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A mnxmn matrix

A(a) ax-A

A(X) lambda matrix or matrix polynomial
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Ji pseudo-Jordan block
k
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-1
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ri multiplicity of repeated eigenvalue Xi
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F matrix of superdiagonal elements for J 

Ri ith solvent

R diagonal matrix with ±1 on diagonals

Q right eigenvector matrix

P+
positive projector equal to sum of 

PJO 
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1 identity matrix
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zi left eigenvector for X 
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Abstract

The mathematical theory for decoupling mth-order matrix differential

equations is presented. It is shown that the decoupling procedure can be

developed fro- the algebraic theory of matrix polynomials. The report

discusses the role of eigenprojectors and latent projectorsi.n the decoupling

process and develops the mathematical relationships between eigenvalues,

eigenvectors, latent roots and latent vectors. It is shown that the eigen-
L	 3

I	 I	 vectors of the companion form of a matrix contains the latent vectors as a
f

subset. The spectral decomposition of a matrix and the application to
i i

differential equations is given.

I
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1. Introduction

The purpose of the material in this repo ,̂t is to formulate the algebraic

theory of systems and application to spect::al decomposition and deeoupling

of differential equations. The relationship between eigenvalues, eigenvectors,

Latent roots and latent vector; of matrix polynomials will be given. Since

most of the equations of motion of vibrating systems are cast in second-order

form, the algebraic properties of second-order matrix polynomials have an

important role in the determination of solutions of vibration problems.

Although the mathematical development will be in general form, the analysis

includes second-order matrix polynomials,

The concept of scalar residues is well understood in complex variable

0 o Laplace transforms. The theorytheory and. the inversion f pl 	 r	 y and use of matrix

residues is not widely used and the relationship to eigenvectors and latent

vectors has received :Little attention. Matrix residues, eigenprojectors

and latent projectors are useful in analyzing matrix polynomials and time

domain solutions to differential equations. Several papers have been pub-

lished in recent years on matrix polynomials, see Dennis, Traub and Weber,

(1), as well as a short paper by Denman, [2] 	 Some material on matrix resi-

dues has been given by Zadeh and Desoer, (3), and on projectors, Cullen [4).

Lancaster's book, [5), is an excellent source on latent roots and latent

vectors of matrix polynomials which he denotes as lambda matrices.

It will be shown that eigenvalues and eigenvectors of tl„e matrix com-

panion form and latent roots and latent vectors of a matrix polynomial are

rvlaLod. The matrix resLdues of Lite inverse of a matrix polynomial

A(X) = Iam+AIanrl+...+Am , which will be called latent projector , are sub-

matrices of the matrix residues of the inverse of (XI-A c) where Ac is in

l
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block companion form, The latter residues will be referred to as eigen-

projectors. It will be shown that latent projectors and eigenprojectors are

useful for solving simultaneous differential, equations.

The theory of Laplace transforms will be useful in introducing the

concepts that are to follow. The material on Laplace transforms in most

textbooks is limited to scalar problems and functions which is unfortunate

since modern enji;i.neering problems are likely to be formulated as matrix

problems due to the complexities of the systems to be analyzed. The exten-

sion of Laplace transforms to matrix functions is a simple task provided

that the development of Laplace theory is based on algebraic functions
i
i

rather than scalar functions.

Let f(t) be a scalar function for Which the one-sided Laplace transform

is given by

(1.1)	 LU(t) ] = F(s)	 TO f(t)e-stdt

with the usual assumption that the integral exists. The inverse transform

is defined as

_	 (c+ice(1.2)	 L I(F(s) ] = f(t) = -1 J 	 F(s)estds
27TJ

c-ice

where c is properly defined to enclose all singularities of the integrand.

If F(s) has the property that

(1.3)	 S o I F (s )	 0

the inverse transform of F(s) is
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(1.4)	 L 1[F(s)] .. f(t)	 residues of [F(s)est ]	
- I Pioa ii•1 laws i i"l.

where F (s) is a ratio of two scalar polynomials.

The Laplace transform method is valid for vector and matrix functions

provided that certain restrictions are satisfied. Let A(s) be the matrix

polynomial

(1.5)	 A(s) . Ism + Als'l 
+ ... + Am

where all coefficients Ai are nxn. The inverse of A(s) is in general form

(1.6)	 [A(s) ]^1 
°^ d [A(S) l 	 aL

with adj the adjoint and dot the determinant of A(s) respectively. The

characteristic equation of A(s) is given by d(s) - det A(s) and will have

a maximum of mn roots, Lancaster [5] calls these ;Latent roots. The inverse

transform of F(s) - [ A(s)]^l when the roots are distinct are

M residues of [F(s) est(1. 7) 	Cl'(F(s))	 f(t)	 L 7 [(A(s)) 7 ] ' X
i=1	 ^sasi

which can be expressed as the matrix analog to (1.4) with

mn
(1.$)	 f(t) =	 Pio exp(sit)

i=1

where the matrices Pia are matrix residues or latent projectors. It is

obvious that the Latent projectors are coefficients of the partial .fraction

1
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A

4

expansion

^.
(1.9)	 [A(8)]-1
	

P
, 	 i0

inl 8-81

The usefulness of the above approach to Laplace transforms can be

illustrated by considering n simultaneous differential equations of a-tit

order, i.e.

m	 m-1
(1.10)	 A0 ddt m + Ai ddt m-1 + :.. + Amx * 0 	 x(p) - c

where x(t) is a nth-order vector. It follows that

(1. 11)	 A(s)X(s) - A m c
	

x(0) - X" ( t0 ) _ ... x(m) (0) R 0

or

(1.12)	 X(s) _ Ws)I 1Amc.

The time domain solution to (1.10) is then given by

On(1.13)	 x(t)L PiOAmc eXp(sit)
i=1

when the latent roots are distinct.

The matrix polynomial given in (1.5) can also arise from the canonical

form or companion matrix. It is not difficult to show that the matrix A(a)

given by

4 ,A



i X I	 1	 0	 a)	 0

(1.14)	 A(X)	 !
t

0	 0	 0	 .	 X1 _X

L Am Am-1	 -2 	} . .	 w r2 	^fi+AI 

j

has the same characteristic equation as (1.5) when AD 1. The root of the

characteristic equation obtained from det(A(a)) . 0 will be the eigenvalues

`	 of A and are equal to the latent roots of A(X) when A0 - 1 The eigenvectors

i of A must be related to the latent vectors of A(X); that relationship will

be given latex.
r

If z(t) is defined as the vector

(1.15)	 WO) Ir - Qx(t) ]T (x(t ) ]T ... [x(m) 
(01T

then z(t) satisfies the equation

(1. 16)	 z (t)	 A z(t)

with

(1.17)	 lx(m) (t) + Alx(m-1) (t) + ... + Amx(t) - 0+

The solution vector x(t) is given by

UM
(1.18)	 z(t)	 Pip C exp(Xit)
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where Pio are the uwcrix residues of JA MI which will be called eigen-

projectors. It is assumed that (1.18) is for distinct eigenvalues of A.

Since the eigenvalues of A and the latent roots of A(%) are the same and

the eigenvectors of A and the latent vectors of A(X) are related, the
A

eigenprojectors Pio and the latent projectors Pio must be related. The

vector G in (1.18) is obtained from (1.12) and the definition of the

canonical form for the system.
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2. Eiganprojectors of Matrices

14at A be defined as a mnxmn matrix with eigenvalues Ait right eigen-

vectors yi and left eigenvectors xi . Define Q as a mnXm matrix constructed

from the eigenvectors y i such that

(2.1)	 Q " (yi Y2 Y3 ... yact

where it is assumed that the columns of Q are linearly independent and spans

the C 
mnXmn opace. The matrix Q has the property that a similarity trans-

formation on A with Q will reduce A to the Jordan form

(2.2)	 J W Q7"AQ

with J - diag[J 
1 
PJ2...j P ] with J i a Jordan block. The Jordan form will be

diagonal if A has mn distinct eigenvalues or if A has mn linearly independent

eigenvectors satisfying [N
i
t-A]y, - 0. if A has repeated eigenvalues and

T 	 is defective, the Jordan blocks leading to the defectiveness of A will have

I	 one or more plus ones on the superdiagonal on a Jordan block. It will be
L

necessary to utilize the chain rule for generating the generalized eigen-

vectors for the defective Jordan b1ock.

The mathematical analysis will be simplified if all eigenvalues with

the same values are considered as a pseudo-Jordan block with th .a plus ones

on the superdiagonal. Assume that J 
i 

and J 
i+l 

are as shown with Ji+1 having

the same eigenvalues as J i but where J 
i+l 

has the plus oites 
on the super-

diagonal. Although the definition
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V

1i 0	 0	 0

Ji	0	
i	

0
(2 . 3)	 s

0	 Ji+l J	 0	 0	 Xi 1
0	 0	 0	 Ai

is not conventional. The two blocks Ji and Ji+l will be considered as a

pseudo-Jordan block.

Let A have q values o,. 
Xi with q pseudo-Jordan blocks as defined. Assume

that mn-k of the eigenval:ues are distinct and q-mn+k are repeated. Each re-

peated eigenvalues will have multiplicity r  and the number of generalized

eigenvectors for the repeated eigenvalues will be Rai , the number of plus ones

on the superdiagonal of Ji . It will be assumed that the ones are located Pa

the last A  rows of the repeated eigenvalue pseudo-Jordan block. The term

pseudo-Jordan block will be dropped in the following discussion and the term

Jordan block will be utilized with J denoting a pseudo-Jordan block.

In addition to the above assumptions, let F ij denote a mnXmn matrix.

The first subscript denotes the eigenvalue to which the Fij matrix belongs

and the second subscript is an index which has a maximum value equal to the

number of generalized eigenvectors required for the eigenvalue i ; this will

be ki. If 
k  

is the number of generalized eigenvectors for Ja i , then

j = 0,1,2,...,Xi with j = 0 for zero generalized eigenvectors. if 
X  

is a

distinct eigenvalue, then 
Fi0 

will be defined as

(2.4)	 Fi0 = diag[0,0,...0,1,0 ... 01

with the one located in the same row and column as 
i 
is in J. The matrix



Fio for a repeated otgenvaluo X i with multiplicity r, 3 will have the form

(2.5)	 F
io	 dtag(0,00.600910191#000.0)

with the one located 
in 

the same rows and columns as 
Xi 

is in J.

To complete the definitIon of Fij 0 assume that Xi 
has multiplicity r,

with ri-ti linearly independent eigenvectors and P,, generalized eigenvectors.

The associated Jordan block will have P, 
i 

ones 
on 

the superdiagonal witli the

ones located in the last Z 
i 

rows of JiO The matrix F 
io 

will be as given in

(2.$) but the set of matrices F F 
12t"'Fi k i 

will now exist with F 
il 

having

otxlv the ones of the superdiagonal of J i located on the superdiagonal of F W

The next matrix in the sequence F ij will be generated by moving the ones on

the superdiagonal of Fit up one diagonal. position by moving to the next

Colula►s of V	 To -111u.q Lrato tile coastruetton of F,Iio let J be defLited as

istt (2.3), alien F 
U P F.11 

and 
1 12 a rc,

1 0 0 0	 0 0 0 0	 0 0 0 0
(2.6)	 F io	

0 1 0 0	 0 0 1 0 ri	 W 0 0 0 1
120 0 1 0	 0 0 0 1	 0 0 0 0

0 0 0 I j	 -0 0 0 Oj	 0 0 0 0

The eigenprojectors of A, [6), can now be defined using the established

notation. Assume that A has ma-k distinct eigenvalues and q-iiul+k repeated

eige ►ivalues. The primary eigenprojectors will be def-hied as

(2-7)	
P0	 -

W (I 11,,to (^ -1
	

1 - 1,2 ' .. .(1

WILII Like primary eigenprojectors having 
the 

properties



(2. 8u)	 P 
io 

P 
1.0 IN 1) J'O

(2.8c)	
P It 0 

P 
jo . 0
	 1 ,fit j

q
Thasa properties follow directly from (2.6) since	 v io - 1, V 

io 
V 
io	 io

and 
F 
io 

F 
jo 

a 0. The primary eigenprojectors tire idempoteat u ►atriea.4, i.e.

P(
io
X wd 11

io 
Whard a is a positive integer.

' 

The spectral decomposition for A which is not defective, is given by

(I

(2.9)	 A - 
i 
X
Ma.

,111'!0

which .follows direaly from the definition of the primary U'-goaprojeaors.

If A is defective, a set of secondary ei8enprojectors will be defined

as the projectors constructed from the eigenvectors and tbe sequence of F 
ij

matrices. Let the secondary eigenprojectors be defined by

0 1.,	 - 
I

. 
IJ Q	 j - 1,2 .... A

WIL1 ► i .1;CL by L110 t ►SSOCtaied eigenval ►v alitch tsropo ► (,od b ►L delect-tve. IL

kAl ►ws from tho definILLI,011 of F 
ij 

that;

-to V
	

- 
P

A'J	 ij

ij 1) ij	 i,j+l

I - 1, 2 p ... k 
I

j ^ 0
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(2.11c)	 PijPi ►j+l = 0	 j 0 0

The secondary eigenprojectors Pil are required for the spectral decomposition

of the most general matrix A.

If A has general form and is de fe ,.-Live then

q
(2.12)	 A= Q i Q-1 . Q[A +	 pir1Q 1i=1

but this is equal to

Cq(2.13)	 A = Q{ G [Fio,i+Fil]}Q 1
i=1

or finally

q
(2.14)	 A =	 [Pioai+Pill

i=1

Although the secondary eigenprojectors Pij with j>l are not necessary for the

spectral decomposition, it will be shown later that the partial traction ex-

pansion of [A(a)] ul = W-A]_
1
 can be expressed in terms of the eigenprojectors.

The procedure given for computing Lhe eigenprojectors for a matrix has

been based on the assumption that the right eigenvector matrix, Q, is known

completely. The inverse of Q will have row vectors that are the left eigen-

vectow of A thus Pio depends on the right and left eigenvectors, yi and zi

respectively. The right and left eigenvectors for distinct eigenvalues are

determined from the equations

(2.15)	 [Xii-A]yi = 0
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(2r1^)	 Y XiI-A] r. 0

or equivalently [Xi I-AT
]zT - 0 for the left eigenvectors. if A is defective

for an eigenvalue Xi , the chain rules, [7]

(2.17)	 [Xi i-A]yk+l R -yk	 k - 1,2,...Z

(2.18)	 [AiZ- AT ] (zk+l )T	 - (zk) T 	k	 I, 2, ... Ri

are used for the generalized eigenvectors where y  and z1 are any one of the

linearly independent eigenvectors for the repeated eigenvalues.

The primary eigenprojectors P i0 were defined earlier and are given by

(2.19)	
Pi0 - Q Pi0 Q7

1

Let Q = Q  be the matrix of right eigenvectors and Q. be the matrix of left

eigenvectors for distinct eigenvalues with

2l
_	 z2

(2.20)	 Qr = [Yl Y2	 ymn]
	 QQ =

zM.

and let Q  be scaled such that QRQr = 1. It then follows for a distinct

eigenvalue X 
that

(2.21)	 PA - Q  FA Q
k - Yi>cz - yizi ,
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Since g rpiO t will be given by the outer product of yl and z i p the scaling

I	
of Q. is equivalent to scaling yi or zi such that <z^yi> a zi Pyi = 1. Since

any eigenvector can be multiplied by a constant then Any set of arbitrary

scaled eigenvectors can be used to compute 
Pi0 

provided that the arbitrary

constants are removed by dividing by the scaling factor. If y i and zi are

arbitrary eigenvectors the eigenprojectors for the distinct eigenvalues are

given by

(2.22)	 P = Yizi
i0 ziyi

The eigenprojectors for the reheated eigenvalues when A is not defective

are determined from a simple extension of (2.21). Since the eigenvectors

are linearly independent, P i0 is given by

Yizi
(2.23)	

k'i0 
= 

arFi0^k	 !i Yiz i
=1	 ;J=i ziyi

where the superscript denotes the jth eigenvector belonging to the pseudo-

Jordan block.

The eigenproj ectors for the repeated eigenvalues when A is defective

are computed in a similar manner to the repeated eigenvalues for the nonde-

fecti.v r! CaSo. 'ahe primary eigenprojector for .=a defective Jordan block is

given by (2.23). The secondary eigenprojectors can be computed from the

eigenvectors by considering (2.10). Let pij denote the subblock of F'ij for

a Jordan block J  where rij is rlxrl . Let Y  and 2 i denote the rectangular

matrices of right  and left eigenvectors respectively of 1 i . Equation (2.10)

can be rewritten as

f
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zi

-.2r	 z
(2.24)	

Pij 
YiFij zi 0 Nyi ... yii Fij

'r.
z i
i

where Q  and Q. have been properly scaled. Let f at denote the elements of

Fij with fat = 1 or 0 depending on the ith row and jth column of F ii, Equa-

tion (2.24) can then be written as

s	 t

(2.25)	 Pi	 Yi Yi i fs z 	 Yi Xi Cyi a aziJ
s t	 sal t-1	 z  yi

Since Pij will be sparse, only a few terms~ of the summation are required.

An example will now be given to illustrate the computational procedure

using the eigenprojecters. Let A be given by

5 -1 0 -2
0 4 -1 -1A

2 -2 0 5 -1

-1 -1 -2 6

with Jordan form

1 0 0 0	 ^l = 1
J	 0 3 1 0	 a2 3

0 0 3 1	 r2=3	 k2=2
0 0 0 3

I

E	 The right eigenvector matrix Qr is



1 -.

4r

^	 a

and the left eigenvector mai

l

Q

The eigenprojector Pio is found from y1 and z 1 and is

	

^, ^y1z1^1 1 1 1 1	 1
	io z1 y1 4	

1 1 1	
10

1 1 ]. 1

with the primary ei,genprojector P 
2 for a2 = 3 given by

	

j j	 1 1	 2 2	 3 3
zy2ẑ2 y2 z2 y2 z2 y2 z2P20 j1 

z2 y2 
= Z2

.

y2 + zZ y2 +
y2 z2 

y2

3 -1 -1 -1

_ 1 -1 3 -1 -1

	

4 
—1 -1 3 -1	 F20 = 13X3

-1 -1 -1 3

As a check on the two eigenprojectors, note that P +1'	 _ :1:. The first
10 20

z Secondary elgenpr.o ,jCcLor i.' 2a is glvctl by

i
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I	 s	 t	 1 2	 2 3
Y2 fi	Y2 z2 Y2 z2

P	

z z	 x2

21 s11 tYl 	 za yt	 z1 y1 + z 2 y22 2	 Z 2	 2 2

0 0 2 -2

l 2 -2 0 0

4 -2 2 0 0	 f12	 f23

0 0 -2 2

The second secondary eigenprojector is determined from (2.25) with f13 m 1

as the only nonzero element in P2 2 . The eigenprojector V22 is then

1 3
y2 x2

Pa 1 1= 
1

22	 4Z2 Y2

-1 l 1 -^,

1 -1 -1 1

A check will show that P20 P21 , P21' P20 P22 = P22 and P 21P22 = 0.

The spectral decomposition of A is given by X210 + '2P20 + P'21 which
is

1 1 1 l	 3 -1 -1 -1	 0 0 2 -2

A	 1 1 1 1 + 3 -1 3 -1 -1 	 + 1	 2 -2 0 0

4 1 1 1 1	 4 -1 -1 3 -1	 4 -2 2 0 0
1 1 1 1	 -1 -1 -1 3	 0 0 -2 2

10 -2 0 -4

1	 0 s -2 -2

-4 0 10 -2

-2 -2 -4 12

which agrees witli A as given.
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The eigenproj ectors can also be computed from the inverse of A(X) where

A 	 - A-A. The most general partial fraction expansion of LAMI-1 is

given by

(2.26)	 [AM ]-1	
q p 

io	
k	 P

-X

i 

+ ^i	 ij 
j+1J-1 (X-X 

i)

The three cases, distinct eigenvalue, repeated eigenvalues with multiplicity

r 
i 

but not defective and the defective matrix must: be, discussed.

The three cases can be analyzed by considering the Jordan blocks for the

three different eigenvalue cases. Rather than consider the mixed Jordan

forms, consider the three individua l Jordan forms. Assume first that

J - diag [X 
1 

X2 X3)  thus

X 
1 
0 0

(2-27)	 A - QjQ-1 ^ Q 0 X2 0	 Q-

0 0 X 3

with [AM]-1 given by

(2.28)	 JAM 1
-1 

- [A1-A]- l' 0	 (x-x2)-	 0

0	 0	 (X-V

It follows directly from (X-X i ) [AM I- evaluated at X 
i 

that

1(2.29)	 (X-X i )W-Af

l i	
F io 

Q- = P 
iox-xi 

Consider the Jordan form with 1i repeated 3 times but where A is not

defective. The inverse of A(X) is

ly
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(a-^
1) -1
	0	 0

s! (2.30)	 [AM l`1 [ -Al"	 Q	 0	 (- ^^)"1
	 0

0	 0	 (X-X1)"

is
Since ai has multiplicity 3 then (W1) 3 [AMI

-1 
will be

(A-al) 2 	0	 0

(2.31)	 (a-X1)3[A(X)] ~1 Q	 0	 (^^a1)2	 0	 Q-1

0	 0	
(X-X1)2

It is obvious that (2.31) will be zero when evaluated at X - AV The first

3eri.vative of (2.31) with respect to X will also be zero at A - Al with the

second derivative of (2.31) given by

2 2 0 0

(2.32)	 dal {(X-X1)3[A(X) 1-1) Q 0 2 0 Q71 - 2QF10Q-1
0 0 2

The eigenprojector for the repeated eigenvalue matrix with multiplicity r 

but for A not defective is given by

ri-1	 r
(2.33)	

Pi0 QF Q
-1 

(rill> ! d ri-^ {^-^i) i [AM1-1}

da	 1X=X

The defective matrix will be analyzed by considering the ,Jordan block

with X1 of multiplicity 3 and 2 generalized eigenvectors. Let [AMI-1 be

given by

(2,34)

X-Xl	 Y
[A (X) ^_1 - Q	 0 X-X1 -1 	 0	 (X-x1)-1

0	 0 A-al	 0	 0
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The sequence of evaluations of (X-X1) 3 CAMI-1 and they derivatives with re-

spect at a a1 will he

0 0 1

	

(2.35)	 (W1)3[A(X))

-ll

Q 0 0 0	
R1 " 

QFlzq-1 = p12
= 1	 0 0 0

0 l 0`

	

(2.36)	 as { (a-X ) 3 [A(X) I"l } 	 - Q 0 0 1 Q- 1 = 4^^^c^'1 P^ x
^.	 0 0 0

2	 l 0 0

	

(2.37)	 `^ —2 {(W ) 3 [A(X) I -1 )	 . Q 0 1 0 Q_' - QFlOQ_I "` plodl	 a' 1	 0 0 1

They computational procedure for finding the eigenprojectors, usually

referred to as matrix residues in the above, from the partial fraction ex-

pansion can now be summarized. If X i is distinct then

	

(2.38)	 pio - (a-ai) tn(x) 
a_ll

with. the primary eigenprojectors for the repeated eigenvalues X  
of multiplicity

ri g,',,-,,,en by

r -1

	

(2.39)	 pi0 (r 1) tt d r^j {(X- X
i [A(A)1-1

dX i	 I X-Xi

The secondary eigenprojectors are defined only for repeated ei,genvalues with

multiplicity ri with A defective and requiring R i generalized eigenvectors.

The secondary eigenprojectors are given by
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(2,40)	 p	 - _  L '^^ ^(^►-^^ )^ CA(A)1-1 ^ 	 j - 0,1,.. of

where [A(E) I
-1 

has all common factors of ad,jCA(a)1 and det[A(a)1 cancelled

so that (AM I-1 is a minimum polynomial with r 
i 

equal to the power of (,X-Ili) i

in the denominator.

The computation of the eigenprojectors by the residua method will be

illustrated with the previous example. The inverse of [A(X) )-1 is given by

1 0 0 0 -7.5 x-0.5 0 -1
1	 1

[A(^) I
0 1 0 0 3

+

0 -s -0.5 -05 2

;^-1) (X-3) 
3 0 0 1 0 -1 0 -7.5 -0.5

0 0 0 1 -0.5 -0.5 -1 -7

17.75 3.25 1.25 4.75 -13.25 - 4.75 - 3.25 - 5.75

0.75 20.25 3. 25 2.75 - 2.75 -15.25 - 4.75 - 4.25
+ ^

5.25 0.75 17.75 3.25 - 6.25 - 2.75 -13.25 - 4.75

3.25 2.75 4.75 16.25 - 4.75 - 4.25 - 5.75 -12.25

The eigenprolector for X K 1 is

1 1 1 ^.

1 1 1 1	 I^1
1 1 1 1

The eigenvulue X = 3 will have a primary egenprojector and two secondary

eigenpro;jectors. The eigenpro;jectors P 221 P21 and 1 20 are
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P	 (X- 3) 
3 
(A (X)

22	
X*3 4	 1 -1 -1 1

L 1 -1 -1 1 J

0 0 2 -2

2 -2 0 0

-2 2 0 0

L 0 0 -2 2 j

d	 )3P 0 U ( (X-3 (A (X)
21	

)-1) 1 X-3	 4

3 -1 -1 -1

kd 
PX-3) 3(A(X)1-1)	 -1 3 -1 -1

20dX 
2	

X-3 " 4	 1 -1 3 -1

- -1 -1 -1 3j

The eigenprojectors agree with the previous values found from the eigenvectors.

The partial fraction expansion of GA(a)I ~1 is

P 
10
	 1' 	

I
	 l.' 22

(2.41)	 [AM1-1 - ' + Q +	 +

	

(X-3) 2	 (A-3) 3

Two methods of computing the eigenprojectors (o •  matrix residues) have

been discussed in this section. The first procedure given was based on the

eigenvectors with the second method requiring the inversion of [A(a)I
-1 and

evaluation of 
the 

residues. It has been shown that the two methods are

equivalent although the numerical computations may not necessarily be cony

parable.

Af.



3. Lambda Matrices and Latent projectors

The analysis in Section 2 was based on the assumption that the A matrix

was in general form with mn rows and columns. This assumption is valid when

the differential equation describing the dynamics of a system are in the

state variable form, first-order differential equations. The system equation

may not alwA •rs be in first-order form as it is common practice in some engi-

neering disciplines to write the differential equations in mth-order form.

If such is the practice, then lambda matrices will be encountered, This

section considers lambda matrices or matrix polynomials, Gantmacher, [8).

Assume that A(N) is a matrix polynomial in N of mth-order with nxn co-

efficients of the form

(3.1)	 A(A) s AGX
m+Al^°r 

1 +...+ AlX+Am

which Lancaster, [1], calls a lambda matrix. Dennis, Traub and Weber [3],

make a distinction between A(X) and A(X) where X is nxn by calling the

latter a matrix polynomial. The polynomial in (3.1) is commionly referred

to as a matrix polynomial in control theory and that designation will be

followed here.

The roots of det[A(^)] are called latent roots and the vectors that

jsatisfy [A(Xi)]yi are referred to as latent vector. This terminology will

be followed in this work to avoid confusion with eigenvalues and eigenvectors.

The concept of latent projectors will be introduced in this section with

the latent projectors having an analogous role to eigenprojectors. It will

be assumed that a latent root may have multiplicity r  and that A(X) will

be defective requiring k  generalized latent vectors where a defective

22

a
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lambda matrix has the same meaning as A being defective, there will not be

r, linearly latent vectors for the latent root Xi .

tf AO is invertible, titan (3.1) can be written as

(3.2)	 A(X) WO[IXm+A,'jX"+...+A ut-,X+A m
	

WOA(X)

.,.- 1-!-
where Ai - A 0 A i . The discussion that follows will focus on A(X) although

a complete truattuant of laui)da matrices should include the case when A0 is

singular.

Tito latent roots of A(X) will be denoted by	 with the right and left

:Latent vectors, denoted by yj and z 
i 

respectively. The latent vectors for

the latent roots X I 
satisfy

A

(3. 3a )	 A(X d yi - 0

(3.3b)	 z 
i 

A(X)	 0

for the right and left latent vectors respectively when X
i 

is distinct or

A(X i ) is not defective. If A(X) is defective for X
i then a chain rule must

be employed. Lancaster and Webber, ( 9), have given the chain rule as

dA(A
i
 ) , -1 	

d 2 A(X
i) ^k-

2- 	
I	

d ^lA(X1)

(3-4)	 A(X 
^ 9,	 k +	 +.	 Y

) Y i 	i
+	 , 

1.	 d- -	 yi	 't -I	
X- J

tiX	 'N

with Yi as a linearly independent latent vector. If y, 
is 

a linear inde-

^pendent latent vector titan y
2
 is given by

(3. 5a)	 G. ).,r)
	 dA(X 1) ^1

	

y !	 Y,

LL
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and Y. by

	

^3	
dA(X 

1) ^2	 1 d 2 A(X 
i) 'i

(5.5b)	 A(X dyi	 ax Yi - -2, -2 — Yi
dX

with all others computed by recursive use of (3.4). The chain rule for tile

A
ileft latent vector is similar except that z is 4► premultiplier of the terms

in (3-4).

Tile computation of the latent vectors is described in tile example. Let

A(X) be

1 0	 X2+ [-4.5	 1.51 X+ [5-5 -3-5]
A(A)

0 1	 1.5 —1.5	 3.5	 5.5

which has latent roots X 	 1, X2	2, a3 - 3 and X4	
X3 A 3 With P,3 1.

Let X - I then

A(I)yl	
2 -21 

y 1 
. [0]	

y 
I . [I

2 2	 0	 1

A
with yl as given for the latClIt Vector. Ti le latent vector, 	 X -2 is ob-

tained from

	

A(2)y2 
	

Y)	
0
	 Y2

1-0-5	 0.5	 0

Tile linear independent latent vector for A	 3 isfound,frown

[01	 ^1
A(3)^

	

Y3	 1 
Y3	

0	
Y3

and the generalized latent vector for X 3, Z3 1, is computed from the
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chain rule. Using (3.5a)

1 1	 o
A(3)y3 ... 

dA3 y3	 y3

or 03) T [-1 lj. The latent vectors y2 and y3 are chosen with signs oppo-

site to A and y3 respectively for convenience. Since yi is in a two-dimen-^

sional space, only two of the latent vectors are necessary to span the .space.

It should be noted that the term linearly independent latent vector is not

properterminology and will be dropped in favor of latent vector hereafter

if yi satisfies A(Xi)yi = 0.

The concept of distinct and repeated latent roots as well as a defective

matrix polynomial will be clarified by relating A(a) to the companion form

of the mnxmn matrix A. It is well known that the matrix

o x	 0	 ... 0

0 0	 I	 .., 0

0 0	 0	 ... I

-Am -Anr-1	 -A m-2 . -A1

will have eigenvalues Xi ;:flat are the same as the latent roots of A(a) that

is det[AM I = det[A(a)) • Furthermore, i t can be shown that the latent

vectors are subvectors of the eigenvectors of A. If y is an eigenvector

of 	 for an eigenvalue^ X i then y 	 is a SUbveaor of yi . I°hca e:ti,envecto r Yi

of A is given b y

't
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0	 .	 0	 yi
k	 0 ail	 -I	 0	 Aiyi

(3.7)	 A(Xi)yi "	 .	 ...

0	 0	 0	 ...	 -T
m-l^A

	
Am_ i Am_2 ... Ai+A1
	 Xi yi

when 
Xi 

is a distinct eigenvalue or A is not defective. It follows that the

first n elements of y  is a latent vector of A(X). Similarly if z  is a

left eigenvector of A then the left latent vector of A(a) will be the last

n-elements of the row vector x i under the same restriction on Xi.

There is a second relationship between A(a) and A(a) that will be useful

in the development that follows. The inverse of A(a) in companion form is

given by

-1
aI -z	 0	 0
0	 XI	 -1	 ...	 0

(3.8)	 [A(A) ]-
1
 --	

...	
[A(X) ]-IBadj [AM l

0	 0	 0	 -I

Am Ain-1 Am-2 • .. al+Al

where Badj[A(a•)] denotes the block adjoint of A(X). The block adjoint is

defined as the adjoint matrix of AW with each block matrix of A(a) treated

as a scalar element. As an example the block adjoint of AM with m - 3 is

FA

,1 -1	 0	 X21+A X+A ri	 A I+Al

('S. 9)	 B.w,j j.A (A) ] 	 lia(l,j	 0	 11	 -1	 -A.i	 A - 1+XA i A 1.

	

L A3 A2 a,.+Al	 XA3	 -AA2-A3 	 :1'X2

f	 _
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The last column of Badj [A(X)] will always have the form shown with the last

block equal to all.

Consider the inverse of (AM) and let A(X) have distinct latent roots.

The partial fraction expansion of [A(a)] was given by

M P
3

(3.10)	 [AM]
_1 	

^iai

where 
Pi0	

(X-Xi) [A(X)I- 1 evaluated at X _ Xi . It follows from (3.9) and

(3.10) that the eigenprojector 
Pi0 

and the latent projector 
Pi0 

are related

since

P10
A

(3.11)	
Pi0 PA adj [A(ai)]	

^ii0
B 

m...l^

ai Pi0

where the first m -1 columns of (3.11) are not important to the de
mn

It was shown earlier that 	 Pi0 a I thus it follows from (3.11)
i=1

latent projectors have the properties that

mn
(3.12a)	

PiU	
0

=1

with

M ^

(3.12b)	
^i P

i0 = 0	 j = 1,2,...,m-2

i=1
r

(3.12c)	
1Pi0	

I

a.'
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where 
Pi0 

are the primary latent projectors. If Pi0 is a matrix residue of

[A(X)I- 1 then Pi0 
is a matrix of [A(X)]-l.

The partial fraction expansion of [A(X)] 	 for distinct latent roots

can be obtained from (3.10) and (3.11) and is

mn P

	

(3.13)	 [A(a) ]-	 i^l X-X
I

where

	

(3.14)	 Pio = (A-Xi)[A(X)]-1

X=Xi

with P i0 being primary latent projectors.

It was shown in Section 2 that the eigenprojectors for the A matrix with

repeated eigenvalues are given by

	

(3.15)	 Yi, -j,
	 (k	 l	 dJ j {(X-Xi)ri[A(7^i)] 1}

i	 i r 
i
+j+1)!-	 dX

with j = 0,1,2,... , ri and (•)! = 1 for (•)<0.

Using (3.11), it follows that

(3.16)	 Pi'ki j 1dJj ((X-,Xi)ri[A(X) ]-1}
da

EEquation (3.16) agrees with the usual partial fraction expansion formula

provided that [A (X)]-1 is a minimum polynomial, factors common to adj[A(a)]

and det[A(a)] have been cancelled.

The numerical procedure for computing the latent projectors by the
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r residues will be given for the matrix polynomial.

1	 0	 2-5	 ^.	 6	 -3
_A() +

X+

0	 1.	 1	 -5	 - 3	 6

which has latent roots X l = 1 0 X2 = a3 - 
X4 

= 3 and R2	 1.	 The inverse of

A(a) is

-1	 1	 A2-5X+6	 -k+3 1 	X-2	 -1

(X-1) (N-3) 3	 -a+3	 X2_SX+6	 (X-l) (X-3) 2 L -1	 X 2

thus

•	 P10	 (J^- 1) IA(a)1
-1^ 	

^

Since X	 3 appears twice in the minimum form of CA(a)I -1 and R	 1,

there will be one primary and one secondary latent projector.	 The latent

projectors are

1	 (	
1.	 -1

21
L

l	 l^i
P2b - 4

?.	 1

The eigenprojector of A were constructed from the eigenvectors of A in

Section 2..	 Since the eigenvectors of A have the latent vectors as subvectors,

the latent projectors of A(X) can be constructed from the Latent vectors.

Consider the distinct eigenvalues X i for which the eigenprojectors P 10 are

given by
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(3.17)	
piU 

.- Yi zi

i Yi

Let the order of the matrix polynomial m be 2 then yi satisfies the equation

?II	 -x	 ^J1iI	 -z

	

s	 i
A2 ^1 

I+A 
1.

Yi	

L A 2 
AjI+Al 	

X 

y

iyi

The left eigenvector zi must satisfy

(3.19)	 zi 	 zi[^^i I]	 ^.

A2 ai I+A1 	A2 XiI+A.1

from which it follows that

(3.20)	 z  = zi [Xil+Al I]

thus the numerator of (3.17) is

I	 „ ^
(3.21)	 Yi zi =	 Yl zi[ail+All]

1i

yiz,(AiI+A1)	 yizi

	

-YiziA2 	iyizi

The outer product z1 Yi is

^	 I	 ^	 ^ dA(ai)
(3.22)	 ziyi = zi [XiI+A1I]	 Y1, = zidl Yi

i

I	 which gives for the distinct eigenvalue or latent root the eigenprojector
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^y;tzi(aiz+ni)	 yixil

	

(3.23)	 pi0 - „ "(Ni) n	 n n	 n
rid^ yi l lyiziA2 	 ^iyizi

The latent projector, as given in ( :3.11) is the (1,2) block of 
Pi0 or

n
yi zi

	

(3.24)	 P 
i0 n dA (Xi) n

z 
	

dX yi

for the distinct latent root. The eigenprojector for the repeated egenvaiue

nondefective case was given as

rj z

	

(3.25)	
pi0 M 1i Y

i i
3-1 zi yj

with the obvious extension to the latent projectors as given in (3.26)

nj nq

n	
ri	

yi zi

	

(3.26)	 Pi0 - ^ I	 ,,^ dA(^i) ,,^
=1

z 	 dX yi

Consider the matrix polynomial

n(a> _
1 0 

a2+	 a+
-4.5 0.5 	 -1.5

0 1	 0.5 -4.5

	 [4-5

	

1.5	 4.5

for which the latent projectors are to be found. The latent vectors for the

latent roots Xi = 1, X2 a 2 and a 3 X4 3 are

„	 1.	 -1	 1	 -1	 n2	 1
yl	

1	
y2 =	 1	

y3 = -1
	

y3	
-1

V^
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z1 	 z2 *^ [1 -	 z3	 [-	 z 	 [1 -

The two distinct latent projectors are

^ h
Y1 Z1

10 ^ dA 1 ^ 	 -1 -1
z  dA Yl

and

^ ^
^	 v2 z2 	1	 -2 -2
p20 dA 2 ^ Ix 4z 2 	y2	 -2 -2

The latent projector for the repeated latent root is

Al ^1	 ^2 ^2
IN	 Y3 z 3	 Y3 "3	 1	 3 -1

30 ^l4l! 3^ ^l ^2 VC-57i  4 -
3 dX Y3 '3 da Y3

The partial traction expansion of [A(a)j
-1
 is then

[Ata) -1 	1	 -1 -1 
+ 

F 1	 -2 2 
+ 

I.	 -1

4 0-1.) -1 -1
	

4 (X-2)	 2 -2	 4 ^X 3) -1 3

with P10 +1120+130 ' 0, and A1P 1.0+Y,20+13V30 ^ I as required.

The formulation of the latent projectors for the repeated latent root

polynomial when A is defective in terms of the latent vectors remains as a

problem. Attempts to formulate the latent projectors for the detective

enne have been unsuccessful.. Future work will be devoted to th],s problem.



4. Projectors and the Sign Matrix

It was shown in Section 2 that the primary eigenprojectors for the

mnxmn A matrix are given by

(4.1)	 P	 Q F 0io	 io I

where F 
io 

is a diagonal matrix with ones along the diagonal of the ith

pseudo-Jordan block. The secondary eigenprojectors were defined as

(4.2)	 P	 F	 jPik Q 
Fib 

Q

when A has 9
i
 generalized eigenvectors for the eigenvalue Xi.

Assume that A has q, eigenvalueswiLh Re(Xi)>O and q2 eigenvalues having

Re(X 
i )<O and no eigenvalues with Re(X i ) - 0 so that q I 

+q 2 - q. Let P+ be

denoted as the sum of the eigenprojectors with Re(X )>G and P_ the sum of

the eigenprojectors with Re(X 
i 
)<O; that is

q
(4.3)	 P +
	

P
io Q	 io Q

-1

q	 q

(4-4)	 P_	 P 
io	

F 
io 

Q
imql+l	 i-q 

1 
+1

where it has been assumed that the first q
i
 eigenvalues have Re(Xi)>Q.

Via sign of a matrin, denoted by S, will be defined as the matrix

(4.5)	 S	 Q{sign[Re(A]]Q-1

33
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where Re(A) denotes the real part of the eigenvalues of A or the diagonal

elements of the Jordan matrix J. Let E  be the mnxmn matrix with diagonal

elements equal. to I if Re(Ai)>O and zero for Re(ai)<Q and E2 be the com-

plement to E  such that E,+E2 = I. The sign matrix can then be defined as

(4.6)	 S-QEIQI-QE2Q71

-1
- Q[ i Fio	 4	 Fip)Q

i•1	 i-gl+l

therefore S is equal to

(4.7)	 S - P+ - P

Knowledge of the eigenprojectors is sufficient to construct the sign matrix'

similarly it can be shown that knowledge of the sign matrix is sufficient

to construct p+ and P-. Assume that P+ is given as

(4.8)	 P+ 2 ($+z) - 2 [QE Q 
1
-QE2Q-1 +QQ  1]

but since EI+E2 - I then

q
(4.9)	 P+Q[E17E2+E1+E2]a 1 QElQ-1 - Q I 1 FiOq 1

L is not dl f'fleUIL Lo show that 1 1- is given by

(4.10)	 P- - 2 [I-$)

jA
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The computation of the sign of A is a rather simple task, Roberts (101,
gave an iterative algorithm to compute S which is based 

on 
Newton's method

for computing the square root of S 2
 
w 1. Tito algorithm is

(4.11)	 S(i+1) - 1 {S(i)+[S(i))	 S(0)	 A
2

where the index i denotes the ith iteration. The algorithm will converge

quadratically to S provided that A has no eigenvalues on the jw axis. The

simplest test of convergence of (4.11) to the sign of A is to compute the

trace of S2 ()  at each iteration. Since S 2 (i)  converges to 1, then trace

[S) will be mn.

Several accelerated versions of (4.11) have been described 
in 

the

literature, Roberts [10), Hoskins and Walton, (111, and Mattheys, [12).

Numerous applications of the sign algorithm to system analysis have been

given in the literature, [13)-[16).

The example below gives the sign of A where A is

-1 -1 9 -3
-3 1 -1 7
9 -3 -1 -1

L-1 7 -3 1

with eigenvalues X, = 1, X2 ' 3, X3 ' X4 - -2 and 2,3 = 
1. The sign of A is



which converged in 5 iterati

"^	 1. JVJ I

3	 4.01697
4	 4.00006
5	 4.00000

The positive and negative projectors, P + and P , were found to be

1 0 1 0

P+a 
2	

0 1 0 1	
P10+P20

1 0 1 0

0 1 0 1

1 0 -1 0

P	 0 1 0 -1	 -P
2 -1 0 1 0	 30

L 0 -1 0 1

The sign matrix of A when all eigenvalues have Re(a i)>O will be I where-

as the sign of A with Re(X i)<O will be -1. Eigenvalues along the jW axis

can be removed from the axis by an origin shift or by computing the sign of

(A+pI) where p is a real number. The eigenvalues of A+pI will be X i+p since

A+pI q(J+pI)Q 1. Gigenvalues belonging to a Jordan block cannot be separated

nor can eigenvalues along the jw axis be split by the described procedure.

A method of separating eigenvalues according to their magnitude is to

compute a new matrix by the bilinear transforwa ion I



37
(4.12)	 A0 . (A-pI)(A+pl)-1

where p has the same meaning as above. All of the eigenvalues with A i l <p

will be mapped into the half plane Re(X )<O with others mapped into the plane
i

with Re(X
i
)>O. This procedure is more general than the origin shifting

method since the spectrum splitting will be according to the magnitudesof

Xi. The two methods, shifting and splitting can be combined if desired to

isolate any circular region of the eigenvalue space. For example, the matrix

A. given by

A0 . (A+p I 1-()Ol)(A+p 1 I+P,3 L) -1

can be used to isolate eige ►ivalues Inside a circle of radius p2 centered at

V

As 
an 

example of the bilinear transformation procedure, let

3 -2 -9 6

A	
3 6 -9	

trace = 6
2	

9	 6	 3 -2

6 -9 -2 3 j

which has eigetivalues X,.	
A2	

2, A 3
 

-5 and X4 = 10. If the value

of p - 4 Is selected then all eigC',nValAIeS inside of the circle. p - 4 will.

be mapped to the left half plane and LhOSe UULSiCIe the circle will be in

the right half plane. The sign of A is

7 0 -1 0 0
-1 0 0 04	 S =
0 0 0 -1
0	 0 •-1	 0
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with projectors

i -1 0 0 ^

1,+ _ 	 1 0 0

0 0 1

0 0 -1 1J

S. 1 0 0

I 1 0 0P
2 0 0 1 1

0 0 1 0

The projectors p+ and P are idempotent matrices and satisfy the proper-

ties of the eigenprojector given earlier. It is not difficult to show that

the positive and negative projectors can be used for the spectral decomposi-

tion of A. Since 1,+  - Q H	 with El = diag[l I I 1	 0 0 0] with the

+
ones in the first (I 

I 
locations. Ti le product AV will have the eigenvalues

with JX,1>P whereas AP- will have eigenvalues JX i 1<P with all other eigen-

values zero. Wing the example

5 5 -15 15

+	 + 1	 -5 5 15 -15 trace	 X X3
A	 AV
	

4-
_15 15 5 -5

-1.5 -5	 5

1 -3 -3

A	 AV
	 I	 1 1 -3 -3	 trace I 

X2-X1
3 -3 1 1

L 3 -1	 1	 1
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The sum of AP+ and AP- must be A since P++Pr I.

j

	

	 It is obvious that P+ and P can be decomposed into eigenprojeetors for

the egenvalues a1 , A2, 
X3 

and a4 . The details for the determination of the
i

eigenprojeetors have been covered in Section 2 and will not be covered at

this point.

The positive and negative projectors, P+ and P- , have been defined in

(4.3) and (4.4). It follows from (4.3) and (3.11) that P+ is ialso given by

1 Pio(aix+A1)	
X1 pi0

	

(4.13)	 1,+ _ 11 Pio
i=1

-1Y A	
l 
CL AYi=1 io 2	 L=1 1. io

for the companion form when A(X) is a second-order polynomial.

Similarily, P- = I-P+ thus

-	 Pio(aiZ+A1)	 -^	 Pio
i-q1+1.	 1=q1+1

q

	

(4.14)	 P-
i=q1+1 i0	 qC 	q

Li=q1+l 1UA2
	

L q 1+1: ^1P10

The secondary eigenprojeetors and latent projectors are not needed in the

decomposition of A into A+ and A- . This can be shown from the definition

of A+ and A-.

The individual eigenprojeetors P io can be computed by repeated use of

the sign algorithm. Assume that n = 4 with a 1 = 1, a2 = 2, A3 = 3 and

X4 = 4. The bilinear transformation can be carried out first with p = 1.5

--o--^^.'I
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to separate X i from the other eigenvalues. if S1
 
denotes the sign of 

A01

with

	

(4.14)	 A01
	

(A-1.51)(A+1.5i)-i

then 
P10 will be given by

	

(4.15)	
F10
	 P

10 2	 1	 1

3
with P+ - I P . The next step in the procedure is to compute A02 withio 
P2 - 2.5 and  compute the sign of A02 . The negative projector of A02 will

be the sum of P
10 

and P
20 or

r2	 10 + p20 2 ('-S2)

Thus 1' 20  P2-P10 ,  This process can be continued until, each elgeoprojector

has been fount:. Since the eigenprojettors also give the latent projectors

as the upper right block, the latent projectors will also be known when A

is in companion form.

A method of computing the projectors of a matrix has been discussed in

this section. It has been shown that the eigenprojector for any general

matrix can be computed from the sign of a matrix. if A is in companion

form, the latent projectors can also be found from the eigenprojectors.



5. Solvents of Matrix Polynomials

The concept of matrix polynomials was introduced in Section 1 of this

report where it was shown that A(X) arises when n simultaneous equations of

mth-order are used to define the time-behavior of a dynamic system. The

eigenprojectors for a matrix in companion form was discussed in Section 2

and the latent projectors were described in Section 3. The application of

lambda matrices to the dynamics of systems has been described by Frazer,

Duncan and Collar, [17)^in their book Elementary Matrices and Some Applica-

tions to Dynamics and Differential Lrjuatlons. The concept of solvents or

matrix roots of a matrix polynomial will be given in this section. It will

be shown in the next section that solvents are useful in solving sets of

differential equations.

Let A(X) be defined as a mth-order matrix polynomial with nxn matrix

coefficients. The associated mnxmn A matrix, which will be called the

block companion matrix, is given by

0	 T.	 0	 ...	 0

0	 0	 x	 ...	 0

{	 0	 0	 0	 I

Am -Am-1 -Am-2 ... -Al

The e;igenvector matrix Q for A will always have the form

Q	 Q	 Q
1	 2	 m

QlAl 	Q2AZ	 ...	 QMAm

( 5 .2)	 Q =
2	 2	 A2

Ql /ll	Q2A2	 . '	 Qm m

Q ` Am-1 Q nm-1 ... Q ?_1
1 1	 2 2	 m m

41
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when A has distinct eigenvalues or AM has distinct latent roots. The sub-

matrices Q^ will be a matrix of latent vectors 
Y  

for the latent roots X 

It will be assumed that Q  exists and is invertible; under the above assump-

tions, R - Q A^ I'Q_ is a solvent of the matrix polynomial and satisfies the

equation, (1),

(5.3)	 R^ + Al R3-1 + .. + Am = 0

The proof of this is straightforward if A(A) is considered. Let A(A) bt, de-

fined as the block matrix AI-A; it then .follows that

Al	 -I	 0 0	 0	 Qj	 0

0	 QjA1	 0

(5.4)	 .	 -
0	 0	 0	 11^	 -I

Am m
-1 

Am-2 A2 A3+AI 	QiAM-1	 0

	where(5.3) is given by the last row of (5.4) provided that A 	 Q^Ai which

must hold from the first row of (5.4).

The block matrices Ai are nxn diagonal matrices constructed from a

subset of the latent roots of A(X) or the eigenvalues of A. Each R  is de-

fined in terms of n :Latent roots XI and ii latent ve(.Lors y.., as an example,

t consider the matrix polynomial A(a) with

AM	 a2+

	

l 0	 -5	 2	 7 -5

	

L0 1	 2 -	
a+

5	 -5 7
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which has latent roots X1 M 1, X2 ' 2, X 3 = 3 and 14 = 4. The right latent

vectors of AW are

A 1 ,^ „ -1 1

yl
1

Y2
[—1

-1
Y3

1
Y4

-1
]

The solvents are constructed from the latent roots and latent vectors by

forming the ?X2 matrices Q
i
A
J
Q- where Q^ _ {y^) such that Q^ is invertible

with j indicating a subset of latent vectors. Noting that {yI ,y2 ) is

singular, then

Rl = CYl y 3 )diag[X
1 X {Y 3. Y31-1

2 -1

	

-1	 2

3 -1

R2 = {Y2 Y4 ]diag[X2 ^4 J[Y Z Y4 I
-1 

=

	

1-1	 3

It can be shown that 
R1 

and R2 satisfy (5.3).
I

The eigenprojectors for the companion matrix A are given by

1

XiI

..	 X^
(5.5)	

pi0	 pi0	 . . . .

^m-11
i

f

where the first m-1 block columns are not important in the development.

Suppose that the latent projectors are known and A has distinct eigenvalues.

It can be shown that if Q3 is defined as
r
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0+1) n
(5.6)Qj+l = Y	 p30

i•jn+1

and

(j+1)n

	

(5.7)^^+
1 Aj+1 ° 7	 Xi Pini-jn+i

then Rj is defined by the latent projectors of A(X) provided that Q  is in-

vertible. If Q  is singular, the latent projectors are reordered until a

set is found for Q-1 to exist.

The solvents for repeated roots can be defined by noting that A i may

include several Jordan blacks. Assuming that the multiplicity r  is less

than n, and that full Jordan blocks are included in AV Q  is defined

as in (5.6). The product Q 
i 
A 
i 
must be modified since Ai is no longer

diagonal but may include the ones on the super diagonal of Ai due to the

included Jordan block. Assuming that the Jordan block is defective,then

Qj Jj will be defined as

(j+l) n(5.8)	 Q J ^ 
i= n+l	

..	 ,.
j J	 [Xipio + Pil l

j 

The matrix polynomial

	

1 0
	
r3 . 5 0.5	 2.5 -0.5

A(X) _	 X2+X+

	

0 1	 1.5 -4.5	 -1.5	 5.5

has latent roots X, = 1,a2 3, a3 = 2 and X = 2 with R 3 = 1. The Jordan

block for l = 2 is then

2 1'
J3	

0 2



a

i

i

The latent vectors of A(X) area

A	 A

y1	 1	
y2	

-1

zi * (1 01	 z2 +* (1 -1]
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r1	 A2
y	

1

Y3	
1	

3	
-1

z3 	 z3

The first solvent is given by

R1 a 
41 1 11	 i0 Xi (	piol-1
	

2 -1

1-1	 -1 2

which gives A(Rl) - 0 as required. The second solvent requires the. primary

:Latent projector and the secondary :Latent projector which are

A	 1 1 1 	A	 i	 -1 1

p30-2 3 -1 aQ2 	 P31^2	 -1 1

n	 N
with	 42' 2 2g 30X3 + p31 or

1
	 2	 1 -] 1	 L	 1 3

2 2 2 6 -2	 2 -1 1	 5 -1

The second solvent is

1 3! 1 1 -1	 5 -1
_	 1 y	 ].

R2 Q2dA	
5 -1	 3 -1	 - 2	 1 3

which gives A(R2 ) 0 as required.

The extension to higher order polynomials is a simple matter and does

not require additional analysis. Each solvent, R1 ,R2" " Rm, is found by

I
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F	 the procedure given in the proceeding work.

The solvents can be determined by the sign algorithm provided that the

spectrum of A has the required distribution. The first step in the proce-

dure is to establish A for the matrix polynomial and assume that the

multiplicity of the repeated eigenvalues are less than n. Let X1190.0,INni

have magnitudes less than pl, and compute the sign of Ant where

AD1 ' (A-p11)(A+pll). The sign of Apl will have n eigenvalues of -1 and

mn-n +1 eigenvalues. The sign of AD, can be arranged in the form

-xnxn	 0

(5.9)	 S1	 Sign (All)	 Q	
-1

L 0
	 1mn-nxmn-n

by row-column interchanges of the sign as computed by (4.11). Let the

eigenvalue matrix (5.9) be denoted by Jx! then

(5.10)	 (S1+jIl) - 
IQJ11+` li+i,,Qlq-1

Suppose that Q is partitioned as

Q2

Q2A2

m-1
Q2A2

...Ql

Q1 Q12	 Q1A1
(5.11)	 Q =

Q21 Q22	 Q•Am-1
1 1

QM

...	 Q A
mm

mm

which when substituted into (5.10) gives

Q1 0

(5.12)	 [SI+J11) = 2	
Q-1

0 Q22
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The similarity transformation [S1a+J1 jAls,+ij )' i then gives

Ql 0	 Al 0	 Q-1 0
(5.13)	 (Sl+dII)A[Sl+dll'- ^' w

0 Q22	 0	 22	 0	 Q22

It
	

0

0 R2

The similarity transformation T required to reduce A to the block diagonal

form is given by

I	 -R21	 (-l)m+'Rm-(m+1)
II'

R	
l1)m+lR7(''1)+l

1	 ; RI	 R2	 1)m+iR (M+l)+2
(5,17)	 (2)m-1 .	 .	 .

R I Rm-2	 (-1) m+ll
1	 2

where R is a solvent of A(X).

The spectral decomposition of A will now be shown using the second ex-

ample in this section. Let.A(a) be defined as

l 0	 -3.5	 0.5	 2.5 -0.5
 j X2+ [

0 1	 1.5 -4.5	 -3.5	 5.5

with Al 1, x2 = 3, x3 = x4 = 2 and k3 = 1. The companion :form A is

S

.1



48

0 0 1 0

A
0 0 0 1

-2.5 0.5 3.5 -0.5

3.5 -5.5 -1.5 4.5

with solvents

	

1

1
2 -1
	

[2.5 -0.5
R ^	 R =

1	
-1	 2	 2	 0.5	 1.5

From (5.17), T is

	1 0	 3/8	 1/18

T - 1.	 0	 1 -1/ 8 	 5/8

2 2 -1 -1	 0

	

^1 2	 0	 -1

with

2 -1 0 0

AmmeA2
=TAT-1= -1 2 0 0

0 0 2.5 --0.5

0 0 065 1.5

The characteristic equation for the upper block is a 2-4a+3 and the lower

block has a2_4X+4 as its characteristic equation. The eigenvalues X1 = 1

and X2 = 3 are in the upper block with X3 - 2 and X3 = 2 in the lower block.

The computations for this example were checked by the sign algorithm with

a shift of x-1.8 and pi = 0.5. The two solvents, R  and R 2 computed by the

sign algorithm, agree with the values given.



6. Solution of a System of Differential Equations

The mathematical tools developed in the previous sections will now be

applied to the time domain analysis of systems. Assume that the system has

been characterized in the first-order form, usually called the state vari-

able form, with states x(t) such that x(t) satisfies the differential equa-

tion

(6.1)	
ddxct • 

Ax(t) Bu(t)

where A is a general mxmn matrix, B is mxkn-, x( t) is a. miM vector and

u(t) is knxl.. Let 2 (t) denote the outvector with

(6.2)	 z (t) - Cx (t)

where L (t) is kmxl and C is kmxmn. The vector u(t) will be considered as

the input to the system or a control vector if the system is a control sys-

tem. It will be assumed that A ,B and C are constant matrices which will be

referred to as the system triplet.

It will be assumed that the system is stable, all eigenvalues of A

have Re(ai)<U except for distinct eigenvalues along the jw axis and multiple

eigenvalues at the origin, Xi . 0.

The solution to (6.1) care ^Ye expressed as

I

i

i

t(6.3)	 x(t)	 0(t,t0)x(t0) + f(t,T)BU(T)dT0
t0

49
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where 0(t,t0) denotes * the state transition matrix, (STM). The state-

transition matrix satisfies the differential equation

d0(t,t0)
(6.4)	

dt	
= A 0(t,t0 )	 0(t01t0)	 I - 0(t,t)

where 0(t,t 0) is mnXmn and I is the identity matrix. There are numerous

methods of obtaining 0(t,t 0), several of the methods will be described.

Since A is a constant matrix, the Laplace transform of (6.4) can be

taken with

(6.5)	 Q	 °(t,o)]= s0(s)-0(0,0) = s0(s) -1

thus the transform of (6.4) is

(6.6)	 0(s) = [sI-A]-1 	Q[sI-J]-1Q 1

where J is the Jordan form. Noting that s in the Laplace domain is equiva-

lent to X in the eigenvalue domain, 0(s) is equivalent to [xi—A] -1 = [A MI-1.

It therefore follows that 0(s) can be expressed as

(6.7)	 0(s) _	 [P i0 + Xi	 lj ]
i=] s-,si	 j =1 (s-si)j

The inverse Laplace transform of 0(s) is C 1 [0(s) ] or

q	 SC	 P t^
(6.8)	 0(t,0) = Q(exp(Jt)}Q--1 = I {P io exp(s it) + Gi	 i

,_ jI eXp(sit)}

*The normal use of (D(t,t0 ) as the state-transition matrix will not be made
due to the use of ^ as the modal matrix, [17].
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where a  is a eigenvalue of A or a root of the characteristic equation

dettsi-A] - 0.

The Laplace transform is usually taken with t 0 = 0 rather than on arbi-

trary value of t 0 . The state transition matrix 0(t,t0) can be found by us-

ing the semigroup properly

(6.9)	 0(t,t0) - 0(t,0)00't0)

where 0(0,10) = 10(10 ,01-1 if t0>0. It follows that 0(t,t 0) is given by

q
(6.10)	 0(t,CO)	 Q[CXP[J(t-L0 ))1Q_ 	

i t 1P 
i0 cxp(si(l-t0)1

i J'i (L— to)
k

	

	_ ... _. c:XIA;; (t—t0M

j=l

The analytical solution to (6.1) can be expressed as

(6.11)	 x(t) = Q exp [J(t-t0 ) ]Q-lx(t0)+Q 
ft
t exp (i (t,-T) )Q-lliu(T)dT
0

where Q is the eigenvector matrix and J is the Jordan form. If the eigen-

projectors P io and Pij are used, then

q	 P ( t- t )j
(6.12)	 x(t) = il (P i0 exp[si (t-;0 )] °1-	 i^!_

j!	 A.Q exp[sl(t-t0)]x(to)
J=

 

{exp is (t-'c) 1P + Xi t^r d exp[si ( t-'C)Pi IBu(c) d1
ft

t i=
1	 ji	 A .-1 j	 j
o 

where the order of the operation under the integral has been reversed for

convenience. This reordering is permissible since exp( • ) is a scalar.

loom.,..._
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The system defined in (6.1) is said to be controllable if the input u(t)

(or the control) can drive the initial states x(t 0) to the origin x(t) - 0

(or to an arbitrary value x(t) n xf). The usual test of controllability is

to examine the matrix

	

(6.13)	 Qc	 [B,AB,A2B, ..., AmB]

to determine if Q  is invertible. The system is controllable if det Q C ^ 0
or if QC is invertible. Controllability of a system can also be measured by

considering the product P,J B for i = 1 9 2 0 ... ,q and J = 1, .... ki for the

eigenprojectors. The system mode exp(a it) is not controllable if

	

(6.14)	 PiJ B = 0

for the primary and secondary eigenprojectors of the eigenvalue X i . This

test implies that u(t) cannot drive the mode exp(X10 as the mode is follow-

ing the natural response rather than a forced response.

The partial fraction expansion method of determining 0(t,t 0) for all t

is not a computationally efficient process and would be used only when the

analytical form of 0(t,t0) is desired. For computational purposes, the

state-transition matrix 0(t,0) can be determined more efficiently by ex-

pressing 0(t,0) in the form

IM 

AJ tJ

	

(6.15)	 0(t,0) = exp At = I + ^ --

	

1= i.	 'j i

The series is then used to compute 0(t,0) for a small value of t with trun-
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cation of the series when the change in 0(t,0) is beyond the accuracy of the

Jigital computer. Assume that the small t is tdken as At, with O(At,O) de-

termined from (6.15). The semigroup properties is utilized to find O(t,0)

for t = kAt by the operation

(6.16)	 O(t,O) _ [O(At,O)l k = O(At,O) 0(t-At,O)

i
when A is constant.

The solution vector x(t) depends upon the integral, as well as the state

transition matrix. The expression in (6.3) can be given in a recursive form

!	 which is more convenient and which has computational advantages. Let (6.3)
f

be written as

(6.17)	 x(t) = O(t,t0) x(t0) + r(t,t0)

where 0(t,t0) has been computed by means of (6.10) and where r(t,t0) is the

integral. The solution vector at t+At can be expressed as

(6.18)	 x(t+At) = 0(t+A,t)x(t) + r(t+At,t)

Substituting (6.17) into (6,18),

(6.19)	 x(t+At) = 0(t+At,t)0(t,t0)x(t0)+r(t+At,t)+0(t+At,t)r(t,t0)

or

(6.20)	 x(t+At) = 0(t+At,t0)x(t0) + r(t+At,t0)
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Knowledge of r(t -F +At,t) is required along with 0(t+Atet) or O(At,O), since A

is constant, to find x(t+At). The vector r(t,t0 ) satisfies the equation

dP(t,t )

	

(6.21)	 t, 0 A M ' t0) + Bu(t)	 r(t0,t0) = 0

and can be found a 4th-order Runge-Kutta algorithm. since r(t+At,t) is re-

quired for (6.20), the value is found from (6.21) by integrating (6.21) from

t to t+At for all t. Equation (6.14) Is then used in a recursive manner

with 0(t+At,t) = 0(At,O) for constant A. The series given in (6.15) is

used to compute 0(At,O) which remains constant thereafter.

If u(t) is slowly varying and At is small., a reasonably good approxi-

mation may be obtained from the z-transform, [3], [18], of (6.1). The

Laplace transform of (6.1) is

	

(6.22)	 [s'i-A]X(s) = Bu(s)

where the initial condition x(0) has been neglected. Equation (6.22) can

be written as

	

(6.23)	 x(s) = [sI-A]-1Bu(s)	 G(s) U(s)

'faking the z-transform of G(s) with a zero-order-hold gives

	

(6.24)	 G(z) = ztl-es	 [sI-A1-1) B

which is found to be

!^^'+
	 'CIA x'^
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(6.25)	 G(z) - (zI-exp(AT)]-1[exp(AT)-I ]A-1B

f
where T - At. The associated difference equation of (6.1) is obtained from

C	 (6.25) with*
k

4
(6.26)	 x(k+l) _ [exp(AT)-I]A-1B U(k) + exp(AT)x(k)

with t = kT, (k+1)T - t+At and x(0) the initial condition vector. The

validity of (6.26) can be shown by noting that

(6.27)	 Q(t,0) - exp(AT)

fo

T	 /T
(6.28) 	 o(t,T)B dT	 I exp[A(t-T)]B dT

0

[exp(AT)-I]A71B

Equation (6.26) is valid provided that the assumption of slowly varying

u(t) and small At is not too strict.

The eigenprojectors can also be utilized to separate the solutions into
r

modes if desired. Recalling that [sI- A]-1 is equivalent to [XI-A]-1 and

that [XI-A] -1 can be expanded as a partial fraction, (6.24) can be refor-

mulated as

-1	
G

q z-1	 Pi0	 Rri	 pi Tj	 . T
s(6.29)	 G(z) = [A(0) ]	 +	

s	
{	

T +
	 --- 

s 
T 

j+l 
e	 }

:i=l i	 z-e i	 j=l (z-e i)

which can be written as a series of transfer function:G ij with

The argument of x( • ) and u( • ) is (lc+l)T with T being dropped for convenience
hereafter.

0	 __ ^,
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q	 R

	(6.30)	 G(Z) ` 
G00 (z) + ^ [Gi0 (z) + Fi Gij(z)j

Jo1

The vector x(z) is then given by

q	 Zi

	

(6.31)	 x (z) - G00 (z)B U(z) + F ' [Gi0 (z) + E 
Gib 

(x) ]$ U(z)

Equation (6.31) defines a set of transfer functions that can be placed in

parallel with each having u(z) as an input and each block can be implemented

separately by a matrix difference equation.

Recalling that the eigenprojectors are defined by the right and left

eigenvectors, the eigenprojectors need not be stored in the digital computer.

The eigenprojectors are stored and used in (6.29) to construct (6.29) at

each T.

The discussion in this section has been based on A having a general

form. Assume that A is the companion form of the matrix polynomial A(a)

with

m^	 m- h	 ^

	(6.32)	
z dt + Al d 

dtx + ... + Am  = u(t)

The canonical form of x(t) is the same as given in (6.1) but with

F,

^
X (t)	 0	 1	 0

X(t)	 0	 0	 x
(6.33)	 x(t) _	 -

X	 (t)	 Am -Am-1 -An
►-'<'

...	 0	 x(t)

0	 x(t)

1
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0
0

+	 u(t)	 A x(t) + B u(t)

`	 z

Rather than use (6.33), the solution vector x(t) can be determined directly

from (6.32). Taking the Laplace transform of (6.32) gives

	

(6.34)	 [Tsm+Alsm-1 + ... + AM-1xf-A 
M,

]x(s) - U(s)

where the initial conditions have been neglected. Equation (6.34) can be

rewritten as

	

(6 .35 )	 X(s) - [A(s)) U(s) - G(s) U(s)

which can be expanded into a partial fraction.

The z-transform of (6.35) can now be found provided that the zero-order-

hold is included and u(t) is slowly varying. Letting

- sT

	

(6.36)	 G(s) = 1-es	 G(s)

gives

-sT	 _	 _ -ST

	

(6.37)	 G(z) = L[1- ^.^. [A(s) ] l } = Z{.l
 s -

- ° G(s))

The z-transform of (6.37) is

`	 . r.
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jsiT

	

P	 k P Tie
('6.38)	 G(z) " CA(0) I -1 + I	 z-] {	 i0 4. r3 iJ	 )

i-1 si

	

(z-e 
siT )
	 (z-ej-1	 siT ) j+1

from which the difference equation for X( k+l) can be determined.

The expression in (6.38) would be implemented on a digital machine in

parallel form rather than as a series representation. As an example, let

r 10	 2	 5 -2	 7 -5 1
f	 A(s) _	 s +	 s+

LO 1	 -2 5	 -5 7J

with roots X1 - -19 X2 = -2, X3 = ^3 and X4 - -4. The latent projectors are

P - 1 1 1	 -1 -1	 ,^ - 1	 —1 	 1	 1

10 2 1 
1	

P20	
-1 -1	

P30 2 -^ 1
	

P4q - 2 1 -1

with A(0) obtained From A(s). The transfer function G(z) is

G(z)	 G00 (z)+G10(z)+G20 (z)+G30(z)+G40(z)
}

where
i

7 1

G00 (z)	 24
5 7

G (Z) - z-1	 1 1 - 1 1]	 1-z-1

10	 r 2 (z-e T)	 1 1 - 2	 1 1 1-e TZ-1

Z- _1	 -L -1

Z0	 2 z-e-l1	 -1 -1	 1 -
1 -1 1-`- 211-1
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G (z)	
z-1	 l -1 ^. l

	
l -^	 ^z-

	

2(z-e 3T) w 1 1	 2 	 1-0-3Tz-

z-1	 -1	 r	
l -]
	 11	 1-z-1

X40 (z) 2 (z-a-4'r)	
1 -1	 2	 l -lJ4Tz-1-1

The implementation as a difference equation would then be

I
A 7 51
^(k+l) s i	 ' u(k+l)

L5 71

xl(k+l.) 2 l l
	

(u(k)-u(k-l.)) + ex X1 (k)

-1 -1
X2 (k+l) 2	 (u(k)-u(k-l)) + e

2T 
X2

 (k)
-1 -1

f 1 -1
X3(k+l)	 (u(k)-u(k-1) + e 3 X3(k)

l-1 l

x4 (tc+l) = 2 -1	 l	 (u(k)-u(k-1)) -! e_4r X4(k)

with

4
X(k+l) = I X.k(k+1)

kp0

f

R

t

1'he parameter T is the iiit,egration step size (or sampling rate) w1.t11 t = k'I'.

Different step sizes can be selected for the modes exp (-;; iT) If L)attur

accuracy is desired for the higher frequency modes.
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The use of the eigenprojectors and the latent projector for solving the

state equation of (6.1) has been described. The extension to the solution

of n mth-order differential equations has been given.



7. Spectral Decomposition of Differential Equations

The increasing complexity of modern system generally requires a large

number of algebraic: operations on system equations and the corresponding solutiots to

these uquations to characterize the dynamics of the systems. It is there-

fore essential that the analysis of large scale systems be carried out on

subsystems or subsets of the equations. A dissertation by K. S. Yoo, [3,51,

used the concept of mode decoupling to analyze an optimal control system.

The overhead for the decoupling procedure was moderately high but the total

computational task for the analysis was decreased when compared to the

usual procedure. Popeava and Lupas, [16), published several papers describ-

ing the procedure, the referenced .paper was the first reference to Yoo's

work in the open literature. The original idea for decoupling, or order

reduction, was probably due to Roberts, [10].

Consider the system equation given in Section 3 with

(7.1)	 dx(t - Ax(t) Du(t)

Let T denote the mnX:nn transformation matrix

I -R21 R72	 ... (-1)M1Cm+l

Rl -I Rol	 ...
(-l) %7nif2

(2)
nr1

.

Rm-1

1

Rm-2

2
R
m-3	

...
3

Z

where I is the nxn identity tnatrix and Ki is the solvent of
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(7.3)	 Ri + AiRoi 1 + ... + A
1W.

IRi + Am - 0

Define the vector v(t) by the transformation

(7.4)	 v(t) #; T
-1 

x(t)

or x(t) T v(t). ,Assume that A is the companion form for the mth-order

differential equation, it follows that v(t) must satisfy

(7.5)	
dv(t - 

T-IA T v(t) + T-
1 

B u(t)

Consider the matrix T-1AT when m w 3 and T is as given in (7.2). It follows

that

ABl 0	 0	 R1 0 0

(7.6)	 AB . T 'AT F	 0 AB2 0	 0 R2 0

0	 0 AB3 J	 L 0 0 R3

or in general for the mth-order differential equation

(7.7)	 AB = diag[Rl ,R2 , tt3 ,... O R l

Recalling that the solvents R  were given by

+1)n	
l(7.8)	 It  = Qkdk(2k1

	 ( ( +1)n
	 ('

Ix iPle
p11)

 [ '^	 Pi0)H
i=3n+l	 i^3n+l

AB and T are completely known provided that the latent projectors are known.
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The solution to (7,5) is obtained from the m equations

(7,9)	
dv 
^

(t) „ 
Riv(t) + biu(t)

where

bl

(7. 10>	 T- B

	
$2

,

m

with initial conditions vi (t0) obtained From (7,4) with x(t o) given. The

maxi vector x(t) as given in (6.33) is

X(t)

x(t)
(7.11)	 x(t)

and x(t) - T v(t). The solution to the mth-order differential equation of

(6.32) is

(7.12)	 x(t) '^ (2)m-1. (vl (t)-R2lv2 (t) + 2t32v3(t)

I

The d000upling procedure described is useful in solving a large set of

differential equations as it allows the set to be decoupled into a number

of equations, A nth-order differential equations with n xn coefficients can be
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t	 solved by generating m first-order equations with nxn coefficients. These

equations can be reduced further if desired by decoupling any of the m

first-order to several first order differential equations with coefficients

less than nxn. The limit to the decoupling procedure will be mn first-order

equations.

As an example of the above let A be the general matrix

-168 48 279 -218 8 50

-136 32 233 -180 14 36

-80 16 95 -58 8 18_A
-60 12 75 -50 8 14

-40 8 50 -32 3 10

L -20 4 25 -16 2 4

which has eigenvalues al 1, a2 -2, X 3 - -5, X4 = -12, X5 = -24 and

a6 -40. This matrix can be reduced to the companion form by the Krylov

transformation

( 7.13)	 Ac = K A K71

where the structure of K is given in the Appendix. The associated matrix poly-

nomial AM is

1 0	 702.051 - 734.624	 7688.79 - 6761.64
A(X)	 X3+	 a2+	

Xj]

0 1	 591.229 -618.051

	

16568.29 -5763.7

9481,.76 - 8521.03

8095.49 -7263.08

J
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The solvents for A(a) are

l -2
Rl 	 det[aY-Rl] * X2 +3X+2 _ (a+1)(X+2)

3 -4

-15 6
R2 =	 det[Xl-x2' R X2 +17X+60 _ (a+5)(a+12)

-5 -2

360 -480
det[al-R ] = X2 +64X+960 = (X+24)(1+40)

R3 = 320 -424	 3

The system equation x(t) - Ax(c)+Bu(t) can be solved by considering the re-

duced equations

0
(7.14)	 vi(t) = ftiv(t) + Biui(t)

provided that the overhead for computing the Krylov transformation and that

for finding the solvents are acceptable as to efficiency and accuracy.
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	 8. Summary

The mathematical analysis in this report had two objectives: the first

'to bring together the mathematical tools For understanding matrix poly-

nomials, with the second of applying these tools to decoupling of system

equations. The study of matrix polynomials, or lambda matrices, is justified

as vibrating systems are generally defined with second-order matrix poly-

nomials, see [19). Although there are several books and ,journal articles

on matrix polynomials, a library search did not reveal a single source of

the material that is complete. It is essential that the mathematics of

matrix polynomials be understood before efficient al.gorithms for analyzing

vibrating systems can be developed. Present algorithms are not capable of

handling large space systems--systems with the number of modes greater than

1000.

The report is incomplete in several areas. The algorithm.for determin-

ing latent projectors from latent vectors for matrix polynomials with repeated

roots was not fully developed. Algorithms for efficient computation of

latent roots and latent vectors have not been devised. A thorough literature

search has not revealed the availability of a computer program for that

purpose. In addition, the decoupling scheme was presented but the computa-

tional algorithm for that task was not described. Work will continue in

these areas.

The damping of large-space structures is an important engineering design

task that must be addressed and algorithms must be developed for that purpose.

The analysis of matrix polynomials as well as a comprehensive understanding

of how damping affects the overall mathematical structure is an integral

part of designing large space structures. Modification of matrix polynomials,
3
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which is necessary for the {,nclusion of damping, was not considered in the

report. Studies will begin in that area with the emphasis on second order

polynomials.

This report is only a beginning for the several taskq described above.

The development of algorithms for analysis, and design of large space

structures will be addressed during the next year of work.



Appen4lw	 Krylov Transformation

`

	

	 The Krylov transformation is a useful algorithm that transforms a

general mnxmn matrix A to the companion form. Let Ac denote the companion

form, then

(A.1) Ac - KAKl

The Krylov transformation is a similarity transformation that leaves thef	

t!

eigenvalues invariant but changes the e:l.genvectors of A from Q to Qc , where

Qll Q12 ' ' ' Qlm

Q21 Q22 ' ' ' Q2m

(A.2) Q -

h
Qml Qm2 .	

Rmm

and

Q11	 Q12	 Qm
p

QllA1	 Q12i12	 . . .	 QlmAm
(A.3) Qc

4 
nm-1	 AUti-1	 Q ^m-1

11 1	 12 2	 lm m

when A has distinct eigenvalues. The similarity transformation in (A.1) and

Ole strucLure of (A.2) and (A.3) requires that K satisfy
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r
f

I

l

,e

G

1

I

Now froth (A. 2) y- (A. 4), if m . 3

411	 Q12	 Q13 Kll	 K12	 K13 Qll	 Q12	 Q13

(A.5)
Qll'Al	 412A2	 Q13

À
3 ^ K21	 K22	 K23 Q21	 Q22	 Q23

2	 2	 2

Q11^1	 Q12^2	 Q13n3
.

K	 x`31	 32	 K33 Q31	 Q32	 Q33

The nxn matrix 
Q11A1 

is from (A.5)

(A.6) Q11A1 
s 

K2141].+K22Q21+K23Q31

or

(A. 7)	
Q11n1Q11 - K21+K22Q21Q11+K23Q31Qll 

'C 
ABl

where 
ABl 

is the matrix that would be in the upper diagonal from the simi-

larity transformation T-1AT given in Section 7. The matrices Q,,,Q -I and

Q31Q-1 are -R12 
and 

R13 as defined in Section 7 but for the general matrix

with

	

x	 -1
I	 -R12 R13	

I	
-Q12Q22 Q13Q33

(n. 8)	 '1' = 2 2	 R21 
-1	 It23	 4	 Q21Q11 

-r	
Q23Q33

O	 -1
LR31 -K32 T
	

Q31Q11 -Q32Q22 I

Analysis of the other equations in (A.5) gives the set of equations

AB1 - K21+K22R21+K23R31

(A+9)	 R12AB2 - K21R12+K22+K23R32

R13AB3 = K21R13+K22R23+K23

i
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I K11+K12R2l K13R31

(A.10) R12 : KllR12+K12+K13R31

R13 . K11R13+K22R23+K23

2
ABl K31+K32R21+K33R31

(A.11) R12AB2 K31R12+K32+K33R32

2
R13AB3 K31R13+K32R23+K33

The Krylov matrix is given from (A.9)-(A.11) as

K11	 K12	 K13 1	 R12	 F13 I	 R12	 R13

(A.12) K21	 K22	 K23 , R21	 I	 R2.3 AB1	 R12AB2	 R13AB3

K31	 K32	 K33i R31	 R31	 1 ABi	 R12AB2	 R13AB3

or

Kll K12 K13

(A.13) K21 K22 K23 fI

K31 K32 K33

-1
I	 R12	 R13	 I	 R12 R13

ABl R12AB2 R13AB3	 R21 
I	

R23
2	 2	 l

ABl R12AB2 R13AB3 	 R31 R32 I

I

All
2

A11+a12A21+A13A31

0

Al2

A11Al2+Al2A22+A13A32

0

A13

A11AU3 Al2A23+A13A33

BR I

=BR A	 =K

Le A2
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where ER R 0 01. The similarity transformation given in (A.1) is required

to show that the Krylov matrix is as given in (A.13).

The general form of (A.13) is

>	 rt

ERz

ERA

(A. 14)	 K

ER Am-'

where A is the general matrix to be reduced to the companion form, Ac.

The inverse of all Qii matrices must exist. Row-column interchanges of

A can be made in most cases to assure the existence of A . . The algorithm

will not have good accuracy whrn m is large particularly when the matrix

is stiff, the eigenvalues have a large spread in magnitude.

i

i

i

i
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