | 995 | 169 | 257 | 169 | 520 | 169 | 782 | 170 | 045 | | 1580 | 170 | 308 | 170 | 571 | 170 | 835 | 171 | 098 | 171 | 362 | 171 | 626 | 171 | 890 | 172 | 155 | 172 | 419 | 172 | 684 | | 1590 | 172 | 949 | 173 | 214 | 173 | 480 | 173 | 745 | 174 | 011 | 174 | 277 | 174 | 543 | 174 | 809 | 175 | 076 | 175 | 343 | | 1600 | 175 | 609 | 175 | 877 | 176 | 144 | 176 | 411 | 176 | 680 | 176 | 950 | 177 | 216 | 177 | 484 | 177 | 753 | 178 | 021 | | 1610 | 178 | 290 | 178 | 559 | 178 | 829 | 179 | 098 | 179 | 368 | 179 | 638 | 179 | 908 | 180 | 178 | 180 | 449 | 180 | | | 1620 | 180 | 991 | 181 | 262 | 181 | 533 | 181 | 805 | 182 | 076 | 182 | 348 | 182 | 620 | 182 | 893 | 183 | 165 | 183 | 438 | | 1630 | 183 | 710 | 183 | 984 | 184 | 257 | 184 | 531 | 184 | 804 | 185 | 078 | 185 | 352 | 185 | 626 | 185 | | | | | | 186 | | | | 187 | 001 | 187 | 276 | 187 | 552 | 187 | 828 | 188 | 104 | 188 | 380 | 188 | 656 | 188 | 933 | | 1650 | 189 | 210 | 189 | 487 | 189 | 712 | 190 | 041 | 190 | 319 | 190 | 597 | 190 | 875 | 191 | 153 | 191 | 431 | 191 | 710 | | 1660 | 191 | 985 | 192 | 267 | 192 | 547 | 192 | 826 | 193 | 105 | 193 | 385 | 193 | 665 | | | | 226 | | | | 1670 | 194 | 787 | 195 | 068 | 195 | 349 | 195 | 630 | 195 | 911 | 196 | 193 | 196 | 477 | 196 | 775 | 197 | 039 | 197 | 322 | | 1680
1690 | 200 | 441 | 200 | 726 | 198
201 | 011 | 201 | 453
296 | 201 | /37
581 | 201 | 020
867 | 199
202 | 304
153 | 199
202 | 588
439 | 199
202 | | 200
203 | | | | 203 | Table A23.- Impact pressure q_C (or q_C^i) in Millimeters of Mercury (0°C) for values of Calibrated Airspeed V_C (or indicated Airspeed V_1) in Knots [Derived from ref. A 2] | ,, T | Γ | | 1 | Т | | | | T | | | |------------------|--------|--------|--------|---------|--------|---|--------|---------------|---------|--------| | V _C , | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | knots | | | | | | | | | | | | 0 | 0 | 0.001 | 0.005 | 0.011 | 0.019 | 0.030 | 0.044 | 0.060 | 0.078 | 0.098 | | 10 | .122 | .147 | .175 | .205 | .238 | .274 | .311 | . 351 | .394 | .439 | | 20 | .486 | .536 | .589 | .643 | .701 | .760 | .822 | .887 | .954 | 1.023 | | 30 | 1.095 | 1.169 | 1.246 | 1.325 | 1.406 | 1.490 | 1.577 | 1.666 | 1.757 | 1.851 | | 40 | 1.947 | 2.046 | 2.147 | 2.250 | 2.356 | 2.465 | 2.576 | 2.689 | 2.805 | 2.923 | | 50 | 3.044 | 3.167 | 3.293 | 3.421 | 3.551 | 3.684 | 3.820 | 3.958 | 4.098 | 4.241 | | 60 | 4.386 | 4.534 | 4.684 | 4.837 | 4.992 | 5.149 | 5.309 | 5.472 | 5.637 | 5.804 | | 70 | 5.974 | 6.147 | 6.322 | 6.499 | 6.679 | 6.861 | 7.046 | 7.233 | 7.423 | 7.615 | | 80 | 7.810 | 8.007 | 8.207 | 8.409 | 8.614 | 8.821 | 9.030 | 9.243 | 9.457 | 9.674 | | 90 | 9.894 | 10.116 | 10.341 | 10.568 | 10.798 | 11.030 | 11.264 | 11.502 | 11.741 | 11.983 | | 100 | 12 220 | 12.475 | 12.725 | 12.977 | 13.232 | 13.489 | 13.749 | 14.012 | 14.276 | 14.544 | | 100 | 12.228 | 15.086 | 15.361 | 15.639 | 15.919 | 16.201 | 16.487 | 16.774 | 17.065 | 17.357 | | 110 | 17.653 | 17.951 | 18.251 | 18.554 | 18.860 | 19.168 | 19.479 | 19.792 | 20.108 | 20.426 | | 120
130 | 20.747 | 21.071 | 21.397 | 21.725 | 22.057 | 22.391 | 22.727 | 23.066 | 23.408 | 23.752 | | 140 | 24.099 | 24.448 | 24.800 | 25.155 | 25.512 | 25.872 | 26.234 | 26.599 | 26.967 | 27.337 | | 150 | 27.710 | 28.086 | 28.464 | 28.845 | 29.228 | 29.614 | 30.003 | 30.394 | 30.788 | 31.184 | | 160 | 31.584 | 31.986 | 32.390 | 32.797 | 33.207 | 33.620 | 34.035 | 34.453 | 34.873 | 35.296 | | 170 | 35.722 | 36.151 | 36.582 | 37.016 | 37.452 | 37.892 | 38.333 | 38.778 | 39.225 | 39.675 | | 180 | 40.128 | 40.584 | 41.042 | 41.503 | 41.966 | 42.433 | 42.902 | 43.373 | 43.848 | 44.325 | | 190 | 44.805 | 45.288 | 45.773 | 46.261 | 46.752 | 47.246 | 47.742 | 48.242 | 48.743 | 49.248 | | 190 | 44.005 | 43.200 | 43.773 | 40.201 | 101,32 | 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | 200 | 49.756 | 50.266 | 50.779 | 51.295 | 51.813 | 52.335 | 52.859 | 53.386 | 53.916 | 54.448 | | 210 | 54.984 | 55.522 | 56.063 | 56.607 | 57.153 | 57.703 | 58.255 | 58.810 | 59.368 | 59.929 | | 220 | 60.493 | 61.060 | 61.229 | 62.202 | 62.777 | 63.354 | 63.935 | 64.519 | 65.105 | 65.695 | | 230 | 66.287 | 66.882 | 67.480 | 68.081 | 68.685 | 69.292 | 69.901 | 70.514 | 71.129 | 71.748 | | 240 | 72.369 | 72.993 | 73.621 | 74.251 | 74.884 | 75.520 | 76.159 | 76.801 | 77.446 | 78.093 | | 250 | 78.744 | 79.398 | 80.055 | 80.714 | 81.377 | 82.043 | 82.711 | 83.383 | | 84.736 | | 260 | 85.416 | 86.100 | 86.787 | 87.476 | 88.169 | | 1 | 90.266 | 90.971 | 91.679 | | 270 | 92.390 | 93.104 | 93.921 | 94.542 | | 95.992 | | 97.454 | 1 | 98.929 | | 280 | 99.671 | 100.41 | 101.16 | 101.91 | 102.67 | 103.43 | 104.19 | 104.95 | 105.72 | 106.49 | | 290 | 107.26 | 108.04 | 108.82 | 109.60 | 110.39 | 111.18 | 111.97 | 112.76 | 113.56 | 114.37 | | 300 | 115.17 | 115.98 | 116.79 | 117.61 | 118.42 | 119.24 | 120.07 | 120.90 | 121.73 | 122.56 | | 310 | 123.40 | 124.24 | 125.09 | 125.93 | 126.78 | 127.64 | 128.50 | 129.36 | 130.22 | 131.09 | | 320 | 131.96 | 132.83 | 133.71 | 134.59 | 135.48 | 136.36 | 137.25 | 138.15 | 139.05 | 139.95 | | 330 | 140.85 | 141.76 | 142.67 | 143.58 | 144.50 | 145.43 | 146.35 | 147.28 | 148.21 | 149.15 | | 340 | 150.09 | 151.03 | 151.97 | 152.92 | 153.87 | 154.83 | 155.79 | 156.75 | 157.72 | 158.69 | | 350 | 159.66 | 160.64 | 161.62 | 162.60 | 163.59 | 164.58 | 165.58 | 166.58 | 167.58 | 168.58 | | 360 | 169.59 | 170.61 | 171.62 | 172.64 | 173.66 | 174.69 | 175.72 | 176.76 | 177.80 | 178.84 | | 370 | 179.88 | 180.93 | 181.98 | 183.04 | 184.10 | 185.17 | 186.23 | 187.30 | 188.38 | 189.46 | | 380 | 190.54 | 191.63 | 192.72 | 193.81 | 194.91 | 196.01 | 197.11 | 198.22 | 199.33 | 200.45 | | 390 | 201.57 | 202.69 | 203.82 | 204.95 | 206.09 | 207.23 | 208.37 | 209.52 | 210.67 | 211.82 | | | | | | 0.16 40 | 277.65 | 210 63 | 220 01 | 221 20 | 222.39 | 223.58 | | 400 | 212.98 | 214.14 | 215.31 | 216.48 | 217.65 | 218.83 | 220.01 | 221.20 233.27 | 234.50 | 235.74 | | 410 | 224.78 | 225.98 | 227.19 | 228.40 | 229.61 | 230.83 | 244.49 | 245.76 | 247.03 | 248.30 | | 420 | 236.98 | 238.22 | 239.46 | 240.71 | 241.97 | 243.23 | 257.34 | 258.65 | 259.96 | 261.27 | | 430 | 249.58 | 250.86 | 252.15 | 253.44 | 254.74 | 256.03 | 270.61 | 271.96 | 273.31 | 274.67 | | 440 | 262.60 | 263.92 | 265.25 | 266.58 | 267.92 | 269.26 | 284.30 | 285.70 | 287.10 | 288.50 | | 450 | 276.03 | 277.40 | 278.77 | 280.15 | 281.53 | 282.91 | 298.44 | 299.88 | 301.32 | 302.77 | | 460 | 289.91 | 291.32 | 292.73 | 294.15 | 295.58 | 297.01 | 313.02 | 314.50 | 315.99 | 317.48 | | 470 | 304.22 | 305.67 | 307.13 | 308.60 | 310.07 | 311.54 | 328.06 | 329.59 | 331.12 | 332.66 | | 480 | | 320.48 | 321.99 | 323.50 | 325.02 | 326.54
341.99 | 343.57 | 345.14 | 346.72 | 348.31 | | 490 | 334.21 | 335.75 | 337.31 | 338.86 | 340.43 | 341.99 | 343.37 | 1343.14 | 3-10.72 | 15.52 | TABLE A23.- Concluded | | | · · · · · · · | 1 | · · · · · · · · · · · · · · · · · · · | | | T | | 1 | 1 | |------------------|---------|---------------|----------|---------------------------------------|-------------|---------|---------|---------|---------|---------| | V _C , | 0 | , | | _ | | _ | | _ | | | | knots | U | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | | | | | | | | | | | 500 | 349.90 | 351.50 | 353.10 | 354.70 | 356.32 | 357.93 | 359.55 | 361.18 | 362.81 | 364.44 | | 510 | 366.08 | 367.73 | 369.38 | 371.03 | 372.69 | 374.35 | 376.02 | 377.70 | 379.38 | 381.06 | | 520 | 382.75 | 384.45 | 386.15 | 387.85 | 389.56 | 391.28 | 393.00 | 394.72 | 396.45 | 398.19 | | 530 | 399.93 | 401.67 | 403.42 | 405.18 | 406.94 | 408.71 | 410.48 | 412.26 | 414.04 | 415.83 | | 540 | 417.62 | 419.42 | 421.22 | 423.03 | 424.84 | 426.66 | 428.49 | 430.32 | 432.15 | 433.99 | | 550 | 435.84 | 437.69 | 439.55 | 441.41 | 443.28 | 445.15 | 447.03 | 448.91 | 450.80 | 452.70 | | 560 | 454.60 | 456.51 | 458.42 | 460.34 | 462.26 | 464.19 | 466.12 | 468.06 | 470.01 | 471.96 | | 570 | 473.91 | 475.88 | 477.84 | 479.82 | 481.80 | 483.78 | 485.77 | 487.77 | 489.77 | 491.78 | | 580 | 493.79 | 495.81 | 497.84 | 499.87 | 501.90 | 503.95 | 506.00 | 508.05 | 510.11 | 512.18 | | 590 | 514.25 | 516.33 | 518.41 | 520.50 | 522.60 | 524.70 | 526.81 | 528.92 | 531.04 | 533.17 | | | | | | | | | | | | | | 600 | 535.30 | 537.44 | 539.59 | 541.74 | 543.89 | 546.06 | 548.22 | 550.40 | 552.58 | 554.77 | | 610 | 556.96 | 559.16 | 561.37 | 563.58 | 565.80 | 568.02 | 570.25 | 572.49 | 574.74 | 576.99 | | 620 | 579.24 | 581.51 | 583.78 | 586.05 | 588.33 | 590.62 | 592.92 | 595.22 | 597.53 | 599.84 | | 630 | 602.16 | 604.49 | 606.82 | 609.16 | 611.51 | 613.86 | 616.22 | 618.59 | 620.96 | 623.34 | | 640 | 625.73 | 628.12 | 630.53 | 632.93 | 635.35 | 637.77 | 640.19 | 642.63 | 645.07 | 647.52 | | 650 | 649.97 | 652.43 | 654.90 | 657.37 | 659.86 | 662.34 | 664.84 | 667.34 | 669.85 | 672.37 | | 660 | 674.90 | 677.42 | 679.97 | 682.51 | 685.06 | 687.61 | 690.18 | 692.75 | 695.33 | 697.92 | | 670 | 700.51 | 703.11 | 705.72 | 708.33 | 710.95 | 713.58 | 716.21 | 718.85 | 721.50 | 724.16 | | 680 | 726.82 | 729.48 | 732.16 | 734.84 | 737.53 | 740.22 | 742.92 | 745.63 | 748.34 | 751.06 | | 690 | 753.79 | 756.52 | 759.26 | 762.01 | 764.76 | 767.52 | 770.28 | 773.06 | 775.83 | 778.62 | | | | | | | | | | | | | | 700 | 781.41 | 784.21 | 787.01 | 789.82 | 792.64 | 795.46 | 798.29 | 801.12 | 803.97 | 806.81 | | 710 | 809.67 | 812.53 | 815.39 | 818.26 | 821.14 | 824.03 | 826.92 | 829.82 | 832.72 | 835.63 | | 720 | 838.54 | 841.47 | 844.39 | 847.33 | 850.27 | 853.21 | 856.16 | 859.12 | 862.08 | 865.05 | | 730 | 868.13 | 871.01 | 874.00 | 876.99 | 879.99 | 883.00 | 886.01 | 889.02 | 892.05 | 895.08 | | 740 | 898.11 | 901.15 | 904.20 | 907.25 | 910.31 | 913.37 | 916.44 | 919.52 | 922.60 | 925.69 | | 750 | 928.78 | 931.88 | 934.99 | 938.10 | 941.21 | 944.33 | 947.46 | 950.59 | 953.73 | 956.88
| | 760 | 960.03 | 963.18 | 966.35 | 969.51 | 972.69 | 975.86 | 979.05 | 982.24 | 985.43 | 988.64 | | 770 | 991.84 | 995.06 | 998.27 | 1001.50 | 1004.72 | 1007.96 | 1011.20 | 1014.46 | 1017.70 | 1020.96 | | 780 | 1024.22 | 1027.49 | 1030.76 | 1034.04 | 1037.32 | 1040.61 | 1043.91 | 1047.21 | 1050.52 | 1053.83 | | 790 | 1057.15 | 1060.47 | 1063.80 | 1067.13 | 1070.47 | 1073.82 | 1077.17 | 1080.52 | 1083.88 | 1087.25 | | 1 | | | | | | | | ļ | | | | | 1090.62 | | 1097.38 | 1100.77 | 1104.16 | 1107.56 | 1110.97 | 1114.38 | 1117.79 | 1121.21 | | | | 1128.07 | | 1134.95 | 1138.39 | 1141.85 | 1145.30 | 1148.77 | 1152.23 | 1155.71 | | | | 1162.67 | | | 1173.16 | 1176.66 | 1180.17 | 1183.69 | | | | 830 | 1194.27 | | 1201.35 | 1204.89 | 1208.45 | 1212.00 | 1215.57 | 1219.13 | 1222.71 | 1226.29 | | 840 | 1229.87 | 1233.46 | 1237.06 | 1240.65 | 1244.26 | 1247.87 | 1251.48 | 1255.10 | 1258.73 | 1262.36 | | 850 | 1266.00 | 1269.64 | 1273.28 | 1276.93 | 1280.59 | 1284.25 | 1287.92 | 1291.59 | 1295.27 | 1298.95 | | 860 | 1302.64 | 1306.33 | 1310.03 | 1313.73 | 1317.44 | 1321.15 | 1324.87 | 1328.59 | 1332.32 | 1336.05 | | 870 | 1339.79 | 1343.53 | 1347.28 | 1351.04 | 1354.79 | 1358.56 | 1362.33 | 1366.10 | 1369.88 | 1373.66 | | 880 | 1377.45 | 1381.24 | 1385.05 | 1388.85 | 1392.66 | 1396.47 | 1400.29 | 1404.12 | 1407.94 | 1411.78 | | 890 | 1415.62 | 1419.46 | 1423.31 | 1427.17 | 1431.03 | 1434.89 | 1438.76 | 1442.63 | 1446.52 | 1450.40 | | 000 | 1454 05 | 7.450 *- | | | | | | | | | | 900 | 1454.29 | 1458.18 | 1462.08 | 1465.99 | 1469.90 | 1473.81 | 1477.73 | 1481.65 | 1485.58 | 1489.52 | | 910 | 1493.46 | 1497.40 | 1501.35 | 1505.30 | 1509.26 | 1513.23 | 1517.20 | 1521.17 | 1525.15 | 1529.13 | | 920 | 1533.12 | 1537.12 | 1541.11 | 1545.12 | 1549.13 | 1553.14 | 1557.16 | 1561.18 | 1565.21 | 1569.23 | | 930 | 15/3.28 | 15/7.32 | 1581.37 | 1585.43 | 1589.48 | 1593.55 | 1597.61 | 1601.69 | 1605.76 | 1609.85 | | 940 | 1613.93 | 1618.03 | 1622.12 | 1626.22 | 1630.33 | 1634.44 | 1638.56 | 1642.68 | 1646.81 | 1650.94 | | 950 | 1655.07 | 1659.21 | 1663.36 | 1667.51 | 1671.67 | 1675.83 | 1679.99 | 1684.16 | 1688.34 | 1692.52 | | 960 | 1696.70 | 1700.89 | 1705.09 | 1709.29 | 1713.49 | 1717.70 | 1721.91 | 1726.13 | 1730.35 | 1734.58 | | 970 | 1703.43 | 1743.05 | 1747.30 | 1751.55 | 1755.80 | 1760.05 | 1764.32 | 1768.58 | 1772.86 | 1777.13 | | 980 | 1781.41 | 1785.70 | 1789.99 | 1794.29 | 1798.59 | 1802.89 | 1807.20 | 1811.52 | 1815.84 | 1820.16 | | 990 | 1824.49 | 1828.83 | 1833.17 | 1837.51 | 1841.86 | 1846.21 | 1850.57 | 1854.94 | 1859.30 | 1863.68 | | 1,000 | 1066 05 | | | | | | | | | | | 1000 | 1868.05 | | <u> </u> | | | | | | | 1 | TABLE A24.- IMPACT PRESSURE q_C (OR q_C^1) IN PASCALS FOR VALUES OF CALIBRATED AIRSPEED V_C (OR INDICATED AIRSPEED V_1) IN KNOTS [Derived from ref. A2] | | | | | | | | —————————————————————————————————————— | | Т | | |------------------|---------|------------------|---------|---------|---------|----------|--|---------|----------|---------| | v _c , | | | _ | | . | _ ' | 6 | 7 | 8 | 9 | | knots | 0 | 1 | 2 | 3 | 4 | 5 | 0 | ′ [| | | | | | | | | - | | | | 10.20 | 12 12 | | 0 | 0 | 0.16 | 0.65 | 1.46 | 2.59 | 4.05 | 5.84 | 7.94 | 10.38 | 13.13 | | 10 | 16.21 | 19.62 | 23.34 | 27.40 | 31.78 | 36.48 | 41.50 | 46.86 | 52.53 | 58.53 | | 20 | 64.86 | 71.50 | 78.45 | 85.78 | 93.40 | 101.35 | 109.62 | 118.22 | 127.14 | 136.39 | | 30 | 145.97 | 155.86 | 166.09 | 176.64 | 187.51 | 198.71 | 210.24 | 222.09 | 234.27 | 246.77 | | 40 | 259.60 | 272.75 | 286.23 | 300.04 | 314.17 | 328.63 | 343.42 | 358.53 | 373.97 | 389.74 | | 50 | 405.83 | 422.25 | 439.00 | 456.07 | 473.47 | 491.20 | 509.26 | 527.64 | 546.35 | 565.39 | | 60 | 584.76 | 604.46 | 624.48 | 644.84 | 665.52 | 686.53 | 707.87 | 729.54 | 751.53 | 773.86 | | 70 | 796.52 | 819.50 | 842.82 | 866.46 | 890.44 | 914.75 | 939.38 | 964.35 | 989.65 | 1 015.3 | | 80 | 1 041.2 | 1 067.5 | 1 094.2 | 1 121.1 | 1 148.4 | 1 176.0 | 1 204.0 | 1 232.3 | 1 260.9 | 1 289.8 | | 90 | 1 319.1 | 1 348.7 | 1 378.7 | 1 408.9 | 1 439.6 | 1 470.5 | 1 501.8 | 1 533.4 | 1 565.4 | 1 597.7 | | | | : | | | | | | | | | | 100 | 1 630.3 | 1 663.2 | 1 696.5 | 1 730.2 | 1 764.1 | 1 798.4 | 1 833.1 | 1 868.1 | 1 903.4 | 1 939.0 | | 110 | 1 975.0 | 2 011.3 | 2 048.0 | 2 085.0 | 2 122.3 | 2 160.0 | 2 198.0 | 2 236.4 | 2 275.1 | 2 314.1 | | 120 | 2 353.5 | 2 393.2 | 2 433.3 | 2 473.7 | 2 514.4 | 2 555.5 | 2 596.9 | 2 638.7 | 2 680.8 | 2.723.3 | | 130 | 2 766.0 | 2 809.2 | 2 852.7 | 2 896.5 | 2 940.6 | 2 985.2 | 3 030.0 | 3 075.2 | 3 120.8 | 3 166.7 | | 140 | 3 212.9 | 3 259.5 | 3 306.4 | 3 353.7 | 3 401.3 | 3 449.3 | 3 497.6 | 3 546.3 | 3 595.3 | 3 644.7 | | 150 | 3 694.4 | 3 744.4 | 3 794.9 | 3 845.6 | 3 896.7 | 3 948.2 | 4 000.0 | 4 052.2 | 4 104.7 | 4 157.6 | | 160 | 4 210.8 | 4 264.4 | 4 318.3 | 4 372.6 | 4 427.3 | 4 482.2 | 4 537.6 | 4 593.3 | 4 649.4 | 4 705.8 | | 170 | 4 762.6 | 4 819.7 | 4 877.2 | 4 935.0 | 4 993.2 | 5 051.8 | 5 110.7 | 5 170.0 | 5.229.6 | 5 289.6 | | 180 | 5 350.0 | 5 410.7 | 5 471.8 | 5 533.2 | 5 595.0 | 5 657.2 | 5 719.7 | 5 782.6 | 5 845.9 | 5 909.5 | | 190 | 5 973.5 | 6 037.9 | 6 102.6 | 6 167.7 | 6 233.1 | 6 298.9 | 6 365.1 | 6 431.7 | 6 498.6 | 6 565.9 | | 130 | 3 3/313 | | | | | | | İ | | 1 | | 200 | 6 633.5 | 6 701.6 | 6 770.0 | 6 838.7 | 6.907.9 | 6 977.4 | 7 047.3 | 7 117.5 | 7 188.2 | 7 259.2 | | 210 | 7 330.6 | 7 402.3 | 7 474.4 | 7 546.9 | 7 619.8 | 7 693.1 | 7 766.7 | 7 840.7 | 7 915.1 | 7 989.8 | | 220 | 8 065.0 | 8 140.6 | 8 216.5 | 8 292.8 | 8 369.5 | 8 446.5 | 8 524.0 | 8 601.8 | 8 680.0 | 8 758.5 | | 230 | 8 837.5 | 8 916.9 | 8 996.6 | 9 076.7 | 9 157.2 | 9 238.1 | 9 319.1 | 9 401.1 | 9 483.1 | 9 565.6 | | 240 | 9 648.4 | 9 731.6 | 9 815.2 | 9 899.3 | 9 983.7 | 10 068 | 10 154 | 10 239 | 10 325 | 10 411 | | 250 | 10 498 | 10 585 | 10 673 | 10 761 | 10 849 | 10 938 | 11 027 | 11 117 | 11 207 - | 11 297 | | 260 | 11 388 | 11 479 | 11 570 | 11 662 | 11 755 | 11 848 | 11 941 | 12 034 | 12 128 | 12 223 | | 270 | 12 318 | 12 413 | 12 508 | 12 604 | 12 701 | 12 798 | 12 895 | 12 993 | 13 091 | 13 189 | | 280 | 13 288 | 13 387 | 13 487 | 13 587 | 13 688 | 13 789 | 13 890 | 13 992 | 14 095 | 14 197 | | l l | 1 | 14 404 | 14 508 | 14 612 | 14 717 | 14 822 | 14 928 | 15 034 | 15 140 | 15 427 | | 290 | 14 300 | 14 404 | 14 308 | 14 012 | 14 /1/ | 14 022 | 1. 550 | 20 001 | | | | 300 | 15 355 | 15 463 | 15 571 | 15 680 | 15 789 | 15 898 | 16 008 | 16 118 | 16 229 | 16 340 | | 300 | I | 16 564 | 16 677 | 16 790 | 16 903 | 17 017 | 17 132 | 17 246 | 17 361 | 17 477 | | 310 | 16 452 | | 17 827 | 17 944 | 18 062 | 18 180 | 18 299 | 18 418 | 18 538 | 18 658 | | 320 | 17 593 | 17 710
18 900 | 19 021 | 19 143 | 19 266 | 19 388 | 19 512 | 19 635 | 19 760 | 19 884 | | 330 | 18 779 | | | 20 388 | 20 515 | 20 642 | 20 770 | 20 898 | 21 027 | 21 157 | | 340 | 20 009 | 20 135 | 20 261 | 20 388 | 21 810 | 21 942 | 22 075 | 22 208 | 22 342 | 22 476 | | 350 | 21 286 | 21 417 | 21 547 | 23 017 | 23 153 | 23 290 | 23 428 | 23 566 | 23 704 | 23 843 | | 360 | 22 610 | 22 745 | 22 881 | 1 | 24 545 | 24 686 | 24 829 | 24 972 | 25 115 | 25 259 | | 370 | 23 982 | 24 122 | 24 263 | 24 403 | 1 | 26 132 | 26 279 | 26 427 | 26 575 | 26 724 | | 380 | 25 430 | 25 548 | 25 693 | 25 839 | 25 985 | 1 | 27 780 | 27 933 | 28 086 | 28 240 | | 390 | 26 873 | 27 023 | 27 174 | 27 325 | 27 476 | 27 628 | 2, ,00 | 2, 333 | 120 000 | 130 230 | | | | 00 550 | 20 705 | 20 001 | 20 010 | 29 175 | 29 332 | 29 491 | 29 649 | 29 808 | | 400 | 28 395 | 28 550 | 28 705 | 28 861 | 29 018 | 30 774 | 30 937 | 31 101 | 31 265 | 31 429 | | 410 | 29 968 | 30 128 | 30 289 | 30 450 | 30 612 | | 30 937 | 32 765 | 32 934 | 33 104 | | 420 | 31 594 | 31 760 | 31 926 | 32 092 | 32 260 | 32 427 | | 34 483 | 34 658 | 34 834 | | 430 | 33 274 | 33 445 | 33 617 | 33 789 | 33 962 | 34 135 | 34 309 | 1 | 36 439 | 36 620 | | 440 | 35 010 | 35 186 | 35 364 | 35 541 | 35 720 | 35 898 | 36 078 | 36 258 | 38 276 | 38 463 | | 450 | 36 801 | 36 984 | 37 167 | 37 350 | 37 534 | 37 719 | 37 904 | 38 090 | | 40 365 | | 460 | 38 651 | 38 839 | 39 028 | 39 217 | 39 407 | 39 597 | 39 788 | 39 980 | | 42 328 | | 470 | 40 559 | 40 753 | 40 948 | 41 143 | 41 339 | 41 535 | 41 732 | 41 930 | 42 129 | l I | | 480 | 42 527 | 42 727 | 42 928 | 43 130 | 43 332 | 43 534 | 43 737 | 43 941 | 44 146 | 44 351 | | 490 | 44 557 | 44 764 | 44 971 | 45 178 | 45 386 | 45 595 | 45 805 | 46 015 | 46 226 | 46 438 | | L | | | | | | <u> </u> | | | | | APPENDIX A TABLE A24.- Concluded | V _C , | <u>.</u> | | | | | | | | | —— <u> </u> | | | | 1 | | | | · | | | |------------------|----------|-------------|-----|------------|------------|------------|---------|------------|------------|---------------------|-----|------------|------------|---------------|--------------|------------|--|------------|------------|------------| | knots | C |) | 1 | L | 2 | : | 3 | 3 | 4 | | 5 | 5 | ϵ | ; | 7 | ' | 8 | 3 | Ğ |) | | 500 | | | | 0.50 | | 276 | | | | | | | | | | 150 | | | | | | 500
510 | | 650
807 | | 862
026 | | 076
246 | | 290
466 | 47 | 505
688 | | 720
910 | | 936
132 | | 153
355 | | 370
579 | | 588
804 | | 520 | | 029 | | 255 | | 482 | | 709 | | 937 | | 166 | | 395 | | 625 | | 856 | | 087 | | 530 | | 319 | | 552 | | 785 | | 020 | | 254 | | 490 | | 726 | | 963 | | 201 | | 439 | | 540 | | 678 | | 918 | | 158 | | 399 | | 641 | | 884 | | 127 | | 371 | | 616 | | 861 | | 550 | 58 | 107 | 58 | 354 | 58 | 601 | 58 | 850 | 59 | 099 | 59 | 349 | 59 | 599 | 59 | 450 | 60 | 102 | 60 | 355 | | 560 | | 608 | 60 | 862 | 61 | 117 | 61 | 373 | 61 | 629 | 61 | 886 | 62 | 144 | 62 | 403 | 62 | 662 | | 922 | | 570 | | 183 | | 445 | | 707 | | 970 | | 234 | i | 499 | | 764 | | 030 | | 297 | | 565 | | 580 | | 833 | | 103 | | 373 | | 644 | | 915 | | 187 | | 461 | | 735 | | 009 | | 285 | | 590 | 68 | 561 | 68 | 838 | 69 | 116 | 69 | 395 | 69 | 674
 69 | 954 | 70 | 235 | 70 | 517 | 70 | 800 | 71 | 083 | | 600 | | 368 | 71 | 653 | 71 | 939 | 72 | 225 | 72 | 513 | 72 | 801 | 73 | 091 | 73 | 381 | 73 | 671 | 73 | 963 | | 610 | | 255 | | 549 | | 843 | | 138 | | 434 | | 730 | | 028 | | 326 | | 625 | | 925 | | 620 | | 226 | | 528 | | 830 | | 134 | | 438 | | 743 | | 049 | | 356 | | 663 | | 9.72 | | 630 | | 281 | | 592 | | 903 | | 215 | | 528 | | 842 | | 156 | | 472 | | 788 | | 106 | | 640
650 | | 424
655 | | 743
983 | l | 063
312 | | 384
642 | | 706
9 7 3 | | 028
305 | | 352
638 | | 676
972 | | 002
306 | 1 | 328
642 | | 660 | | 978 | | 316 | i | 654 | | 993 | | 333 | | 674 | 1 | 016 | | 359 | i | 703 | 1 | 048 | | 670 | | 394 | | 74.0 | 1 | 088 | | 436 | | 786 | | 136 | | 487 | | 839 | | 192 | ! | 546 | | 680 | , | 900 | | 256 | ! | 613 | | 970 | | 328 | | 688 | | 048 | | 409 | | 770 | | 133 | | 690 | 100 | 497 | 100 | 861 | 101 | 226 | 101 | 592 | 101 | 960 | 102 | 327 | 102 | 696 | 103 | 065 | 103 | 436 | 103 | 807 | | 700 | 104 | 179 | 104 | 552 | 104 | 926 | 105 | 301 | 105 | 676 | 106 | 053 | 106 | 430 | 106 | 808 | 107 | 187 | 107 | 566 | | 710 | 107 | 947 | 108 | | 108 | | | | 109 | | 109 | | 110 | | | 633 | | | 111 | | | 720 | 111 | 797 | 112 | 186 | 112 | 576 | 112 | 968 | 113 | 359 | 113 | 752 | 114 | 146 | 114 | | 114 | | 115 | 331 | | 730 | ; | 728 | 116 | | 116 | | 116 | 923 | 117 | 323 | 117 | | 118 | | 118 | 527 | 118 | 930 | 119 | 334 | | 740 | 119 | | 1 | 144 | 1 | | | 957 | l . | | | 773 | | | 122 | | 123 | | 123 | | | 750 | 123 | | l | 240 | 124 | | | 069 | l . | | | 900 | | | 126 | | 1 | | 127 | | | 760
770 | | 993
235 | 128 | 663 | 128
133 | | | 257
522 | | | 130 | 105 | 1 | | 130 | | 131 | | 131 | - 1 | | 780 | | 551 | ŀ | 987 | 137 | | l | 860 | | | 138 | | 139 | 816
176 | 135
139 | | 135
140 | | 136
140 | | | 790 | ŀ | | ı | 384 | | | 142 | | | | 143 | | 4 | | ŀ | 058 | 1 | | 144 | - 1 | | 800 | 145 | 404 | 145 | 054 | 146 | 205 | 146 | 757 | 147 | 200 | 147 | 660 | 140 | 117 | 140 | E 773 | 140 | 026 | 140 | 403 | | 810 | i | 939 | | 397 | 146 | 855 | | 757
314 | i | | 1 | | 148
152 | | • | 571
156 | 149 | | 149
154 | - 1 | | 820 | | 545 | l . | 010 | 155 | | i | 941 | | | 156 | | 157 | | 157 | | 158 | | | 751 | | 830 | | 222 | 159 | | 160 | | | 639 | | | 161 | | | 062 | | | 163 | | I | 491 | | 840 | 163 | 969 | 164 | 448 | 164 | 927 | | 407 | t | 887 | | 369 | | | | 333 | 167 | | 1 | 301 | | 850 | 168 | 7 85 | 169 | 271 | 169 | 757 | 170 | 244 | 170 | 731 | 171 | | 171 | 708 | 172 | 198 | | 688 | 173 | 179 | | 860 | 1 | | 174 | | 174 | | 1 | 149 | l | | 176 | | | 634 | | | | | 178 | | | 870 | 1 | 624 | 179 | | l . | 623 | I . | 123 | | | 181 | | 181 | | 182 | | 182 | | | | | 880
890 | | | | | | | | | 185
190 | ļ | | | | | | | | | | | 900 | | | | | | | | | 195 | | | | | | | | | | | | | 910 | 199 | TTT | 139 | 637 | 200 | 163 | 200 | 691 | 201 | 218 | 201 | 747 | 202 | 276 | 202 | 806 | 203 | 336 | 203 | 867 | | 920 | 204 | 399
750 | 210 | 202 | 205 | 405 | 205 | 377 | 206
211 | 233 | 212 | 7EE | 20/ | 003 | 208 | 140 | 208 | 0// | 209 | 620 | | 940 | 215 | 173 | 215 | 719 | 216 | 265 | 216 | 812 | 211 | 359 | 217 | 400 | 218 | 231
456 | 210 | 240 | 219 | 556 | 220 | 107 | | 950 | | | | | | | | | 222 | | | | | | | | | | | | | 960 | | | | | | | | | 228 | | | | | | | | | | 231 | | | 970 | | | | | | | | | 234 | | | | | | | | | | | | | 980 | 237 | 502 | 238 | 074 | 238 | 646 | 239 | 218 | 239 | 792 | 240 | 366 | 240 | 940 | 241 | 516 | 242 | 092 | 242 | 668 | | 990 | 243 | 246 | 243 | 823 | 244 | 402 | 244 | 981 | 245 | 561 | 246 | 141 | 246 | 722 | 247 | 304 | 247 | 886 | 248 | 469 | | 1000 | 249 | 053 | Ь.— | | | | <u> </u> | | | | L | | Ц. | | Ь | | | | <u>. </u> | | <u> </u> | | [Computation of V based on standard temperature at each altitude] | Н, | V _C ,
knots | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | |----------|---------------------------|-------|-------|-------|-------|----------------|-------|----------------|-------|-------|------| | m | | | | | | | | | | | | | | | 100.0 | 200.0 | 200.0 | 400.0 | F00 0 | 600 0 | 700 0 | 900 0 | 900.0 | 1000 | | , | 0 | 100.0 | 200.0 | 300.0 | 400.0 | 500.0
542.8 | 600.0 | 700.0
753.7 | 800.0 | 973.3 | | | 1 | 000 | 110.2 | 220.0 | 328.8 | 436.4 | l | 700.1 | 815.4 | 973.2 | 1061 | 1186 | | 4 | | 122.1 | 243.0 | 361.4 | 477.0 | 589.6 | 759.9 | 888.6 | - | 1165 | 1305 | | 6 | | 135.8 | 269.2 | 398.2 | 522.1 | 640.8 | ł | | 1131 | 1288 | 1447 | | 8 | 000 | 152.0 | 299.5 | 439.8 | 571.9 | 698.2 | 830.7 | 9/3.9 | 1131 | 1200 | 144/ | | 10 | 000 | 170.9 | 334.5 | 486.6 | 626.9 | 765.9 | 916.1 | 1082 | 1258 | 1438 | 1618 | | | 2 000 | 196.2 | 380.4 | 546.8 | 700.3 | 860.4 | 1035 | 1228 | 1434 | 1642 | 1851 | | 1 | 000 | 228.5 | 437.6 | 621.1 | 797.1 | 986.2 | 1193 | 1422 | 1664 | 1911 | 1001 | | 1 | 5 000 | 265.7 | 501.3 | 704.8 | 911.3 | 1135 | 1380 | 1650 | 1936 | 1311 | | | 1 | 3 000 | 308.3 | 571.2 | 802.4 | 1047 | 1312 | 1601 | 1919 | 1330 | | | | 1 | , 000 | 300.3 | 371.2 | 002.4 | 1047 | 1312 | 1001 | 1313 | | | | | 20 | 000 | 356.6 | 648.1 | 917.7 | 1207 | 1520 | 1862 | | | | | | 1 | 2 000 | 412.7 | 739.1 | 1058 | 1402 | 1773 | | | | | | | <u> </u> | 000 | 475.1 | 845.0 | i | 1630 | 2069 | | | | | | | 1 | 5 000 | 543.5 | 969.1 | | 1896 | | | | | | | | 1 | 3 000 | 618.0 | 1115 | 1644 | 30 | 000 | 700.7 | 1285 | 1909 | | | | | | | | TABLE A26.- RATIO OF IMPACT PRESSURE TO STATIC PRESSURE $q_{\rm C}/p$ (OR $q_{\rm C}'/p'$) FOR VALUES OF MACH NUMBER M (OR INDICATED MACH NUMBER M') [From ref. A3] | 1.10 0.00850 0.00865 0.00881 0.00897 0.00981 0.00982 0.00985 0.00985 0.00985 0.00987 0.00985 0.00985 0.00985 0.00985 0.0012 0.0122 0.01246 0.01636 0.01088 0.01161 0.01134 0.01152 0.01174 0.01379 0.01399 0.01491 0.01459 0.01450 0.01500 0.01521 0.01542 0.01561 0.01594 0.01655 0.01627 0.01648 0.01670 0.01692 0.01744 0.01366 0.01861 0.01862 0.01849 0.01862 0.01849 0.01862 0.01849 0.01862 0.01849 0.01862 0.01849 0.01862 0.01849 0.01862 0.01849 0.01862 0.01849 0.01862 0.01849 0.01862 0.01849 0.01862 0.01849 0.01842 0.01862 0.01849 0.01862 0.01849 0.01862 0.01849 0.01862 0.01849 0.01862 0.01841 0.01862 0.01849 0.01862 0.01862 0.01862 0.01862 0.02185 0.02210 0.02236 0.02312 0.02326 0.02312 0.02326 0.02312 0.02328 0.02866 0.02944 0.02393 0.03624 0.02443 0.02443 0.02443 0.03624 0.03423 0.03624 0.03423 0.03624 0.03423 0.03641 0.03493 0.03525 0.03587 0.03897 0.03624 0.03862 0.03938 0.03624 0.03686 0.03718 0.03752 0.03755 0.03875 0.03819 0.03852 0.03866 0.03919 0.03661 0.03646 0.03752 0.03755 0.03875 0.03816 0.04868 0.03919 0.04265 0.04613 0.04365 0.04818 0.04518 0.04518 0.04528 0.04663 0.04613 0.04663 | М | 0 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | |--|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | 1.10 | 0.100 | 0.00702 | 0.00716 | 0.00730 | 0.00745 | 0.00759 | 0.00774 | 0.00789 | 0.00804 | 0.00819 | 0.00834 | | 1.320 0.1012 0.1029 0.1046 0.1063 0.1068 0.1168 0.1116 0.1134 0.1152 0.1154 0.1154 0.1159 0.1399 0.1399 0.1490 0.1399 0.1490 0.1499 0.1499 0.1490 0.1500 0.1521 0.1542 0.1563 0.1561 0.1561 0.1562 0.1563 0.1561
0.1561 0.1562 0.1563 0.1561 0.1561 0.1562 0.1563 0.1761 0.1660 0.1804 0.1804 0.1826 0.1827 0.1825 0.1919 0.1942 0.1966 0.1990 0.0214 0.1062 0.1804 0.1605 0.1627 0.1828 0.1919 0.1942 0.1966 0.1990 0.0214 0.1804 0.1806 0.1990 0.0214 0.02286 0.02312 0.02336 0.02341 0.02360 0.02413 0.02461 0.0243 0.02469 0.02338 0.0253 0.0257 0.0260 0.02632 0.02659 0.0267 0.0215 0.02743 0.02713 0.02713 0.0250 0.02577 0.02604 0.02632 0.02659 0.02677 0.02404 0.0243 0.02464 0.0243 0.02464 0.0244 | .110 | .00850 | .00865 | .00881 | .00897 | .00913 | .00929 | .00945 | .00962 | .00987 | .00995 | | 1-310 0.1136 0.11206 0.11225 0.11244 0.11263 0.11262 0.1301 0.13120 0.1139 0.1139 0.11419 0.11419 0.11419 0.11419 0.11419 0.11419 0.11419 0.11419 0.11419 0.11419 0.11419 0.11419 0.11419 0.11419 0.11419 0.11419 0.11419 0.11410 0.1150 0.1151 0.11516 0.12516 0.11516 0. | .120 | .01012 | .01029 | .01046 | .01063 | .01080 | | .01116 | | | 1 | | 1-140 0.01579 0.01399 0.01499 0.01499 0.01490 0.01500 0.01521 0.01522 0.01528 0.01591 1.0160 0.01584 0.01605 0.01672 0.01692 0.01714 0.01736 0.01591 0.01581 0.01581 0.01581 0.01692 0.01744 0.01366 0.01990 0.02141 0.02034 0.02062 0.02066 0.02111 0.02135 0.02161 0.02185 0.02210 0.02236 0.02531 0.02550 0.02577 0.02604 0.02632 0.02659 0.02667 0.02715 0.02743 0.02771 0.02800 0.0286 0.02577 0.02604 0.02632 0.02659 0.02667 0.02715 0.02743 0.02771 0.02800 0.02028 0.02857 0.02867 0.02812 0.03121 0.03151 0.03162 0.03121 0.03121 0.03151 0.03162 0.03122 0.03243 0.03233 0.03634 0.03335 0.03661 0.03991 0.03752 0.03752 0.03755 0.03896 0.03999 0.03621 0.03654 0.03668 0.03791 0.03752 0.03755 0.03866 0.03999 0.03752 0.03755 0.03866 0.03999 0.03953 0.03997 0.04022 0.04056 0.04044 0.04440 0.044516 0.04553 0.04593 0.04265 0.04666 0.04663 0.04700 0.04125 0.04088 0.04960 0.04626 0.04663 0.04700 0.04738 0.04778 0.05097 0.05097 0.05236 0.05275 0.05316 0.03595 0.05395 0.05435 0.05096 0.05637 0.05678 0.05719 0.05761 0.05802 0.05444 0.05468 0.05003 0.05444 0.05468 0.05003 0.05444 0.05686 0.05637 0.05678 0.05719 0.05761 0.05802 0.05444 0.05686 0.05637 0.05678 0.05719 0.05761 0.05802 0.05444 0.05866 0.0597 0.05679 0.05687 0.05679 0.05675 0.05675 0.05602 0.05687 0.05679 0.05687 0.05679 0.05687 0.05779 0.05682 0.05682 0.05686 0.05927 0.05970 0.05686 0.05927 0.05970 0.05686 0.05927 0.05970 0.05686 0.05927 0.05970 0.05686 0.05692 0.05687 0.05751 0.05686 0.05692 0.05687 0.05751 0.05686 0.05692 0.05687 0.05751 0.05686 0.05692 0.05687 0.05751 0.05686 0.05692 0.05686 0.05692 0.05686 0.05692 0.05686 0.05692 0.05686 0.05692 0.05686 0.05692 0.05686 | .130 | .01188 | .01206 | .01225 | .01244 | | | | 1 | | l | | 1.50 | .140 | .01379 | .01399 | .01419 | .01439 | | | | | | 1 | | 1.60 | .150 | .01584 | .01605 | | | | | | | | ľ | | 170 0.2038 0.2062 0.2086 0.2111 0.2115 0.2160 0.2185 0.2210 0.2236 0.2251 0.2251 0.2251 0.22522 0.22522 0.22522 0.22522 0.22522 0.22522 0.22522 | .160 | .01804 | | | | 1 | | l | | | | | 1880 .0.02286 .0.02312 .0.2338 .0.2364 .0.2390 .0.2416 .0.2443 .0.2469 .0.2456 .0.2531 .0.2501 .0.2550 .0.2557 .0.2604 .0.2632 .0.2659 .0.2667 .0.2715 .0.2743 .0.2771 .0.2800 .0.2531 .0.2532 .0.2667 .0.2715 .0.2743 .0.2771 .0.2800 .0.2532 .0.2632 .0.2667 .0.2715 .0.2743 .0.2771 .0.2800 .0.2532 .0.26 | .170 | | | | | | | l | | 1 | | | 190 | | 1 | 1 | | | | i | | | 1 | | | | 1 | | Į . | 1 | 1 | | | l | i | | | | 2.20 | | .02330 | .023// | .02004 | .02032 | .02039 | .02007 | .02/15 | .02/43 | .02//1 | .02800 | | 1.00 | .200 | .02828 | .02857 | .02886 | .02914 | .02944 | .02973 | .03002 | .03032 | .03061 | - 03091 | | .220 | .210 | .03121 | .03151 | .03182 | .03212 | .03243 | .03273 | | i i | l | | | .230 .03752 .03785 .03819 .03852 .03866 .03919 .03993 .03993 .04937 .04022 .04066 .04165 .04230 .04265 .04301 .04336 .04372 .04408 .04516 .04553 .04589 .04626 .04663 .04370 .04738 .04775 .660 .04813 .04480 .04526 .04646 .05003 .05041 .05080 .05119 .05186 .05596 .05536 .05275 .05315 .055355 .05395 .05435 .05596 .05673 .05678 .05519 .05761 .05802 .05844 .05886 .05927 .05970 .290 .06012 .06654 .06697 .06140 .06182 .06225 .06666 .06669 .06754 .06799 .06843 .300 .06443 .06487 .06531 .06557 .06620 .06665 .06709 .067674 .07729 .07024 .07120 .07687 .067677 .07736 .07830 .07363 <t< td=""><td>.220</td><td>.03429</td><td>.03461</td><td>.03493</td><td>.03525</td><td></td><td></td><td></td><td></td><td>i</td><td></td></t<> | .220 | .03429 | .03461 | .03493 | .03525 | | | | | i | | | 240 0.4090 0.4125 0.4160 0.4195 0.4230 0.4265 0.4301 0.4336 0.4372 0.4408 0.4561 0.4553 0.4589 0.4663 0.4700 0.4738 0.4772 0.4408 0.4844 0.4480 0.4556 0.4488 0.4926 0.4964 0.5003 0.5041 0.5080 0.5119 0.5158 0.5270 0.5197 0.5236 0.5275 0.5315 0.5355 0.5395 0.5435 0.5435 0.5435 0.5556 0.5566 0.5637 0.6637 0.6640 0.6662 0.6662 0.6662 0.6662 0.6663 0.6709 0.6754 0.6639 0.6092 0.6004 0.6692 0.6620 0.6665 0.6709 0.6754 0.6799 0.6845 0.6890 0.6936 0.6992 0.7027 0.7074 0.7120 0.7166 0.7213 0.7259 0.7306 0.3300 0.7333 0.7401
0.7488 0.7496 0.7543 0.7531 0.6559 0.6817 0.8228 0.8278 0.8329 0.8379 0.8430 0.8481 0.8531 0.6859 0.6841 0.8883 0.8944 0.8889 0.8937 0.8430 0.8481 0.8531 0.6859 0.9050 0.9103 0.9156 0.9920 0.9263 0.9313 0.9316 0.9971 1.0027 1.0083 1.0139 1.0195 1.0251 1.0368 1.0364 1.0478 1.0553 1.0573 1.1176 1.1176 1.1235 1.1295 1.1354 1.1414 1.1474 1.1534 1.1595 1.1354 1.1414 1.1474 1.1534 1.1595 1.1354 1.1414 1.1474 1.1534 1.1484 1.440 1.4221 1.4289 1.4289 1.4285 1.428 | .230 | .03752 | .03785 | | | | i | 1 | () | | | | .250 | .240 | | 1 | | | | | 1 | | | | | 260 0.4813 0.4850 0.4888 0.4926 0.4964 0.5003 0.5041 0.5080 0.5119 0.5158 | ! | | 1 | | | | | | | 1 | | | | | | l | 1 | | | | | | | | | .280 | | | | 1 | | | | | | | | | .06012 .06012 .06054 .06097 .06140 .06182 .06225 .06269 .06312 .06356 .06399 .06310 .06311 .06356 .06399 .06310 .06443 .06487 .06531 .06575 .06620 .06665 .06709 .06754 .06799 .06845 .06300 .06936 .06936 .06982 .07027 .07074 .07120 .07166 .07213 .07259 .07306 .07353 .07401 .07448 .07496 .07543 .07591 .07639 .07687 .07736 .07784 .07330 .07833 .07401 .07448 .07496 .07543 .07591 .07639 .07687 .07736 .07784 .0330 .07833 .07882 .08379 .08430 .08481 .08531 .08583 .08634 .08685 .08737 .08789 .08441 .08893 .08945 .08998 .09050 .09103 .09156 .09209 .09263 .09316 .360 .09370 .09424 .09478 .09532 .09586 .09641 .09695 .09750 .09805 .09860 .370 .09916 .09971 .10027 .10083 .10139 .10195 .10251 .10308 .10364 .10421 .380 .10478 .10535 .10593 .10650 .10708 .10766 .10824 .10882 .10941 .10999 .390 .11058 .11117 .11176 .11235 .11295 .11354 .11414 .11474 .11534 .11595 .11260 .12270 .12332 .12395 .12458 .12521 .12584 .12647 .12711 .12774 .12884 .420 .12290 .12966 .13031 .13095 .13160 .13225 .13290 .13355 .13421 .13487 .430 .13552 .13618 .13685 .13751 .13818 .13884 .13951 .14018 .14066 .14153 .4400 .14221 .14289 .14357 .14425 .14493 .14562 .14630 .14699 .14768 .14153 .450 .14907 .14977 .15047 .15117 .15187 .15287 .15284 .15291 .16044 .16117 .16190 .16263 .1460 .1764 | | | I . | i | | | | | | | | | .300 | | | ŀ | 1 | | | | | | 1 | | | .310 .06890 .06936 .06982 .07027 .07074 .07120 .07166 .07213 .07259 .07306 .320 .07353 .07401 .07448 .07496 .07543 .07591 .07639 .07667 .07736 .07848 .330 .07833 .07882 .07931 .07980 .08029 .08079 .08128 .08178 .08228 .08278 .340 .08329 .08379 .08430 .08481 .08531 .08583 .08634 .08685 .08737 .08789 .350 .08841 .08893 .08945 .08998 .09050 .09103 .09156 .09209 .09263 .09316 .360 .09370 .09424 .09478 .09532 .09586 .09641 .09695 .09750 .09805 .09860 .370 .09916 .09971 .10027 .10083 .10139 .10195 .10251 .10308 .10364 .10421 .380 .10478 .10535 .10593 .10650 .10708 .10766 .10824 .10882 .10941 .10999 .390 .11058 .11117 .11176 .11235 .11295 .11354 .11414 .11474 .11534 .11595 .11270 .12332 .12395 .12458 .12521 .12584 .12647 .12711 .12774 .12384 .420 .12290 .12966 .13031 .13095 .13160 .13225 .13290 .13355 .13421 .13487 .430 .13552 .13618 .13685 .13751 .13818 .13884 .13951 .14018 .14086 .14153 .440 .14221 .14289 .14357 .14425 .14493 .14562 .14630 .14699 .14768 .14438 .450 .14907 .14977 .15047 .15117 .15187 .15287 .15328 .15399 .15470 .15541 .460 .15612 .15684 .15755 .15827 .15899 .15972 .16044 .16117 .16190 .16263 .470 .16336 .16409 .16483 .16557 .16631 .16705 .1879 .18850 .18285 .18830 .19912 .19994 .20077 .20159 .520 .20242 .20326 .20409 .20492 .20576 .20660 .20744 .20829 .20913 .20998 .530 .21083 .21168 .21253 .21339 .21425 .21511 .21577 .21683 .21700 .18355 .2364 .22559 .22647 .22736 .550 .22825 .22914 .23004 .23094 .23184 .23274 .23364 .23455 .23545 .23545 .560 .23727 .23819 .23910 .24002 .24094 .24094 .24186 .24279 .24372 .24644 .22531 .22188 .22206 .222470 .22382 .22470 .22559 .225470 .22559 .25647 .22736 .550 .22559 .25596 .25591 .25787 .25883 .25980 .26076 .26173 .26270 .26367 .26464 | .230 | .00012 | .00034 | .00097 | .00140 | .00102 | .06225 | .06269 | .06312 | .06356 | .06399 | | .320 .07353 .07401 .07448 .07496 .07543 .07591 .07639 .07687 .07736 .07784 .330 .07833 .07882 .07931 .07980 .08029 .08079 .08128 .08178 .08228 .08278 .340 .08329 .08379 .08430 .08481 .08531 .08583 .08634 .08685 .08737 .08789 .350 .08841 .08939 .09952 .09586 .09103 .09156 .09209 .09263 .09316 .360 .09370 .09424 .09478 .09532 .09586 .09641 .09695 .09750 .09805 .09860 .370 .09916 .09971 .10027 .10083 .10139 .10195 .10251 .10308 .10364 .10421 .380 .10478 .10535 .10593 .10650 .10768 .10766 .10824 .10882 .10941 .10999 .390 .11058 .11117 .11176 .11235 .11295 .11354 .11414 .11474 .11534 .11595 .11270 .12332 .12395 .12458 .12521 .12584 .12647 .12711 .12774 .12838 .420 .12902 .12966 .13031 .13095 .13160 .13225 .13290 .13355 .13421 .13487 .430 .13552 .13618 .13685 .13751 .13818 .13884 .13951 .14018 .14086 .14153 .440 .14221 .14289 .14357 .14425 .14493 .14562 .14630 .14699 .14768 .14584 .450 .14907 .14977 .15047 .15117 .15187 .15257 .15328 .15399 .15470 .15541 .4660 .15612 .15684 .15755 .15827 .15889 .15972 .16044 .16117 .16190 .16263 .470 .16336 .16409 .16483 .16557 .16631 .16705 .16779 .16854 .16928 .17003 .480 .17079 .17154 .17229 .17305 .17381 .17457 .17533 .17610 .17686 .1768 .490 .17840 .17917 .17995 .18072 .18150 .1828 .18307 .18385 .18463 .18542 .500 .12944 .22031 .2218 .22266 .22244 .22326 .220409 .20492 .20576 .20660 .20744 .20829 .20913 .20938 .530 .21083 .21168 .21253 .21339 .21425 .21511 .21597 .21683 .21770 .21559 .550 .22825 .22914 .23004 .23094 .23184 .23264 .23364 .23455 .23545 .23636 .560 .23727 .23819 .23910 .24002 .24094 .24186 .24279 .24372 .24464 .24558 .550 .22825 .22914 .23004 .23094 .23184 .23264 .23455 .23545 .23636 .25596 .25596 .25691 .25787 .25883 .25980 .26076 .26173 .26270 .26367 .26464 | | | | I . | .06575 | .06620 | .06665 | .06709 | .06754 | .06799 | .06845 | | .330 | - 1 | | | I | .07027 | .07074 | .07120 | .07166 | .07213 | .07259 | .07306 | | .340 .08329 .08379 .08430 .08481 .08531 .08583 .08634 .08685 .08737 .08789 .350 .08841 .08893 .08945 .08998 .09050 .09103 .09156 .09209 .09263 .09316 .360 .09370 .09424 .09478 .09532 .09586 .09641 .09695 .09750 .09805 .09805 .09631 .009695 .09750 .09805 .09805 .09805 .09680 .09750 .09805 .09805 .09805 .09696 .09750 .09805 .09805 .09805 .09680 .09916 .09971 .10027 .10083 .10139 .10195 .10251 .10308 .10364 .10421 .380 .10478 .10535 .10593 .10650 .10708 .10766 .10824 .10882 .10941 .10999 .390 .11058 .11117 .11176 .11235 .11295 .11354 .11414 .11474 .11534 .11595 .11295 .11354 .11414 .11474 .11534 .11595 .11295 .11354 .11414 .11474 .11534 .11595 .11290 .1220 .12206 .13313 .13095 .13160 .13225 .13290 .13355 .13421 .13487 .430 .13552 .13618 .13685 .13751 .13818 .13884 .13951 .14018 .14086 .14153 .440 .14221 .14289 .14357 .14425 .14493 .14562 .14630 .14699 .14768 .14838 .450 .14907 .14977 .15047 .15117 .15187 .15257 .15328 .15399 .15470 .15541 .460 .15612 .15684 .15755 .15827 .15899 .15972 .16044 .16117 .16190 .16263 .470 .16336 .16409 .16483 .16557 .16631 .16705 .16779 .16854 .16928 .17003 .480 .17079 .17154 .17229 .17305 .17381 .17457 .17533 .17610 .17686 .17763 .490 .17840 .17917 .17995 .18072 .18150 .18228 .18307 .18385 .18463 .18542 .500 .18621 .18700 .18780 .18859 .18939 .19019 .19099 .19180 .19260 .19341 .500 .19422 .19503 .19584 .19666 .19748 .19830 .19912 .19994 .20077 .20159 .520 .20242 .20326 .20409 .20492 .20576 .20660 .20744 .20829 .20913 .20998 .530 .21083 .21168 .21253 .21339 .21425 .21511 .21597 .21683 .21770 .21857 .540 .21944 .22031 .22118 .22206 .22294 .22382 .22470 .22555 .22647 .22736 .550 .22825 .22914 .23004 .23094 .23184 .23274 .23364 .23455 .23545 .23666 .560 .23727 .23819 .23910 .24002 .24004 .24082 .24279 .24551 .25510 .25505 .25805 .25850 .2585 | 1 | | .07401 | .07448 | .07496 | .07543 | .07591 | .07639 | .07687 | .07736 | .07784 | | .340 | .330 | | .07882 | .07931 | .07980 | .08029 | .08079 | .08128 | .08178 | .08228 | .08278 | | .350 | .340 | | .08379 | .08430 | .08481 | .08531 | .08583 | .08634 | | 1 | | | .360 .09370 .09424 .09478 .09532 .09586 .09641 .09695 .09750 .09805 .09860 .370 .09916 .09971 .10027 .10083 .10139 .10251 .10308 .10364 .10429 .380 .10535 .10593 .10650 .10708 .10766 .10824 .10882 .10941 .10999 .390 .11058 .11117 .11176 .11235 .11295 .11354 .11414 .11474 .11534 .11544 .11534 .11544 .11474 .11534 .11554 .11744 .11534 .11414 .11474 .11534 .11555 .1176 .11777 .11838 .11899 .11960 .12022 .12084 .12146 .12208 .12146 .12208 .12462 .12208 .12462 .12284 .12464 .12274 .12838 .13618 .1368 .13552 .13618 .13685
.13751 .13818 .13844 .13951 .1408 .14086 .14153 <td>.350</td> <td>.08841</td> <td>.08893</td> <td>.08945</td> <td>.08998</td> <td>.09050</td> <td>.09103</td> <td>.09156</td> <td>.09209</td> <td>.09263</td> <td></td> | .350 | .08841 | .08893 | .08945 | .08998 | .09050 | .09103 | .09156 | .09209 | .09263 | | | .370 .09916 .09971 .10027 .10083 .10139 .10251 .10308 .10364 .10421 .380 .10478 .10535 .10593 .10650 .10708 .10766 .10824 .10882 .10941 .10999 .390 .11058 .11117 .11176 .11235 .11295 .11354 .11414 .11474 .11534 .11595 .400 .11655 .11716 .11777 .11838 .11899 .11960 .12022 .12084 .12146 .12208 .410 .12270 .12332 .12395 .12458 .12521 .12584 .12647 .12711 .12774 .12838 .420 .12902 .12966 .13031 .13095 .13160 .13225 .13290 .13355 .13421 .13487 .430 .14221 .14289 .14357 .14425 .14493 .14562 .14630 .14699 .14768 .14838 .450 .14907 .14977 .15047 <td>.360</td> <td>.09370</td> <td>.09424</td> <td>.09478</td> <td>.09532</td> <td>.09586</td> <td></td> <td></td> <td></td> <td>!</td> <td></td> | .360 | .09370 | .09424 | .09478 | .09532 | .09586 | | | | ! | | | .380 .10478 .10535 .10593 .10650 .10708 .10766 .10824 .10882 .10941 .10999 .390 .11058 .11117 .11176 .11235 .11295 .11354 .11414 .11474 .11534 .11595 .400 .11655 .11716 .11777 .11838 .11899 .11960 .12022 .12084 .12146 .12208 .410 .12270 .12332 .12395 .12458 .12521 .12584 .12647 .12711 .12774 .12838 .420 .12902 .12966 .13031 .13095 .13160 .13225 .13290 .13355 .13421 .13487 .430 .13552 .13618 .13685 .13751 .13818 .13884 .139951 .14018 .14088 .14153 .440 .14221 .14289 .14357 .14425 .14483 .13951 .14018 .14699 .14768 .14538 .450 .14907 .14977 <td>.370</td> <td>.09916</td> <td>.09971</td> <td>.10027</td> <td>.10083</td> <td>.10139</td> <td>.10195</td> <td></td> <td></td> <td>1</td> <td></td> | .370 | .09916 | .09971 | .10027 | .10083 | .10139 | .10195 | | | 1 | | | .390 .11058 .11117 .11176 .11235 .11295 .11354 .11414 .11474 .11534 .11595 .400 .11655 .11716 .11777 .11838 .11899 .11960 .12022 .12084 .12146 .12208 .410 .12270 .12332 .12395 .12458 .12521 .12584 .12647 .12711 .12774 .12838 .420 .12902 .12966 .13031 .13095 .13160 .13225 .13290 .13355 .13421 .13487 .430 .13552 .13618 .13685 .13751 .13818 .13884 .13951 .14018 .14086 .14153 .440 .14221 .14289 .14357 .14425 .14493 .14562 .14630 .14699 .14768 .14838 .450 .14907 .14977 .15047 .15117 .15187 .15257 .15328 .15399 .15470 .16541 .470 .16336 .16409 <td>.380</td> <td>.10478</td> <td>.10535</td> <td>.10593</td> <td>.10650</td> <td>.10708</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> | .380 | .10478 | .10535 | .10593 | .10650 | .10708 | | 0 | | | | | .410 .12270 .12332 .12395 .12458 .12521 .12584 .12647 .12711 .12774 .12838 .420 .12902 .12966 .13031 .13095 .13160 .13225 .13290 .13355 .13421 .13487 .430 .13552 .13618 .13685 .13751 .13818 .13884 .13951 .14018 .14086 .14153 .440 .14221 .14289 .14357 .14425 .14493 .14562 .14630 .14699 .14768 .14838 .450 .14907 .14977 .15047 .15117 .15187 .15257 .15328 .15399 .15470 .15541 .460 .15612 .15684 .15755 .15827 .15899 .15972 .16044 .16117 .16190 .16263 .470 .16336 .16409 .16483 .16557 .16631 .16705 .16779 .16854 .16928 .17003 .480 .17079 .17154 .17229 .17305 .17381 .17457 .17533 .17610 .17686 .17763 .490 .17840 .17917 .17995 .18072 .18150 .18228 .18307 .18385 .18463 .18542 .500 .18621 .18700 .18780 .18859 .18939 .19019 .19099 .19180 .19260 .19341 .510 .19422 .19503 .19584 .19666 .19748 .19830 .19912 .19994 .20077 .20159 .520 .20242 .20326 .20409 .20492 .20576 .20660 .20744 .20829 .20913 .20998 .530 .21083 .21168 .21253 .21339 .21425 .21511 .21597 .21683 .21770 .21857 .550 .22825 .22914 .23004 .23094 .23144 .23294 .23364 .23455 .23545 .23545 .560 .23727 .23819 .23910 .24002 .24094 .24186 .24279 .24372 .24464 .24558 .550 .25596 .25691 .25787 .25883 .25980 .26076 .26173 .26270 .26367 .26464 | .390 | .11058 | .11117 | .11176 | | | | | | | | | .410 .12270 .12332 .12395 .12458 .12521 .12584 .12647 .12711 .12774 .12838 .420 .12902 .12966 .13031 .13095 .13160 .13225 .13290 .13355 .13421 .13487 .430 .13552 .13618 .13685 .13751 .13818 .13884 .13951 .14018 .14086 .14153 .440 .14221 .14289 .14357 .14425 .14493 .14562 .14630 .14699 .14768 .14838 .450 .14907 .14977 .15047 .15117 .15187 .15257 .15328 .15399 .15470 .15541 .460 .15612 .15684 .15755 .15827 .15899 .15972 .16044 .16117 .16190 .16263 .470 .16336 .16409 .16483 .16557 .16631 .16705 .16779 .16854 .16928 .17003 .480 .17079 .17154 .17229 .17305 .17381 .17457 .17533 .17610 .17686 .17763 .490 .17840 .17917 .17995 .18072 .18150 .18228 .18307 .18385 .18463 .18542 .500 .18621 .18700 .18780 .18859 .18939 .19019 .19099 .19180 .19260 .19341 .510 .19422 .19503 .19584 .19666 .19748 .19830 .19912 .19994 .20077 .20159 .520 .20242 .20326 .20409 .20492 .20576 .20660 .20744 .20829 .20913 .20998 .530 .21083 .21168 .21253 .21339 .21425 .21511 .21597 .21683 .21770 .21857 .550 .22825 .22914 .23004 .23094 .23144 .23294 .23364 .23455 .23545 .23545 .560 .23727 .23819 .23910 .24002 .24094 .24186 .24279 .24372 .24464 .24558 .550 .25596 .25691 .25787 .25883 .25980 .26076 .26173 .26270 .26367 .26464 | .400 | .11655 | .11716 | 11777 | 11838 | 11899 | 11960 | 12022 | 12004 | 12146 | 12200 | | .420 .12902 .12966 .13031 .13095 .13160 .13225 .13290 .13355 .13421 .13487 .430 .13552 .13618 .13685 .13751 .13818 .13884 .13951 .14018 .14086 .14153 .440 .14221 .14289 .14357 .14425 .14493 .14562 .14630 .14699 .14768 .14838 .450 .14907 .14977 .15047 .15117 .15187 .15257 .15328 .15399 .15470 .15541 .460 .15612 .15684 .15755 .15827 .15899 .15972 .16044 .16117 .16190 .16263 .470 .16336 .16409 .16483 .16557 .16631 .16705 .16779 .16854 .16928 .17003 .480 .17079 .17154 .17229 .17305 .17381 .17457 .17533 .17610 .17686 .17763 .490 .18621 .18700 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> | | | | | | | | | | 1 | | | .430 .13552 .13618 .13685 .13751 .13818 .13884 .13951 .14018 .14086 .14153 .440 .14221 .14289 .14357 .14425 .14493 .14562 .14630 .14699 .14768 .14153 .450 .14907 .14977 .15047 .15117 .15187 .15257 .15328 .15399 .15470 .15541 .460 .15612 .15684 .15755 .15827 .15899 .15972 .16044 .16117 .16190 .16263 .470 .16336 .16409 .16483 .16557 .16631 .16705 .16779 .16854 .16928 .17003 .480 .17079 .17154 .17229 .17305 .17381 .17457 .17533 .17610 .17686 .17763 .490 .17840 .17917 .17995 .18072 .18150 .18228 .18307 .18385 .18463 .18542 .500 .18621 .18700 <td>I</td> <td></td> | I | | | | | | | | | | | | .440 .14221 .14289 .14357 .14425 .14493 .14562 .14630 .14699 .14768 .14838 .450 .14907 .14977 .15047 .15117 .15187 .15257 .15328 .15399 .15470 .15541 .460 .15612 .15684 .15755 .15827 .15899 .15972 .16044 .16117 .16190 .16263 .470 .16336 .16409 .16483 .16557 .16631 .16705 .16779 .16854 .16928 .17003 .480 .17079 .17154 .17229 .17305 .17381 .17457 .17533 .17610 .17686 .17763 .490 .17840 .17917 .17995 .18072 .18150 .18228 .18307 .18385 .18463 .18542 .500 .18621 .18700 .18780 .18859 .18939 .19019 .19099 .19180 .19260 .19341 .510 .19422 .19503 <td>- 1</td> <td></td> | - 1 | | | | | | | | | | | | .450 .14907 .14977 .15047 .15117 .15187 .15257 .15328 .15399 .15470 .15541 .460 .15612 .15684 .15755 .15827 .15899 .15972 .16044 .16117 .16190 .16263 .470 .16336 .16409 .16483 .16557 .16631 .16705 .16779 .16854 .16928 .17003 .480 .17079 .17154 .17229 .17305 .17381 .17457 .17533 .17610 .17686 .17763 .490 .17840 .17917 .17995 .18072 .18150 .18228 .18307 .18385 .18463 .18542 .500 .18621 .18700 .18780 .18859 .18939 .19019 .19099 .19180 .19260 .19341 .510 .19422 .19503 .19584 .19666 .19748 .19830 .19912 .19994 .20077 .20159 .520 .20242 .20326 <td>1</td> <td></td> | 1 | | | | | | | | | | | | .460 .15612 .15684 .15755 .15827 .15899 .15972 .16044 .16117 .16190 .16263 .470 .16336 .16409 .16483 .16557 .16631 .16705 .16779 .16854 .16928 .17003 .480 .17079 .17154 .17229 .17305 .17381 .17457 .17533 .17610 .17686 .17763 .490 .17840 .17917 .17995 .18072 .18150 .18228 .18307 .18385 .18463 .18542 .500 .18621 .18700 .18780 .18859 .18939 .19019 .19099 .19180 .19260 .19341 .510 .19422 .19503 .19584 .19666 .19748 .19830 .19912 .19994 .20077 .20159 .520 .20242 .20326 .20409 .20492 .20576 .20660 .20744 .20829 .20913 .20998 .530 .2183 .21168 | | | | | | | | | | | | | .470 .16336 .16409 .16483 .16557 .16631 .16705 .16779 .16854 .16928 .17003 .480 .17079 .17154 .17229 .17305 .17381 .17457 .17533 .17610 .17686 .17763 .490 .17840 .17917 .17995 .18072 .18150 .18228 .18307 .18385 .18463 .18542 .500 .18621 .18700 .18780 .18859 .18939 .19019 .19099 .19180 .19260 .19341 .510 .19422 .19503 .19584 .19666 .19748 .19830 .19912 .19994 .20077 .20159 .520 .20242 .20326 .20409 .20492 .20576 .20660 .20744 .20829 .20913 .20998 .530 .21083 .21168 .21253 .21339 .21425 .21511 .21597 .21683 .21770 .21857 .540 .21944 .22031 <td></td> | | | | | | | | | | | | | .480 | | | | | | | | | | | | | .490 .17840 .17917 .17995 .18072 .18150 .18228 .18307 .18385 .18463 .18542 .500 .18621 .18700 .18780 .18859 .18939 .19019 .19099 .19180 .19260 .19341 .510 .19422 .19503 .19584 .19666 .19748 .19830 .19912 .19994 .20077 .20159 .520 .20242 .20326 .20409 .20492 .20576 .20660 .20744 .20829 .20913 .20998 .530 .21083 .21168 .21253 .21339 .21425 .21511 .21597 .21683 .21770 .21857 .540 .21944 .22031 .22118 .22206 .22294 .22382 .22470 .22559 .22647 .22736 .550 .22825 .22914 .23004 .23184 .23274 .23364 .23455 .23545 .23636 .560 .23727 .23819 .23910 <td></td> | | | | | | | | | | | | | .500 | | | | i l | | | | | | | | | .510 .19422 .19503 .19584 .19666 .19748 .19830 .19912 .19994 .20077 .20159 .520 .20242 .20326 .20409 .20492 .20576 .20660 .20744 .20829 .20913 .20998 .530 .21083 .21168 .21253 .21339 .21425 .21511 .21597 .21683 .21770 .21857 .540 .21944 .22031 .22118 .22206 .22294 .22382 .22470 .22559 .22647 .22736 .550 .22825 .22914 .23004 .23094 .23184 .23274 .23364 .23455 .23545 .23636 .560 .23727 .23819 .23910 .24002 .24094 .24186 .24279 .24372 .24464 .24558 .570 .24651 .24744 .24838 .24932 .25026 .25121 .25215 .25310 .25405 .25500 .580 .25596 .25691 <td>.490</td> <td>·1/84U</td> <td>.1/91/</td>
<td>.1/995</td> <td>.18072</td> <td>.18150</td> <td>.18228</td> <td>.18307</td> <td>.18385</td> <td>.18463</td> <td>.18542</td> | .490 | ·1/84U | .1/91/ | .1/995 | .18072 | .18150 | .18228 | .18307 | .18385 | .18463 | .18542 | | .510 .19422 .19503 .19584 .19666 .19748 .19830 .19912 .19994 .20077 .20159 .520 .20242 .20326 .20409 .20492 .20576 .20660 .20744 .20829 .20913 .20998 .530 .21083 .21168 .21253 .21339 .21425 .21511 .21597 .21683 .21770 .21857 .540 .21944 .22031 .22118 .22206 .22294 .22382 .22470 .22559 .22647 .22736 .550 .22825 .22914 .23004 .23094 .23184 .23274 .23364 .23455 .23545 .23636 .560 .23727 .23819 .23910 .24002 .24094 .24186 .24279 .24372 .24464 .24558 .570 .24651 .24744 .24838 .24932 .25026 .25121 .25215 .25310 .25405 .25500 .580 .25596 .25691 <td></td> <td></td> <td></td> <td></td> <td></td> <td>.18939</td> <td>.19019</td> <td>.19099</td> <td>.19180</td> <td>.19260</td> <td>.19341</td> | | | | | | .18939 | .19019 | .19099 | .19180 | .19260 | .19341 | | .520 .20242 .20326 .20409 .20492 .20576 .20660 .20744 .20829 .20913 .20998 .530 .21083 .21168 .21253 .21339 .21425 .21511 .21597 .21683 .21770 .21857 .540 .21944 .22031 .22118 .22206 .22294 .22382 .22470 .22559 .22647 .22736 .550 .22825 .22914 .23004 .23094 .23184 .23274 .23364 .23455 .23545 .23636 .560 .23727 .23819 .23910 .24002 .24094 .24186 .24279 .24372 .24464 .24558 .570 .24651 .24744 .24838 .24932 .25026 .25121 .25215 .25310 .25405 .25500 .580 .25596 .25691 .25787 .25883 .25980 .26076 .26173 .26270 .26367 .26464 | | | | | | .19748 | .19830 | .19912 | .19994 | .20077 | .20159 | | .530 .21083 .21168 .21253 .21339 .21425 .21511 .21597 .21683 .21770 .21857 .540 .21944 .22031 .22118 .22206 .22294 .22382 .22470 .22559 .22647 .22736 .550 .22825 .22914 .23004 .23094 .23184 .23274 .23364 .23455 .23545 .23636 .560 .23727 .23819 .23910 .24002 .24094 .24186 .24279 .24372 .24464 .24558 .570 .24651 .24744 .24838 .24932 .25026 .25121 .25215 .25310 .25405 .25500 .580 .25596 .25691 .25787 .25883 .25980 .26076 .26173 .26270 .26367 .26464 | | | | .20409 | .20492 | .20576 | .20660 | .20744 | .20829 | | .20998 | | .540 .21944 .22031 .22118 .22206 .22294 .22382 .22470 .22559 .22647 .22736 .550 .22825 .22914 .23004 .23094 .23184 .23274 .23364 .23455 .23545 .23636 .560 .23727 .23819 .23910 .24002 .24094 .24186 .24279 .24372 .24464 .24558 .570 .24651 .24744 .24838 .24932 .25026 .25121 .25215 .25310 .25405 .25500 .580 .25596 .25691 .25787 .25883 .25980 .26076 .26173 .26270 .26367 .26464 | | | | | .21339 | .21425 | .21511 | .21597 | .21683 | | | | .550 .22825 .22914 .23004 .23094 .23184 .23274 .23364 .23455 .23545 .23636 .560 .23727 .23819 .23910 .24002 .24094 .24186 .24279 .24372 .24464 .24558 .570 .24651 .24744 .24838 .24932 .25026 .25121 .25215 .25310 .25405 .25500 .580 .25596 .25691 .25787 .25883 .25980 .26076 .26173 .26270 .26367 .26464 | | | .22031 | .22118 | | | 1 | | | | | | .560 .23727 .23819 .23910 .24002 .24094 .24186 .24279 .24372 .24464 .24558 .570 .24651 .24744 .24838 .24932 .25026 .25121 .25215 .25310 .25405 .25500 .580 .25596 .25691 .25787 .25883 .25980 .26076 .26173 .26270 .26367 .26464 | .550 | | .22914 | | | | | | | | | | .570 .24651 .24744 .24838 .24932 .25026 .25121 .25215 .25310 .25405 .25500 .580 .25596 .25691 .25787 .25883 .25980 .26076 .26173 .26270 .26367 .26464 | .560 | .23727 | .23819 | | .24002 | | | | | | | | .580 .25596 .25691 .25787 .25883 .25980 .26076 .26173 .26270 .26367 .26464 | | | .24744 | | | | | i · | | | | | TOO 00000 00000 120404 | .580 | | .25691 | | | | | | | | | | | .590 | .26562 | .26660 | .26758 | .26856 | .26955 | .27053 | .27152 | .27252 | .27351 | .27451 | TABLE A26.- Continued | М | 0 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | |--------|----------|----------|----------|---------|---------|---------|---------|---------|---------|---------| | | | | - 000001 | 2 27253 | 0.27952 | 0.28053 | 0.28154 | 0.28255 | 0.28357 | 0.28459 | | 0.600 | 0.27550 | 0.27650 | | 0.27851 | | .29075 | .29178 | .29282 | .29386 | .29490 | | .610 | .28561 | .28663 | .28766 | .28869 | .28972 | , | .30225 | .30331 | .30437 | .30544 | | .620 | .29594 | .29699 | .29804 | .29909 | .30014 | .30119 | 3 | .31403 | .31512 | .31621 | | .630 | .30650 | .30757 | .30864 | .30972 | .31079 | .31187 | .31295 | .32499 | .32610 | .32721 | | .640 | .31729 | .31839 | .31948 | .32058 | .32168 | .32278 | .32388 | 1 | | .33845 | | .650 | .32832 | .32944 | .33056 | .33168 | .33280 | .33393 | .33505 | .33618 | .33732 | | | .660 | .33959 | .34073 | .34187 | .34301 | .34416 | .34531 | .34646 | . 34762 | .34877 | .34993 | | .670 | .35110 | .35226 | .35343 | .35460 | .35577 | .35694 | .35812 | .35930 | .36048 | .36166 | | .680 | .36285 | .36404 | .36523 | .36642 | .36762 | .36882 | .37002 | .37122 | .37243 | .37364 | | .690 | .37485 | .37606 | .37728 | .37850 | .37972 | .38094 | .38217 | .38340 | .38463 | .38586 | | | | | | | | | | | | | | .700 | .38710 | .38834 | .38958 | .39083 | .39207 | .39332 | .39458 | .39583 | .39709 | .39835 | | .710 | .39961 | .40088 | .40214 | .40341 | .40469 | .40596 | .40724 | .40852 | .40980 | .41109 | | .720 | .41238 | .41367 | .41496 | .41626 | .41756 | .41886 | .42017 | .42147 | .42278 | .42410 | | .730 | .42541 | .42673 | .42805 | .42937 | .43070 | .43203 | .43336 | .43469 | .43603 | .43737 | | .740 | .43871 | .44005 | .44140 | .44275 | .44410 | .44546 | .44682 | .44818 | .44954 | .45091 | | .750 | .45228 | .45365 | .45503 | .45640 | .45778 | .45917 | .46055 | .46194 | .46333 | .46473 | | .760 | .46612 | .46752 | .46893 | .47033 | .47174 | .47315 | .47457 | .47598 | .47740 | .47882 | | .770 | .48025 | .48168 | .48311 | .48454 | .48598 | .48742 | .48886 | .49030 | .49175 | .49320 | | .780 | .49466 | .49611 | .49757 | .49903 | .50050 | .50197 | .50344 | .50491 | .50639 | .50787 | | .790 | .50935 | .51084 | .51233 | .51382 | .51531 | .51681 | .51831 | .51981 | .52132 | .52283 | | 1 .790 | .30933 | .51084 | .51255 | .51502 | .32332 | | | | | | | 000 | .52434 | .52586 | .52737 | .52889 | .53042 | .53195 | .53347 | .53501 | .53654 | .53808 | | .800 | (| .54117 | .54272 | .54427 | .54582 | .54738 | .54894 | .55050 | .55207 | .55364 | | .810 | .53962 | | .55836 | .55994 | .56153 | .56312 | .56471 | .56630 | .56790 | .56950 | | .820 | .55521 | .55679 | | | 1 | .57916 | .58078 | .58241 | .58404 | .58567 | | .830 | .57110 | .57271 | .57432 | .57593 | .57754 | .59552 | .59717 | .59883 | .60049 | .60215 | | .840 | .58730 | .58894 | :59058 | .59222 | .59387 | | .61388 | .61557 | .61726 | .61896 | | .850 | 1 | .60549 | .60716 | .60884 | .61051 | .61220 | .63091 | .63263 | .63436 | .63609 | | .860 | | .62236 | .62406 | .62577 | .62748 | .62920 | | .65003 | .65178 | .65354 | | .870 | | .63955 | .64129 | .64303 | .64477 | .64652 | .64827 | I . | 1 | .67134 | | .880 | 1 | .65708 | .65885 | .66062 | .66240 | .66418 | .66596 | .66775 | .66954 | | | .890 | .67314 | .67494 | .67674 | .67855 | .68036 | .68218 | .68399 | .68582 | .68764 | .68947 | | | | | İ | | | | 1 | | | 70705 | | .900 | .69130 | .69314 | .69498 | .69682 | .69867 | .70052 | .70237 | .70423 | .70609 | .70795 | | .910 | .70982 | .71169 | .71356 | .71544 | .71732 | .71920 | .72109 | .72298 | .72488 | .72678 | | .920 | .72868 | .73059 | .73250 | .73441 | .73633 | .73825 | .74017 | .74210 | .74403 | .74596 | | .930 | | .74984 | .75179 | .75374 | .75569 | .75765 | .75961 | .76157 | .76354 | .76551 | | .940 | 1 | .76946 | .77145 | .77343 | .77542 | .77742 | .77941 | .78141 | .78342 | .78543 | | .950 | 1 | .78945 | .79147 | .79350 | .79552 | .79755 | .79959 | .80163 | .80367 | .80571 | | .960 | | .80982 | .81187 | .81394 | .81600 | .81807 | .82014 | .82222 | .82430 | .82638 | | .970 | | .83056 | .83266 | .83476 | .83686 | .83897 | .84108 | .84319 | .84531 | .84744 | | .980 | I | .85169 | .85383 | .85597 | .85811 | .86025 | .86241 | .86456 | .86672 | .86888 | | .990 | | 1 | .87539 | .87757 | .87975 | .88194 | .88413 | .88632 | .88852 | .89072 | | .,,, | | 10.522 | | | | | | 1 | | | | 1.000 | .89293 | .89514 | .89735 | .89957 | .90180 | .90402 | .90625 | .90849 | .91073 | .91297 | | 1.010 | | | .91972 | .92198 | .92424 | | .92878 | .93105 | .93333 | | | | | | .94248 | .94478 | .94708 | L | .95169 | .95401 | .95632 | 1 1 | | 1.020 | I | | .96563 | .96796 | 1 | | .97500 | .97735 | .97970 | h . | | 1.030 | | | 1 | .99153 | | | .99868 | 1.00106 | 1.00346 | | | 1.040 | | | .98916 | 1 | | | 1.02273 | 1.02515 | 1.02758 | 1 | | 1.050 | 1 | | 1.01306 | 1.01547 | 1 | 1 | 1.02273 | 1.02313 | 1 | | | 1.060 | 1 | 1 | 1.03734 | 1.03978 | 1 | 1 | 1 | 1.07443 | | | | 1.070 | 1 | I | 1.06197 | 1.06446 | 1.06694 | 1 | i . | 1.07443 | 1 | 1 | | 1.080 | | I | 1.08697 | 1.08949 | | | | 1.12512 | I | | | 1.090 | 1.10722 | 1.10977 | 1.11232 | 1.11487 | 1.11743 | 1.11999 | 1.12255 | 1.12312 | 1.12/09 | 1.1302/ | TABLE A26.- Continued | F | 1 | T | | | | | | | | | |-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | М | 0 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | | 1.100 | 1.13285 | 1.13543 | 1.13801 | 1.14060 | 1.14320 | 1.14579 | 1.14839 | 1.15099 | 1.15360 | 1.15621 | | 1.110 | 1.15882 | 1.16144 | 1.16406 | 1.16668 | 1.16930 | 1.17193 | 1.17457 | 1.17720 | 1.17984 | 1.18249 | | 1.120 | 1.18513 | 1.18778 | 1.19044 | 1.19309 | 1.19575 | 1.19842 | 1.20108 | 1.20375 | 1.20643 | 1.20910 | | 1.130 | 1.21178 | 1.21447 | 1.21715 | 1.21985 | 1.22254 | 1.22524 | 1.22794 | 1.23064 | 1.23335 | 1.23606 | | 1.140 | 1.23877 | 1.24149 | 1.24421 | 1.24693 | 1.24966 | 1.25239 | 1.25512 | 1.25785 | 1.26059 | 1.26334 | | 1.150 | 1.26608 | 1.26883 | 1.27159 | 1.27434 | 1.27710 | 1.27986 | 1.28263 | 1.28540 | 1.28817 | 1.29095 | | 1.160 | 1.29372 | 1.29651 | 1.29929 | 1.30208 | 1.30487 | 1.30767 | 1.31047 | 1.31327 | 1.31607 | 1.31888 | | 1.170 | 1.32169 | 1.32450 | 1.32732 | 1.33014 | 1.33297 | 1.33579 | 1.33862 | 1.34146 | 1.34429 | 1.34713 | | 1.180 | 1.34998 | 1.35282 | 1.35567 | 1.35852 | 1.36138 |
1.36424 | 1.36710 | 1.36997 | 1.37284 | 1.37571 | | 1.190 | 1.37858 | 1.38146 | 1.38434 | 1.38722 | 1.39011 | 1.39300 | 1.39590 | 1.39879 | 1.40169 | 1.40460 | | 1.200 | 1.40750 | 1.41041 | 1.41332 | 1.41624 | 1.41916 | 1.42208 | 1.42500 | 1.42793 | 1.43086 | 1.43380 | | 1.210 | 1.43674 | 1.43968 | 1.44262 | 1.44557 | 1.44852 | 1.45147 | 1.45442 | 1.45738 | 1.46035 | 1.46331 | | 1.220 | 1.46628 | 1.46925 | 1.47223 | 1.47520 | 1.47818 | 1.48117 | 1.48416 | 1.48715 | 1.49014 | 1.49313 | | 1.230 | 1.49613 | 1.49914 | 1.50214 | 1.50515 | 1.50816 | 1.51118 | 1.51419 | 1.51721 | 1.52024 | 1.52326 | | 1.240 | 1.52629 | 1.52933 | 1.53236 | 1.53540 | 1.53844 | 1.54149 | 1.54454 | 1.54759 | 1.55064 | 1.55370 | | 1.250 | 1.55676 | 1.55982 | 1.56289 | 1.56596 | 1.56903 | 1.57210 | 1.57518 | 1.57826 | 1.58135 | 1.58444 | | 1.260 | 1.58753 | 1.59062 | 1.59372 | 1.59682 | 1.59992 | 1.60302 | 1.60613 | 1.60924 | 1.61236 | 1.61548 | | 1.270 | 1.61860 | 1.62172 | 1.62485 | 1.62797 | 1.63111 | 1.63424 | 1.63738 | 1.64052 | 1.64367 | 1.64681 | | 1.280 | 1.64996 | 1.65321 | 1.65627 | 1.65943 | 1.66260 | 1.66576 | 1.66893 | 1.67210 | 1.67527 | 1.67845 | | 1.290 | 1.68163 | 1.68481 | 1.68800 | 1.69119 | 1.69438 | 1.69758 | 1.70077 | 1.70397 | 1.70718 | 1.71038 | | 1.300 | 1.71359 | 1.71681 | 1.72002 | 1.72324 | 1.72646 | 1.72969 | 1.73291 | 1.73614 | 1.73938 | 1.74261 | | 1.310 | 1.74585 | 1.74909 | 1.75234 | 1.75559 | 1.75884 | 1.76209 | 1.76535 | 1.76861 | 1.77187 | 1.77513 | | 1.320 | 1.77840 | 1.78167 | 1.78495 | 1.78823 | 1.79151 | 1.79479 | 1.79807 | 1.80136 | 1.80465 | 1.80795 | | 1.330 | 1.81125 | 1.81455 | 1.81785 | 1.82116 | 1.82447 | 1.82778 | 1.83109 | 1.83441 | 1.83773 | 1.84105 | | 1.340 | 1.84438 | 1.84771 | 1.85104 | 1.85438 | 1.85772 | 1.86106 | 1.86440 | 1.86775 | 1.87110 | 1.87445 | | 1.350 | 1.87781 | 1.88116 | 1.88452 | 1.88789 | 1.89126 | 1.89463 | 1.89800 | 1.90137 | 1.90475 | 1.90813 | | 1.360 | 1.91152 | 1.91491 | 1.91830 | 1.92169 | 1.92508 | 1.92848 | 1.93188 | 1.93529 | 1.93870 | 1.94211 | | 1.370 | 1.94552 | 1.94893 | 1.95235 | 1.95577 | 1.95920 | 1.96263 | 1.96606 | 1.96949 | 1.97293 | 1.97636 | | 1.380 | 1.97981 | 1.98325 | 1.98670 | 1.99015 | 1.99360 | 1.99706 | 2.00052 | 2.00398 | 2.00744 | 2.01091 | | 1.390 | 2.01438 | 2.01785 | 2.02133 | 2.02481 | 2.02829 | 2.03177 | 2.03526 | 2.03875 | 2.04224 | 2.04574 | | 1.400 | 2.04924 | 2.05274 | 2.05624 | 2.05975 | 2.06326 | 2.06677 | 2.07029 | 2.07380 | 2.07733 | 2.08085 | | 1.410 | 2.08438 | 2.08791 | 2.09144 | 2.09497 | 2.09851 | 2.10205 | 2.10560 | 2.10914 | 2.11269 | 2.11624 | | 1.420 | 2.11980 | 2.12336 | 2.12692 | 2.13048 | 2.13405 | 2.13762 | 2.14119 | 2.14476 | 2.14834 | 2.15192 | | 1.430 | 2.15551 | 2.15909 | 2.16268 | 2.16627 | 2.16987 | 2.17346 | 2.17706 | 2.18067 | 2.18427 | 2.18788 | | 1.440 | 2.19149 | 2.19511 | 2.19872 | 2.20234 | 2.20597 | 2.20959 | 2.21322 | 2.21685 | 2.22048 | 2.22412 | | 1.450 | 2.22776 | 2.23140 | 2.23505 | 2.23869 | 2.24234 | 2.24600 | 2.24965 | 2.25331 | 2.25697 | 2.26064 | | 1.460 | 2.26431 | 2.26798 | 2.27165 | 2.27532 | 2.27900 | 2.28268 | 2.28637 | 2.29005 | 2.29374 | 2.29744 | | 1.470 | 2.30113 | 2.30483 | 2.30853 | 2.31223 | 2.31594 | 2.31965 | 2.32336 | 2.32707 | 2.33079 | 2.33451 | | 1.480 | 2.33823 | 2.34196 | 2.34569 | 2.34942 | 2.35315 | 2.35689 | 2.36063 | 2.36437 | 2.36812 | 2.37187 | | 1.490 | 2.37562 | 2.37937 | 2.38313 | 2.38688 | 2.39065 | 2.39441 | 2.39818 | 2.40195 | 2.40572 | 2.40950 | | 1.500 | 2.41327 | 2.41706 | 2.42084 | 2.42463 | 2.42842 | 2.43221 | 2.43600 | 2.43980 | 2.44360 | 2.44740 | | 1.510 | 2.45121 | 2.45502 | 2.45883 | 2.46264 | 2.46646 | 2.47028 | 2.47410 | 2.47793 | 2.48176 | 2.48559 | | 1.520 | 2.48942 | 2.49326 | 2.49710 | 2.50094 | 2.50478 | 2.50863 | 2.51248 | 2.51633 | 2.52019 | 2.52405 | | 1.530 | 2.52791 | 2.53177 | 2.53564 | 2.53951 | 2.54338 | 2.54725 | 2.55113 | 2.55501 | 2.55889 | 2.56278 | | 1.540 | 2.56667 | 2.57056 | 2.57445 | 2.57835 | 2.58225 | 2.58615 | 2.59005 | 2.59396 | 2.59787 | 2.60179 | | 1.550 | 2.60570 | 2.60962 | 2.61354 | 2.61747 | 2.62139 | 2.62532 | 2.62925 | 2.63319 | 2.63713 | 2.64107 | | 1.560 | 2.64501 | 2.64896 | 2.65290 | 2.65686 | 2.66081 | 2.66477 | 2.66873 | 2.67269 | 2.67665 | 2.68062 | | 1.570 | 2.68459 | 2.68856 | 2.69254 | 2.69652 | 2.70050 | 2.70449 | 2.70847 | 2.71246 | 2.71645 | 2.72045 | | 1.580 | 2.72445 | 2.72845 | 2.73245 | 2.73646 | 2.74046 | 2.74448 | 2.74849 | 2.75251 | 2.75653 | 2.76055 | | 1.590 | 2.76457 | 2.76860 | 2.77263 | 2.77666 | 2.78070 | 2.78474 | 2.78878 | 2.79282 | 2.79687 | 2.80092 | TABLE A26.- Continued | | | | | | | | | | | | |-------|----------|---------|---------|---------|---------|----------|---------|-------------|---------|---------| | М | 0 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | | 1.600 | 2.80497 | 2.80903 | 2.81308 | 2.81714 | 2.82121 | 2.82527 | 2.82934 | 2.83341 | 2.83749 | 2.84156 | | 1.610 | 2.84564 | 2.84972 | 2.85381 | 2.85790 | 2.86199 | 2.86608 | 2.87017 | 2.87427 | 2.87837 | 2.88248 | | 1.620 | 2.88658 | 2.89069 | 2.89480 | 2.89892 | 2.90304 | 2.90716 | 2.91128 | 2.91540 | 2.91953 | 2.92366 | | 1.630 | 2.92780 | 2.93193 | 2.93607 | 2.94021 | 2.94436 | 2.94850 | 2.95265 | 2.95681 | 2.96096 | 2.96512 | | 1.640 | 2.96928 | 2.97344 | 2.97761 | 2.98178 | 2.98595 | 2.99012 | 2.99430 | 2.99848 | 3.00266 | 3.00684 | | 1.650 | 3.01103 | 3.01522 | 3.01941 | 3.02361 | 3.02781 | 3.03201 | 3.03621 | 3.04042 | 3.04463 | 3.04884 | | 1.660 | 3.05305 | 3.05727 | 3.06149 | 3.06571 | 3.06994 | 3.07417 | 3.07840 | 3.08263 | 3.08687 | 3.09110 | | 1.670 | 3.09535 | 3.09959 | 3.10384 | 3.10809 | 3.11234 | 3.11659 | 3.12085 | 3.12511 | 3.12937 | 3.13364 | | 1.680 | 3.13791 | 3.14218 | 3.14645 | 3.15073 | 3.15501 | 3.15929 | 3.16357 | 3.16786 | 3.17215 | 3.17644 | | 1.690 | 3.18074 | 3.18503 | 3.18933 | 3.19364 | 3.19794 | 3.20225 | 3.20656 | 3.21088 | 3.21519 | 3.21951 | | 1.030 | 30.200.1 | 0.12000 | | | | | | | 1 | | | 1.700 | 3.22383 | 3.22816 | 3.23248 | 3.23681 | 3.24115 | 3.24548 | 3.24982 | 3.25416 | 3.25850 | 3.26285 | | 1.710 | 3.26720 | 3.27155 | 3.27590 | 3.28026 | 3.28462 | 3.28898 | 3.29335 | 3.29771 | 3.30208 | 3.30646 | | 1.720 | 3.31083 | 3.31521 | 3.31959 | 3.32397 | 3.32836 | 3.33275 | 3.33714 | 3.34154 | 3.34593 | 3.35033 | | 1.730 | 3.35473 | 3.35914 | 3.36355 | 3.36796 | 3.37237 | 3.37679 | 3.38120 | 3.38562 | 3.39005 | 3.39447 | | 1.740 | 3.39890 | 3.40333 | 3.40777 | 3.41221 | 3.41665 | 3.42109 | 3.42553 | 3.42998 | 3.43443 | 3.43888 | | 1.750 | 3.44334 | 3.44780 | 3.45226 | 3.45672 | 3.46119 | 3.46566 | 3.47013 | 3.47460 | 3.47908 | 3.48356 | | 1.760 | 3.48804 | 3.49253 | 3.49701 | 3.50150 | 3.50600 | 3.51049 | 3.51499 | 3.51949 | 3.52400 | 3.52850 | | 1.770 | 3.53301 | 3.53752 | 3.54204 | 3.54655 | 3.55107 | 3.55560 | 3.56012 | 3.56465 | 3.56918 | 3.57371 | | 1.780 | 3.57825 | 3.58278 | 3.58733 | 3.59187 | 3.59642 | 3.60096 | 3.60552 | 3.61007 | 3.61463 | 3.61919 | | 1.790 | 3.62375 | 3.62831 | 3.63288 | 3.63745 | 3.64202 | 3.64660 | 3.65118 | 3.65576 | 3.66034 | 3.66493 | | 1.750 | | | | | | | | | | | | 1.800 | 3.66952 | 3.67411 | 3.67870 | 3.68330 | 3.68790 | 3.69250 | 3.69710 | 3.70171 | 3.70632 | 3.71093 | | 1.810 | 3.71555 | 3.72017 | 3.72479 | 3.72941 | 3.73404 | 3.73867 | 3.74330 | 3.74793 | 3.75257 | 3.75721 | | 1.820 | 3.76185 | 3.76649 | 3.77114 | 3.77579 | 3.78044 | 3.78510 | 3.78975 | 3.79442 | 3.79908 | 3.80374 | | 1.830 | 3.80841 | 3.81308 | 3.81776 | 3.82243 | 3.82711 | 3.83179 | 3.83648 | 3.84117 | 3.84585 | 3.85055 | | 1.840 | 3.85524 | 3.85994 | 3.86464 | 3.86934 | 3.87405 | 3.87876 | 3.88347 | 3.88818 | 3.89290 | 3.89761 | | 1.850 | 3.90234 | 3.90706 | 3.91179 | 3.91652 | 3.92125 | 3.92598 | 3.93072 | 3.93546 | 3.94020 | 3.94495 | | 1.860 | 3.94970 | 3.95445 | 3.95920 | 3.96396 | 3.96871 | 3.97347 | 3.97824 | 3.98300 | 3.98777 | 3.99255 | | 1.870 | 3.99732 | 4.00210 | 4.00688 | 4.01166 | 4.01644 | 4.02123 | 4.02602 | 4.03081 | 4.03561 | 4.04041 | | 1.880 | 4.04521 | 4.05001 | 4.05482 | 4.05963 | 4.06444 | 4.06925 | 4.07407 | 4.07889 | 4.08371 | 4.08853 | | 1.890 | 4.09336 | 4.09819 | 4.10302 | 4.10786 | 4.11270 | 4.11754 | 4.12238 | 4.12722 | 4.13207 | 4.13692 | | | | |] | | | | į | ļ | | | | 1.900 | 4.14178 | 4.14663 | 4.15149 | 4.15635 | 4.16122 | 4.16608 | 4.17095 | 4.17583 | 4.18070 | 4.18558 | | 1.910 | 4.19046 | 4.19534 | 4.20023 | 4.20511 | 4.21000 | 4.21490 | 4.21979 | 4.22469 | 4.22959 | 4.23450 | | 1.920 | 4.23940 | 4.24431 | 4.24922 | 4.25414 | 4.25905 | 4.26397 | 4.26890 | 4.27382 | 4.27875 | 4.28368 | | 1.930 | 4.28861 | 4.29355 | 4.29848 | 4.30342 | 4.30837 | 4.31331 | 4.31826 | 4.32321 | 4.32817 | 4.33312 | | 1.940 | 4.33808 | 4.34304 | 4.34801 | 4.35298 | 4.35795 | 4.36292 | 4.36789 | 4.37287 | 4.37785 | 4.38283 | | 1.950 | 4.38782 | | 4.39780 | 4.40279 | 4.40779 | 4.41278 | 4.41779 | 4.42279 | 4.42780 | 4.43280 | | 1.960 | 4.43782 | 1 | 4.44785 | 4.45287 | 4.45789 | 4.46291 | 4.46794 | 4.47297 | 4.47800 | 4.48304 | | 1.970 | 4.48808 | l | 4.49816 | 4.50321 | 4.50826 | 4.51331 | 4.51836 | 4.52342 | 4.52848 | 4.53354 | | 1.980 | 1 | 1 | 4.54874 | 4.55381 | 4.55889 | 4.56396 | 4.56904 | 4.57413 | 4.57921 | 4.58430 | | 1.990 | | 4.59448 | 4.59958 | 4.60468 | 4.60978 | 4.61488 | 4.61999 | 4.62510 | 4.63021 | 4.63532 | | | | | | | | | | | | | | 2.000 | 4.64044 | 4.64556 | 4.65068 | 4.65581 | 4.66093 | 4.66606 | 4.67120 | 4.67633 | 4.68147 | 4.68661 | | 2.010 | 1 | 4 | 4.70205 | 4.70720 | 4.71235 | 4.71751 | 4.72267 | 4.72783 | 4.73299 | 4.73816 | | 2.020 | | L L | 4.75368 | 4.75885 | 4.76403 | 4.76922 | 4.77440 | 4.77959 | 4.78478 | 4.78997 | | 2.030 | 1 | 4.80037 | 4.80557 | 4.81077 | 4.81598 | 4.82119 | 4.82640 | 4.83161 | 4.83683 | 4.84205 | | 2.040 | | 1 | 4.85772 | 4.86295 | 4.86818 | I | 4.87865 | 4.88389 | 4.88914 | 4.89438 | | 2.050 | | 4.90488 | 4.91014 | 4.91539 | 4.92065 | | 4.93117 | 4.93644 | 4.94171 | 4.94698 | | 2.060 | | | 4.96281 | 4.96809 | 4.97338 | 4.97867 | 4.98396 | 4.98925 | 4.99454 |
4.99984 | | 2.070 | I | | 5.01575 | 5.02106 | 5.02637 | 5.03168 | 5.03700 | 5.04232 | 5.04764 | 5.05296 | | 2.080 | I | | 5.06895 | 5.07429 | 5.07962 | 5.08496 | 5.09031 | 5.09565 | 5.10100 | 5.10635 | | 2.090 | 1 | 5.11706 | 5.12242 | 5.12778 | 5.13314 | 5.13851 | 5.14387 | 5.14925 | 5.15462 | 5.16000 | TABLE A26.- Continued | | <u> </u> | _ | | <u> </u> | <u> </u> | | | | | 7 | |-------|----------|---------|---------|----------|----------|---------|---------|--------------------|--------------------|--------------------| | M | 0 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | | 2.100 | 5.16538 | 5.17076 | 5.17614 | 5.18153 | 5.18692 | 5.19231 | 5.19770 | 5.20310 | 5.20850 | 5.21390 | | 2.110 | 5.21931 | 5.22472 | 5.23013 | 5.23554 | 5.24096 | 5.24637 | 5.25180 | 5.25722 | 5.26265 | 5.26807 | | 2.120 | 5.27351 | 5.27894 | 5.28438 | 5.28981 | 5.29526 | 5.30070 | 5.30615 | 5.31160 | 5.31705 | 5.32250 | | 2.130 | 5.32796 | 5.33342 | 5.33889 | 5.34435 | 5.34982 | 5.35529 | 5.36076 | 5.36624 | 5.37172 | 5.37720 | | 2.140 | 5.38268 | 5.38817 | 5.39366 | 5.39915 | 5.40464 | 5.41014 | 5.41564 | 5.42114 | 5.42664 | 5.43215 | | 2.150 | 5.43766 | 5.44317 | 5.44869 | 5.45421 | 5.45973 | 5.46525 | 5.47077 | 5.47630 | 5.48183 | 5.48737 | | 2.160 | 5.49290 | 5.49844 | 5.50398 | 5.50953 | 5.51507 | 5.52062 | 5.52617 | 5.53173 | 5.53728 | 5.54284 | | 2.170 | 5.54841 | 5.55397 | 5.55954 | 5.56511 | 5.57068 | 5.57625 | 5.58183 | 5.58741 | 5.59300 | 5.59858 | | 2.180 | 5.60417 | 5.60976 | 5.61535 | 5.62095 | 5.62655 | 5.63215 | 5.63775 | 5.64336 | 5.64897 | 5.65458 | | 2.190 | 5.66019 | 5.66581 | 5.67143 | 5.67705 | 5.68268 | 5.68830 | 5.69393 | 5.69957 | 5.70520 | 5.71084 | | | | | | | | | | | | | | 2.200 | 5.71648 | 5.72212 | 5.72777 | 5.73342 | 5.73907 | 5.74472 | 5.75038 | 5.75604 | 5.76170 | 5.76736 | | 2.210 | 5.77303 | 5.77870 | 5.78437 | 5.79004 | 5.79572 | 5.80140 | 5.80708 | 5.81276 | 5.81845 | 5.82414 | | 2.220 | 5.82983 | 5.83553 | 5.84123 | 5.84693 | 5.85263 | 5.85834 | 5.86404 | 5.86976 | 5.87547 | 5.88118 | | 2.230 | 5.88690 | 5.89262 | 5.89835 | 5.90407 | 5.90980 | 5.91554 | 5.92127 | 5.92701 | 5.93275 | 5.93849 | | 2.240 | 5.94423 | 5.94998 | 5.95573 | 5.96148 | 5.96724 | 5.97299 | 5.97875 | 5.98452 | 5.99028 | 5.99605 | | 2.250 | 6.00182 | 6.00760 | 6.01337 | 6.01915 | 6.02493 | 6.03071 | 6.03650 | 6.04229 | 6.04808 | 6.05388 | | 2.260 | 6.05967 | 6.06547 | 6.07127 | 6.07708 | 6.08289 | 6.08870 | 6.09451 | 6.10032 | 6.10614 | 6.11196 | | 2.270 | 6.11778 | 6.12361 | 6.12944 | 6.13527 | 6.14110 | 6.14694 | 6.15278 | 6.15862 | 6.16446 | 6.17031 | | 2.280 | 6.17616 | 6.18201 | 6.18786 | 6.19372 | 6.19958 | 6.20544 | 6.21130 | 6.21717 | 6.22304 | 6.22891 | | 2.290 | 6.23479 | 6.24066 | 6.24654 | 6.25243 | 6.25831 | 6.26420 | 6.27009 | 6.27598 | 6.28122 | 6.28778 | | 2.300 | 6.29368 | 6.29958 | 6.30549 | 6.31140 | 6.31731 | 6.32322 | 6.32914 | 6 22506 | 6 34000 | 6 24601 | | 2.310 | 6.35283 | 6.35876 | 6.36469 | 6.37063 | 6.37657 | 6.38251 | 6.38845 | 6.33506
6.39439 | 6.34098 | 6.34691 | | 2.320 | 6.41225 | 6.41820 | 6.42416 | 6.43012 | 6.43608 | 6.44205 | 1 | | 6.40034 | 6.40629 | | 2.330 | 6.47192 | 6.47790 | 6.48388 | 6.48987 | 6.49586 | 6.50185 | 6.44802 | 6.45399 | 6.45996 | 6.46594 | | 2.340 | 6.53185 | 6.53786 | 6.54387 | 6.54988 | 6.55590 | 6.56192 | 6.50785 | 6.51384 | 6.51984 | 6.52585 | | 2.350 | 6.59205 | 6.59808 | 6.60412 | 6.61015 | 6.61620 | 6.62224 | 6.62829 | 6.57396 | 6.57999 | 6.58601 | | 2.360 | 6.65250 | 6.65856 | 6.66462 | 6.67069 | 6.67675 | 6.68282 | 6.68890 | 6.63434
6.69497 | 6.64039
6.70105 | 6.64644 | | 2.370 | 6.71321 | 6.71930 | 6.72539 | 6.73148 | 6.73757 | 6.74367 | 6.74977 | 6.75587 | 6.76197 | | | 2.380 | 6.77419 | 6.78030 | 6.78641 | 6.79253 | 6.79865 | 6.80477 | 6.81090 | 6.81702 | 6.82315 | 6.76808 | | 2.390 | 6.83542 | 6.84156 | 6.84770 | 6.85384 | 6.85999 | 6.86613 | 6.87229 | 6.87844 | 6.88459 | 6.82929
6.89075 | | | | | | | | 0.00025 | 0.0722 | 0.07044 | 0.00455 | 0.05075 | | 2.400 | 6.89691 | 6.90308 | 6.90924 | 6.91541 | 6.92158 | 6.92776 | 6.93393 | 6.94011 | 6.94630 | 6.95248 | | 2.410 | 6.95867 | 6.96486 | 6.97105 | 6.97724 | 6.98344 | 6.98964 | 6.99584 | 7.00205 | 7.00826 | 7.01447 | | 2.420 | 7.02068 | 7.02690 | 7.03311 | 7.03934 | 7.04556 | 7.05178 | 7.05801 | 7.06424 | 7.07048 | 7.07672 | | 2.430 | 7.08295 | 7.08920 | 7.09544 | 7.10169 | 7.10794 | 7.11419 | 7.12044 | 7.12670 | 7.13296 | 7.13922 | | 2.440 | 7.14549 | 7.15175 | 7.15802 | 7.16430 | 7.17057 | 7.17685 | 7.18313 | 7.18941 | 7.19570 | 7.20199 | | 2.450 | 7.20828 | 7.21457 | 7.22087 | 7.22717 | 7.23347 | 7.23977 | 7.24608 | 7.25239 | 7.25870 | 7.26501 | | 2.460 | 7.27133 | 7.27765 | 7.28397 | 7.29030 | 7.29663 | 7.30296 | 7.30929 | 7.31562 | 7.32196 | 7.32830 | | 2.470 | 7.33464 | 7.34099 | 7.34734 | 7.35369 | 7.36004 | 7.36640 | 7.37275 | 7.37912 | 7.38548 | 7.39185 | | 2.480 | 7.39821 | 7.40459 | 7.41096 | 7.41734 | 7.42372 | 7.43010 | 7.43648 | 7.44287 | 7.44926 | 7.45565 | | 2.490 | 7.46205 | 7.46844 | 7.47484 | 7.48125 | 7.48765 | 7.49406 | 7.50047 | 7.50688 | 7.51330 | 7.51972 | | 2 500 | 7 52614 | 7 52256 | 7 5200- | | | | l | | | | | 2.500 | 7.52614 | 7.53256 | 7.53899 | 7.54541 | 7.55184 | 7.55828 | 7.56471 | 7.57115 | 7.57760 | 7.58404 | | 2.510 | 7.59049 | 7.59694 | 7.60339 | 7.60984 | 7.61630 | 7.62276 | 7.62922 | 7.63568 | 7.64215 | 7.64862 | | 2.520 | 7.65510 | 7.66157 | 7.66805 | 7.67453 | 7.68101 | 7.68750 | 7.69399 | 7.70048 | 7.70697 | 7.71347 | | 2.530 | 7.71996 | 7.72647 | 7.73297 | 7.73948 | 7.74598 | 7.75250 | 7.75901 | 7.76553 | 7.77205 | 7.77857 | | 2.540 | 7.78509 | 7.79162 | 7.79815 | 7.80468 | 7.81122 | 7.81775 | 7.82429 | 7.83084 | 7.83738 | 7.84393 | | 2.550 | 7.85048 | 7.85703 | 7.86359 | 7.87015 | 7.87671 | 7.88327 | 7.88984 | 7.89641 | 7.90298 | 7.90955 | | 2.560 | 7.91613 | 7.92271 | 7.92929 | 7.93587 | 7.94246 | 7.94905 | 7.95564 | 7.96223 | 7.96883 | 7.97543 | | 2.570 | 7.98203 | 7.98864 | 7.99525 | 8.00186 | 8.00847 | 8.01508 | 8.02170 | 8.02832 | 8.03494 | 8.04157 | | 2.580 | 8.04820 | 8.05483 | 8.06146 | 8.06810 | 8.07474 | 8.08138 | 8.08802 | 8.09467 | 8.10132 | 8.10797 | | 2.590 | 8.11462 | 8.12128 | 8.12794 | 8.13460 | 8.14127 | 8.14793 | 8.15460 | 8.16128 | 8.16795 | 8.17463 | TABLE A26.- Continued | | | | | | | | | | | | | |-----|-------|----------|----------|-----------|----------|-----------|----------|----------|-------------|----------|----------| | | М | 0 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | | 1 | 600 | 8.18131 | 8.18799 | 8.19468 | 8.20136 | 8.20805 | 8.21475 | 8.22144 | 8.22814 | 8.23484 | 8.24154 | | 1 | .600 | 8.24825 | 8.25496 | 8.26167 | 8.26838 | 8.27510 | 8.28182 | 8.28854 | 8.29527 | 8.30199 | 8.30872 | | | .620 | 8.31545 | 8.32219 | 8.32892 | 8.33566 | 8.34241 | 8.34915 | 8.35590 | 8.36265 | 8.36940 | 8.37616 | | 1 | .630 | 8.38291 | 8.38968 | 8.39644 | 8.40320 | 8.40997 | 8.41674 | 8.42352 | 8.43029 | 8.43707 | 8.44385 | | | .640 | 8.45064 | 8.45742 | 8.46421 | 8.47100 | 8.47780 | 8.48459 | 8.49139 | 8.49819 | 8.50500 | 8.51181 | | 1 | .650 | 8.51862 | 8.52543 | 8.53224 | 8.53906 | 8.54588 | 8.55270 | 8.55953 | 8.56636 | 8.57319 | 8.58002 | | | .660 | 8.58685 | 8.59369 | 8.60053 | 8.60738 | 8.61422 | 8.62107 | 8.62792 | 8.63478 | 8.64163 | 8.64849 | | 1 | .670 | 8.65535 | 8.66222 | 8.66908 | 8.67595 | 8.68282 | 8.68970 | 8.69657 | 8.70345 | 8.71034 | 8.71722 | | - 1 | .680 | 8.72411 | 8.73100 | 8.73789 | 8.74479 | 8.75168 | 8.75858 | 8.76549 | 8.77239 | 8.77930 | 8.78621 | | | .690 | 8.79312 | 8.80004 | 8.80696 | 8.81388 | 8.82080 | 8.82773 | 8.83466 | 8.84159 | 8.84852 | 8.85546 | | 1 | .090 | 0.79312 | 0.00004 | 0.00030 | 0.01300 | 3.32333 | | | | 1 | | | 1, | .700 | 8.86240 | 8.86934 | 8.87629 | 8.88323 | 8.89018 | 8.89713 | 8.90409 | 8.91105 | 8.91801 | 8.92497 | | - 1 | 710 | 8.93193 | 8.93890 | 8.94587 | 8.95284 | 8.95982 | 8.96680 | 8.97378 | 8.98076 | 8.98775 | 8.99473 | | | 720 | 9.00173 | 9.00872 | 9.01572 | 9.02271 | 9.02971 | 9.03672 | 9.04373 | 9.05073 | 9.05775 | 9.06476 | | | 730 | 9.07178 | 9.07880 | 9.08582 | 9.09284 | 9.09987 | 9.10690 | 9.11393 | 9.12097 | 9.12800 | 9.13505 | | | 2.740 | 9.14209 | 9.14913 | 9.15618 | 9.16323 | 9.17028 | 9.17734 | 9.18440 | 9.19146 | 9.19852 | 9.20559 | | - 1 | 750 | 9.21266 | 9.21973 | 9.22680 | 9.23388 | 9.24096 | 9.24804 | 9.25512 | 9.26221 | 9.26930 | 9.27639 | | - 1 | 2.760 | 9.28348 | 9.29058 | 9.29768 | 9.30478 | 9.31189 | 9.31900 | 9.32611 | 9.33322 | 9.34033 | 9.34745 | | - 1 | 2.770 | 9.35457 | 9.36169 | 9.36882 | 9.37595 | 9.38308 | 9.39021 | 9.39735 | 9.40449 | 9.41163 | 9.41877 | | | 2.780 | 9.42592 | 9.43307 | 9.44022 | 9.44737 | 9.45453 | 9.46169 | 9.46885 | 9.47601 | 9.48318 | 9.49035 | | | 2.790 | 9.49752 | 9.50470 | 9.51187 | 9.51905 | 9.52624 | 9.53342 | 9.54061 | 9.54780 | 9.55499 | 9.56219 | | 1 | 2.790 | 9.49732 | 3.30470 | 3.31107 | 3.31303 | 3132321 | | 1 | | | | | | 2.800 | 9.56939 | 9.57659 | 9.58379 | 9.59099 | 9.59820 | 9.60541 | 9.61263 | 9.61984 | 9.62706 | 9.63428 | | | 2.810 | 9.64151 | 9.64873 | 9.65596 | 9.66319 | 9.67043 | 9.67767 | 9.68490 | 9.69215 | 9.69939 | 9.70664 | | | 2.820 | 9.71389 | 9.72114 | 9.72840 | 9.73565 | 9.74291 | 9.75018 | 9.75744 | 9.76471 | 9.77198 | 9.77925 | | - 1 | 2.830 | 9.78653 | 9.79381 | 9.80109 | 9.80837 | 9.81566 | 9.82294 | 9.83024 | 9.83753 | 9.84483 | 9.85212 | | - 1 | 2.840 | 9.85943 | 9.86673 | 9.87404 | 9.88135 | 9.88866 | 9.89597 | 9.90329 | 9.91061 | 9.91793 | 9.92526 | | | 2.850 | 9.93258 | 9.93991 | 9.94725 | 9.95458 | 9.96192 | 9.96926 | 9.97660 | 9.98395 | 9.99129 | 9.99865 | | | | | 10.01335 | | | | 10.04280 | 10.05017 | 10.05754 | 10.06492 | 10.07229 | | | 2.870 | | 10.08705 | | | 10.10921 | 10.11661 | 10.12400 | 10.13140 | 10.13880 | 10.14620 | | | | | 10.16101 | 10.16842 | | | 10.19067 | 10.19809 | 10.20551 | | 10.22037 | | | | | 10.23523 | | | | 10.26499 | 10.27244 | 10.27988 | 10.28734 | 10.29479 | | | | 1 | 1 | | | | |
 | | . ! | | | 2.900 | 10.30225 | 10.30971 | 10.31717 | 10.32463 | 10.33210 | 10.33957 | 10.34704 | 10.35452 | 10.36199 | 10.36947 | | | 2.910 | 10.37695 | 10.38444 | 10.39193 | 10.39942 | 10.40691 | 10.41441 | 10.42190 | 10.42940 | 10.43691 | 10.44441 | | | | | | 10.46695 | 10.47446 | 10.48198 | 10.48950 | 10.49703 | 10.50455 | 10.51208 | 10.51961 | | | | | | 10.54222 | | | 10.56486 | 10.57241 | | 10.58751 | | | | | 10.60263 | | 10.61776 | 10.62533 | 10.63290 | 10.64047 | 10.64805 | 10.65562 | | | | | | 10.67837 | 10.68596 | 10.69355 | | | 10.71634 | 10.72394 | 10.73155 | 10.73915 | 10.74676 | | 1 | 2.960 | 10.75438 | 10.76199 | 10.76961 | | | | 10.80010 | | | | | | | 10.83064 | 10.83828 | 10.84592 | 10.85356 | 10.86121 | 10.86886 | 10.87651 | 10.88417 | 10.89183 | | | - | 2 980 | 10.90715 | 10.91482 | 10.92249 | 10.93016 | 10.93783 | 10.94551 | 10.95319 | | 10.96855 | | | | 2.990 | 10.98393 | 10.99162 | 10.99932 | 11.00701 | 11.01471 | 11.02241 | 11.03012 | 11.03783 | 11.04554 | 11.05325 | | - [| | | | | i | | | | 1 | | | | | 3.000 | 11.06096 | 11.06868 | 11.07640 | 11.08413 | 11.09185 | 11.09958 | 11.10731 | 11.11504 | 11.12278 | 11.13052 | | | | 11.13826 | | 11.15375 | | 11.16925 | 11.17700 | 11.18476 | 11.19252 | 11.20028 | 11.20804 | | | | | | 11.23135 | 11.23913 | 11.24690 | 11.25468 | 11.26247 | 11.27025 | 11.27804 | 11.28583 | | | | 11.29362 | | 11.30921 | 11.31701 | 111.32482 | 11.33262 | 11.34043 | 11.34824 | 11.35605 | 11.36387 | | | | 1 | 11.37951 | | 11.39516 | 11.40299 | 11.41082 | 11.41865 | 11.42649 | 11.43433 | 11.44217 | | | | | | 11.46571 | | 11.48142 | 11.48928 | 11.49714 | 11.50500 | 11.51286 | 11.52073 | | | | 11.52860 | | 11.54435 | 11.55223 | 11.56011 | 11.56799 | 11.57588 | 11.58377 | 11.59166 | 11.59955 | | | | | 11.61534 | | | 11.63906 | 11.64696 | 11.65488 | 11.66279 | 11.67071 | 11.67863 | | | | | 11.69447 | 111.70240 | 11.71033 | 11.71826 | 11.72620 | 11.73413 | 11.74207 | 11.75002 | 11.75796 | | | | | 11.77386 | | 11.78977 | 11.79772 | 11.80569 | 11.81365 | 11.82161 | 11.82958 | 11.83755 | | - i | | 1 | 1 | 1 | 1 | 1 | | | | | | TABLE A26.- Continued | М | 0 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | |-------|----------|----------|----------|----------|----------|----------|----------|----------------------|----------|----------| | 3 100 | 11.84553 | 11.85350 | 11 06140 | 11.86946 | 11 07745 | 11 00542 | 11 00242 | 11 00141 | 13 00041 | 11 01740 | | | 11.92540 | | | 11.94942 | | | | 11.90141
11.98147 | | | | | 12.00554 | | 12.02160 | | | | 1 | 12.06179 | | | | | 12.08593 | | 12.10204 | | | | | 12.14236 | | 1 | | | | | 12.18275 | | | | | 12.22320 | | | | 3.150 | 12.24750 | 12.25560 | 12.26371 | 12.27182 | 12.27993 | 12.28805 | 12.29617 | 12.30429 | 12.31241 | 12.32054 | | 3.160 | 12.32866 | 12.33679 | 12.34493 | 12.35307 | 12.36120 | 12.36934 | 12.37749 | 12.38564 | 12.39378 | 12.40194 | | 3.170 | 12.41009 | 12.41825 | 12.42641 | 12.43457 | 12.44273 | 12.45090 | 12.45907 | 12.46724 | 12.47542 | 12.48360 | | 3.180 | 12.49178 | 12.49996 | 12.50814 | 12.51633 | 12.52452 | 12.53272 | 12.54091 | 12.54911 | 12.55731 | 12.56551 | | 3.190 | 12.57372 | 12.58193 | 12.59014 | 12.59835 | 12.60657 | 12.61479 | 12.62301 | 12.63123 | 12.63946 | 12.64769 | | | | | | | | | | | | | | | | | 12.67239 | | | | 12.70537 | 12.71362 | 12.72187 | 12.73012 | | 3.210 | 12.73838 | 12.74664 | 12.75490 | 12.76317 | 12.77144 | 12.77971 | 12.78798 | 12.79626 | 12.80453 | 12.81281 | | | | 12.82938 | 12.83767 | 12.84596 | | | | | | 12.89577 | | | 12.90407 | | 12.92070 | | | | 12.95398 | 12.96231 | 12.97064 | 12.97897 | | | 12.98731 | | 13.00399 | 13.01233 | | | | | | | | 3.250 | 13.07080 | 13.07917 | 13.08753 | 13.09590 | 13.10427 | 13.11264 | 13.12102 | 13.12940 | 13.13778 | 13.14617 | | 3.260 | 13.15455 | 13.16294 | 13.17133 | 13.17973 | 13.18812 | 13.19652 | 13.20493 | 13.21333 | 13.22174 | 13.23015 | | 3.270 | 13.23856 | 13.24698 | 13.25539 | 13.26381 | 13.2/224 | 13.28066 | 13.28909 | 13.29752 | | 1 | | | | | 13.33971 | | | | | | | 1 | | 3.290 | 13.40/35 | 13.41582 | 13.42429 | 13.43276 | 13.44124 | 13.449/1 | 13.45819 | 13.46667 | 13.47516 | 13.48365 | | 3.300 | 13.49215 | 13.50063 | 13.50912 | 13.51762 | 13.52612 | 13.53462 | 13.54313 | 13.55164 | 13.56015 | 13.56866 | | 3.310 | 13.57718 | 13.58570 | 13.59422 | 13.60274 | 13.61127 | 13.61980 | 13.62833 | 13.63686 | 13.64540 | 13.65394 | | 3.320 | 13.66248 | 13.67102 | 13.67957 | 13.68812 | 13.69667 | 13.70522 | 13.71378 | 13.72234 | 13.73090 | 13.73947 | | 3.330 | 13.74803 | 13.75661 | 13.76518 | | | | | | | | | | 13.83385 | | | 13.85965 | 13.86825 | 13.87686 | 13.88546 | 13.89408 | 13.90269 | 13.91131 | | 3.350 | 13.91992 | 13.92855 | 13.93717 | 13.94580 | 13.95443 | 13.96306 | 13.97169 | 13.98033 | 13.98897 | 13.99761 | | | | | 14.02355 | | | | | | | | | | 14.09285 | | 14.11020 | 14.11887 | 14.12755 | 14.13624 | 14.14492 | 14.15361 | 14.16230 | 14.17100 | | | | | 14.19710 | | | | | | | | | 3.390 | 14.26680 | 14.27553 | 14.28425 | 14.29298 | 14.30172 | 14.31045 | 14.31919 | 14.32793 | 14.33667 | 14.34542 | | 3.400 | 14.35417 | 14.36292 | 14.37167 | 14.38043 | 14.38918 | 14.39794 | 14.40671 | 14.41547 | 14.42424 | 14.43301 | | 3.410 | 14.44179 | 14.45056 | | | | | 14.49449 | | | 14.52087 | | 3.420 | 14.52967 | 14.53847 | 14.54728 | 14.55608 | 14.56489 | 14.57371 | 14.58252 | 14.59134 | 14.60016 | 14.60898 | | 1 | 14.61781 | 1 | | 14.64430 | | | | 14.67966 | 14.68850 | 14.69735 | | | 14.70620 | | | 14.73277 | | | | | | | | 3.450 | 14.79486 | 14.80374 | 14.81262 | 14.82150 | 14.83039 | 14.83928 | 14.84817 | 14.85707 | 14.86597 | 14.87487 | | 3.460 | 14.88377 | 14.89268 | 14.90158 | 14.91049 | 14.91941 | 14.92832 | 14.93724 | 14.94616 | 14.95509 | 14.96401 | | 3.470 | 14.97294 | 14.98187 | 14.99081 | 14.99974 | 15.00868 | 15.01762 | 15.02657 | 15.03551 | 15.04446 | 15.05342 | | 3.480 | 15.06237 | 15.07133 | 15.08029 | 15.08925 | 15.09821 | 15.10718 | 15.11615 | 15.12512 | 15.13410 | 15.14308 | | 3.490 | 15.15206 | 15.16104 | 15.17002 | 15.17901 | 15.18800 | 15.19700 | 15.20599 | 15.21499 | 15.22399 | 15.23299 | | | 15.24200 | | | | | | 15.29609 | | | 15.32317 | | | 15.33220 | | 15.35027 | 15.35931 | 15.36836 | 15.37740 | 15.38645 | 15.39550 | 15.40455 | 15.41361 | | | 15.42266 | | 15.44079 | 15.44985 | 15.45892 | 15.46799 | 15.47706 | | | | | 3.530 | 15.51338 | 15.52247 | 15.53156 | 15.54065 | 15.54974 | 15.55884 | 15.56794 | 15.57704 | 15.58614 | 15.59525 | | 3.540 | 15.60436 | 15.61347 | 15.62259 | 15.63170 | 15.64082 | 15.64994 | | 15.66820 | | | | 3.550 | 15.69559 | 15.70473 | 15.71387 | 15.72301 | 15.73216 | 15.74131 | 15.75046 | 15.75961 | 15.76877 | 15.77793 | | 3.560 | 15.78709 | 15.79625 | 15.80542 | 15.81458 | 15.82376 | 15.83292 | 15.84211 | 15.85128 | 15.86047 | 15.86965 | | 3.570 | 15.87884 | 15.88803 | 15.89722 | 15.90641 | 15.91561 | 15.92481 | 15.93401 | 15.94322 | 15.95242 | 15.96163 | | 3.580 | 15.97085 | 15.98006 | 15.98928 | 15.99850 | 16.00772 | 16.01695 | | | | | | 3.590 | 16.06311 | 10.0/235 | 16.08160 | 16.09084 | 16.10009 | 16.10934 | 16.11860 | 16.12785 | 16.13711 | 16.14637 | TABLE A26.- Continued | гт | | | Т | | | | | | | | |-------|-----------|----------------------|------------|----------|----------|--------------------------|--------------|----------|--------------|----------| | М | 0 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | | 3.600 | 16 15564 | 16.16490 | 16.17417 | 16.18344 | 16.19272 | 16.20200 | 16.21127 | 16.22056 | 16.22984 | 16.23913 | | | 16.24842 | | 16.26701 | | 16.28560 | 16.29491 | 16.30421 | | | | | | | | 16.36010 | | 16.37875 | | 16.39741 | | | 16.42542 | | | 16.43476 | | 16.45345 | 16.46280 | 16.47215 | | | | | 16.51895 | | | 16.52831 | | | 16.55643 | 16.56581 | | 16.58457 | 16.59396 | 16.60334 | 16.61273 | | | | 16.63152 | 16.64092 | | 16.65973 | | 16.67854 | 16.68795 | 16.69736 | 16.70678 | | | 16.71620 | | | 16.74447 | 16.75390 | 16.76333 | 16.77277 | 16.78220 | 16.79164 | 16.80108 | | | | | 16.82943 | | | | 16.86725 | 16.87671 | 16.88618 | 16.89565 | | 3.680 | | 1 | | 16.93354 | 16.94302 | 16.95251 | 16.96199 | 16.97148 | 16.98097 | 16.99047 | | 3.690 | | | 17.01896 | 17.02847 | 17.03797 | 17.04748 | 17.05699 | 17.06651 | 17.07603 | 17.08554 | | | | | | | | | | | | | | | 17.09507 | | 17.11412 | | 17.13318 | 17.14271 | 17.15225 | 17.16179 | 17.17133 | 17.18088 | | 3.710 | 17.19043 | 17.19998 | 17.20953 | 17.21909 | 17.22864 | | 17.24777 | | | | | | | 17.29562 | | 17.31478 | 1 | | | | | 17.37233 | | | | 17.39153 | | 17.41074 | | | 1 | | | 17.46843 | | 3.740 | 17.47806 | 17.48769 | | | 1 | 17.52622 | | | 17.55515 | 17.56480 | | | 17.57445 | | | | 17.61308 | 17.66275 | 17.63241 | 17.64208 | 17.65175 | | | | | | 17.69046 | | | 17.71953 | 17.72922 | 17.73891 | 17./4861 | 17.75831 | | | 17.76801 | | 17.78743 | | 17.80685 | | 17.82628 | | | | | | 17.86518 | | 17.88464 | | | | 17.92360 | 17.93335 | 17.94310 | | | 3.790 | 17.96260 | 17.97236 | 17.98212 | 17.99188 | 18.00165 | 18.01141 | 18.02118 | 18.03095 | 18.04073 | 18.05051 | | 2 000 | 10 0000 | 10 07007 | 18.07985 | 10 00064 | 19 00043 | 18 10922 | 18.11902 | 18 12882 | 18.13862 | 18.14842 | | | | | | 10.00904 | 18.19747 | | 18.21712 | 18 22694 | 18.23676 | 18.24659 | | | | 18.16804
18.26626 | | 18.28593 | 1 | | | | 18.33517 | l I | | | 18.25642 | 18.36474 | | | 18.39434 | 1 | 18.41408 | | | | | 1 | l | 18.46348 | | | 18.49315 | L . | | | 18.53275 | | | 3.850 | | 18.56248 | 1 | 18.58231 | | 18.60215 | 1 | | 18.63193 | | | | | 18.66173 | | 18.68161 | | 18.70151 | | | 18.73136 | | | 3.870 | | 18.76125 | 1 | 1 | 1 | | 18.81110 | 18.82108 | 18.83106 | 18.84104 | | | 1 | 18.86102 | | | 18.89100 | | 18.91100 | | | | | | | 18.96105 | | 1 | 18.99111 | | 1 | | | | | 3.050 | 10. 55103 | 10.30103 | | | | | | | | | | 3,900 | 19.05129 | 19:06133 | 19.07137 | 19.08142 | 19.09147 | 19.10152 | 19.11157 | 19.12163 | 19.13169 | 19.14175 | | | 19.15181 | | 1 | I | 19.19209 | 19.20217 | 19.21225 | 19.22233
| 19.23241 | 19.24250 | | | | 19.26268 | | 19.28287 | 19.29297 | 19.30307 | 19.31318 | 19.32328 | 19.33339 | 19.34351 | | | 19.35362 | | 19.37386 | 19.38398 | 19.3941 | 19.40424 | 19.41437 | | | 19.44477 | | 3.940 | 19.45491 | 19.46506 | 19.47520 | 19.48535 | 19.49550 | 19.50566 | 5 19.51581 | 19.52597 | 7 19.53613 | 19.54630 | | 3.950 | 19.55646 | 19.56663 | 19.57680 | 19.58698 | 19.59716 | 5 19.60733 | 3 19.61752 | 19.62770 | 19.63789 | 19.64808 | | | | 19.66847 | | 19.68886 | 19.69907 | 7 19.70927 | 7 19.71948 | 19.72969 | 9 19.73990 | 19.75012 | | 3.970 | 19.76034 | 19.77056 | 19.78078 | 19.79101 | 19.80124 | 1 19.81147 | 7 19.82170 | 19.83194 | 1 19.84218 | 19.85242 | | 3.980 | 19.86266 | 19.87291 | 19.88316 | 19.89341 | 19.90366 | 5 19.91392 | 2 19.92418 | 19.93444 | 1 19.94470 | 19.95497 | | 3.990 | 19.96524 | 19.97551 | 19.98579 | 19.99607 | 20.00635 | 5 20.01663 | 20.02691 | 20.03720 | 20.04749 | 20.05779 | | - | | | | 1 | | | | 20.1402 | | | | I | 20.06808 | 1 | 1 | 1 | | 20.11960 | | 1 | | 20.26419 | | | 20.17118 | | , | | | 20.22282 | 1 | 20.24350 | | _ | | | 20.27453 | | | | 1 | 5 20.3263 | 5 20 4404 | 120.3470 | 3 20 46123 | 20.47162 | | 1 | 20.37815 | | | | | 5 20.4300 | | | 3 20.40122 | | | | 20.4820 | | | | | 4 20.53405
7 20.63830 | | 20.5546 | | | | 1 | 20.58614 | 1 | I | 20.61743 | | 6 20.7428 | | | | | | | 20.6905 | | I | | | 0 20.7426 | | | 8 20.8790 | | | | 20.7951 | | 20.81613 | | | | • | | | | | | 0 20.9000 | 2 21 01574 | 3 20.92108 | 20.9313 | | | 1 21.06845 | | | 1 | | 4.09 | 0 21.0052 | 2 2 2 1 2 1 5 7 | 21.02029 | 21.0308. | 21.04/3 | , 21.03/9. | 121.0004. | 122.0750 | | | TABLE A26.- Continued | | T | | T - | T | Τ | T | ·· | | | | |-------|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------| | М | 0 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | | 4.100 | 21.11065 | 21.12121 | 21.13176 | 21.14232 | 21.15289 | 21.16345 | 21.17402 | 21.18459 | 21.19517 | 21.20575 | | 4.110 | 21.21632 | 21.22690 | 21.23749 | 21.24808 | 21.25867 | 21.26926 | 21.27985 | | 1 | | | 4.120 | 21.32226 | 21.33286 | 21.34347 | 21.35409 | 21.36470 | 21.37532 | 21.38594 | l | 1 | 21.41782 | | 4.130 | 21.42845 | 21.43908 | 21.44972 | | 21.47099 | 21.48164 | 1 | 21.50293 | | 21.52424 | | 4.140 | 21.53489 | 21.54555 | 21.55621 | | 21.57755 | | | | | | | | 21.64160 | | 21.66297 | 21.67366 | 21.68435 | 21.69505 | 21.70575 | 21.71645 | | 1 | | 4.160 | 21.74856 | 21.75927 | 21.76999 | 21.78070 | 21.79142 | 21.80214 | | 21.82359 | 1 | | | 4.170 | 21.85578 | 21.86652 | 21.87726 | 21.88800 | 21.89874 | | 1 | | 21.94175 | 21.04303 | | 4.180 | 21.96326 | 21.97402 | 21.98479 | 21.99556 | 22.00633 | | T . | 22.03865 | | 22.06021 | | 4.190 | 22.07100 | 22.08179 | 22.09258 | 22.10337 | 22.11417 | 1 | 22.13577 | 22.14657 | | 22.16818 | | | | | | | | | | | | | | 1 | 22.17899 | 22.18981 | 22.20062 | 22.21144 | 22.22226 | 22.23309 | | 22.25474 | 22.26557 | 22.27641 | | | 22.28725 | 22.29808 | 22.30893 | | 22.33062 | 22.34147 | 22.35232 | | 22.37403 | | | 4.220 | 22.39576 | | | | 22.43923 | | | 22.47186 | 22.42875 | | | | 22.50452 | 22.51541 | 22.52631 | | | | 22.56991 | 22.58081 | 22.59172 | 22.60263 | | 4.240 | 22.61355 | 22.62446 | 22.63538 | | 22.65723 | 22.66816 | 22.67909 | 22.69002 | 22.70095 | 22.71189 | | 4.250 | 22.72283 | 22.73377 | | 22.75567 | 22.76662 | 22.77757 | 22.78852 | 22.79948 | 22.81044 | 22.82141 | | | 22.83237 | 22.84334 | | | 22.87626 | 22.88724 | | 22.90921 | | 22.93118 | | | 22.94217 | | 22.96416 | 22.97516 | 22.98616 | | 23.00817 | 23.01918 | 23.03020 | 23.04121 | | 4.280 | 23.05223 | | | | 23.09632 | 23.10735 | 23.11838 | 23.12942 | 1 | 23.15150 | | 4.290 | 23.16254 | 23.17359 | 23.18463 | 23.19569 | 23.20674 | 23.21779 | 23.22885 | 23.23991 | | 23.26204 | | 4 200 | 22 27211 | 22 20410 | 00 00 00 | | | | | | | | | 4.300 | 23.27311 | 23.28418 | 23.29526 | 23.30633 | 23.31741 | 23.32849 | 23.33958 | 23.35067 | 23.36176 | 23.37285 | | 4.310 | 23.38394 | 23.39504 | 23.40614 | 23.41724 | 23.42835 | 23.43945 | 23.45056 | 23.46168 | 23.47279 | 23.48391 | | 4.320 | 23.49503 | | | 23.52840 | 23.53954 | | 23.56181 | | | 23.59523 | | | 23.60637 | | | | | | | 23.68557 | 23.69564 | 23.70680 | | 4.340 | 23.71798 | 23.72914 | 23.74033 | 23.75151 | 23.76269 | | | 23.79625 | | 23.81864 | | 4.350 | 23.82984 | 23.84104 | 23.85224 | 23.86345 | 23.87465 | | 23.89708 | | | 23.93073 | | 4.300 | 23.94196 | 23.95318 | 23.96441 | 23.97564 | | | | 24.02059 | 24.03184 | 24.04308 | | 4.370 | 24.05433
24.16696 | | | | 24.09935 | 24.11061 | 24.12188 | 24.13315 | 24.14442 | 24.15569 | | 4.390 | | | | 24.20080 | 24.21209 | | 24.23467 | | | 24.26856 | | 4.350 | 24.27903 | 24.29110 | 24.30246 | 24.31377 | 24.32508 | 24.33640 | 24.34771 | 24.35903 | 24.37035 | 24.38168 | | 4.400 | 24.39300 | 24.40433 | 24.41566 | 24.42700 | 24.43834 | 24.44967 | 24.46102 | 24 47236 | 24 48371 | 24 49506 | | 4.410 | 24.50641 | 24.51//6 | 24.52912 | 24.54048 | 24.55185 | 24.56321 | 24.57458 | 24.58595 | 24 59732 | 24.40000 | | 4.420 | 24.62008 | 24.63145 | 24.64284 | 24.65422 | 24.66561 | 24.67700 | 24.68840 | 24.69979 | 24 71119 | 24.72259 | | | 24.73400 | | 24.75681 | | 24.77964 | 24.79105 | 24.80247 | 24.81389 | 24 82532 | | | 4.440 | 24.84818 | 24.85961 | 24.87104 | 24.88248 | 24.89392 | 24.90536 | 24.91681 | 24 92825 | 24 93970 | 24.95116 | | 4.450 | 24.96261 | 24.97407 | 24.98553 | 24.99699 | 25.00846 | 25.01993 | 25.03140 | 25.04287 | 25.05435 | 25.06583 | | 4.460 | 25.07/31 | 25.08879 | 25.10028 | 25.11177 | | 25.13475 | | 25.15775 | 25.16925 | 25.18076 | | | 25.19226 | | | 25.22680 | 25.23831 | 25.24983 | 25.26136 | 25,27288 | 25.28441 | 25. 29594 | | | 25.30747 | 25.31901 | 25.33055 | 25.34208 | 25.35363 | 25.36517 | 25 37672 | 25 38827 | 25 30002 | 25 41120 | | 4.490 | 25.42294 | 25.43450 | 25.44607 | 25.45763 | 25.46920 | 25.48077 | 25.49234 | 25.50392 | 25.51550 | 25.52708 | | | | 1 | | | i | | | | | J | | 4.500 | 25.53866 | 25.55025 | 25.56184 | 25.57343 | 25.58503 | 25.59663 | 25.60823 | 25.61983 | 25.63143 | 25.65304 | | 4.510 | 23.03465 | 25.66626 | 25.67788 | 25.68949 | 25.70111 | 25.71274 | 25.72436 | 25.73599 | 25.74762 | 25,75925 | | | 25.77089 | | 25.79417 | 25.80581 | 25.81746 | 25.82911 | 25.84076 | 25.85241 | 25.86407 | 25.87573 | | 4.530 | 25.88739 | 20.89905 | 25.91072 | 25.92239 | 25.93406 | 25.94573 | 25.95741 | 25.96909 | 25.98077 | 25.99246 | | 4.540 | 26.00414 | 26.01583 | 26.02753 | 26.03922 | 26.05092 | 26.06262 | 26.07432 | 26.08603 | 26.09774 | 26.10945 | | 4.550 | 70.17110 | 26.13288 | 26.14459 | 26.15631 | 26.16804 | 26.17976 | 26.19149 | 26.20322 | 26.21496 | 26.22669 | | 4 570 | 26.23843 | | 26.26192 | 26.27366 | 26.28541 | 26.29716 | 26.30892 | 26.32068 | 26.33243 | 26.34420 | | 4.570 | 26.35596 | | 26.37950 | 26.39127 | 26.40304 | 26.41482 | 26.42660 | | | 26.46196 | | 4 500 | 26.47375 | 26.48554 | 26.49733 | 26.50913 | 26.52094 | 26.53274 | 26.54454 | 26.55635 | 26.56816 | 26.57998 | | 4.090 | 26.59179 | 20.60361 | 20.61543 | 26.62726 | 26.63908 | 26.65091 | 26.66274 | 26.67458 | 26.68641 | 26.69825 | TABLE A26.- Concluded | М | 0 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | |--------|----------|-------------------|----------|----------|----------|----------|----------|----------|----------------------|----------------------| | 4.600 | 26.71010 | 26.72194 | 26.73379 | 26.74564 | 26.75749 | 26.76934 | 26.78120 | 26.79306 | 26.80492 | 26.81679 | | 4.610 | 26.82865 | 26.84053 | 26.85240 | 26.86427 | 26.87615 | 26.88803 | 26.89991 | 26.91180 | 26.92369 | 26.93558 | | 4.620 | 26.94747 | 26.95937 | 26.97127 | 26.98317 | 26.99507 | 27.00698 | 27.01889 | 27.03080 | 27.04271 | 27.05463 | | 4.630 | 27.06655 | 27.07847 | 27.09039 | 27.10232 | 27.11425 | 27.12618 | 27.13812 | 27.15005 | 27.16199 | 27.17394 | | 4.640 | 27.18588 | 27.19783 | 27.20978 | 27.22173 | 27.23369 | 27.24565 | 27.25761 | 27.26957 | 27.28153 | 27.29350 | | 4.650 | 27.30547 | 27.31744 | 27.32942 | 27.34140 | 27.35338 | 27.36536 | 27.37735 | 27.38934 | 27.40133 | | | 4.660 | 27.43532 | 27.43732 | 27.44932 | 27.46133 | 27.47333 | 27.48534 | | 27.50937 | 27.52139 | 27.53341 | | 4.670 | 27.54543 | 27.55745 | 27.56948 | 27.58151 | 27.59354 | 27.60558 | | 27.62966 | 27.64170 | 1 | | 4.680 | 27.66579 | 27.67784 | 27.68990 | 27.70195 | 27.71401 | 27.72607 | 27.73813 | 27.75020 | 27.76227 | 27.77434 | | 4.690 | 27.78641 | 27.79849 | 27.81057 | 27.82265 | 27.83473 | 27.84682 | 27.85891 | 27.87100 | 27.88310 | 27.89519 | | | | | | | | | | | 00 00410 | 20 01630 | | 1 | 27.90729 | | | 27.94361 | 27.95572 | 27.96783 | 27.97994 | 27.99206 | 28.00418 | 28.01630 | | 4.710 | 28.02843 | 28.04056 | 28.05269 | 28.06482 | 28.07695 | 28.08909 | 28.10124 | 28.11338 | 28.12552 | 28.13767 | | 4.720 | 28.14982 | | | 28.18629 | 28.19845 | 28.21062 | | 28.23495 | 28.24713
28.36898 | 28.25930
28.38118 | | 4.730 | | 28.28366 | 28.29584 | 28.30802 | | 28.33240 | 28.34459 | | | I | | 4.740 | 28.39339 | 28.40559 | | 28.43001 | 28.44222 | 28.45444 | 28.46666 | 1 | 28.49110
28.61347 | 28.50332 | | 4.750 | 1 | 28.52778 | | 28.55225 | 28.56449 | 28.57673 | 28.58898 | 28.60122 | 28.73610 | | | 4.760 | 1 | 28.65023 | | 28.67476 | 28.68702 | 28.69929 | 28.71156 | 1 | 28.85899 | 28.87130 | | 4.770 | 1 | 28.77294 | I . | 28.79752 | l . | | 28.83439 | | 28.98214 | 28.99447 | | 4.780 | 28.88360 | 28.89591 | 1 | 28.92054 | 28.93285 | i . | | 29.09319 | 29.10554 | 29.11790 | | 4.790 | 29.00680 | 29.01913 | 29.03147 | 29.04381 | 29.05615 | 29.06849 | 29.08064 | 29.09319 | 29.10554 | 25.11750 | | 1, 000 | 20 12025 | 20 14261 | 20 15400 | 29.16734 | 29.17971 | 29.19208 | 29.20445 | 29.21683 | 29.22920 | 29.24159 | | 4.800 | | 29.14261 29.26635 | i | 29.29113 | 29.30353 | | 1 | 1 | 29.35313 | 29.36553 | | 4.810 | | 29.20033 | 1 | 29.41518 | I | 8 | | 29.46487 | 1 | 1 | | 4.830 | 1 | 29.51461 | I . | 29.53949 | 1 | | 1 | | 29.60174 | 1 | | 1 | 29.62665 | | 1 |
29.66405 | 1 | 1 | | | | | | 4.850 | | 1 | | 29.78887 | 29.80137 | 1 | i i | 1 | | 1 | | 4.860 | 1 | | | 1 | | i | | ľ | 29.97659 | 29.98912 | | 4.870 | 1 | | | 1 | l . | I | | 30.08949 | 30.10205 | 30.11461 | | 4.880 | 1 | l . | | I. | 1 | i i | | | 30.22778 | 30.24036 | | 4.890 | 1 | 1 | 1 | 30.29073 | ł . | 30.31593 | 30.32854 | 30.34115 | 30.35376 | 30.36637 | | | | | | | | | | | | | | 4.900 | 30.37898 | 30.39160 | 30.40422 | 30.41684 | 30.42947 | 30.44210 | 30.45473 | 30.46736 | 30.47999 | 1 | | 4.910 | i i | 30.51792 | 30.53056 | 30.54321 | 30.55586 | 30.56851 | 30.58117 | 30.59383 | 30.60649 | · · | | 4.920 | 30.63182 | 30.64449 | 30.65716 | 30.66984 | 30.68251 | 30.69519 | 30.70787 | 30.72056 | | 1 | | 4.930 | 30.75863 | 30.77132 | 30.78402 | 30.79672 | 30.80942 | 30.82212 | 30.83483 | | | 1 | | 4.940 | 30.88569 | 30.89841 | 30.91113 | 30.92386 | 1 | | 1 | ł | | | | 4.950 | 31.01301 | 31.02576 | 31.03850 | 31.05126 | 31.06401 | 31.07677 | I | 1 | 1 | | | 4.960 | 1 | | 31.16613 | 31.17891 | | | 1 | | 1 | l l | | 4.970 | | | I | 1 | I . | | l l | | 1 | 1 | | 4.980 | i i | I | 1 | | 1 | | | i i | | 1 | | 4.990 | 31.52487 | 31.53771 | 31.55057 | 31.56342 | 31.57628 | 31.58914 | 31.60200 | 31.61486 | 31.62773 | 31.64060 | | | | | | | | | | | | , | | 5.000 | 31.65347 | | | <u></u> | 1 | 1 | | | | | TABLE A27.- CONVERSION FACTORS FOR VARIOUS PRESSURE UNITS [From ref. A4] | in. H ₂ 0
(20° C) | 407.513 | .40218 | .53577 | 13.609 | .39409 | 27.707 | .19241 | .3937 | Н | |---------------------------------|----------|------------|-------------------------------|--------------------------------|---------------------|----------------------|----------------------|------------------------------|---| | cm H ₂ 0
(20° C) | 1035.08 | 1.0215 | 1.3609 | 34.566 | 1.0010 | 70.376 | .48872 | Н | 2.5400 | | 1b/ft ² | 2116.22 | 2.0886 | 2.7845 | 70.726 | 2.0482 | 144 | Н | 2.0445 | 5.1930 | | lb/in ² | 14.69595 | .014504 | .019337 | .49116 | .014223 | Н | .0069444 | .014198 | .036063 | | g/cm ² | 1033.23 | 1.0197 | 1.3595 | 34.532 | r-l | 70.307 | .48824 | . 99821 | 2.5355 | | in. Hg
(0 ⁰ C) | 29.9213 | .029530 | .03937 | Н | .028959 | 2.0360 | .014139 | .028907 | .073424 | | mm Hg
(0 ₀ C) | 760.000 | .75006 | Н | 25.400 | .73556 | 51.715 | .35913 | .73424 | 1.8650 | | millibar | 1013.250 | н | 1.3332 | 33.864 | 99086. | 68.94752 | .47880 | .97891 | 2.4864 | | Pressure unit
value in - | latm | l millibar | 1 mm Hg
(0 ^o C) | 1 in. Hg
(0 ^o c) | 1 g/cm ² | 1 1b/in ² | 1 lb/ft ² | 1 cm H ₂ 0 (20°C) | 1 in. H ₂ 0
(20 ^o C) | #### APPENDIX A # TABLE A28.- CONVERSION FACTORS, EQUIVALENTS, AND FORMULAS FOR U.S. CUSTOMARY UNITS AND THE INTERNATIONAL SYSTEM OF UNITS (SI) #### (a) Conversion factors ## From ref. A5 ``` Length = 0.3048 \text{ meter (m)} 1 foot (ft) = 1852 meters (m) 1 nautical mile = 1609.3 \text{ meters (m)} 1 statute mile = 2.54 centimeters (cm) l inch (in.) Speed = 0.3048 meter/second (m/sec) 1 ft/sec 1 ft/min = 0.00508 meter/second (m/sec) = 1.6093 kilometers/hour (km/hr) 1 mile/hour (mph) = 1.852 kilometers/hour (km/hr) 1 knot Acceleration = 0.3048 \text{ meter/second}^2 \text{ (m/sec}^2\text{)} 1 ft/sec² Mass = 14.5939 kilograms (kg) l slug = 0.4535924 \text{ kilogram (kg)} 1 pound (lb) Force 1 pound (1b) = 4.448222 newtons (N) Pressure 1 lb/ft^2 = 47.88026 pascals (Pa) or N/m² = 3386.38 pascals (Pa) or N/m^2 1 inch of mercury (in. Hg) = 100 pascals (Pa) or N/m^2 l millibar Density = 515.3788 kilograms/meter³ (kg/m^3) = 16.01846 kilograms/meter³ (kg/m^3) 1 slug/ft³ 1 lb/ft³ Volume 1 ft³ = 0.02831685 \text{ meter}^3 \text{ (m}^3) 1 \text{ in}^3 = 16.38706 centimeters³ (cm³) Viscosity 1 lb-sec/ft² = 47.88026 pascal-seconds (Pa-sec) 1 lb/ft-sec = 1.488164 pascal-seconds (Pa-sec) Temperaturea t(^{\circ}C) = [t(^{\circ}F) - 32]/1.8 t(OF) T(OR) T(^{O}K) = T(^{O}R)/1.8 Magnetic flux density = 1.0 \times 10^{-9} \text{ tesla (T)} 1 gamma a_{T(OR)} = t(OF) + 459.67 and T(OK) = t(OC) + 273.15. ``` ## APPENDIX A TABLE A28.- Continued ## (b) Equivalents (primary constants and atmospheric properties) | | | - Taribara Proporcios, | | | | |-------------------|---|---|--|--|--| | Quantity | U.S. Customary Units | SI Units | | | | | Po | 2116.22 lb/ft ²
29.9213 in. Hg | 101 325 Pa | | | | | ρο | 0.076474 lb/ft ³ | | | | | | ρο | 0.0023769 slug/ft ³ | 1.2250 kg/m ³ | | | | | to | 59.0° F | 15.0° C | | | | | To | 518.67 ⁰ R | 288.15 ⁰ к | | | | | μ _ο . | 1.2024×10^{-5} lb/ft-sec
3.7372×10^{-7} lb-sec/ft ² | 1.7894 × 10 ⁻⁵ Pa-sec | | | | | g _o | 32.1741 ft/sec ² | 9.80666 m/sec ² | | | | | ^a o | 1116.45 ft/sec
761.22 mph
661.48 knots | 340.294 m/sec
1225.06 km/hr | | | | | a _{Wm,o} | 28.9644 (dimensionless) | 28.9644 (dimensionless) | | | | | R* | 1545.31 ft-lb/(lb mol) ^O R | $8.31432 \times 10^3 \text{ J/}^{\circ}\text{K-kmol}$ | | | | | .
R | 53.352 ft-1b/(lb mol) ^O R | | | | | | R | 1716.5 ft-lb/slug- ^O R | 0.28705 × 10 ³ J/ ^o K-kmol | | | | ^aFor altitudes up to 290 000 ft, $W_{m} = W_{m,o}$. ## TABLE A28.- Concluded (c) Formulas | Formulas for - | U.S. Customary Units ^a | SI Units | |----------------|-----------------------------------|------------------------| | ē | ρg | | | -
R | R*/W _{m,o} | | | R | R*g/W _{m,o} | R*/W _{m,o} | | N (newton) | | m-kg/sec ² | | Pa (pascal) | | $N/m^2 = kg/m-sec^2$ | | J (joule) | | $N-m = m^2 - kg/sec^2$ | aThe formulas for the gas constants \bar{R} and R in U.S. Customary Units also apply to the metric (mks) system, i.e., for $R^*=847.819~m-kg/^OK-kmol$, $\bar{R}=29.271~m-kg/^OK-kmol$, and $R=287.05~m^2-kg/^OK-kmol-sec^2$. #### SAMPLE CALCULATIONS ## Part I - Static-Pressure Errors and Flight Quantities In this section, sample calculations are presented for the determination of (1) the position error Δp by two of the flight calibration methods described in chapter IX, (2) values of calibrated airspeed $V_{\rm C}$, pressure altitude H, and Mach number M from the indicated values of these quantities and a given value of Δp , (3) the lift coefficient $C_{\rm L}$ from given values of Δp , the measured impact pressure $q_{\rm C}'$, and the measured static pressure p', and (4) true airspeed V from given values of calibrated airspeed $V_{\rm C}$, pressure altitude H, and ambient temperature t. ## Determination of Position Error Δp Two calibration procedures, the pacer-aircraft method and the ground-camera method, are used to illustrate the determination of Δp (i.e., p'-p). With the pacer-aircraft method, the value of p is derived from the calibrated installation on the pacer aircraft, while with the ground-camera method, the value of p at the flight level is calculated from measurements of p and p at the ground and the assumption of a standard temperature gradient up to the flight level. Pacer-aircraft method.— For the calculation of Δp by this method, it is assumed that the altimeter indication in the test aircraft is 29 600 ft and that the corrected altimeter indication in the pacer aircraft is 30 000 ft. From table A2 of appendix A, the static pressure p' at 29 600 ft is 639.962 lb/ft², and the static pressure p at 30 000 ft is 628.433 lb/ft². The position error of the test aircraft is then $$\Delta p = p' - p$$ (2.2) = 639.962 - 628.433 = 11.529 lb/ft² For altitude increments no greater than about 1000 ft, the value of Δp can also be derived from equation (3.6), here expressed as $$\Delta p = -\frac{g_0}{g} \bar{\rho}_m \Delta H \tag{B1}$$ where ΔH = H' - H = 29 600 - 30 000 = -400 ft and $\bar{\rho}_m$ is the density at the midpoint between H' and H. From table A8 of appendix A, the value of g_0/g for an altitude increment of 400 ft is essentially 1.0. From table A3, the density at the midpoint (29 800 ft) is 0.028823 lb/ft 3 . From equation (B1), the value of Δp is then $$\Delta p = (-0.028823)(-400) = 11.529 \text{ lb/ft}^2$$ Ground-camera method. For the calculation of Δp by this method, it is assumed that (1) the pressure p' of the aircraft installation is measured with an absolute-pressure recorder (in contrast to the statoscope used in the tests described in chapter IX), and (2) that for the elevations in figure 9.10, $E_C = E_T$ and $h_C = h_T$. It is further assumed that $h_{\rm C}$ is 1000 ft, that the height of the aircraft Δz above $h_{\rm C}$ is 400 ft, and that the pressure measured by the absolute-pressure recorder at the flight level is 1973 lb/ft². The pressure p and temperature T at the ground (at $h_{\rm C}$) are 2000 lb/ft² and 500° R. From table A2 of appendix A, the standard pressure $p_{\rm S}$ at 1000 ft is 2040.85 lb/ft²; from table A4, the standard temperature $T_{\rm S}$ at 1000 ft is 515.104° R; and from table A3, the standard density $\bar{\rho}_{\rm S}$ at 1000 ft is 0.074261 lb/ft³ and the standard density $\bar{\rho}_{\rm S}$ at 1200 ft is 0.073825 lb/ft³. From equation (3.1), the density $\bar{\rho}$ at $h_{\rm C}$ is $$\bar{\rho} = \bar{\rho}_{S} \frac{pT_{S}}{p_{S}T}$$ $$= 0.074261 \left(\frac{2000}{2040.85}\right) \left(\frac{515.104}{500}\right) = 0.074973 \text{ lb/ft}^{3}$$ (B2) From equation (9.29), the density $\bar{\rho}_{m}$ at the midpoint (1200 ft) is $$\bar{\rho}_{\rm m} = \bar{\rho} - (\bar{\rho}_{\rm S} - \bar{\rho}_{\rm S,m})$$ $$= 0.074973 - (0.074261 - 0.073825) = 0.074537 \text{ lb/ft}^3$$ From equation (9.28), the pressure increment $\,\delta p_{C}\,$ corresponding to a height increment $\,\Delta Z\,$ is $$\delta p_{\rm C} = -\bar{\rho}_{\rm m} \Delta z$$ (9.28) = (-0.074537) (400) = -29.8 lb/ft² From this pressure increment and the existing pressure (2000 lb/ft^2) at the ground (h_c), the value of p at Z = 1400 ft is $$p = p_{h_{C}} - \delta p_{C}$$ $$= 2000 - 29.8 = 1970.2
\text{ lb/ft}^{2}$$ (B3) For the value of p' of this example, the position error Δp of the aircraft installation is then $$\Delta p = p' - p$$ $$= 1973 - 1970.2 = 2.8 \text{ lb/ft}^2$$ (2.2) Calculation of $\rm\,V_{C}^{}$ and $\rm\,\Delta V_{C}^{}$, H and $\rm\,\Delta H_{}$ and M and $\rm\,\Delta M$ For these calculations, the indicated airspeed V_i , indicated altitude H', and indicated Mach number M' measured by the cockpit instruments are corrected for the position error Δp of the aircraft installation to yield values of V_C , H, and M. The values of the errors, ΔV_C , ΔH , and ΔM corresponding to the value of Δp are also calculated. It is assumed that V_i is 300 knots, H' is 30 000 ft, M' is 0.79, and Δp is 8 lb/ft². From table Al2 of appendix A, the impact pressure qc at 300 knots is 320.694 lb/ft²; and from table A2, the static pressure p' at 30 000 ft is 628.433 lb/ft². Calculation of $V_{\rm C}$ and $\Delta V_{\rm C}$. From equation (9.20), $$q_{C} = q_{C}' + \Delta p \tag{9.20}$$ = 320.694 + 8 = 328.694 lb/ft² From table Al2 of appendix A, the calibrated airspeed $\,^{V}_{\rm C}$ corresponding to this value of $\,^{q}_{\rm C}$ is 303.5 knots. From equation (5.9), the airspeed error is $$\Delta V_{C} = V_{i} - V_{C}$$ $$= 300 - 303.5 = -3.5 \text{ knots}$$ (5.9) Calculation of H and $\Delta H.$ - From equation (2.2), $$p = p' - \Delta p$$ (B4) = 628.433 - 8 = 620.433 lb/ft² From table A2 of appendix A, the altitude H corresponding to this value of p is 30 281 ft. From equation (5.8), the altitude error is $$\Delta H = H' - H$$ (5.8) = 30 000 - 30 281 = -281 ft Calculation of M and ΔM .— In chapter III, it was shown that M is a function of q_C/p . For values of q_C' and p', therefore, M is a function of $q_C' + \Delta p$ (eq. (9.20)) and p' - Δp (eq. (B4)). Thus, $$\frac{\mathbf{q}_{\mathbf{C}}}{\mathbf{p}} = \frac{320.694 + 8}{628.431 - 8} = 0.5298$$ From table A26 of appendix A, the value of M corresponding to this $q_{\rm C}/p$ value is 0.804. From equation (5.10), the Mach number error is $$\Delta M = M' - M$$ (5.10) = 0.79 - 0.804 = -0.014 In the preceding examples, the signs of ΔV_C , ΔH , and ΔM are all negative, when the sign of Δp is positive. It is also true that when Δp is negative, ΔV_C , ΔH , and ΔM are positive. In the preceding calculations, the values of $\Delta V_{\rm C}$, ΔH , and ΔM have been expressed in terms of errors in the measured quantities. In many aircraft flight manuals, however, these errors are expressed in terms of corrections with signs opposite to those of the errors. An example of a flight-manual correction chart for the airspeed and altitude errors of an airplane installation is presented in figure Bl. ## Calculation of $C_{T_{\star}}$ As stated by equation (5.2), the lift coefficient $C_{\rm L}$ is expressed in terms of the dynamic pressure q, the aircraft weight W, and the wing area S by the following equation: $$C_{L} = \frac{W}{gS} \tag{5.2}$$ From equation (5.3), the dynamic pressure q is determined from values of p and M as follows: $$q = 0.7pM^2$$ (B5) For the following computation of C_L , it is assumed that V_i = 260 knots, H' = 25 000 ft, Δp = 6 lb/ft², W = 172 000 lb, and S = 2400 ft². From table Al2 of appendix A, the value of q_C^i at 260 knots is 237.841 lb/ft². From equation (9.20), the value of q_C^i is $$q_C = q_C^{\dagger} + \Delta p$$ (9.20) = 237.841 + 6 = 243.841 lb/ft² From table A2, the value of p' at 25 000 ft is 785.308 lb/ft². Thus, the value of p is $$p = p' - \Delta p$$ (B4) = 785.308 - 6 = 779.308 lb/ft² The value of $q_{\rm C}/p$ is then $\frac{243.84}{779.308}=0.3129$. From table A26, the value of M for this $q_{\rm C}/p$ value is 0.636, so that the value of M² is 0.4045. From equation (B5), the value of q is $$q = (0.7)(779.308)(0.4045) = 220.7 lb/ft^2$$ From equation (5.2), the value of $\,{\rm C}_{\rm L}\,$ is then $$C_{\rm L} = \frac{172\ 000}{(220.7)(2400)} = 0.325$$ ## Calculation of V In this example, the true airspeed V is calculated for a calibrated airspeed $V_{\rm C}$ of 300 knots, a pressure altitude H of 35 000 ft, and an ambient temperature of $-60^{\rm O}$ F. From table A12 the value of $q_{\rm C}$ for 300 knots is 320.694 lb/ft². From table A2 the value of p at 35 000 ft is 497.956 lb/ft². The value of $q_{\rm C}/p$ is then $\frac{320.694}{497.956} = 0.64402$. From table A26 the value of M corresponding to $q_{\rm C}/p = 0.64402$ is 0.87357. From equation (3.27), the speed of sound a in knots is $$a = 29.045 \sqrt{T}$$ (3.27) where the unit of T is ${}^{\circ}R$. From table A28, the value of T for t = -60 ${}^{\circ}$ F is $$T = -60 + 459.67 = 399.67^{\circ} R$$ The value of a is then $$a = 29.045 \sqrt{399.67} = (29.045)(19.992) = 580.67 \text{ knots}$$ From equation (3.21), $$V = Ma ag{3.21}$$ The value of V is then $$V = (0.87357)(580.67) = 507.2 \text{ knots}$$ ## Part II - Pressure Increments in the International System of Units In this section, equations (3.3) and (3.4) are applied to determine static-pressure increments in SI Units. With both equations, the pressure increment Δp for a height increment Δz of 400 m is computed and compared with values in table Al5. Note that for 0 to 400 meters the values of g, ρ ,t,T in terms of Z are the same as those in terms of H. Equation (3.3) is $$\Delta p = -g\rho \Delta Z \tag{B6}$$ From table Al6, the value of ρ at 200 m is 1.2017 kg/m³. From table II of reference Al of appendix A, the value of g at 200 m is 9.8060 m/sec². Then, for $\Delta Z = 400$ m, $$\Delta p = (-9.8060) (1.2017) (400) = -4714 \text{ kg/m-sec}^2 (Pa)$$ From table Al5, the value of Δp as derived from the differential form of equation (3.3) is the same, i.e., 96 611 - 101 325 = -4714 Pa. Equation (3.4) can be written as $$\Delta p = -g \frac{p}{RT} \Delta Z \tag{B7}$$ From table II of reference Al of appendix A, the value of g at 200 m is 9.8060 m/sec². From table Al5, the value of p at 200 m is 98 945.3 Pa (kg/m-sec²). From table A28, the value of R is 0.28705 \times 10³ J/OK-kmol. From table A17, the value of t at 200 m is 13.70° C. From table A28, the value of T is 13.70 + 273.15 = 286.85° K. Then, for ΔZ = 400 m, $$\Delta p = (-9.8060) \frac{98.945.3}{(287.05)(286.85)} (400) = -4713 \text{ kg/m-sec}^2 \text{ (Pa)}$$ From table Al5, the value of Δp is essentially the same, that is, 96 611 - 101 325 = -4714 Pa. The other form of equation (3.4) can be written as $$\Delta p = -\frac{p}{RT} \Delta Z \tag{B8}$$ The values of p, t, and T remain the same. From table A28, the value of \bar{R} is 29.271 m-kg/^OK-kmol. Then, for $\Delta Z = 400$ m, $$\Delta p = \frac{-98 \ 945.3}{(29.271)(286.85)}(400) = -4714 \ \text{kg/m-sec}^2$$ (Pa) As in the previous cases, the value of Δp from table Al5 is -4714 Pa. ## Part III - Pressure-System Lag and Leaks In this section, sample calculations are presented for the determination of (1) the airspeed and altitude errors due to the pressure lag of a static-pressure system and (2) the altitude error resulting from a leak in that system. Calculation of Airspeed and Altitude Errors Due to Pressure Lag In this example, the airspeed and altitude errors of a static-pressure system are determined for an indicated airspeed of 300 knots in a climb of 12 000 ft/min at an altitude of 30 000 ft. The system consists of four cockpit instruments (having a combined volume of 100 in 3) connected to a 50-ft length of tubing 3/16 in. (0.188 in.) in inside diameter (I.D.). From equation (10.3), the lag constant λ is $$\lambda = \frac{128\mu\text{LC}}{\pi d^4 p} \tag{10.3}$$ From table A6 of appendix A, the value of $\,\mu\,$ at 30 000 ft is 3.106 \times 10^{-7} lb-sec/ft². From table A2, the value of $\,p\,$ at 30 000 ft is 628.433 lb/ft². The value of C in cubic feet is 0.05787, the value of d in feet is 0.01567, and the value of L is 50 ft. From equation (10.3), the lag constant $\,\lambda\,$ at 30 000 ft is then $$\lambda = \frac{128(3.106 \times 10^{-7})(50)(0.05787)}{3.1416(0.01567)^4(628.433)} = 1.0 \text{ sec}$$ From equation (10.2), the pressure drop Δp is $$\Delta p = \lambda \frac{dp}{dt} \tag{10.2}$$ From table A2 of appendix A, a 100-ft increment at 30 000 ft corresponds to a pressure increment of 2.86 lb/ft^2 . Since the rate of climb is 12 000 ft/min (or 200 ft/sec), dp/dt is (2)(2.86) or 5.72 (lb/ft 2)/sec. From the value of λ of 1.0 sec, the value of Δp is $$\Delta p = (1.0)(5.72) = 5.72 \text{ lb/ft}^2$$ From table A2 of appendix A, the altitude increment at 30 000 ft corresponding to a pressure increment of $5.72~\mathrm{lb/ft^2}$ is 200 ft. Thus, the altitude error for a rate of climb of 12 000 ft/min at 30 000 ft is 200 ft. From table A12 of appendix A, the airspeed increment at 300 knots corresponding to a pressure increment of $5.72~\mathrm{lb/ft^2}$ is $2.5~\mathrm{knots}$. Thus, the airspeed error for a rate of climb of 12 000 ft/min at 30 000 ft is $2.5~\mathrm{knots}$. To determine whether the conditions of this example meet the requirement for laminar flow as stated by equation (10.6), the pressure drop per foot must be determined. Since the pressure drop Δp is 5.72 lb/ft² and the length of tubing is 50 ft, the pressure drop per foot is 0.1 (lb/ft²)/ft. From table 10.1, the limiting value of $\Delta p/L$ for laminar flow in 0.188-in. I.D. tubing at 30 000 ft is 2.3 (lb/ft²)/ft. Thus, since the $\Delta p/L$ value of this example is only 5 percent of the limiting value, the flow can be considered laminar. ## Calculation of Altitude Error Due to a Leak For this example, it is assumed that the instrument system is the same as that used in the lag calculations (namely, four cockpit instruments connected to a 50-ft length of 3/16-in. I.D. tubing). It is also assumed (1)
that in a ground test of the system at a test pressure corresponding to an altitude of 40 000 ft, the system was determined to have a leak rate equivalent to a rate of change of altitude of 100 ft/min and (2) that the leak is located in the cockpit. To determine the altitude error that would be caused by this leak, it is assumed that the aircraft is at an altitude of 30 000 ft and that the cabin pressure corresponds to an altitude of 5000 ft. The pressures for this flight condition and the pressures involved in the ground test of the system are shown in the diagrams in figure B2. From equation (10.7), the lag constant λ_{λ} of the leak is $$\lambda_{l} = \left(\frac{p_{T,o} - p_{T,a}}{dp/dt}\right) \left(\frac{p_{T,o} + p_{T,a}}{p_{C} + p_{a}}\right)$$ (10.7) From table Al of appendix A, $p_{T,o}$ at sea level is 2116.22 lb/ft² $p_{T.a}$ at 40 000 ft is 391.683 lb/ft² p_a at 30 000 ft is 628.433 lb/ft² p_{c} at 5000 ft is 1760.79 lb/ft² Also from table A2, the pressure increment corresponding to an altitude increment of 100 ft at 40 000 ft is $1.88~\rm lb/ft^2$. The pressure rate dp/dt corresponding to a leak rate of 100 ft/min is thus $1.88~\rm (lb/ft^2)/min$ or $0.0314~\rm (lb/ft^2)/sec$. The lag constant of the leak is then $$\lambda_l = \left(\frac{2116.22 - 391.683}{0.0314}\right) \left(\frac{2116.22 + 391.683}{1760.79 + 628.433}\right) = 57 650 \text{ sec}$$ From equation (10.8), the pressure error Δp_{γ} due to the leak is $$\Delta p_{l} = \frac{\lambda}{\lambda_{l} + \lambda} (p_{c} - p_{a}) \tag{10.8}$$ For a system lag λ of 1.0 sec at 30 000 ft, the value of Δp_{γ} is $$\Delta p_l = \left(\frac{1.0}{57\ 650 + 1.0}\right) (1760.79 - 628.433) = 0.02 \text{ lb/ft}^2$$ From table A2 of appendix A, the pressure increment corresponding to a 1-ft increment at 30 000 ft is 0.028 lb/ft². Thus the altitude error corresponding to a Δp_l of 0.02 lb/ft² is less than 1 ft. Figure Bl.- Flight-manual correction charts for the airspeed and altitude errors of the static-pressure installation of an airplane. These correction charts are used to determine the indicated airspeed and indicated altitude at which the airplane should fly to achieve a desired calibrated airspeed and pressure altitude. Figure B2.- Pressures used in example of computation of pressure error due to leak. ## INDEX ``` Acceleration due to gravity, 12, 219 tables, 237, 253 Accelerometer method, 131 Adiabatic temperature rise, 18 Aerodynamic compensation, 109 installations, 110 tubes, 110 Aftereffect, 172, 187 density, 11, 12 gas constant, 12 mean molecular weight, 12 pressure, 1, 11, 12 ratio of specific heats, 14, 15 speed of sound, 14, 18 temperature, 12, 13, 18, 19 viscosity, 166 Air data computer, 175, 176 Airspeed calibrated, 15, 50 corrections, 282, 288 equations, 14, 15 equivalent, 16 errors, 50, 57, 281 indicated, 16, 50, 137 tables, 238-244, 254-262 true, 1, 14, 16-18 Airspeed indicator, 4, 173 calibration, 173 tolerances, 182 Altimeter, 4, 172 calibration, 172 settings (barometric scale), 199 tolerances, 180 types, 172, 176 Altitude corrections, 282, 288 equations, 12 errors, 50, 57, 58, 281 geopotential, 12 indicated, 50 pressure, 1, 12, 199 tables, 225, 227, 247, 248 Angle of attack, 27 Angle of sideslip, 79 Angle of yaw, 27 Atmosphere, standard, 11 equations, 12 properties, 13 ``` Barometers, 177 Barometric scale, altimeter, 172, 199 QFE setting, 201 QNE setting, 199 QNH setting, 200 Bellows, 3, 176, 196 Bernoulli's equations compressible flow, 14 incompressible flow, 47 Blocking effect, 59, 60, 75, 79 Calibrated airspeed, 15 equations, 15 tables, 238-244, 254-262 Calibrations instrument, 172-174 static-pressure installations, 75-80, 121-143 static-pressure tubes, 59-62 total-pressure installations, 121 total-pressure tubes, 25-29 Capacitance altimeter, 217 Capsules aneroid, 3, 8 differential-pressure, 3, 8 Collar, static-pressure tubes, 59, 60 Compensated static-pressure tubes, 109 Compressibility, 14 factor, 16 Computer, air data, 175 Conversion factors pressure units, 275 U.S. Customary and International Systems, 276 Corrections, airspeed and altitude, 282 Cosmic ray altimeter, 219 Density altimeter, 218 equations, 11 tables, 229, 249 Diaphragms, 3, 177, 197 Drift, 172, 173, 187 Dynamic pressure, 14 equations, 14, 49 Equivalent airspeed, 16 Errors airspeed, 50, 57, 281 altitude, 50, 57, 58 instrument, 5, 6, 171-177, 204 instrument system, 6, 203 Mach number, 50, 58 position, 49, 75 static pressure, 5, 49 temperature, 5 total pressure, 4 Field flow, 47, 48, 52 induced velocity, 136, 156 pressure, 47, 48, 52 Flight calibration methods, 121-139 Flight technical error, 202, 213 Flow compressible, 14, 48 field, 47, 48, 52 incompressible, 14, 47 Free-stream static pressure, 4, 48 temperature, 4, 18 total pressure, 4, 14, 47, 52 Fuselage vent configuration, 79 errors, 100-102 Gas constant air, 12, 277 universal, 12, 277 Geometric height, 12, 199 Geopotential altitude, 12 Gravity meter, 219 Ground camera method, 129, 139 installation, 79 Height, geometric, 12, 199 Hypsometer, 218 Hysteresis, 172, 187 Impact pressure, 5, 14 equations, 5, 15 tables, 238-244, 254-262 Indicated airspeed, 16 equation, 137 tables, 238-244, 254-262 Installation error, 49, 75 effect of lift coefficient, 76, 77, 80 effect of Mach number, 76, 78-80 Installation, static-pressure, 75 design considerations, 82 fuselage nose, 75 fuselage vent, 79 vertical fin, 78 wing tip, 77 Instruments, 4, 171-177 mechanical, 3, 171 servoed, 175 transducer, 176 Instrument errors, 5, 6, 171-177 Instrument scale error, 5, 171, 172, 187, 188 Instrument system error, 6, 203, 204 International System (SI) of Units conversion factors and equivalents, 276 tables, 247-264 Kiel total-pressure tube, 27, 33 Lag acoustic, 165 constant, 166 due to leak, 168, 286 equations, 165, 166 pressure, 165, 285 Laser altimeter, 217 Leaks, pressure system, 168, 286 Lift coefficient, 49, 282 Limited-range pressure altimeter, 218 Local static pressure, 47, 52, 54 Local velocity, 47, 52 Machmeter, 4, 174 calibration, 174 tolerances, 184 Mach number, 1 error, 50, 281 equations, 17 indicated, 50 tables, 265 Magnetometer, 220 Manometer, 177 Mean molecular weight, 12, 277 Microprocessor, 175, 176 Orifice, static-pressure axial location, 59 radial configurations, 61 size and shape, 48, 62, 74 Overall altitude error, 203 Pacer aircraft method, 125 Phototheodolite, 128 Pitot-static tubes, 3, 7, 48, 53 Pitot tubes, 3, 7, 25, 31 shielded, 27, 33, 35, 36 swiveling, 27, 33, 121 Position error, 49, 75 effect of lift coefficient, 76, 77, 80 effect of Mach number, 76, 78-80 Prandtl pitot-static tube, 26, 60, 66 Pressure altimeter, 172 altitude, 1, 199 conversion factors, 275 dynamic, 14, 49 field, 47, 48, 52 free-stream, 4 impact, 5, 14, 15 static, 1, 5, 12 total, 1, 4, 14, 47 QFE barometric setting, 199, 201 QNE barometric setting, 199 QNH barometric setting, 199, 200 ## Radar altimeter, 215 phototheodolite, 128, 138 tracking, 128, 142 Radio altimeter, 215 Range of insensitivity static-pressure tubes, 61 total-pressure tubes, 26 Rate-of-climb indicator, 4, 174 calibration, 174 tolerances, 185 Ratio of specific heats, 14, 15 Recording thermometer method, 133 Recovery, 172, 187 Recovery factor, 18 Reynolds number, 69, 166 Scale error, 5, 171 Servoed instruments, 175 Shock wave, 48 effect on static-pressure measurement, 76, 78 effect on total-pressure measurement, 25 total-pressure loss through, 26 Sonic altimeter, 217 Sonic speed method, 137 Speed course method, 137 Speed of sound equations, 14, 18 tables, 236, 252 Standard atmosphere, 11 equations, 12 properties, 13 Standard deviation, 142, 143, 303 Static pressure error, 5, 48, 49, 59, 75 free-stream, 5, 48 installations, 75 local, 47, 52, 54 measurement, 47 tables, 225-227, 247, 248 tubes, 59-62 Static-pressure installations, 75 calibration procedures, 121, 143 design considerations, 82 effect of lift coefficient, 76, 77, 80 effect of Mach number, 76, 78-80 Static-pressure tubes, 3, 7, 48, 59 compensated, 109 design considerations, 60 effect of angle of attack, 61, 62 effect of Mach number, 59, 60 Statoscope, 140, 157 Strut, static-pressure tube, 48, 53, 59, 60 #### Tables acceleration due to gravity, 237, 253 airspeed, 238-244, 254-262 altitude, 225-227, 247, 248 coefficient of viscosity, 235, 251 conversion factors, 275, 276 ``` density, 229, 249 impact pressure, 238-244, 254-262 Mach number, 265 speed of sound, 236, 252 static pressure, 225-227, 247, 248 temperature, 231, 233, 250 true airspeed, 246, 264 Temperature adiabatic rise, 18 error, 5 equations, 5, 19, 133, 138 free-stream, 4 gradient, 13 probe, 4, 9, 23, 190 tables, 231, 233, 250 total, 19, 133, 138 Theodolite, 129 Tolerances instrument, 171, 180, 182-185 installation, 81 leak, 168 Total pressure error, 4 equations, 1, 14, 47 free-stream, 4, 47 loss through normal shock wave, 26 measurement, 25 Total pressure installations calibration procedures, 121 design considerations, 25 Total pressure tubes, 3, 7, 25, 31 design considerations, 29 effect of angle of attack, 26-29 effect of Mach number, 25 shielded, 27, 33, 35, 36 swiveling, 27, 121 Total temperature, 19 equations, 19, 133, 138 Total-temperature method, 138 Tower method, 127 Tracking-radar method, 128, 139 Tracking-radar/pressure-altimeter method, 130 Trailing-anemometer method, 134 Trailing-bomb method, 124 Trailing-cone method, 125 Transducer, 176, 177, 196, 197 Transducer, pressure, 176 analog, 177, 197 digital, 176, 196 ``` True airspeed, 1 equations, 14, 16-18 tables, 246, 264 True airspeed indicator, 1, 4, 173 calibration, 173 tolerances, 183 Tubes compensated static-pressure, 109 pitot, 3, 7, 25, 31 shielded total-pressure, 27, 33, 35, 36 static-pressure, 3, 7, 48, 59 swiveling, 27, 33, 121 total-pressure, 3, 7, 25, 31 U.S. Customary System of units conversion factors and equivalents, 276 tables, 247-264 Velocity free-stream, 47, 52 induced, 136, 156 local, 47, 52 Vent, fuselage
configuration, 48, 79 errors, 100-102 installations, 79 Vertical speed indicator, 4, 174 Viscosity, 166 tables, 235-251 | Report No. NASA RP-1046 2. Government Accession N | | n No. | 3. Recipie | nt's Catalog No. | | |--|---|--|--|---|--| | 4. Title and Subtitle | | 5. Recort Date
May 1980 | | | | | MEASUREMENT OF AIRCRAFT SPEED AND ALTITUDE | | | | ning Organization Code | | | 7. Author(s) | | | | ning Organization Report No. | | | William Gracey | | | 10. Work | 2610 | | | 9. Performing Organization Name and Ad | Idress | | 1 | -41-13-01 | | | NASA Langley Research
Hampton, VA 23665 | | 11. Contract or Grant No. | | | | | | | | 13. Type of Report and Period Covered Reference Publication | | | | 2. Sponsoring Agency Name and Addre | | | | | | | National Aeronautics a
Washington, DC 20546 | and Space Administrat | ion | 14. Sponso | oring Agency Code | | | calibration and use as
national System of Un
NASA RP-1046 is a for
for release in late 1 | its (SI) be used has theoming publication 980. | been waived. of John Wiley | & Sons, | Inc. and is scheduled | | | This text examines practuated instruments Machmeter, and vertice static pressure to the design of total- and static-pressure instate vent) are presented, are described, and the methods is described pressure lag and leak instruments are descriate are presented. Operate separation of aircraft altitude errors of air based on a variety of Two appendixes present determining the variet | (altimeter, airspeed al-speed indicator). e five flight quantistatic-pressure tube llations (fuselage novarious methods for e calibration of a pin detail. Equation s. Test procedures ibed, and accuracies tional use of the alt is discussed, alon reraft in cruise oper properties of the Eat airspeed and altited | indicator, true Equations relations are presents are given. Cose, wing tip, flight calibrate articular instance of the laborate of mechanical timeter for teng with flight trations. Altitute and the adude tables and | e-airspectating to ted, and clation of ted and electration clation crain clatical cude-measures ample of sample of sample of a complete co | eed indicator, otal pressure and d criteria for the cons of typical l fin, and fuselage chese installations by two of the cing the effects of ibration of the five ctrical instruments earance and vertical d errors and overall suring techniques e are included. calculations for | | | 17. Key Words (Suggested by Author(s | 1) | 18. Distribution Stater | nent | | | | Airspeed Altitude Static pressure Total pressure Aircraft instruments | | Unclassifi | ed - Unl | | | | Pressure measurement | 5 | | Su | bject Category 05 | | | 19. Security Classif. (of this report) | 20. Security Classif. (of this | . • | of Pages | 22. Price*
\$11.75 | |