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Abstract

Two simple period determination schemes are discussed. They are
well suited to problems involving non-sinusoidal periodic phenomena
sampled at a few irregularly spaced points. Statistical properties
are discussed. The techniques are applied to the double-mode Cepheids
BK Cen and TU CAS as test cases.

Introduction

Fourier techniques offer the "best possible" methods of spectral
analysis in a number of respects, but they are not well suited to
cases with strongly non-sinusoidal variation, or cases in which only a
few scattered data points are available. Unfortunately, this is
exactly the situation in many physical problems, including variable
stars. I will discuss two classical techniques that do treat these
cases efficiently in cases involving several discrete--frequencies.

When departing from Fourier methods, invariably some type of
sacrifice must be made. In this case "ghosts" appear at subharmonic
frequencies of a strong spectral line. An important point in the
analysis is to show that the unwanted subharmonics can be minimized
and can be distinguished from the real frequency. Once understood,
these "ghosts" can be used to good advantage as indications of the
presence or absence of high frequency components.

A more complete description of these techniques will appear in
Stellingwerf (1978).

I. THE PDM METHOD

A discrete set of observations can be represented by two vectors,
x, and the observation times t, where the ith observation is given by

(xi,ti) and there are N points in all (i = I,N). Let 02 be the

variance of x, given by

•02 T.(Xi-_)2= (l)N-1
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where _ is the mean, _ = Zxi/N. For any subset of xi's we define the
sample variance, s2, exactly as in equation (i). supposewe have

chosen M distinct samples, having variances sj2 (j= 1,M) and contain-

ing nj data points. The overall variance for all the samples is then
given by

S2 = Z(n_-l)s'23' 3
-  nj-M ' - (2)

as a consequenceof equation (I).

We wish to minimize the variance of the data with respect to the
mean light curve. Let H be a trial period, compute a phase vector _:
_i = ti/_-[ti/_];brackets indicate integer part. Equivalently, ~

= t mod (_). We now pick M samples from x using the criterion that

all the members of sample j have similar _i" Usually the full phase
interval•(0,i) is divided into fixed bins, but the samples may be
chosen in any way that satisfies the criterion. All points need not
be picked, or, alternatively,a point can belong to many samples. The
variance of these samples gives a measure of the scatter around the
mean light curve defined by the means of the xi in each sample, con-
sidered as a function of _. We define the statistic

s2
e = V (3)

where s2 is given by equation (2) and u2 is given by equation (I). If

is not a true period, then s2 _ u2 and O _ I, whereas if _ is a
correct period O will reach a local minimum comparedwith neighboring
periods, hopefully near zero.

Since this technique seeks to minimize the dispersion of the data
at constant phase, we will refer to it as "phase dispersion minimiza-
tion", or PDM for short. Mathematically,this is a least-squares
fitting technique, but rather than fitting to a given curve (such as a
Fourier component), the fit is relative to the mean curve as defined
by the means of each bin. We simultaneouslyobtain the best least-
squares light curve and the best period. The PDM technique is thus a
"Fouriorgram"method [as discussed by Faulkner (1977)]of infinite
order, since all harmonics are included in the fitted function. The
Fourier series technique, a least squares fit to a truncated series
with variable amplitudes and phase, often requires additional con-
straints and rather high orders for nonsinusoidalvariations (Lucy,
1976).

Although the individual samplesmay be chosen in many ways, it is
convenient tO define a standard bin structure. We divide the unit

interval into Nb bins of length 1/Nb, and take Nc "covers"of Nb bins,

each cover offset in phase by 1/(NbNc) from the previous cover, using
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periodic conditions on the unit interval to obtain a uniform covering.
We thus obtain M = NbNc bins, each of length I/Nb, and whose midpoints
are uniformly spaced along the unit interval at distance of i/(NbNc).

Clearly, each data point will fall in exactly Nc bins. Denote a given

bin structure by (Nb,Nc).

To compute 8, we take the ratio of variances of the two subsets
of X, that of the actual observations,x, and that of the bins. 8
thereforehas a probability density given by an F distributionwith

Znj-M and N-I degrees of freedom. It is convenient.todefine F as a
number greater than unity, so F _ @-i. The probability,P, that a
given value of 8 is due to random fluctuations (also called the

"significance")is twice the area of the F distributionabove 8-1
(two-sidedtest). This probabilityapproaches unity as 8.1. Thus,
for significanceP, we compute

F(p/2,Nlf,N2f) = i/0, Nlf = N-I, N2f = Zn.-M.J (4)

P may then be obtained by reference to an F table, or using an approxi-

mation to P(F,NIf,N2f),see Abramowitz and Segun (1965),§ 26.

If N is large (> 100), we may take 02(5) _ o2(X). In this case
we may use the somewhat simpler X2 test,

X2(p/2,Nf) = NfO , Nf = Znj-M. (5)

Here P is twice the area of the X2 distributionbelow NfO.

II. THE WR METHOD

An interesting related method is discussed by _'_ittaker and
Robinson (1926, "WR") in which one seeks the maximum variance of the
bin means (as opposed to the mean of the bin variances). If s 2 is

m

the variance of the bin means, define 0WR = l-Sm2/o 2 for comparison

purposes. In general 8WR will vary between 0 and 1-<i/nj>, where <nj>

IS the mean number of points per bin. At a true period Sm2 _ a 2 and

8WR = 0. Here we seek periods at which the amplitude of the mean curve

is a maximum, which in most cases will correspond to minimum phase

dispersion. The calculationof a 2•is easier than s2 (equation2), butm

the number of degrees of freedomis much lower, suggesting less
sensitivity (see.§III). We will show below that in most cases this
supposition is true, although for one range of parameters the WR
techniquemay be preferrable. The WR method is discussed in detail by
Chapman and Bartels (1940)under the title "persistenceanalysis".
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A statisticalcriterion)nayalso be derived for the WR technique.

The distributionof bin means is normal if M is large with _m2 2/nj
Since M is generallynot large, however, a t distributionwith M-1
degrees of freedom will actually be obtained, with

_2/njUm2 _ (M-I)/(M-3) . We may always select bins with nj = N/Nb, for
allj. Note that normal constant-phasebins will produce blnomially

distributed nj and increase Om2 since a harmonic mean of nj appears in
_m2. We wish to test whether the observed Sm2 is significantlybigger

thin Om2. Evidently Sm2/Om2 follows an F distributionwith M-I and N-I
degrees of freedom. Using the definition of 8_R, we have

(M-3)"N

FIM-I,N-I)=_ _ (1-e_R)- (6)

-III. APPLICATIONS

Here I will briefly describe the practical aspects of these
methods; for details see Stellingwerf (1978).

Typical transforms are illustratedby Figure i, which shows the
computed 0-transformsfor a sine wave [sin(2Hft)],panel _, and a
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Fig. i: O statisticversus frequency for the two test
cases described in the text. Panel A: sine-wave
transform;Panel B: sawtooth function transform.
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"saw-tooth"function (fractionalpart of ft),panel B. These functions
have been selected because they represent the two extremes found in
variable star light curves. In each case x consisted of 201 data
points evenly distributedover ten periods~withf = l, T = 10. A bin
structure of (Nb,Nc) = (5,2)was used. The main line at f = 1 is
virtually identical to the Fourier power spectrum llne shape

[(sin(x)/x)2]. Two subharmonicsare present (thethird, just visible
at f = 1/4 is below the cutoff n = Nb _ 3, and is not significantly
different from l). •Thegreat similarityof the two curves shown in
FiGure 1 is, of course, the strong point of the PDM technique: highly
nonsinusoidalvariations are handled just as efficientlyas a sine wave.
The presence of subharmonicresponse could be a disadvantageif oscil-
lations with widely spaced frequenciesare present. In practice,•
however, subharmonicscan be distinguishedin at least three ways:
l} light curve shape, 2) narrow line widths, 3) reduced significance
with increasingbin size. If initial scans of the full frequency range
use broad bin sizes [(5,2),say], subharmonicsshould pose no problems.

It is important to know the number of observationsrequired to
achieve a given significancewith these methods. This quantity ("N")
is plotted in Figures 2 and •3as a function of the signal-to-noise
ratio, € = U/UNoise" A variety of bin structures are shown. It is
seen that coarse bins and multiple covers are needed for small N and €.
Clearly, the PDM technique is superior at small N, while the WR
technique seems preferable in noisy cases (E < 0) if N is large enough.
Accuracy is lost if bins are too wide, and multiple covers will not
help if many bins contain the same points. In general (5,2) structure
works very well. To obtain mean curves for prewhitening,bins should
be made as fine as possible.

IV. MULTIPLE PERIODS OF BK CEN

To illustrate the use of•these methods, we briefly present an
analysis of the light variation of the double-mode Cepheid BK Centauri.
For this purpose we will use only the 49 photoelectricmeasurements
made by C. J. van Houten in 1965 for which Leotta-Janin (1967)has
published the _V values. This author comments that "their number is
too small to allow a reliable determinationof the beat period" and so
uses 25 years of plate estimates as well as knowledge of other Cepheid

period ratios to obtain _0 = 3_17389, H1 = 292366. We have found that
the photoelectricpoints alone unambiguouslyconfirm these results, and
provide informationon mode interactionas well.

The 49 measures span 137 days. Line widths will therefore be
about 0.007 in frequency,so the frequency step size was taken•to be
.0015 for moderate resolution. Twelve nights have t_1oobservations,
providing minimal alias discrimination. Although the measurements are
quite accurate, we nonethelessestimate € % 1.5 due to the secondary
oscillation. Figures 2 and 3 indicate that the PDM and the WR
techniques should be about equally good for this case, provided Nb<10.
We choose a (5,2)bin structureto maintain about l0 points per b_n.
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Fig. 2: Statisticalcharacteristicsof the PDM method.

Notation as in text with various bin structures

(Nb,Nc) as indicated. Solid lines refer to P = 0.02,
dashed line is P = 0.20.
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Figure 4, panel A shows the 8 transformof the raw data. The
primary period is clearly evident (minim_ £), with minima a and b
forming the standard subharmonic sequence found in Figure i? Min_um
f is narrow and showed a .two-cyclemean curve, it is therefore the
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Figure 4: e transformsof the BK Cen data, plotted versus
frequency in cycles/day. Panel A: transform of
the raw data. Panel B: transform of the data
after removal o_--_undamental oscillation.
Panel C: transform of the data after removal of
te-_u_amental and first overtone oscillations.
Labeled minima are identified in Table 1.

first subharmonicof a sizeableminimum off the scale, at f _ 0.7.
This is the main alias of e, occuring at 1-f0. Comparison of the sub-
harmonics b and f indicates that e is the principal frequency. The
identifications_f the minima, together with their approximate fre-
quencies and significances,are given in Table i. Among the barely
significantgroup, we identify £ as the second subharmonicof the
second alias of £, at l+f0, while d, h and i are first overtonefeatures. _ -- -

We see.here a distinct advantageof the subharmonic response ofthis method, any other major frequencyin the range .6<f<1.2would
show a subharmonicon Figure I(A) comparable to b or f. Any minimum
"in the range 1.2<f<l.8would show a second subha_moni_comparable to
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TABLE I

Identification of Features in Flqure 4

Feature Zdcntlflcat£on Frequency (d-_) 519ni£1cance

a _o/_- .,os o.13
b fo/2 .158 0.00
a (1-f0)/3 .226 0.39
d (1-tl)/2 .276 0.09

e fo .316 0.00
f (1-10)/2 .344 0.00
g (l+fO)/3 .439 0.24

h fl .447 0.27

£ l-f I .553 0.0S

J fl/3 ".14e .0.50
k (1-£1)/3 .IB3 0.55
1 fl/2 .224 0.04
m (1-£1)/2 .276 0.08 •

n (fO+fl)/2 .385 0.33

o fl .447 0.00

p 1-f I .s53 0.00

q (1-(f0+£1))/2 .116 0.60

r l-(fo4f 1) .235 0.27
s (f0+£1)/3 .253 0.55
t (f0+£1)/2 .383 0.43

u _0+tl .764 0.11

a or g. Since all features have been identified,no high frequency
_ompo_ents exist. This "look-ahead"feature can be extended by in-
creasing Nb, at the expense of further complicatingthe spectrum.

HaVing identified the principal frequency (f0), this component
was then removed from the data (usinglinear interpolationbetween bin
means). The transform of the reduced data is shown in panel B of
Figure i. Here i, i, o are due to the first overtone,while k, m, E
represent the aliases. Note that each alias feature is slightly less
significantthan the corresponding "real" feature. A mode interaction
feature, n, has also appeared. We can again conclude that no more
significantmodes exist to f = 1.8, since no subharmonicsappear.

•Panel C shows the transform of the doubly-reduceddata. No
significantfeature appears, but many marginal features are related to
the mode interactionterm f0+fl. An extensionof the transform to
higher frequencies showed that this mode did indeed appear at the
P = 0.ii level. This is the only remaining significantmode. This
particular interaction term (f0+fl)has also been found to be excited
in several other studies of similar objects (Fitch1976, Henden 1976,
Faulkner 1977a,b, Fitch et.al. 1978). In particular,this term invari-
ably dominates the beat frequency (fl-f0)component. At present the
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meaning of this is notclear.

The periods and amplitudes of the three components were determined
using a finer frequency scan, and are given in Table 2. Allowing for
the bin size, the actual amplitudes should be about 20% larger, this is

T_LE 2

Sur_aaryof _rinclpal Component_

d-I Adjusted
Hode Fzeq_1_ncy( ) Perlod(d)Amplitude Amp11tu_o Phase*

f 0 0.3153 3o172 0_544 0_64e 0.40"
fx o,_v3 2.2)6 o_222 o_2G4 0.56

fo_fl 0.76_2 1.302 0.1_1 0_180 0.16

*Phase - (tmax-tl)/_O, t I - JD2,438,813.48

shown in the "corrected amplitudes". The sum of these estimates is

i_i, in agreement with the range of the photoelectricmeasures. The

standard deviation of the residuals (triply-reduceddata) was 0_048.

The frequency labeled f0+fl in Table 2 is listed as derived and
differs from the sum of the principal components. The discrepancy may
not be real, since it amounts to about I/T -- suggesting a side lobe
problem.

This research is supported by NSF grant AST 77-26993through
Rutgers University.
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Discussion

A. Cox: What is the c of the data after you've taken the periods out?

Stellinswerf: The residual c following the triple reduction was c = 0.05

magnitudes.
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