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ABSTRACT

A regression analysis of the dependence of absorption

line velocities on wavelength, line strength, excltation

potential, and ionization potential is presented, and conclu-

sions are drawn regarding the velocity structure of the atmos-

phere and the regions of formation of different lines.
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I. MOTIVATION

A. ObservationalConsiderationsand Method.

High dispersionabsorptionllne spectraof long period (Mira)

variablesshow much largervelocityscatter (_5-8 km/s) than similar

qualityobservationsof more normalM giants (_i-2 km/s, approachingthe

expectedvelocityresolutionof the plates used in this study).

Previousinvestigatorshave noticedcorrelationsbetween the veloc-

ity of absorptionlines and the excitationpotentialof the lower levels

(see for exampleMerrill, 1964a,bfor U Ori, R Ser, R Hya; Adams 1941

and Joy 1954 for o Ceti; Merrill1952 for T Cas, R LMI, W Hya and T Cep).

Preliminaryinspectionof the plates in the presentstudy suggestedthe

possibilityof a strongcorrelationwith ionizationpotentialalso for

some of the plates.

For any atmospherewith a velocity gradientin the reversinglayer

the velocity determinedfrom a given spectralline will depend on the

equivalentwidth or llne strengthwhich determinesthe region of forma-

tion of the llne. Maehara (1971)found a fairly strong dependenceof

the velocityof absorptionlines on the llne intensityfor X Cyg. In

addition,if the continuumopacityis stronglywavelengthdependent,

then one might hope to discovera correlationbetween the wavelengthof

the llne and its velocity.

The presentstudy is thereforean attempt to understandthe syste-

matic effectson the absorptionline velocitiesof the four parameters

excitationpotential(Xe), ionizationpotential(Xi), llne strength (S),

and wavelength(_). For llne strengtha visual estimateon an integer
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scale where most measured lines fall between i (very weak) and 4 (strong)

has been used. The procedure has been to solve for coefficients in a

multiple linear regression (least squares fit) with the four independent

variables:

v = Co + Cf(1).f(1) + CS. S + Ci.Xi + Ce.Xe (i)

When a group of lines contains a wide spread of parameter values, such
o

as excitation potentials from 0 eV to 3.5 eV or wavelength from 3800 A
o

to 4400 A, then the correlation coefficients derived are not very

sensitive to small errors in v. If the group contains only lines with

similar parameter values, such as ionization potentials from 7.4 eV to
O O

7.9 eV or wavelengths from 4000 A to 4075 A, then small errors in v

lead to large variations in the coefficients. For this reason, as well

as to reduce everything to a common set of velocity units to facilitate

comparisons between coefficients, we tabulate the results in terms of

parameter ranges _defined by

= Cx(Xma x _ Xmin ) (2)

where CX is the coefficient for parameter X, Xmax the maximum value

assumed by the parameter in the sample, and Xmi n the minimum value

assumed. Note that for wavelength we have allowed for the use of func-

tions of l; correlations have been calculated for f(1) = l, i/l, i/l 2,

and i/l 4. In general there were no differences in the results between

f(1) = I and f(1) = 1-4, with a very slight improvement in the signifi-

cance of the fit as f(l) was changed from I to i/l, i/l 2, and i/l 4 in a

few cases. We have therefore chosen to tabulate coefficients in terms

i/l as an intermediate "standard case".
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We expect some relationshipsto hold between the signs of the four

coefficientsbased on simple arguments. The ionizationpotentialand

excitation potential dependence should reflect the velocity as a func-

tion of distancefrom the sourceof excitationand ionization;the

simplestmodels are thereforeexpectedto have excitationpotential

coefficientsand ionizationpotentialcoefficientsof the same sign
@ @

• > 0). If the continuum opacity decreases from _3600 A to _7800 A(ci Ce

(for exampleif the principalopacitysource is Rayleighscattering= 1-4)

then lines in the blue region of the spectrumwill be formed at higher

atmosphericlevels than will the lines in the red region. Also, strong

lines are formedhigher in the atmospherethan weak ones. Hence the

coefficientsin % and S should have oppositesigns,or those in i/l and

C% < 0 or C1 • C > 0). Table 1 summarizestheS the same sign ( " Cs /% s

four expectedconfigurationsbased on these arguments,and the simplest

general interpretationof each case.

B. Theoreticalmotivation and shock model interpretation.

The interpretation of emission lines in long period variable stars

as produced in a moderately strong shock front rising from the photo-

sphere once each cycle has proven very effective in interpreting those

features (Willson 1976; Willson and Hill 1976) and is also confirmed by

infrared observations (Hinkle 1978). A schematic velocity profile of a

simple model for the shocked atmosphere (from Hill and Willson 1978) is

shown in Figure i. Important features of the models for the present

study are:
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i. The atmosphere typically contains two shocks. The lower shock,

of large amplitude, produces the hydrogen emission lines and the visual

continuum; the upper shock is in the reversing layer and is the direct

cause most of the observed scatter in the velocities of the absorption

lines.

2. The amplitude of the upper shock is expected to be _i0-20 km/s

for stars with masses _i M@ and periods from 150d to 350d.

3. The magnitude of the inward preshock velocity at a given shock

is _ the magnitude of the outward postshock velocity for the zero mass

loss strictly periodic case.

Note that in a few cases the absorption lines in the red have been

observed to be split, with components differing in velocity by typically

10-20 km/s (Shlnkawa 1973 for S Car; Maehara 1971, for X Cyg and o Ceti;

present study plates DA0 7641 (RT Cyg) and EC 2688 (Z Oph)).

In Figure 1 we have also included an idealized distribution of

velocities for A) Circumstellar lines, B and F) 0-i.0 eV lines, C and

E) 1-3 eV lines, C) absorption lines of ionized elements, D) emission

lines of ionized metals, and H) emission lines of hydrogen. This

idealized distribution is based mainly on the results of the present

study which indicate typical regions of line formation in the shock wave

model for each of these classes of lines.

An interpretation of the coefficients of the regression analysis

(cases a-d of Table i) using the velocity profile of Figure i is pre-

sented in Table 2. There are two possible interpretations of cases e

and d with the shock model, with different corollary behavior expected
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as noted in the table. Isothermal hydrodynamic calculations (Willson

and Hill 1976, Hill and Willson 1978) suggest a reasonable likelihood of

a small region of increasing outward velocity behind the shock, as in

case cl. There is, however,no very strong theoreticaljustificationof

a similar region of decreasing inward velocity ahead of the shock (case

dl) althoughHall (1978)sees a "hook"in the velocityof the high

excitationcomponentsof molecularlines in the infraredvs. time that

may result from such a decrease. In the presentstudy the corollary

behaviorof the case d results stronglyfavors the second interpretation,

unresolvedsplittingof low excitationlines, as does the fact that case

d and mixed cases c, d accountfor a majority of the plates. Also in

one case (DAO 7641) where the splittingis resolved,omittingthe red

componentsof the doubledlines convertsthis case d into a clear post

shock case b.

Internalconsistencyfor the regressionanalysiswas judged on the

basis of the followingcriteria:

i. Is the resulta permittedmodel (one of cases a-d), i.e.

physicallyreasonable?

2. Does the velocitydistributionsatisfythe "corollarybehavior"

of Table 2?

3. Does the exclusionor inclusionof an arbitraryset of lines

leave the result unchanged?

4. Does the set of all regressionfits satisfyour expectations

(Ci > 0 and Of/l• C > 0 or cases a-d)9for the simplestmodels " Ce s "
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Plots of the ranges of I/A vs. S and of Xi vs. ×e for all the

plates are shown in Figures 2 and 3. The "forbidden regions" have been

shaded beyond the minimal error of 2 km/s from each axis. Error bars on

each point are pre-fit standard deviations. Clearly the plates do

generally satisfy the fourth consistency criterion. The few exceptions

for Z Oph are red plates which turn out to have lines present represent-

ing both shocks, and for which our simple cases therefore do not apply.

In Figures 4 and 5 are plotted the coefficient ranges I/A vs. ×i

and S vs. ×e' with error bars as in Figures 2 and 3. The quadrants are

marked according to the case each represents. The expected corollary

behavior of small scatter plus small coefficients is seen for the pre-

shock case a. For cases c and d large scatter and large coefficient

ranges are both found - this is the corollary behavior expected if c and

d both represent mixtures of lines from both sides of the shock.

The sensitivity of the results to the inclusion or exclusion of a

few lines was investigated both through a series of calculations made

deleting successively the most deviant lines in the sample (ones most

likely to be misidentifled, for example, with very high excitation or

very high residual velocity) and through a "running solution". The

running solution was a calculation of coefficients for sequential groups

of ten lines. In Figure 6 the coefficient ranges for a running solution

for S Car (D 895) are shown as a function of the average wavelength for

the ten lines. Each successive group of ten lines includes five lines

from the previous set. The conclusion suggested by our criteria regard-

ing coefficient ranges and standard deviations, namely that the coeffi-

cients for ×i and ×e are the only ones which are significant, is clearly
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supported by the trends in the running solution. The coefficients which

the general analysis suggests are not significant show mostly a random

scatter about zero.

The running solution is not only useful as a consistency check, it

is also an efficient means of locating misidentified lines. Such lines

generally cause an abrupt change in the coefficient ranges in the run-

ning solutions. In the example forS Car such "deviant" lines near
O

4500 A may explain the overall lack of correlation for S even though most

of the i0 point S coefficlents are negative. There are in this case no

obviously bad lines, however, so we have chosen to consider CS not

significant.

Note however that the running solution is a very poor means of

checking the wavelength coefficient, since for lines listed in order of

X the wavelength interval for each set of ten lines is much smaller than

the overall wavelength interval. For this reason a further check of

the wavelength coefficient was made for those dates where two plates in

different wavelength regions were available by calculating a single set

of regression coefficients for these plates. In cases (such as DAO 10157

and 10162 of RT Cyg) where lines in both wavelength regions appear to be

formed on the same side of the shock, the wavelength coefficients for

the combined plates are consistent with those for each plate taken

separately. For pairs of plates (such as Pc 3237 and 3238 of Z Oph)

where there is clear evidence that the lines are formed on different

sides of the shock, the combined plates create a very strong apparent

wavelength dependence and yield a strong case d -- further evidence in

favor of the cross shock interpretation for the case c and d results.
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II. ANALYSISOF THE OBSERVATIONALMATERIAL

In order to interpret the actual data in terms of the schematic

models of Section I we must first develop criteria for the significance

or lack of significance of the coefficients, and means of evaluating the

regression fits for validity. Two approaches have been used: requiring

internal consistency plus comparison with a "null" case, plate DAO 10936

of _ Peg, with minimal observed scatter and for which velocity gradient

effects are not expected.

The requirements for a significant fit can be summarized as follows:

i. No fit for fewer than i0 lines can be considered significant.

2. The fit must significantly decrease the scatter. Mathematically

we insist that

SDf/SD° < .9

where SD° is the standard deviation of the observed velocities in the

sample and SDf is the standard deviation for the differences between

observed and predicted (from the regression fit) velocities for each

line in the sample. Ideally this requirement should be wrltten in terms

of a function of n, the number of lines in the sample. However, after

samples containing less than i0 lines have been eliminated, and consider-

ing the relatively limited typical sample sizes (25-100 lines) used

here, the constant .9 should suffice.

3. A coefficient in the regression fit is deemed si_nlficant if

and only if the range for that coefficient is greater than the original

standard deviation SD°:

_ SD° . (4a)
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The coefficient is marginally significant if

_ SDf . (45)

In Table 3 the results of the regression for one plate each of B Peg,

L2 Pup ands Car, for 8 plates of RT Cyg, and for 7 plates of Z Oph are

summarized. Those coefficients which satisfy Equation 4a are underlined

with a solid line; those which satisfy Equation 4b are underlined with

a dashed llne; coefficients without underlining are not significant.

Reassuringly, 8 Peg is found to contain no significant velocity correla-

tions by our criteria. The case from Tables I and 2 which best describes

each plate is listed in Table 3 also; parentheses and double assignments

are used for cases which do not satisfy criterion 2 or where only one of

the coefficients is significant by Equation 4a.

An immediately Striking result is the large number of d and c,d

results for plates with fairly large scatter. In an attempt to further

clarify the interpretation of these cases, to distinguish between the

two possible interpretations suggested in Table 2, we have plotted

histograms of velocity for various groups of lines: low excitation (0-

1 eV) absorption lines (0), moderate excitation (i-3 eV) absorption

lines (X), high excitation (>3 eV) absorption lines (+), absorption

lines of ions (II), emission lines of neutral atoms other than H (Fe,

Cr, etc.) and ions (Ell), and emission lines of hydrogen (H,H'). Such

plots are shown in Figures 7 to 12 for 8 Peg, L2 Pup, S Car, RT Cyg at

maximum (DAO 10157, 10162) and at +33/34d (DAO 7631, 7641) and Z Oph at

+47d (Pc 3237, 3238). These particular examples were selected as those
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which most clearly illustrate the interpretation of several different

cases with the shockwave model.

For B Peg (DAO 10936, Figure 7) we find a nearly Gaussian distribu-

tion with small scatter, mostly low excitation lines (n(l-3 eV)/n (0-

3 eV) = .35 and no lines with ×e > 3 eV) and no emission lines. This

agrees with our expectation that B Peg does not have extensive velocity

gradients, and suggests that our method produces significant results

only for stars which are truly "abnormal".

The histogram of velocities for L2 Pup (Figure 8) suggests that

most of the lines are formed above the shock. The most probably stellar

velocity is _53 km/s giving pre-shock infall velocity _5 km/s and post-

shock outward velocity also _5 km/s. The lower shock (from the emission

lines of H and Si) is near _40 km/s, i.e., rising with velocity relative

to the star _13 km/s.

For S Car (Figure 9) the interpretation is less straightforward.

From the location of the H emission lines the lower shock post shock

velocity appears to lie 280 km/s; from the absorption lines of the ions

there appears to be preshock infalling material at _300 km/s. There are

peaks in low excitation at 288 km/s (= most likely stellar velocity?)

and _291 km/s and peaks in 1-3 eV lines around 283 km/s and 294 km/s.

Following the notation of Figure i it seems likely that we are seeing

both shocks, with velocities A = 288 km/s, C = 294 km/s, D = 283 km/s,

G = 300 km/s and H = 280 km/s. This means outward velocities relative

to the star of 5 km/s (upper shock) and 8 km/s (lower shock), inward

velocities of 6 km/s and 12 km/s for the two shocks, or total shock
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amplitudes of ii km/s and 20 km/s for the two shocks. This is in exact

agreement with Shinkawa (1973) who found velocity curve amplitudes of

ii km/s (visual) and 20 km/s (infrared).

A common feature of all the velocity histograms is the concentra-

tion of the absorption lines of certain ions on the red edge of the main

velocity peak. The interpretation of this was suggested by Figure 2:

these lines are probably formed in the region immediately ahead of the

shock where radiative ionization of Ba, Sr, Sc, etc. has taken place.

These lines are then the best indicators of the limiting infall velocity

of the material ahead of the shock.

In Figures 10-12 the velocities A-H have been indicated as far as

it is possible to locate them. For RT Cyg near maximum both the red

plate (DAO 10157) and the Glue plate (DAO 10162) give the same mean

absorption line velocity, the same scatter, and the similar ratios of

low excitation to high excitation lines, suggesting both show lines from

the same region. The red plate includes one possible split line, VI(19)

X 6292, with Av = 15 km/s which may be the amplitude of the upper shock.

The red component of this llne agrees with the absorption lines of ions

(in DAO 10162) in placing the pre-shock infall velocity (C) near -109 km/s.

The emission llne velocities from hydrogen are particularly unreliable

near maximum, when overlying absorption is strongest, but all the lines

together suggest the existence of shocks with post shock velocities

D Z -125 km/s and H Z -131 km/s.

Figure ii shows the clearest case of resolved line splitting, plate

DAO 7641 of RT Cyg at 34d, with the blue plate DAO 763i taken one day
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previously. There clearly are two groups of velocities peaking near

-113 km/s and -128 km/s. In Table 3 two analyses of 7641 are listed:

one for a set of velocity measurements made with a single average

velocity used for the split lines (7641 A) and one set of measurements

(7641 B), plotted in Figure 12, which includes separate determinations

for each component. The first determination yielded case d2 (unresolved

doubling, large scatter); this became case b (post shock region) when

the red components of the doubled lines were excluded from the fit.

This pair of plates thus provides dramatic confirmation of the shock

interpretation of the regression coefficients for the absorption line

velocities.

A final very interesting/pair of consecutive plates of Z Oph are
o

shown in Figure 12. Pc 3237 is a red plate (_ 5567-6707 A) and Pc 3238

@

is a blue plate (4156-4571 A) both taken at phase +47 d. In the red we

are clearly seeing below the shock, with a preponderence of high excita-

tion lines, large scatter, and <v> = -93 km/s or net outward velocity

(based on an estimated stellar velocity of -85 km/s) of _8 km/s. The

lines in the blue plate, on the other hand, clearly originate above the

shock, with more low excitation lines, less scatter, and <v> = -80 km/s

suggesting infall velocity _5 km/s. Confirmation here also comes from

the "anomalous" absorption and emission lines in the blue plate, which

extend past the mean velocity of the red plate.

In Table 4 we summarize some known properties of the four long

period variable stars in this study, with the shock amplitudes and

stellar velocities suggested by the present analysis. For these four
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stars, within the accuracy of the present analysis, the amplitude of the

reversing layer shock near maximum light appears to be 15 ± 5 km/s,

with no obvious dependence on period or spectral type.

III. GENERAL CONCLUSIONS

The scatter which is frequently found in velocity measurements of

absorption lines in long period variables is probably the result of a

shock of moderate amplitude (10-20 km/s) located in or near the revers-

ing layer. The frequently observed correlations of velocity with excita-

tion and ionization potential are a result of the velocity gradients

produced by this shock in the atmosphere. A straight-forward linear

regression analysis with parameters A, S, Xe, and Xi is an effective way

of determining the region of formation of the absorption lines for a

given date and wavelength region. We have presented here a simple

interpretation of the signs of the coefficients of the regression

analysis in terms of case a: preshock; case b: post shock; cases c or

d: across the shock, together with criteria for evaluating the validity

of the fit. Finally, careful analYsis of a series of plates for four

long period variable stars has allowed us to estimate the amplitude of

the reversing layer shock and also the most probable stellar velocity

for these stars (Table 4). The results are in substantial agreement

with previous velocity observations where such are available.
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RADIUS

Figure i. Schematic shock structure and regions of line formation: A, stellar
velocity; B to C: increasing excitation pre shock velocities; D:

post shock velocity; D to E or F: decreasing excitation; G: higher

excitation pre shock region for the lower shock; H: rising post shoc]

region, hydrogen emission line formation.
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Figure 2. Plot of range of i/_ coefficient vs. range of S coefficient for RT
Cyg (A), Z Oph ( O ), S Car (0), and L2 Pup (O), Error bars are
standard deviations of observed velocities. Shaded region is for-
bidden region according to cases a-d of Table 1 and assuming a
residual scatter of _2 km/s.
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Figure 3. Coefficient ranges for Xi vs. Xe. Symbols and shading as for
Figure 2.
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Figure 4. Coefficientranges for i/l vs. X; symbolsas in Figures 1 and 2.
Each quadrantrepresentsone case of Table 1 and is labelled
accordingly.
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Figure 5. Coefficient ranges for S vs. Xi; symbols and labelling of cases as
in Figure 4.
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Figure 6. Running solution for S Car D895. The error bars represent ±SD,
the standard deviation of the observed velocities. The arrows

indicate the coefficients for the fit for the entire plate. The

positive X- dependence is clearly supported by the running
solution; the two points which are negative come from the two

sets of ten lines containing _4226.73 of Cal (2) which has an

"anomalous" velocity of 288.8 km/s for its low inoization potential
of 6.09 eV.
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Figure 7. Heliocentric velocity histogram for 8 Peg. The mean absorption
line velocity is 9.3 km/s. The larger scatter in the higher

excitation lines may arise in part from misidentification of some

lines as high excitation atomic lines rather than e.g. molecular

features. Symbols for Figures 7-12:0 = lines from 0-i eV levels;

X: 1-3 eV; +: >3 eV; II: absorption by ions; Ell, Cr, Fe, H,
etc. = emission lines.
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V, K,M/S

Figure 8. Heliocentricvelocitieshistogramfor L Pup. Probably location
of velocitiesas characterizedby Figure 1 are indicated: A =
stellervelocity= 53 km/s; C = preshockvelocityof upper shock
59 km/s; D = post shock velocityof upper shock=47 km/s, H =

psot shock velocity of lower shock=43 km/s.
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Figure 9. Helolcentrlcvelocityhistogramfor S Car. Velocitiesas
characterizedby Figure 1 are indicated: A =288 km/s, C = 294
km/s, G = 300 km/s, D=283 km/s, and H _ 280 km/s.
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Figure i0. Velocity histogram for RT Cyg at maximum: DAO 10157 (_6000 _) and

DAO 10162 (_4000 _). Assignment of velocities A (stellar), D (post
shock), C (pre shock) and H (hydrogen emission) are noted as for

Figures 8, 9. (There is an additional hydrogen emission line at
-147 km/s which is not shown.)
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Figure ii. Velocity histograms for RT Cyg at +33/34d: DAO 7631 (_4000 A) and
7641B (_6000 A, with components of doubled lines indicated).

603

i
!
i
I



Z OPH

PC 5237

-F 47 DAYS

D C
I

0
0

I
-105 -I00 -95 -90 - 85 -80 -75

V, KM/S

PC :5238 D C
+ 47 DAYS I

8',;
00o

cR O(
H' CR
V V GR II

I Ell I MN HI
-105 -I00 -95 -90 -85 -80 -75

V, K M/S

Figure 12. Velocity histogram for Z Oph at 47: PC 3237 (red) and 3238 (blue).

The blue plate clearly indicates the pre-shock Velocity C =

-80 km/s; the red plate gives the post shock velocity D = -93 km/s.
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Table i. AllowedCoefficientSigns

X = i/_ S Xi Xe Position of Velocity gradient
reversing layer (outward velocity

Case relative to source positive)
of excitation

a - - + + above positive

b .... below positive

c + + + + below negative

d + + - - above negative
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Table 2. Shock Model Interpretation of Regression Coefficients

Case Region Expected corollary behavior

a above shock "mostly low excitation lines (_ i eV)
•lines redshifted(_ i0 km/s)
•higher excitationlines more red-
shifted
•small scatterin velocity

b below shock -many higher excitationlines
(21 eV)
•larger scatterthan case a
•lines at v, to blueshifted(_ 5 km/s)
•higher excitationlines more blue-
shifted
•dependenceon ionizationpotential

c cl. immediate post- .very strong Xi dependence
shock region .moderate scatter

•blueshift predominant

c2. Unresolved -very large scatter

doubling and .two velocities-favored in histograms

mixture of pre -broad features and apparent blends
and post shock at intermediatevelocities
lines, especially -linesboth redshiftedand blueshifted
high excitation comparedto v,
lines .exclusionof high excitationlines

should convertcase c2 to case a,
with lower scatter.

d dl. immediatepre -strongXe and Xi dependence
shock region "smallscatter

d2. unresolved "Xe dependence
doublingof low .largescatter
excitationlines .broadfeaturesand apparentblends

•exclusionof low excitationlines
convertsd to b, with smaller
scatter.
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Table3. Resultsof theRegresslonAnalysls

n(l-3) SDo SDf#SDo I/X S Xi Xe CasePlate(1) Phase AA (n0-SeV) <v> n(0-3------_

8 Peg DAO 10936 4325-4606 63 9.3 .36 1.4 .97 - .7 - .4 - .1 -1.0 --
L2 Pup D 888 3770-4427 89 53.2 .20 1.8 .88 + 1.9 + 1.4 - .5 --+3"2c
S Car D 895 3835-4693 106 291.7 .37 3.6 .67 + 1.6 - .i +6.3 +4.9 a,c

RT Cyg: - id 5866-6599 36 -113.9 .64 2.4 85 - 1.2 - .6 +1.9 +2.5 a,e
DAO 10157 0dDAO 10162 3797-4586 190 -113.6 .45 2.0 .89 + 2.6 - 1.4 - .6 +1.5 e,d
10157+10162 226 -113.7 .48 4.3 .93 + 4.9 + .8 + .5 + .0 c,d

Pb 14597(^. + 8d 6141-6599 12 -iii.i .6 6.6 .88 - .i - 3.3 +8.0 - .5 a,c
Pb 14598"z) + 8d 7511-7714 3 -120.4 .3 7.9 .....
14597+14598 15 -112.6 .5 7.0 .94 + 2.6 - 2.2 +2.3 -6.4 --

DAO 9345 +i0d. 5866-6563 26 -136.7 .81 4.6 .59 + 4.9 +10.7 -4.7 -i.0 d
DAO 9351 +iia 5889-6678 55 -125.7 .80 3.9 .72 + 3.2 + 1.8 -6.4 +2.1 (d)
9345+9351 81 -129.2 .80 4.2 .72 + 3.4 + 5.2 -6.1 -2.1 d

• DAO 7631 _. +33d. 4351-4722 55 -113.2 .29 2.0 .88 - 2.9 - i.i -i.i + .6 a,b

DAO7641A(,_,) +34a. 5889-6632 30 -125.1 .80 4.8 .83 + 4.8 + 5.3 - .9 -4.5 (d)DAO 7641B_) +34a 6090-6613 20 -123.7 .63 4.9 .86 - 4.1 - 8.7 -5.6 - .4 b_4
7631+7641B 75 -116 .38 3.3 .94 - 1.2 - 2.0 -2.8 -2.5 --

Z Oph: - 8dPc 10318 3905-4482 22 - 81.8 .30 2.3 .88 + .7 + .8 +1.3 +2.9 a,c
Pc 3184... + 5d. 5857-6624 15 - 86.4 .73 7.5 .81 + 7.0 + 0.2 +7.2 -8.9 c,d
EC 2688t_) +36_. 4861-6172 28 -87.5 .46 2.5 .74 - 2.6 + 5.0 +7.6 -1.4 c,a

-- Pc 7840 +44 d. 3770-4496 42 - 84.7 .19 2.8 .88 + 2.7 + 2.2 -2.7 +3.5 c,d
Pc 7846 +44d 5426-6743 44 - 88.5 .68 4.9 .82 - 1.4 + 7.0 -1.0 -3.2 e,d

7840+7846 86 - 86.6 .44 4.4 .82 + 5.3 + 4.2 -2.9 - .6 c,d
Pc 3237 +47d. 5567-6707 30 - 92.2 .83 4.8 .84 - 2.4 + 7.6 -1.0 -2.7 c,d
Pc 3238 +47e 4156-4571 41 - 79.9 .12 1.2 .95 + 1.2 + .4 - .3 + .5 (a)

3237+3238 71 - 85.1 .42 6.9 .46 +13.4 + 2.8 -1.2 -3.7 d

(1)Platecoding and dispersions: DAO" Dominion Astrophysical Observatory 48"; blue plates 6 _/mm,red plates I0 _/mm.
o " ! o

Pb: Hale Observatories 200"; 7 A/ram. Pc: Hale Observatories 200 '; blue plates 9 A/ram, red plates 13.5 A/ram.

D: Cerro Tololo Interamerican Observatory 60"; blue plates 9 _/mm. EC: Lick Observatory 120',; 16 _/mm.

(2)Some high excitation lines split, with v = -113 km/s, -127 km/s

(3)7641Atreatsall linesas single;7641Bresolvessplitlineswith v = -128km/s,-113km/s.

(4)Thlsplatecontainsseveralsplitlinesand many broadones.



Table 4. Properties of the four stars studied. Periods, mean spectral

types, and maximum visual magnitudes from Clayton and Feast

(1969) and Feast (1963); visual amplitudes from Campbell (1955)

and Kukarkin et al., GCVS; velocities and shock amplitudes from

the present study. Both v, and Av are uncertain by ±3 km/s.

L2 Pup S Car RT Cyg Z Oph

Period 141 d 150 d 191 d 350d

Spectral Type

at maximum MSe MOe M2e K4ep

mv (mean max.) 2.6 5.7 7.3 8.1

_m 3.4 2.7 4.5 4.0v

v,,km/s 53 288 -i13 -85

Av,km/s 17 I I120_ 13-16 13-16
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Discussion

Belserene: Did you discuss the objectivity of your statistical criteria

with a mathematician, perhaps?

Willson: That's a terrible question. I showed them to a mathematician. He

made very little comment. It's a semi-empirical rule. I'm sure that there

are mathematical arguments, but they depend on sample size, the reliability

of the measurements, etc. Those parameters are so uncertain that the rule of

thumb and iterative consistency seem to be pretty good for the first round.

Actually, because so many cases turn out to be across the shock, I'm not

sure that we learn too much from the coefficients themselves. I tend to llke

the histograms better, but we started off with the other part.
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