THE PERIOD STRUCTURE OF THE ZZ CETI VARIABLES
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The ZZ Ceti variables are a class of pulsating white
dwarfs (cf. the previous review by Robinson) which show a
large variety in the appearance of their light curves. The
approximate range in amplitude, period and pulse shape is

shown in Figure 1 which contains segments of the light
curves of HL Tau-76 (the prototypical ZZ Ceti star), GD 154
(the variable with the longest period), and ZZ Ceti itself
(R548), the most extensively observed variable. Time-
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Figure 1: Segments of the light curves of HL Tau-76,

CD 154 and ZZ Ceti. The ordinate is expressed in detected
photons per second in "white" light, corrected for atmo-
spheric extinction. : ‘
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resolved photometry in unfiltered light has yielded a wealth
of information about the period. structure of these stars.
Though we are faced by a broad range of period structure,

we believe it is possible to explain most of the features

of the light curves of ZZ Ceti variables by invoking
reasonable mechanisms; we interpret the period structure

in terms of nonradial pulsations which are modulated by
rotation of the star and which, for the large amplitude
variables, can become nonlinear. Theoretical models of .
pulsating white dwarfs will ultimately confirm or reject

our suggestions. The purpose of this paper, then, is to
review the current observational status of the period
Structure of the ZZ Ceti stars. We will discuss in particular
those features which appear to be the most important for
theory to explain, or which may be relevant to the directions
of theoretical development. _

The shortest primary period for a ZZ Ceti variable is
about 192 s, seen in L19-2, and the longest is the primary
period of GD 154, about 1186 s. 1In general, the light curves
of these variables are so complex that, apart from an estimate
of the primary period, little can be determined from them
directly. Power spectra of the light curves are used to
investigate the period structure in detail. Using this
technique, the 1light curve of every ZZ Ceti variable has
been shown to contain at least two independent periods,
that is, periods which are not simply harmonics. Figure 2
shows a power spectrum of the light curve of L19-2. The
ratio of the periods represented by the two prominent peaks
in this spectrum is Pl/PZ = 194 s/114 s = 1.7.
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Figurc 2: The power spectrum of the light curve of L19-2.
The ordinates of all power spectra in this paper are
directly comparable. 502



The variety of photometric complexity seen in the
light curves is reflected in their power spectra. Figure 3
shows the power spectra for HL Tau-76, GD 154 and ZZ Ceti.
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Figure 3: Power spectra of the light curves of HL Tau-76,
GD 154 and ZZ Ceti. Segments of the light curves from
which these spectra were derived are shown in Figure 1.

This figure illustrates an approXximate correlation between
the amplitude of the variable and the complexity of. its
power spectrum: large amplitude variables tend to have
complex, multi-peaked spectra while low amplitude variables
have simpler spectra with fewer peaks (Robinson and McGraw
1976). Originally it was suggested that this correlation
also included the period as a parameter and that large
amplitude variables with complex spectra also had long
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periods. GD 154, with a spectrum of intermediate complexity
(cf. Figure 3), negates this earlier suggestion - amplitude
and complexity appear to be the relevant parameters (Robinson
et al. 1978).

Power spectra of the light curves of most of the ZZ Ceti
variables change on time scales ranging from minutes to
days. Two power spectra for one night's data on G29-38 are
shown in Figure 4. The light curve, a run of five hours
duration, was halved and each half was transformed separately.
The two spectra look totally different, showing that signi-
ficant changes to the period structure of this star occurred
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Figure 4: Power spectra of the .light curve of G29-38
obtained on one night. These spectra, (a) derives from
the first half of the run and (b) from the second, show

typical changes in frequency and amplitude which occur
during a run.

within this run. Figure 5 shows power spectra derived from
runs on two separate nights. Again, there are significant
changes in both the frequencies and amplitudes of the peaks
in this spectrum,
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Figure 5: Power spectra of the light curve of G29-38
Heylvea from runs obtained on consecutive nights. Five
major peaks and some of the peaks identified with linear
combinations of major peaks are indicated.

This figure also illustrates two numerical relationships
among frequencies of peaks in the power spectra of several
of the ZZ Ceti light curves. The first relationship, the
occurrence of '"cross-frequencies', is seen in the spectra
of about half of the variables. If we pick the one to
five strongest peaks in a spectrum and denote the frequencies
of these peaks as primary frequencies, some, but not all,
of the secondary peaks in the spectrum have frequencies, f,
given by a linear combination of primary frequencies:
f = nf. + mf., where i and j specify primary frequencies
and n and m 4re small integers. The second relationship,
a pattern of equally spaced frequencies, occurs in the
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spectra of G29-38 and two other variables. In Figure 5,
the average frequency spacings <f -f2> = <f_-f,> ~ 0.14 mHz
and <f4-f3> ® 0,26 mHz ®= 2 x 0.14"mHZ can bé séen.

An additional feature of the period structure of the
ZL Ceti variables has been seen in the light curves of
BPM 31594 (McGraw 1976) and GD 154 (Robinson et al. 1978).
These stars have been observed to change their primary
periods by factors of about 2 and 2/3, respectively, within
24 hours. Figure 6 shows the power spectrum derived  from
the light curve of BPM 31594 obtained on the discovery night
(above) and that from the light curve obtained the next
night (below). The primary frequency decreased by a factor
of about 1.99 (significantly different from 2), but a smaller
peak remained at the approximate frequency seen the first
night. 1In addition, in the later spectra significant power
appeared at frequencies near 3/2 and 5/2 the primary
frequencies. GD 154 exhibited the opposite behavior. On
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Figure 6: Power spectra of the discovery run (upper) and
the Tun obtained the following night (lower) on BPM 31594.
Note the change in frequency of the primary peak in the
spectra and the appearance of peaks at frequencies near
3/2, 2, 5/2 and 3 times the frequency of the major peak in
the latter spectrum. _

the first nine nights it was observed it showed one principal
peak and four harmonics of this frequency, plus peaks near
3/2, 5/2 and 7/2 of the principal frequency. On the tenth
night it was observed, the peak near 3/2 the frequency of

the original principal. peak had become the dominant peak in
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the spectrum. Since the original ten runs, this star has
been observed in each of its '"states", showing that the
period change is not an isolated incident.

Amidst the photometric complexity, three low amplitude
variables, ZZ Ceti, L19<2 and G117-B15A, show a refreshing
simplicity and regularity. ZZ Ceti has been shown to be a
variable with four very stable periods (Robinson, Nather and
McGraw 1976). The periods occur in closely spaced pairs,
each pair forming a single peak in a power spectrum derived
from a light curve of reasonable (s6h) length. The close
spacing causes a modulation of the amplitudes and frequencies
of the two peaks in the power spectrum (""beating"). The
modulation itself has a period of about 1.5 days. Stover
et al. (1977) have used data from two observing, season E?
show that for each of the four pulsations Q = %P|‘1 > 10+,
Additional data from Cerro Tololo, supplied by Jim Hesser
and Barry Lasker, will extend the baseline of observations
to about eight years. On the assumption that P reflects
the evolution of the star, these data should improve the
measurement of Q by another order of magnitude.

Table 1 summarizes the observed photometric properties
of the ZZ Ceti stars. GD 154 and BPM 31594 have been included
as "moderately" stable pulsators because these stars have
been observed to change their basic pulsational periods.
When in one "'state'" the period stability can be very high -
a Q > 10° was derived for GD 154 from an ephemeris constructed
for the data gathered on the first nine nights it was
observed (Robinson et al. 1978),

TABLE 1
PHOTOMETRIC PROPERTIES OF THE ZZ CETI STARS

Star Basic Periods Mean Amplitude  Harmonics Cross- Period Ref.
(seconds) (magnitude) Frequencies Stability

BPM 30551 823 0.18 No No Moderate (12, 15)

7Z Ceti 213, 274 0.02 No No Q > 10]'1 (2, 14, 18)

BPM 31594 310, 617 0.21 Yes No Moderate 3)

HL Tau-76 384, 494, 625, 746 0.28 Yes Yes Low a,3,4,5,6,7,9)

G38-29 925, 1020 0.22 Yes Yes Low )

GD 99 350, 476, 595 0.07 Yes Yes Moderate (11)

G117-B15A 216, 272 0.05 No No High (11)

GD 154 780, 1186 ~0.10 Yes No Moderate a7

119-2 114, 192 0.03 No No High (15, 16)

R308 513, 830 0.15 Yes Yes? Low an

G207-9 292, 318, 557, 739 0.06 No Yes High? (10)

G29-38 494, 625, 746 0.28 Yes Yes Low 8)
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A rather simple and self-consistent model for the
general period structure of the ZZ Ceti variables, incor-
porating most of the data presented above, can now be
proposed. The fact that multiple, highly stable periods
occur in these stars definitely confirms that the luminosity
variations are produced by pulsations, as has been pointed
out earlier by Robinson. Even the shortest ZZ Ceti period
is too long by an order of magnitude to be associated with
the longest theoretically predicted radial pulsation periods
for white dwarfs of reasonable mass (cf. Ostriker 1971),
but periods calculated for nonradial modes match more closely.
In particular, periods of nonradial g-modes calculated for
white dwarfs most closely approximate the periods observed
for the ZZ Ceti variables (Brickhill 1975, Osaki and Hansen
1973). The correspondence of the theoretical to the observed
periods is not good enough to allow identification of
individual pulsation modes, however. For linear, adiabatic
pulsations, the period of a nonradial mode is specified by
three integers: k, which specifies the radial overtone, 2,
the number of surface node lines, and the degenerate parameter,
m, which may assume values |m]| < 2. Periods for g-modes on
white dwarfs and approximate relationships for g-mode periods
as a function of k, £ and m are given by Brickhill (1975).
For Brickhill's model which most closely resembles a ZZ Ceti
(0.6 M, Te = 13000 K), he derives periods P : P = 136 s,
P 2 = 978 S and P3 = 218 s. This last perigg app%gximates
tﬁe shortest periogs observed in ZZ Ceti variables. Note
that there is no a priori or observational limiton k -
with k £ 30, theoTetical periods matching the longest
observed periods can be generated. There is, however, an
observational constraint on £. If % becomes large, the
surface of the star becomes dissected into many segments
of varying surface brightness and the luminosity variations
will be rapidly smoothed out, thus the star will not be
detected as a variable.

Nonradial pulsations can also account for some of the
multiple periods seen in the power spectra of ZZ Ceti variables.
Multiple, independent pulsations have been suggested to
explain the two principal periods (213 s and 274 s) of ZZ
Ceti (Robinson, Nather and McGraw 1976) and the four strongest
periods in BPM 30551 (Hesser, Lasker and Neupert 1976). For
ZZ Ceti, the period ratio indicates that the 213 s period is
associated with a k = I, & = 2 mode and the 274 s period is
associated with a k = 2, 2 = 2 mode. The period ratio of 1.7
for L19-2 might, by analogy, be associated with Brickhill's
periods corresponding to modes with k = 1, #=1and k = 1,

2 = 2, Periods of other variables with these period ratios
might be associated with similar modes. The point of this
is that, though period ratios do recur, the period spectrum
of nonradial modes is so complex that, until theory gives

us reasons to choose particular modes, the identification of
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the modes in which the variables are really pulsating is
virtually impossible. The most likely source of multiple,
independent periods in low amplitude ZZ Ceti variables is,
however, multiple, independent pulsations.

The fact that the power spectra of the light curves
of ZZ Ceti stars change with time can be partially explained
by nonradial pulsations on a slowly rotating star. Rotation
destroys the spherical symmetry of a star, thus removing the
degeneracy of the index m. This results in ''rotational
splitting"” of m7des wit? periods Pkl into Td itional modes

: P =1/c = |0o -m (175 Cyo)82| ™+, where C is
akégnstak%mwhiCh géﬁends 5% the structh%e of the star §%d
can assume values 0 < C,, < [%#(2 + 1)] ", and Q is the
rotational frequency (c%. Brickhill 1975). The closely
spaced periods produced by this mechanism can modulate the
light curve. For ZZ Ceti, the changes with time seen in
the power spectra occur because the period of modulation
is greater than the length of a photometric run. If closely
spaced periods occur in the power spectra of other ZZ Ceti
variables, they too will change with time, as is observed.
If observing runs longer than the beat period could be
obtained, the power spectra of these stars may appear stable.
Robinson et al. (1978) suggest that rotational splitting
of the £ = 2 g-mode periods creates the closely spaced pairs
of periods in ZZ Ceti. It is reasonable that white dwarfs
rotate; therefore, this mechanism almost certainly contributes
to the changes in the power spectra. This mechanism is not
unique, however. Any periods sufficiently closely spaced,
arising for example from two independent pulsation modes,
will result in a modulation of the power spectra. Another
possibility, which I would rather not admit, is that some
of these stars, especially the large amplitude variables,
are fundamentally unstable in their period structure.

The period changes observed in the moderate amplitude
variables BPM 31594 and GD 154 have been interpreted as a
transfer of pulsational energy from one mode to another by
(weak) nonlinear coupling (McGraw 1976, Robinson et al. 1978).
For radial pulsations, Ledoux and Walraven (1958) derive
nonlinear coupling coefficients_between modes with frequencies
f and £ : k(f,f ) = (f - 2£)°1. 1In the absence of similar
theory ®or nonradial modes, we generalize this to
k(f.,£f.) « (nf, - mf.) 1. The coupling can.become very
efficiént near'the résonances. The suggestion is, then, that
the observed changes occurred between modes where n = 1 and
m= 2. In terms of the indices k, % and m, changes in 2
and m do not readily account for the observed period changes,
but if k is allowed to change value by at least 3, modes
near this resonance may be found (McGraw 1976). For larger
amplitude variables which are presumably more nonlinear,
the coupling is more efficient and periods corresponding to
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many resonances can appear. This can explain the appearance
of the cross-frequencies observed in the power spectra of
larger amplitude variables. 1In addition, nonlinear pulsations
produce nonsinusoidal pulses in the light curve (cf. Figure
1). The pulse shape will then contribute to the frequency
structure in the power spectrum. Elementary Fourier analysis
tells us that the first additional frequencies to appear

will be harmonics of the pulse repetition frequency. These
two effects, harmonics and cross-frequencies, both of which
are related to increasing nonlinearity, are responsible for
the complexity/amplitude correlation. Apparently, ZZ Ceti
variables of low amplitude are linear pulsators but large
amplitude variables are highly nonlinear.

In summary, the light curves of ZZ Ceti variables range
from simple to very complex, but even the most complex can
apparently be explained by several simple effects. Multiple
nonradial modes, probably corresponding to different radial
overtones, may be simultaneously excited in each star. The
excitation energy of individual stars is distributed among
permitted modes by nonlinear resonant coupling. In addition,
"rotational splitting" of the nonradial modes can produce
Cclosely spaced periods which results in modulation of the
light curve. The amplitude/spectral complexity correlation
results from the appearance in the power spectrum of harmonics
and cross-frequencies which are the effects brought on by
increasing nonlinearity of the pulsations.

When theoretical models of these stars are done, the
rewards are likely to be great. .Certainly we will increase
our understanding of the fundamental evolution of white
dwarfs. A program already underway is to directly measure
the cooling times of linearly pulsating variables. Osaki
and Hansen (1975) have shown that there exists a period-
luminosity relationship for nonradial pulsations on white
dwarfs. Measuring the highly stable pulsations of stars
like R548 over a baseline of 50-100 years will allow a
significant determination of the rate of change of the period
and thus give a measurement of the cooling time of the star.
A more immediate result might be to set limits on the core
composition of the variables by measuring the baseline over
which P does not appear to change. For example, P for an
iron white dwarf is more than a factor of two greater than
for a carbon core white dwarf.

Observers are beginning to find that nonradial pulsations
are ubiquitous. In addition to the ZZ Ceti variables they
are observed in the g CMa and B stars (Smith 1977). There
is evidence that they occur in § Scuti stars (Millis 1973),
they have been suggested as the pulsation modes of white
dwarfs in cataclysmic variables (Chanmugam 1972, Warner and
Robinson 1972), and of course they occur in the sun (cf.
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Rhodes, Ulrich and Simon 1977). Because of their short
periods and the ease with which they can be observed, the
ZZ Ceti stars are probably the most extensively observed
class of nonradially pulsating stars. When the theory of
pulsation on these stars can explain the observations, the
ZZ Ceti stars will be a laboratory of linear and nonlinear
nonradial pulsations, from which investigations into the
pulsational instabilities in other stars may be firmly
launched.
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Discussion

Aizenman: You mentioned that the m = 0 mode was missing. Would you explain

this further?

McGraw: Well, I'll try. When we see patterns of what we call equally spaced
frequencies in the power spectrum, we generally assume an 2 = 2 mode and

that what we are seeing is m =+ 2, + 1, but in two cases that I can recall
the m = 0 mode would be missing in that interpretation. I have no idea why
that kind of selection would occur. In the case of ZZ Ceti, the detailed
analysis of its light curve showed a high stability, and an attempt was made

at mode identification, in which case the m = 2 mode was picked. But we

can't really give a justification why the m = 0,1 modes aren't present as

well.

A. Cox: I want to ask a technical question. Where are your side bands?

Why don't you have side bands on all these? Aliases?

McGraw: You do have to contend with them, but the amplitude is very low. We
have long data streams to begin with, and we "window" the data. I think what

you are driving at is whether we are seeing significant peaks.
A. Cox: I was just wondering why you don't have those wiggles on the side?

McGraw: They are very low amplitude, compared to the amplitudes that we are

measuring.
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