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ABSTRACT '. .: 

Compressible flow' over a laser turret causes'variation in density and the 

index of refraction. As a result, a laser beam develops a phase distortion. 

Phase distortion has been calculated for both blunt and small perturbation 

turrets. For the blunt turret,the Janzen-Rayleigh technique was used to 

determine the flow field. Phase distortions of 2.2 wavelengths at 3.8 microns 

were calculated for the blunt turret. For small perturbation turrets a 

versatile analytical model was developed for a turret on a fuselage with circular 

cross section. With a two-dimensional Fourier series representation of the turret, 

any shape can be considered. Both subsonic and supersonic flows can be calculated. 

Phase distortions of 1.2 wavelengths at 3.8 microns were calculated for one turret 

at high subsonic Mach number. In addition to being of value for laser turrets, the 

methods are applicable to reconnaissance aircraft using photographic equipment and 
:. ., 

cruise missiles using celestial navigation. 

INTRODUCTION 

Large scale laser telescopes are being installed aboard aircraft [l, 21. _: 
Airflow over the laser turret causes density variations. Since the index of :. 

refraction depends on density, a phase distortion is generated as the beam 
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propagates outward from the laser telescope. A phase distortion may tilt, 

defocus, or focus the beam. Higher-order aberrations, such as astigmatism 

ad coma, may also occur. 

Denote the characteristic geometric scale of the laser turret by R. The 

diameter of the telescope aperture is D. The ratio D/J? tends to be much greater 

for laser installations than for other optical devices commonly installed on 

board aircraft. As an example, consider the pilot's eye. For this case, R is 

the tiize of the canopy, and D is several millimeters. The pilot does not 

experience optical distortion due to the small value of D/a. 

Laser turrets tend to differ from camera installations aboard reconnaissance 

aircraft [3]. Due to the large size of D and the desire to have wide angular 

coverage, laser turrets protrude into the airstream. Camera installations usually 

have flat windows which are flush mounted in the fuselage. Furthermore, camera 

apertures may be considerably less than laser apertures. As a result of these two 

facts, degradation of photographic image quality usually is not a serious problem. 

However, in the event of image degradation, the methods of this paper could be 

applied to remove distortions. 

Cruise missiles with intercontinental ranges may use celestial navigation 

which requires precise measurement of angular location of stars. A distorted 

lens created by the ambient flow field causes an error in measurement. Knowledge 

of the external aerodynamics is important [3]. 

Optical distortion due to the external flow field can be divided into two 

categories [4]. Viscous flow phenomena fall into one category and include shear 

layers, laminar and turbulent boundary layers, and the shedding of discrete 

vortices. The other category involves the external inviscid flow field. Based 

on the preceding discussion, the reader recognizes that this paper treats the latter 

category. 
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Laser turrets can be classified as either blunt or small perturbation turrets. 

If a turret has a surface with a normal vector, z, aligned parallel or nearly 

so, to the freestream velocity vector, -;,, the turret is "blunt." If the 

angle between the normal vectors of the turret surface and the free- 

stream velocity is everywhere large, e.g., 60' to 90°, then the turret is 

"small-perturbation." Both types of laser turrets are discussed in this paper. 

BACKGROUND INFORMATION 

Critical Mach Number 

A useful concept is the critical Mach number, Wm. At the critical Mach 

number, somewhere on the body a local Mach number is sonic. When M, > W'j, the 

flow becomes inherently nonlinear and shock waves appear. The transonic flow 

equations must be solved when M, z Mz. The occurrence of shock waves usually 

implies severe degradation of the laser beam quality. 

The critical Mach numbers for several body geometries are listed in 

Table I. One advantage of the solution developed later in this paper is 

the fact that the critical Mach number can be calculated. Results are shown in 

Table I for a cosine shaped turret which will be discussed in more detail in 

the section Turret on a Circular Fuselage: Subsonic Flow. 

Laser Turret Map 

Different analytical models must be developed for different laser turret 

geometries. A map can be drawn showing the various flow regions for the 

different turret geometries. Figure 1 is a laser turret map. The abscissa 

is the freestream Mach number, M,. The ordinate is the maximum slope of the 

turret. Various regions are defined by capital letters. 

The flow within region ABCD can be described with sufficient accuracy 

using the linearized small perturbation equations. The line CD represents the 
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'Table I. Critical Mach Numbers for Several GeometricShapes :'., .._ : :; :: 

. ._ ., ;. : ‘,- 
Body Shape Ratio Critical 

&R. '2 .,Mach ; .: I: 
Number 

Circular cylinder with axis normal to flow [5] - 0..3985 

Sphere [5] 0.5868 

Hemisphere-cylinder with cylinder axis parallel to 
flow [6,7] .< 0.,7 : 

Cosine shaped turret on circular fuselage [3] 0.05 , 0.88 

0.10 0.8:2 - :...,. ,, 

;0.15 0.76 : 

0.20 0.72 

0.25 0.68 

E = amplitude or maximum height of turret 
'. 

RO = radius of circular fuselage 

turret length/fuselage radius ratio = 1.005 

0.30 0.65 

:; , : 

critical Mach number. The line BC is shown at a slope of 30°. The assumptjons 

involved in the linearization of the potential flow equation become less and less 

valid as the maximum slope increases. The region CDJ, which resembles an inverted 

triangle, requires solution of the nonlinear, small perturbation, transonic, 

potential flow equation. 
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Figure'l. Freestream Mach Number Regions for Application of Various Analytical 
Models. 

EFGH defines the region where the solution to the blunt-body nonlinear flow 

equations is necessary. The line GH, which defines the critical Mach number, is 

shown dashed; the critical Mach number is a function of turret shape. Hence GH 

is intended to suggest qualitatively the upper bound for Mach number for 

blunt turrets. Within region EFGH the Janzen-Rayleigh [5,8,9,10] technique is 

most useful. 

Vertical lines 1, 2, 3, and 4 occur within region EFGH. These lines 

represent the upper bound of applicability of the first, second, third, and 

fourth-order solutions when the Janzen-Rayleigh technique is used. The first- 

order solution may be applied with region FllE; the second-order solution, within 

F22E; etc. The hemispherical turret considered in the following section is an 

example of a turret falling along line FG. 
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Phase Distortion, Index of Refraction and Pressure Coefficient -- 

The local index of refraction, n, is related to the local gas density, p, by 

where p, is the freestream density at the altitude of the aircraft, and psL 

is the density at sea level. The constant K' has a value of approximately 

2.3 x 1O-4 in the infrared. Note that K = K’(P,~&~); obviously K is altitude 

dependent. Assuming isentropic flow, density and pressure are functions of each 

other 

P/P, = (P/PmlY 

Using the definition of pressure coefficient, C P' 
one can show that 

YM% 
IL 
PCX3 

=1++ 

(2) 

(3) 

In equations (2) and (3) y is the ratio of heat capacities, and M, is the 

freestream Mach number. Combining equations (1) to (3) yields 

(4) 

Since Cp may be positive or negative, n may be increased or decreased by the flow. 

Optical path length, L, is defined as 

b 
Li = 

s 
n(s)ds (5) 

a 

where s is the distance along a ray, and points a and b are positioned on the ray. 

The index of refraction n is a function of s. The subscript i identifies a 

particular ray within the laser beam. The difference in optical path length 

between two rays i and j is 
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b 
AL =L -Li= cl s 

14s 1 j - n(s,) Ids (6) 

a 

The optical path length has the dimensions of length, e.g., meter; to make L 

nondimensional, the wavelength of radiation, h, can be used as a reference. 

The ratio AL/h is known as the phase distortion P. Combining equations (4) and 

(6) gives a formula for P, 

(7) 

Equation (7) shows the dependence on altitude. The solutions for the various flow 

fields give values of C . 
P 

Zernike Polynomials 

A wavefront shape or the same thing, the phase distortion, can be expressed 

in terms of Zernike polynomials [ll]. Equations (8) through (17) can be found in 

the paper by Hogge and Butts [lz]. 

1/Z, (uniform phase shift) 

Fz(p) = 4 
( > 

112 

iii? 
x, 

.d 

F,(p) = --f& “2 y, 
( 1 I 

(tilt) 

F*(P) = ($y2 (A? + Y2 - $), (refocus) 

Fe(r) = 

(astigmatism) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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!. :. ,. (14) 

(15) .,. _ 

_ , , . . - (16) 

‘8 
( 1 

112 ,. :,I ‘, 
F,,(p) = nRB (3x2 + 3yf - 2R”)y. 67) 

The Zernike polynomials are'an orthonormal.set of functions over an aperture of 

radius R. The phase distortion can be represented as 

10 
P = 2 AjFj(r) 

j=l 
(18) 

where A. 
J 

is a constant which characterizes the phase distortion P. fij is given by 

HIT R 
A. = 

J J-s 
P(r,B)F(r,B)rdrde (19) 

0 0 

In equation (19) one could have used x and y as variables; however, use of 8 and r 

is more appropriate for a circular aperture. 

Since the Zernike polynomials are related to the various aberrations, 

knowledge of.the coefficients A. 
J 

indicates the magnitude of each aberration [12]. 

Further, the values of Aj are helpful for designing adaptive optics systems to 

overcome partially the aberrations. 

BLUNT LASER TURRET 

As an example of phase distortion due to compressible flow over a blunt turret, 

a hemispherical turret was selected [13,14]. Another shape amenable to analytical 

solution would be an ellipsoidal turret. 
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Janzen-Rayleigh Solution 

The geometry is shown in Figure 2. A beam of radius ";, is propagated from a 

turret of radius R. The elevation of the beam above the y-z plane is 8'. 

Distance along the beam is s. Points within a plane normal to the beam are 

located by coordinates R' and ~1. The windward and leeward sides of the laser beam 

can be determined from the flow arrow. 

FLOW 

Figure 2. Geometry of Hemispherical Laser Turret Used for Phase Distortion Calculation. 

In spherical coordinates, the equations of motion are as follows: 

au vaU v 
2 

UTF+rae r 
1.&L -e--z-- a2 * 
P ar - P ar 

av v av uv -_ 1* a2 & 
UZ+rX3+7='prae='praU 

$u 2 +eQ +L2+2, + 1 
r ae > r2 ar a( r sin 8 ae 

v sin 8) = 0 

(20) 

(21) 

(22) 
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Equations (20) and (21) are Euler's equations; equation (22) is the continuity 

equation. For flow over a sphere, the azimuth angle is not a dependent variable. 

Multiplying equation (20) by + u/a2 and equation (21) by - v/a2, adding, and 

combining with equation (22) yields 

(23) 

The speed of sound, a, is the local value and changes from point to point in the 

flow. Variations in a must be accounted for. Using the energy equation along a 

streamtube, one can show that 

a2=1+Y- + drn 1 _ u2 + v2 
a2 ( U2 > m 

(24) 

Inviscid flow is considered. A potential function, Q, can be introduced for the 

velocity components 

(25) 

and 

(26) 

Combining equations (23) to (26) yields an equation in which the only dependent 

variable is 4. 

The Rayleigh-Janzen expansion considers the potential function to be given as 

@ = 9, + $Ql + MiG2 + . . . (27) 

The solution Q. is considered to be the first-order solution; the solution involving 

both $J~ and $11 is termed the second-order solution. In this paper only the first 

and second-order solutions are discussed. For ease of writing, the following 

definition is introduced: 

(28) 



Substitution of + into the potential equation gives 

(29) 

where all terms on the -right-hand side are determined from the first-order 

potential function, @o. The result of equating coefficients of like powers in Mz 

yields two equations 

v2$lo = 0 (30) 

and 

v2qJ = 2mv2$l = p a2$l 
( r rr +-2_444 r2 r 8 r-0 - L 024 + +q $;@ee 

r3 Or r ) 
(31) 

Equation (31) is Poisson's equation. 

The first-order solution can be obtained from Milne-Thompson [15], Lamb 1161, 

or Karamcheti [17]. It is 

9, = u r ( cos 8 + ~~ cam 8 

2r2 > 
(32) 

Equation (32) can be used to evaluate the right-hand side of equation (29). 

In July, 1916, Lord Rayleigh [lo] reported the solution for the second-order 

function. The Legendre functions 

p1 = cos 8 (33) 

and 

p3 3 = 5 cos3e - 3 cos 8 2 

are introduced into equation (31). The result is 

(34) 

(35) 

297 



Using the defining equation for the Legendre function, equation (35) can be 

solved to yield 

+ + 27R5 3R6 Pm- 
55r4 10r5 

R9 
24r8 '1 > 

(36) 

Equation (36) can be inserted into equations (25) and (26) to find u and v. 

Knowing u and v, equation (24) can be evaluated. To evaluate equation (1) for n, one 

needs p/p,. Since the flow is isentropic 

The local Mach number is given by 

(37) 

(38) 

Combining equations (1) and (36) through (38) with equation (5) allows 

calculation of the optical path length. 

Geometry for Calculating Phase Distortion 

Refer once again to Figure 2. The flow properties, e.g., density and Mach 

number, are functions of r and 8. These are polar coordinates. Consequently it is 

necessary to express r and 8 in terms of i3', S, ~1, and R'. The equations are 

r2 = [(R + s)sin 8' 2 - R' COS CL COS e'] + R' 2 2 sin cx 

2 (39) 
+ [(R + S)COS 8' + RI cos a sin et] 

and 

e = tan-l /[(R + s)2sin 8' - R' COS U COS 0'12 + RI2 2 sin c1 
[(R + S)COS 8' + R' cos ~1 sin et] 

(40) 
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Equations (39) and (40) allow calculation of independent variables for the flow 

in terms of a location in the laser beam as specified by s, R', (Y, and 8'. 

Figure 3 illustrates the distance along the beam, s, and the gap which 

exists between the surface of the turret and the s = 0 plane. The phase 

distortion is given by 

S 0 

P =-- P - PO ds K’Poo 

PC.0 R + XPSL R s 
' - 'r ds 
- - Go R 

(41) 

Figure 3. Cross Section of Turret and Beam in x-z Plane. 

where p o is the density along the axis of the beam and p is a reference density. 
r 

The second integral in equation (41) has been termed the "gap integral." 

Graphical Presentation of Results - 

A computer program has been developed for the HP9830 which calculates the 

phase distortion, P, as a function of sphere radius, R; elevation angle, 8'; radius 

within the beam, R'; angle within the beam, a; freestream Mach number, M,; 

wavelength, X; index of refraction constant, K’; ratio of heat capacities, y; 

freestream speed of sound, a,; and density ratio, pm/psL. Values used in the 



calculations are as follows: 

beam diameter = R/2 = 0.4572 meter 

R= 0.9144 meter 

X = 3.8 x lo+' meter 

K I - -2x10 -4 

a = 342 meters/set 

y = 1.4 

PJPSL = 1-o 

M o3, R', a, and 8' have been varied. Calculations have been performed to the extent 

necessary to plot phase distortion maps. 

Plots of isocontours of phase shift were made for steps of 18' starting with 

8’ = 0 and 8' = 90'. The calculations ignore the gap integral; evaluation of 

gap integral is somewhat arbitrary. However, to provide insight to the 

magnitude of the gap integral, the quantity was evaluated with p, = p, in 

equation (41). Results are shown in Table II. 

Table II. Maximum Value of Gap Integral 

Beam Elevation Angle Maximum Value of Gap Integral 
81 and Location Within Beam 

0 0.368 * 

18 0.654 O0 

36 0.678 O0 

54 -0.836 180' 

72 -0.863 120° 

90 -0.866 9o" 

*Does not depend on a. 
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The quantity, maximum value of gap integral, is the maximum phase distortion, P, 

caused by the gap .between the plane s = 0 and the surface of the turret. From 

Table II, the large value of the gap integral indicates that the gap cannot be 

ignored. 

The plots of isocontours of phase shift are shown in Figures 4 to 9. To avoid 

awkward decimal values, the phase distortion has been multiplied by 100. Hence 

250 from the graphs is 2.5 wavelengths phase distortion; a value of 25 from the 

curves would be a quarter wavelength. Recall the beam axis is used as the 

reference for the phase shift, P. Reference to equation (41) shows that P is 

positive when p along the ray in question exceeds p,. A positive value of P 

means the wavefront lags behind the front at the beam axis. 

The critical Mach number 0.587 was chosen for the calculations. The outer 

edge of each plot is, of course, the outer edge of the beam. The ratio of 

turret diameter to beam diameter is 4.0. The significance of the maps will be 

discussed in the following subsection. 

Figure 4. Contours of Constant Figure 5. Contours of Constant 
Phase Shift for 8' = O". Phase Shift for 8' = 18O. 
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Figure 6. Contours of Constant Figure 7. Contours of Constant 

Phase Shift for 8' = 36O. Phase Shift for 8' = 54'. 

‘/ /- 

Figure 8. Contours of Constant Figure 9. Contours of Constant 

Phase Shift for 0' = 72'. Phase Shift for 8' = 90'. 
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An important question is the rate of decay of the integrand in equation (41). 

Calculations were made of 

which is the phase distortion per unit distance along the beam. Results of the 

calculationare shown in Figure 10. The phase distortion, P, is the area 

enclosed by one of the curves. Most of the phase distortion 

distance of one turret radius. 

F 3 
+ 0.36 

f 
K 0.16 
L 
B 0 
F 
8 -0.18 
L 
’ -0.36 

i 
g -0.54 0.25 0.50 0.75 1.0 1.25 

RATIO OF DISPLACEMENT ALONG BEAM 

TO TURRET RADIUS, */R 

Figure 10. Phase Distortion per Unit (s/R) as a Function of 
ata=O O, 60°, 120°, and 180' Within the Beam. 
81 = 18O. 

occurs within a 

(s/R) for Rays 
Elevation angle was 

The windward side of the beam is at 8 = 0'. When 81 = 18 and 8 = 0, the 

air is compressed and P is positive. When 8 = 180°, i.e., on the leeward side 

of the beam, the air is expanded and P is negative. 

Jnterpretation of Results - 

The contours in Figure 4 are a series of concentric circles with a negative 

value of phase shift. Hence, the beam is being focused. The focal length, F, can 

be estimated from 

F s2 =- 
XP (42) 
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Using s = R/4 = 0.2286 meter, X = 3.8 micron, and P = 1.6; the value of F is 

8.6 km. 

For 8’ = 54' in Figure 7, the contours are almost straight lines. The 

algebraic signs of phase shift indicate the beam is being tilted in a direction 

opposite to the relative wind, i.e., the beam is leaning into the wind. The tilt 

angle is given by 

(tilt angle) = X 3 

Inserting values from Figure 7, the tilt angle is found to be 26.5 microradians. 

This tilt angle should be compared with the pointing accuracy of the pointer- 

tracker which forms the turret. Fortunately tilt can be corrected easily by 

adaptive optics. 

For 8’ = go', the flow over the turret causes defocusing of the beam; 

see Figure 9. Using equation (42), the focal length is F = - 6.3 km. The flow gives 

effectively a negative lens. 

Scaling of Phase Distortion -- 

Using equation (41) one can demonstrate the scaling relationships for altitude 

(density), turret size, and laser wavelength. The equation is 

p2 5 o2 R2 "; 
---1 - = A2 P1 R1 K1 p1 

(44) 

where subscripts 1 and 2 refer to two different hemispherical turrets at the 

same M co* The phase distortion becomes more severe as wavelength decreases. 

Throughout the infrared region, the value of K’ is nearly constant; however, as 

one approaches the visible, K’ tends to increase with decreasing wavelength. Of 

course, for constant diffraction, the ratio R/X will tend to be constant. Since p 

follows an exponential decay with altitude, the phase distortion falls rapidly 

with increasing altitude. 
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TURRRT ON A CIRCULAR CROSS SECTION FUSELAGE: SUBSONIC FLOW 

Using the solution for the wavy wall on a cylinder 1181 and Fourier 

analysis, a turret of any shape can be described mathematically, and the flow 

field can be obtained. A question about this model concerns the effect of fuselage 

ends. 

Fuselage End Effects -- 

For the analytical model to apply, the fuselage shown in Figure 11 must extend 

to infinity in both directions. Obviously real aircraft have finite length. What 

is the influence of aircraft fuselage ends? 

Figure 11. A Small Perturbation Turret on a Circular Cross Section Fuselage. 

To gain insight to this question, the pressure distribution on the surface 

of several axisymmetric bodies has been calculated assuming potential flow. The 

fineness ratio of the fuselage, i.e., the ratio of length to diameter, was varied. 

The potential equation for axisymmetric flow is 

a2qP + i a 

a7i12 
7 p-Cl: ’ S) = 0 (45) 
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where z' is distance in the flow direction and r' is radial distance using 

cylindrical coordinates. Equation (45) assumes incompressible flow although the 

calculated flow may be accurate to M, = 0.3, depending on body bluntness. 

A body surface is generated by a source-sink combination separated by 

a distance R. Lengths are made nondimensional using R. The potential 

function is nondimensionalized by the following 

4 = $MJ,R C-46) 

where TJ,, is the freestream velocity. 

There are two other lengths in the problem in addition to R. First, there 

is the body diameter. Second, there is the distance from the source to the 

upstream stagnation point which is designated as z*. Once again z* is a 

nondimensional length using R as a reference. Incidentally, the upstream and 

downstream stagnation paints are saddle point singularities; this is a fact 

to be remembered when the equations are integrated to obtain the body surface. 

The velocity components are u = u'/U, in the z-direction, and v = v'/lJ 03 

in the r-direction. The equations for u8 and v are as follows: 

2 z* (z* - 1)2z z*2(z* - u=1+ - 1)2(z - 1) 

(1 - 2z*)(z2 + r2) 
312 312 

(1 - 2z*)[(z - 1)2 + r2] 
(47) 

and 

z*2(z* - 1)2r zk2(Z* - 1)r 
V= 312 - 3/2 (48) 

(1 - 2z*)(z2 + r2) (I - 2z*1 [(z - 1)2 + r2] 

The flow is in the direction of the positive z axis with the source at z = 0 

and the sink at z = 1. Consequently, the upstream stagnation point occurs 

at a location where z* is a negative number. When z* approaches negative 

infinity, the body approaches a sphere. When z* approaches zero, the length 

of the fuselage, which is L = a(1 + 2z*), approaches infinity. Any value of z* 
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satisfies equation (47) when u = 0 (a stagnation point), z = z*, and r = 0. 

However different values of z* change the length to diameter ratio of the body. 

To find the body surface, the differential equation relating velocity 

components and the slope of the body surface is solved numerically; the equation 

to be solved is 

dr ,=z (49) 

Integration starts at z = - lz*I and r = 0. Since the r.ear stagnation point is a 

saddle point singularity, one cannot integrate to z = + lz*I and r = 0. The flow 

is known to be symmetric relative to z = 0.5; this fact was used to obtain the body 

for z > 0.5. 

The pressure coefficient in terms of nondimensional velocities is 

P - P, 
C = = 1 - u2 - v2 
P PUil2 

(50) 

At the front and rear stagnation points, Cp has a value of unity. when cP is zero' 
the local static pressure exactly equals the static pressure at infinity, and 

the local flow velocity is U,. When Cp is negative, the local flow velocity 

exceeds U co' 

Results of sample calculations are shown graphically in Figures 12 to 17. 

In Figure 12 the length to diameter ratio, L/D, is 1.004, which is nearly a sphere. 

The curves from A to B and from E to F are the pressure coefficient along the 

stagnation streamlines. The curve BCDE is Cp on the surface of the body. For a 

sphere, the pressure coefficient is 

C = 
P 

1 - $ sin28 (51) 

When 8 = 90°, Cp = - 5/4. When 8 = 41.8O, C = 0, which corresponds to.point C in 
P 

Figure 12. 

For all figures, the sharp positive peaks are at C = + 1.0. Note that for 
P 

L/D = 1.004, the Cp curve for the body surface is concave. For L/D = 2, the C 
P 
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C 
B P 

A 
C 

+ 
II 

E 
+1 

F 

P 
-1 

+1 C 
P 

-- +0.5 

x=0 7.=1 

in G 

-- -0.5 

Figure 12. Pressure Coefficient on 
Stagnation Streamline 
and Body Surface. 
L/D = 1.004 

Figure 13. Cp for L/D = 2. (The x's are 

the source and sink.) 

Figure 14. cp for L/D = 4. Figure 15. Cp for L/D = 6. 
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C 
P. 

;= 0 Z=l 

Figure 16. Cp for L/D = 8. Figure 17. Cp for L/D = 10. 

curve is convex at z = 0.5; this is point G in Figure 13. Although not shown, for 

L/D = 1.58, the Cp curve dips negative but remains flat for 0.1 < z < 0.9. In 

Figure 13, the x's are the source and sink. In each figure there are two vertical 

lines passing through the source and sink; the vertical lines are located at 

z = 0 and z = 1. 

As L/D increases, it is apparent from the figure sequence that C at z = 0.5 
P 

becomes less negative and approaches zero. At L/D equal to 6, Cp is less than 

3 per cent of the positive peak for the stagnation point. A laser turret installed 

at z = 0 on a fuselage with L/D = 6 would experience freestream velocity within 

1.5 per cent. Using equation (50) and the binomial expansion, one can show that 

u=l- > (52) 

Application of equation (52) to the case of L/D = 6 gives u = 1.015. 
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The Boeing 707-320 has a fineness ratio of 10; and the French Caravelle, 10.4. 

The stretch DC-8 has L/D considerably more than 10. The Boeing 747SP, which is a 

standard 747 with a section of fuselage removed, has L/D near 6. Another wide body 

jet, the DC-lo, has L/D near 8.6. The laser turret on the Airborne Laser 

Laboratory, ALL; is on a fuselage with L/D of 10, and the turret is located at 

nondimensional z = 0.3 approximately. Looking at Figure 17, one notes C is 
P 

nearly zero at z - 0.3. Consequently, the turret should be experiencing near 

freestream velocity. (The preceding statement ignores interference effects of 

other components, e.g., wing.) 

A potential flow solution provides insight to the effect of fuselage ends on 

the airflow likely to be present near a laser turret. For L/D = 6, a turret 

near z = 0.5 will have essentially freestream velocity. For L/D = 10, freestream 

conditions prevail in the interval 0.3 < z < 0.7. 

Formulation of Subsonic Flow over a Laser Turret - ---- 

For small perturbation flow, the potential equation as derived in 

Liepmann and Roshko [18] is 

2 B24* + 4rr l l 4 +r4r+7 ee=O 

The (+) sign applies to subsonic flow; and the (-) sign, to supersonic flow. 

the definition of 8 is 

B2= Il-M;I (54) 

The function $ is the perturbation potential yielding only the changes from the 

freestream velocity. Equation (53) is given in cylindrical coordinates which are 

appropriate for the cylindrical fuselage. A solution to equation (53) can be 

obtained using the separation of variables. For the flow field external to the 

fuselage 

+(r,e,x> = A cos n8 sin qx Kn(8qr) (55) 
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where A is a constant, n is an integer, and q is to be determined. See Fuhs and 

Fuhs [2] for development of the solution in detail. 

The turret shape is defined by 

R(x,Q = R. + sX(x)T(B) (56) 

where X(x) and T(S) are functions. The height of the turret is E as shown in 

Figure 11. As an example, a cosine shaped turret will be used. For a cosine 

shaped turret 

X(x> = $(l + cos F) (57) 

and 

T(e) = $(I + COS f6) (58) 

Equations (58) and (59) apply for 1x1 5 R and 101 2 2Tr/f. Outside this region 

R=R 0' The quantity l/f is the fraction of the 2n-circumference occupied 

by the turret, and R is the length of the turret. For a cosine shaped turret, 

the appropriate Fourier series are 

X(x) = g + 2 f sin mlTR/L 1 m7Tx 

m=l 
mxR/L 1 - tmt/LL)2 

cos - L 

and 

co 

T(e) =&+$ c sin nlT/f 1 
nxlf cos ne 

l- (n/f)2 

(59) 

(60) 

n=l 

In equation (59) the spacing between periodic turrets on an infinitely long 

fuselage is L. The turret generated by equations (56), (59), and (60) is shown 

in Figure 11. 
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At the body surface for inviscid flow, there can be no flow through the wall. 

Mathematically this is expressed by 

(61) 
-f 

where g is a unit vector normal to an element of the surface and V is the vector 

representing the local fluid velocity. If one can express the shape of a body by an 

equation of the form f(r,B,x) = 0, then 

;: = ?f/l$fl (62) 

Using the potential function for determining $, the boundary condition at the body 

surface is 

&$f = 0 (63 

where 0 is the full potential related to the perturbation potential by 

@ = $I + xu, (64) 

For small perturbation, equation (63) reduces to 

(65) 

Equation (65) is derived in Appendix A of reference [3]. 

Solutions for Subsonic Flow 

In view of equations (56), (59), and (60), the potential function is assumed to 

have the form 

tOAx> = ; 2 @m(+Lx) (66) 

Using appropriate nondimensional variables, $nm is found to be 

2Anm cos ne sin 
+m(r,e,x) = - 

y Kn(f3mm/L) 

"'n+l (Bmn/L) + K n-l (BmrlL> I (67) 

Kn is a Bessel function discussed in the book by Hildebrand [19]. The constant 

A nm is given by 
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1 sin(mxR/L) I[ 1 sin(nn/f) 
(Rm/L)2 (mrJ%) 1 (68) 

Combining equations (66) to (68), one has the complete perturbation potential 

equation. The perturbation velocities are calculated using $4; these velocities 

are shown explicitly in reference [3]. With velocities in nondimensional form, 

the pressure coefficient for axisymmetric flow is 

cp = - 2u - v2 (69) 

Equation (69) can be evaluated, and the results inserted in equation (7) to 

calculate the phase distortion P. 

Before discussing typical results for phase distortion, calculation of 

critical Mach will be presented. Equation (3) relates p/p, to the pressure 

coefficient, C . 
P 

Assume the flow is isentropic; this assumption permits use 

of the following relation between static pressure where the local Mach number is 

unity, p*, and the static pressure at infinite distance from the turret, p,: 

Combining equations (3) and (70) establishes an equation for the critical 

pressure coefficient 

c* = - 2 
P 

YYt ([ ( *I+ y- $)I& - l} 

(70) 

When Cp given by equation (69) equals ck, P 
the local velocity is sonic. Equations 

(69) and (71) were used to calculate the critical Mach numbers given in Table I. 

Typical Results 

As an example, the phase distortion was calculated for a laser beam leaving the 

turret of Figure 11. The beam was pointed at an angle 90° to the axis of the 

fuselage and was symmetrically located relative to the turret. The beam radius was 
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R/2. The pressure coefficient and optical path length were calculated for a 

ray starting at x = - R/2 and for the reference ray at x = 0. The pressure coefficient 

along the two rays is shown in Figure 18. The values used in the calculation were 

as follows: 

Mx. = 0.62 R. = 1 meter L-5 

E = 0.35 A = 3.8 microns 8 0 = 

PmlPSL = 1.0 R = 1.005 K’ = 0.00023 

The quantity aP/a(s'/Ro) was evaluated for the two rays specified above. 

The results are shown in Figure 19, which is a graph of increment of phase 

distortion as a function of radial distance s'. About one-half of the phase 

distortion occurs within a distance along the beam of approximately 0.35 Ro. 

Expressed in terms of turret height, E, one-half of the phase distortion is 

generated within approximately one turret height. 

The integrated phase distortion, which is the area under the curve, is 1.17. 

In terms of wavelengths, the integrated distortion is 1.17A. 

RADIAL DISTANCE 

S’d?, 
Figure 18. Pressure Coefficient Figure 19. Increment of Phase Distortion 

along Two Rays Selected along Beam. 
for Phase Distortion 
Calculation. 
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TURRET ON A CIRCULAR CROSS SECTION FUSELAGE: SUPERSONIC FLOW 

The potential flow equation for supersonic flow is equation (53) with use 

of the (-> sign. Once again the turret shape is illustrated by Figure 11. A more 

general formulation for turret geometry is developed in this section. 

Turret Geometry 

The function X(x) of equation (56) is a polynomial 

K 
X(x) = 1 -I- c ZkXk 

k=l 

Likewise the function T(6) of equation (56) is another polynomial 

P 

T(6) = 1 + c Sjd 

(72) 

(73) 

j=2,4, 

Note that only even powers of 0 are used since the turret is symmetric in the 

O-direction. As before, E is the height of the turret at x = 6 = 0. Each term in 

the polynomial is expanded separately as a Fourier series [201. 

03 
k x = c 

m7rx 
amk cos F + bmk sin - L 

m=O 

Hence 

K cm 

X(X) = c ak c zti cos T + bmk sin 

k=l \m=O / 

In a similar manner 

ej = 2 anj cos ne 

n=O 

(74) 

(75) 

(76) 
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Consequently 

The Fourier coefficients are as follows: 

Rk = ---& [(- l)k + 11 rnrR kL 
amk sin -- - - b L rnr m,k-1 

bmk= ak - z [(- l)k+l m7rR -I- 11 cos L mu +%a m,k-1 

(77) 

(78) 

(79) 

Equations (78) and (79) are recursion relations. To start the sequence one 

needs aOk and bOk which are 

a0k = 
[(- l>k + 112 k+l _ 

2L(k + 1) 

and 

(81) b Ok = ' 

Also both a -1 and b -1 are zero. 
m, my 

Beginning with k = 0, the Fourier 

coefficients for any order polynomial can be obtained using equations (78) to 

(81). If k is an even number, then bmk is zero. If k is an odd number, then 

a mk is zero. 

Equations (72) through (81) define a turret of length 2R which is periodic 

every x = 2L. In the circumferential direction, the turret is positioned 

between - et 5 9 < 8 , where 8 - t t defines the boundary of the turret. To evaluate 

equation (77), one needs a nj' Equations (78) to (81) can be used to determine a 
*j 

by making the following substitutions: 

m-tn 

k+j 

L+-n 

R+-8 t 

Note that j has only even values. 

(80) 
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The coefficients and sj will be varied; however, because of the geometry 

not all coefficients may be independent. Due to equations (56), (72), and (73), the 

turret height at x = 8 = 0 is always E. To have a continuous surface for the 

fuselage, X(x) = 0 for 1x1 = R; also, T(e) = 0 for 191 = et. In addition, 

conditions may be imposed such that dX/dx = 0 at 1x1 = R, etc. 

For each boundary condition imposed, one coefficient of the polynomial is 

eliminated as an independent variable. The coefficients which are not used to 

satisfy boundary conditions can be used as design variables. In a companion 

paper [211, the design variables are selected so as to optimize phase distortion. 

Solution to Potential Equation for Supersonic Flow -- -- 

Once again separation of variables is used to solve equation (53). The 

solution has the form 

where 

@(r,e,x> = R(r)O(e)X(x) (82) 

R(r) = AJ,(Bsr) + BYn(Bqr) (83) 

O(e) = C sin nf3 + D cos n8 (84) 

X(x) = E sin qx + F cos qx (85) 

Both Jn and Yn are Bessel functions discussed by Hildebrand [19]. For symmetry with 

respect to 8 = 0, C is zero. Since both Jn and Yn are finite for large r, neither 

A nor B can be set equal to zero. In contrast to the subsonic flow solution, the 

supersonic flow solution has one additional constant to be determined. Matching 

waves in the far field permits evaluation of the additional constant [22]. For 

a simple cosine wavy wall on a cylinder, the potential equation has the form as 

derived by Fuhs [23] 

#(r-,x) = A[(sin ox - cos ax)Yo(aBr) + (sin ox + cos ax)Jo(af3r)l (86) 
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The constant A is related to the amplitude of the cosine wavy wall. Equation (86) 

implies an eigenvalue given by 

Y1(“BRo) = - J,(aBR,) (87) 

The wavenumber of the wavy wall is ~1. 

The requirement for no flow through the turret boundary is given by 

equation (65). For the turret of Figure 11, the boundary condition becomes 

r=R 0 r=R 0 

The surface of the turret is given by 

R(e ,x> = R. + C C bnrn cos y + Bnm sin ~1 cos n8 (89) 

(88) 

n m 

Based on equation (86), the potential function is assumed to have the form 

@(r,e,x) = u,x + 
c Pm 

(90) 

n m 

where 

@m(r,e,x) = Xnm cos ne m7rx' sin - - cos +)Y,(y r) L 

(91) 

+ + cos +)Jn(F r)] 

Equation (87) establishes an eigenvalue, which is the root of equation (87). 

For a Fourier series, the wavenumber cx is determined by the series. The flight Mach 

number determines 6. Hence R. is not arbitrary. As a result one must introduce 

an eigenvalue cylinder which has the same wavenumber as the cylinder required by 

the Fourier series; however, the eigenvalue cylinder has a different radius. 
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Further, the eigenvalue cylinder is shifted.in phase. The equation for a 

cosine shaped eigenvalue cylinder is 

Rnm(e,x) = Rmn + Ed COS ne COS 5 

The boundary condition for the eigenvalue cylinder is 

The phase shift, xnm, is given by 

Carefully note that Rnm(8,x) and Grimm are formulated 

terms of x. 

with x' whereas R(8,x) is in 

Consider first the cosine wavy wall defined by equation (92). Use of the 

(92) 

(93) 

(94) 

boundary cohdition of equation (93) gives the eigenvalue equation 

Brnl'rR 
L nm [Y n+l(Cm) - Jn+l(Cm)l - *D,(C,) - Jn(Cm) 1 = 0 (95) 

where 

(96) 

There is only one value of Rnm which satisfies equation (95); hence equation (95) 

provides a method to calculate Rnm in equation (92). 

From the boundary condition of equation (93), one finds 

x 
E nm Cm[Yn+l(Cm), + Jn+l(Cm)l - *Dn(Cm) + Jn(Cm) I} 

= 
nm mTrR (97) 

nm 
L 

Using the boundary condition for the turret as given by equation (88), the phase 

shift, x nm' can be determined 
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m7rx D 
tan 2 = IlT0 - Enm 

L DNn+ E nm 
(98) 

where DNn and Enm are defined as 

D =-+ 
6m 

nm 
(.-+ 

n+l L 

and 

f3m Bm7rR 
E = 
nm - y- Jn+l(+l 

Continuing with the boundary condition for 

BmO + = Y&-y- ) 
RO 

and 

a nm = Dnm+ E nm 

BnmR 
+nJ (+, 

R. = 

the turret, define 

(99) 

(100) 

(101) 

bnm= DNn- E (102) 

The amplitude of 4 term, which is A 
ml' is related to Anm of equation '(89) by 

mVA 
A =- nm 

(103) 
LLazrn + birnl 

l/2 

The value of Anm is determined by turret shape. Combining equations (91), (94), 

(981, and (99) through (103), one obtains 

@LCr,e,x) = - 
(mn/L)A cos no 

(a 
a nm + bnm) sin 

- (am Bm7rr - bnm) cos F Y,(y) 

+ [(a, - bnm) sin y + (anm + b ) cos nm y]J,(F) 
I 

Following a similar procedure for the sine shaped wavy wall, one finds 

(104) 
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4&w.x) = _ 
(mn/L)B cos n8 

a2 Tb2 i (am + bml cos 
nm nm I 

+ (am - bm) sin y Y,(F) 

- “am - bnm) cos y - (am + bnm) sin F]J,(&EE) 
I 

The combined potential equation is 

@(t-,8,x) = U,X + 
cc (+;m + Cnm) 

(105) 

(106) 

n m 

Equation (106) can be used to determine the velocity components. With the 

velocity components, equation (69) can be evaluated for the pressure coefficient, 

c . 
P 

In turn, the pressure coefficient can be inserted into equation (7) to 

determine the phase distortion, P. 

Results of a Sample Calculation -- 

The flow over a cosine shaped turret was determined. The turret was 

defined by equations which approximate a cosine 

X(x) = 1.0 - O.~(X/&>~ + O.O625(~la)~ (107) 

and 

T(8) = 1.0 - i.82(e/etj2 + o.0832(e/etj4 (108) 

The Mach number was M, = 2.0, E: = 0.2, R = 2Ro, and et = 60°. 

Figure 20 shows the phase distortion map for the case being considered here. 

The distortion is almost pure tilt. 
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(a) Mm = 0.5 

-025 

(b) M, = 2.0 

Figure 20. Map of Phase Distortion. Azimuth 0'; Elevation 45'; Mirror 
Radius = Ro/20. 

CONCLUSIONS 

Laser turrets may be classified as blunt or small perturbation depending 

on maximum slope of the turret surface. Analytical models were developed 

for both categories of turrets. 

As an example of a blunt laser turret, the flow over a hemispherical 

turret was solved using Janzen-Rayleigh expansion technique. Terms to the 

second order were obtained and were used to calculate the phase distortion. 

At the critical Mach number for a hemispherical turret, the phase distortion 

was several wavelengths. The phase distortion varied from a positive focus for 

O" elevation to combined focus and tilt at intermediate elevations and to 

negative focus for 90' elevation. The distortion can be expressed in terms of 

Zernike polynomials. 
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A versatile analytical model was developed.for a laser turret on an 

infinitely long circular cylinder. The laser turret is described by a two-dimensional 

Fourier series using the solution for the flow over a wavy wall on a cylinder. The 

turret can have any shape subject to the constraint that the turret is a small 

perturbation in the flow. Both subsonic and supersonic solutions were obtained. 

End effects were examined. For a fuselage with length to diameter ratio of 

6.0, the laser turret mounted at the midpoint of the fuselage would experience 

freestream velocity with 1.5 per cent. For an aircraft with L/D of 10, such as 

ALL, any location between z/D = 0.3 to 2/D = 0.7 would have freestream conditions. 

The analytical model permits calculation of critical Mach number for the 

turret. The critical Mach number is important because of the change from 

linearized subsonic flow solution to nonlinear transonic flow. 

For the subsonic case, the maximum observed distortion was a fraction of 

wavelength. Similar results were found at Mach 2. 

The supersonic flow solution has eigenvalues which require introduction 

of an eigenvalue cylinder. A cylinder of arbitrary radius cannot yield a 

satisfactory solution. A cylinder slightly smaller can satisfy the boundary 

conditions and becomes the eigenvalue cylinder. For large radial distances from 

the cylinder, the solution approaches that of a planar wavy wall. 

In addition to useful calculations for laser turrets, the analytical models 

are useful for reconnaissance aircraft using cameras and cruise missiles using 

celestial navigation. 
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