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Abstract

The current status of theoretical understanding of the oséillations
observed in the ZZ Ceti stars and cataclysmic variables is briefly reviewed.
Non-radial g-mode oscillations appear to provide & satisfactory explanation
for the low-amplitude variables such as R548, with periods in the range
~ 200-300 seconds, but for the longer-periods (800-1000 second) oscillators,
the situation is still unclear.. Rotation may play an important role in
this problem, and the effects of both slow and fast rotation upon the mode
structure are discussed. In the cataclysmic variables, both accretion and
thermonuclear burning may act to excite oscillations of the white dwarf,

and recent work on this problem is summarized also.
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I. Introduction

The purpose of this review is to provide a summary of some of the
recent developments in the theory of white dwarf oscillations. It is
beyond the scope of this paper to provide a comprehensive review of all
of the work in this area since the last LASL/GSFC pulsation confereﬁce.
Instead I shall restrict myself to those subjects on which there has been
recent activity or which appear to me to be particularly important, and I
shall concentrate almost exclusively on theoretical research carried out
within the past two or three years. Earlier work on white dwarf oscillations
has already been summarized in a number of review papers to which reference
is made below.

The general theory of non-radial oscillations of stars has recently
Been reviewed by Ledoux (1974) and by Cox (1976), both of whom include
brief summaries of the work on white dwarf oscillations. A review devoted
exclusively to white dwarfs has been presented by Van Horn (1976). The
observational basis for the theoretical investigations are provided by the
periodicities that have been detected in the ZZ Ceti stars (single,
variable white dwarfs) and in the cataclysmic variables. The observed
data on the ZZ Ceti stars were reviewed by Robinson and McGraw (1976) at
the last LASL/GSFC pulsation conference, and an excellent, comprehensive
discussion of the observed pulsational properties of these stars has recently
been provided by McGraw (1977).. The properties of the cataclysmic variable
oscillators have been reviewed by Warner (1976a) and by Robinson (1976),
and a comprehensive and detailed discussion of these systems has been given
by Warner (1976b). The.most recent survey of the observations of white

dwarf oscillations has been provided by Robinson (1978) at this conference.
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The plan of this paper is as follows. In § II some of the general
problems associated with non-radial oscillations, but which have a special
significance for white dwarfs, are reviewed; In § III research éoncerned
primarily with oscillations of single white dwarfs is discussed, except
for effects of rotation. Rotational modifications of the spectra of non-
radial oscillations are considered separately in § IV, and this is followed
in § V by a discussion of recent work on pulsational instabilities of high~
luminosity degenerate stars, including those produced by thermonuclear
burning. In § VI we conclude with recommendations concerning some problems

for future study.

II. General Problems of Non-Radial Oscillations

a. 2=1 Modes

In ﬁhe study of non-radial stellar oscillations, modes correspondiné
to spherical harmonics of degree £=1 have generally been ignored. This is
a result of the mistaken impression that such modes correspond to displace-
ments of the center of mass, which of course cannot océur in isoléted stars.
For "stars" composed of homogeneous, incompressible fluids, this claim is
true; however, real stars are neither homogeneous nor incompressible, and
in such cases non-zero displacements at the center of the star need not
correspond to a displacement of the center of mass. This was explicitly
shown by Smeyers (1966) for adiabatic oscillations, and a more general proof

has recently been given by Christensen-Dalsgaard (1975). Thus modes
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corresponding to spherical harmonics of degree =1 are physically realizable
in stars. This is particularly important for‘the white dwarfs, because the
2=1 modes have the longest periods of any of the g-modes, and because one

of the most vexing problems connected with white dwarf oscillations has

been the persistent inability of theory to identify low-order modes that
have periods as long as those observed.

b. Connection between theory and observation

In contrast to radial oscillations, in which the relations between
displacement, radial velocity, and luminosity variation are relatively
straightforward, the connections of the radial and transverse displacements
with the observed quantities are not simple in the case of non-radial
oscillations. A pure eigenmode corresponding to the spherical harmonic
Ylm(e’¢)’ for example, has % nodes in the colatitude interval O <6<T,
and the real part of the eigenfunction has m nodes equally spaced in
azimuth between 0 < ¢ < 7 (see Fig. 1). The observed light from a non-
radially oscillating star will thus be a weighted integral over these
angular functicns. It is evident that the observed amplitude of a mode
with £ or m even moderately large will be considerably reduced by cancel-
lation. In addition, there will in general be mode-dependent phase shifts
between the times of maximum radial velocity and maximum light. Dziembowski
(1977a) has presented the general theory of the radial velocity and lum-
inosity variations of non-radially oscillating stars. He has also evaluated
the various integrals relating these quantities to the theoreticél parameters
for the case of an Eddington limb-darkening law, and he finds that the
observed radial velocity amplitude is reduced to less than one-tenth of
the maximum for 2 > 4. 1In a separate publication (Dziembowski 1977b) he

has applied the theory specifically'to evaluate the observed parameters
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Fig. la - A pictorial representation of the luminosity variation
corresponding to the spherical harmonic Y1,0(6’¢)' The upper
figure gives a perspective view of the luminosity distribution
projected onto a spherical surface. The figure at the lower left
is a polar projection of the luminosity amplitude in the x,z)-
plane (¢=0) at the time of peak luminosity at 6=0. The distri-
bution of luminosity amplitude .in 6 is given by the difference
between the solid outline and the dashed curve representing the
reference sphere. The figure at the lower left represents the
luminosity distribution half a period later, when peak luminosity
has shifted to 6=180°. This mode of oscillation corresponds to
the alternate brightening and darkening of the upper (8<90°) and

lower (8>90°) hemispheres of the star.
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Fig. 1b - Similar to Fig. la, except for a different =1 mode.

The actual mode shown is the standing wave corresponding to the
combination YJ,f6’¢) + Yl’_1(6,¢). This mode represents the
alternate brightening and darkening of the forward (|¢]<90°)
and backward (|¢|>90°) hemispheres. The individual m=+l modes
correspond to travelling waves in which the bright spot rotates
in the direction of +¢, making one revolution in

the period of the oscillation. The figures at the lower left
and right are polar projections of the luminosity variation at
$=0° and ¢=180° (corresponding to the positions of maximum and
minimum luminosity at 6=90°). The central figure gives the
luminosity distribution as a function of.¢ in the equatorial

plane (6=90°). 458
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except for the mode Y2,0(6,¢).

Fig. le - Similar to Fig. la,

In this mode both caps brighten and darken together, in anti-

The maximum

/3)

luminosity amplitude at the equator is half that at the poles,

phase with the equatorial belt (|cos6|<1/

as shown in the lower figure.
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Fig. 1d - similar to Fig. 1b, except for the standing wave

Yz 2(9,¢) + Y2 _2(6,¢). - The individual n = +2 modes correspond
b} ?

to traveling waves rotating in the + ¢ directions with the

period of the oscillation.
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corresponding to a variety of g-mode oscillations of 0.6M® white dwarf

models with T e ° 11,000°K and 12,000°K. As expected, the observed

f

luminosity amplitude decreases rapidly with 2; for the fundamental g-modes,
= 3 = ° °

he finds AMbol(l 2)/AMbol(£ 1) 0.186 at %1,000 K and 0.205 at 12,QOO K.

Somewhat surprisingly, however, Dziembowski also finds that the observed

luminosity amplitude increases with the radial wavenumber k (k is the

number of radial nodes in the eigenfunction); for modes with %=1 or 2,

AMbol(k=10)/AMbol(k=l) ~ 20-30. Thus if high radial overtones can be

excited with amplitude 8r/r at the surface comparable to that of the

lower k-modes, the high overtones will dominate the observed light variation.

For the same reason, the observed oscillations must correspond to modes of

moderately low values of % and m.

¢. Thermal imbalance

The problem of determining the pulsational stability of stars in
thermal imbalance (i.e., evolving stars, in which T3s/dt # 0) has by now
been studied quite extensively. It has been a subject of some controversy,
and although some of the questions raised have now been resolved, it is
not yet entirely clear (at least to this writer) that a complete under-
standing has been achieved. For the white dwarf stars this problem is of
some importance, because, except perhaps in the cataclysmic variables, they
have no thermonuclear energy sources; instead the luminosities of these
stars are supplied by the cooling of the hot interiors, thus necessitating
T3s/9t # O.

A brief summary of recent work on this problem has been given by Cox

(1976). In particular, Aizenman and Cox (1975), Demaret (1975), Simon (1977),
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and Buchler (1978) have shown that the imaginary part of the complex
pulsation eigenfrequency ¢ which gives exponential growth or decay of
small-amplitude oscillations is necessarily different for the oscillation
energy and the oscillation amplitude. In the linear, quasi-adiabatic
case, they find

(ImG)E = (Imc;)a - R 1)

gle.

where o is the time rate of change of the oscillation frequency w = Reo.

This raises the interesting possibility Fhat amplitude growth [(Imc)a > 0]

may in some cases be associated with energy decay [(Imo)E < 0] and vice versa,
and leads directly to the question of which complex eigenfrequency (if
either!) is the more fundamental. This has been further discussed by

Simon (1977), Buchler (1978), ;nd Demaret and Predang (1978). An interesting
example of ‘amplitude growth coupled with energy decay has recently been

found in a hydrogen shell-burning pre-nova model by Vemury (1978).

For our present purposes, it is sufficient to note that the ;hermal
imbalance effects are appreciable only when the pulsation damping time
(_Imc)—l is comparable to or'greater than the timescale of evolution of the
unperturbed star, w/é. For a cooling white dwarf, the latter is in the
range 107 to 1010 years (cf. Lamb and Van Horn 1975; Sweeney 1976;4Shaviv
and Kovetz 1976). 1In the absence of gravitational radiation damping
(Osaki and Hansen 1973), the damping times for the f- and p-modes are
generally of this same order, indicating that thermal imbalance effects
may be appreciable. However, for all of the g-modes, and —with gravitational
radiation damping included— for the f- and p-modes as well, the damping

times are sufficiently short that thermal imbalance is not significant.
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IIT. Non-radial Oscillations of Single White Dwarfs

a. What are the modes of oscillation?

It has been pointed out ;epeatedly that the observed oscillation
periods of the single white dwérfs (zZ Ceti stars) are much too long to
correspond to p- or f-modes, and must perforce belong to the class of
g-mode oscillations. However, there still remainé a multiple infinity
of g-modes. The system of differential equations governing the non-radial
oscillations of a spherical star contain the spherical harmonic order
2 explicitly (cf. Ledoux and Walraven 1958, Cox 1974, Ledoux 1974, Van Horn
1976), so that the oscillation periods must depend on 2. For each %-value,
there are 28+1 independent angular modes of oscillation, corresponding to
the different spherical harmonics Yzm(6,¢), withm= -2, -2+1, ..., O,
vees %=1, &, In the absence of rotation or magnetic fields, the oscillation
periods corresponding to different m-values are all degenerate. (We shall
defer discussion of the consequences of rotation to the following section).
In addition, for given %, it is possible to find eigensolutions of the set
of différeﬁtial equations plus boundary conditions which have k > 1 nodes
in the radial eiéenfunction. It is well-known that the periods of the high
overtones increase without limit as k + « (Ledoux and Walraven 1958, Cox 1974,
Ledoux 1974). These oscillatory modes are denoted as gk+ modes.. If the
star contains a conﬁection zone (as is the case for all white dwarfs except
DA stars with Toes i 14,000°K) an ‘additional set of modes, which have a ;ggl
exponential time dependence, becomes possible. These are téfmed gk- modes.
We shall be mainly concerned with the oscillaﬁory modes, however, and we

shall therefore take "g-modes' to mean "g+—modes" unless otherwise specified.
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To investigate the nature of the oscillation modes observed in the
ZZ Cetl stars, one may compare the observed periods with those computed
for various theoretical models. This is shown in Fig. 2. The effective
temperatures and the periods of the principal modes of the ZZ Ceti stars
are taken from McGraw (1977), and theoretical values are taken from
computations by Brickhill (1975) and Dziembowski (1977b), with the mode of
oscillation identified. Several conclusions can be drawn from this immediately;
most of them have been pointed out previously, especially by McGraw (1977)
and references therein.

1. The observed region of instabili;y for the white dwarfs lies in
the range of effective temperatures 10,000°K < Teff < 14,000°K. Interestingly,
this lies in precisely the region where the extrapolation of the Cepheid
instability strip meets the white dwarfs (Fig. 3). This has prompted the
suggestion'by McGraw and Robinson (1976) that the same K- and ‘y-mechanisms
that operate in the hydrogen and helium ionization zones of the Cepheids are
also responsible for exciting the oscillations in the ZZ Ceti stars. We
shall return to this point again below.

2. The oscillations of the shortest period ZZ Ceti stars can be
understood in terms of low overtones of %=1 or 2 g-modes. This point has
been made previously by Brickhill (1975), by Robinson and McGraw (1976),
and by Robinson, Nather and McGraw (1976), for the special case of R548.

3. The shortest period of oscillation changes abruptly from
I © 200 sec for stars with log Teff 2 4.1 to I ~ 800-900 sec for those with

log T 4.1. The reason for this (if it is a real effect) is at present

eff S

unknown.
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Figure 2. Observed periods of thé 2Z Ceti stars from McGraw (1977) compared
with theoretical g-mode periods calculated for different white dwarf models.
For each star the various principal periods detected are plotted as large
dots connected together and labelled with the star name. The effective
temperatures are those tabulated by McGraw. The calculated periods for the
0.388M@ and 0.758M® models are by Brickhill (1975); those for the 0.6M0
models are by Dziembowski (1977). The lowest few obertones of the 2=1 and
2=2 modes are shown (labelled by the values of k and %) for the theoretical
calculations. The shortest observed periods of the hotter ZZ.Ceti stars
(log Tgeg 2 4.1) are in the range of the low-order g-mode periods. The
periods of the cooler ZZ Ceti stars (log Tgeg 4.1) require rather high
radial overtones (k 2> 15-25) if these oscillations correspond to conventional

g-modes.
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Figure 3. The instability strip in the H-R diagram. The upper portion of
the figure showing the theoretical evolutionary tracks and the location of
the Cepeheids is adapted from Figure 1 of Henden and Cox (1976). The in-
stability strip has been extrapolated linearly along the dashed lines into
the region occupied by the white dwarfs. The locations of the variable

white dwarfs are shown by the large open circles.
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4, 1In order to interpret the oscillations of the long-ﬁeriod ZZ Ceti
stars in terms of modes which are presently understood, it is necessary to
identify the observed oscillations as rather high overtones (k > 15 for
2 =1; k 2 25 for & = 2). Note that the high-order spectra belonging to
various #-values overlap, so that periods alone are insufficient to provide
unique mode identifications in this range.

There are a few additional indications from the data which reinforce
the interpretation of the long-period modes as high radial overtones. As
pointed out by Robinson and McGraw (1976), there is a rough correlation of
oscillation period with observed oscillation amplitude. This is shown in
Fig. 4, where McGraw's (1977) periods and amplitudes are plotted. Note that
the practice of assigning a single amplitude to the star is not really
adequate for this purpose, as McGraw points out; a more detailed comparison
with the theory can be made by using the observed amplitudes of the
individual oscillation modes. Also shown in this figure are McGraw's
estimates of the stability of the oscillationms.

For a comparison we have also plotted in Fig. 4 Dziembowski's (1977b)
bolometric magnitude variations, reduced by a factor of 10_3, for the various
radial overtones of the 2=1 and 2 g-modes computed for his 0'6Mo’ Teff x
11,000°K model; almost identical results are obtained for the Teff ~ 12,000°K
model. This suggests the following conclusions:

1. The general trends of the observational data are broadly consistent
with the theoretical curves. This is at least not in disagreement with the

hypothesis that the long-period modes are high radial overtones.
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Figure 4. The correlation between period and amplitude of the oscillation
for the ZZ Ceti stars. The observational data are taken from McGraw (1977),
and his estimates of the stability of the oscillation modes are indicated in
parentheses after the star name. Note that the "amplitude" plotted here is
a "typical value" for each star; a more informative comparison is possible
by making use of the amplitudes of the individual oscillation modes as
determined from the power spectra. Also shown for comparison are the
predicted bolometric magnitude variations for the various radial overtones
for the £=1 and 2 g-modes as calculated by Dziembowski (1977). The plotted
points are labelled by the k and % values of the modes. Dziembowsli's
tabulated values of AMbolhave been reduced by a factor of 10 for this
graph, suggesting that the amplitudes of the radial oscillations are

-3
Sr/r <16 ~ for these stars.
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2. The stability of the oscillations displays an interesting
correlation with the periods. The shortest period oscillators display
a very stable mode structure, while the longest period oscillators tend
to be the least stable. This is also consistent with the suggested
identification of the short periods with low-k modes and the long periods
with high-k modes. Because the density of modes increases very rapidly
with k in frequency space, the possibility of mode-coupling is enormously
greater for the high-k modes than at low k. This may lead to beating
or mode~switching that may be observed as apparent lack of stability of
the oscillation. Precisely this type of interaction has been shown by
Robinsoh, Nather, ,and McGraw (1976) to occur even in the most stable
ZZ Ceti star, R548; when this is taken into account, the underlying mode
structure of the star is found to have Iﬁl < 10_11.

3. The oscillation amplitudes as determined from the ratio of
Dziembowski's calculations 6f AMbol with the observed amplitude of

3 at the stellar surface.

variation A are quite small; 8r/r < 10
As the previous discussion has been intended to show, great progress
has been made in the past several years in understanding the nature of the
oscillations in the ZZ Ceti stars. Despite this, the.mode identifications,
except perhaps in R548, are still-unsettled. One reason for this is that
fheoretical models have yet to demonstrate pulsational instability in the
modes suggested by the observations. A second reason is that additional
oscillation modes may. exist in white dwarfs which have not yet been studied

adequately or that rotational modifications of. existing g-modes may be

important. We therefore turn next to considerations of these questions.
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b. Excitation and non-linear mode-coupling

Only a few of the recent non-radial oscillation calculations have
investigated the problem of excitation of the modes, and this has
usually been restricted to the linear, quasi-adiabatic approximation. 1In
their classic paper, Osaki and Hansen (1973) studied radiative, neutrino,
and gravitational-radiation damping of non-radial oscillations. However,
the pure 56Fe white dwarf models they employed did not include a treatment
of the ionization zones, and thus no pulsational instability was found.
More recently, Hansen, Cox, and Van Horn (1977; see also Van Horn 1976)
have studied the low-k, 2=1 and 2 non-radial oscillation modes of detailed
models of pure 12C white dwarfs. These models did include a careful
treatment of the ionization/convection zone, and a hint of instability in
the 2=2 g1+ and g2+ modes was found for a model with Teff ~ 58,000°K. It
is not clear that this is a real instability, however, because the result
depénds upon the assumed location of the "transition zone" (cf. Cox and
Giuli 1967, ch. 27) where the quasi-adiabatic appro#imation breaks down.
In any case, this "instability" is clearly irrelevant to the ZZ Ceti stars.

The onl& other theoretical study of the excitation mechanism in
models for the ZZ Ceti stars of which this writer is aware is that by
Dziembowski (1977b). In this important work, Dziembowski investigated the
oscillations and stability of two 0'6Mo white dwérf models with Teff X
11,000°K and 12,000°K. These models, with element abundance distributions
taken from the last model of Paczynski's (1971) planetary nebula sequence,
did include hydrogen/helium envelopes with ionization zones. The results
of Dziembowski's fully nén—adiabatic calculations were: i) g-modes with
kvf 15-25 were found not to be self-excited, and ii) modes corresponding to
very high orders (& ~ 100-400, k ~ 15-20) were driven violently unstable,
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primarily by the HeIl ionization zone, witﬁ growth timescales of days.
However, the periods of these modes are much tob short (I ~ 5-20 sec),
and‘the l-value'much too large for these modes to correspond to the
observations. (For example, Dziembowski finds AMbol ~ 10-2 - 10"'5 for
these high-2 modes as opposed to AMbol ~ 200 for the 2=2 modes of

comparable k-order).

Thus none of the theoretical calculations has yet succeeded in

discovering pulsational instabilities in those modes which the observations

indicate to be excited in the ZZ Ceti stars.

One possibility for resolving this problem was suggested by
Dziembowski (1977b). He pointed out that non-linear interactions among
the very high-£ modes which he finds to be excited may provide resonant
excitation of the lower-order modes in the observed range of frequenciles.
(Vandakurov (1977) has subsequently considered non-linear driving of
radial pulsations by these same unstable non-radial modes).
This would.be expected to lead to variability of the observed mode ampli-
tudes, as is found in the long-period (800-1000 second) oscillators. It
is difficult to accept this explanation fof the short-period (~200-second)
oscillators, however. In particular, the great stability of the oscillations
in R458 strongly suggests that these modes are indeed correctly identified
as low-%, low-k oscillations that are self-excited. If this is correct,
then there is an essential aspect of the non-radial excitation mechanism
that we have yet understood. »

Another, related, problem that may be important in the white dwarfs
is the interaction between oscillations and convection. There are two
‘asﬁects of this: the effect of convective flux variations upon the
pulsational stability and the direct non-linear coupling between pulsatiqnél
and convective motions. Work on the general problem of convection in

pulsation theory has been briefly reviewed by Cox (1976). In the context
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of white dwarfs, there has been no work on this problem, and time-
variations in the convective flux have been entirely ignored in the
pulsational stability analysis. From research on the effects of con-
vection on other types of stars, however, it appears likely that this
is inadequate. For example, in a series of papers concerned with the
full hydrodynamic treatment of convection in Cepheids and RR Lyrae stars,
Deupree (1976, pp. 222, 229, and references therein) has shown that
convection becomes important at the red edge of the instability strip,
where it dominates the damping of the oscillations. 1Is it too great an
extrapolation to suppose that convection may play a similar role in the
ZZ Ceti stars, perhaps even in determining the transition from stable 200-
second oscillations to fluctuating 800-1000 second oscillations?
Unfortunately, Deupree's detailed numerical approach is ill-adapted
for use in a survey of stability among non-radial modes, especially those
of moderately high order. For this purpose one would prefer a simpler
approximation that could be employed with linear theory. Two recent
groups of papers are of interest in this regard. First, Gough (1977) has
recently reviewed the time-dependent generalizations of mixing-length
theory and has presented them in a form suitable for use in studies of
radial pulsation. Second, Goldreich and Keeley (1977a,b) have presented
a careful analysis of the interaction between con§ection and pulsation in.
connection with low-amplitude oscillations of the sun. They find (1977a)
that turbulent dissipation renders unstable radial modes marginally stable.
In their second paper (1977b) the treatment of convection/pulsation inter-
actions is generalized to the case of non-radial oscillations, and they

find that non-linear interactions lead to a tendency for equipartition of
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pulsation modes which are close to resonance with convective eddies.
In the white dwarfs, it has been pointed out before (Van Horn 1976)
that convective timescales become comparable with g-mpde periods for
the cooler He-envelope white dwarfs with M ~ 0.4—0.6M0. Clearly this
problem needs further attention from the theorists.

c. New modes?

The difficulty of identifying the long-period oscillations of the
ZZ Ceti stars with modes of low order has suggested to some the possibility
of finding additional oscillation modes of the white dwarfs beyond the
conventional p-,f-, and g-modes. Motivated in part by this, Van Horn and
Savedoff (1976; see also Denis 1975) undertook a preliminary investigation
of the effects of a solid core upon the oscillation spectrum of a white
dwarf. Although their analysis has not yet been carried through for a
complete stellar model, they were able to show that the ability of the
solid core to suStain‘shearing motions permitted torsional oscillations ofv
the core, just as in the case of the solid Earth. In addition, they found
that the non-vanishing shear modulus produced modifications in the p- and
g-mode oscillation periods; for the p-modes the change was only a few
percent, while for the g-modes, the period ranged from the normal value
in the case of small shear moduli, to that appropriate to the torsional
oscillations. Since the torsional oscillation periods Ht were estimated
to be no more than 3 to 10 timeé longer than the p-mode periods, or H‘t ~
30-100 seconds, the effect of the solid core does not appear to be relevant
to the problem of the long-period oscillations. In addition, while core
crystallization begins near Teff ~ 13,000°K in a lM@, 120 white, it will

not occur until considerably lower temperatures in stars of lower masses.
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From McGraw's (1977) values of log g for the ZZ Ceti stars, the masses are
expected to lie in the range of 0.5—0.7Me; the values of Teff at crystal-
lization for these masses are so low that core crystallization will not
begin until thesevstars have éooled well below the observed instébility
strip.

Another, as yet unexplored, possibility exists for introducing new
modes into the white dwarfs, however. This has to do with the effect of
composition discontinuities upon the mode structure of thé starl. It is
well-known that white dwarfs have undergone thermonuclear processing. They
must initially havg been more massive in order to have evolved off the main
sequence and to have become white dwarfs; thus some of the hydrogen has
been burnt into helium. In addition, the masses are larger than the minimum
for helium burning; thus some of the helium has also been processed into
carbon and oxygen. It is unlikely that the white dwarfs ha;e undergone
further nuclear processing, although this cannot yet be rigorously established.
It is also well-known that the gravitational fields in white dwarfs are
sufficiently high so that gravitational settling of the elements will have
proceeded to its 1limit (cf. Schatzman 1958). Thus the compositional structure
of a white dwarf is expected to consist of layers of virtually pure elements;
hydrogen overlying helium overlying carbon and oxygen. Vauclair and
Reisse (1977) and Koester (1976) describe the structure of the outer layers
of such a star,

In cases with such layered structures, it is anticipated that additional
modes of oscillation associated with'the_density discontinuities will appear.

For the case of the heterogeneous incompressible sphere this has been

l'I am indebted to M.P. Savedoff for drawing my attention to this point.
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 confirmed within the past five years (cf. Ledoux 1974). The eigenfunctions
associated with the additional modes peak near the density discontinuities;
thus these modes can be regarded as "surface waves'" associated with the
discontinuities. The effect of the thickness of the various composition
layers upon the oscillation spectrum of a white dwarf, however, has nét
yet been investigated. It is tempting to speculate that the location of
the H/He composition boundary relative to the location of the Hell ion-
ization zone may even be responsible for the existence of non-variables
within the instability strip, just as Baglin (1976) has suggested in the

region of the main sequence A stars.

IV. Effects of Rotafion on Non-Radial Oscillations

a. Slow rotation

Up to this point we have ignored the effects of rotation upon the
mode structure of a non-radially oscillating star. However, as we shall
discuss in this section, rotation exerts a profound influence upon the
periods of such oscillations. It is convenient to begin this discussion
with the case of very slow rotation (rotation frequency ! << w = 2w/,
both because it can be treated as a perturbation on the non-rotation case,
and because it may be especially relevant to the ZZ Ceti stars we have been
considering.

The theory of the leading (i.e., linear) corrections to the frequencies
of non-radial oscillations due to uniform rotation has been well-established
for some time now (cf. Ledoux 1951, Ledoux and Walraven 1958) and yields,

in the inertial observer's frame,
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=0 , -m2(l - C (2)

m =~ %k k)

Here O om is the (complex) eigenfrequency, Oy is the value of Ok om in
the absence of rotation, m is the azimuthal spherical harmonic index

(m=-2, -2441, ..., ), and C, , is defined by

k%

_ Jor’dr 2ab+b?) | 3)
k& Sprédr[aZ+2(8+1)bZ] .

In (3), the quantities a and b are, respectively, the amplitudes of the

radial and tangential displacement eigenfunction, defined by

= - _ Y b(r) 3Y
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For moderately large k-values, ]al is generally much smaller than [bl s

and (4) reduces to

~ 1

Cr T TOAD) -

(4a)
Brickhill (1975) comments that (4a) is a good approximation for k > 4, but
he gives no quantitiative details beyond this.

Recently, Wolff (1977) has applied this formalism to interpret the
multiperiodicities observed in the 2Z Ceti stars as beats produced by non-
linear mode-coupling of rotationally-split g-mode oscillations. He argues
(see Wolff 1974 for details) that g-modes with spherical harmonic index
m and -m should be excited to comparable levels, and hence that the corresponding
retrograde (m > 0) and prograde (m < 0) modes will combine to yield a not-
quite-standing mode with azimuth and time dependence of the form (in the
non-rotating inertial frame):
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cos{|m|[¢ + Q(l—Ckz)t]}eickzt. (5)
The rate of azimuthal drift of this wave pattern is thus given by
- = Q(l—Ckz) = 92 . (6).

In the case of uniform rotation and sufficiently large k, Ckl assumes the
simple form given by (4a), and the drift rate of the wave pattern then

depends only upon £ and , but not upon k or m.

Wolff then argues that it is the '"slow" relative drift of groups
of modes with comparable 2-values that dominates the observed variatioms.
This leads him to consider the pattern frequencies given by (6) and (4a)
together with simple differences of these frequencies as defining an
oscillation spectrum depending only upon the stellar rotation rate Q.
A schematic illustration of this concept and its application to four of
the ZZ Ceti variables ére shown in Fig. 5, adapted from Wolff's paper.
Thé coincidence of the theoretical spectrum with the observed power spectra
is rather striking, despite some obvious differences. This, together with
the fact that it yields potentially testable predictions of the rotation
rates of the oscillating white dwarfs, makes Wolff's model of interest for
further study.

In particular, the rotation rates Wolff predicts are in the range
21/ = 200 to 500 seconds. This would be consistent with the contraction of

a star having approximately solar angular momentum from the main sequence
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Fig. 5 - Wolff's theory for the oscillations of the 2Z Ceti stars. This
figure is adapted from Wolff (1977). The right half of Ehe upper panel
shows schematically the azimuthal drift rates Qz given by (6) for modes with
% =1,2,3,4... in units of the stellar rotation frequency Q. The left half

f Q

27 M=l cttr ey T =2

etc., also in units of Q. The lower panel shows one example of a comparison

of the same panel shows the beat frequencies Q£= Q
of this theoretical spectrum with the observed oscillation spectrum of the
ZZ Cetl star G29-38. The assumed stellar rotation period 2m/Q = 306 seconds
has been chosen to provide the best match with this data. The frequencies
labelled P, P-H, and P-2H have no theoretical foundation, but are introduced
to corregpond to other large peaks in the power spectrum. The frequency P
is supposedly analogous to the so-called 'prograde mode" identified in the
sun while H'is "the frequency of the highest maximum in the observed

"sgec;rum" (Molff 1977). 478



to white dwarf dimensions without loss of angular momentum, but it is much
faster than the rotation rates found so far in any other single white dwarf
(?103—104 seconds in 14 DA white dwarfs: Greenstein and Peterson 1973,
Gfeenstein et al., 1977; ~ 2.2 hours in Feige 7: Leibert et al. 1977; and
1,3 days in G195-19: Angel et al. 1972). A rétation period of ~ 200 seconds .
corresponds to an equatorial velocity of ~ 300 km s—l and to a rotational
Doppler broadening of ~ 4.53 at HY. This is amply large enough to be
measured, even in the presence of the very large pressure broadening in
white dwarfs, and the results of such measurements are of very considerable
interest. If such large rotation broadening is found, it wiil favor Wolff's
theory and provide a new puzzle: why do the variable white dwarfs rotate
so much faster than non-variables? If rapid rotation is not observed,
the measurement will at least place useful limits on the rotation periods
of the ZZ Ceti stars and reaffirm an existing puzzle: why and how are
high-order g-modes excited?

Apart from its virtue of potential for observational test, there are
a number of shortcomings of Wolff's model from the pdint of view of theory.
Instead of developing his model from first principles, Wolff has intro-
duced a number of ad hoc assumpéions that should be checked. For example,

he adopts the large-k limit for C , for all of his modes; is this adequate?

k2
In part to address this question Hansen, Cox, .and Van Horn (1977) have
computed the rotational splitting of =2 g—modes in 56Fe and 120 white
dwarf models in or near the observed white dwarf instability strip. For
uniform rotation they find values of Ck2 ranging from -0.020 to 0.165,

depending upon the stellar mass, Teff’ and the k-value of the mode; the

result given by (4a) is 1/&(&+1) = 1/6 = 0.166.
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Hansen, Cox, and Van Horn have also carried out preliminary

calculations of the effects of differential rotation in white dwarfs,

assuming a 'rotation law" of the form adopted by Ostriker and Boden-
heimer (1968) in their study of massive differentially-rotating white
dwarfs. For lM@, 120 white dwarf models, the calculations indicate

a considerably different (and Teff—sensitive) splitting of the 2=2

81~ and gz—modes, although this result is rather model-dependent. (There
is almost no difference in the 81~ and gz—mode splittihgs for the much
cruder 56Fe white dwarf models in the Teff-range of interest). This
result is of interest in connection with the extremely careful and
detailed analysis of the oscillations of R548 by Robinson, Nather, and
McGraw (1976). They found that the power spectrum of this star consisted
of two-main peaks at periods of about 213s and 274s, and that these are

ll). The

each split into close pairs with very stable periods (|ﬁ| <10
two close pairs, presumably split by rotation, each beat together to

yield difference frequencies corresponding to periods of ~ 1?44 (for the

213s oscillations) and ~ 1?66 (for the 274s oscillations). From (2),

these differences correspond to the quantity 2]m]Q(1—Ck2), and the different
splitting frequencies for the two modes thus require different values of

Cpo+ As the calculations of Hansen et al. show, this is not at all sur-
prising for the low-order g-modes thought to be present in R548. Although

it is premature to identify the precise mode and rotation period of R548
(other than that it appears to be of the order of a day or two) — much less

to associate the observed splitting with differential rotation — the prospects

for the future seem promising.

b. Rapid rotation and disk accretion

In contrast to the single white dwarfs, the white dwarfs in cata-

clysmic variables may exhibit rapid rotation as a byproduct of accretion.
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In these systems, accretion onto the white dwarf must ultimately take
place from the inner edge of the accretion disk, which rotates with the

Keplerian circular velocity vy ~ (GM/R*)llz. For a white dwarf with

mass M = 1Me and radius R, ~ 109cm, this velocity is Ve ~ 3000 km S_l

which corresponds to an orbital period ~ 20 seconds. If such rapid rotation
can be transferred efficiently to the white dwarf, the assumption of

"slow" rotation, upon which the mode;splitting calculations are based,

will be violated. For this reason, a number of recent papers have begun
investigations of the éffécts of rapid rotation upon the oscillation

spectra of stars.

A general formulation of the theory of non-radial oscillations of

differentially rotating stars has been presented by Aizenman and Cox (1975;

hereinafter denoted by AC). - This approach was subsequently applied by
Hansen, Aizenman, and Ross (1976) to a study of the non-radial oscillations
of uniformly rotating isothermal cylinders. They fouﬁd very peculiar
behaviors of certaih g-modes under rapid rotation and showed that some

of the modes correspond to dynamically unstable spiral waves. This
intriguing result stimulated Hansen and his collaborators to undertake
further investigations of the effects of rotation upon the non-radial
oscillation modes of stars. Hansen, Cox, and Carroll (1978) have accordingly
adapted the theoretical formulation &eveloped by AC to study this problem.
In the limit of slow rotation (only correction terms to the eigenfunctions
and eigenvalues that are linear in { are considered), they showed that

the AC formalism recovers the conventional frequency - splitting constant

C given by (3). However, Hansen et al. also extended their calculation to

the quasi-adiabatic analysis of modal stability; they found the interesting
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result that retrograde (m>0) modes are slightly more stable than prograde

ones. Further, in a noteﬁorthy appendix, Hansen, Cox, and Carroll studied
the non-radial oscillations of rotating, cylindrical "white dwarfs" (the
analogs of the rotating isotherm;l cylinders of Hansen, Aizenman, and Ross).
In this work, which was not restricted to slow rotation, they found large
effects on the g-mode periods even at rather moderate rotation rates

(I < 500 seconds for % = 2 gl—modes). They also found substantial differences
between the retrograde and prograde modes, as well as significant departures
from the linear theory, even at periods as long as 1000 seconds. For this
reason, they recommended a careful re-examination of Wolff's theory of the
ZZ Ceti oscillations; if the mode splitting differs significantly from

that given by (4a) with (2) and (6), the spectrum shown schematically

in the top part of Fig. 5 will be modified, and it is not clear whether

the degree of agreement with the observed oscillation spectra of the ZZ Ceti
variables will be maintained.

An exciting new development in the theory of oscillations of rotating
stars is contained in an important recent paper by Papaloizu and Pringle
(1978). 1In this work, they pointed out the existence of a new class of
modes which appear in rotating stars and which they have termed "r-modes"
because of their similarity to Rossby waves. These modes have previously
been missed by most workers because they belong to a completely different
mode class (the toroidal modes) than do the spheroidal p-, f-, and g-modes,
and because -~ for spherical stars - the toroidal modes are all degenerate
at zero frequency.

The existence of the class of toroidal modes of stellar oscillation
was noted in a group-theoretical paper by Perdang (1968; see also Chandra-

sekhar 1961). The nature of these modes was further clarified in an ex-

N
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ceptionally careful study by Aizenmann and Smeyers (1977). They showed
that the displacement fields p§ that correspond to oscillations of non-
zero frequency have no toroidal coﬁponent. In this case, they found

that the displacement eigenfunction gklm can be written in the familiar

form (cf. equétion [41

} } 3Yom b(r) Yoy
éklm (Er’geagq)) [a(r)YQm’b(r)"é'%m,Sine 3 1. (7a)

This separation of variables yields the spheroidal oscillation modes, for
which Cowling (1941) introduced the subclassifications of p-, f-, and g-modes.
Aizenman and Smeyers went on to show, however, that the modes which are
degenerate at zero frequency in a spherical star consist of the f-mode
belonging to £=1 and a new class of modes which have no radial component

of the displacement. For the latter modes, the displacement eigenfunction

can be written in the form (see also Van Horn and Savedoff 1976)

- c(r) o9¥pm _ Yom
Som = 105 ing ¢ 0 T ¢ Tap ) (7b)

where ¢ (r) is a function of radius only. This separation of variables
yields the toroidal oscillation modes.

In a rotating star, the equations governing the fluid motionms contain
additional terms not present in the spherical case. These correspond to
the effects of the centrifugal and Coriolis forces, and they affect both
the equilibrium configurations and the small—amﬁlitude perturbations about
equilibrium. These additional terms are the ones responsible for producing

the mode-splitting that breaks the (28+1)-fold degeneracy of the g-modes of
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order £ that has been discussed previously (cf. equation [2]). However,

as Papaloizu and Pringle (1978) show, the existing analysis of g~mode
splitting (except for the very general formulation given by Aizenman and
Cox 1975) is based upon the assumption of slow rotation of the star, and
they argue that this is probably invalid for the white dwarfs in cataclysmic
variables. Furthermore, as Papaloizu and Pringle also show (see also
Perdang 1968), rotation breaks the degeneracy of the zero-frequency modes,
producing in addition to the rotationally-modified g-modes a spectrum of
toroidal modes with frequencies approximately given by (for uniform

rotation)
o] x -mQ[lr-—Jé———] 240 (8)
km ~ 2(2+1) ‘

These are the modes Papaloizu and Pringle have named r-modes. TFor the
case 2=1, (8) still yields zero frequency; in this case a slightly better
approximation yields a non-zero result, which, however, is very small (cf.
Papaloizu and Pringle 1978). |

Papaloizu and Pringle go on to discuss some possible-applications of
their theory to the interpretation of observational data. In particular,
they question whether the 20-30 second oscillations observed in somé cata-
clysmic variables, usually in the post-maximum decline of the light curve,
may be r-modes rather than g-modes as conventionally assumed (cf. Warner
and Robinson 1972). There are three main points to their argument. First,
they point out that although p- and f-modes generally have periods much
shorter than 20-30 seconds in hot white dwarfs, the g-mode periods — although

much shorter than the ~ 200 second periods found in models with Teff ~
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10,000°K — tend still to be longer than 20-30 secondsz. Secondly, they
note that the timescales over which period changes are observed to occur
in the cataclysmic variable stars (often < 18 hours : cf. Warner 1976b)
are enormously short compared to the characteristic e-folding (decay)
timescales of the g-modesz. Third, they emphasize that the rotation
expected in the cataclysmic variable white dwarfs is likely to be rapid
enough to invalidate the slow-rotation approximation for g-mode splitting,
and may be fast enough to permit the existence of r-modes with periods
comparable to those observed.

In order to obtain decay timescales as short as the timescales of
observed period changes in the cataclysmic variables, Papaloizu and Pringle
argue that it is necessary to consider white dwarf models in which the mass
involved in the oscillations is confined to the very outermost surface

layers. To this end they have studied the properties of some =2 g-modes

10M

for models with a luminosity source embedded in the outermost ~10" o

of envelopes containing ~10—6 to 10-7Mo of hydrogen. These models are
intended to simulate accretional heating of the surface layers, and the
results indicate decay times as short as ~ lO4 seconds for these highly
surface-concentrated modes. For the low-k g-modes the periods are still

too long for these models, however.

2However, see the discussion of accreting white dwarf models with
nuclear burning in Section V below, especially the calculations by

DeGregoria 1977 and by Sienkiewicz and Dziembowski 1978).
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The interaction between the accretion disk and the surface layers
of the white dwarf is further elaborated by Papaloizu and Pringle in
Appendix 1 of their paper. Here they consider a simple model of the
transition layer over which the angular velocity changes from the Keplerian
value appropriate to the inner edge of the disk to the slower rotation rate
of the star. They show that the perturbation equations for this flow lead
to the analogs of Kelvin-Helmholtz instabilities, and they estimate
conditions for the onset of instability. In the text of their paper they
speculate that either this instability or the direct interaction of the
accretion disk with the surface of the white dwarf may be responsiblg for
the excitation of non-radial oscillations of the star, a concept already

implicit in the work of Pringle (1977). This process, which is rather

similar to the production of musical tones in a flute, represents an

important new mechanism for the excitation of stellar oscillations and clearly

merits considerably more detailed work. To date only a few papers have

seriously considered the complex problems involved in this interaction
region. In addition to those works already cited, we must add the funda-
mental -paper of Lynden-Bell and Pringle (1974), the quasi-steady calculations
of Durisen (1977), and the recent work by Kippenhahn and Thomas (1978). The
latter authors in particular point out that the interface region in disk
accretion differs drasfically from that involvgd in gpherical accretion

flows.
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V. TInstabilities in Planetary Nucleus Stars and Nuclear-Burning White Dwarfs

To complete this survey of theoretical research on the oscillations of
degenerate stars, mention must also be made of recent work on degenerate
stars other than the ZZ Ceti variables and the cataclysmics. The two types
of systems which have received attention are i) the central stars of planetary
nebulae and ii) white dwarfs with H- or iHe-burning shells, usually thought
of as resulting from accretion. To date, these theoietical models have
only limited correspondence with the observational data, and for this reason
my discussion of them will be brief.

a. Planetary nuclei

Research on the oscillations of planetary nuclei published within the
past two or three years has been limited, to this writer's knowledge, to
two short papers by Stothers (1977) and by Dziembowski (1978). Stothers'
paper is another in his series of applications of T.R. Carson's new radi-
ative opacities (cf. Carson 1976). In this newest work, Stothers finds that
the fundamental model of radial pulsation (and in a few cases, the first
overtone as well) is excited in very high luminosity degenerate stars by
the k-mechanism operating in the CNO ionization zone. This is a direct
consequence of a large "bump" in the Carson CNO opacities tﬁat occurs over
a wide temperature range aroung 106°K at low.densities. The fegion of the
H-R diagram in which pulsational instability is driven by this mechanism
covers a range in luminosity given by 3.5 < log L/Lo < 4, with effective
temperatures cooler than log Teff~: 5.0, extending at least to the red of
log Teff = 4,65 and possibly beyond. This 1s the same region occupied by
the highest luminosity central stars of planetary nebulae, and Stothers

suggests that this mechanism may perhaps explain some of the rapid vari-
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ability that has been observed in some of the planetary nuclei. He quotes
the observed timescales of variation as ranging from weeks to perhaps as
short as seconds, while the theoretical models yield fundamental mode periods
ranging from fractions of an hour to about.a day.

Dziembowski's (1978) paper i§ concerned with short-period variability
in FG Sge. Over the period from 1972 to 1975, during which time the spectral
type changed from F6 to G2, observations quoted by Dziembowski indicate
short-term variability with a period of 60 days in 1972 and 20 days in 1975.
He has accordingly carried out calculations of the‘nonadiabatic pulsational
instability of double (H- and He-) shell burning models>in>order to find
the high-luminosity extension of the instability strip. For models with
masses between 0.52M0 and 1M0 and with luminosities greater than about 103L°,
he finds that nonadiabatic effec;s are important, and by matching the models
to the observed periods he is able to deduce the luminosity and mass of the
star. He finds that a 60 day pulsation period can be fitted by a model with
L ~ 6300 L@ and M ~ 0.63 Me; wﬁile"a 20 day period requires L = 1600L°,_
which may be too low for the development of a He shell-flash.

b. Nuclear-burning white dwarfs

In a recent series of papers, Vila and Sion (1976), Sion and Vila (1976),
Vila (1977), and DeGregoria (1977) have examined the pulsational and thermal
stability of a number of static models of white dwarfs without accretion
and with nuclear burning of a H/He envelope assumed to provide the entire
luminosity of the star. Vila and Sion (1976) constructed static models with
masses of 0.6 and 1.0M0 in which H shell-burning by pp and CNO reactions in
an appropriately chosen envelope provided the only energy source. They found

nuclear-energized instability of the fundamental radial (F) mode in the

488



luminosity interval 0 < log L/L0 < 3, with growth timescales of ~ 106—

108 years. At log L/Le’ the first radial overtone (Hl) mode was also
excited, on a timescale of 108 years. In a closely related work, Sion

and Vila (1976) found nuclear-energized pulsations of the F-mode alone

in the range 0 £ log L/L0 < 3 for models with He-burning shells near the
surfaces. Vila (1977) subsequently undertook to examine the thermal
stability of the H shell-burning models and came to the unexpected con-
clusion that the models were all thermally stable. A similar negative
result was also found by Sion, Acierno, and Turnshek (1978), who discussed
the thermal stability of models having masses 1.2 < M/M05;1.38 and under-
going steady-state accretion with H-burning due to CNO reactions in the
envelope as the only energy source. Unfortunately, from the brevity of
the description given by these aﬁthors, it is unclear whether all of these
calculations refer to models undergoing stationary accretion or whether
that is only true of some of them. More seriously, it is not clear why
the conclusions regarding-the lack of thermal instabilities in these models
differ from the conclusions for similar ﬁodels based on the calculations
of Sienkiewicz and Dziembowski, discussed below, and from the detailed,
time-dependent shell-flash calculations carried out over the past several
years, especially by Gallagher and Starrfield (1978), Sparks, Starrfield,
and Truran (1977), and references therein. Until the differences are
satisfactorily explained, these results must be used with caution.

Another recent paper dealing with nuclear-energized pulsations in
white dwarfs is that of DeGregoria (1977), which follows up earlier,
similar work by Cameron (1975). DeGregoria has investigated the radial
and non-radial pulsational instability of static white dwarf models with

masses between 0.6 and 1.4M0 and in which the sole energy source is
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H-burning due to the CN reactions. His models have luminosities ranging .

36 to 1038ergs s_l, and he finds instabilities in both radial and

from 10
non-radial modes, the models with larger masses being consistently the

more unstable. In most of DeGregoria's models, the fundamental radial (F)
mode is unstable, with periods of a few seconds and growth times longer than
about 104years. In models with lower luminosities and higher masses,

radial overtones as high as H3 may be excited, and in cases where the first
overtone (Hl) mode is excited, it is ‘found to be far more unstable than

the F-mode. In all cases, the 2=2 gl—mode (the only g-mode coﬁsidered),
with periods ~ 5-40 seconds was excited, with very short growth timescales,
ranging from less than a week to some tens of years. The £=2 Kelvin- (f-)
mode and the p-modes were found always to be stable, however. The results
of these calculations were discussed in the context of pulsating X-ray
sources.

The final calculations to be discussed here are those of Sienkiewicz
(1975) and Sienkiewicz and Dziembowski (1978). 1In the first of these papers,
Sienkiewicz discussed the construction of white dwarf models of masses 1.0
and 1'39Me’ which are undergoing steady-state accretion with nuclear burning
of the material at the same rate as it is accreted. Accretion rates between
-»,10"11 Mo yr_l and a few times 10_7 M0 yr"1 were uéed, and the systematic
behaviors of the H~ and He- burning shells with accretion rate and stellar
mass were studied. In the later paper, Sienkiewicz and Dziembowski (1978)
investigated the thermal énd Qibrational stability of the 1 Me models from
Sienkiewicz's accretion calculations. All of the models were found to be
thermally unstable, in contrast to the conclusions of Vila (1977), with in-
stability produced by the H-burning shell for M <4 x 10_8Mo yr_l and by
the He-burning shell for M > 3 x 10-7M3 yr_l. Vibrational instability was
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also found at all but the highest accretion rates, but the growth rate of
the oscillations was slower than the thermal instabilities, except in the

1 f M f 3 x 10_7M0yr-1. (see Fig. 6). Both radial and

range 4 x 10_8Mo yr
non~-radial modes were found to be excited (similar multi-mode excitation

has also been found in non-accreting nova and pre-nova nddels by Sastri and
Simon 1973 and by Vemury (1978), although the growth rate of the most
rapidly-excited g-modes was more than three orders of magnitude faster than
that of the radial modes. The %=1 gz-mode was found to be the most unstable,
with growth rates of a few months in the range of M where pulsations develop
more rapidly than thermal instabilities. The periods of these models are
about 30 seconds, although a broad spectrum of g-modes.corresponding to

2=1-5 and with periods ranging from 10 to 50 seconds is excited simultaneously.
Because of the high rates of accretion and nuclear burning in the pul-
sationally unstable models, the luminosities of these cases are quite large

(L 2 103L°, log T > 5), but because of the simultaneous excitation of

eff
many different modes, the pulsations may not be easy to detect observationally

despite the high luminosities.

VI. Conclusions And Some Problems That Merit Further Work

Despite the real progress in clarifying the theoretical bases for
an understanding of the observed oscillations of white dwarfs, some major
problems remain to be resolved before a satisfactory comparison of theory
and observation can be achieved. In particular, no theoretical calculation
has yet succeeded in demonstrating pulsational instability in the oscillation

modes which appear to be excited in these stars. On the positive side,
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Fig. 6 - Characteristic timescales for the growth of thermal
and vibrational instabilities, taken from Sienkiewicz and
Dziembowski (1978) for white dwarfs undergoing steady~state
accretion and nuclear burning. The curves labelled T-HBS and
T-HeBS give the growth timescales for thermal instabilities in
the H- and He- burning shells, respectively. The curve marked
V gives the excitation timescale for vibrational instability
in the most unstable mode; this is the fastest-growing insta-

bility for accretion rates in the range 4 x 10'-8M6)yr-1 <

<3 x 207wyt
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theorists have begun to carry out considerably refined calculations for

increasingly realistic stellar models, and some have begun to attack the
extremely complex and important problems associated with the effects of

rotation on non-radial stellar oscillations. Preliminary work has also

been done in a few cases involving accretion and nuclear burning.

Among the many problems that need attention before we can claim an
understanding of the oscillations of white dwarfs, the following appear
to this writer to be some of the more important ones:

1. How does the layered compositional structure of a white dwarf
affect the frequencies and excitation rates of non-radial oscillations?

In particular, the location and extent of the He ionization zone is expected
to depend rather sensitively upon the thickness of the overlying hydrogen
layer; how does this affect the excitation rates? Does the depth of the
hydrogen layer determine whether or not a white dwarf lying in the
instability strip will be a variable? Also, do the H/He or He/C inter-
faces introduce additional g-modes ("surface waves') into the non-radial
oscillation spectrum? If so, what are the periods of these modes; can they
explain the 800-1000 second period oscillations?

2. What effect does the coupling between convection and oscillations
have for the white dwarfs? For the purposes of a preliminary investigation
of this problem, the use of a very simple form of time-dependent mixing-
length theory may be sufficient; certainly this seems to be a logical and
necessary first step.

3. From the standpoint of observations, can refined versions of the
period~amplitude plot shown in Fig. 4 provide further clues to the nature
of the ZZ Ceti oscillations? In addition, is it possible to achieve suf-

ficient frequency resolution in the large~amplitude ZZ Ceti stars to determine
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whether the variability of the mode amplitudes observed here is due tp
beating between colsely-spaced high -k modes, as the period-~amplitude
correlations tend to suggest?

4. Also in regard to observations, is Wolff's model of beating
between rotationally=split g-modes supported or rejected by observations
of the rotation-broadening of the Balmer lines in the ZZ Ceti stars? If
it is Confirmed, the theoretical basis for the model requires further
devleopment.

5. The toroidal r-modes introduced by Paploizu and Pringle need to
be investigated carefully in the context of improved stellar models. What
are the mode frequencies and excitation rates in such models? Do these
modes play a role in the long-period ZZ Ceti stars as well as in the cata-
clysmic variables? 1Is there direct observational evidence of the required
rotation in either type of system?

6. Can the interaction between the accretion disk and the white dwarf
in cataclysmic variables drive oscillations of the star? How can this be
calculated, and under what conditions (if any) can such excitation occur?

7. Finally, is there observational evidence for the existence of
high-luminosity degenerate variables?

With the interest and activity on problems of white dwarf oscillations
that has now been generated, perhaps it is not too much to hope that significant
progress is answering these and related questions may be achieved before the

next pulsation conference.
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Discussion

Sobouti: I would have to dispute your formula for the expansion of the
g-mode. -There are certain criteria for any perturbation expansion, which in
the case of g-modes are not met. In perturbation expansions, you always
have an energy denominator which is the difference of two energies. If you
look at the spectra of g-modes, you can find an infinite number of pairs of
energy levels which are infinitely small and infinitely close to each other,
and if you insert these into the denominator the series won't converge. So

the g-modes cannot accept the perturbation expansion.

Van Horn: Thank you, I hope you will say more about this in your paper later
on. All I can say is, this is the classical expression that has been quoted

since Ledoux.

Sobouti: That formula is fine for p-modes, but not for g-modes, I am afraid.
Van Horn: Will you say something about this in your talk?

Sobouti: I don't know. I am only allowed twelve minutes. [Laughter]

Cahn: Would you like to continue the discussion into the planetary aspects?

Van Horn: I can tell you in one word what I was going to say, and that is
that Stothers has looked at some models for planetaries recently using the
new Carson opacities, and he finds that a mysterious bump which occurs in

those opacities drives instability at high luminosity for an effective
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temperature range from 100,000 K down. He doesn't know where it terminates.

It is apparently a difference in the Los Alamos opacities and the Carson

opacities.

Wolff: I would like to make two further suggestions to the observers about
testing this model of mine, which Van Horn summarized so nicely. There may
be a tendency for the light curve to repeat itself after an interval of one
or two weeks. The precise interval is proportional to the rotation period,
and the theory says what this interval is for each star. So, do an auto-
correlation of the light curve, displaced by a certain amount, and measure
the tendency for repetition. The other suggestion that I would make is that
if you observe a few stars intensively, that would be a great deal of help

in testing these models.

Nather: I will exercise the Chairman's prerogative and make one comment
while the next speaker is coming up here. The one star that has been
observed most intensively is R548, and there we do find splitting which is

inconsistent with rapid rotation. It has to be slow.
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