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Symbols ?

mnXmn matrix

AI-A

lambda matrix or matrix polynomial

Jordan form matrix

pseudo-Jordan block

nXn matrix of Jordan blocks

primary eigenprojector or matrix residue of [A(A)]-l
primary latent projector or matrix residue of [A()\)]“1
J>0 secondary eigenprojector

j>0 secondary latent projector

coefficients of lambda matrix or matrix polynomial

number of pseudo-Jordan blocks in A ?
multiplicity of repeated eigenvalue Ai

number of generalized eigenvectors for a repeated eigenvalue Ai

sign matrix
mn¥m matrix with sign{diag[p 0 ... abs()\i) ees 0]}

mXm matrix of superdiagonal elements for Ji

ith solvent
diagonal matrix with *1 on diagonals
right eigenvector matrix

positive projector equal to sum of 1’j with Re(l1)>0

0

negative projector equzl to sum of P . with Re(ki)<0
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identity matrix

right eigenvector for A

left eigenvector for Xi
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adj
Badj
det
Tr
e><e

<e o2

0(t,0)

right latent vector for Ai
left latent vector for Ai
transformation matrix
scalar parameter

adjoint of matrix

block adjoint of block matrix
determinant of matrix
trace of matrix

outer product

inner product

Laplace variable

state transition matrix
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The mathematical theory for decoupling mth-ordexr matrix differential
cquations is presented. It is shown that the decoupling procedure can be
developed from the algebraic theory of matrix polynomials. The report
discusses the role of eigenprojectors and latent projectorsin the decoupling
process and develops the mathematical relationships between eigenvalues,
eigenvectors, latent roots and latent vectors. It is shown that the eigen-
vectors of the companion form of a matrix contains the latent vectors as a
subset, The spectral decomposition of a matrix and the application to

differential equations 1is given,
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1. Introduction

The purpose of the material in this repoyt is to formulate the algebraic
theory of systems and application to spectral decomposition and decoupling
of differential equations., The relationship between eigenvalues, eigenvectors,
latent roots and latent vectori of matyix polynomials will be given. Since
most of the equations of motion of vibrating systems are cast in second-order
form, the algebraic properties of sccond-~order matrix polynomials have an
important role in the determination of solutions of vibration problems.
Although the mathematical development will be in general form, the analysis
includes second-order matrix polynomials,

The concept of scalar residues is well understood in complex variable
theory and the inversion of Laplace transforms. The theory and use of matrix
residues Is net widely used and the relationship to eigenvectors and latent
vectors has received little attention. Matrix residues, elgenprojectors
and latent projectors are useful in analyzing matrix polynomials and time
domain solutions to differential equations. Several papers have been pub-
lished in recent years on matrix polynomials, see Dennis, Traub and Weber,
[1], as well as a short paper by Denman, [2]. Some material on matrix resi-
dues has been given by Zadeh and Desoer, [3], and on projectors, Cullen [4].
Lancaster's book, [5], is an excellent source on latent roots and latent
vectors of matrix polynomials which he denotes as lambda matrices.

It will be shown that eigenvalues and eigenvectors of the matrix com-
panion form and latent roots and latent vectors of a matrix polynomial ave
related.  The matrix resldues of the inverse of a matrix polynemial
A(A) = Lkm+AlA“hl+...+Am, which will be called latent projectors, are sub-
matrices of the matrix residues of the inverse of (AI—AC) where Ac is in

1
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block companion form. The latter residues will be referxred to as eigen-
projéctors. It will be shown that latent projectors and eigenprojectors are
useful for solving simultaneous differential equations.

The theory of Laplace transforms will be useful in introducing the
concepts that are to follow. The material on Laplace transforms in most
textbooks is limited to scalar problems and functions which is unfortunate
since modern engjineering problems are likely to be formulated as matrix
problems due to the complexities of the systems to be analyzed. The exten-
sion of Laplace transforms to matrix functions is a simple task provided
that the development of Laplace theory is based on algebraic functions
rather than scalar functions.

Let f£(t) be a scalar function for which the one-sided Laplace transform

is given by

(1.1) LI£(t)] = F(s) = r f(t)e"Stdt
0

with the usual assumption that the integral exists. The inverse transform

is defined as

=

[c+mw

(1.2) Clres)] = £Gb) = F(s)e®tds

273 cmico

where ¢ is properly defined to encloge all singularities of the integrand,

If F(s) has the property that

Lim

SR

(1.3) |F(s)| = 0

the inverse transform of F(s) is
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(1.4) L MF(e)] = £() = ] residues of [F()e®*)| = ) P, e
i=1 8=a, i=)

where F(s) is a ratio of two scalar polynomials.

The Laplace transform method is valid for vector and matrix functions
provided that certain restrictions are satisfied, Let A(s) be the matrix
polynomial

m-1
8

m s
(1.5) A(s) = Is" + Al + a0l t Am

where all coefficients Ai are n*n. The inverse of A(s) is in general form

~1 dj{A(s)] _ B(s)
(1.6) (A(s)] © = 3et{A(§>1 - d(§>

with adj the adjoint and det the determinant of A(s) respectively. The
characteristic equation of A(s) is given by d(s) = det A(s) and will have
a maximum of mn vroots, Lancaster {5] calls these latent roots. The inverse

transform of F(s) = [A(s)]"1 when the roots are distinct are

m a]
(L.7) CLre)) = £(0) = L) 1™ = T residues of [F(s)e®*

i=1 szs1

which can be expressed as the matrix analog to (l.4) with

mn

(1.8) £(t) = Z

ﬁ_ exp(s.t)
4=1 10 i

A

where the matrices P,  are matrix residues or latent projectors. It is

i0
obvious that the latent projectors are coefficients of the partial fraction
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expansion
m P
(1.9) w1t - ) A
i=1 i

The usefulness of the above approach to Laplace transforms can be
illustrated by considering n simultaneous differential equations of m-th

order, l.e.

(1.10) A dx . -‘-’:{3‘4 +Ax=0 x(0) =
[} Odtm ldcnhl L3R BN I m c

where x(t) is a nth-order vector. It follows that

(1.11) AGS)X(s) = A c X(0) = () = ... ™ (0) = 0
or
(1.12) X(s) = [A(s)]-lAmc.

The time domain solution to (1.10) is then given by

m
(1.13) x(t) = ¥ PiOAmc exp(sit)
i=1
when the latent roots are distinct.
The matrix polynomial given in (1.5) can also arise from the canonical
form or companion matrix. It is not difficult to show that the matxix A(})

given by




rM: =1 0 L T ¥ ﬂ ]

0 AI "1 o s 9 0 0
(1.14) A = . . : e

; 0 0 0 o s 0 Al "'I

1 X

LAm Am_l Am-z LI I ] u*}z AI""Al J

has the same characteristic equation as (1.5) when Ao m I, The root of the
characteristic equation obtained from det{A(A)] = 0 will be the eigenvalues

of A and are equal to the latent roots of A(A) when AO = I, The eilgenvectors

. of A must be related to the latent vectors of A()\); that relationship will

be given later.

If z(t) 48 defined as the vector
(1.15) [z¢e) 1" = {[x(e) 1 () 1F ..o x™ e 1)

then z(t) satisfies the equation

(1.16) z(t) = A z(t)
with
1.17) 1x™ (¢) + Alx(m'l)(t:) + ot A X(E) = 0,

The solution vector z(t) is given by

mn
(1.18) z(t) = izl PiO c exp(Ait)
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where PiO are the wmacrix residues of‘[A(k)]"l which will be called eigen-

projectors. It is assumed that (1,18) is for distinct eigenvalues of A.

Since the eigenvalues of A and the latent roots of A()\) are the same and
the eigenvectors of A and the latent vectors of A(\) are related, the

eigenprojectors Pio and the latent projectors 610 must be related. The

vector C in (1.18) 4is obtained from (1.12) and the definition of the

canonical form for the system,

NI




S

e iegdEEes v

£

¥
2, Eigenprojectors of Matrices

Let A be defined as a mXmn matrix with eigenvalues Ai, right eigen~
vectors Yy and left eigenvectors Zye Define Q as a mnXmn matrix constructed

from the eigenvectors Yy such that

(2.1) Q= [y) ¥y ¥y +er Yyl

where it is assumed that the colums of ) are linearly independent and spang
the memn space., The matrix Q has the property that a similarity trans-

formation on A with Q will reduce A to the Jordan form

(2.2) J = g tAq

1
diagonal 1f A has mn distinct eigenvalues or if A has mn linearly independent

with J = ding[Jl,Jz...Jp] with J, a Jordan block. The Jordan form will be

elgenvectors satisfying [AilmA]yi = 0., If A has repeated eigenvalues and
is defective, the Jordan blocks leading to the defectiveness of A will have
one or more plus ones on the superdiagonal on a Jordan block. It will be
necessary to utilize the chain rule for generating the generalized elgen-
vectors for the defective Jordan block.

The mathematical analysis will be simplified if all eidgenvalues with
the same values are considered as a pseudo-Jordan block with th2 plus ones
on the superdiagonal. Assume that Ji and Ji+1 are as shown with Ji+l having

the same eigenvalues as J, but where Ji+l has the plus ones on the super~

i
diagonal. Although the definition

Lo,
P

N
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(A, o o o0
J 0 ] o A, 1 0
(2.3) 3 E e
0 al o 01
0 0 0 A

is not conventional. The two blocks Ji and J1+1 will be considered as a

pseudo-Jordan block.

Let A have q values 0. Ai with q pseudo~Jordan blocks as defined. Assume

that mn-k of the eigenvalues are distinct and q-mntk are repeated. Each re-
peated elgenvalues will have multiplicity r, and the number of generalized
eigenvectors for the repeated eigenvalues will be Ei, the nunber of plus ones
on the superdiagonal of Ji' It will be assumed that the ones are located ia
the last li rows of the repeated eigenvalue pseudo-Jordan block. The term
pseudo-Jordan block will be dropped in the following discussion and the term
Jordan block will be utilized with J denoting a pseudo-Jordan block.
In addition to the above assumptions, let F,, denote a mnXmn matrix.

ij

The first subscript denotes the eigenvalue to which the F,, matrix belongs

i3
and the second subscript is an index which has a maximum value equal to the
number of generalized eilgenvectors required for the eigenvalue Ai; this will
be 21. If Ri is the number of generalized eigenvectors for Ai’ then

j= 0,1,2,...,2i with j = 0 for zero generalized eigenvectors. If Ai is a
distinct eigenvalue, then FiO will be defined as

(2.4) Fi = diag[0,0,...0,1,0...0]

0

with the one located in the same row and colunmn as Ai is in J. The matrix

R




e

SR TR e S R A e TR SRR e R R e

9

FiO for a repeated eigenvalue Ai with multiplicity L 3 will have the form
(2.5) FiO = diaglo0,0,.,.0,1,1,1,0...0])

with the one located in the same rows and columms as A1 is in J.

To complete the definition of Fij’ assume that Ai has multiplicity r,
with ri—%i linearly independent eigenvectors and ﬂi generalized eigenvectors,
The assoclated Jordan block will have ki ones on the superdiagonal with the
ones located in the last Ri rows of Ji‘ The matrix FiO will be as given in
(2.5) but the set of matxices Fil,Fiz,...Fiﬁi will now exist with Fil having
only the ones of the superdiagonal of Ji 11
The next matrix in the sequence Fij will be generated by moving the ones on

located on the superdiagonal of F

the superdiagonal of Fi] up one diagonal position by moving to the next

colunns of To 1llustrate the coustruction of It loet J be defined as

L i’
in (2.3), then Fin, Fil and FJ2 are
q
L 0 0 0 0 0 0 0 0O 0 0 0
2.6) rp= |01 00w w0010 g, = |00 01
0 0 1L o 0O 0 0 1 0O 0 0 0
0 0 0 1 0 0 0 0O 0 0 0 0

The eigenprojectors of A, [6], can now be defined using the established
notation. Assume that A has mn—k distinct eigenvalues and q-mntk repeated
cigenvalues. The primary cigenprojectors will be defined as

1

(2.7 Pl = Q¥ Q0 i=1,2,...q

with the primawy cigenprojectors having the properties

S S Jare - e - - e . * -

N T T T T
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(2.8a) ? P, =1 .

iml 10

» é

(2.80) Piofi0 ™ a0 ;

] - {3 ‘

(2. 8c) PoPyo = O L4 |

g

| g

These properties follow directly from (2.6) since 121 ”10 - 1L, Fiohio = Fiﬂ i
and FiOFjO » 0, The primavy eigenprojectoxs arve idempotent matrices, i.e.

il

) ) 3 R A fntever
110 - liO where o is a positive integer.

The spectral decomposition for A which is not defective.is given by

o

q ]
2.9) A= ) AP ‘
1oy 10

which follows directly from the definition of the primary eigenprojectors,

If A is defective, a set of secondary eigenprojectors will be defined
as the projectors constructed from the eigenvectors and the sequence of Fij
matrelees. Let the secondary eigenprojectors be defined by

(2.10) PU = FfJ o~ J = l,Z,...&i

with 1 set by the associated eigenvalue which iswvepeated but defective. It

follows from the definltlon of Ft that

J

(2.11a) P L o= 1,2,...%

P,o.oo=
107 4] ! i

"o Yo - , ;
(2.11b) PRy <Py 140




e

The secondary eigenprojectors Pil are required for the spectral decomposition
of the most general matrix A.

If A has general form and is defeciive then

-1 d -],
(2.12) A=QJQ =Q[A+]) F _I0
i=1

but this is equal to

q
- -1
(2.13) A= Q{izl [F 2+, 100
or finmally
q
(2.14) A= 121 [Py *Ry,]

Although the secondary eigenprojectors P,, with j>1 are not necessary for the

13
spectral decomposition, it will be shown later that the partial traction ex-
pansion of [A(A)]~1 = [)\I—-A]_1 can be expressed in terms of the eigenprojectors.
The procedure given for computing the eigenprojectors for a matrix has
been based on the assumption that the right eigenvector matrix, Q, is known
completely. The inverse of Q will have row vectors that are the left eigen-
vecto. of A thus PiO depends on the right and left eigenvectors, Yy and z,
respectively. The right and left eigenvectors for distinct eigenvalues are

determined from the equations

(2.15) [\ I-Aly, =0

Capame
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(2.16) zi[A11~A] = 0

or equivalently [AiI-AT]zi = (0 for the left eigenvectors. If A is defective

for an elgenvalue ki, the chain rules, |7}

kH_ k
(2.17) (A I-Aly; " = -yy k=1,2,...8

(2.18) AT = - k= 1,2,...8,

are used for the generalized eigenvectors where yi and zi are any one of the

linearly independent eigenvectors for the repeated eigenvalues.

The primary eigenprojectors PiO were defined earlier and are given by

- -1

Let Q = Qr be the matrix of right eigenvectors and QR be the matrix aof left

cigenvectors for distinct eigenvalues with

[~ ]
1
o _ z,
(2.20) Q. = [yy ¥y +v V! Q = |,
L “mn |

and let Qz be scaled such that Qer = I, It then follows for a distinct

eigenvalue Xi that

(2.21) P, =Q
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Since Q F10Q£ will be given by the outer product of y1 and ‘i’ the scaling

of Qz is equivalent to scaling yi or zi such that <z,y > = z

14
any eigenvector can be multiplied by a constant then any set of arbitrary

scaled eigenvectors can be used to compute Pio provided that the arbitrary

constants are removed by dividing by the scaling factor. If Yy and z, are

%
arbitrary elgenvectors the eigenprojectors for the distinct eigenvalues are

given by

Y.,2
(2.22) P, = -;}l
173,

The cigenprojectors for the repeated eigenvalues when A is not defective

are determined from a simple extension of (2.21). Since the eigenvectors

are linearly independent, P, is given by

i0

3,4
, i S o IO N
(2.23) Pio = QF 0% = Y yizy = )

where the superscript denotes the jth elgenvector belonging to the pseudo-
Jordan block.

The eigenprojectors for the repeated eigenvalues when A is defective
are computed in a similar mamneér to the repeated eigenvalues for the nonde-
fective case. fGhe primary eigenprojector for a defective Jordan block is
given by (2.23). ‘The secondary eilgenprojectors can be computed from the
eigenvectors by considering (2.10). Let F,, denote the subblock of F, . for

ij ij

a Jordan block Ji where Ti. is rlxrl Let Yi and E; denote the rectangular
matrices of right and left eigenvectors respectively of Ai. Equation (2.10)

can be rewritten as

£
Ty

1 yi l. Since

i




(2.24) P, =Y.F Z

14

-t -.r i N
Zy = g5y e 5, F,

S

where Qr and QR have been properly scaled. Let fst denote the elements of

ﬁij with fst = 1 or 0 depending on the ith row and jth column of §

Tk Equa~

tion (2.24) can then be written as

(2.25) 21
t
Since ﬁij will be sparse, o
An example will now be

using the eigenprojectors.

[ 5
A=% |0
-2
_~l
with Jordan form

1 0

7 = 0 3

0 0

0 0

The right eigenvector matri

w e GESE i 0 T L a8 s 1

t
r Y

8
s=l t 1 zy yi

1 £y 1
nly a few terms of the summation are required.

given to illustrate the computational procedure

Let A be given by

S W = O
c O
L = P
>
n

x Qr is
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1 -1 -1 1]
- 1 -1 1 =1 - 1 2 3
Ql.‘ 1 1 —l -l (yl y2 y2 yz]
11 1 1]
and the left eigenvector matrix by
1 -
1 1 zy
q, = -1 -1 - z&
-1 1 -1 1 22
1 -1 -1 1| 23
The eigenprojector PiO is found from Yy and z, and is
(1 11 1]
Yy, 2 ~
P Ty T E |y Fio =1
11 111 1
1 111
v -

with the primary eigenprojector on for Az = 3 given by

2y 1, 2.2 3.3
~ 2 %9 Yy %y Yy %y Yy %y
P —y . . |+ +
207 L 33T 2 2773 3
2y Zp ¥y Z Yy %Y,
]
3 -1 -1 -1 ]
1]-1 3 -1 -1 A
= e T =I‘
Al 1 3 4 20 = "3x3
-1 -1 -1 3|

As a c¢check on the two eigenprojectors, note that P10+P20 = L, The first

sceondary clgenprojector le Ls given by
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2
z oz oy £y zg Y% 2y yg ’g
P-z‘ " +"
n" Lk 8t 11t
2 Y 2 Y2 %2 ¥
[0 0 2 -2
1]l2 -2 o0 o
- £, =1 £, =1
412 2 o o 12 23
0 0 -2 2

The second secondary eigenprojector is determined from (2.25) with fl

as the only nonzero element in F22' The elgenprojector I’22 is then

ﬂ
13 -1 1 1 -1
P w2272 1 -1 1 1 -2
22" 71 17
zyy 1 -1 -1 1
1 -1 -1 1]

A check will show that on P21 = Py1sPyg Pyy = P22 and PZLPZZ =0,

The spectral decomposition of A is given by Alplo + AZPZO + Py

is
(1 1 1 1] 3 -1 -1 -1 0
A=% 11 1 +% -1 3 -1 -1 +% 2
111 1 -1 3 -1 -2
111 1 -1 -1 -1 3 0

10 -2 0 -4
1] 0 8 -2 -2
Alos 0 10 -2
S -2 -4 12

"

which agrees with A as given.

3= 1
which

0 2 =2
-2 0

2 0 0

0 -2 2
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The eigenprojectors can also be computed from the inverse of A()\) where

A(A) = A-A. The most general partial fraction expansion of LA(A)]”l is
given by

q p L, P
(2.26) A1t = 7 2 It ”‘““313$I
1=l TR =l (A-2))

The three cases, distinct eigenvalue, repeated eigenvalues with multiplicity

b ri but not defective and the defective matrix must be discussed.

The three cases can be analyzed by considering the Jordan blocks for the

three different elgenvalue cases, Rather than consider the mixed Jordan

forms, consider the three individual Jordan forms.

J = diag[)\l Az AB] thus

Assume first that

A, 0 0
-1 1 -1

(2.27) A=Q =q |0 A 0 Q

0 0 A,
with [A()\)]-l given by

y Ot o 0
‘ -1 -1 1 -1 -1
(2.28) AT = [AI-A]" = @ 0 (A-1,) 0 Q
0 0 (A—A3)”l

It follows directly from (A-Ai) [A()\)]“;l evaluated at Ai that

-1 -1
(2.29) (k—Ai}[XI-A] =Q FiO Q" = PiO

A=A

i

Consider the Jordan form with Ai repeated 3 times but where A is not
defective. The inverse of A(A) is

| 1

RSSO
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| a-Ap™t o 0
(2.30) AN = 1-A12 = q oot o QL
0 W

Since Ai has multiplicity 3 then (A~X1)3[A(A)]'1 will be

-A)% o 0
3 -1 1 2 -1
(2.31) O-’AMI =g | 00 0?0 | q
0 0 (A~Al)2

It is obvious that (2.31) will be zero when evaluated at )\ = Al. The first
derivative of (2.31) with respect to A will also be zero at A = Al with the

second derivative of (2,31) given by

2 0 0
2
(2.32) S ta=2 DA™ =g |0 2 of ¢ 208, 07"
da 0 0 2

The eigenprojector for the repeated eigenvalue matrix with multiplicity r,
but for A not defective is given by

r.-1

1 r
-1 1 d 1 -1
(2.33) Pio = QF Q" = G-DT 7 =2 TIAO T
dA

A-Ai

The defective matrix will be analyzed by considering the Jordan block

with Al of multiplicity 3 and 2 generalized eigenvectors. Let [A(A)]ﬁl be

given by
-1 -1 -2 -1
A -1 0 [(xnal> =A™ (=Ag)”
(2.34) AT =q] o aa -1 | [ 0 OB S W
0 0 A 0 o 0=

Q

-1

éﬂj
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The sequence of evaluations of (A—Ai)3 [A(A)]’l and the derivatives with re-

spect at A = Al will be

0 0 1
3 -1 -1 ~1
(2,35) (A—-Al) [A(A)) ,_ =Q [0 0 Of Q" =QF,Q =P,
1 0 0 0
5 0 1 0
d -1 1 -1
(2.36) -;,»-x{(X-_Al) (A7} _ =Q [0 0 1] Q" =QF,Q " =P,
1 0 00
1 2 3 1 Lot 1
(2.37) 5 ';Kg {(A~ll) [ACA)] ) , =Q [0 1 0] Q7 =QF Q" =Py
1 0 0 1

The computational procedure for finding the eigenprojectors, usually
referred to as matrix reésidues in the above, from the partial fraction ex-

pansion can now be summarized. If Ai is distinet then

£ -1
(2.38) By = O-A)IAM)]

A=),

with the primary eigenprojectors for the repeated eigenvalues Ai of multiplicity
ooty
r, given by

ri~l

| 1 d i -1
(2.39) P = DT i1 (Ol AT
dA

ANAi

The secondary eigenprojectors are defined only for repeated eigenvalues with

multiplicity r, with A defective and requiring ﬁi generalized elgenvectors.

The secondary eigenprojectors are given by

e

% . . PR
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| | (2,40) P - L oo oy . 0,1,...8
z E 1)8,-3 3T 1 ' 3= 01,000y

where le(lk)]'"1 has all common factors of adj[A(A)] and det[A())] cancelled
3 - A r
f so that [A())] 1 {6 a ninimum polynomial with x; equal to the power of (A-Xi) 1
in the denominator.

The computation of the eigenprojectors by the residue method will be }

‘ illustrated with the previous example. The inverse of [A(A)]-l is given by
n
! ’ = o "
1 0 00 -7.5 ~0.5 0 -1
L (A=1) (A=3) 0 010 -1 0 ~7:.5 =0.5
t ! l‘0 0 0 l [ "0-5 "'005 "'1 "7 J
| 1775 3.25 125 4.75 | [-13.25 - 4.75 - 3.25 - 5.75
+ 0.75 20,25 3.25 2.75 A - 2,75 =15.25 =~ 4.75 = 4.25
5.25 0.75 17,75 3.25 - 6.25 - 2,75 =13.25 =~ 4.75
| 3025 2.75 4.75 16-25“ -"' 4.75 - 4-25 had 5075 "12.25J
The eigenprojector for A = 1 is |
(101 1 1]
1L 11 1 1 1 ~1
Pin =7 = (1) [A(M)]
10413111 =1
h1 1 1 1)
i The eigenvalue A = 3 will have a primary eigenprojector and two secondary
} § - elgenprojectors. The eigenprojectors P22’ I’Zl and on are
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(-1 1 1 -1
-1 1 1 =1
. oyd -1 !
Pyp = (=3)7AN] IA~3 Z | 1 -1 -1 1
. 1 =1 ~1 J‘J
0 0 2 =2
. d por a3 -1 1 2 -2 0 0
r, =& o-nAarh -1
21 ™ dx P
0 0 -2 2|

1ld 3 -1 1 =], 3 -1 =~1
I A M e TR
20 szZ iA*B 4

The eigenprojectors agree with the previous values found from the eigenvectors.

The partial fraction expansion of [A(A)]”l is

P P P p
(2.41) (AT = B 20y AL 22
(A=3)"  (A=3)

Two methods of computing the eigenprojectors (or matrix residues) have
been Jiscussed in this section. The first procedure given was based on the
eigenvectors with the second method requiring the inversion of [A(A)]"l and
evaluation of the residues. It has been shown that the two methods are
equivalent although the numerical computations may not necessarily be com-

parable.
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3. Lambda Matrices and Latent Projectors

The analysis in Section 2 was based on the assumption that the A matrix
was in general form with mn rows and columns. This assumption is valid when
the differential equation describing the dynamics of a system are in the
state variable form, first-order differential equations. The system equation
may not alwe's be in first-order form as it is common practice in some engi-
neering disciplines to write the differential equations in mth-order form,

If such is the practice, then lambda matrices will be encountered, This
section considers lambda matrices or matrix polynomials, Gantmacher, [8].
Assume that A()\) is a matrix polynomial in A of mth-order with nXn co-

efficients of the form
- - mr amel - e
(3.1) A(A) = AOA +A1A +...+ Am_lkam

which Lancaster, [1], calls a lambda matrix. Dennis, Traub and Weber [3],
make a distinction between A(A) and A(X) where X is nxn by calling the
latter a matrix polynomial. The polynomial in (3.1) is commonly referred
to as a matrix polynomial in control theory and that designation will be
followed here.

The roots of det[A()\)] are called latent roots and the vectors that
satisfy fz(ki)]§i are referred to as latent vector, This terminology will
be followed in this work to avoid confusion with eigenvalues and eigenvectors.
The concept of latent projectors will be introduced in this section with
the latent projectors having an analogous role to eigenprojectors. It will
be assumed that a latent root may have multiplicity r, and that A()) will

be defective requiring 2i generalized latent vectors where a defective

22
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lambda matrix has the same meaning as A being defective, there will not be

r linearly latent vectors for the latent root AL'

f AO is invertible, then (3.1) can be written as

« - -k m m-1, -
{3,2) AQ)) AO[I)\ +A]_A +...+Am_1?\+Am] AOA(?\) |

where Ai - Xlei' The discussion that follows will focus on A(A) although
a complete treatment of lawbda matrices should include the case when AO is ;

singular.
The latent roots of A(A) will be denoted by Ai with the right and left
[ N
latent vectors, denoted by Yy and 2y respectively, The latent vectors for

the latent roots Ai satisfy
A

(3. 3a) A(ki)y1 w 0

(3.3b) N A(Ai) = 0

for the right and left latent vectors respectively when Ai is distinct or
A(Ai) is not defective. If A(A) is defective for Ai then a chain rule must

be employed. Lancaster and Webber, [9], have given the chain rule as

(3.4) ACA )""'Q‘ o+ .d,A w(.A_Q o=l 1 dm‘\.(i\i), §~Q*"‘2+ o X d, -wi(, ,,1,,)‘ S}l = ()
: /Y4 ax Yy 2 THT Yy e TR T

*~
with §i as a linearly independent latent vector, LE yi is a lincar inde-

~
pendent latent vector than y2 is given by

. dA(A,)
o T
(3.5a) AQ Yy N Yy

[EREI

s i i

— PR+ A BV o e e e e e A
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. A3
and Yy by
vy WO L 4G
(3.5h) MAIY = - =@ Vi

with all others computed by recursive use of (3.4). "The chain rule for the
left latent vector is similar except that 21 is a premultiplier of the terms
in (3.4).

The computation of the latent vectors 1s described in the example, Let

A(A) be

l 0 2 "[.!5 1.5 5»5 "'3'5
AT

1 ] 1.5 ~4.5 -3.5 5.3

A(A) =

which has latent roots Al = 1, Xz = 2, AB = 3 and Aé " ka = 3 with 23 = 1,

Let A = 1 then
A(l); - Y, =
1 9 2 1

A
with yy as given for the latent vector., The latent vector for A =2 is ob-

tained from

0.5 =0.5 0 R -1

A )y, =
2 0 -1

Phe linear independent latent vector for A = 3 is fouand from

1 1 0 1
~l ~1 1,
A(3)y3 = 11 YB = " y3 = 1

and the generalized latent vector for A = 3, 13 = 1, is computed from the
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chain rule. Using (3.5a)

11 0

~2 dA(3) 2 o
ayy = - G525 - 3 =
11 0
n2. T ; A "2
or (ya) = [~1 1]. The latent vectors y, and y, are chosen with signs oppo-
site to ;1 and §§ respectively for convenience. Since Yy is in a two-dimen-
sional space, only two of the latent vectors are necessary to span the space.
It should be noted that the term linearly independent latent vector is not
properterminology and will be dropped in favor of latent vector hereafter
Lf Y4 satisfies A(ki)yi = (),
The concept of distinct and repeated latent roots as well as a defective
matrix polynomial will be clarified by relating A()) to the companion form

of the mnXmn matrix A. It is well known that the matrix

[0 0 ... 0]
0 I *» 0
(3-6) A": . . ) .
0 0 0 . I

A Al Ape2 oo —Al~

will have eigenvalues Xi that are the same as the latent roots of A(A) that
is det[A(M\)] = det[A(A)]. Furthermore, it can be shown that the latent
vectors are subvectors of the eigenvectors of A. IE Yy is an eigenvector
of A for an cigenvalue AL then §i is a subvector of Yi- The eigenvector Yy

of A is given by

|
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(At -t 0 e o [ 5, ]
0 AL I ... 0 Ai;i
(3.7) Ay, = | - . OO :
0o o 0 ... I .
LA Apr A2 oo AT Anirl;i ]

when Ai is a distinct eigenvalue or A is not defective. It follows that the

first n elements of Yy is a latent vector of A(A). Similarly if zy is a

left eigenvector of A then the left latent vector of A(A) will be the last

n-elements of the row vector z, under the same restriction on Ai.

i
There is a second relationship between A(A) and A(A) that will be useful

in the development that follows. The inverse of A()\) in companion form is

given by
-y "l
FAI "I 0 LIE Y
0 AL -1 oo
-1 . . . oo . _ -1
(3.8) [A(AM)] ™ = . . ces . [A(A) ] Badj[A(A)]
0 0 0 . -1
_Am 1 Am—2 see AI+A1J

where Badj[A(A)] denotes the block adjoint of A(A). The block adjoint is
defined as the adjoint matrix of A(A) with each block matrix of A(A) treated

as a scalar element. As an example the block adjoint of A(A) with m = 3 is

[-A] - | "] A21+AlA+Aq Al+A1 |
(1.9) Badj LAY ] = Badg | 0 A -t | = A, AT M
N 2
L A3 A2 A1+Al —AAg ~AA2~A3 ATL
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The last column of Badj[A(A)] will always have the form shown with the last
block equal to Am—ll.
Consider the inverse of [A(A)] and let A(A) have distinct latent roots.

The partial fraction expansion of [A(A)] was given by

m P
(3.10) AT = ) 2
i=] i

where B, = (\=A,) [AQA) 1" evaluated at ) = A+ It follows from (3.9) and

(3.10) that the eigenprojector P, . and the latent projector ﬁiO are related

10
since
ad i; ) e
. [ . . ’1\0
. L] . i A l,
o 110
(3.11) Pio = Py BagylAQPT = 7,
1/\
L] . L] . Anh P
L i 1QJ

where the first m-1 columns of (3.11) are not important to the development.
mn

It was shown earlier that z P10 = I thus it follows from (3.11) that the
i=1
latent projectors have the properties that .
mnA
(3.12a) izl Py=0
with
mn g a
(3.12b) 121 M Pig=0 §=1,2,...,m2
m-12
(3.12c) ) Af Pyg=1
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~

where PiO are the primary latent projectors. If PiO is a matrix residue of
[A(}\)]-1 then PiO is a matrix of [A(A)]pl.
The partial fraction expansion of [A(A)]-l for distinct latent roots

can be obtained from (3.10) and (3.11) and is

m P
(3.13) ATt = ) 53
i=1 1
where
(3.14) B.o= -a) 1At |
10 i ]
A=A i
i
with Eio being primary latent projectors. i

It was shown in Section 2 that the eigenprojectors for the A matrix with

repeated eigenvalues are given by

1 ad g -1
(3.15) I {O=-2) "[AQD T 7}
i%-3 W DT i i
with § = 0,1,2,...,x; and (*)! = 1 for (-)<0.
Using (3.11), i1t follows that

"~

1 g -1
(3.16) Pi,ﬂ»i-j —3—-!—;;5 (-2 “1aM T )

Equation (3.16) agrees with the usual partial fraction expansion formula

provided that [A()\)]"l is a minimum polynomial, factors common to adj[A(A)]

and det[A()A)] have been cancelled.

The numerical procedure for computing the latent projectors by the
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residues will be given for the matrix polynomial

1 0], [5 1 6 -3
A()) = AT+ At
01 1 -5] -3 6

which has latent roots Al =1, Az - k3 - Aé = 3 and 22 = 1, The inverse of

A()\) is
Ao5a6  —\3 »-2 -1
-1 1 1
[A(A)] © = ———— 9 - [
(A-1) (A-3) -A+3 AT=5A+6 (A=~1) (A-3) L.-l A=2
thus
-1 =1
a -1 1
Bly = (-DIA)] -4
10 =1 4 a1 -1

Since A = 3 appears twice in the minimum form of [A(A)]-l and £ = 1,
there will be one primary and one secondary latent projector. The latent

projectors are

r - -
U
272 |,
b -l
"1 1]
p =1
20%% |,
L -

The eigenprojector of A were constructed from the eigenvectors of A in
Section 2, Since the eigenvectors of A have the latent vectors as subvectors,
the latent projectors of A(A) can be constructed from the latent vectors.

Consider the distinct eigenvalues Xi for which the eigenprojectors PiO are

given by

. .
M, . i . A RO e e L . e s
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Yq
(3.17) Py =

Let the order of the matrix polynomial m be 2 then Yy satisfies the equation

AT -1 [A I -I y
(3.18) i v, = 1 i
A2 A:LI-O-A1 LAZ AiI+A1 Aiyi

The left eigenvector 2y must satisfy

AT -I A AiI -1
= zi[~Bi I]
AiI+Al 2

(3.19) z
2

from which it follows that

(3.20) z, = zi[AiI+Al I]

i

thus the numerator of (3.17) is

o

I A A
Yy & < \ Y1 zi[AiI+AII]
L. "1

(3.21)

[~ ) PPN
gz Ay THA))  ygzy

| Y%A MYi%y
T'he outer product Z, ¥y is
~ LA . daQy)
(3.22) z2.¥y = zi[AiI+A11] Yy =%y oYy

i

which gives for the distinct eigenvalue or latent root the eigenprojector
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A A A A
(’1”1‘*11*A1) Yi2y

(3.23) Pio - A dA()‘i) ~ ; A A A A
v wnl PR FL LY Ayyzy

The latent projector, as given in (3.11) is the (1,2) block of P,y or

(3.24) Po ™ TR

for the distinct latent root. The eigenprojector for the repeated eigenvalue

nondefective case was given as

(3.25) Pio ™

with the obvious extension to the latent projectors as given in (3.26)

v =
da(2.,)
~3 1”23
Zy T ax Vi

n ii
(3.26) P, =
10 7 b

Congider the matrix polynomial

1 0 -4.5 0.5 4.5 -1.5
AQA) = AT+ A+
01 0.5 =-4.5 -1.5 4.5

for which the latent projectors are to be found. The latent vectors for the

latent roots Al = 1, AZ = 2 and AB = A4 = 3 are

Ak O O e N RV I
y, = y, = ya = yo =
L4 72 1 314 314

THES

i
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£y % [-1-1) 2, = [1-1] zp= [-1-1) 23 = (1-1)

The two distinct latent projectors are

s Y1 % ! -1 -1
Woramws 4 |1
1L7dv "
and
JYE, e S 2
2 ~ dA(2) ° 4
Tax Y2 -2 -2
The latent projector for the repeated latent root is
~1 oL N2 A2
A Yy %3 Yy43 4 | 372

P, = 7+ ) .=
O TN ) S Y N T R S
23 4N y3 Za = an Y3 -1 3

The partial traction expansion of [A(A)]_l is then

-1 -1 -2 2 3 -1
[ACN) ]"l R + S + N S
411 1 | 4D, L, 40-3) |1 3
with 110 20+f30 0, and Alf104A i20+A3130 I as required.

The formulation of the latent projectors for the repeated latent root
polynomial when A is defective in terms of the latent vectors remains as a

problem. Attempts to formulate the latent projectors for the defective

case have been unsuccessful.  Future work will be devoted to this problem.

et ot o o 1




It was shown in Section 2 that the primary eigenprojectors for the

mn*mn A matrix are given by

where FiO is a diagonal matrix with ones along the diagonal of the ith

pseudo-Jordan block. The secondary eigenprojectors were defined as

when A has 21 generalized eigenvectors for the eigenvalue Ai.

Assume that A has q, elgenvalueswith Re(Ai)>0 and 9, eigenvalues having
Re(A1)<O and no eigenvalues with Re(ki) = 0 s0 that q1+q2 = q, Let P tLe
denoted as the sum of the eigenprojectors with Re(ki)>0 and P~ the sum of

the eigenprojectors with Re(A,)<0; that is
i

i=1 i=1
0 DTS B
P = P.o=Q F.n Q
4 10 L 10
1=q,+1 imq +1
where it has been assumed that the first a9y elgenvalues have Re(ki)>0.

The sign of a matrix, denoted by S, will be defined as the matrix

T

4, Projectors and the Sign Matrix

-1

P C{ 1-1,2’-gt,q :

10 = @ Fyo

-1

Py = QFyy Q 3= 1,2,.00,0

1

o

q
t.oh, o L 1
) Pio=Q L By Q

s = Q{sign[Re(A]}q"L

33
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where Re(A) denotes the real part of the eigenvalues of A or the diagonal
elements of the Jordan matrix J, Let El be the mnXmm matrix with diagonal
elements equal to 1 if Re(Ai)>0 and zero for Ra(%1)<0 and E, be the com-

plement to El such that El+E2 = I. The sign matrix can then be defined as
- -1 -1
(4.6) $=QE Q7 ~QE,Q
q q
-t PRy - Y Ele
i=] i-ql+1

therefore S is equal to

(4.7) S=p -p

Knowledge of the eigenprojectors is sufficient to comstruct the sign matrix,

similarly it can be shown that knowledge of the sign matrix is sufficient

to construct pt and P~. Assume that P+ is given as

4.8) ¥ 3 (s+0) = 1 [02,07-qE,07 00 ™h)
but since E1+E2 = I then

+ 1 -1 -1 S1._ -1
(4.9) P' = 5 Q[E\~E,#E,+E,1Q7" = QE,Q™" = Q 121 F,,Q
It is not difflcult to show that P~ is glven by
(4.10) L Ty

N
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L The computation of the sign of A is a rather simple task, Roberts [10],
gave an iterative algorithm to compute S which is based on Newton's method

for computing the square root of 52 = T, The algoxrithm is
(4.11) S(41) = & (S(+HSWI™) 5(0) = A

where the index 1 denotes the ith iteration. The algorithm will converge
' quadratically to S provided that A has no eigenvalues on the jw axis. "The
l simplest test of convergence of (4.11) to the sign of A 4s to compute the
f trace of 82(1) at each iteration. Since Sz(i) converges to I, then trace
[S] will be mn.

Several accelerated versions of (4.11) have been described in the
literature, Roberts [10), Hoskins and Walton, [11], and Mattheys, [12].
Numerous applications of the sign algorithm to system analysis have been
given in the literature, [13]-[16].

The example below gives the sign of A where A is

-1 -1 9 -3

A = X -3 1 -1 7
--z"
9 -3 -1 -1

[‘~1 7 -3 1
with eigenvalues Xl =1, kz = 3, A3 = A4 = -2 and 13 = 1, The sign of A is

00 1 0]
0 o0 0 |
o0 o
O o100

howe e

0
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which converged in 5 iterations, The trace of [8(1)12 was

iteration trace
1 6.90278
2 4,3857
3 4,01697
4 4,00006
5 4,00000

The positive and negative projectors, P+ and P, were found to be

1010
L 3 B BRSO
101 0
010 1

-1 0]
-_1 o0 AL
Po=3 P30

The sign matrix of A when all eigenvalues have Re(Ai)>O will be I where-
as the sign of A with Re(ki)<0 will be -L. Eigenvalues along the jw axis
can be removed from the axis by an origin shift or by computing the sign of
(A+pI) where p is a real number. The eigenvalues of A+pI will be Ai+p since
Atpl = Q(J+pI)Q_l. Eigenvalues belonging to a Jordan block cannot be separated
nor can eigenvalues along the jw axis be split by the described procedure.

A method of separating eigenvalues according to their magnitude is to

compute a new matrix by the bilinear transformation
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(4.12) Ay = (A-pI) (A+p1) ™+

where p has the same meaning as above. All of the eigenvalues with |A1I<p

§ o will be mapped into the half plane Re(Ai)<0 with others mapped into the plane

with Re(ki)>0. This procedure is more general than the origin shifting
method since the spectrum splitting will be according to the magnitudesof

Ai. The two methods, shifting and splitting can be combined if desired to
isolate any circular region of the eigenvalue space. For example, the matrix

| ‘ AO given by
(4.13) AO = (A+pl1—pgl)(A+plI+p2[)-l
can be used to isolate eigenvalues insilde a clirele of radius Py centered at

")l.

As an example of the bilinear transformation procedure, let

3 -2 -9 6
A a-% -2 3 6 -9 trace = 6

-9 6 3 -2

6 ~9 -2 3

which has eigenvalues XJ = -1, AZ = 2, AB = =5 and A& = 10. If the value
of p =4 Ls selected then all eigenvalues inside of the circle p = 4 will
be mapped to the left half plane and those vutside the civele will be in

| ; the right half plane. The sign of A is

f 0 -1 0 0
‘ 1 s. |1 00 o0
0 0 -1

i 0 0~1 0

R PRy

a8 F I S Ao .. . - - . ¥e
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; : with projectors

1 -1 o0 ol
5 ptal -1 1 o0 o
| 2 !
\ t 0 0 -1 1 J
{
! ;
| 1 1 0 0
i - 1 :
; P "f 1 1 0 0
l 0 0 1 1
| 0 0 1 0
]
y The projectors P+ and P~ are idempotent matrices and satisfy the proper-
|
ties of the eigenprojector given earlier. It is not difficult to show that
the positive and negative projectors can be used for the spectral decomposi-
tion of A. Since P+ = Q El Q"1 with El = diag[lL L 1L 1. .00 0) with the
| ones in the first 4 locations. The product AP+ will have the eigenvalues
with |}, [>p whereas AP™ will have eigenvalues |A{[<p with all other eigen-
3 values zero. Using the example
| i 5 5 ~15 15
‘ A+ AP+=4%- -5 5 15 -15| trace = 5 = )\4—0\3
; | -15 15 5 =5
| 15 -15-5 5
|
| . 101 -3 -3 ]
1
l ; A" = AP m‘% 1 1 -3 -3 trace = 1 = szkl
‘ - -3 =3 1 1
| ; 3 -3 1 1 ]

[

T T

e et e e A T
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The sum of AP and AP must be A since PT4p™ = I, |
It 1is obvious that P+ and P~ can be decomposed into eigenprojectors for 3
' | the eigenvalues Al’ Az, A3 and Aa. The details for the determination of the i
; j eigenprojectors have been covered in Section 2 and will not be covered at
this point.
The positive and negative projectors, P+ and P", have been defined in

(4.3) and (4.4). 1t follows from (4.3) and (3.11) that P+ is also given by

{ q q i}
l A l "N
f iél Pio(AgTHA) 121 Pio
i q.
| Gamn vt o P
| i=1
‘ q q,
? DR 2 yhoap
. Fioh ELET
| i=1 1=1 il

for the companion form when A(A) is a second-order polynomial.

Similarily, P~ = I-P' thus

[ % R a -
- P (A, I+A.) - P
fmq+1 207U ioq 41 10

q 1 1

(4.14) P =)
1=q,+1 q q .
: =L NPy

h1=ql+l i=qi+l J

The secondary eigenprojectors and latent projectors are not needed in the

decomposition of A into AT and A”. This can be shown from the definition

of A+ and A .

The individual eigenprojectors P

can be computed by repeated use of

the sign algorithm. Assume that n = 4 with Al e= 1, X2 =2, A, = 3 and

3

R4 = 4, The bilinear transformation can be carried out first with p = 1.5
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to separate Ai from the other eigenvalues. If S1 denotes the sign of A01

with
Ch.14) Agy = (A-1.51) (atL.5T) "%
then4P10 will be gilven by
= ‘-‘-l-‘. - = P
(4.15) PlO ) (L Sl) ll
. 3
with P' = § Pip+ The next step in the procedure is to compute A, with
=2

Py = 2,5 and compute the sign of A02' The negative projector of AO2 will

and P or

be the sum of PlO 20

P, =P

9 + P

- L (-

10 20

Thus PZO = P;~P10. This process can be continued until each elgenprojector
has been found. Since the eigenprojectors also give the latent projectors
as the upper right block, the latent projectors will also be known when A
is in companion form,

A method of computing the projectors of a matrix has been discussed in
this gection. It has been shown that the eigenprojector for any general
matrix can be computed from the sign of a matrix. If A is in companion

form, the latent projectors can also be found from the eigenprojectors.
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5. Solvents of Matrix Polynomials

The concept of matrix polynomials was introduced in Section L of this
report where it was shown that A()) arises when n simultancous equations of
mth-order are used to define the time-behavior of a dynamic system. The
elgenprojectors for a matrix in companion form was discussed in Section 2
and the latent projectors were described in Section 3. The application of
lambda matrices to the dynamics of systems has been described by Frazer,

Duncan and Collar, [17],in their book Elementary Matrices and Some Applica-

tions to Dynamics and Differential Equations. The concept of solvents or

matrix roots of a matrix polynomial will be given in this section. It will

be shown in the next section that solvents are useful in solving sets of

differential equations.

Let A(A) be defined as a mth-order matrix polynomial with nXn matrix
coefficients. The associated mnXmn A matrix, which will be called the

block companion matrix, is given by

0 LN ]
0 I .
(5.1) A = * *
0 0 0 .es 1
_"Am A1 _Am-z M N

The eigenvector matrix Q for A will always have the form

~
Ql Q2 "t Qm
My Qhy e
(5.2) Q=
2 2 2
Q My Qhy e Qi
E
’ m-1 :m—l e :m-l H
_QlAl QZAZ tet Qnﬁnx '

41 -
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when A has distinct eigenvalues or A(A) has distinct latent roots. The sub-
matrices Qj will be a matrix of latent vectors ;J for the latent roots AJ.

It will be assumed that Qj exists and 18 invertible; wunder the above assump-

tions, Rj = QjAngl is a solvent of the matrix polynomial and satisfies the

equation, [1],

(5.3) R™ 4 A, ML

., 1. j +..'+Am=0 j=1,2,-0-,m

The proof of this is straightforward if A(A) is considered. Let A{A) be de-

fined as the block matrix AI-A; it then follows that

- T " (0
FAj I 0 o 0 [ Q 0
R °
(504) . . . . . . =
0 0 0 Ay I ) )
A A A, AA4A A 0
L "m m-l Tm-2 T2 7§ 14 | j ] |

where (5.3) is given by the last row of (5.4) provided that Aij = QjAj which

must hold from the first row of (5.4).

The block matrices A, are nxn diagonal matrices constructed from a

3

subset of the latent roots of A(A) or the eigenvalues of A. Each R1 1is de-

fined in terms of n latent roots Ai and n latent vecLors y;» as an example,
consider the matrix polynomial A(A) with

1L 0 2 -5 2 7 =5
AQA) = AT+ At
LO 1 2 =5 -5 7
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which has latent roots Al -1, Az - 2, AS = 3 and Ah = 4, The right latent

vectors of A()) are

The solvents are constructed from the latent roots and latent vectors by
forming the 2X2 matrices Qjqugl where Qj = {§j} such that Qj is invertible

with j indicating a subset of latent vectors., Noting that {yl,yz} is

singular, then

2 -1

_ ld ~ , A A~ =] -
Ry = Iy, y,ldiaglh, Aslly; v,] 1
~ A A ~ __1 3 "l
R, = [y, y,ldiagl}, A, 1y, y,1 ~ = 1 3

It can be shown that Ry and Rz satisfy (5.3).

The eigenprojectors for the companion matrix A are given by

r ] . i . I ﬂ
L ] L] [ ] L] kiI
_ R
5 =
(5.5) Poo " %0 . ... .
m-1
h L] 1 1] xi I .

where the first m-1 block columns are not important in the development.

Suppose that the latent projectors are known and A has distinct eigenvalues.

It can be shown that if Qj is defined as




——

rw‘—w——-—u-v R
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5.6) (3+Ln
s Q E P :j » 0.1,2,0.-,“‘"1
LT fainey 10
and
_ (J+L)n a
G.7) Qap Ayyy # A Byg

i=in+l

then Rj is defined by the latent projectors of A(A) provided that Qj is in-

vertible. If Qj is singular, the latent projectors are reordered until a

set is found for in to exist.

)

The solvents for repeated roots can be defined by noting that A, may

3
include several Jordan blocks. Assuming thar the multiplicity r, is less

than n, and that full Jordan blocks are included in A is defined

1 Y

as in (5.6). The product QjAj must be modified since AJ is no longer

diagonal but may include the ones on the super diagonal of A, due to the

3
included Jordan block. Assuming that the Jordan block is defective, then

Q.J, will be defined as

i3
. (34+1)n -
(5.8) Qij = i=§n+l [Aipio + pil]

The matrix polynomial

1 0 2 ’-305 005 2.5 -005
A()) = AT+ M
0 1 1.5 -4.5 ~3,5 5.5

has latent roots Al =1, AZ = 3, AB = 2 and A4 = 2 with 23 = 1, The Jordan

block for A = 2 is then

2 1
J =
310 2
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The latent vectors of A()\) are

Yo -

N

2= (10] 2, = [1-1] 2%- [1 -1]

The first solvent is given by

2 . 2 -1
R

i=1

2
k- 4 -1 - P
Ry = @MY 1-2- , oM

17t -

10

-1 2

which gives A{Rl) = () as required. The second solvent requires the primary

latent projector and the secondary latent projector which are

A 4|12 .1 |11
P "2 |, | T % P2 |,
N
with Q,J, = P30A3 + P31 or
oy ol S T T R
- 4]
252 2 6 -2 2 101 o 5 -1
The second solvent is
YN I 5 -1
“2"22‘12";1= ’%’
5 =1 3 -1 1 3

which gives A(RZ) = 0 as required.

The extension to higher order polynomials is a simple matter and does

not require additional analysis. Each solvent, Rl’RZ""’Rm’ is found by




L sy

the procedure given in the preceeding work.

The solvents can be determined by the sign algorithm provided that the

spectrum of A has the required distribution. The first step in

46

the proce-

dure is to establish A for the matrix polynomial and assume that the

multiplicity of the repeated eigenvalues are less than n. Let All,...,lknl

have magnitudes less than p,, and compute the sign of ADl where

Am = (A-pll)(A+p11). The sign of ADL will have n eigenvalues of -1 and

mn~n +L eigenvalues. The sign of ADl can be arranged in the form

[—Inxn 0 "
(5.9) 8y = Sign (ADl) = Q
0 Imn—nxmn—n
by row-column interchanges of the sign as computed by (4.11).
eigenvalue matrix (5.9) be denoted by JII then
" -1
(5.10) (sl+Jn) [QJ11+JI1+J11Q]Q
Suppose that Q is partitioned as
[ Q Q, oes
QW Y QM Qhy  eee
(5.11) Q= = . .-
Q1 %2 "l mel
QA Q,A .
! 22

which when substituted into (5.10) gives

(5.12) [Sl+J 2 Q

1l =

Let the
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The similarity transformation (Sl+JI]A[$l+JI]'1 then gives

: Q 0 A O Q)
(5.13) (Sy+ipy JALS 4,0 *

The similarity transformation T required to reduce A to the block diagonal

form is given by

[1 L (-1)M1R;(M1)
'R, I S Dl Wil
2 il = (1) 42 |
@™l 1, . C :
Rm-l R!n-z e 8 & ("l)nﬂ'll
) 1
where R, is a solvent of A()).

3
The spectral decomposition of A will now be shown using the second ex-

ample in this section. Let A()) be defined as

A(A) = AT+ A+
0 1 1.5 ~4.5 -3.5 5.5
with Xl =1, Xz = 3, A3 = Ah = 2 and 23 = 1. The companion form A is
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0 0 1 0

Ae | O 0 0 1
"2.5 005 305 "005
305 "'5-5 ""105 1005

with solvents

2 "'1 205 "005
0.5 1.5

From (5.17), T is

1 0 3/8 ;1./8.q
1l o 1 =-1/8 5/8

-1 2 0 -1
with

2 -1 0 0

A =hy=TATEa | 2000
0 0 2.5-0.5

0 0 0.5 L.5

The characteristic equation for the upper block is Az—éA+3 and the lower

block has A%-4Xth as its characteristic equatiion., The eigenvalues Al = 1

and Xz = 3 are in the upper block with Xa = 2 and Ra = 2 in the lower block.

The computations for this example were checked by the sign algorithm with
a shift of ~1.8 and Py = 0.5. The two solvents, Rl and R2 computed by the

sign algorithm,agree with the values given.




J 6. Solution of a System of Differential Equations

The mathematical tools developed in the previous sections will now be
applied to the time domain analysis of systems. Assume that the system has
been characterized in the first-order form, usually called the state vari-
able form, with states x(t) such that x(t) satisfies the differential equa-

tion
(6.1) i:.ésl = Ax(t) Bu(t)

where A is a general mXmn matrix, B is mnxkn, x(t) is a mnXl vector and

: u(t) is knXl, Let Z(t) denote the outvector with

(6.2) Z2(t) = Cx(t)

where Z(t) is kmXl and C is kmxmn, The vector u(t) will be considered as
the input to the system or a control vector if the system is a control sys-
tem. It will be assumed that A,B and C are constant matrices which will be
referred to as the system triplet,

I It will be assumed that the system is stable, all eigenvalues of A

have Ra(ki)<o except for distinct eigenvalues along the jw axis and multiple

elgenvalues at the origin, A, = 0,

i

' The solution to (6.1) car e expressed as

t
(6.3) x(t) = @(t,to)x(to) + f O(t,T)Bu(t)dr

o
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where @(t,to) denotes* the state transition matrix, (STM). The state-

transition matrix satisfies the differential equation

d@(c,co)
dt

(6.4) = A O(t,to) @(co,co) = I = O(t,t)

where @(t,co) is mn¥m and I is the identity matrix. There are numerous
methods of obtaining G(t,to), several of the methods will be described.
Since A is a constant matrix, the Laplace transform of (6.4) can be

takeﬁ with
(6.5) L[-g—g 0(t,0)]= s0(s)-0(0,0) = s0(s)~I

thus the transform of (6.4) is

(6.6) 0¢s) = [s1-A1"t = q[s1-91"Yo7*
where J is the Jordan form. Noting that s in the Laplace domain is equiva-
lent to A in the eigenvzlue domain, O(s) is equivalent to [kI—A]—l = [A(A)]“l.

It therefore follows that O(s) can be expressed as

q P, % P
©6.7) o) = | 2+ JE—Ho
=1 %71 =1 (s-s,)?

The inverse Laplace transform of O(s) is L~l[O(s)] or

‘ -1 q Qi Pi,tj
(6.8) 0(t,0) = Qlexp(It)}Q™" = } (P, exp(s,t) + }* —— exp(s t)}
o i0 i B il i
i=1 j=1
*The normal use of ¢(t,ty) as the state-transition matrix will not be made
due to the use of ¢ as the modal matrix, [17].
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where 8, is a eigenvalue of A or a root of the characteristic equation
det[sI~A] = 0.

The Laplace transform is usually taken with € ™ 0 rather than on arbi-

trary value of to The state transition matrix @(t,to) can be found by us-

ing the semigroup properly

(6.9) G)(t,t:o) = G(t,O)O(O,tO)

where @(O,to) = [(,)(1:0,0]"l if t0>0. It follows that O(t,co) is given by

q
(6.10) O(L,t.) = Q{exv[J(t—Lo)J}le = 1 1Py ex(sy(t-tg)]
=1
(-t )
+ JBW..—n~ pr[» (e-t 0)]}

i=1
The analytical solution to (6.1) can be expressed as

t
(6.11) x(t) = Q exp[J(t—to)]Q'lx(co>+Q J exp[J(t~T>]Q"1Bu<T)dT

to
where Q is the eigenvector matrix and J is the Jordan form. If the eigen-

projectors PiO and Pij are used, then

h|
q (t~t )
(6.12) x(L) = ? {PiO explb (t-t )] e y* xiﬁh«-v~— prls (L LO)]x(t
J=1

t q
+ ( 2 {expls (t—T)]Pio+ zi £E~11— exp[b t—T)Pij}Bu(T)dT
to i=1 j=1

where the order of the operation under the integral has been reversed for

convenience. This reordering is permissible since exp(:) 1s a scalar.

PRGSOl e s s ot s st o 1 . :
SRR . .‘Ab" I . ER . § 3
e 2L e e i - mmas B R S PR M o 3 . v SR SR iy, -
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The system defined in (6.1) is said to be controllable if the input u(t)
(or the control) can drive the initial states x(to) to the origin x(t) = 0
(or to an arbitrary value x(t) = xf). The usual test of controllability is

to examine the matrix
(6.13) Q, = [B,AB,A%B, ..., A"B]

to determine if Qc is invertible, The system is controllable if det Qc $0
or if Qc is invertible. Controllability of a system can also be measured by

considering the product P, .B for 4 = 1,2,...,q and j = l,...,ﬁi for the

ij
eigenprojectors. The system mode exp(Ait) is not controllable if

(6.14) PijB = 0

for the primary and secondary eigenprojectors of the eigenvalue Ai. This
test implies that u(t) cannot drive the mode exp(Ait) as the mode is follow-
ing the natural response rather than a forced response.

The partial fraction expansion method of determining G(t,to) for all t
is not a computationally efficient process and would be used only when the
analytical form of @(t,to) is desired. For computational purposes, the
state-transition matrix O(t,0) can be determined more efficiently by ex-
pressing O(t,0) in the form

o)

° 4d.d
(6.15) 0(t,0) = exp At = T + 5, AL

A

Y

J

The sevies is then used to compute O(t,0) for a small value of t with trun-
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cation of the series when the change in 0(t,0) is beyond the accuracy of the

Assume that the small t 4is taken as At, with O(At,0) de-

Jigital computer.
termined from (6.15). The semigroup properties is utilized to find ©(t,0)

for t = kAt by the operation

(6.16) 0(t,0) = [0(At,0)1F = 0(AL,0) O(t-At,0)

when A is constant.
The solution vector x(t) depends upon the integral as well as the state

The expression in (6.3) can be given in a recursive form

transition matrix,
Let (6.3)

which is more convenient and which has computational advantages.

be written as

6.17) x(t) = O(t,to) x(to) + F(t,to)

where @(t,to) has been computed by means of (6.10) and where P(t,to) is the
integral. The solution vector at t+At can be expressed as

(6.18) x(t+AL) = O(t+A, ) x(t) + I'(t+At,t)

Substituting (6.17) into (6.18),

(6.19) x(t+At) = O(t+At,t)@(t,to)x(t0)+P(t+At,t)+@(t+At,t)T(t,t0,
Qr

(6.20) x(t+At) = O(b+At,t0)x(t0) + F(t+At,c0)
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Knowledge of I'(t+At,t) is required along with O(t+At,t) or O(At,0), since A
is constant, to find x(t+At). The vector P(t,to) satisfies the equation

dP(c,cO)
(6.21) —4 - A T(t,to) + Bu(t) F(co,to) = 0

and can be found a 4th-order Runge-Kutta algorithm, Since TI'(t+At,t) is re-
quired for (6.20), the value is found from (6.21) by integrating (6.21) from
t to t+At for all t. Equation (6.19) ls then used in a recursive manner
with O(t+At,t) = O(At,0) for constant A. The series given in (6.15) is

used to compute O(At,0) which remains constant therecafter.

If u(t) is slowly varying and At is small, a reasonably good approxi-

mation may be obtained from the z-transform, [3], [18], of (6.1). The

Laplace transform of (6.1) is i
(6.22) [sI-A}X(s) = Bu(s)

where the initial condition x(0) has been neglected. Equation (6.22) can

be written as

(6.23) x(s) = [sI—A]_lBu(s) = G(s) U(s)
Taking the z-transform of G(s) with a zero-order-hold gives
!
-\
(6.24) G(z) = 2{FS— [s1-A]"")B

which is found to be

BT E Sod
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(6.25) 6(z) = [zI-exp(AT) 1 texp(AT)-11A 1B

where T = At, The associated difference equation of (6.1) is obtained from

(6.25) with*
(6.26) x(k+L) = [exp(AT)-1]A™1B U(k) + exp(AT)x (k)

with t = kT, (k+1)T = t+At and x(0) the initial condition vector, The

validity of (6.26) can be shown by noting that

(6.27) 0(t,0) = exp(AT)
T T

(6.28) I O(t,T)B dT = I exp[A{t-T)]B dt
0 0

It

[exp(AT)-I]A-lB

Equation (6.26) is valid provided that the assumption of slowly varying
u(t) and small At is not too strict.
The eigenprojectors can also be utilized to separate the solutions into
modes 1f desired. Recalling that [sI—A]-l is equivalent to [)\I—A]_l
that [}\I-A]_1 can be expanded as a partial fraction, (6.24) can be refor-

mulated as

, q P % P, 1) s, T
(6.29) G(z) = (A" Z -——l _‘“i:‘o—rf"‘ i"’”“ijﬂ”ﬁ E }
i=1 31 z-e1"  j=1 (z-&°17)

which can be written as a series of transfer functionsGij with

*
The argument of x(-) and u(:) is (k+1)T with T being dropped for convenience
hereafter,

SRy S
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q %

(6.30) G(z) =G, (z) + } [G,(2) + JL G, ()]
00 121 10 o1 M

The vector x(z) is then given by

(6.31) (2) (2)B U(z) § ( %‘ (

.31 x(z) = G,.(z)B U(z) + ) 1[G () + G,,(z)}B U(z)

00 ghy 107F T L) Py 4 2

Equation (6.31) defines a set of tramnsfer functions that can be placed in
parallel with each having u(z) as an input and each block can be implemented
separately by a matrix difference equation,

Recalling that the eigenprojectors are defined by the right and left
eigenvectors, the eigenprojectors need not be stored in the digital computer,
The eigenprojectors are stored and used in (6.29) to construct (6.29) at
each T.

The discussion in this section has been based on A having a general

form. Assume that A is the companion form of the matrix polynomial A(A)

with
"% a1z .
(6.32) I*(;;;+A1*:1—€-+...+Amx=u(t)

The canonical form of x(t) is the same as given in (6.1) but with

L 17,
x(t) [0 & 0 cer 0] x(e)
. X(t) o 0 I v 0| X0
(6.33) X(t) = . - . . . cse . .
Aim) , ‘ ;. “kﬂH])
X (L)J —Am —Am—l "Am-?. ' -A.‘IJ i x V)
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(= =

u(t) = A x(t) + B u(t)

[ ! .o ®

Rather than use (6,33), the solution vector g(t) can be determined directly

from {6.32). Taking the Laplace transform of (6.32) gives

(6. 34) [Ism+Als“"l +oue Am_lx*Amlg(s) - U(s)

where the initial conditions have been neglected. Equation (6.34) can be

rewritten as
(6. 35) X(s) = [A(8))MU(s) = G(s) U(s)

which can be expanded into a partial fraction.

The z-transform of (6.35) can now be found provided that the zero-order-

held is included and u(t) is slowly varying. Letting

~gT
(6. 36) G(s) = 1’§ G(s)
gives
-sT -sT
(6. 37) 6(x) = 288 [ae)1™) = 2(2E— (o))

The z-transform of (6.37) is
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ey P & B re 't
(6.38) Gz) = (A" + ] AR 0y PL A
i=1 i (z~e i ) I=1 (z_e i )j"'l

from which the difference equation for §(k+l) can be determined.

The expression in (6.38) would be implemented on a digital machine in

parallel form rather than as a series representation. As an example, let

[ 1o] , [5 -2 7 -51
A(s)-L()l 8+ s s+ " 7-1

with roots Al = -], Az = -2, AB = <3 and Aa = -4, The latent

117 . -1 -1
P = P30 =%
1 1 -1 -1
4

with A(0) obtained from A(s). The transfer function G(z) is

A
P03

G(z) = G00 (z)+Glo(z)+G20 (z)+G30 (:’,')-O-G40 (z)

where

Goot2) = 753

n
IH
r—_"l
19,1 ~J
~1 w
—_

GlO(z) =

(;20(2) = “..-,?A‘:T%.é.'l.'.» -t -1 E 212 -t —1
2(z~e y 1-1 -1 -1 -1 ]| L

PV TS el oa L
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, G, (2) = e
o 40 2(z-a"4%)

o1 [-1 i l[»l 1l A1
L L

SRR

The implementation as a difference equation would then be

; . L [ 7 5]
Xy (k+1) = 57 | fu(k+l)
' L5 7]
)
F . NER! .
X (tl) = 3 (u(k)-u(k-1)) + e~ T X, (k)
r 11 ,
; E ” -1 -11 T
%, (k1) =—§~ [ (u(k)-u(k=1)) + et %, (k)
-1 -1
R 1 -1] . ‘
Ry (kt1) =-§~ { (u(k)-u(k-1) + e % X, (k)
-11)

Sl ~4T
(u(k)=u(k=1)) + e X4(k)
1 -1

with

n 4 .
X(ktl) = ) X, (iet1)
k=0
The parameter 1 is the integration step size (or sampling rate) with t = kT,
Different step sizes can be selected for the modes cxp(—siT) if buotter

accuracy is desired for the higher frequency modes.
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The use of the eigenprojectors and the latent projector for solving the
state equaticn of (6.1) has been described. The extension to the solution.

of n mth-order differential equations has been given,




F"“ﬂ!‘»"-— T T

7. Spectral Decomposition of Differential Equations

The increasing complexity of modern systems generally requires a large

number of algebraic operations on system equations and the corresponding solutions to

these wquations to characterize the dynamics of the systems, It is there-
fore essential that the analysis of large scale systems be carried out on
subsystems or subsets of the equations, A dissertation by K. S. Yoo, [15],
used the concept of mode decoupling to analyze an optimal control system.
The overhead for the decoupling procedure was moderately high but the total
computational task for the analysis was decreased when compared to the
usual procedure. Popeeva and Lupas, [16], published several papers describ-
ing the procedure, the referenced paper was the first reference to Yoo's
work in the open literature. The original idea for decoupling, or order
reduction, was probably due to Roberts, [10].

Consider the system equation given in Section 3 with
(7.1) 42(). - Ax(e) Bu(e)

Let T denote the mnXmn transformation matrix

-1 -2 ~-ml
r I "Rz R3 e ("‘1)mRm
-1 -mt2
Ry -1 R, vee (-1) “‘x{m
2 -m+3
17.2) T = (»2);_1 1 R . e CDRY
uln-l .‘n-z nm 3 LI ) .
L Ry R, R, . 1 J

where I is the nXn identity matrix and R1 is the solvent of

61
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m o1 -
(7.3) Ryt MRS kA R A =0

Define the vector v(t) by the transformation
(7.4) v(t) = T *x(t)

ot x(t) = T v({t), Assume that A is the companion form for the mth-order

differential equation, it follows that w(t) must satisfy

(7.5) ﬁ‘—(‘;{-‘l . 1A T v(e) + 1T B u(e)

Consider the matrix T AT when m = 3 and T is as given in (7.2). It follows

that
ABl 0 0 R, 0 0
‘ ! -1 = !
(7.6) AB T “AT 0 AB2 0 = 0 R, 0
i 0 0 AB3 0 0 R3

or in general for the mth-order differential equation

(7.7 AB = diag[Rl,Rz,RB,...,Rm]

Recalling that the solvents Rk were given by

I {(§+l)n N }{(
(7.8) R, = Qd QCt= () [P, 4P
ko kR Nyt AN s

i+1)n
& -l
) Piod

AB and T are completely known provided that the latent projectors are known,

R A o
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The solution to (7,5) 1s obtained from the m equations

i dv, (t)

(7.9) -ﬁ§3- - Riv(t) + Biu(c)
|
where
[ By 1
- 4 %
(7.10) BwT "B m .
b I

with initial conditions vi(to) obtained from (7.4) with x(to) given, The

mnXl vector x(t) as given in (6.33) is

" . M
x(t)
%(t)
(7011) X(t) a .
hﬁ(m-l)(t)d

and x(t) = T v(t), The solution to the mth-order differential equation of

(6.32) is
) % ;....—1’......... - -1 -2 -
(7.12) x(t) (z)m—l {vl(t) R, vz(t) + R, v3(t) ese}
- The de~oupling procedure described is useful in solving a large set of

differential equations as it allows the set to be decoupled into a number

of equations, A mth-order differential equations with nxn coefficients can be

[ ———————- . [ st 0ot e e e e
T g T B T I R
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solved by generating m first-order equations with nxn coefficients. These
equations can be reduced further if desired by decoupling any of the m
first-order to several first order differential equations with coefficients
less than nXn. The limit to the decoupling procedure will be mn first-order
equations.

As an example of the above let A be the general matrix

[ _168 48 279 -218 8 50 |
136 32 233 -180 14 36
A-|-80 16 95 -58 8 18
60 12 75 -50 8 14
-4 8 50 -3 3 10

20 4 25 -1 2 4 |

which has eigenvalues Al,= 1, Az = -2, A3 = -5, 14 = -12, AS = -24 and

A, = ~40, This matrix can be reduced to the companion form by the Krylov

6

transformation

(7.13) A, = KA KL

where the structure of K is given in the Appendix. The associated matrix poly-

nomial A()\) is

A()) = AT+ AT+ A
0 1 591.229 -618.051 6568.29 -5763.7 |

9481.76 -8521.03

8095.49 -7263.08

N
T T S e S VL T
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The solvents for A(\) are
1 =2 >
R, = dec[Ax-Rll = A%4H3AH2 = (A+1) (M+2)
3 -4
r ,
-15 6 5
R2 - dec[AI-RZ] = A“HLIM60 = (A+5) (A+12)
| -5 -2
[ 360 -480 2
R3 = det[AI-Rsl = A“4+64A4+960 = (A+24) (A+40)
| 320 -424 '

The system equation i(t) = Ax(t)+Bu(t) can be solved by considering the re-

duced equations
]
(7.14) vi(t) - Riv(t) + Biui(t)

provided that the overhead for computing the Krylov transformation and that

for finding the solvents are acceptable as to efficlency and accuracy.
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8, Summary

The mathematical analysis in this report had two objectives: the first
to bring together the mathematical tools for understanding matrix poly-
nomials, with the second of applying these tools to decoupling of system
equations. The study of matrix polynomials, or lambda matrices, is justified
as vibrating systems are generally defined with second-order watrix poly~-
nomials, see [19]. Although there are several books and journal articles
on matrix polynomials, a library search did not reveal a single source of
the material that is complete. It is essential that the mathematics of
matrix polynomials be understood before efficient algoritims for analyzing
vibrating systems can be developed. Present algorithms are not capeble of
handling large space systems--systems with the number of modes greater than
1000.

The report is incomplete in several areas. The algorithm for determin-
ing latent projectors from latent vectors for matrix polynomials with repeated
roots was not fully developed. Algorithms for efficient computation of
latent roots and latent vectors have not been devised, A thorough literature
search has not revealed the availability of a computer program for that
purpose. In addition, the decoupling scheme was presented but the computa-
tional algorithm for that task was not described. Work will continue in
these areas.

The damping of large-space structures is an important engineering design
task that must be addressed and algorithms must be developed for that purpose.
The analysis of matrix polynomials as well as a comprehensive understanding
of how damping affects the overall mathematical structure is an integral
part of designing large space structures. Modification of matrix polynomials,
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which 1is necessary for the inclusion of damping, was not considered in the
report. Studies will begin in that area with the emphasis on second order

polynomials.

This report is only a beginning for the several task:described above.
o The development of algorithms for analysis, and design of large space

structures will be addressed during the next year of work.
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Appendlx Krylov Transformation
The Krylov transformation is a useful algorithm that transforms a
general mmXmn matrix A to the companion form. Let Ac denote the companion
form, then

(A.1) Ac =K AK?

The Krylov transformation is a similarity transformation that leaves the

eigenvalues invariant but changes the eigenvectors of A from Q to Qc, where

(Qy Qp - -+ Yy
Q Qy - -+ A

(A.2) Q= . . . e . .

_le VIR Qmm_
and

-
Q) Qs e Q
Q1M Q00 el
(Ao 3) QC = i . . ¢ o . .
’ m1 ) n—1 o . m-1
Oty T Ol T e QT

when A has distinct eigenvalues. The similarity transformatiocn in (A.1l) and

the structure of (A.2) and (A.3) requires that K satisfy

(A.4) Qc = KQ
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Now from (A.2) - (A.4), if m = 3

Uy Yy Q4 Kii X2 K3 | Q1 Qo 95

(A3)  1Qhy Qualy  Quahg | = [ Kyy Kpp Koa | [ Q) Q) Qy
2 2 2 i
Q81 Qpofy  Qafy Ky K3p Kyg| | Q3 Q3 Qg

The nXn matrix QuAl is from (A.5)

(A.6) Qpahy = KpyQy9HK99Qy0#Ky 305y
or
(A.7) Q.. A Q"l = K, . +K,,Q Q'1+K Q Q-l = A
. 114171 = Ka17KppQ1Qy 11Ky 304,047 = Agy

where ABl is the matrix that would be in the upper diagonal from the simi-
larity transformation TnlAT gliven in Section 7. The matrices Q21Qii and

-1 ' , ,
Q31Q11 are ~R12 and Rl3 as defined in Section 7 but for the general matrix

with
-1 -1
L -Ryp Ryg L “Q2Q; Q3033
N _ -1 -1 -1
e B Y| A S T %3%s3
- -1 _o o1
[_RSl Ryg I Q3197 Q320 1

Analysis of the other equations in (A.5) gives the set of equations

A . =K. .+ _R.,+K, .R

g1 = Ko1tKgoRy #KyqRq,
(4.9) RipAgy = Ky RyptKy Ky Ry
Ry3hpg = Ky Ry gy Ry g¥K




(A.10) Ryp

R

=K

|

13

* TR

2
ABl.

2
R12Ag2

2
R) 3483

= K, tK

(A.11) = K31

1

| The Krylov matrix is given

| : = K tKaRy K Ry

Ry 297K 3Ry

Ky 1Ry 3tKyoRy 44Ky 4

31K gpRy 1 tKgaR gy

Ry gtK 3yt gaR

Kg Ry 37K qoRy 5K 45

from (A.9)-(A.1l) as

! |
; Ky Ky Kppl [T Ry, Ry .
) ) -
| A.12) 1Ky Kyy Kyg [Ryy T Ry, A1
: 2
Kyp Ky Kssj Ryp Ry I AB1
or
K11 Kp2 KIB} I Ry Ry
(A.13) 1Ky, Ky, Kpa| = Apy RioApy Bpsfps
2 2 2
Kyy Ky K33_,! AL R Riafs
T 0
= ALl Ao
2
ALrtAoA A A AlAa AR A A

Ri2

RypAp0

2
R12Ap2

=

21

Ra1
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Ri3
R; 343

2
Ry 3453

A13

A 1A gtA oA gtA AA
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where ER = [T 0 0), The similarity transformation given in (A.l) is required
to show that the Krylov matrix is as given in (A.13).

The general form of (A.13) is

B S
E,A

w

w

(A.14) K =

m-1
.ERA

where A 1s the genera) matrix to be reduced to the companion form, Ac'

The inverse of all Qii matrices must exist. Row-colum interchanges of

A can be made in most cases to assure the existence of Ac. The algorithm
will not have good accuracy whin m is large particularly when the matrix

is stiffy the eigenvalues have a large spread in magnitude.
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