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Abstract 

The effect of thin turbulent layers, including boundary layers 

and shear layers, on light propagation is examined from a theoretical 

point of view. In particular, a mathematical model is developed to 

describe the interaction between the aerodynamic or, more precisely, 

the density fluctuations and the electromagnetic field. It is 

assumed that the turbulence induces a normally distributed phase 

aberration which is a homogeneous random function in the plane of the 

aperture. Hypotheses concerning the density fluctuations in the 

layer sufficient to guarantee such a phase aberration are exhibited. 

The optical degradation is described in terms of the optical 

transfer function (OTF) and the Strehl ratio (I/IO) which are random. 

Expressions for the first and second moments of these two parameters 

are -developed from the definitions. Asymptotic ("large" aperture) 

approximations to these expressions are derived and discussed. / 
Finally, the exact and approximate results are compared for several 

"typical" values of the ratios of aperture diameter to scale of 

density fluctuations and rms phase aberration to wave length 

respectively. 
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1. Introduction 

The effect of turbulent layers on the propagation of electro- 

magnetic waves has drawn much attention over the past three decades. 

In 1950, Booker and Gordon [lldeveloped a theory which explained 

the scattering of radio waves in the troposphere. In 1956, Stine 

and Winovich [2] conducted an experimental investigation of light 

diffusion through turbulent boundary layers which tended to validate 

the applicability of the Booker-Gordon theory in this new context. 

Then, in 1971, Sutton [3] analyzed the Stine and Winovich data 

further and concluded that, for imaging apertures much larger than 

the turbulence scale size, scattering decreases contrast but not 

resolution. 

While the above investigators were examining the influence of 

turbulence on resolution by studying the induced scattering, others 

looked at the influence on the optical (or modulation) transfer 

function.Hufnagel and Stanley [41 developed an expression for the 

average or expected value of the MTF. In particular, they showed 

that the average transfer function can be written as the product of 

the diffraction limited transfer function and an attenuating factor 

which incorporates properties of the turbulence. Fried elaborated 

on this theme in a series of papers [5,6,7,8] in the late 1960's. 

Much of the recent theoretical development connecting optical and 

turbulent parameters has been summarized by Walters .[9]. 

In the present work, we will attempt to present the fundamental 

theory relating turbulence statistics and mean values of the optical 

parameters, describing in some detail the relevant statistical 

assumptions. Also, we will discuss the second moments of the optical 

parameters when the aperture is much larger than the scale of 

turbulence. 
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2. Mathematical Model of Aero-Optic Interaction 

The model described below does not originate with the author, 

but appears, at least implicitly, in much of the current literature 

on aero-optic interaction. Perhaps the most complete discussion has 

been given by Wolters 19 1. However, because the assumptions and 

hypotheses aren't always explicit, and because the development is 

not easily accessible in the literature, it is believed that the 

somewhat more thorough discussion here is warranted. 

We begin by assuming that the turbulent layer of thickness L 

induces a phase aberration but no amplitude degradation of the optical 

wave front (monochromatic of wave length X) . Hence the wave field 

u on the aperture of the receiving optics* can be described as 

follows (see Figure 1): 

where 
u(x,y) = exp [ikA (x,y)l, 

A(x,y) = n(x,y,4ds 
x L 

(2.1) 

= 
d 

[l+nl(x,y,s) 1 de 

L 
=L+ J nl (x,y,g) da 

0 

= L + Al(x,y). . 

In the above, k is the wave number (2~/h), n is the local refractive 

index, and n 1 is the deviation of the refractive index from its value 

* 
Even though we shall be discussing a passive receiving system, 

it should be noted that an active or propagating system (e.g., 

a high energy laser beam) would experience similar degradation. 
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in a vacuum. The expression (2.1) is the first order geometrical 

optics approximation, where it has been assumed that In11 << 1 [lo]. 

The phase shift A is sometimes called the optical length of the 

ray's path through the turbulent layer. (See, for example, [ll,p1151.) 

Without making some assumptions regarding the statistical nature 

of the random phase Al, further progress would be difficult if not 

impossible. In particular, we make two assumptions: 

(i) The random variable A,(x,y) is normally distributed 

for any x and y, 

and 

(ii) A,(x,y) is a weakly homogeneous random process; 

that is, 

<A1 (x,y) ’ = constant (2.2) 

<(A1 (xl,Yl) - <A1>)(Al(X2,y2) - <Al>)' = Nx2-xl~Y2-Y,+ 

where < > denotes ensemble average or mathematical 

expectation. 

Assumption (i) can be justified by considering the relationship 

between the optical parameter Al and the air density p. By the 

Gladstone-Dale law we have 

nl(x,y,4 = G P (x,y,4, (2.3) 

where G = 0.000223 m3/kg is the so-called Gladstone-Dale constant. 

Hence, substitution of(2.3) into (2.1) yields: 
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L 

A+,Y) = G 
I 

p (x,y,z) da. (2.4) 

0 

Assume that L >> RP, where Rs is the integral scale of the density 

fluctuations in the direction of wave propagation. It follows 

that we can partition the random layer into strata of thickness h, 

with h (and hence N) chosen so that 

R, < h = L/N << L . 

We then have that 
N jh 

(2.5) 

j=l (j-l)h 

But the random variables determined by the integrals in the sum 

(2.5) are approximately mutually independent (since h > a,); then, 

since N >> 1, the Central Limit Theorem [12, p.2661 gives the 

desired result. It should be observed that the assumption L >> L, 

is often satisfied; indeed, in practice, 

10 < L/R8 < 40. 

(See, for example, [13 , Tables 1 and 21.) 

The first of conditions (2.2) follows from (2.4) if we assume 

that < p(x,y,e) > depends solely on s and not on the aperture 

coordinates (x,y). The second condition, translation invariance of 

R, follows from the assumption that the covariance of the density 
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fluctuations, Rp, satisfies 

~p(~l,yl,41;x2,y~,~~) = ~,(x~-x~,Y~-Y~; 431'9 . 

Then L L 

R(x2-xl, y,-y,) = G2 
JJ 

RP(x2-xl, y2-y1; +532)d+3 ds2. 

0 0 

(2.6) 

(2.7) 

The assumption (2.6) is consistent with experimental evidence which 

suggests that the rms density and the turbulence scale length in 

any direction (i.e., $,, ky, or g5) vary with 3 [13]. 

In practice, it has been found that R P can, with good accuracy, 

be represented as follows r.14, Figure 2OT: 

5,(x2-x1,y2-yl; ~~"a'~' = Rp(x2-x1,y2-yl; u,v) (2.8) 

where 

u = (a1+a2)/2 

(2.9) 
V = 0 -0 2 1' 

But, making the change of variables (2.9) in (2.7) we find 
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R(x2-xl,y2-yl) = G2 2-51Y2-Y1i u,v) dv du 

2-x1,y2-y1; u,v) dv du l (2.10) 

The relations (2.8) and (2.10) allow calculation of R once the a 

2 variations of (5 ,Rx, R P Y' 
and kg have been determined. Finally, 

from (2.8) and (2.10) it can be shown that 

(2.11) 

for L >> kz . 
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3. Second Moments of Optical Parameters 

We proceed now to develop expressions for the second order 

statistics of the optical transfer function -r. We begin with the 

definition: 

'c (x,y) = ( 4/T) 
JJ 

u(s+ $, rl+ ?j, u*(s- 5, TI- $1 dEdn, (3.1) 

A 
X?Y 

where A 
XfY 

is the area common to two identical apertures (of unit 

diameter) displaced relative to each other a distance x and y along 

the 5 and II axes respectively. Note that ~(x,y) 3 0 if x2+y2 2 1. 
* 

Clearly, since u is random, then T is itself random. Hence, taking 

the expectation of (3.1) we obtain: the expectation of (3.1) we obtain: 

<-I (x,y) <-I (x,y) > = (4/T) > = (4/T) 

1 

<u(5+ 5, n+ 5) u*ts- $, l-l- --(5+ 5, n+ 5) u*LE- $, l-l- 

XlY 

= (h/IT) = (h/IT) JI JI ( 

< exp < exp ik [Al(E+ 5, T)+ $1 

XlY XlY 

= (4/Tr) = (4/Tr) JI ( JI ( exp exp -k2 MO,01 [R(O,O) - R(x,y) - R(x,y) 

XfY XfY 

= exp = exp -k2cr2 -k2cr2 [1 - [1 - r(x,y) 1 r(x,y) 1 TObbY) 1 TObbY) 1 

- $,I ’ 
1 

dS 

(3.2) 

where cr 2 = R(O,O) is the variance and r(x,y) is the correlation 

coefficient of the phase aberration A 1 and ro(x,y) is the diffraction 

* 
The aperture coordinates S,T-I,X, and y have been normalized with 

respect to the aperture diameter, D. Then (x,y) correspond to spatial 

frequencies (fx,fy) = (Dx/XR, Dy/AR), where R is the focal length 

of the optical system. 
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limited optical transfer function associated with the receiving 

optics. We have invoked both assumptions (i) and (ii) of Section 2 

in obtaining (3.2). Hence, the average optical transfer function is 

just the diffraction limited optical transfer function ~~ attenuated 

by the factor 

ratthY) = exp 
i 

- (2i~a/X)~[l - r(x,y) 1 . 
1 

(3.3) 

In general, to describe completely the random process ~(x,y), 

we must obtain correlations of all orders in addition to the 

expectation given by (3.2). This has in fact been accomplished by 

Barakat [IS) . We will be concerned here however only with the second 

order correlation or auto-covariance function. But by following 

the procedure outlined in the development of (3.2), it is a 

straightforward task to verify that the auto-covariance function for 

T is given by: 

RT(x,y,x',Y') = T(x,y)T(x',y')(4/~) 
att att 2 J-j-JJ [~(u.v)-l] d<dndC'dq', (3.4) 

A A 
XfY x',y' 

where 

u= 5'- 5 
t v=?-l-ll 

and 
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F(u,v) = exp (-~ZITC~@)~ [r(u+ *, v+ +) 

I-X -r(u+ x+, v+ y+ ) XI-X I 

-r(u- -, v- 9 ) 

+r(u- -*, v- 4 11 ‘+ 
1 l 

It should be observed that since the covariance function RT depends 

explicitly on x,y,x', and y' rather than on the differences xl--x and 

Y"Y1 the optical transfer function T is not a homogenous random 

process. Indeed, since we are considering only phase aberrations, 

IT(X,Y) 1 2 To(X,Y) 2 1 l Hence T is clearly not even normally 

distributed. A fuller discussion of this matter can be found in 1151. 

Before proceeding, note that the variance of ~(x,y) is given by 

c+Y) = RT(x,y;x,y) . (3.5) 

riJe turn now to the so-called Strehl ratio, I/I,, the ratio of 

the maximum intensity in the image plane with aberrations, I, to the 

maximum intensity without aberrations, IO, both in response to a 

point source. We will use the following definition (See, for example, 

116, P 881) : 
00 00 

I/IO = 
II 

T(X,Y) dx dy / 
ii 

To (x,y) dx dy . 

-00 -60 
Now since T,(x,y) is defined as the normallized convolution of the 

unaberrated pupil function, it can easily be shown (see, for example, 

II17 , p 1661 ) that 
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JJ ro(x,y) dx dy = a/4 l 

-00 

Hence (3.6) can be rewsitten as: 

I/IO = (4jlT) 
Jr 

't (x,y) dx dy . (3.7) 

-00 
It follows easily from (3.7) that the first and second moments of 

the Strehl ratio are given by: 
00 

< I/IO >".= (4/lT) 
JJ 

<T(x,y) > dx dy 

-0-3 

and 00 

u2 I/IO = (4/lT)2 RT(x,y,x',y') dx dy dx' dy' 

-00 

(3.8) 

(3.9) 

respectively. It is interesting to observe that if the fluctuations 

in T at different spatial frequencies (x,y) are perfectly correlated, 

then RT(X,Y,X',Y') = ~T(x,y)uT(x',y')and hence, from (3.g), 

uvIo = (4/r) 
JJ 

uT(x,y) dx dy (3.10) 

-00 

In this case, the rms Strehl ratio is determined simply by the volume 

under the rms optical transfer function. However, in general, the 

optical transfer function does not fluctuate uniformly over its width 

and so (3.10) cannot be expected to give accurate results. 
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The equations for the moments of T and I/IO developed above 

could in principle be used to obtain quantitative results for a 

given turbulent layer by utilizing a high speed digital computer to 

carry out the required integrations. This procedure can be quite time 

consuming however, especially for the four dimensional integrations 

of (3.4) and (3.9). However, by pursuing an asymptotic (D + a) 

analysis, an approximation to these integrals can be achieved. This 

approach will be pursued in Section 4 below. 

Before proceeding, we should remark that it is of some interest 

to consider the modulus of the optical transfer function, ITI, sometimes 

referred to as the modulation transfer function or MTF. Since T is 

in general a complex-valued function, the MTF does not yield information 

concerning the phase of T . However, in recent exneriments, Kelsall 

has utilized the fast shearing interferometer [lSl which measures the 

MTF rather than the desired optical transfer function. Although the 

two parameters are obviously not equivalent, there is a relationship 

between the two. In particular, it is not difficult to show from 

their respective definitions that: 

XT > < < MTF > < T 
0 

(3.11) - - 

and 
2 2 

U 
lTF' TL 

T," (1 - T.2 ) < T,” . 

att 
(3.12) 

Clearly, from (3.11) and (3.12), the MTF suffers less degradation 

than does the Optical transfer fWV2tiOn T . Note that even though, 

from (3.2), < T > is real, this does not necessarily imply that 

-c-r>= <MTF > . 
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4. Asymptotic (Large Aperture) Approximations 

The equations developed in Section 3 allow one, in principle, 

to calculate the first and second moments of the optical transfer 

function,~, and the Strehl ratio, I/Io. Indeed the expression (3.2) 

for <~z= is explicit and needs no further comment. However, the 

2 calculation of uT, Rr, <I/I, >, and u 2 
VI, 

require multiple numerical 

integrations which can consume large amounts of computer time. 

Furthermore, the exact expressions tend to conceal the influence 

of variables like rms aberration, (T, and aperture size, D, on the 

parameter in question. Hence, in this section, we will develop 

approximations for the moment expressions derived in Section 3 for 

the case D>>llx. 

Consider first the average Strehl ratio; by (3.2) and (3.8), 

we have: 00 

4 I/IO -k2a2[l-r(x,y)l 
I 

~~ (x,y) dxdy 

00 
-00 

= (4/r) exp (-k2cr2) JJ ( exp k2a2r(x,y) 
I 

r,(x,y)dxdy (4.1) 

-cm 

Now expand the exponential part of the integrand in a Taylor series, 
00 P 

k202r(x,y ) (k202) 
PJ rP(x,y) l 

p=Q 

Then, substitution into (4.1) yields: 
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< I/Io > = exp (-k202) (k202)' 
P: 

JJ 
P (x,y) 'c ,(x,Y) dx dy 

-00 

The expression (4.2) is exact; no approximations have yet been made. 

Now let's assume that r is of the form* 

r(x,y) = exp + (D/ay)2y2 1 . (4.3) 

We will consider the limit D/Rx + m while Rx/~ 
Y remains constant. 

Then (4.3) can be rewritten 

r(x,y) = exp (D/ax) x2 + (ix/by) 2y2 1 l (4.4) 

Clearly, as D/a, grows larger, the graph of r(x,y) becomes narrower. 

In fact, it is an easy matter to verify (keeping in mind that the 

volume under the delta function 6(x,y) is unity) that 

r%GY) s 
27l 

p2(D/gx) (D/ky) 
6 (X,Y) (4.5) 

as D/ix + Q), for any p > 0. The details of derivation of (4.5) can be 

found in the appendix. 

Substitution of (4.5) into (4.2) gives 
0-s 

JJ 6 (X,Y) To (X,Y) 

-00 
-. 

* 
This requires either that the scale lengths RX and R 

Y be constant or 

that a,(u) and a,(u) be replaced by average values in (2.8). 
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= exp (-k2cr2) 

00 
1+ 8 

c 
(k202)' 

(D/ "x' W "y' 
p=l P2P: I (4.6) 

as D/Rx + m. Since the sum occurring in (4.6) will appear again, 

let us define 
00 

F(x) = 
c 

XP 

2, l 

(4.7) 
p=l p p* 

(Note that this sum is convergent for all x.) Then, from (4.6), we 

I (4.8) 

as D/R, f =J. (For reference, the function F has been graphed over an 

interval of x sufficient for most conceivable aberrations; see 

Figure 2.) It might be observed that the second term of (4.8) can be 

viewed as the contribution from what I-Iogge and his colleagues called 

the incoherent beam 1191. They concluded that for a phase-aberrated 

beam, the far-field irradiance distribution can be written as the 

sum of two beams; one beam is the diffraction limited beam attenuated 

by the factor exp (-k202) and the other beam is much wider and 

contributes an amount, on-axis, proportional to the second term of 

(4.8). 

We turn our attention now to the variance of the optical 

transfer function. From (3.4) and (3.5), we have 

+bY) = T2(x,y) (4/a)2 exp -k202 g(blrSh') dE dn d<' dq', 
att JJJIJ( [ 

A A 
XfY X,Y (4.9) 
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where 

g(Sr rlr E', T-l') = r(u+x,v+y) - 2r(u,v) + r(u-x,v-y) 

u = 51-E 

v=q'-q . 

Following the procedure adopted in the analysis of <I/I~>, we expand 

the exponential in the integrand in a Taylor series and (4.9) becomes: 

00 

+bY) = 2 att(x,Y) (4/@2 
c 

(-1)P(k2a2)P 
P! 1111 sp( 5, rlr 5’ r1-1’1 dg dn dc’ fin’. 

p=l A A XrY XtY (4.10) 

The expression (4.10) is exact but not very useful as it stands. It 

remains to estimate the 4-dimensional integral in the case 

D >> !Lx . 

Again we assume that the correlation function r is of the form 

(4.3) and note that it approximates a delta function as D/Rx+ - . 

Specifically, we have the asymptotic approximation given by (4.5). 

Hence, each of the three terms in g (defined by (4.9) approach a 

delta function in shape. But, if (x,y) # (O,O), each delta function 

is centered at a different point in the u-v plane. In this case, 

cross terms in the product gp can be neglected and we have 

gP(E.,nrS',n') z= r'(u+x, V+y) + (-1)p2prp(u,v) + rp(u-x, v-y) 

2n % G(u+x,v+y) + (-l)P2P S(u,v) + fi (u-x,v-Y) I 
p2 (D/R,) O/fiy) 3 

(4.11) 
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as D/Rx + ~0 . Note that this approximation is least accurate near 

(X,Y) = w,w., Substitution of (4.11) into (4.10) gives 

0; (X,Y) QJ T2 (X,Y) 
att 

2ll 
D/R,) (WY) (4.12) 

It remains to evaluate the integral. 

We proceed now to analyze the first integral of (4.12). The 

remaining two will follow directly. We have 

6 (u+x,v+y) dEdrld<'d$ 

where G o is the unaberrated pupil 

1, vx2+y2 < l/2 - 
Go(x,Y) = 

0, . 

6 ( u+x , v+y) dEdqd$dr,' 

;A- 5) Go& %,n- 3) dEdiI , (4.13) 

function; i.e. 

I- - 
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From Figure 3, it can be seen that (4.13) is just the area of 

intersection of three circles of unit diameter. In fact, the middle 

circle contributes nothing, and we can rewrite (4.13) as follows: 

(x, 

JJJJ v+y)dCdndC'drl'.= ‘- JJ 6 (u+x, Go(S+ $,o+ $Go(5- 
3x 
T'n- 3, dcdn 

A A 
X,Y XfY --Qo 

=- 4” 42xJy) l (4.14) 

The remaining integrals in (4.12) can be evaluated similarly 

and we find: 

8 

(D/ax) (D/ay) att 
F(2k2~2)~o(x,y)+2F(-k2~2)~o(2x,2y), 

I 

(4.15) 

as D/'Lx + ~0 , where F is given by (4.7). 

One could conceivably carry out analogous arguments to estimate 

RT and hence ~~~~~~ . However this was not attempted. 
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5. Conclusions 

In order to judge the accuracy of the asymptotic approximations 

derived in Section 4, those expressions and the corresponding exact 

results from Section 3 have been calculated for several values of 

phase aberration a/A and aperture size D/Lx. These calculations were 

carried out on a Burroughs 6800 digital computer. 

Figure 4 illustrates the variation of average Strehl ratio with 

D/Rx for three phase aberrations. The exact Strehl ratio was 

calculated from (3.8) and (3.2) using, successively, Simpson's rule 

and the four-point Gaussian quadrature formula to evaluate the double 

integral. Note that if D << Rx, the optics are essentially insensitive 

to the turbulent layer. Then, as D/R, grows larger, the average 

Strehl ratio decreases to an asymptote determined by the aberration 

a/x. It is clear from Figure 4 and (4.8) that the so-called 

"infinite aperture" (or zeroth ,order) approximation 

-c I/IO > s exp (-k202) 

is reasonably accurate for D > 6a,. The first order correction 

(given by the second term of (4.8)) varies from about 3% for a/h = 0.08 

to 22% for o/h = 0.2 when D = 6ax. 

It is appropriate here to relate the expression for < I/IO > 

given by (4.8) to the work of Hogge, Butts, and Burlakoff [19]. In 

obtaining (4.8) from (4.1), the exponential term exp [k2a2 r (x,y) 1 

was expanded in a power series. In [191, only the first two terms of 

this series were retained, thus limiting the validity of those results 
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to o/x no larger than about 0.1. No such limitation applies to 

the results derived here. On the other hand, Hogge, et al, reached 

important conclusions regarding the shape of the focal plane 

irradiance distribution (discussed in Section 4), whereas the 

spatial distribution of irradiance has not been considered here. 

Figures 5, 6, and 7 illustrate the correspondence between the 

exact (Equation (3.5)) and the approximate (Equation (4.15)) values 

of u T for successively larger D/Rx (3,6, and 10) with u/x = 0.2. 

The exact expression (3.5) was evaluated using a Monte Carlo 

technique to approximate the four-dimensional integration. As 

expected, agreement is best for D/Rx = 10. In fact, for this case, 

the accuracy of the Monte Carlo method employed to evaluate (3.5) 

is questionable and, hence, given the inherent computational errors, 

the exact and approximate values of Us can be said to agree. 

It is clear, especially from Figure 5, that 

U 't (approx.) + 01 as x/D + 0. 

This anomaly is the result of the assumption that (x,y) is not near 

(0,O) which leads to (4.11). 

The work described here suggests further research toward 

understanding the second-order statistics of the optical parameters 

I/IO and T, namely: 

1. It is desirable to obtain approximations for Rr and u I/IO' 
Since the exact expression for these parameters involve 

complicated four-dimensional integrations, an approximate 

(closed form) expression would be especially useful. An 
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analysis similar to that described in this paper might 

prove fruitful. 

2. Perhaps by obtaining higher order asymptotic (D/ax 4 a) 

approximations to. < I/IO > and uT, better accuracy can be 

achieved for smaller values of D/Rx. This would require a 

more accurate description of the aberration correlation 

r(x,y) than the b-function analysis provides. 

3. Finally, the experimental data tends to substantiate the 

mathematical model employed here. For example, see 

Reference 13 for a discussion of the aperture scaling 

inferred by Figure 4. Also, a comparison can be made between 

the data and the expression for. K T > given by (3.2). 

However, there has been very limited effort expended to 

compute ul/lo from measured data and virtually no attempt 

to compute uT. Since these calculations can be accomplished 

routinely by modifying existing data reduction codes, it is 

strongly urged that this information be provided in future 

reports of experimental data. 
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APPENDIX 

The defining properties of the two-dimensional delta function, 

6 cx-x0, Y-Y,) I are as follows: 

JJ 
f(x,y) 6(x-x0, y-y,) dx dy =.f(xo,uo) 

-00 

6(x-x0, Y-Y,)- = oy (x,y) # (Xo,yo). 

Although no ordinary function can satisfy these requirements, it is 

possible to construct sequences of functions, Sk(x-x0, y-y,), which 

approach the symbolic "function" 6(x-x0, y-yo) as k + 01. 

In particular, if 
00 

JJ 
sk (x-xo, Y-Y,) dx dy = 1, 

-00 
for every k, and 

lirn sk(x-xof y-y,) = Of txfy) # (xofyo) I 

then we say that 

lirn sk(x-xof y-y,) = 6 (x-x0, y-y,). 

Now, consider the function 

rP(x,y) = exp 2 2 22 (D/Lx) x + (Way) y . 
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I lllllllllllllllllll Ill Ill Ill1 I I IIIIII 

Then, after transforming from rectangular coordinates (x,y) to elliptic 

coordinates (r,e), where 

r2 = (D/Exj2x2 + (D/ay12Y2, 

we have 
00 

JJ rP(x,y) dx dy = 

-00 

= 

2lT 00 

J 

de 
(D/ax)2cos2e+(D/ay)2sin2e 1 

empr r dr 

0 0 

2lT 

p2(D/11,) (D/a,) 
. 

Then, it follows that 

p2(D/Ex) (D/k ) lim rp (x,y) = 6 (x,y) . 
2ll 

(D/RX)+ 
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Figure 4. Variation of average Strehl ratio with aperture size 
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Figure 5. Second-order statistics of the optical transfer 
function for D/Rx=3 (Qx/Qy=2, a/X=.2). 
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Figure,G. Second-order statistics of the optical transfer 
function for D/Rx=6 (Rx/Ry=2, u/h=.2). 
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Figure 7. Second-order statistics of the optical transfer 
function for D/Rx=10 (Qx/Qy=2, u/A=.2). 
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