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ABSTRACT
The observed power spectrum of the solar five minute
oscillations is discussed from the viewpoint that the oscil-
lations are excited by turbulent convection. The observations
place significant constraints on the theory, and suggest

constraints on the solar model structure.
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I. INTRODUCTION

The solar five minute oscillations provide a sensitive probe of the
properties of the solar atmosphere and upper convection zone, and a
challenge to theories which attempt to explain the amplitude of the
oéci]]ations as a function of frequency and spatial wave number. This
paper discusses some properties of the power spectrum of the oscillations,
in the context of the Specific excitation mechanism described by Goldreich
and Keeley (1977). It also discusses the effect of the atmospheric
temperature‘profile, and the mechanical boundary condition. In §III the
observed poWer spectrum as a function of aperture size is used to suggest
constraints on the theoretical surface velocity of individual normal modes
having periods near five minutes. It has already been noted by Ulrich and
- Rhodes (1977), that the frequency spectrum is better represented by solar
models with mixing length equal to two or three pressure scale heights.
It is shown in §IV that the steep-1ow frequency side of the peak in the
power spectrum is also more readily exp]éined if the mixing length is
greater than one scale height. The high frequency end of the power

spectrum is also discussed.

II. BRIEF DESCRIPTION OF OBSERVATIONAL DATA
The main observational data to be éonsidered here are the shape of
the power spectrum, and the dependence of the power density at a given
frequency, on the horizontal scale observed. Examples of the data available
are given by Fossat and Ricord (1975), and Fossat, Grec, and Slaughter (1977).
For observations through circular apertures, the power spectrum shows a .
_rather sharp peak very near 5 minute period,_and the position and shape are

rather insensitive to aperture diameter over the range from 22" up to

679



several minutes of arc. One of the most striking features is the steep
rise on the Tow frequency side of the peak; the power density increases
by a factor of about 6.5 between about 7 minutes and 5 minutes. On the
high frequency side, the drop-off is roughly half as steep. An additional
piece of 1nformation is the fall-off in power density at the peak, as a
function of aperture size. The data of Fossat and Ricord (1975) suggest
a drop by a factor ~2.5 in power density, when the aperture diameter goes

from 22" to 60".

ITI. THE RELATIVE CONTRIBUTION OF DIFFERENT SPHERICAL HARMONIC MODES

a) Theoretical result of.the averaging process.

Consider observations made through a circular aperture sufficiently
small that the region viewed on the solar surface subtends a small solid
angle at the center of the sun. Then the sphericity of the surface can be
neglected and the vertical component of velocity can be written in the
form

-jw, _t
V(e, oy t) =) v, Yo (e.p)e M,
Lm '

in which 8 and ¢ are spherical polar coordinate angles, YLm is a spherical
harmonic, and w is the oscillation frequency. Vim is the velocity amplitude
for a given Lm mode. The spatial averaging can be carried out most simply
if the polar axis of the coordinatesis chosen to be the line of sight.

Let Go be the angular radius of the disc as seen from the center of the

sun. Then
1
-jw, t
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where P[ is an associated Legendre function. For Leo << 1, but 8p<< 1

—J

V = Z v[_oe LO (2[."'])2
L

and for Le0 > 1, but 0, << 1,

T i) ) ot

The theoretical calculations give mean square velocities for each
normal mode; these are assumed to add incoherently. Thus the formulae

above yield

2
2=y v (B, Leg <<, and
L

v :E: v TE§_73 cos KL ;) - %EJ » Loy > 1.

To compare with observations made with a finite bandwidth Aw, the
sum over L's is taken for all modes having frequencies within that band.
If Aw is not too small, there will be one or more modes with no radial
nodes, one or more with one radial node, one dr more with two radial nodes,
etc., contributing. Within each such group the L value will vary over a
range depending on the bandwidth dw, and the L values involved in different
groups will be quite different except when L itself is small or the bandwidth
is wide. From the calculated relation between frequency and L for modes

AL

with a‘fixed number of radial nodes, T= 2 73-. Thus the number of

modes expected in Aw is ~2 L é%,-provided this number is greater than unity;
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if the bandwidth is very small some groups may not contribute at all.
In this case, the bandwidth of the individual normal modes may be

2
important. If within each group it is assumed that VL is the same, the

power can then be written as .

2 2 (2L+]
¢ T B ), s,

L
2 - bw 2 _4 1 2[(1+yg - 30
v v > W T (2L)cos2[(Lezde, - 2], Lo, >> 1.
L |

where the sum now ié bver the central L values of each group. The power
per unit frequency interval follows directly from these formulae.
b) Trial distributions of vL2

It is instructive to plug in some trial distributions for vL2 as a
function of L, to see whether any clues to the actual distribution of
mode energies in the sun can be obtained. The L values for the groups
depend on w; for definiteness, a frequency w = 2 x 10~2 sec-! was chosen.
Approximate L values for groups near this frequency are as follows, for
a model with mixing-length equal to one pressure scale height: 1004, 620,
386, 270, 195, 150, 120, 98, 80, 68, 56, 50, 43, 36, 30, 25, 19. Relative
power densities were calculated corresponding to the following three cases:
-1

Case 1) vL2 = 1 for all L. Case 2) vL2 = L, Case 3) v

calculations were simplified by omitting the cos2? factor, and by using the

2 =] The

asymptotic form for small Lo, up to the pqi?t where it intersected the form
for large L6y . This occurred at Lo, =~ 2i"3 . The résu]ts are shown for
six different aperture sizes, in table 2. The most important point to note
is that in all three cases, the fatio of power densities at 22" and 60" is

greater than the observed ratio of 2.5 noted earlier. Although these
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calculations are extremely crude, they suggest that there may be problems

if vf' is qpnstant or an increasing function of L. In fact, current
calculations (Keeley 1977) suggest that vﬁz increases with L for periods
longer than ~3.5 minutes, if turbulence provides the only damping mechanism.
This suggests that it will be worthwhile to repeat the calculations
presented in table 1, using an accurate representation of the Legendre
function. Results similar to those of the crude caTcu]ation may present

a severe challenge to the turbulent excitation theory, and a significant
constraint on any theory which predicts amplitudes of individual normal
modes. If, on the other hand, the observations at 22" suffer from seeing

or gUiding effects which reduce the power observed at high spatial wave

number, then the results may be compatible.

IV. THE SHAPE OF THE POWER SPECTRUM

Since the observations suggest that the shape is relatively independent
of aperture size, it ‘is convenient to discuss the power spectrum corresponding
to fixed values of L. Results for L = 100, 200, and 300, all of which
contribute to the power at periods as long as about 10 minutes, are
considered in detail below. The discussion naturally divides into consider-
ation of the energy to which an individual mode is excited, and the shape
of the eigenfunction for the velocity amplitude. Of course, these are not
totally independent, but this separation will be useful.

The preliminary results reported by Keeley (1977) showed that for
models with mixing Tength equal to one or two pressure scale heights, the
surface (ve]ocity)a for 200 < L < 600 had a peak near w = 2 x 10~2 (period
~5.25 minutes). The peak was steepest on the low frequency side, in

general agreement with observations. However, it was noted at that time
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that the peak was not nearly sharp enough. These calculations include
only turbulent dissipation in the calculation of the excitation energy,
and the eigenfunctions were calculated for the adiabatic cas;.
a) The shape of the eigenfunctions

It is convenient to define an effective mass as the excitation energy
required to produce a v? (averaged over the surface, and in time) of
(1 cm/sec)?, at any particular depth in the atmosphere. This depends on
the shape of the eigenfunction, but not on the actual excitation energy.
The actual v2 is obtained as the quotient of the excitation energy and the
effective mass.

On the low frequency side of the peak, the increase in v2 is due to
an initial decrease in effective mass as the number of radial nodes in the
eigenfunction increases. Physically, this occurs because the kinetic
energy of the higher modes is more concentrated in the surface region,
where the density is lower, and less energy is required to produce a given
velocity. In the models discussed by Keeley, the excitation energy decreased
with w, but this effect was more than compensated by the decrease in effective
mass, forw < 2 x 1072, At higher.frequencies (in a sequence with fixed L)
the effective mass dropped off relatively slowly, and the net result was
the high-frequency cut-off noted above. |

The problem of insufficient steepness at low frequency can be approached
from two directions. The first is to construct models in which the fall-off
of effective mass is more rapid in the frequency range w = 1.5 x 1072 to
2 x 10-2, and the second is to find models in which the excitation energy
decreases more slowly with w, at least for periods greater than about 5

minutes. The latter problem is discussed in b) below. The ratio of
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effective masses over a given frequency range is conveniently expressed

as - log (m(wz)/m(w1))/1og(g§0. In fab]e 2 this ratio is shown for solar
models with three different values of the mixing length. The eigenfrequencies
are not :the same in these three cases, but w; ~ 1.5 x 10':1 and w, ~ 2 x 1072
for the functions chosen. It is clear from the table that the model with
largest mixing length is the most favorable, at a]]kL values considered.

If the excitation energies wefe roughly equal over this frequency range,

the slope would be almost steep enough. Of course, the exact comparison
with observations through a circular aperture requiréé that the results

for various L values be combined as discussed fn §III'abové. The results
shown in table 2 are for models which have a fairly realistic atmosphere

out to a temperature minimum of 4180°K.

Some preliminary ca1cu1ation§ of nonadiabatic eigenfunctions have
also been done. Including turbu]ent'viscdsity in the equations of motion
does not have a significant effect on the shape of the eigenfunction, as
reflected in the effective masses for the low frequency, low L modes
studied so far. On'the other hand, a fully nonadiabatic treatment of
the radiative dissipation has a significént effect, apparent]y'because
the dissipation is very strongly localized near the top of the convection
zone.. For the cases studiéd, the resuit is to steepen the decrease in
effective masses with increasing frequency, and thus to steepen the
Tow-frequency side of the peak of the power spectrum. The nonadiabatic
calculations can't at present be done correct]y_with'a realistic solar
atmosphere, since the radiationflux is not given simply in ;erms of the
temperature gradient, as in the approxim;tion usually used for stellar

interiors. Also, the effects of convection are not included.
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i) Effect of surface temperature and the mechanical boundary condition.

Models computed using the diffusion approximation all the way to the
surface had surface temperatures of about 4880°. A more realistic value
of T at the teﬁperature minimum is about 4180° (Allen 1976). Adiabatic
eigenfunctions and frequencies were computed for the diffusion models, and
for models in which the empirical temperature profile was uﬁed at the
surface. In addition, the models were computed with two different boundary
conditions, one being that the Lagrangian pressure perturbation vanish at
the surface, and the other that an outgoing wave existed (evanescent or
propagating) with radial wave number determined_as if the surface had an
isothgrma] region attached to it at the boundary point of the model. The
effect of a lower temperature af the surface is to make the waves more
evanescent, and is expected to be most important at high frequency. At
periods S 5 minutes, it was found that with the GLP_= 0 boundary condition
the low T model had Tower effective masses (at optical depth 1073) and a
slightly steeper decline in effective masses with increasing w than the
high surface temperature model. With the outgoing wave condition the
situation was the opposite for both the magnitude of the effective mass,
and the ratios of effective masses. 1In general, for either surface
temperature, modelswith the outgoing wave condition had lower effective'
masses. The differences were largest at the highest frequency, where
the waves were closest to being able to propagate. Significant changes
in eigenfrequencies occurred only when the modes were close to propagating.
Otherwise, the two atmosphere models and two boundary conditions gave

nearly equal frequencies for the same physical oscillation modes.
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b) The Excitation Energy

In the theory described by Goldreich and Keeley (1977), the expression
for the excitation energy of a normal mode is given in the form of a
quotient of two numbers. The denominator is the damping rate of the
normal mode, and the numerator is a double integral, over depth in the
model, énd over eddy sizes at a given depth. An improved approximatibn to
the inner integral has been used in the calculations described here.

| i) Low frequency behaviour

In the discussion of the low frequency side of the peak in the power
spectrum, it was noted that if the excitation energies over that frequency
range were roughly equa]; then the steep decline in effective mass for the
high mixing-length models produced a slope much more in Tine with the
Aobservations. However, for all three mixing Tengths tested, the excitation
energy decreased significantly with increasing frequency. One way of
equalizing the ekcitation energies for periods greater than about 5 minutes
is to make all modes derive theAmain contribution to their excitation
energy from a single ﬁet of eddies. The desired result will then be
expected, provided the equipartitidn argument (Goldreich and Keeley 1977)
is apprbximate]y valid. The result can be achieved, in fact, by a
decrease in the correlation time for eddies in the outer part of the
convection zone. Ifwr <1atws 2x 10"2 for the largest, most
energetic eddies at a givén depth, then all modes withw < 2 x 1072 will
tend towards energy equipartition with these eddies. Ifw Te> 1 for the
largest eddiés, then the modes will tehd to equipartitiop with a smaller,
less energetic eddy having a corre]étion time safisfying wT~ 1. fn the
present theory, the correlation time for the largest eddies is taken to.be

the mixing length divided by the convective velocity, and is scaled to
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smaller eddies by assuming a Koimogoroff spectrum. Then the integral over
eddy sizes depends on the correlation time assumed for the largest eddies

in the form

QQ((D) =T g—x x/ -3 exp ('A]T“’ZTCZ X2)

This is a slow function of o for w Te €< 1, but drops like 0=7+3 for
w T, >> 1. The changeover between the two types of behaviour is rather
gradual; thus a change in Te which shifts the low frequency modes into
the flat region results in a slower fall-off of the excitation energy,
and therefore of the power spectrum, at high frequency.

The behaviour of excitation energy expected from the above discussion
was verified by artificially increasing the convective velocity near the
surface of the convection zone. A factor of less than two was sufficient
to achieve the desired resﬁ]t. Thus it appears possible to reproduce,
more or less, the steep rise in the power spectrum by a decrease in
correlation time, in combination with a model with large mixing length.

Of course, some of this gain is at the expense of the high-frequency
fall-off.
ii) High frequency behaviour

The power spectrum as presently computed does not fall off very fast
at high frequencies, at fixed L, except for L > 1000 or so (Keeley 1977).
If such high L values do make substantial contribution to the power
observed through typical apertures, they will improve the shape of the
high frequency end substantially. However, it seems likely that radiative

damping will play a significant role in decreasing the excitation energy
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for high-frequency modes. The only published nonadiabatic results on
radiative damping are those of Ando and Osaki. (1975, 1977). They find
that the modes around 5 minutes are linearly unstable, but that modes
near 3 minutes are stable. Strong damping sets in at somewhat lower
frequency in their 1977 calculations, which include a chromosphere and
corona. For the present models, the turbulent damping exceeds the
radiative driving in all cases, but they are comparable for some modes.
The result of a negative contribution to the damping would be an increase
in the excitation energy of those modes; this could have a significant
effect on the spectrum. For periods greater than about 7 minutes, the
radiative growth or decay rate is relatively small compared to the
turbulent decay rate. One important source of uncertainty is the
calculation of the damping by the turbulent viscosity approximation.

In addition, the calculations by Ando and Osaki do not include convection,
and also do not calculate the radiative flux perturbation strictly |
correctly in the part of their model which employs an empirical T(r) .
relation. Some preliminary nonadiabatic calculations using models with
the high-temperature boundary, but no convective perturbations, find
stability for all modes checked in the 3 to 10 minute range, without the
effect of turbulent viscosity. A further source of uncertainty is the
convective velocity profile (and magnitude) in the outer part of the
convection zone, since this region contributes strongly to both the turbulent

damping, and the total excitation.
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V. SUMMARY OF RESULTS

The crude calculation of the power density near five minute period,
as a function of aperture size, is not in agreement with observations;
if a more accurate calculation establishes this discrepancy more firmly,
then the observations may provide a powerful constraint on any theory of
the excitation of the oscillations. In the present state of the theory,
it seems possible to explain the steep low frequency side of the power
spectrum peak. This requires, however, that the mass‘distribution of the
sun be more 1ike that of a model with a mixing length of three pressure
scale heights, than one scale height. Important uncertainties in the
damping due to radiative and convective energy transport preclude any
strong statements about the high frequency end of the power spectrum; if
there is linear driving comparable to the turbulent damping for periods
near five minutes, this could have a significant effect on the sharpness

and position of the peak.
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269

Power density as a function of aperture size for three different assumptions

Case 1

Case 2

Case 3

Aperture
diameter

%

Le

Power density
L<lL

Power density
L> Lc

TotaT

Power density
L< L

Power density
L> LC

Total
Power density
L< L
Power density
L> Lc

Total

<2 i

< .00135

>.
3.25

3.25

2.69

2.69

6.52

6.52

1004

x 10

x 10

x 10

x 10

x 10

x 10

TABLE 1

Case 1:
Case 2:
Case 3:

5ll

.00325

4

4.66
3.87
8.53

1.84
2.96
4.80

3.27
5.32
3.80

18

x 10

x 10

x 10

x 10

2 -
sz 1
sz = L-1
vL =L
]0“ 22"
.0065 .0143
209 95
2.13 x 10°  4.38 x
1.65 x 10°  6.83 x
3.78 x 10°  1.12 x
2.97 x 100 2.63 x
7.40 x 107 1.39 x
1.03 x 102 1.65 x
1.95 x 103 8.23 x
4.45 x 102 4.68 x
3 .29«

2.40 x 10

about the velocities.

60 n

.0390

35

1.72

1.01
1.20
1.30

3.80

x 10
x 10
x 10

x 10
x 10
x 10

x 10
x 10
x 10

120"
.078
17

~0
3.02 x 10
3.02 x 10

3
3

~0 -
5

5

~1.82 x 10
~1.82 x 10

~0 [
8.7 x 10
8.7 x 10



TABLE 2

Logarithmic slope a 1ogA($:;ezE;ve mass) between w ~ 1.5 X 10'2 and w =~ 2 x 10'2,
at three optical depths, for three values bf mixing length/pressure scale height.
Mixing length 1 . 2 3
T =103 2.596 4306 4.944
L = 100 x =102 2.087 3.929 4.563
r=07  1.213 3.072 3.688
v =103 2.846 4.491 5.060
L = 200 r = 1072 2.426 4.150 4.719
T =0.7 1.561 3.378 3.949
=103 2.756 4.746 5.337
L = 300 x = 1072 2.323 4.419 5.011
T =0.7 1.517 3.676 4.271
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Discussion

A. Cox: You have this high value of the mixing length -- three pressure

scale heights —~ so how deep in either mass or temperatures does the eigen-
function have any size? Does it go in very deep -- 2000°K? Half way into
the Sun?

Keeley: Well, if you mean 0.1 of the surface amplitude, it goes in a very
short distance -- a few pércent of the radius. It doesn't go very deep into
the convection zone. For a reasonably low £ value -- say & = 10, which I
haven't shown -- then it goes a lot deeper. For 2 = 1000 it really stays

way out at the surface.
Shipman: Presumably, it does go more than one mixing length, however.

Keeley: Yes, the scale height is around 107 - 108 cm, and it goes in

farther than that.
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