
THERMAL FLICKERS: A SEMI-ANALYTICAL APPROACH

J. Perdang+
Institut d'Astrophyslque, Universit4 de Liege

Cointe-Ougr4e, Belgium, B-4200

and

tt
J. Robert Buchler

Department of Physics and Astronomy

University of Florida, Gainesville, FL 32611

Abstract

With the purpose of enhancing our physical insight into the nature

of thermal oscillations arising from a thin helium burning shell we

analyze the behavlour in its "phase-plane" of a simple two-zone model

which, however, contains all the relevant physics. This simple model

very naturally reproduces thermal flickers and is relatively insensitive

to all but two parameters.
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It has been known since the pioneering work of Schwarzschild and Harm [i]

that thin helium burning shells can give rise to thermal oscillations which

have been studied by a number of authors [i - 9]. A systematic exploration

of this and similar evolutionary phases has been hampered by the enormous

amount of computing time which is required to follow but a few of the thermal

cycles. At the same time the interplay between the zones responsible for

the thermal throbs is somewhat obscured by the complexity of the evolution

codes. In order to enhance our understanding of the mechanism of the

oscillations we have constructed a simple two-zone model appropriate for shell

helium burning and radiation conduction with a Thomson opacity. The remainder

of the star merely acts to impose boundary conditions. The behavlour of this

model can readily be analyzed in the two-dlmenslonal "phase-plane" of the

temperatures and one is not limited as in a multi-zone model to a linear

analysis of the nelghbourhood of the equilibrium point. In fact, in our

model, a linear stability analysis yields two real (unstable) roots while

nevertheless a stable limit cycle can exist.

The simplest stellar configuration in which thermal oscillations have

been reported is that of helium stars [3] in which energy generation takes

place in a narrow shell. In order to mimlck this situation we consider

therefore a star with an inner, inert core, a narrow, energy generating

first zone (shell), a second buffer zone on to_ of the shell and an outer

region, e.g. the atmosphere; subscripts c, i, 2, and a refer to these various

regions. The equations governing the evolution can then be written in the

form (see [ii] for details) if we assume radiative energy transport:

__ i (T4 - T4) - K (T4c - T4)]} - FI(TI,T2) (la)dTl 1 {_(TI) Aml [K1_-- = Cpl c
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dT2d-_-= iCp2 [.....T2T2h]_i [KI (T_ T_) K2(T _ T_)] _ F2(TI,T 2) (ib)

where the coefficients Ki = (4_R_) 2 ac/(3K(T)Am i) are connected with the

radiation transport and where K(T) is the opacity. The other symbols have

their usual meaning. The first coefficient in square brackets, -T2/Th2 is a

hydrostatic adjustment factor:

GM M

Th = (.i to i.) x
Rcp Am (2)

For the buffer zone Th2 = 106 - 107 K < T2, whereas for the shell, in view

of the smallness of Aml/M, we have Thl >> T1 and hydrostatic adjustment can be

neglected. For the energy generation the expression appropriate for the

triple-alpha reaction is given by

_(T) = _T-3e -Q/T _ _T_(T) (3)

where _ and Q are constants. At the temperatures and densities of interest

the opacity is due to Thomson scattering and is constant (in contrast to the

model of [I0]). In this simplified model the radii are assumed time-independent,

so that the Ki become constants. The buffer zone is energetically inert and

can only act as a reservoir of heat fed by radiation conduction. The effect

of the core appears through its temperature T , assumed constant, and similarlyc

the atmosphere is held at a constant temperature Ta. (It turns out that the

model is highly insensitive to the values of T and T .)c a

We now analyze the conditions under which these equations (i) allow a

limit c_cle (LC) oscillation. The equilibrium curves (EC), FI (TI,T 2) = 0 for

the shell (ECI) and F2 (TI,T2) = 0 for the buffer zone (EC2) are exhibited

in the figure. If the ECI has an S-shape as shown, it is clear that the fold

points A and B are points of exchange of stability; if the function FI is

positive to the right of ECI, as it turns out to be, the lower and upper

branches are both stable, whereas the arc AB is unstable. The criterion for
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the existence of a fold point (A) is (similarly to [i]) that

4 > 4/9(TI) (4)(T_- T_),/T1

while a second fold point (B) exists provided that _(TI) drops below 4 at

higher TI. These two conditions then guarantee the existence of an S-shaped

EC. The EC for the second zone is monotonic. The hydrostatic adjustment factor

is vital in making it unstable (F2 is positive to the right of EC2). We

assume now that ECI and EC2 intersect at a point P located on the Unstable

branch AB of ECI, which point P is therefore an unstable equilibrium point.

Turning to a discussion of the existence of a stable oscillation, we

first assume for the sake of argument that the ratio X of the order of

magnitudes of F1 and F2 is very large. A stable LC then occurs when the

following two conditions are satisfied: First, both F1 and F2 are positive

to the right of their respective EC, and P is on the unstable arc AB;

for this one among four sign combinations can there exist a stable LC; secondly,

there is no other equilibrium point (like Q on the figure) inside the curve

AB'BA'. This curve then represents the resulting relaxation oscillation.

For arbitrary values of X, no simple criterion for the existence of a stable

LC can be formulated, but it is obvious that a LC still exists under condition

(i) provided the other possible equilibrium points (like Q) are sufficiently

far from the fold points.

It is interesting to note that a linear stability analysis in the

neighbourhood of the equilibrium point P yields purely real eigen-values

11 4KI 3= __'_ T1 +O(x-I)

CplAmI (5a)

4KI 3 T2 1

= --Th2 (i + _ + _) +O(x_I)_2 Cp2Am 2 T2
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4 4
T1 - T2 1 , (bb)

where _ = 4 4
TI

and where we have neglected the small contributions of Kc and Ta.

Equations (5) of course also show that P is an unstable node point

(%1 and %2 > 0). As the parameter y 5 K2/KI is lowered, the point P moves

south beyond A, becoming first a saddle point (%1 < 0, !2 > 0) and soon

afterwards a stable node (%1 and %2 < 0).

The existence of an oscillation is in this model clearly the result

of non-linearity. This can nicely be exhibited by an inspection of the

dTI dT2
"velocity" field X _ (_-- , _- ) = (FI, F2) in the two-dimensional

"phase-plane" (TI, T2).

In the figure we show the trajectory of the oscillation in the

temperature "phase-plane". The physical parameters have been chosen to be:

108K) = =Q = 26 (hence all temperatures in units of 1.66 x , Tc 6, Ta 0.5,

Kc/KI = 10-4 , Am2Cp2Th2 = i, _Aml/KI = 107,Y = 4 and X H Kl/(CplAml) =

50 and 500. The point P falls on the unstable branch AB and oscillations

exist for values of y in the range (1,8). The innermost cycle (AA'BB')

corresponds to a relaxation oscillation (X_>I). The middle and outer cycles

correspond to X = 500 and X = 50 respectively. For smaller values of X,

e.g. X = 5 already, this limit cycle disappears because of the influence of

the saddle point located at Q. For large X' %2 << %1 and the order of

magnitude of the period of the relaxation oscillation is given by 1/%2• As

X is lowered the excursion into the nonlinear regime increases and the period

lengthens. The profiles of the temperatures as a function of time are very

similar to those found by Rose

Schwarzschild and Harm [2] have attributed the thermal oscillations to

the interaction between the shell and the underlying zone; they reach this

conclusion on the basis of a linear stability analysis in which the entropy

eigen-functions exhibit a 90° phase difference between the shell and the
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zones below. Their argument, however, does not hold in general even for

linear oscillations (except e.g. for mechanical oscillators when represented

by the velocity and position). This criticism does not exclude, though,

the possibility of such an interplay between shell and underlying zones;

we, however, have not succeeded in reproducing such oscillations with a two-

zone model unless we include additional physical effects, like neutrino

losses, in the bottom zone and the model becomes rather contrived.

In conclusion one has a fair amount of confidence that our model,

because of both its insensitivity to most of the parameters involved and

its physical simplicity, is representative of the thermal oscillations as

reported in helium burning shells; in addition, the physical parameters of

the model, needed to obtain the oscillations, take on quite reasonable

values. Our geometric approach of representing the oscillators in a phase-

portrait is quite general and one hopes that it may prove useful in the

search for similar oscillatory phases in different burning stages.
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Equilibriumcurves (dashedlines) for the two zones in the temperature

phase plane and trajectoriesof the oscillationfor variousvalues of X:

inner curve, relaxationoscillatlon,x_l,middle curve,x=500and outer

curve, X=50.
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Discussion

Adams: Can you relate the time between the pulses to the shell parameters?

Buchler: The numerical quantities we used were all scaled. It is difficult

to relate them to actual physical numbers unless one determines what masses and

radii to put in. It is uncertain what to use for the Buffer zone mass.

Sweigart: Have you made any attempt to look at the stability of the hydrogen-

burning shell in the subgiant branch phase of globular cluster stars?

Buchler: We have not applied it to anything like that.

Baker: Do you find the oscillations to be strictly periodic for all values

of the parameters which you used?

Buchler: The abundances don't change, so it has to be periodic.

Baker: Could it be an aperiodic oscillator?

Buchler: We have not found any evidence of that. The relaxation oscillation

is certainly strictly periodic. The three we have considered here are

periodic. Rose, who only considered the helium burning shell, found very

periodic oscillations. Schwarzschild and Harm found that the oscillation de-

cayed, disappeared, and returned later. Weire speculating on what may happen.

Some of the parameters we kept constant may vary, so we need a three- or four-

zone model because it is really the coupling of two different types of

oscillations. So a zone may expand and relax, which is a regime of oscillation.
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