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Abstract

The currentstatus of theoreticalunderstandingof the oscillations

observedin the ZZ Ceti stars and cataclysmicvariablesis brieflyreviewed.

Non-radlalg-mode oscillationsappear to providea satisfactoryexplanation

for the low-amplitudevariablessuch as R548, with periods in the range

~ 200-300seconds,but for the longer-perlods(800-1000second)oscillators,

the situationis still unclear.1 Rotationmay play an importantrole in

this problem,and the effectsof both slow and fast rotationupon the mode

structureare discussed. In the cataclysmicvariables,both accretionand

thermonuclearburningmay act to exciteoscillationsof the white dwarf,

and recentwork on this problem is summarizedalso.
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I. Introduction

The purpose of this review is to provide a summary of some of the

recent developments in the theory of white dwarf oscillations. It is

beyond the scope of this paper to provide a comprehensive review of all

of the work in this area since the last LASL/GSFC pulsation conference.

Instead I shall restrict myself to those subjects on which there has been

recent activity or which appear to me to be particularly important, and I

shall concentrate almost exclusively on theoretical research carried out

within the past two or three years. Earlier work on white dwarf oscillations

has already been summarized in a number of review papers to which reference

is made below.

The general theory of non-radial oscillations of stars has recently

been reviewed by Ledoux (1974) and by Cox (1976), both of whom include

brief summaries of the work on white dwarf oscillations. A review devoted

exclusively to white dwarfs has been presented by Van Horn (1976). The

observational basis for the theoretical investigations are provided by the

periodicities that have been detected in the ZZ Ceti stars (single,

variable white dwarfs) and in the cataclysmic variables. The observed

data on the ZZ Ceti stars were reviewed by Robinson and McGraw (1976) at

the last LASL/GSFC pulsation conference, and an excellent, comprehensive

discussion of the observed pulsational properties of these stars has recently

been provided by McGraw (1977). The properties of the cataclysmic variable

oscillators have been reviewed by Warner (1976a) and by Robinson (1976),

and a comprehensive and detailed discussion of these systems has been given

by Warner (1976b). The.most recent survey of the observations of white

dwarf oscillations has been provided by Robinson (1978) at this conference.
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The plan of this paper is as follows. In § II some of the general

problems associated with non-radlal oscillations, but which have a special

significance for white dwarfs, are reviewed. In § III research concerned

primarily with oscillations of single white dwarfs is discussed, except

for effects of rotation. Rotational modifications of the spectra of non_

radial oscillations are considered separately in § IV, and this is followed

in § V by a discussion of recent work on pulsatlonal instabilities of high-

luminosity degeneratestars, including those produced by thermonuclear

burning. In § VI we conclude with reco_=nendatlonsconcerning some problems

for future study.

II. GeneralProblemsofNon-Radlal Oscillations

a. £=i Modes

In the study of non-radlalstellaroscillations,modes corresponding

to sphericalharmonicsof degree £=i have generallybeen ignored. This is

a result of the mistaken impressionthat such modes correspondto displace-

ments of the center of mass, which of coursecannot occur in isolatedstars.

For "stars"composedof homogeneous,incompressiblefluids,this claim is

true; however, real stars are neitherhomogeneousnor incompressible,and

in such cases non-zero displacementsat the centerof the star nee____ddno____tt

correspondto a displacementof the center of mass. This was explicitly

shown by Smeyers (.1966)for adiabaticoscillations,and a more generalproof

has recentlybeen given by Christensen-Dalsgaard(1975). Thus modes
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corresponding to spherical harmonics of degree £=i are physically realizable

in stars. This is particularly important for the white dwarfs, because the

£=i modes have the longest periods of any of the g-modes, and because one

of the most vexing problems connected with white dwarf oscillations has

been the persistent inability of theory to identify low-order modes that

have periods as long as those observed.

b. Connection between theory and observation

In contrast to radial oscillations, in which the relations between

displacement, radial velocity, and luminosity variation are relatively

straightforward, the connections of the radial and transverse displacements

with the observed quantities are not simple in the case of non-radial

oscillations. A pure eigenmode corresponding to the spherical harmonic

Y£m(O,_), for example, has £ nodes in the colatitude interval 0 _ e _ _ ,

and the real part of the eigenfunction has m nodes equally spaced in

azimuth between O < _ < _ (see Fig. i). Theobserved light from a non-

radially oscillating star will thus be a weighted integral over these

angular functi_qs. It is evident that the observed amplitude of a mode

with £ or m even moderately large will be considerably reduced by cancel-

lation. In addition, there will in general be mode-dependent phase shifts

between the times of maximum radial velocity and maximum light. Dziembowski

(1977a) has presented the general theory of the radial velocity and lum-

inosity variations of non-radially oscillating stars. He has also evaluated

the various integrals relating these quantities to the theoretical parameters

for the case of an Eddington llmb-darkenlng law, and he finds that the

observed radial velocity amplitude is reduced to less than one-tenth of

the maximum for £ > 4. In a separate publication (Dziembowski 1977b) he

has applied the theory specifically to evaluate the observed parameters
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Fig. la - A pictorial representation of the luminosity variation

corresponding to the spherical harmonic Yl,o(e,_). The upper

figure gives a perspective view of the luminosity distribution

projected onto a spherical surface. The figure at the lower left

is a polar projection of the luminosity amplitude in the (x,z)-

plane (_=0) at the time of peak luminosity at 0=0. The distri-

bution of luminosity amplltude in e is given by the difference

between the solid outline and the dashed curve representing the

reference sphere. The figure at the lower left represents the

luminosity distribution half a period later, when peak luminosity

has shifted to @-180 °• This mode of oscillation corresponds to

the alternate brightening and darkening of the upper (@<90°) and

lower (@>90°) hemispheres of the star.
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4,=0° 8=9o° x ,_ 4,=18o°

FiE. ib - Similarto Fig. la, exceptfor a different£-I mode.

The actualmode shownis the standingwave correspondingto the

combinationY],_@,_)+ YI _l(@,_). This mode representsthe

alternatebrighteningand darkeningof the forward(I#]<90°)

and backward(J_l>90")hemispheres.The individualm-±l modes

correspondto travellingwaves in which the brightspotrotates

in the directionof "_, makingone revolutionin

the periodof the oscillation.The figuresat the lowerleft

and rlgh=are polarprojectionsof the luminosityvariationat

_-0° and _-180° (correspondingto the positionsof maximumand

mlmimumluminosityat 8=90°).The centralfiguregives the

luminositydistributionas a functionof # in the equatorial

plane (8-90"). 458



F_8. lc - Si_!larto FiE. la, exceptfor the mode Y2,0(8,_).

In thismode bo_h capsbriEhcenand darken_oEe_her,in an_i-

phasewith _he equa_orlalbel_ (IcoseI<i//3). The maximum

luminosityamplitudea_ _he equatoris half _hat at _he poles,

as shownin _he lowerf_Eure.
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,#=oo e=9oo ,/, _ =9o°

Fig. id - Similarto Fig. 15, exceptfor the standingwave

Y2,2(8,_)+ Y2,_2(8,_)..Theindividualm = 52 modes correspond

to travelingwaves rotatingin the_'_ directionswith the

periodof the oscillation.

|

460



corresponding to a variety of g-mode oscillations of 0.6M white dwarf
®

models with Tef f = II,000°K and 12,000°K. As expected, the observed

luminosity amplitude decreases rapidly with £; for the fundamental g-modes,

he finds A_oi(£=2)/_oi(£=i ) = 0.186 at ll,000°K and 0.205 at 12,000°K.

Somewhat surprisingly, however, Dziembowski also finds that the observed

luminosity amplitude increases with the radial wavenumber k (k is the

number of radial nodes in the elgenfunction); for modes with £=i or 2,

_ol(k=10)/_ol(k=l) _ 20-30. Thus if high radial overtones can be

excited with amplitude _r/r at the surface comparable to that of the

lower k-modes, the high overtones will dominate the observed light variation.

For the same reason, the observed oscillations must correspond to modes of

moderately low values of £ and m.

c. Thermal imbalance

The problem of determining the pulsational stability of stars in

thermal imbalance (i.e., evolving stars, in which T_s/_t _ 0) has by now

been studied quite extensively. It has been a subject of some controversy,

and although some of the questions raised have now been resolved, it is

not yet entirely clear (at least to this writer) that a complete under-

standing has been achieved. For the white dwarf stars this problem is of

some importance, because, except perhaps in the cataclysmic variables, they

have no thermonuclear energy sources; instead the luminosities of these

stars are supplied by the cooling of the hot interiors, thus necessitating

T sl t# 0.

A brief summaryof recentwork on this problemhas been given by Cox

(1976_. In particular,Aizenman and Cox (1975),Demaret (1975),Simon (1977),
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and Buchler (1978) have shown that the imaginary part of the complex

pulsation eigenfrequency o which gives exponential growth or decay of

small-amplitude oscillations is necessarily different for the oscillation

energy and the oscillation amplitude. In the linear, quasi-adiabatic

case, they find

(Imq)E = (Im(_)a - _ , (i)

where _ is the time rate of change of the oscillation frequency _ = Req.

This raises the interesting possibility that amplitude growth [(ImG) a > O]

may in some cases be associated with energy decay [(ImG)E < 0] and vice versa,

and leads directly to the question of which complex eigenfrequency (if

either!) is the more fundamental. This has been further discussed by

Simon (1977), Buchler (1978), and Demaret and Predang (1978). An interesting

example of amplitude growth coupled with energy decay has recently been

found in a hydrogen shell-burnlng pre-nova model by Vemury (1978).

For our present purposes, it is sufficient to note that the thermal

imbalance effects are appreciable only when the pulsation damping time

(Imq) -I is comparable to or greater than the timescale of evolution of the

unperturbed star, _/_. For a cooling white dwarf, the latter is in the

range 107 to i0I0 years (cf. Lamb and Van Horn 1975; Sweeney 1976; Shaviv

and Kovetz 1976). In the absence of gravitational radiation damping

(Osaki and Hansen 1973), the damping times for the f- and p-modes are

generally of this same order, indicating that thermal imbalance effects

may be appreciable. However, for all of the g-modes, and-with gravitational

radiation damping included--for the f- and p-modes as well, the damping

_i_ _ __ _ h t thermalimbalanceis not si_nlficant._L_U Ln_rma± imDa±ance Is not signltlcant.
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III. Non-radlal Oscillations of Single White Dwarfs

a. What are the modes of oscillation?

It has been pointed out repeatedly that the observed oscillation

periods of the single white dwarfs (ZZ Ceti stars) are much too long to

correspond to p- or f-modes, and must perforce belong to the class of

g-mode oscillations. However, there still remains a multiple infinity

of g-modes. The system of differential equations governing the non-radlal

oscillations of a spherical star contain the spherical harmonic order

k explicitly (cf. Ledoux and Walraven 1958, Cox 1974, Ledoux 1974, Van Horn

1976), so that the oscillation periods must depend on k. For each k-value,

there are 2k+l independent angular modes of oscillation, corresponding to

the different spherical harmonics Ykm(8,_), with m = -k, -k+l, ..., 0,

,,., k-l, £. In the absence of rotation or magnetic fields, the oscillation

periods corresponding to different m-values are all degenerate. (We shall

defer discussion of the consequences of rotation to the following section).

In addition, for given £, it is possible to find eigensolutlons of the set

of differentlal equations plus boundary conditions which have k _ i nodes

in the radial eigenfunction, It is well-known that the periods of the high

overtones increase Without limit as k . _ (Ledoux and Walraven 1958, Cox 1974,

+
Ledoux 1974). These oscillatory modes are denoted as gk modes. If the

star contains a convection zone _as is the case for all white dwarfs except

DA stars with Teff _ 14,000°K)an additional set of modes, which have a real
D

exponential time dependence, becomes possible. These are termed gk modes.

We shall be mainly concerned with the oscillatory modes, however, and we

shall therefore take "g-modes" to mean "g+-modes" unless otherwise specified.
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To investigatethe nature of the oscillationmodes observedin the

ZZ Cetl stars, one may comparethe observedperiodswith those computed

for various theoreticalmodels. This is shown in Fig. 2. The effective

temperaturesand the periodsof the principalmodes of the ZZ Ceti stars

are taken from McGraw (1977),and theoreticalvalues are taken from

computationsby Brickhill (1975)and Dziembowskl(19775),with the mode of

oscillationidentified.Severalconclusionscan be drawn from this immediately;

most of them have been pointedout previously,especiallyby McGraw (1977)

and referencestherein.

i. The observed region of instabilityfor the white dwarfs lles in

the range of effectivetemperatures10,000°K_ Teff _ 14,000°K. Interestingly,

this lies in preciselythe regionwhere the extrapolationof the Cepheid

instabilitystrip meets the white dwarfs (Fig.3). This has prompted the

suggestlonby McGraw and Robinson (1976)that the same K- and y-mechanlsms

that operatein the hydrogen and helium ionizationzones of the Cepheidsare

also responslblefor excitingthe oscillationsin the ZZ Ceti stars. We

shall return to this point again below.

2. The oscillationsof the shortestperiod ZZ Ceti stars can be

understoodin terms of low overtonesof 1=i or 2 g-modes. This point has

been made previouslyby Brlekhill (1975),by Robinsonand McGraw (1976),

and by Robinson,Nather and McGraw (1976),for the specialcase of R548.

3. The shortestperiod of oscillationchangesabruptly from

~ 200 sec for stars with log Teff _ 4.1 to _ ~ 800-900sec for those with

log Teff _ 4.1. The reason for this (if it is a real effect) is at present

unknown.
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Figure 2. Observed periods of the ZZ Ceti stars from McGraw (1977) compared

with theoretical g-mode periods calculated for different white dwarf models.

For each star the various principal periods detected are plotted as large

dots connected together and labelled with the star name. The effective

temperatures are those tabulated by McGraw. The calculated periods for the

0.388M e and 0.758M e models are by Brickhill (1975); those for the 0.6M e

models are by Dziembowskl (1977). The lowest few obertones of the £=I and

£=2 modes are shown (labelled by the values of k and £) for the theoretical

calculations. The shortest observed periods of the hotter ZZ Ceti stars

(log Tef f _ 4.1) are in the range of the low-order g-mode periods. The

periods of the cooler ZZ Cetl stars (log Tef f _ 4.1) require rather high

radial overtones (k _ 15-25) if these oscillations correspond to conventional

g-modes.
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figure 3; The instability strip in the H-R diagram. The upper portion of

the figure showing the theoretical evolutionary tracks and the location of

the Cepeheids is adapted from Figure i of Henden and Cox (1976). The in-

stability strip has been extrapolated linearly along the dashed lines into

the region occupied by the white dwarfs. The locations of the variable

white dwarfs are shown by the large open circles.
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4. In order to interpret the oscillations of the long-period ZZ Ceti

stars in terms of modes which are presently understood, it is necessary to

identify the observed oscillations as rather high overtones (k _ 15 for

= i; k _ 25 for £ = 2). Note that the hlgh-order spectra belonging to

various £-values overlap, so that periods alone are insufficient to provide

unique mode identifications in this range.

There are a few additional indications from the data which reinforce

the interpretation of the long-perlod modes as high radial overtones. As

pointed out by Robinson and McGraw (1976), there is a rough correlation of

oscillation period with observed oscillation amplitude. This is shown in

Fig. 4, where McGraw's (1977) periods and amplitudes are plotted. Note that

the practice of assigning a single amplitude to the star is not really

adequate for this purpose, as McGraw points out; a more detailed comparison

with the theory can be made by using the observed amplitudes of the

individual oscillation modes. Also shown in this figure are McGraw's

estimates of the stability of the oscillations.

For a comparison we have also plotted in Fig. 4 Dziembowski's (1977b)

bolometrlc magnitude variations, reduced by a factor of 10-3, for the various

radial overtones of the _=i and 2 g-modes computed for his 0.6M o, Tef f

II,000°K model; almost identical results are obtained for the Tel f = 12,000°K

model. This suggests the following conclusions:

i. The general trends of the observational data are broadly consistent

with the theoretical curves. This is at least not in disagreement with the

hypothesis that the long-perlod modes are high radial overtones.
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Figure 4. The correlation between period and amplitude of the osclllatlon

for the ZZ Ceti stars. The observational data are taken from McGraw (1977),

and hls estimates of the stability of the osclllation modes are indlcated In

parentheses after the star name. Note that the "amplitude" plotted here is

a "typical value" for each star; a more informative comparison is possible

by making use of the amplitudes of the individual oscillatlon modes as

determined from the power spectra. Also shown for comparlson are the

predicted bolometric magnltude varlatlons for the various radlal overtones

for the %=1 and 2 g-modes as calculated by Dzlembowskl (1977). The plotted

points are labelled by the k and % values of the modes. Dzlembowsl=l's

tabulated values of AMbolhave been reduced by a factor of i0 for this

graph, suggestlng that the amplitudes of the radlal osclllatlons are

-3
6r/r _ I0 for these stars.
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2. The stability of the oscillations displays an interesting

correlation with the periods. The shortest period oscillators display

a very stable mode structure, while the longest period oscillators tend

to be the least stable. This is also consistent with the suggested

identification of the short periods with low-k modes and the long periods

with hlgh-k modes. Because the density of modes increases very rapidly

with k in frequency space, the possibility of mode-coupling is enormously

greater for the high-k modes than at low k. This may lead to beating

or mode-switching that may be observed as apparent lack of stability of

the oscillation. Precisely this type of interaction has been shown by

Robinson, Nather,,and McGraw (1976) to occur even in the most stable

ZZ Ceti star, R548; when this is taken into account, the underlying mode

structure of the star is found to have I_I < i0-ii.

3. The oscillation amplitudes as determined from the ratio of

Dzlembowski's calculations of %ol with the observed amplitude of

variation A are quite small; 6r/r _ 10-3 at the stellar surface.

As the previous discussion has been intended to show, great progress

has been made in the past several years in understanding the nature of the

oscillations in the ZZ Cetl stars. Despite this, the mode identifications,

except perhaps in R548, are still.unsettled. One reason for this is that

theoretical models have yet to demonstrate pulsatlonal instability in the

modes suggested by the observations. A second reason is that additional

oscillation modes mayexlst in white dwarfs which have not yet been studied

adequately or that rotational modifications ofexlstlng g-modes may be

important. We therefore turn next to considerations of these questions.
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b. Excitationand non-llnearmode-coupllng

Only a few of the recent non-radlaloscillationcalculationshave

investigatedthe problemof excitationof the modes, and this has

usuallybeen restrictedto the linear,quasl-adlabatlcapproximation. In

their classicpaper, Osakl and Hansen (1973)studiedradiative,neutrino,

and gravitatlonal-radiatlondampingof non-radlaloscillations. However,

the pure 56Fe white dwarf models they employeddid not includea treatment

of the ionizationzones, and thus no pulsatlonalinstabilitywas found.

More recently,Hansen,Cox, and Van Horn (1977;see also Van Horn 1976)

have studiedthe low-k, £=i and 2 non-radlaloscillationmodes of detailed

models of pure 12C white dwarfs. These models did includea careful

treatmentof the ionizatlon/convectlonzone, and a hint of instabilityin
+ +

the £=2 gl and g2 modes was found for a model with Teff = 58,000°K. It

is not clear that this is a real instability,however,because the result

dependsupon the assumedlocationof the "transitionzone" (cf. Cox and

Giull 1967, ch. 27) where the quasi-adlabatlcapproximationbreaks down.

In any case, this "instability"is clearlyirrelevantto the ZZ Cetl stars.

The only other theoreticalstudy of the excitationmechanism in

models for the ZZ Cetl stars of which thiswriter is aware is that by

Dzlembowskl(1977b). In this importantwork, Dzlembowsklinvestigatedthe

oscillationsand stabilityof two 0.6M® white dwarf models with Teff

II,000°Kand 12,000°K. These models,with elementabundancedistributions

taken from the last model of Paczynski's (1971)planetarynebula sequence,

did includehydrogen/hellumenvelopeswith ionizationzones. The results

of Dziembowski'sfully non-adiabaticcalculationswere: i) g-modeswith

k < 15-25 were found not to be self-exclted,and ii) modes correspondingto

very high orders (£ ~ 100-400,k ~ 15-20)were drivenviolentlyunstable,
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primarily by the HeII ionization zone, with growth timescales of days.

However, the periods of these modes are much too short (N ~ 5-20 see),

and the E-value much too large for these modes to correspond to the

observations. (For example, Dziembowski finds _oi ~ 10-2 - 10-5 for

these hlgh-E modes as opposed to A_o I ~ 200 for the E=2 modes of

comparable k-order).

Thus none of the theoretical calculations has yet succeeded in

discoverin_ pulsational instabilities in those modes which the observations

indicate to be excited in the ZZ Ceti stars.

One possibility for resolving this problem was suggested by

Dziembowski (1977b). He pointed out that non-linear interactions among

the very high-E modes which he finds to be excited may provide resonant

excitation of the lower-order modes in the observed range of frequencies.

_Vandakurov (1977) has subsequently considered non-linear driving of

radial pulsations by these same unstable non-radial modes).

This would be expected to lead to variability of the observed mode ampli-

tudes, as is found in the long-perlod (800-1000 second) oscillators. It

isdifficulttoacceptthisexplanationfortheshort-period(~200-second)

oscillators,however. In particular,the greatstabilityof the oscillations

in R458stronglysuggeststhatthesemodes are indeedcorrectlyidentified

as low-E,low-koscillationsthatare self-excited.If thisis correct,

thenthereis an essentialaspectof the non-radialexcitationmechanism

that we have yet understood.

Another,related,problemthat may be importantin the whitedwarfs

is the interaction between oscillations and convection. There are two

aspectsof this: the effectof convectivefluxvariationsupon the

pulsationalstabilityand the directnon-linearcouplingbetweenpulsatio;lal

and convectivemotions. Work on the generalproblemof convectionin

pulsatlontheoryhas beenbrieflyreviewedby Cox (1976). In the context
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of white dwarfs,there has been no work on this problem,and time-

variationsin the convectiveflux have been entirelyignoredin the

pulsationalstabilityanalysis. From researchon the effectsof con-

vectionon other types of stars, however, it appears likely that this

is inadequate. For example, in a series of papers concernedwith the

full hydrodynamictreatmentof convectionin Cepheldsand RR Lyrae stars,

Deupree (1976,pp. 222, 229, and referencestherein)has shown that

convectionbecomesimportantat the red edge of the instabilitystrip,

where it dominatesthe damping of the oscillations. Is it too great an

extrapolationto suppose that convectionmay play a similarrole in the

ZZ Ceti stars, perhapseven in determiningthe transitionfrom stable 200-

second oscillationsto fluctuating800-1000second oscillations?

Unfortunately,Deupree'sdetailednumericalapproachis ill-adapted

for use in a survey of stabilityamong non-radlalmodes, especiallythose

of moderatelyhigh order. For this purpose one would prefer a simpler

approximationthat could be employedwith linear theory. Two recent

groups of papers are of interestin this regard. First, Gough (1977)has

recentlyreviewed the tlme-dependentgeneralizationsof mixlng-length

theory and has presentedthem in a form suitablefor use in studiesof

radialpulsation. Second,Goldrelchand Keeley (1977a,b)have presented

a carefulanalysisof the interactionbetween convectionand pulsationin

connectionwith low-amplltudeoscillationsof the sun. They find (1977a)

that turbulentdissipationrendersunstableradial modes marginally stable.

In their second paper (1977b)the treatmentof convection/pulsatloninter-

actionsis generalizedto the case of non-radialoscillations,and they

find that non-llnearinteractionslead to a tendencyfor equipartitlonof
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pulsationmodes which are close to resonancewith convectiveeddies.

In the white dwarfs,it has been pointed out before (VanHorn 1976)

that convectivetlmescalesbecome comparablewith g-modeperiods for

the cooler He-envelopewhite dwarfswith M ~ 0.4-0.6M . Clearly this

problemneeds furtherattentionfrom the theorists.

c. New modes?

The difficultyof identifyingthe long-perlodoscillationsof the

ZZ Ceti stars with modes of low order has suggestedto some the possibility

of findingadditionaloscillationmodes of the white dwarfs beyond the

conventionalp-,f-, and g-modes. Motivatedin part by this, Van Horn and

Savedoff (1976;see also Denis 1975) undertooka preliminaryinvestigation

of the effectsof a solid core upon the oscillationspectrum of a white

dwarf. Although their analysishas not yet been carriedthrough for a

completestellarmodel, they were able to show that the abilityof the

solid core to sustainshearingmotions permittedtorsionaloscillationsof

the core, just as in the case of the solid Earth. In addition,they found

that the non-vanlshingshear modulusproducedmodificationsin the p- and

g-mode oscillationperiods; for the p-modes the changewas only a few

percent,while for the g-modes,the period ranged from the normal value

in the case of small shear moduli, to that appropriateto the torsional

oscillations. Since the torsionaloscillationperiods_t were estimated

to be no more than 3 to i0 times longer than the p-mode periods,or Ht ~

30-100 seconds,the effect of the solid core does not appear to be relevant

to the problemof the long-perlodoscillations. In addition,while core

12C
crystallizationbegins near Teff = 13,000°Kin a IM®, white, it will

not occur until considerablylower temperaturesin stars of lower masses.
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From McGraw's (.1977)values of log g for the ZZ Cetl stars, the masses are

expected to lie in the range of 0.5-0.TMe; the values of Teff at crystal-

lization for these masses are so low that core crystallization will not

begin until these stars have cooled well below the observed instability

strip.

Another, as yet unexplored, possibility exists for introduclng new

modes into the white dwarfs, however. This has to do with the effect of

composition discontinuities upon the mode structure of the starI. It is

well-known that white dwarfshave undergone thermonuclear processing. They

must initially have been more massive in order to have evolved off the main

sequence and to have become white dwarfs; thus some of the hydrogen has

been burnt into helium. In addition, the masses are larger than the minimum

for helium burnlng; thus some of the hellum has also been processed into

carbon and oxygen. It is unlikely that the white dwarfs have undergone

further nuclear processing, althoughthls cannot yet be rigorously established.

It is also well-known that the gravitational fields in white dwarfs are

sufficiently high so that gravitational settling of the elements will have

proceeded to its limit (cf. Schatzman 1958). Thus the compositional structure

of a whlte dwarf is expected to consist of layers of virtually pure elements;

hydrogen overlying helium overlying carbon and oxygen. Vauclalr and

Relsse (%977) and Koester (1976) describe the structure of the outer layers

of such a star.

In cases with such layered structures, it is anticipated that additional

modes of oscillat_on associated wlththe density discontinuities will appear.

For the case of the heterogeneous incompressible sphere this has been

le

I am indebted to M.P. Savedoff for drawing my attention to this point.
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confirmed within the past five years (cf. Ledoux 1974). The eigenfunctions

associated with the additional modes peak near the density discontinuities;

thus these modes can be regarded as "surface waves" associated with the

discontinuities. The effect of the thickness of the various composition

layers upon the oscillation spectrum of a white dwarf, however, has not

yet been investigated. It is tempting to speculate that the location of

the H/He composition boundary relative to the location of the Hell ion-

ization zone may even be responsible for the existence of non-variables

within the instability strip, just as Baglin (1976) has suggested in the

region of the main sequence A stars.

IV. Effects of Rotation on Non-Radial Oscillations

a. Slow rotation

Up to this point we have ignored the effects of rotation upon the

mode structure of a non-radially oscillating star. However, as we shall

discuss in this section, rotation exerts a profound influence upon the

periods of such oscillations. It is convenient to begin this discussion

with the case of very slow rotation (rotation frequency _ << _ = 2z/H),

both because it can be treated as a perturbation on the non-rotatlon case,

and because it may be especially relevant to the ZZ Ceti stars we have been

considering.

The theory of the leading (i.e., linear) corrections to the frequencies

of non-radial oscillations due to uniform rotation has been well-established

for some time now (ef. Ledoux 1951, Ledoux and Walraven 1958) and yields,

in the inertial observer's frame,
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°k£m = Ok£ - m_(l - Ck£). (2)

Here _k£m is the (complex) eigenfrequency, Sk£ is the value of _k£m in

the absence of rotation, m is the azimuthal spherical harmonic index

(m = -1, -Z+I, ...,1 ), and Ck£ is defined by

f0r2dr(2ab+b 2)

Ck£ = f0rZdr [a2+£(£+l)b2 ] . (3)

In (3), the quantities a and b are, respectively, the amplitudes of the

radial and tangential displacement elgenfunction, defined by

~k£m_ = (_r,_O,_)=(6r,r60,rsinO_)=[a(r)Y£m,b(r)_8 , b(r)sinO8Y_]. (4)

For moderately large k-values, ]al is generally much smaller than Ibl ,

and (4) reduces to

~ 1

Ck£ £ (£+i)
(4a)o

Brickhill (1975) comments that (4a) is a good approximation for k £ 4, but

he gives no quantitiative details beyond this.

Recently, Wolff (1977) has applied this formalism to interpret the

multiperiodicities observed in the ZZ Ceti stars as beats produced by non-

linear mode-coupling of rotationally-split g-mode oscillations. He argues

(see Wolff 1974 for details) that g-modes with spherical harmonic index

m and -m should be excited to comparable levels, and hence that the corresponding

retrograde (m > 0) and prograde (m < 0) modes will combine to yield a not-

quite-standing mode with azimuth and time dependence of the form (in the

non-rotating inertial frame):

476



cos{ImI[_ + _(l-Ck£)t]}ei°klt. (5)

The rate of azimuthaldrift of this wave patternis thus given by

-_ = f_(l-Ck£)--_9.," (6).

In the case of uniformrotationand sufficientlylarge k, Ck£ assumesthe

simple form given by (4a),and the drift rate of the wave patternthen

dependsonly upon £ and _, but not upon k or m.

Wolff then argues that it is the "slow"relativedrift of groups

of modes with comparable£-valuesthat dominatesthe observedvariations.

This leads him to considerthe patternfrequenciesgiven by (6) and (4a)

togetherwith simple differencesof these frequenciesas definingan

oscillationspectrumdependingonly upon the stellarrotationrate _.

A schematicillustrationof this conceptand its applicationto four of

the ZZ CetiVariables are shown in Fig. 5, adaptedfrom Wolff's paper.

The coincidenceof the theoreticalspectrumwith the observedpower spectra

is rather striking,despitesome obviousdifferences. This, togetherwith

the fact that it yields potentiallytestablepredictionsof the rotation

rates of the oscillatingwhite dwarfs,makes Wolff'smodel of interestfor

furtherstudy.

In particular,the rotationrates Wolff predictsare in the range

2_/_ = 200 to 500 seconds. _his would be consistentwith the contractionof

a star having approximatelysolar angularmomentum from the main sequence
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Fig. 5 - Wolffts theory for the oscillations of the ZZ Ceti stars. This

figure is adapted from Wolff (1977). The right half of the upper panel

shows schematically the azimuthal drift rates _% given by (6) for modes with

£ = 1,2,3,4... in units of the stellar rotation frequency _. The left half

of the same panel shows the heat frequencies _%=2 -_b=l' "''' _£=4 - _£=2'

etc., also in units of ft. The lower panel shows one example of a comparison

of this'theoretical spectrum with the observed oscillation spectrum of the

ZZ Ceti star G29-38. The assumed stellar rotation period 2w/_ = 306 seconds

has been chosen to provide the best match with this data. The frequencies

labelled P, P-H, and P-2H have no theoretical foundation, but are introduced

to correspond to other large peaks in the power spectrum. The frequency P

is supposedly analogous to the so-called "prograde mode" identified in the

sun while His "the frequency of the highest maximum in the observed

.spectrum" IWolff1977). 478



to white dwarf dimensions without loss of angular momentum, but it is much

faster than the rotation rates found so far in any other single white dwarf

(.>103-104 seconds in 14 DA white dwarfs: Greensteln and Peterson 1973,

Greenstein et al. 1977; ~ 2.2 hours in Felge 7: Lelbert et al. 1977; and

1.3 days in G195-19: Angel et al. 1972). A rotation period of ~ 200 seconds

-i
corresponds to an equatorial velocity of ~ 300 km s and to a rotational

o

Doppler broadenlng of ~ 4.5A at Hy. This is amply large enough to be

measured, even in the presence of the very large pressure broadening in

white dwarfs, and the results of such measurements are of very considerable

interest. If such large rotation broadening is found, it will favor Wolff's

theory and provide a new puzzle: why do the variable white dwarfs rotate

so much faster than non-varlables? If rapid rotation is not observed,

the measurement will at least place useful limits on the rotation periods

of the ZZ Ceti stars and reaffirm an existing puzzle: why and how are

hlgh-order g-modes excited?

Apart from its virtue of potential for Observational test, there are

a number of shortcomings of Wolff's model from the point of view of theory,

Instead of developing his model from first principles, Wolff has intro-

duced a number of ad hoc assumptions that should be checked. For example,

he adopts the large-k limit for Ck£ for all of his modes; is this adequate?

In part to address this question Hansen, Cox, and Van Horn (1977) have

computed the rotational splitting of £=2 g-modes in 56Fe and 12C white

dwarf models in or near the observed white dwarf instability strip. For

uniform rotation they find values of Ck£ ranging from -0.020 to 0.165,

depending upon the stellar mass, Tef f, and the k-value of the mode; the

result given by (4a)is I/£(£+i)= 1/6 = 0.166.
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Hansen, Cox, and Van Horn have also carried out preliminary

calculations of the effects of differential rotation in white dwarfs,

assuminga "rotationlaw" of the form adoptedby Ostrikerand Boden-

heimer (1968)in their study of massive differentlally-rotatingwhite

dwarfs. For IM , 12C white dwarf models, the calculations indicate

a considerably different (and Teff-sensitive ) splitting of the £=2

gl- and g2-modes, although this result is rather model-dependent. (There

is almost n_9_odifference in the gl- and g2-mode splittings for the much

cruder 56Fe white dwarf models in the Teff-range of interest). This

result is of interest in connection with the extremely careful and

detailedanalysis of the oscillationsof R548 by Robinson,Nather,and

McGraw (1976). They found that the power spectrumof this star consisted

of two main peaks at periods of about 213s and 274s, and that these are

each split into close pairs wlth very stable periods (IHI < i0-ii). The

two close pairs, presumablysplit by rotation,each beat togetherto

yield differencefrequenciescorrespondingto periodsof ~ 1444 (for the

213s oscillations)and ~ 1466 (for the 274s oscillations). From (2),

these differencescorrespondto the quantity21mI_(l-Ck£),and the different

splittingfrequenciesfor the two modes thus requiredifferentvalues of

Ck£. As the calculationsof Hansen et al. show, this is not at all sur-

prising for the low-orderg-modes thoughtto be present in R548. Although

it is prematureto identify the precisemode and rotationperiod of R548

(otherthan that it appearsto be of the order of a day or two)- much less

to associatethe observedsplittingwith differentialrotation--the prospects

for the future seem promising.

b. Rapid rotationand disk accretion

In contrast to the single white dwarfs,the white dwarfs in cata-

clysmicvariablesmay exhibitrapid rotation as a byproductof accretion.
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In these systems, accretion onto the white dwarf must ultimately take

place from the inner edge of the accretion disk, which rotates with the

Keplerian circular velocity vK ~ (GM/R,) I/2. For a white dwarf with
-i

mass M = IM and radius R, ~ 109cm, this velocity is vK ~ 3000 km se

which corresponds to an orbital period ~ 20 seconds. If such rapid rotation

can be transferred efficiently to the white dwarf, the assumption of

"slow" rotation, upon which the mode-splittlng calculations are based,

will be violated. For this reason, a number of recent papers have begun

investigations of the effects of rapid rotation upon the oscillation

spectra of stars.

A general formulation of the theory of non-radial oscillations of

differentially rotating stars has been presented by Aizenman and Cox (1975;

hereinafter denoted by AC). This approach was subsequently applied by

Hansen, Aizenman, and Ross (1976) to a study of the non-radial oscillations

of uniformly rotating isothermal cylinders. They found very peculiar

behaviors of certain g-modes under rapid rotation and showed that some

of the modes correspond to dynamically unstable spiral waves. This

intriguing result stimulated Hansen and his collaborators to undertake

further investigations of the effects of rotation upon the non-radial

oscillation modes of stars. Hansen, Cox, and Carroll (1978) have accordingly

adapted the theoretical formulation developed by AC to study this problem.

In the limit of slow rotation (only correction terms to the elgenfunctions

and eigenvalues that are linear in _ are considered), they showed that

the AC formalism recovers the conventional frequency- splitting constant

C given by (3). However, Hansen et al. also extended their calculation to

the quasi-adiabatic analysis of modal stability; they found the interesting
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result that retrosrade (m>O) modes are slightly more stable than prograde

ones. Further, in a noteworthy appendix, Hansen, Cox, and Carroll studied

the non-radial oscillations of rotating, cylindrical '_hite dwarfs" (the

analogs of the rotating isothermal cylinders of Hansen, Aizenman, and Ross).

In this work, which was no____trestrictedto slow rotation, they found large

effects on the g-mode periods even at rather moderate rotation rates

(_ _ 500 seconds for £ = 2 gl-modes). They also found substantial differences

between the retrograde and prograde modes, as well as significant departures

from the linear theory, even at periods as long as i000 seconds. For this

reason, they recommended a careful re-examinatlon of Wolff's theory of the

ZZ Ceti oscillations; if the mode splitting differs significantly from

that given by (4a) with (2) and (6), the spectrum shown schematically

in the top part of Fig. 5 will be modified, and it is not clear whether

the degree of agreement with the observed oscillation spectra of the ZZ Ceti

variables will be maintained.

An exciting new development in the theory of oscillations of rotating

stars is contained in an important recent paper by Papaloizu and Pringle

(1978). In this work, they pointed out the existence of a new class of

modes which appear in rotating stars and which they have termed "r-modes"

because of their similarity to Rossby waves. These modes have previously

been missed by most workers because they belong to a completely different

mode class (the toroidal modes) than do the spheroidal p-, f-, and g-modes,

and because - for spherical stars - the toroidal modes are all degenerate

at zero frequency.

The existence of the class of toroidal modes of stellar oscillation

was noted in a group-theoretical paper by Perdang (1968; see also Chandra-

sekhar 1961). The nature of these modes was further clarified in an ex-
\
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ceptionally careful study by Aizenmann and Smeyers (1977). They showed

that the displacement fields P_ that correspond to oscillations of non-

zero frequency have no toroldal component. In this case, they found

that the displacement eigenfunction _k£m can be written in the familiar

form (cf. equation [4])

_ _=ratr_y b(r)_Y-_m,b(r) _] (7a)_k£m = (_r'_8'_ _ L ,, £m' 80 sin0

This separation of variables yields the spheroidal oscillation modes, for

which Cowling (!941) introduced the subclassifications of p-, f-, and g-modes.

Aizenman and Smeyers went on to show, however, that the modes which are

degenerate at zero frequency in a spherical star consist of the f-mode

belonging to _=i and a new class of modes which have no radial component

of thedisplacement. For the latter modes, the displacement eigenfunction

can be written in the form (see also Van Horn and Savedoff 1976)

_k£m = [0, c(r)sine_ , - c(r)_8 ) , (Tb)

where c(r) is a function of radius only. This separation of variables

yields the toroidal oscillation modes.

In a rotating star, the equations governing the fluid motions contain

additional terms not present in the spherical case. These correspond to

the effects of the centrifugal and Coriolis forces, and they affect both

the equilibrium configurations and the small-amplitude perturbations about

equilibrium. These additional terms are the ones responsible for producing

the mode-splitting that breaks the (2£+l)-fold degeneracy of the g-modes of
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order £ that has been discussed previously (cf. equation [2]). However,

as Papaloizu and Pringle (1978) show, the existing analysis of g-mode

splitting (except for the very general formulation given by Aizenman and

Cox 1975) is based upon the assumption of slow rotation of the star, and

they argue that this is probably invalid for the white dwarfs in cataclysmic

variables. Furthermore, as Papalolzu and Pringle also show (see also

Perdang 1968), rotation breaks the degeneracy of the zero-frequency modes,

producing in addition to the rotatlonally-modlfled g-modes a spectrum of

toroldal modes with frequencies approximately given by (for uniform

rotation)

2
O'k,tm= -m_[l.A(_,+I)],_,# O. (8)

These are the modes Papalolzu and Pringle have named r-modes. For the

case £=i, (8) still yields zero frequency; in this case a slightly better

approximation yields a non-zero result, which, however, is very small Icf.

Papaloizu and Pringle 1978).

Papalolzu and Pringle go on to discuss some possible applications of

their theory to the interpretation of observational data. In particular,

they question whether the 20-30 second oscillations observed in some cata-

clysmic variables, usually in the post-maxlmum decline of the light curve,

may be r-modes rather than g-modes as conventionally assumed (cf. Warner

and Robinson 1972). There are three main points to their argument. First,

they point out that although p- and f-modes generally have periods much

shorter than 20-30 seconds in hot white dwarfs, the g-mode periods -- although

much shorter than the ~ 200 second periods found in models with Tef f ~
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IO,000°K --tend still to be longer than 20-30 seconds2. Secondly, they

note that the timescales over which period changes are observed to occur

in the cataclysmic variable stars (often _ 18 hours : cf. Warner 1976b)

are enormously short compared to the characteristic e-foldlng (decay)

tlmescales of the g-modes2. Third, they emphasize that the rotation

expected in the cataclysmic variable white dwarfs is likely to be rapid

enough to invalidate the slow-rotation approximation for g-mode splitting,

and may be fast enough to permit the existence of r-modes with periods

comparable to those observed.

In order to obtain decay tlmescales as short as the timescales of

observed period changes in the cataclysmic variables, Papaloizu and Prlngle

argue that it is necessary to consider white dwarf models in which the mass

involved in the oscillations is confined to the very outermost surface

layers. To this end they have studied the properties of some £=2 g-modes

for models with a luminosity source embedded in the outermost ~I0-10M®

Of envelopes containing ~10-6 to 10-7M of hydrogen. These models are®

intended to simulate accretlonal heating of the surface layers, and the

results indicate decay times as short as ~ 104 seconds for these highly

surface-concentrated modes. For the low-k g-modes the periods are still

too long for these models, however.

2However, see the discussion of accretlng white dwarf models with

nuclear burning in Section V below, especially the calculations by

DeGregoria 1977 and by Sienkiewicz and Dzlembowski 1978).
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The interaction between the accretion disk and the surface layers

of the white dwarf is further elaborated by Papalolzu and Pringle in

Appendix i of their paper. Here they consider a simple model of the

transition layer over which the angular velocity changes from the Keplerian

value appropriate to the inner edge of the disk to the slower rotation rate

of the star. They show that the perturbation equations for this flow lead

to the analogs of Kelvin-Helmholtz instabilities, and they estimate

Conditions for the onset of instability. In the text of their paper they

speculate that either this instability or the direct interaction of the

accretion disk_-Ith the surface of the white dwarf may be responsible for

the excitation of non-radlal oscillations of the star, a concept already

implicit in the work of Pringle (1977). This process, which is rather

similar to the production of musical tones in a flute, represents an

important new mechanism for the excitation of stellar oscillations and clearly

merits considerably more detailed work. To date only a few papers have

seriously considered the complex problems involved in this interaction

region. In addition to those works already cited, we must add the funda-

mental.paper of Lynden-Bell and Prlngle (1974), the quasi-steady calculations

of Durisen (1977), and the recent work by Kippenhahn and Thomas (1978). The

latter authors in particular point out that the interface region in disk

accretion differs drastically from that involved in spherical accretion

flows.
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V. Instabilities in Planetary Nucleus Stars and Nuclear-BurninB White Dwarfs

To complete this survey of theoretical research on the oscillations of

degenerate stars, mention must also be made of recent work on degenerate

stars other than the ZZ Ceti variables and the cataclysmics. The two types

of systems which have received attention are i) the central stars of planetary

nebulae and il) white dwarfs with H- or_He-burning shells, usually thought

of as resulting from accretion. To date, these theoretical models have

only limited correspondence with the observational data, and for this reason

my discussion of them will be brief.

a. Planetary nuclei

Research on the oscillations of planetary nuclei published within the

past two or three years has been limited, to this writer's knowledge, to

two short papers by Stothers (1977) and by Dziembowski (1978). Stothers'

paper is another in his series of applications of T.R. Carson's new radi-

ative opacities (cf. Carson 1976). In this newest work, Stothers finds that

the fundamental model of radial pulsation (and in a few cases, the first

overtone as well) is excited in very high luminosity degenerate stars by

the K-mechanism operating in the CNO ionization zone. This is a direct

consequence of a large "bump" in the Carson CNO opacities that occurs over

a wide temperature range aroung 106°K at low densities. The region of the

H-R diagram in which pulsational instability is driven by this mechanism

covers a range in luminosity given by 3.5 _ log L/Le _ 4, with effective

temperatures cooler than log Teff _ 5.0, extending at least to the red of

= 4.65 and possibly beyond. This is the same region occupied bylog Teff

the highest luminosity central stars of planetary nebulae, and Stothers

suggests that this mechanism may perhaps explain some of the rapid vari-

487

t
I
I
I



abilitythat has been observedin some of the planetarynuclei. He quotes

the observedtimescalesofvarlatlon as rangingfrom weeks to perhapsas

short as seconds, while the theoreticalmodels yield fundamental mode periods

rangingfrom fractionsof an hour to about a day.

Dziembowski's(1978)paper is concernedwith short-perlodvariability

in FG Sge, Over the period from 1972 to 1975, duringwhich time the spectral

type changedfrom F6 to G2, observationsquotedby Dziembowsklindicate

short-termvariabilitywith a period of 60 days in 1972 and 20 days in 1975.

He has accordinglycarriedout calculationsof the nonadlabaticpulsational

instabilityof double (H- and He-) shell burningmodels in order to find

the hlgh-lumlnosltyextensionof the instabilitystrip. For models with

masses between0.52M and IM and with luminositiesgreaterthan about 103L ,

he finds that nonadiabaticeffectsare important,and by matching the models

to the observed periodshe is able to deduce the luminosityand mass of the

star. He finds that a 60 day pulsationperiod can be fitted by a model with

L _ 6300 L and M = 0.63 M , while a 20 day period requiresL _ 1600L ,

which may be too low for the developmentof a He shell-flash.

b, Nuclear-burn_Ingwhite dwarfs

In a recent series of papers,Vila and Sion (1976),Sion and Vila (1976),

Vila (1977),and DeGregoria (1977)have examinedthe pulsationaland thermal

stabilityof a number of staticmodels of whlte dwarfs withoutaccretion

and with nuclear burningof a H/He envelopeassumed to provide the entire

luminosityof the star. Vila and Sion (1976)constructedstaticmodels with

masses of 0.6 and 1.0M in which H shell-burnlngby pp and CN0 reactionsin

an appropriatelychosen envelopeprovided the only energy source. They found

nuclear-energizedinstabilityof the fundamentalradial (F)mode in the
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106_
luminosityinterval0 j log L/L _ 3, with growth timescalesof ~

108 years. At log L/L , the first radial overtone (HI) mode was also

excited,on a timescaleof 108 years. In a closely relatedwork, Sion

and Vila (1976) found nuclear-energized pulsations of the F-mode alone

in the range 0 < log L/L < 3 for models with He-burningshells near the

surfaces. Vila (1977)subsequentlyundertookto examinethe thermal

stabilityof the H shell-burningmodels and came to the unexpectedcon-

clusionthat the models were all thermallystable. A similarnegative

resultwas also found by Sion, Acierno,and Turnshek (1978),who discussed

the thermalstabilityof models having masses 1.2 S M/M S 1.38 and under-®

going steady-stateaccretionwith H-burnlngdue to CNO reactionsin the

envelopeas the only energy source. Unfortunately,from the brevity of

the descriptiongiven by these authors,it is unclearwhether all of these

calculationsrefer to models undergoingstationaryaccretionor whether

that is only true of some of them. More seriously,it is not clear why

the conclusionsregardingthe lack of thermalinstabilitiesin these models

differ from the conclusionsfor similarmodels based on the calculations

of Sienkiewiczand Dziembowski,discussedbelow, and from the detailed,

tlme-dependentshell-flashcalculationscarriedout over the past several

years, especiallyby Gallagherand Starrfield(1978),Sparks,Starrfield,

and Truran (1977),and referencestherein. Until the differencesare

satisfactorilyexplained,these resultsmust be used with caution.

Another recent paper dealingwith nuclear-energlzedpulsationsin

white dwarfs is that of DeGregorla (1977), which followsup earlier,

similarwork by Cameron (1975). DeGregoriahas investigatedthe radial

and non-radialpulsationalinstabilityof staticwhite dwarf models with

masses between 0.6 and 1.4M and in which the sole energy source is®
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H-burnlng due to the CN reactions. His models have luminosities ranging •

from 1036 to 103Bergss-I, and he finds instabilitiesin both radial and

non-radlalmodes, the models with largermasses being consistentlythe

more unstable. In most of DeGregorla's models, the fundamental radial (F)

mode is unstable,with periods of a few secondsand growth times longer than

about 104years. In models with lower luminositiesand higher masses,

radial overtonesas high as H3 may be excited,and In.cases where the first

overtone (HI)mode is excited,it is!foundto be far more unstable than

the F-mode. In all cases, the £=2 gl-mode (the only g-mode considered),

with periods~ 5-40 secondswas excited,with very short growth timescales,

rangingfrom less than a week to some tens of years. The £=2 Kelvin- (f-)

mode and the p-modeswere found always•to be stable,however. The results

of these calculationswere discussedin the•contextof pulsatingX-ray

sources.

The final calculationsto be dlscussedhere are those of Sienkiewicz

(1975)and Sienkiewiczand Dziembowski(1978). In the first of these papers,

Sienkiewiczdiscussedthe constructionof white dwarf models of masses 1.0

and 1.39Me,which are undergoingsteady-stateaccretlonwith nuclear burning

of the material at the same rate as it is accreted. Accretionrates between

_I0-II Me yr-I and a few times 10-7 M yr-I were used, and the systematic

behaviorsof the H- and He- burningshellswith accretionrate and stellar

mass were studied. In the later paper, Sienklewiczand Dzlembowski(1978)

investigatedthe thermaland vibrationalstabilityof the 1 M models from@

Sienklewicz'saccretioncalculations. All of the models were found to be

thermallyunstable,in contrast to the conclusionsof Vila (1977),with in-

stabilityproduced by the H-burnlngshell for M _ 4 x 10-8M yr-I and by®

the He-burnlngshell for M £ 3 x 10-7M yr-I. Vibrationalinstabilitywas
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also found at all but the highest accretion rates, but the growth rate of

the oscillations was slower than the thermal instabilities, except in the

range 4 x 10-SMo yr-i <~_ <~3 x 10-7Meyr -I. (see Fig. 6). Both radial and

non-radial modes were found to be excited (similar multi-mode excitation

has also been found in non-accretlng nova and pre-nova models by Sastri and

Simon 1973 and by Vemury (1978), although the growth rate of the most

rapldly-exclted g-modes was more than three orders of magnitude faster than

that of the radial modes. The £=i g2-mode was found to be the most unstable,

with growth rates of a few months in the range of _ where pulsations develop

more rapidly than thermal instabilities. The periods of these models are

about 30 seconds, although a broad spectrum of g-modes corresponding to

£=1-5 and with periods ranging from i0 to 50 seconds is excited simultaneously.

Because of the high rates of accretion and nuclear burning in the pul-

satlonally unstable models, the luminosities of these cases are quite large

I03LQ, log Tef f _ 5), but because of the simultaneous excitation of(L

many different modes, the pulsations may not be easy to detect observatlonally

despite the high luminosities.

VI. ConclusionsAnd Some Problems That Merit FurtherWork

Despite the real progressin clarifyingthe theoreticalbases for

an understandingof the observedoscillationsof white dwarfs,some major

problemsremain to be resolvedbefore a satisfactorycomparisonof theory

and observationcan be achieved. In particular,no theoreticalcalcul_tlon

has yet succeededin demonstratingpulsationalinstabilityin the oscillation

modes which appear to be excitedin these stars. On the positiveside,
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Fig. 6 - Characteristic timescales for the growth of thermal

and vibrational instabilities, taken from Sienkiewicz and

Dziembowski (1978) for white dwarfs undergoing steady-state

accretion and nuclear burning. The curves labelled T-HBS and

T-HeBS give the growth timescales for thermal instabilities in

the H- and He- burning shells, respectively. The curve marked

V gives the excitation timescale for vibrational instability

in the most unstable mode; this is the fastest-growing insta-

bility for accretion rates in the range 4 x 10-8M yr -I

M _ 3 x 10-7M yr -I.
@
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theorists have begun to carry out considerably refined calculations for

increasingly realistic stellar models, and some have begun to attack the

extremely complex and important problems associated with the effects of

rotation on non-radlal stellar oscillations. Preliminary work has also

been done in a few cases involving accretion and nuclear burning.

Among the many problems that need attention before we can claim an

understanding of the oscillations of white dwarfs, the following appear

to this writer to be some of the more important ones:

i. How does the layered compositional structure of a white dwarf

affect the frequencies and excitation rates of non-radlal oscillations?

In particular, the location and extent of the He ionization zone is expected

to depend rather sensitively upon the thickness of the overlying hydrogen

layer; how does this affect the excitation rates? Does the depth of the

hydrogen layer determine whether or not a white dwarf lying in the

instability strip will be a variable? Also, do the H/He or He/C inter-

faces introduce additional g-modes ("surface waves") into the non-radlal

oscillation spectrum? If so, what are the periods of these modes; can they

explain the 800-1000 second period oscillations?

2. What effect does the coupling between convection and oscillations

have for the white dwarfs? For the purposes of a preliminary investigation

of this problem, the use of a very slmpleform of time-dependent mixing-

length theory may be sufficient; certainly this seems to be a logical and

necessary first step.

3. From the standpoint of observations, can refined versions of the

perlod-amplltude plot shown in Fig. 4 provide further clues to the nature

of the ZZ Cetl oscillations? In addition, is it possible to achieve suf-

ficient frequency resolution in the large-amplitude ZZ Ceti stars to determine
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whether the variability of the mode amplitudes observed here is due tp

beating between colsely-spaced high -k modes, as the period-amplitude

correlations tend to suggest?

4. Also in regard to observations, is Wolff's model of beating

between rotationally=split g-modes supported or rejected by observations

of the rotation-broadening of the Balmer lines in the ZZ Ceti stars? If

it is confirmed, the theoretical basis for the model reouires further

devleopment.

5. The toroidal r-modes introduced by Paploizu and Pringle need to

be investigated carefully in the context of improved stellar models. What

are the mode frequencies and excitation rates in such models? Do these

modes play a role in the long-period ZZ Ceti stars as well as in the cata-

clysmic variables? Is there direct observational evidence of the required

rotation in either type of system?

6. Can the interaction between the accretion disk and the white dwarf

in cataclysmic variables drive oscillations of the star? How can this be

calculated, and under what conditions (if any) can such excitation occur?

7. Finally, is there observational evidence for the existence of

high-lumlnosity degenerate variables?

With the interest and activity on problems of white dwarf oscillations

that has now been generated, perhaps it is not too much to hope that significant

progress is answering these and related questionsmay be achieved before the

next pulsation conference.
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Discussion

Sobouti: I would have to dispute your formula for the expansion of the

g-mode. There are certain criteria for any perturbation expansion, which in

the case of g-modes are not met. In perturbation expansions, you always

have an energy denominator which is the difference of two energies. If you

look at the spectra of g-modes, you can find an infinite number of pairs of

energy levels which are infinitely small and infinitely close to each other,

and if you insert these into the denominator the series won't converge. So

the g-modes cannot accept the perturbation expansion.

Van Horn: Thank you, I hope you will say more about this in your paper later

on. All I can say is, this is the classical expression that has been quoted

since Ledoux.

Sobouti: That formula is fine for p-modes, but not for g-modes, I am afraid.

Van Horn: Will you say something about this in your talk?

Sobouti: I don't know. I am only allowed twelve minutes. [Laughter]

Cahn: Would you like to continue the discussion into the planetary aspects?

Van Horn: I can tell you in one word what I was going to say, and that is

that Stothers has looked at some models for planetaries recently using the

new Carson opacities, and he finds that a mysterious bump which occurs in

those opacities drives instability at high luminosity for'an effective
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temperature range from i00,000 K down. He doesn't know where it terminates.

It is apparently a difference in the Los Alamos opacities and the Carson

opacities.

Wolff: I would like to make two further suggestions to the observers about

testing this model of mine, which Van Horn summarized so nicely. There may

be a tendency for the light curve to repeat itself after an interval of one

or two weeks. The precise interval is proportional to the rotation period,

and the theory says what this interval is for each star. So, do an auto-

correlation of the light curve, displaced by a certain amount, and measure

the tendency for repetition. The other suggestion that I would make is that

if you observe a few stars intensively, that would be a great deal of help

in testing these models.

Nather: I will exercise the Chairman's prerogative and make one comment

while the next speaker is coming up here. The one star that has been

observed most intensively is R548, and there we do find splitting which is

inconsistent with rapid rotation. Ithas to be slow.
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