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ABSTRACT

Lightcurveobservationsof the double-modeCepheidTU Cas

obtainedby I0 differentsetsof observerson severalphotometric

systemsover a timespanof 67 yearshave been carefullystudiedto

determinethe fundamentaland firstovertoneperiodsand theirampli-

tudeson theV maEnitudescale. The presenceof a secondovertone

radialpulsationis discussed,and it is concludedthat a previous

detectionof thismodewas spuriousdue to the lackof a properzero

pointcorrectionfor two groupsof observations.The amplitudesof

the two modesare shownto possiblyvarydurlnEthe entireobserving

periodwith the fundamentalmode amplitudeof 0.69± 0.03 and the

overtoneamplitudedecreaslnE about0.2 or 0.3 magnitude.If this

Cephelddisplaysthe two pulsationmodesbecauseit is modeswitchinE,

thisswltchinEtime scalemightbe less thana hundredyears.
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Our motivation for this investigation is the reported

existence by Faulkner (1977) of a third radial pulsation mode

in the double-mode Cepheid TU Cas. At least one other Cepheid-

type variable, AC And,'and many of the _ Scuti variables have three

radial pulsation modes, so it is perhaps not surprising to find an-

other. There are two problems, however, TU Cas appears to be llke

the dozen or so double-mode Cepheids with a first overtone to funda-

mental mode period ratio _ 0.71, unlike AC And with a ratio of almost

0.74. In addition the reported third period is abnormally long with

respect to the prima_ and secondary periods, making it very difficult

to explain in terms of reasonable stellar models. The AC And model

is within the normal range of composition and structure according to

Cox, King, and Hodson (1978).

Another motivation for studying TU Cas is to see if the ampli-

tudes of the two modes are changing with respect to each other over

the 67 years spanned by the available observations. Double-mode

Cepheids, which might comprise one-third of all short period Cepheids

(< 5 days) according to Stobie (1977), have yet to be adequately

explained. Stellingwerf (1975) suggested that double-mode behavior

resulted at temperatures near the red edge of the instability strip

where the two modes Switched toward each other. Unfortunately, Hodson

and Cox (1976) found no double-mode behavior at these cooler tempera-

tures. Currently, the only other cause of double-mode Cepheids

predicted by theory is mode switching at the transition line between

fundamental mode pulsation to the red and first overtone pulsation

to the blue.
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Observational evidence tends to support double-mode Cepheld pulsa-

tion near the transition llne. Results from Rogers and Gingold (1973)

on U Tr A, Schmldt (1972)on TU Cas, Pel and Lub (1978), and Cogan

(1978) all arrived at temperatures placing most of these variables

near the transition llne. However, if double-mode behavior is the

result of mode switching, we would expect to find a complete range

of amplitude ratios between the two modes. As the evidence currently

stands, only AX Vel has a first overtone amplitude larger than the

fundamental.

Amplitude changes over a span of 67 years would support the

rapid mode switching rates predicted by Stelllngwerf (1975) and by

unpublished results at Los Alamos, whereas no change would be more

consistent with a possible slow change or Just a stable permanent

mixed mode.

The observations used in our TU Cas analysis are given in

Table i. The set used by Faulkner contains 290 points and consist

of the four groups ranging from 1946 to 1959 (denoted by ). We

attempted a period search on 302 white light observations by Osterhoff

(1957), but were unsuccessful due to poor phase distribution of this

data. For the amplitude analysis, we added iii observations starting

from 1962 to the present, which include 60 new visual magnitudes by

Schmidt observed from 1976-78. For a more sensitive mode switching

search, we converted observations by van Biesbroeck and Casteels

(1914) from visual estimates to the modern V magnitude system with

reasonably good results,
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TABLE1

OBSERVATIONSOF TU CASSIOPEIAE

EPOCHS NUMBEROF OBSERVING
REFERENCE (JD2400000+) YEAR MEASURES SYSTEM

Van Biesbroeck& 19198-19481 1911-1912 192 Visual
Caeteels (1914)

Gordon& Kron 32039-32163 1946 28
(1947) Am5000

Oosterhoff 32424-32471 1947 265 Am
white llght

(1957) 32606-32615 1948 37
32272-33608 1950 350

Worley& Eggen 33146-33206 1949 ii VE, (P-V)E(1957) 34334-34369 1952 4
35063-35113 1954 102 means
35388-35404 1955 74 means

Oosterhoff 36751-36849 1959 45 UBV'
(1960)

Weaver,S_eimtz & 36742-36858 1959 26 UBV
H!tchell(1960)*

Williams(1966) 37936-37940 1962 6 UBV

Kwee & Braun 38219-38235 1963 14 UBV
(1967)

Takase(1969) 38776-39079 1965 20 UBV
39358-39433 1966 11 UBV

Sch_dt 43015-43126 1976 26 UBVRI
(privateco_mlicatlon) 43403-43500 1977-1978 34

Observationsusedby Faulkner(1977).

For our periodicity search we fitted the Faulkner data group

by least squares to a sinus0idal series

m

L(t) = 1 + _ A. cos2w(ift-¢ i) (i)<L> i=1

made up of a single frequency plus m-i harmonics taken over a speci-

fied frequency range. The quality of the fit and, consequently, the

significance of any frequency is measured by _, the standard deviation

of the observations from the fit. When m = i, the amplitude is related

to _ by A2 = 2(A_2). Equation 1 can be expanded to include two or more
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frequencies, not harmonically related, and their cross coupling terms.

The luminosity variations for the triple mode case are fit by

m

•, 1 + _ Aijk c°s2_[(if0 + Jfl + kf2)t - (2)
<L> lif+ [j [+Ik[_1 _ijk ]"

The appropriate order of a fit is determined when the variance of

th
fit, order m + i, is not appreciably smaller than the variance of m

order fit. In addition, the fit will yield small changes in amplitude

(Aijk) and phase angle (#ljk) with increasing order as suggested by

Fitch. From Equation 2 we can directly obtain the amplitude and shape

of each natural frequency.

Third order Fouriergrams on the Faulkner data group yield the

same primary and secondary period values as Faulkner obtained. We

used these values to construct the double-mode fit, and then searched

the residual for any remaining periodicity. In Figure i we see, in

the upper curve, the first order Fourlergram of the fourth order resl-

dual which is identical to Faulkner's results. The change in _ of the

central minimum corresponds to an amplitude of --0.014 for K2 " 1.25247

days. The sidelobes are due to the gap of N 1450 days between the 1959

and 1954-55 epochs. The lower curve is the Fourlergram of =he fifth

order residual, and, although the central minimum still persist, its

depth gives an amplitude of N 0.009, down by 35% from the fourth order

amplitude.

In Figure 2, we see the same Fourlergram over a larger frequency

range, expanded in the direction of slightly higher, but more theoretl-

cally plausible frequencies. In the fifth order residual, we find at
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Fig. i. First order (single frequency) standard
deviation of the fourth and fifth order

residuals versus frequency using the basic
29O data points.
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Fig. 2. First order (single frequency) standard deviation of

the fourth and fifth order residuals versus frequencT.

This figure shows the same data as in Fig. i but over

a larger frequency range.
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least one frequency at N 0.816-d with a deeper minimum than Faulkner's

in the far left portion of the curve, suggesting that perhaps his longer

period may be an artifact of data noise.

To test the quality of the data, we calculated the standard devi-

ation of each epoch, grouped by year, about a fourth-order double-mode

fit through all 290 points. The results are given in Table 2. From

the G's in the first column, we see that the 1949 data have rather large

scatter. The 1952 data may also be noisy, but with only four observa-

tions, its sigma value may be spurious. But the 1949 data remain suspect,

especially considering the small scatter of the 1954-55 Worley and Eggen

data. This epoch could be intrinsically noisy, or it may not share

the same zero point with the other epochs.

We were able to confirm Faulkner's magnitude zero point adjustments

between observers, and ran a subsequent check on the zero point between

different observing epochs. Our check centered around Worley and Eggen

TABLE 2

EPOCH STANDARD DEVIATIONS

FOURTH ORDER DOUBLE-MODE FIT

No Shift 1955 Shift 1949 Shlftt 1955 + 1949 Shift No Shift - 1949 1955 Shift - 1949
EPOCII (290) (290) (290) (290) (279) (279)

ALL (290) 0.0283 0.O271 0 .0267 0.0254 0.0231 0.0214

G_ 19/,6(28) .0260 .0246 .0257 .O234 .0252 .0234

WE 1949(ii) .0835 .0841 .0713 .0724 .0000 .0000

WE 1952(4) .0567 .0553 .0544 .0552 .0552 .0555

WE 1954(102) .0205 .0180 .0212 .0187 .0208 .0180

WE 1955(74) .0156 .0095 .0151 .0089 .0145 .0077

O+WSM1959(71) 0.0323 0.0332 0.0308 0.0314 0.0299 0.0307

1955Shift6V - -0.044

+ 1949ShiftAV - 0.066
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data, as it is the only group with more than one epoch. We performed

various trial shifts on the three epochs in this group in an attempt

to reduce the relative and total standard deviation.

From the third column, we see that by shifting the 1955 epoch by

AV = - 0.044, the total _ is reduced, and _ for this epoch is down

almost by a factor of two. A AV change of + 0.066 in the 1949 data

also gave some reduction in the total sigma, and in the fifth coluum,

we see that the combined effects of shifting both 1949 and 1955 epochs

results in an ever smaller total deviation.

Removing the 1949 epoch from the unshifted 290 points produces,

by itself, a larger reduction in total sigma than does any of pre-

vious shifting. (-_18% reduction in _ for a 4% point reduction).

P_moving this epoch and shifting the 1955 epoch gives the largest

reduction in sigma, almost 24% lower than for the original Faulkner

data.

In Figure 3 we have Fouriergrams of fourth order fit residuals

in the region of Faulkner's third period for each trial listed on the

table. The uppermost curve is the same Fouriergram as you saw in

Figure i, showing the central minimum surrrounded by aliases. By

shifting 1955 epoch this pattern almost disappears (second curve from

top). However, in the next curve, we see that 1949 epoch shift alone,

produces only small changes from the original pattern of the top curve.

The fourth curve shows the combined effect of the two shifts, and is

similar to the second curve because of the large effect of the 1955

epoch shift. The fifth curve results from removing 1949 epoch from

the data, and in spite of a substantial reduction in _, the original

pattern still persists. This pattern again disappears when we
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Fig. 3. First order (single frequency) standard deviation of
the several fourth order fit residual cases of
Table 2 versus frequency.

introduce the 1955 data shift as seen in the bottom curve.

Expanding the frequency range in Figure 4, as we did before,

shows that shifting 1955 data removes the cyclic pattern of curves

one, three and five, which corresponds to the 291 day interval

berwee= the 1954 and 1955 epochs. Faulkner's proposed third period,

at the far left, appears to be only a deeper member of this pattern

that disappears with the appropriate zero point shift.

Fitch noted the amplitude given by Faulkner's limited triple

mode fit was a factor of two larger than the amplitude predicted by

the depth of the minimum in the Fouriergram (about 0.025 to 0.014).

We can explain this discrepancy in Figure 5 with two plots of funda-

mental and first overtone prewhltened data and mean curves as a
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Fig. 4. First order (single frequency) standard deviation of the
several fourth order fit residual cases of Table 2 versus

frequency. This figure shows the same data as in Fig. 3
but over a larger frequency range.

function of phase. In both cases we have used the original, uncorrected

Faulkner data set. We produced the upper plot by removing all the

triple-mode fit terms except the E2 sine term, and phasing the resi-

dual to E2" This plot is identical to Faulkner's (Figure 4, 1977) and

confirms his amplitude for E2 given by the triple-mode fit. The lower

plot is the phased residual of the fourth order-double mode fit, with

the amplitude estimated by a spline fit. It gives an amplitude value

of -- 0.017 which is much closer to the predicted value of 0.014, with

the difference of 20% due to uncertianties in the spline fit such as

the number of knots and order. In general, we have noticed when any

new natural mode (real or spurious) is introduced into the multimode
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Fig. 5. The upper panel shows the ]'[? single frequency varl-
ation,of the 290 point Faul_ner triple-mode flt and
the points obtained by prewhltenlng by all the

and _i terms of his fit. The lower panel gives[he
variation of the residuals of a double-mode fit with

the proposed _2 phase together with a spline fit
through the polnts.

flt, it interacts In varying degrees wlth the other natural modes,

resulting in a substantial amplitude for this mode. llence, one

cannot reliably determine the significance of a variation by its

amplitude size given by multimode fitting.

In searching for amplitude changes in TU Cas, we selected the

longest tlme base possible with the hope of revealing the more

conspicuous variations in modal amplitude. A summary of our results

is given in Table 3.

The 1911-12 epoch by van Biesbroeck and Casteels was converted

from a visual estimates system to V magnitudes. Initially, our
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TABLE 3

MODEA.t'_LII'U'DESOF TU CASSIOPIAE

No. of
Epoch Observations A0 A1 O A1/A0

1911-12t 192 .70 .45 .13 .6_

1911-12_# 192 .72 .54 .19 .74

1911-12#?t 192 .86 .53 .14 .62

1946-1977 390 .71 .27 .04 .38

1946-1959 279 .71 .29 .03 .41

1962-1977 111 .67 .24 .03 .35

Third order double-mode Fourier Series fit

+

Adopted magnitudes by Van Biesbroeck _nd Casteels

tt
Revised maEni=udes from HD catalog

tit UBV magnitudes by Henden (private co=unlca=ion, 1978)

prlmar_yuncertainty in converting these observations resulted from

the absence of any recorded UBV measurements of the six comparison

stars used for this study. Van Biesbroeck and Casteels estimated

these magnitudes from a relative scale used to determine the variable's

changing magnitude. We attempted to improve on these magnitudes using

the best revised estimates from the HD catalog (as suggested by

Bidelman, private communication). Eventually we were able to obtain

UBV magnitudes for the six comparison stars from Arne Henden at

Indiana University (private communication, 1978)

The ratio of first overtone to fundamental mode amplitude

(AI/AO) for this earliest epoch averages -- 0.67 and is appreciably

higher than for the 1946-1977 era (--0.38). To check this last ratio
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we split the modern era into two -- 15 year intervals to determine

if this trend still persisted. The decrease of the ratio from 0.41

to 0.35 is suggestive, but probably within the range of uncertlanty.

Due to the relatively larger uncertainty of the 1911-12 data,

we are unable to conclude that the first overtone mode really decayed

substantially since 1911. However, observations after 1945 span

nearly 32 years and comprise a long time base of quality UBV measures.

With the inclusion of new observations the decrease of AI/A0 within

the modern epoch may possibly be confirmed.

Our conclusions are that TU Cas is not a trlple-mode pulsator,

and that maybe the first overtone pulsations have decayed since 1911.

We wish to thank R. F. Stellingwerf for locating the van Biesbroeck

and Casteels data and providing it to us.
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Discussion

Wesselink: How do you identify a mode? How do you know whether it is the

fundamental or an overtone?

Hodson: Hopefully, the one with the longest period with largest amplitude

is the fundamental. Sometimes that turns out to be the ist or 2nd overtone.

But that's the nomenclature I use.

J. Cox: In 1977, I think, Stobie pointed out that there was no observational

evidence for amplitude changes over at least a 50-year time span. Do you

think this is because no one has looked, or is there more substantial evidence?

Hodson: The evidence we have suggests that this might be happening. We have

32 years of observations in the "modern" era. We need quite a few more

"modern" observations toresolve the problem.

4O


