NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

N80-25786

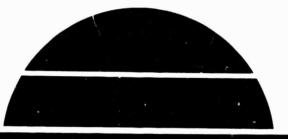
(NASA-CR-161437) SOLAR HEATING SYSTEM INSTALLED AT TELEX COMMUNICATIONS, INC., BLUE EARTH, MINNESOTA Final Report (Telex Unclas Communications, Inc.) 177 p HC A09/MF A01 22415 CSCL 10A G3/44

DOE/NASA CONTRACTOR REPORT

DOE/NASA CR-161437

SOLAR HEATING SYSTEM INSTALLED AT TELEX COMMUNICATIONS, INC. BLUE EARTH, MINNESOTA - FINAL REPORT

Prepared by


Telex Communications, Inc. West First Street Blue Earth, Minnesota 56013

Under Contract E (49-18) 2376 with

National Aeronautics and Space Administration George C. Marshall Space Flight Center, Alabama 35812

Final Report

For the U.S. Department of Energy

Solar Energy

NOTICE _

þ

Ì

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agents the United States Department of Energy, the United States National Aeronautics and Space Administration, nor any federal employees, ror any of their contractors, subcontractors or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represent that its use would not infringe privately owned rights.

	TECHNIC	AL REPORT STANDARD TITLE PAGE
1. REPORT NO. DOE/NASA CR-161437	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
4. TITLE AND SUBTITLE Solar Heating System In		5. REPORT DATE October 26, 1979
Communications, Inc., H Final Report		6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT #
9. PERFORMING ORGANIZATION NAME AND AN Tolex Communications, 1		10. WORK UNIT NO.
est First Street الد الد Earth, Minnesota	56013	11. CONTRACT OR GRANT NO. E (49-18) 2376
12. SPONSORING AGENCY NAME AND ADDRES	<u> </u>	13. TYPE OF REPORT & PERIOD COVERED
	nd Space Administration	
Washington, D.C. 20546	5	14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES		
	er the technical manageme se Flight Center, Alabama	
16, ABSTRACT		
Telex Communications, 1 building which houses a warehouse space. This description, test data, operation and maintenar as-built drawings.	es the final results of c Inc., for space heating a administrative offices, a report also provides inf major problems and reso ice manual, manufacturer'	97,000 square foot ssembly areas and ormation on system lutions, performance, s literature, and
heating system; constru	lar Corporation designed action was by Mankato Plu heating in February 1978	mbing. The system
the solar collectors, of The ITC/Solar Mark III sists of 10 rows of 36 the operation of the sy for the system is provi located inside the buil	is composed of four main controls, thermal storage collector was used. The collectors each. The co ystem pumps and control v ided by a 20,000 gallon w ding. Heating is accomp ntrolled by thermostats.	and heat distribution. collector array con- ntrol subsystem controls alves. Thermal storage ater storage tank
17. KEY WORDS	18. DISTRIBUTION ST	ATEMENT UC-59a
	Unclassif	ied-Unlimited
	WILLIAM A. B	Brands have 7 ROOKSBANK, JR.
19. SECURITY CLASSIF, (of this report)		Energy Applications Proj.
Unclassified	Unclassified	162 NTIS
MSFC - Form 1292 (Rev. December 1972)		Information Service, Springfield, Virginia 22161

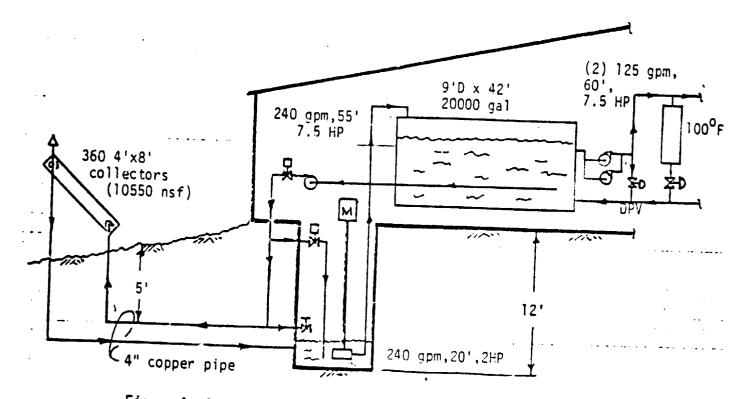
.

TABLE OF CONTENTS

			Page
I.	System	and Building Description	1
II.	Accept	ance Test Data	3
III.	Major	Problems Encountered and Resolutions	9
IV.	System	Performance	11
v.	Interi	m Performance Criteria Certification	11
Аррел	dix A	Operation and Maintenance Manuals	
Appen	dix B	Manufacturer's Literature	
Appen	dix C	Collector: Installation and Maintena	nce
Appen	dix D	As-Built Drawings	

PRECEDING PAGE BLANK NOT FILMED

I. SYSTEM AND BUILDING DESCRIPTION


The Telex plant is located in southern Minnesota near the town of Blue Earth. The plant manufactures tape recorders and other electronic equipment. The 97,000-square-foot building houses administrative offices, assembly areas and warehouse space. The building is of steel construction with 6 inches of fiberglass insulation between the steel skins.

Heat for the building is provided by electric ouct heaters mounted in the air handling units and electric unit heaters. During operating hours there is also a considerable amount of heat generated by lights, equipment, and people. During cold weather, the space heating load ranges between 9-12 million BTUs per day. The average number of heating degree days for the Blue Earth area is approximately 8,000. There is very little hot water demand since none of the manufacturing operations require hot water.

Bacause of the use of electric resistance heating, the Telex plant was considered a good choice for a solar heating retrofit. A proposal for a solar system was submitted under the PON-1 Solar Heating and Cooling Commercial Demonstration Program. In June of 1976 Telex was awarded a contract by ERDA (now DOE) to construct a solar space heating system. InterTechnology/Solar Corporation began the design of the system in August 1976. Construction of the system by Mankato Plumbing began in August 1977. The system began delivering space heating in February 1978.

Figure 1 is a flow schematic of the solar system. The collector array consists of 10 rows of 36 collectors each. The ITC/Solar Mark III collector was used. This collector has gross dimensions of 4' \times 8' and features a single glazing of water white glass and a black chrome selective coating. The absorber plate consists of aluminum fins snapped onto

ORIGINAL PAGE IS OF POOR QUALITY

copper tubes. The collectors utilize a 2½" internal manifold allowing each row of 36 collectors to be connected in parallel without the need for external piping.

The collectors are ground-mounted at a 55° tilt angle on a wood truss structure. The wood trusses are supported by concrete piers. The bottoms of the collectors are approximately $3\frac{1}{2}$ feet above the ground. Location of the array is the east side of the building with a parking lot in between. A drain-down type of system was chosen for a number of reasons. Some of these were:

o efficiency--no collector-to-storage heat exchangers required.

- o simplicity of design
- o no special precautions needed for summer shutdown.

II. ACCEPTANCE TEST PLAN

An acceptance test to verify the thermal performance of the system was conducted by the installation contractor, Mankato Plumbing and Heating in June, 1978.

The test consisted of operating the system on a clear day and measuring the instantaneous efficiency of the collector array. The IBM data acquisition system was used to collect the data using the On-Site Monitor.

The data from the test were plotted as efficiency versus $(T_{in} - T_{amb})/I$. This allows the quantities A and B to be determined. A is the y-intercept and -B is the slope of the efficiency curve. That is,

EFFICIENCY = A - B $(T_{in} - T_{amb})/I$.

A range of A and B values that are considered acceptable was prepared by the engineer. The experimentally determined A and B values fell within this range so the collector installation was considered acceptable. The acceptance test report is given in the following pages.

3

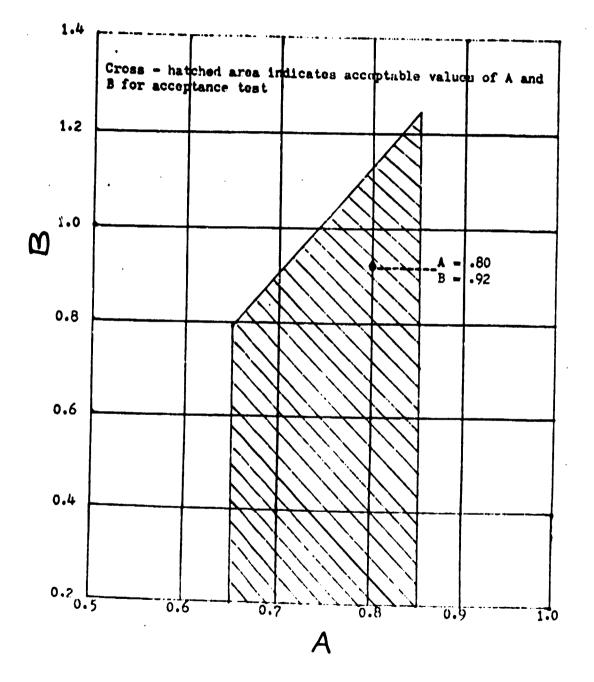
MANKATO PLUMBING & HEATING CO., INC. P. O. Box 426 Phone 388-7012

Mankato, Minn. 56002

ACCEPTANCE TEST TELEX COMMUNICATIONS, INC. SOLAR HEATING SYSTEM JULY 24, 1978

ENGINEER: InterTechnology Solar Corporation 100 Main Street Warrenton, Virginia 22186

Telex Communications, Inc. OWNER: West First Street Blue Earth, Minnesota 56013


CONTRACTOR: Mankato Plumbing & Heating Incorporated 530 North Front Street Mankato, Minnesota 56001

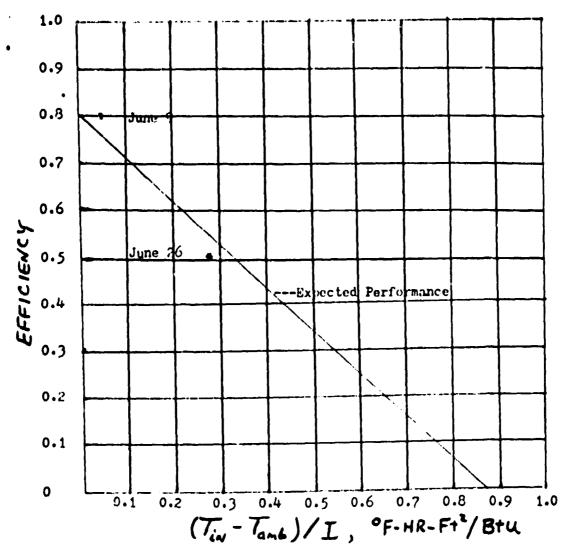
.1

MANKATO PLUMBING & HEATING CO., INC. P. O. Box 426

Phone 388-7012

.

ORIGINAL PAGE IS OF POOR QUALITY


MANKATO PLUMBING & HEATING CO., INC.

P. O. Box 426

Phone 388-7012

Menketo, Minn. 54002

AB DETERMINATION

The test data taken on the Telex Corporation Solar Heating System appears to closely follow the expected performance data as submitted by Intertechnology Solar Corporation.

6

MANKATO PLUMBING & HEATING CO., INC.

P. O. Box 426

Phone 388-7012

Mankete, Minn. 56002

JUNE 9, 1978 TEST

	TIME	INLET F	OUTILT F°	<u>1</u>	U.A.F.º	INSOLATION	<u>WIND</u>
	12:15	89	107	18	83	247	0
	12:25	91	109	18	83	238	2.1
Data Used	12:35	94	111	17	83	250	0
For Test	- 12:45	96	114	18	83	256	2.0
	12:55	98	116	18	82	253	0
	1:05	100	118	18	84	260	0
	1:15	102	120	18	84	256	7.2
	1:25	105	123	18	84	266	•7
	1:35	107	125	18	83	263	2.1

Inlet water average rate of change in $F^0/hr = 13^\circ F$ Average $\Delta T = 18^\circ F$ Average 0.A. = 83° F Average Insolution = 251.43 Btu/hr = ft² Average inlet Temperature = 96° F

Efficiency = $\frac{G\Delta T}{I}$ + Correction factor of $\frac{9.82 \times 18}{251.43}$ = .70 + .09 = .79 CF = $\frac{\Delta T \ln}{\Delta T} \times \frac{1}{I}$ or $\frac{13}{18} \times \frac{29.7}{251.43}$ = .09 $\chi = \frac{(7.6-83)}{251.43}$ = .05

7

MANKATO PLUMBING & HEATING CO., INC.

P. O. Box 426

Phone 386-7012

Manketa, Minn. 56002

JUNE 26, 1978 TEST

TIME	INLET FO	OUTLET FO	ΔT	<u>U.A.F.⁰</u>	INSOLA" ION	WIND
1:00	153				247	
1:10	156				250	15
1:20	158				247	
1:30	159			88.9	250	
1:40	161				253	
1:50	162			88.3	250	14
2:00	163				247	

Average Insolation - 249 Btu/hr - ft² Average 0. A. ** 88.6° F Total change in 20000 gal. storage temperature = 8° F Average inlot Temperature = 159° F 20,000 x 8.33 x u = 1,332,800 Btuh Eff = .50 $249 \times 10692 \text{ft}^2 = 2,662,308$ Btuh

 $x = \frac{(159^{\circ} - 89^{\circ})}{249} = .28$

The collector array efficiencey in this test was determined by measuring the total rise in storage temperature for one hour, with no water being circulated thru the inside building system. Therefore, all heat being finally collected was being retained in storage.

III. MAJOR PROBLEMS ENCOUNTERED AND RESOLUTIONS

There have been two major problems encountered with the Telex installation. These are discussed below.

<u>Hose Connections</u> - The collectors are internally manifolded with $2\frac{1}{2}^{u}$ headers. Connections from collector to collector were initially made with a reinforced silicone rubber hose. Because of the length of the row (144') and the large temperature range to which the manifolds would be exposed, there could be changes in the length of the row of up to \pm 2" due to thermal expansion and contraction. It was anticipated that the silicon hoses would be capable of absorbing this movement. In the actual installation, however, it was found that the axial forces could be transmitted down the manifolds to the hose that was clamped with the weakest pressure. This hose would then slip on the manifold eventually resulting in a leak.

The solution was to change all the hoses to a different type. The new hose has a single "hump" at its midsection which allows it to act as an expansion compensator. The new hump hose is also constructed of silicone rubber and is capable of withstanding the $350^{\circ}F-400^{\circ}F$ stagnation temperatures that the absorber reaches. As a further precaution against leaks, the hoses were bonded to the copper manifolds using a primer and silicone adhesive. An unlined hose clamp was also used. The installation of the hoses took place in the summer and early fall of 1979.

<u>Drain-Down</u> - The Telex system relies on the draining of the collectors for freeze protection. To relieve the vacuum caused by the draining water, air vents and vacuum breakers were installed at the outlet of each row. These were specified to be heat taped and insulated. Over the weekend of December 2 and 3 a freeze-up occurred which was discovered on Monday, December 3. The freeze-up was confined to the lower headers of Rows 7 and 10 (Row 1 is the southernmost row). There was no evidence of freezing in any of the other 8 rows.

9

The IBM computer listing of the system performance showed no unusual behavior other than some cycling of the solar pump which was to be expected because of the marginal insolation conditions which prevailed over that weekend. A close inspection of the air vent and vacuum breakers showed that under near-zero temperatures the heat tape was not keeping these devices above freezing. This was due partly to the lack of tight contact between the heat tape and the bodies of the vents and breakers and partly to the lack of insulation around the vent holes.

It was not clear, though, how non-operative air vents and vacuum breakers could have led to the freezing of only 2 rows out of 10. This is because all the rows are connected in parallel and if any of the 10 sets of air vents and vacuum breakers operate, the entire system would drain. The actual drain-down time was established by test at less than 10 minutes. It was also found that sections of the pipe and valves that contained ice due to incomplete draining could be cleared in a few minutes after the system pump started.

While the freeze problem was being investigated it was decided to run the system under manual control to eliminate short cycling. The system (8 rows) was then operated through the month of December only on clear days. On January 1, 1979, the system was started up and it was noticed that the absorber plate temperature on row 5 remained high. Upon investigation it was found that the bottom manifold of this row was frozen. Examination of the previous day on which the system operated revealed no abnormalities. At a meeting in January it was decided to install standpipe vents at each row as well as at the north and south ends of the return header. These standpipes were to be heat taped and Also, piping on the supply side was changed to steeper insulated. This work was carried out in February and the system was placed slope. into operation with 7 rows in March with no further freeze problems.

During the summer of 1979 when the hoses were replaced, the 2" flow equalization tubes inside the $2\frac{1}{2}$ " internal manifolds were removed. Initial tests showed no apparent problems with flow imbalance although no operational data have yet been accumulated.

IV. SYSTEM PERFORMANCE

The Telex system is one of the commercial demonstration sites that was selected to receive an IBM data collection system. The data collection system became operational in April 1978.

Based on the data that have been accumulated, the collector performance is very good with all-day efficiencies of 40% to 50% obtained on clear days. Tables 1 and 2 are taken from the IBM data summary for December 1978 and show the collector array performance and the space heating subsystem performance respectively. It should be noted that the system was not operated on a number of clear days and for most of the month only 8 rows were in operation.

Calculations using f-chart show that the system is performing as expected.

V. INTERIM PERFORMANCE CRITERIA

The Interim Performance Criteria (NASA George C. Marshall Space Flight Center publication 98M10001) have been reviewed with respect to the solar heating system at Telex Communications, Inc., Blue Earth, Minnesota. In our opinion the system installation complies with all applicable sections of these criteria.

InterTechnology/Solar Corporation William S. Mc Em

William S. McEver Project Manager 26 October 1979

Table 1

SCLAR HEATING AND COCLING DEMONSTRATION PROGRAM

•

MONTHLY REPORT Collector Array Performance

0.40
000
400
000
~ 1
00
- 0
183
S

ORIGINAL PAGE I. OF POOR QUALITY

Table 2

SOLAR HEATING AND COOLING DEHONSTRATION PROGRAM Montyly geropt Space heating sursystem

SITE: TELEX CORP. 3_UE EAPTH. WINN. Report Period: December.1979

SOLAR/2033-79/12

Image
0.4 1.4 0.5 1.4 0.6 1.4 0.7 1.4 0.7 1.4
Shift I Shift I

APPENDIX A

OPERATION AND MAINTENANCE MANUAL

TELEX COMMUNICATIONS, INC. Blue Earth, Minnesota Solar Heating System

APPENDIX A TABLE OF CONTENTS

I.	System Description	A-1
II.	System Operation	A-7
III.	System Maintenance	A-10
IV.	Johnson Controls Manual	A-12

I. SYSTEM DESCRIPTION

A. Introduction

The Telex Solar Heating System is composed of four main subsystems;

ι,

1

- o solar collectors
- o controls
- o thermal storage
- heating distribution

The solar collectors used on the project are the Mark III model manufactured by InterTechnology/Solar Corporation, Warrenton, Virginia. A total of 360 collectors are used--10 rows of 36 collectors each. The collectors have nominal 4' x 8' dimensions giving a gross collector area of 11,520 square feet. The collectors are oriented due south and are tilted at an angle of 55° from the horizontal.

B. Solar Collectors

The collector specifications are given on the following page. In order to increase the performance of the collectors, a black chrome selective absorber coating and water white glass are used. The black chrome selective coating is electroplated on a nickel coated aluminum extension. The solar absorptivity and thermal emissivity of the black chrome coating are nominally 0.95 and 0.12 respectively. The low thermal emissivity results in reduced radiative heat losses from the absorber plate and thus increased efficiency.

The water white glass is specially made with a very low iron oxide impurity content (which gives ordinary glass a greenish cast). The solar transmittance of the water white glass is 0.90 to 0.91. The slightly rippled pattern in the glass is due to the method of manufacture and has no effect upon its transmittance. The pattern does, however, tend to diffuse the light reflected from the surface of the glass and thus produce a less intense glare.

INTERTECHNOLOGY/Solar CORPORATION

CORPORATE AND ENGINEERING 100 Main Street Warrenton, Virenaa 22198 Telephano 704 417 7983 188**X 710-839-545**0

SOLAR MARKETING AND MANUFACTURIA 276 Brondview Ascens Warrenton, Virginia 22186 Telephone 203-347-9988 December 1, 1977

Specification 770501 Solar Collector - Medium Temperature Model Mark III

- Glazing: Glass, 3/16" thick, tempered low iron, single glazed; $\tau=0.88$. 1.
- 2. Glazing Seal: Continuous molded EPDM rubber.
- 3. Pressure Plate: 18 Ga. stainless steel type 304.
- 4. Fasteners: 3/4" x #10 Truss Head stainless steel sheet metal screws @ 12" + 0.c.
- 5. Frame: 20 Ga. galvanized steel, welded corner construction, full metal back.
- 6. Fin Tube Absorber Assembly.
 - A. Manifolds: Two, harddrawn, type M copper tubes, 2 1/2" Ø Nominal.
 B. Cross Tubes: Eleven harddrawn, type M copper tubes, 1/4" Ø Nominal.

 - C. Absorber Fins: Eleven Aluminum Extrusions; .060" x 4.22 x 88.125".
 - D. Absorber Coating = Black Chrome, $\propto = 0.94$; $\mathcal{E} = 0.12$.
- 7. Manifold Connectors - High temperature formed rubber hose with hose clamps.
- 8. Insulation - 1" fiberglass around edges; 3" fiberglass under absorber.
- Working Pressure 50 PSIG; maximum 100 PSIG. 9.
- Area 32.0 square feet (47 3/8" W x 97 3/8" L x 5 1/4" D overall 10. dimensions).
- 11. Effective Absorber Area - 29.7 square feet.
- 12. Mounting Provisions - Consult factory.
- 13. Dry Weight - 233 pounds.
- Liquid Volume $.318 \text{ ft}^3$ or 19.87 pounds of water. 14.

The collectors in each row are hooked together in parallel using the internal manifolds at the top and bottom of each collector. The connections are made inside the collector box using a reinforced silicone "hump" hose and hose clamps. The hump hoses are also bonded to the copper manifolds using a silicone adhesive. Thermal expansion and contraction is absorbed by the hose.

The collectors are supported by a wood structure which is mounted upon poured concrete piers. The concrete piers were poured to varying heights to give a slope to the structure for collector draining. The east side of the structure is approximately 18 inches below the west end, thus allowing the collectors to drain back to the inlet. The system will drain anytime the solar system pump stops. As the water leaves the collectors, air is bled into the system through standpipes located at the upper west end of each row. These standpipes are heat taped to prevent freezing. It is important to make sure that the heat tapes are in good working order before the onset of freezing weather and that these standpipes remain clear of ice.

Because the collectors are located below the level of the storage tank, a sump pit is used to hold the return water from the collectors. A sump pump takes the water out of the sump and returns it to the storage tank. An engine-driven sump pump serves as a backup to the primary sump pump if it fails or if there is an electrical power failure. In addition, there is an overflow to carry water from the sump to the outside if the backup fails.

C. Controls

The control subsystem controls the operation of the solar system pumps and control valves. The design and installation of the control subsystem was performed by Johnson Controls of Minneapolis according to the specifications of the solar system engineer, InterTechnology/Solar Corporation.

The control panel is located on the east wall of the building adjacent to the solar storage tank. In this panel are located the controls for the solar system pump, the sump pump, the heating distribution pumps and motorized valves. A number of temperature gauges are also provided on the face of the panel to allow the performance of the system to be monitored. The control functions are described in more detail in Section II and in the Johnson Controls manual, Section IV.

D. <u>Thermal Storage</u>

Thermal storage for the solar system is provided by a 20,000-gallon water storage tank located inside the building at the east end. The dimensions of the tank are 9' diameter by 42' long. The tank was constructed from 5/16" thick hot-rolled steel. Insulation for the tank is provided by 6" of fiberglass giving a total R value of 20. This insulation results in a temperature drop of less than 1°F per day due to heat losses.

Piping to and from the storage tank is arranged to make full use of the storage capacity of the tank. The solar water return and the heating system supply pipes are located very close to each other at the top of the south end of the tank. The heating system return water comes back to the tank at the north end. Although the solar pump is physically located at the south end of the tank, it is supplied with water from the bottom of the north end through a 4" pipe mounted inside the tank.

A sight gauge is located on the south end of the tank to allow a visual observation of the water level in the tank. Because the collectors and associated piping hold a significant quantity of water (800 + gallons), the water level will vary due to the operation of the solar pump. Make-up water to the tank is automatically supplied by a low- and high-level control. The makeup water is treated by a resin-type water softener. Under normal conditions, the amount of makeup water required by the system should not be large (less than 1000 gallons/year) since

the only way water is normally lost is through evaporation. Excessive use of water indicates a leak in the system.

E. <u>Heating Distribution System</u>

Heating of the plant is accomplished by water-to-air heating coils located in the nine existing air handling units and with three waterto-air unit heaters. The water coils in the air handling units are located upstream from the existing electric heating elements. This results in more efficient operation of the solar heating system since the coldest air reaches the water coil first and can thus be preheated before it reaches the electric elements. In this way, the water in the storage tank can be used down to temperatures of 80°F or lower.

The operation of each solar hot water coil is controlled by a thermostat located in the area of the plant served by the air handling unit in which the coil is located. The thermostat actually controls the operation of a two-way valve located in the solar hot water supply line leading to the heating coil. The thermostat and valve are of the proportional type. That is, the opening and closing of the valve are controlled by the thermostat in direct proportion to the deviation of the plant air temperature from that set on the thermostat. This proportional action takes place over a $\pm 2^{\circ}$ F range. Thus, if the thermostat is set at 66°F the heating valve will be fully closed at 68°F and fully open at 64°F.

If the solar tank temperature is not high enough to provide sufficient heat to meet the requirements of a particular zone, then the temperature of the zone will continue to fall. The electric heating thermostats are set $3^{\circ}F$ to $4^{\circ}F$ below the solar heating thermostats and will thus turn on the electric heating coils if the tank temperature is too low. Note that even if the electric heaters turn on, some heat is still being extracted from the solar water coil (since it is upstream from the electric heaters).

Some of the hot water coils are located where they might be subjected to cold air from an outside air damper connected to the air handling unit. These water coils are protected from freezing by a low limit or freezestat located just after the hot water coil. If the air temperature sensed by any one-foot-long section of the freezestat is below 40°F, the fan will be turned off and power to the two-way valves will also be shut off. The two-way valves are specified to fail in the fully open position so that water flow through the coil will be maintained.

Three-unit heaters are located in the areas of the plant that are not served by a central air distribution system. These heaters are controlled by standard on-off thermostats. Whenever the space requires heat, the thermostat turns on the unit heater fan. When the heating demand is met, the fan is turned off.

Hot water from the solar storage tanks is supplied to the heating coils by two hot water supply pumps located at the south end of the tank. These pumps are called P-2 and P-3 on the solar control panel. With the HOA switch in the (Auto) position, the hot water supply pump selected as the "lead" pump by the lead-lag switch on the control panel will run continuously. The other pump (lag pump) will be turned on only if the lead pump cannot supply enough hot water to meet the demands of the hot water coils. Water from the hot water supply pumps flows not only through the heating coils but also directly back to the tank through a short bypass line. The amount of water passing through the bypass line is controlled by two regulating valves in the bypass line. These regulating valves are controlled so that a constant pressure is maintained at the outlet of the pumps. If the heating coils demand more water, the pressure will fall and the regulating valves will throttle down the flow in the bypass line to maintain the pressure. If the flow in the bypass line falls to 10 GPM, a flow switch set to this valve will cause the lag pump to start up. The lag pump will continue to run until the heating demands have been met and the hot water coils require less flow. At this point the system pressure will start to rise and the regulating valves will open letting more water flow through the bypass line. As the flow through the bypass line reaches 160 GPM a second flow switch senses this and turns the lag pump off. A time delay has been placed in the outlet of the first flow switch to prevent rapid pump cycling due to pressure surges as the lag pump goes off.

II. SYSTEM OPERATION

A brief description of the operation of the solar control system is given in Section IV — the Johnson Controls Manual. Normal operation of the system is with all HOA switches in the A position. The solar system pumps and valves will then operate automatically to provide solar heat to the storage tank whenever conditions are suitable. The following special operating modes are described below:

1. System Shutdown

a. Solar Collectors - Turn HOA switch of P-1 to the O(ff) position. Leave HOA switch of P-4 (sump pump) in the A position (see note below).

b. Heating System - Turn HOA switches of pumps P-2 and P-3 to the OFF position.

IMPORTANT NOTE: Always leave sump pump, P-4, switch in the auto position so the sump can be kept pumped. Never run the sump pump in the S.(and) position unless the automatic start and stop level sensors mal-function.

2. <u>System Startup</u> (Fall)

a. Solar Collectors - Turn P-1 switch to AUTO position. P-1 will start if collector sensor temperature is 25°F greater than the storage tank temperature.

NOTE: Never start the system between the hours of 10:00 a.m. and 3:00 p.m. on sunny days. High pressures due to generation of steam could result.

When flow through the collector array is started, verify that sump pump, P-4, comes on and operates in a stable manner. This may take 30 minutes after P-1 has started.

Inspect the solar collectors and connections for leaks. Leaks at hose connectors may be stopped by retightening the hose clamps. A row with a bad leak can be valved off until repaired. To do this, close the shut-off valves at the entrance and exit of the collector row, then open the drain valve at the entrance to the row to allow the row to drain. Remember to close this valve when the row is again operational.

b. Heat Tapes - There are 10 heat tapes to prevent standpipes from freezing. These heat tapes are wired in parallel and connected to a 220-volt line. The heat tapes are controlled by a single outside thermostat. Each heat tape has a resistance of 1850 ohms and draws 0.12 amps. Thus, the entire circuit draws 1.2 amps. This current is read on a meter. If any heat tape is not operating, the meter will read less than 1.2 amps.

c. Heating System - When heat is required in the Fall, the heating pumps can be turned on by switching the HOA switches of P-2 and P-3 to the AUTO position. If there is only a moderate demand for heat, only the pump selected as the lead pump by the lead-lag switch will operate.

The solar thermostats should be checked to see that they are at their proper settings. At the same time the electric thermostat settings should also be checked to make sure they are lower than the solar settings.

4-8

If the daytime temperatures are mild but heat is required at night, the heating supply pumps can be shut off during the daytime and turned on at night.

3. <u>Safety Controls</u>

.

a. Tank high temperature limit - The tank high temperature limit prevents operation of the solar pump, P-1, at storage tank temperatures above 195°F. If higher temperatures are desired, the limit can be raised by adjusting the thermostat control. However, the system should not be operated whenever collector outlet temperatures reach 210° F. Normally, the tank will reach 195°F only during periods of mild, sunny weather during the Fall and Spring. The extra heat storage obtained by operating above 180° F will generally not be utilized during these periods.

b. Sump high level - An alarm electrode is located 2-1/2 feet from the top of the sump. If water reaches that level, an alarm will be sounded on the control panel, the collector pump P-1 will be turned off and valves V-2 and V-3 will be closed and opened respectively.

NOTE: The automatic shutdown of P-1 by the sump high level control will only occur with P-1 switch in the AUTO position.

c. Motor-driven sump pump - The motor-driven sump pump will be activated only if the electrical power fails and there is water in the sump above the float setting of the pump. As long as the power remains off, the pump will operate automatically under the control of its float level detector.

d. Hot water coil freezestats - The hot water coil freezestats are installed on all the air handling units that have provision for bringing in cutside air. If the freezestat senses an air temperature of 40° F or less the air distribution fan will be turned off as well as power to the

two-way hot water valve allowing the valve to fail to its normally-open position.

III. SYSTEM MAINTENANCE

A. <u>Solar Collectors</u>

There is no regular maintenance required for the solar collectors. If it becomes necessary to perform any work on the collector such as replacing a broken glazing, refer to Appendix C, the ITC/Solar Collector Parts, Repair, Installation and Maintenance Manual. Regular inspections of the collector array should be made (approximately every two weeks) and the condition of the collectors, connectors, etc. noted.

B. <u>Controls</u>

Maintenance of the control system--thermostats, control valves, etc. is discussed in the Johnson Controls Manual. A log of the system temperatures--storage tank, collector supply and return should be maintained so that any abnormal operation can be detected. Periodically (approximately monthly) the times of day that collection is started and stopped on a clear day should be noted in the log. This will serve as a check on the operation of the differential controller.

The operation of the heating tapes should be checked whenever the log data are taken. The normal current drawn by the heating tapes is marked on the meter. If one or more heating tapes is out of order, the current will be lower. If this occurs, the defective heating tapes should be located and repaired.

C. <u>Pumps</u>

Pumps should be oiled according to the manufacturer's instructions. The setting of the lead-lag switch on the control panel should be alternated monthly to give P-2 and P-3 the same amount of use.

D. Valves

The manual shutoff valves should be operated once a year to make sure they do not become stuck.

E. <u>Standpipes</u>

During extremely cold weather the standpipe openings must be inspected for ice buildup. Any ice buildup must be removed.

F. Water Conditioning

Follow the recommendations of Culligan for the addition of the rust inhibitor and the regeneration of the water softener.

ZELS CONT

SECTION IV

OPERATOR'S MANUAL

ORIGINAL PAGE IS OF POOR QUALITY

OPERATOR'S MANUAL

ELECTRIC/ELECTRONIC CONTROLS

٩,٠

INDEX

Electric/Electronic Controls

FOREWORD	PAGE NO. A-14
MAINTENANCE CONTROLLERS VALVE AND DAMPER ACTUATORS VALVES OPEN CONTACT DEVICES PRIMARY CONTROLS SECONDARY CONTROLS HVAC SYSTEM	A-15
MAINTENANCE CHECK LIST ADJUSTING INSTRUCTIONS ADJUSTING PROPORTIONAL CONTROLS Bandwidth Troubleshooting ADJUSTING TWO-POSITION CONTROLS	A-17
LOW LIMIT PROTECTION PUMPS BOILERS SUPPLY AND EXHAUST FANS LOW LIMIT THERMOSTAT OPERATION	A-19
SPECIAL PRECAUTIONS OCCUPANT DISCOMFORT TROUBLESHOOTING - DIAGNOSING THE PROBLEM HVAC EQUIPMENT AUTOMATIC CONTROLS Disconnect Switch	A-20 A-21
Fuses and Circuit Breakers Controlled Devices Controllers TROUBLESHOOTING PROCEDURE Controllers Sensing Elements Actuators	A-22
REPAIR PROGRAMMED MAINTENANCE	A-22 A-23

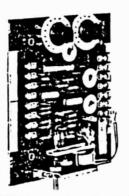
FOREWORD

Since 1885, Johnson Controls, Inc. has pioneered the development of automatic control systems to meet the exacting needs of heating, ventilating and air conditioning installations.

Your Johnson Control System is a precision system carefully constructed and installed to provide the highest degree of accuracy possible. It is the result of the work of highly skilled engineers and experienced trade craftsmen. It has been installed for you by Johnson Controls, Inc., a company with nearly 100 years experience in all phases of automatic control design, installation and service. Today's Johnson building automation systems capabilities include heating, ventilating and air conditioning (HVAC) controls, integrated Control Centers, Energy Conservation Controls, lighting controls, fire alarm, security, sound and communications, clock systems, water treatment and computerized automation systems.

There are certain suggestions which, if followed, will protect your building, improve operating efficiency, and add years of life to your control and mechanical systems. Careful regular maintenance is important if you wish to obtain the best possible results from your control system. Brief inspections are outlined to help you prevent any serious difficulties from occurring.

Many service calls result from insufficient knowledge of the operation and limitations of the control system and the heating, ventilating and air conditioning (HVAC) system. The objective of this Operator's Manual, in conjunction with the "as-built" control drawings and Product Directory(s), is to help you better understand your system. The control drawings show the control system "as-built" in your installation. The Product Directory(s) gives you a general description of the different type of controls available from Johnson Controls, Inc. The Operator's Manuai will give you specific information on the operation, maintenance and adjustment of the various kinds of equipment.



MAINTENANCE

Prior to performing any work on an electrical apparatus, care must be taken to ensure that the equipment is completely isolated. Electric and electronic equipment are comparatively maintenance free, however, for most efficient operation, the following preventive maintenance should be performed:

CONTROLLERS

Check and clean the circuit board and its terminals periodically to prevent buildup of dust and dirt.



TC-4100 Temperature Controller

VALVE AND DAMPER ACTUATORS

The actuator shaft should be lubricated periodically with high-temperature lubricant which can be obtained through your local Johnson office. On damper actuators, the friction points in linkage should also be lubricated with the same lubricant.

ORIGINAL PAGE IS OF POOR QUALITY

DA-3200 Actuator

VALVES

Control valves should be visually checked monthly for leaks and sticking stems. Loss of the valve's ability to close tightly will require inspection of valve seats and discs for wear and system contaminant buildup. Valve disassembly and repair may require special tools. Contact your local Johnson branch office for specific recommendations and instructions.

Valve and VA-3200 Actuator

OPEN CONTACT DEVICES

Contacts on relays, switches and thermostats that are exposed to the surrounding atmosphere should be checked periodically to prevent a buildup of dust and dirt. If an excess of dust is allowed to collect on contacts, arcing may occur which would cause the contact surface to pit and corrode. The result will be premature failure of the contact.

KZ-4000 Relay

Never use a file or sandpaper to clean contacts. This removes a special plating which leads to pitting. Clean the contacts by any of the following methods:

- blow contacts clean with forced air stream (CAUTION - air must be clean and dry)
- 2) brush with soft brush
- 3) spray with contact cleaner

OPERATOR'S MANUAL

ELECTRIC/ELECTRONIC CONTROLS

PRIMARY CONTROLS

The following equipment and associated control should be checked periodically. They should always be checked before extremely cold weather and before starting up the air handling system.

- 1. Hot water and steam supply
- 2. Chilled water (drained or protected with anti-freeze)
- 3. All pumps, including hot water, chilled water, condensate, etc.
- 4. Safety controls.

SECONDARY CONTROLS

On secondary systems, periodic checks should be made to the following whenever they are applicable to the individual system.

- 1. Outside air dampers
- 2. Preheat discharge temperature
- 3. Dew point temperature
- 4. Hot and cold duct temperature
- 5. Return air temperature
- **G. Humidity**
- 7. Local safety controls, such as low limit, high limit, and fire detectors.

HVAC SYSTEM

A control system cannot maintain proper conditions within a building unless the heating, ventilating, and air conditioning System is functioning as designed. It is therefore essential that the maintenance recommended by the manufacturer of such equipment be performed. By the same token, a control system cannot function properly if maintenance is not performed on it. In consideration of this requirement, a sample list of recommended maintenance tasks is listed bolow showing typical tasks considered essential for the continued efficient operation of the control system(s).

MAINTENANCE CHECK LIST

- 1. HVAC UNITS
 - a) review cycle and sequence of operation
 - b) check controllers and recalibrate as required
 - c) repair controllers as required
 - d) check operation of panel devices
 - e) clean control panel
 - f) check damper operation
 - g) clean and lubricate dampers
 - h) check operation and sequence of damper actuators
 - i) repair damper actuators as required
 - i) check operating range of sequencing networks
 - k) check operation and spring range of valves
 - I) repair valves as required
 - m) check operation of safety limits and minimum positioning devices
 - n) clean all instruments, covers, terminals, etc.

2. ROOM AND ZONE CONTROL

- a) check operation of controllers
- b) recalibrate controllers as required
- c) repair controllers as required
- d) check operation of unit valves or dampers
- e) repair unit valves or dampers as required
- f) clean all instruments, covers, terminals, etc.

ADJUSTING INSTRUCTIONS

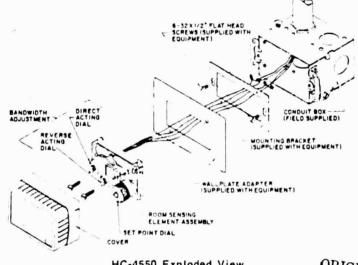
There are two basic types of controls in heating, ventilation and air conditioning systems, proportional and two-position. Proportional controls typically produce a variable 0-16 V.D.C. output signal, which is used to modulate or proportionally stroke a valve or damper. In an electric/electronic system, the majority of the controllers are proportional electronic which produce the above mentioned variable 0-16 V.D.C. output signal. The remaining electric controllers function in a two-position manner, that is to either start or stop fans or pumps, open or close valves or dampers, or interrupt the variable 0-16 V.D.C. signals of a proportional controller.

ADJUSTING PROPORTIONAL CONTROLS

A proportional controller is in control of the temperature it is measuring when its output

TC-4550 Temperature Controller

signal is within the spring range of the controlled device. This is determined by measuring the output signal with a D.C. meter across the output terminals or wires of the controller. If a signal between 0 and 16 V.D.C. is read, the temperature measured at the controller's sensing element can then be read and compared to the setting of the controller. Complete check-out procedures are given in individual controller installation data sheets available from your local Johnson branch office.



HC-4100

Humidity Controller

Bandwidth

The dial labeled 'bandwidth' should be positioned as far toward the lower end of its 0-10 scale as possible without causing 'hunting' or cycling to occur in the control system.

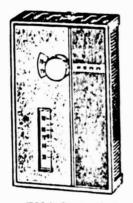
HC-4550 Exploded View

ORIGINAL PAGE IS OF POOR QUALITY

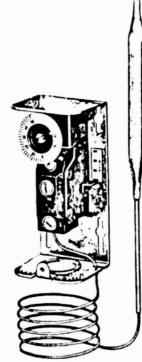
OPERATOR'S MANUAL

ELECTRIC/ELECTRONIC CONTROLS

Troubleshooting


Whenever the controller output signal is at a minimum (0) or maximum (16) value the controller is not in control and the reason for this must be determined and corrected. It nust be determined whether the problem lies in the control loop (room) or in the system loop (HVAC equipment). First determine the action of the controller. Then rotate the set point dial slowly toward the temperature at the element to see if the output signal changes. If the voltage changed, the controller also recognized there is a problem and should not be readjusted. Return controller set point dial to its previous set point. The problem then is in the system loop. When the problem is found and corrected, the controller will automatically return the control loop to the correct temperature.

responds. The differential setting of these controllers is factory set, but if caution is exercised, the differential can be readjusted in the field.


The controller set point position is indicated by the value on the dial. The second position is determined by either adding or subtracting the differential from the set point value. To establish the set point and differential, slowly rotate the set point dial toward the temperature as measured at its element until the contacts close or open. Read the dial value. Slowly rotate the dial in the opposite direction until the contacts open or close. Read the dial value. The difference between these two values is the differential, and the value of the dial that matches the measured temperature at the switchover point is the controller set point. Then turn the dial to the desired value.

ADJUSTING TWO-POSITION CONTROLS

A two-position controller has a point at which the contacts open and a point at which the contacts close. These two points are at different temperature values. The difference is referred to as the "controller differential". Some two-position electric thermostats have an adjustable differential which is established according to the requirements of the control loop to which the electric controller

T26A Controller

A19ABC Controller

LOW LIMIT PROTECTION

The importance of taking every precaution against freeze-up of equipment cannot be over-emphasized. Regardless of the automatic low limit devices furnished, the following procedures should generally be followed when there is any indication that the outside temperature will drop to the predetermined low limit setting.

PUMPS

All hot water pumps and/or condensate or vacuum pumps should be operational.

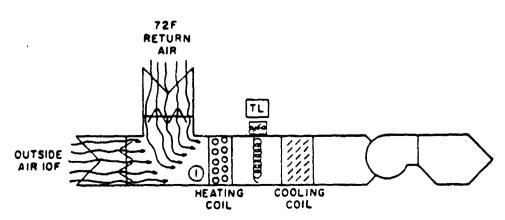
BOILERS

Boilers and/or converters should be allowed to cycle on a demand basis.

SUPPLY AND EXHAUST FANS

Supply fans should be allowed to operate on their normal occupied or unoccupied cycles. When on the unoccupied cycle, the outside air and exhaust dampers should be closed and the return air damper open.

LOW LIMIT THERMOSTAT OPERATION


The low temperature limit protection device located at the heating coil discharge senses the lowest temperature along any portion of its sensing element. When one foot or more of any portion of the element senses a temparature as low as the thermostat set point, the instrument will open the circuit. Since the thermostat responds to a "spot" type condition, it is essential that stratification of air in the mixing chamber entering the coil be eliminated if proper operation is to be expected.

Where repeated shut-downs occur as a result of this condition, a greater tendency exists for the operating personnel to override or bypass the low limit protection device in order to keep the unit running. This is a dangerous practice and should be avoided. Further investigation as to the cause of shut-down should take place to determine the cause of the problem with appropriate remedial action.

Low limit protection devices should be checked prior to the arrival of cold weather. This can be done by turning the dial to a warmer setting until the low limit protection device operates. The setting should equal the temperature of the entering air or water. Down forget to turn the device back to the original setting called for on the control diagram.

SPECIAL PRECAUTIONS

In extremely cold weather, the following added precautions should be taken: Before air supply systems are started, check steam traps and steam pressure and/or water temperature at the air supply system. After supply systems are started, check operation of the control system thermostats and observe for correct functioning with respect to the temperatures being sensed.

Example of Temperature Stratification (A Stratified condition Could Occur at Point (1) in above Illustration)

OPERATOR'S MANUAL

ELECTRIC/ELECTRONIC CONTROLS

OCCUPANT DISCOMFORT

The first evidence of trouble with the heating, ventilation or cooling system is very often a complaint from an individual who is too hot, too cold or is bothered with drafts. Go to the person complaining and personally check the complaint. Experience has shown that in the majority of cases the problem behind the complaint is not a malfunction of the control system. To assist in determining this, the various factors, other than automatic control, that can create comfort problems are listed:

1. Zone Control

A person outside of the controlled zone may feel too hot or too cold. A zone control thermostat can only sense the temperature at its particular location. Temperatures in all other areas of the zone are dependent on proper balance of the heating/cooling distribution system.

2. Sun Load

Direct sunlight on the thermostat will cause over-cooling of a zone while direct sunlight on the individual will cause over-heating.

3. Covering of Grills

Frequently occupants will cover part or all of a discharge grill causing improper heating or cooling. Whenever a grill is covered, the heating or cooling medium is not permitted to enter the space to correct for variances from the set point.

4. Occupant Location

If occupants are located adjacent to outside walls or windows they may be subject to cold air leakage through the windows and/or radiant cooling from the wall.

5. Insufficient Conditioned Air Supply

This can be caused by poor air distribution, dirty filters in the air conditioning unit, or lack of proper return or exhaust air outlets. 6. People and Equipment

Over-heating will result if more people or equipment occupy an area than was intended in the original dosign concept. This can occur when a meeting is held in an area not designed for this type of function.

7. Heating and Cooling System

A malfunction, or lack of capacity in extreme weather, of the primary or secondary mechanical heating or cooling equipment will result in insufficient heating or cooling.

8. Psychological Adjustment

Many complaints are purely psychological. Once a person understands the fimitations of a HVAC system, he is more likely to accept the conditions that prevail.

9. Drafts

In systems using air as a means of heating and cooling, there must be movement of air. To many people, even a slight air motion is uncomfortable. This can be a problem when an unbalanced system causes excessive drafts. Minor problems can sometimes be solved by relocation of work stations, however, it is always best to have a balanced system. i.e. proper size, spacing and delivery of air distribution equipment (fans, diffusers, grills, registers, etc.)

10. Wide Fluctuation of Air Temperature

Wide fluctuation of air temperature in an area can be the result of varying load conditions or improperly adjusted controls.

11. Stuffiness

A stuffy or smoky atmosphere will normally result from improper ventilation, i.e. insufficient fresh air supply, air too humid, overpopulation, or inadequate exhaust.

TROUBLESHOOTING - DIAGNOSING THE PROBLEM

HVAC EQUIPMENT

Depending on whether the area is too cold or too warm, and the time of year, check the heating, ventilating and air conditioning equipment that could be involved. This can involve any or all of the following:

- 1. Boiler
- 2. Refrigeration Compressor and/or Chilled Water System.
- 3. Pumps
- 4. Secondary Heating and Air Conditioning Supply Systems.

AUTOMATIC CONTROLS

When a complaint of improper temperatures has been received, a review of the mechanical system should be made to assure proper operation of the HVAC equipment. If the cause of trouble is not due to the mechanical system, conduct the following check of the control system. (A multi-purpose mater is necessary to make a thorough check, however, a limited check can be made visually).

Disconnect Switch

Check the disconnect switch that switches the power to the control system to make certain that it has not been switched to the "OFF" position.

Fuses and Circuit Breakers

Check the fuses or circuit breakers to make certain they are not blown or tripped. The circuit breaker may be part of the disconnect switch and will throw the switch to the "OFF" position if it trips. On 24 volt A.C. systems, the Johnson transformer is of the energy limiting type. When the maximum current rating is reached, the voltage will begin to decrease. When the overcurrent condition is remedied, voltage will automatically return to its correct level. If a fuse has been replaced or a circuit breaker reset and it opens again the local Johnson service department should be contacted.

Controlled Devices

Check the automatic valve, damper actuator, etc., to see if they are in the proper position as called for by the controller. If they are not, check the actuator along with the controller to see if the actuator responds to the controller.

Controllers

If the actuator is not in the proper position, check the controller which controls that actuator as follows:

- 1. Check to see if the controller is at the desired set point value.
- If the condition at the sensor of the controller has deviated from the controller set point, turn the controller set point slowly to match this condition.
- 3. Check the actuator again. If it is in the proper position to provide the heating or cooling, chances are the controller is only out of adjustment.
- If the controller is out of adjustment, it should be readjusted by a qualified serviceman. Call your Johnson service department for adjusting, or parts replacement.
- 5. If the actuator does not change position when the controller set point is changed, the actuator or controller could be defective. To proceed further requires the use of a multi-purpose meter and a basic knowledge of electronics.
- 6. If the owner's personnel have a basic knowledge of electronics and wish to troubleshoot malfunctions, a multipurpose meter with a sensitivity of 20,000 ohms per volt, capable of reading A.C. and D.C. voltage and resisiance in ohms is required.

OPERATOR'S MANUAL

ELECTRIC/ELECTRONIC CONTROLS

TROUBLESHOOTING PROCEDURE

By following the troubleshooting procedure outlined below, specific maifunctions, such as locse connections, broken wires, defective transformers, sensing elements, controllers, or actuators can be determined. Where maintenance is to be performed by the owner's personnel, replacement equipment should be stocked or ordered from the service department of the local Johnson office.

Centrellers

The following procedures will assist in finding minor control problems:

- 1. The reverse acting and direct acting output signals of the controller should vary from 0 to 16 V.D.C. as the set point is varied.
- Controller should give either a reverse or direct acting signal. If both signals are present at the same time, the controller is defective.
- 3. Make certain that elements are in good condition before conducting this test (see next section). Manually change the controller set point. If either output signal remains at a maximum or at "0" while the set point is varied, the controller may be defective. If both outputs are "0", make certain that the controller is getting A.C. power.
- 4. If either the direct acting or reverse acting output is a constant 16 V.D.C. while the other is "0", the problem may be in the sensing element, remote set point control, or faulty wiring.

Sensing Elements

If it is suspected that a sensing element in a system is faulty, it can be checked using the following procedure:

- 1. Disconnect leads from sensing element to controller.
- Using an ohmmeter, check for opens (above 2000 ohms) or shorts through the sensing element.
- 3. If either of these conditions are detected, the element should be replaced.

Actuators

If the controller is functioning properly, and the actuator is still not responding properly, check the following at the actuator.

- Check the control signal at the red (+) and blue (-) wires at the actuator. If there is no signal there may be a broken wire or loose connection between the controller and actuator.
- If the proper signal is getting to the actuator, and it still does not function properly, measure the power supply voltage to the actuator. This reading should be 24 V.A.C. across the yellow and white, wires or 120 V.A.C. across the black and black/red wires depending on voltage used. If the power supply voltage is correct, the actuator is defective.
- 3. If the control signal at the actuator remains at a constant voltage while varying the controller set point, any of the auxiliary devices between the controller and the actuator should be checked for proper operation.

Contact your nearest Johnson branch office if a more complete check-out procedure is required.

REPAIR

Adjustment and repair tool kits can be ordered from the local Johnson office. They can also supply you with repair and replacement equipment. In a majority of cases, it is less expensive to replace equipment under the Johnson exchange policy. Recommendations on proper replacement equipment should be obtained from the local branch office. When requesting replacements, give the equipment code number shown on the control drawings.

JOHNSON CONTROLS

PROGRAMMED MAINTENANCE

Programmed maintenance becomes more important every year. Today's mechanical and electrical systems are designed with closer tolerances than in the pist. And they are more interdependent. 'I one system deteriorates, chances are that other systems will be affected. Therefore, every system must be careully maintained to operate as closely as possible to design efficiency.

CUT COSTS TWO WAYS

Maintenance becomes more specialized under these conditions. And that's where Johnson can help. Our programmed maintenance plans match your scheduled needs while saving you noney two ways. First, we eliminate your expense of hiring and training maintenance personnel. Second, we provide you with trained specialists who are experts in their field. There is no time wasted isolating problems or overcomplicating maintenance procedures. No need to pay full time for part-time services.

PARTS AVAILABILITY WITHOUT INVENTORY EXPENSE

What happens when a critical component failure shuts down part of your system? Do you have to wait for days or weeks before a replacement can be located? And then pay premium prices and expensive shipping charges? Not with programmed maintenance by Johnson. In the first place, preyentive maintenance eliminates most failures. But where a rare disruptive failure does occur, our emergency service minimizes expensive downtime. And you're assured of an adequate supply of the necessary replacement parts.

SAVES TEST EQUIPMENT AND TOOL EXPENSE

Servicing building controls for mechanical and electrical systems today requires a wide range of specialized tools and test equipment. This is a sizable investment for a building owner. And the equipment is usually used only part time. Johnson programmed maintenance eliminates this investment while assuring availability of the latest test equipment and tools.

LONGER EQUIPMENT LIFE

A regularly-followed maintenance program extends equipment life by catching minor problems before they become serious. And by replacing worn parts before they can cause serious damage.

HELPS PREVENT MAJOR BREAKDOWNS

Often a serious system breakdown is triggered by failure of a minor system component. This louches off a series of failures that ultimately leads to complete system failure. With a planned maintenance program, no component, no matter how small, is neglected.

UNINTERRUPTED COMFORT, ENERGY CONSERVATION

A programmed maintenance schedule eliminates costly downtime. Uninterrupted, efficient productivity and fewer occupant complaints result. A preventive maintenance program provides you with assurance that these systems are always functioning properly. Efficient operation conserves energy.

PROGRAMMED MAINTENANCE BUDGET

Johnson's wide experience in maintaining controls for electrical and mechanical systems permits establishing a program of preventive maintenance with predetermined costs. You can accurately predict and budget all your maintenance costs. Systematized checklists spell out everything covered in your program. So you know beforehand exactly what is to be done and when, with no surprises, no chances for omissions. It is recommended that you plan and start a maintenance program at the start of your system's guarantee period.

Johnson is ready to hand'e your needs on any basis you wish, from taking total responsibility for your entire building to simply changing filters regularly.

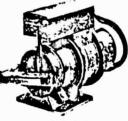
For a customized programmed maintenance plan for your building, including complete cost information, contact the Johnson office nearest you for full details.

Appendix B

Manufacturer's Product Literature

APPENDIX B TABLE OF CONTENTS

I.	Control Hardware	B-1
II.	Valves	B-46
III.	Pumps	B-58
IV.	Piping	B-67
v.	Heat Exchangers (Water Coils)	B-71
VI.	Water Conditioner	B-74


Issue Date 0478

I. CONTROL HARDWARE

Actuators

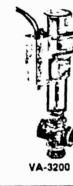
DA-3200 Electro-Hydraulic Damper Actuator

For damper control in heating, ventilating and air conditioning systems, the Johnson DA-3200 Electro-Hydraulic Damper Actuator provides direct acting proportional action. The DA-3200 with linkage to provide a 3 in. (76mm) stroke, will oppose up to 50 lbs. (223 N) of force in any shaft position. For two-position control a PZ-4000 power supply is required.

DA-3200

15 in. (381 mm) stroke, and will oppose 950 lbs. (4226 N) of force extended or 410 lbs. (1840 N) of force retracted.

VA-3400 with DA-3400-9600 Lever Arm Kit


VA-3200 has a 1-1/8 in. (26 mm) stroke and will oppose up to 100 lbs. (447 N) of force. For

air conditioning systems. With a

yoke and stem for direct mounting

to an appropriate valve body, the

two-position control a PZ-4000 power supply is required.

CYBERTRONIC PRODUCT DIRECTORY

Section A

VA-3400 Electro-Hydraulic Valve Actuator

The VA-3400 is a heavy duty unit with a 2-1/2 in. (64 mm) stroke. Designed to handle large volumes of fluid, the VA-3400 will oppose 1000 lbs. (4448 N) of force extended or 500 lbs. (2224 N) retracted. With an appropriate valve body, the VA-3400 provides valve proportional control in central heating and air conditioning systems. The actuator may be connected to a Cybertronic controller for either direct or reverse acting control.

ORIGINAL PAGE IS OF POOR QUALITY

DA-3400 (Valve Actuator with DA-3400-9600 Lever Arm Kit)

Damper control of large volumes of air in central heating, ventilating and air conditioning systems can be provided when using the VA-3400 Valve Actuator with a DA-3400-9600 Lever Arm Kit. The actuator, furnished for proportional action, responds to the direct or reverse output signal of a Cybertronic controller. The DA-3400-9600 has an adjustable linkage for a 2-3/4 in. (70 mm) to

DA-5000

VA-3200 Electro-Hydraulic Valve Actuator

DA-5000

Actuator

Thermal Damper

The compact and noiseless

operation of the DA-5000 provides

ideal control of zone dampers in

multi-zone systems, or mixing-box

valves in high velocity double duct

systems. This actuator offers

from Cybertronic controllers.

dampers in response to

highly accurate positioning of

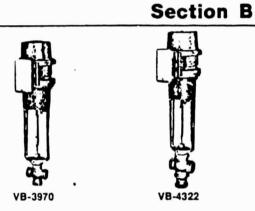
proportional low voltage signals

The VA-3200 provides direct acting — proportional control of valves in heating, ventilating and

Cybertronic Product Directory

VA-5000 Thermal Valve Actuator

The VA-5000 is suitable for use in fan coil units, in induction units and zone reheat. Fitted with connecting yokes for valves up to 2 in. (51 mm) in size, the actuator will oppose up to 100 lbs. (445 N) of force extended and 50 lbs. (222 N) of force retracted. The VA-5000 has a stroke of 1/2 in. (13 mm) and 7/8 in. (19 mm).


All actuators require a 24 or 120 volts A.C. power source for operation, and a 0 to 16 volts D.C. input signal control.

Valve Bodies

VB Series Valve Bodies

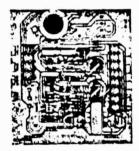
Johnson Controls manufactures a line of valve bodies to complement the Cybertronic actuators. The valve bodies available are in several styles: Normally Open, Normally Closed, Three-Way Mixing and Three-Way Bypass. The following table lists the valve bodies and their characteristics.

-	Valve	Size in.	Service	Service Connection	Pressure Temp. Ratings
-	VB-3752	1-1/2 10 2	Water and/or	Screwed Globe	Steam 35 PSIG (241 kPa) @ 281F (139°C)
	N.O.		Steam	Flanged Globe	Water 150 PSIG (1024 kPa) @ 320F (160°C)
-	VB-3970	1-1/2 to 6	Water and/or	Screwed Globe	Steam 35 PSIG (241 kPa) @ 281F (139°C)
, , <u>, , , ,</u> , (,1 , ;	N.C.		Steam	Flanged Globe	Water 150 PSIG (1024 kPa) @ 320F (160°C)
	VB-4322	1-1/2 to 2	Water	Screwed Globe	150 PSIG (1024 kPa)
	Mixing	2-1/2 to 6	Water	Flanged Globe	@ 320F (160°C)
-	VB-5650 Bypass	3 to 6	Water	Flanged Globe	150 PC'G (1024 kPa) @ CLUF (160°C)

Cybertronic Product Directory

CAGE TRIM CALVE

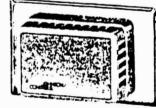
All Johnson Cage Trim Valves feature a removeable cage trim design which provides valve plug guiding throughout the travel range and permits high rangeability. The following table lists the valve bodies and their characteristics.



Valve	Size In.	Service	Pressure Temp. Ratings
VB-3754 N.O.	1/2 2/4 1	Water	Steam 35 PSIG (241 kPa) Water 400 2016, 2800 kPa)
VB-3974 ' N.C.	1/2, 3/4, 1	and/or Steam	@ -20 5 (50F (-29 to ∂6°C) Decreasing to 345 PSIG (2415 kPa) @ 281F (140°C)
VB-4324 3-Way	1/2, 3/4, 1	Water	Water 400 PSIG (2800 kPa) @ -20 to 150F (-29 to 66°C) Lecreasing to 345 PSIG (2415 kPa) @ 281F (140°C)

Controllers

HC-4100 Humidity Controller


The HC-4100 Humidity Controller is a solid-state Cybertronic device which operates on 24 or 120 volts D.C. The controller will provide an output of 0 to 16 volts D.C. for both sides of null to obtain direct and reverse proportional action. The bandwidth settings for the reverse and direct acting outputs may be adjusted separately from 1.5 to 25% RH.

HC-4100

HC-4550 Room Humidostat

Designed to provide proportional control of space humidity, the HC-4550 Room Humidostat controls 1 or 2 electro-hydraulic actuators or up to 10 thermal actuators. The HC-4550 has a D.C. operating voltage, usually obtained from a VQ-4100 or VQ-4200 power supply, and separate bandwidth adjustments for each side of null. This Cybertronic unit is available with open or closed set point adjustment.


HC-4550

LC-3001 Load Limiting Controller

VB-4324

Section C

The Load Limiting Controller is utilized in refrigeration and electric heat application to limit current flow. The Cybertronic controller produces a 0 to 16 volt D.C. proportional control signal which varies inversely to the input signal supplied by the toroidal current transformer. The set point is adjustable from 40 to 100% of the rated load current. Bandwidth is adjustable from 5 to 50% of rated load current. Operating voltage is either 24 or 120 volts A.C. and the set point may be either integral or remote.

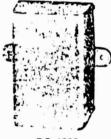
LC-3001

tronic Product Directory

'01

o-Pneumatic Transducer

C-3001 Electro-Pneumatic lucer is designed to convert 6 volt D.C. output signal 1 Johnson Cybertronic lifer into a proportional 3 to $G \pm 1$ PSI output pressure, atput pressure is then used rate standard pneumatic tus in proportional control ations.

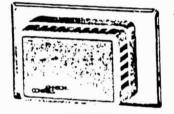


PC-3001 Mounted on TC-4100 Controller

00 Pressure Controller

3-4000 Static Pressure ller is a solid-state onic device designed to n a constant differential n two air pressures.

ntroller senses the rice in pressure piped to its I chambers and produces a volt D.C. signal onal to the differential for on of appropriate led devices. The unit may nected for direct or reverse butput. Maximum operating o is 10 in. W.G. The unit 3 24 or 120 volts D.C. input.


PC-4000

TC-4100 Temperature Controller

The TC-4100 is a solid-state Cybertronic device designed to provide proportional control of temperature when used with appropriate local and remote sensing elements. The controller will operate one or two electro-hydraulic actuators, up to six thermal actuators on either side of null, or a pneumatic actuator when used with the PC-3001 electro-pneumatic transducer. The unit is available to operate on 24 or 120 volts A.C., has various temperature ranges, and separate bandwidth settings for direct acting and reverse acting signals.

TC-4550 Room Thermostat

The TC-4550 Room Thermostat is available with or without thermometer and with exposed or concealed set point. The TC-4550 operating voltage is usually obtained from a VQ-4100 or VQ-4200 power supply, and has separate bandwidth adjustments for each side of null. Each output will control one or two electro-hydraulic actuators, up to ten thermal actuators or a variety of Cybertronic auxiliary devices.

TC-4550

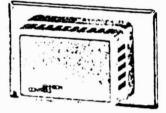
TC-4100

ORIGINAL PAGE IS OF POOR QUALITY

Cybertronic Product Directory

Elements

HE-6000 Series Humidity Sensing Element


Johnson Humidity Sensing Elements for Cybertronic control provide accurate, rapid sensing of relative humidity in remote spaces or ducts.

The element is available in a room or insertion model with a carbon impregnated element which changes electrical resistance in response to changes in relative humidity. The element has an operating range of 20 to 90% RH with a high degree of stability and resistance to washout at high humidities. The sensing portion of the HE-6100 Insertion Element is mounted in a 6-1/4 in. (159 mm) channel and covered with an appropriate protective cap. The HE-6880 is a wall mounted humidity element available for horizontal or vertical mounting.

For use in JC/80 applications, the HE-6180 is a duct mounted humidity sensor with a 20 to 80% RH. The HE-6880 can be mounted vertically or horizontally for JC/80 use.

Section E


HE-6100

HE-6800

TE-1100 Series Temperature Sensing Elements

The TE-1100 Series Temperature Sensing Elements provide a rapid linear response to temperature changes by utilizing a nickel wire wound element. The reference resistance is 1000 ohms at 70F (21°C), with a temperature coefficient of 3 ohms/F°. The standard tolerance is \pm 1% and precision elements are available with a tolerance of \pm 1/4%. The following table lists the elements, applications and options available.

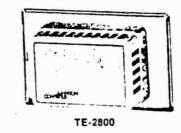
TE-1700

Product	Application	Models & Options
TE-1100	Duct Insertion Well Insertion	Averaging (8 or 17 ft) Dual Wound, High Temperature (Standard or Precision)
TE-1101	Duct Insertion	6 in., Standard Precision or Double Element
TE-1300	Outside Temp. Sensor	Standard or Precision Models
TE-1500	Outside Solar Sensor	Used with TE-1300
TE-1601	Bearing Temp. Sensor	Used with CQ-1001
TE-1610	Surface Temp. Sensor	Used with TC-4100
TE-1700	Strap-on or Well	*000 Ohms ±1 or 1/4%, 500 Ohms ±1% and 333 Ohms ±1% Models with Packing Nut and Handi-Box for use with WZ-1000 Wells
TE-1800	Wall Mounted Room Sensor	Control — With or Without Set Point Concealed or Exposed, Horizontal or Vertical Mounting Indication also Available
TE-1900	Indication Sensor	Mounts Internally on Pneumatic or Cybertronic Room Thermostats, Separate Model for Dewcel®

bertronic Product Directory

E-1080 Series tra-Precision Sensing ments

> TE-1080 Series Temperature ising Elements are a-precision nickel wire sensors igned for use with the JC/80 Iding Automation System. All ments are wound to a precise vrance of 1000 ohms - 0.1% at (21°C).


TE-1980

Product	Application	Models and Options			
TE-1180	Duct Insertion	Dual or Single Wound, 6 in.			
TE-1380	Outside Temp. Sensor	Standard			
TE-1780	Strap-on or Well	For Mounting with WZ-1000 Wells, Models come with Packing Nut and Handi-Box			
TE-1880	Wall Mounted Room Sensor	Control — Without Set Point, Horizontal or Vertical Mounting, Indication			
TE-1980	Indication Sensor	Adhesive Mount for Sensor only, or Sensor with Clip for use with T-4000 Thermostat			

TE-2800 **Temperature Sensing Element**

Designed for use with a solid-state DQ-4000 Series Electric Heat Controller, the TE-2800 Temperature Sensing Element with set point is a thermistor type element.

Models are available with optional concealed or exposed set point adjustment and with an optional thermometer for local temperature indication.

Section N

Networks

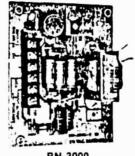
'-4000

ne Proportioning Network

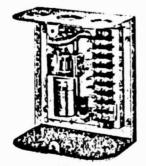
DN-4000 Time Proportioning work is designed to provide urate proportional control for tric heating applications. The -4000 will automatically control "on" time of heating coils in portion to the 0 to 16 volt D.C. put of a Cybertronic perature controller. The work has an adjustable time e of 30 seconds to 5 minutes.

LN-4000 Low Signal Selector

Requiring no external power supply for operation, the LN-3000 Low Signal Selector is a solid-state Cybertronic device. Designed to select the lower 0 to 16 volt D.C. control signal from two Cybertronic controllers, the output of the LN-3000 can then be used to position one or two electro-hydraulic actuators or up to ten thermal actuators.


RN-3000 Resistance to Voltage Converter

The RN-3000 Resistance to Voltage Converter is a Cybertronic device which converts a variable resistance from a 100, 135 or 150 ohm potentiometer into a 0 to 16 volt D.C. output signal. The RN-3000 requires a 24 volt A.C. supply voltage and is factory set for operation with a 135 ohm input potentiometer.


RN-3000

Auxiliary Devices

Section Q

AQ-4100 Remote Reset Control

The AQ-4100 Remote Reset Controls are motor-potentiometer assemblies designed for readjustment of manual set point settings from a central control panel or Johnson Control Center. They are used with temperature controllers, measuring bridges and for humidity reset.

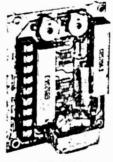
AQ-4100

AQ-5000 Remote Set Point Control

The AQ-5000 Remote Set Point Control provides remote adjustment for a HC-4100 Humidity Controller or a TC-4100 imperature Controller. It can also be used in electronic circuits for remote night setback. An indexing knob marked with an arrow, and appropriately marked scales are supplied with each unit.

AQ-5000

CQ-1001 Bearing Temperature Alarm Unit

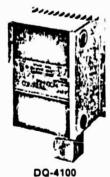

The CQ-1001 is a Cybertronic system designed for measuring and producing an alarm from a high temperature limit on a bearing block. Two devices compose the CQ-1001 system; the TE-1601 Temperature Sensor and the CQ-1001 Temperature Alarm Unit. The unit is direct or reverse acting with an adjustable set point from 140 to 180F (60 to 82°C).

CQ-2100 Floating Alarm Unit

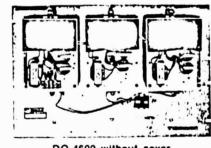
When used with the TC-4100 and HC-4100 Controllers, the CQ-2100 Floating Alarm Unit provides a contact closure for high and low alarm points. Alarm points are individually adjustable for \pm 10% of controller span or a maximum of 10F (5.5°C), on each side of null, with a differential of 1F (1°C). Alarm points need not be symmetrical about the null point. Changes in set point adjustment cause the alarm point to move accordingly.

CQ-2100

CQ-2200 Cybertronic Alarm Unit


The CQ-2200 Alarm Unit is used with the CQ-4100 series of temperature and humidity bridges to provide contact and closures for two adjustable alarm points. The alarm points are individually adjustable from 0 to 100% of the basic bridge range.

CQ-2200


DQ-4000 Series Electric Heat Control

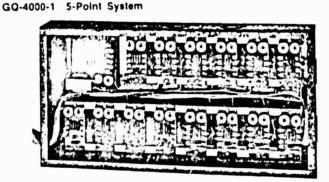
The DQ-4000 Series solid-state **Electric Heat Control Units** provide time proportioning control of electrical power to electric resistance heaters. The DQ-4100, DQ-4102 and the DQ-4103 are single phase units; the DQ-4400, DQ-4500 and the DQ-4600 are three phase units. All units in the DQ-4000 Series feature a unique zero phase-angle switching technique which minimizes radio frequency interference and vaveform distortion in the power lines. Both master and slave units are available in all models.

DQ-4103 without cover

DQ-4600 without cover

Product	Model	Supply	Signal	Ambinet Temp
	Type	Voltage	Inputs	Limits
DQ-4100 Single		120. 208. 240.	0 to 16 Volts D.C.	0 to 120F
Phase		277 Volts A.C.	Cybertronic	-18 to 49°C
DQ-4102	Single	120. 208. 240.	Control Signal	0 to 146F
	Phase	277 Volts A.C.	0 to 135 Ohms	-18 to 63°C
DQ-4103	Single Phase	480 Volts A.C.	from Transducer or Thermostat	0 to 150F -18 to 66°C
DQ-4400	3-Phase	208/240, 416/480, 600 Volts A.C.	Resistance from Thermistor Temperature Sensor or	32 to 120F 0 to 49°C
DQ-4500	3-Phase	208/240, 416/480,	0 to 20 PSIG	32 to 120F
	4-Wire	600 Volts A.C.	(0 to 140 kPa) Signal	0 to 49°C
	3-Phase	120/208. 277/480	from Pneumatic	32 to 120F
	4-Wire	Volts A.C.	Controller	0 to 49°C

GQ-4000 Indication System


Available in five, eight and ourteen channel models, the 5Q-4000 Indication Systems provide accurate centralized indication of selected remote ariables. Each GQ-4000 system is omposed of a regulated 24 volt b.C. power supply, a D.C. measuring bridge unit, a variable isistance input source and a ignal readout device. The eight mannel model is available with or authout the power supply.

he GQ-4100 is a D.C. bridge unit sed for relative position, imperature, or relative humidity, he relative position bridge may iso be used for reset applications. All units have separate zero and span adjustments enabling individual calibration of each point in the system.

GQ-4000-5

GQ-4000-4 14-Point S, stem

ORIGINAL PAGE IS OF POOR QUALITY

Cybertronic Product Directory

HQ-3000 LQ-3000 Signal Discriminators

Johnson High (HQ-3000) or Low (LQ-3000) Signal Discriminators are solid-state devices. The units compare the magnitude of 0 to 16 volt D.C. signals of two or more Cybertronic controllers, and reproduce the highest or lowest signal as an output to a separate circuit. This output can be used to start or stop central motors, or modulate central zone actuators at the same value as the highest or lowest control signal. The discriminators have an operating voltage of 120 or 24 volts A.C. and do not affect the output signal of the controllers being monitored.

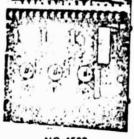
Discriminators have a maximum capacity of six controller inputs. Two or more units may be interconnected to provide more than six channels for a given function.

HQ-3000

LQ-3000

MQ-3000 Minimum Position Network

The MQ-3000 Minimum Position Network is designed for use in electric control circuits to maintain a minimum position of a controlled device, or to provide manual control of one or two controlled devices. The MQ-3000 has an adjustable output which can be set at any value from zero to maximum voltage (0 to 16 volts D.C.). Furnished for 120 or 24 volt A.C. operation, the unit is available with integral or remote adjustment via an AQ-4100 Remote Reset Control.



MQ-3000

NQ-4500 Staging Network

Used with Cybertronic controllers, the NO-4500 Staging Network Is an auxiliary device designed to provide two-position control as a function of a proportional control signal. The NQ-4500 is normally used to sequence stages on a reciprocating compressor or an electric heating unit.

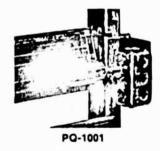
The staging network is composed of up to three individually adjustable SPDT relays, each operated by a separate trigger circuit. The trigger circuits receive the proportional 0 to 16 volt D.C. output of a controller to actuate corresponding relays.

NQ-4500

NQ-5002 Solid-State Step Controller

NQ-5002 Step Controllers provide sequential step control of electrical resistance heaters. The NQ-5002 combines time proportioning control of the DQ-4000 with the sequential step control to provide an economical approach to proportional control of electric heat.

The NQ-5002 is available in four, six, eight, or ten stages with the 24 volt A.C. Triac pilot duty switching for use with appropriate electric heat contactors.


Power input is 24 volts, 50/60 Hz, 275 milliamperes, maximum for electronic section and 0.6 amp for each contactor stage.

NO-5002

PQ-1001 Damper Position Indicator

Proportional variable resistance change in response to damper movement is provided by the PQ-1001 Damper Position Indicator. An auxiliary device, models are available for both inside and outside mounting on ductwork and damper frames.

B-9

RQ-3000 **Reversing Network**

SQ-3001

Network

Cybertronic Sequencing

The SQ-3001 Cybertronic

Sequencing Network is a

for converting a preselected

Cybertronic controller into two

separate 0 to 16 volt D.C. signals.

portion of the output of a

Networks are available for

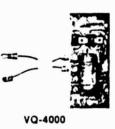
solid-state auxiliary amplifier used

The Johnson RQ-3000 Reversing Network is a solid-state device which reverses the output signal of a Cybertronic controller. The network is designed primarily to provide sequential control of two ictuators from a single controller. in practice, the network inverts controller output of one side of null so both controlled devices will receive direct or reverse signals. the reversing network is available tor 120 or 24 volt A.C. operation.

Unison Amplifier Controlling up to eight

UQ-3000

electro-hydraulic actuators in unison, the UQ-3000 Unison Amplifier is used when the combined output load of several final control devices exceeds the output load rating of the controller.


The unit accepts a 0 to 16 volt D.C. signal from a controller and produces an output of equal voltage capable of operating the parallel connected actuators. The device operates on a 24 or 120 volt A.C. power supply input.

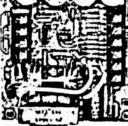
UQ-3000

maximum), and will retain full regulation at any output setting. Line regulation is 0.5% for an input of 21 to 28 volts A.C.

For both power supplies, load regulation is 0.6% from no load to full load, and maximum ripple is 50 mV. Recovery from line and/or load changes is instantaneous.

VQ-4200 **Power Supply**

The VQ-4200 is a solid-state, low voltage D.C. power supply suitable for continuous duty with HC-4550 room humidity controllers and TC-4550 temperature controllers. One VQ-4200 Power Supply will operate one HC/TC-4550 with up to two DA/VA-3200 electro-hydraulic actuators connected. The 18 volt D.C. output is transistor regulated and filtered.

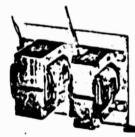

VQ-4000 VQ-4100 **Power Supplies**

Especially designed for use with the GQ-4000 Indication System components, the VQ-4000 is a solid-state, low voltage D.C. power supply. The VQ-4000 is suitable for continuous duty in applications requiring a well regulated source of 25 volt D.C. power (70 mA maximum). Line regulation is 0.5% for an input of 22 to 29 volts A.C.

The VQ-4100 is adjustable for a 20 to 25 volt D.C. output (200 mA

operation on either 24, or 120 volts A.C., 50/60 Hz supply voltages.

RQ-3000


SQ-3001

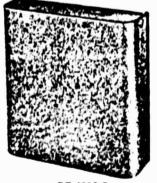
VQ-4200

Cybertronic Product Directory

VQ-5000 Power Supply

The VQ-5000 supplies 24 volt A.C. power to the heater circuit of a Foxboro Dewcel® element for dew point indication and control applications. Although factory connected for 60 Hz operation, the VQ-5000 is field reconnectable for 50 Hz operation.

VQ-5000


Accessories

BZ-1000 Series Cybertronic Equipment Enclosures

BZ-1000 Series Cybertronic Equipment enclosures are used to house and protect field mounted Cybertronic equipment. Several standard sizes are provided to match various equipment mounting space, wiring and conduit connection requirements.

BZ-1000-7

KZ-4000 General Purpose Relays

Listed by both Underwrite is Laboratories and the Canadian Standards Association, the KZ-4000 General Purpose Relays are used to control large electrical loads from Johnson equipment with low power sources. Two relay contacts are available, DPDT and SPDT.

Section Z

KZ-5000 Relays for Cybertronic Controllers

The KZ-5000 Relays convert a proportional 0 to 16 volt D.C. output signal of a Cybertronic controller into a contact closure. The relays may also be used in applications requiring two-position control of relatively large amounts of electrical power, using low level D.C. voltage. The pull-in and drop-out points of the SPDT relays are non-adjustable.

KZ-4000

KZ-5000

Cybertronic Product Directory

MZ-7000 Series Indication Meters

Magnetically shielded, the MZ-7000 Series Indication Meters are signal readout devices designed for flush mounting (with bezel), surface mounting or back mounting applications. The accuracy of all models is $\pm 2\%$ of the full scale value. Lens, bezel and mounting adapter kits are separately available.

MZ-7006

MZ-7008

PZ-4000 Accessory Power Supply

The PZ-4000 Accessory Power Supply is a solid-state Cybertronic device used for two-position operation of a single DA/VA-3200 electro-hydraulic actuator. Two 35 milliampere models are available to operate 24 or 120 volts A.C., 50/60 Hz. Both models produce 16 volts D.C. across 1000 ohms.

PZ-4000

The RZ-4500 Precision Decade Box is a variable precision resistance source for field calibration of Cybertronic control and indication systems. The decade box provides precision resistance value used in operational checkout and adjustment procedure. A total of 11,110 ohms can be obtained in one ohm increments.

TZ-5000 Step-Down Transformers

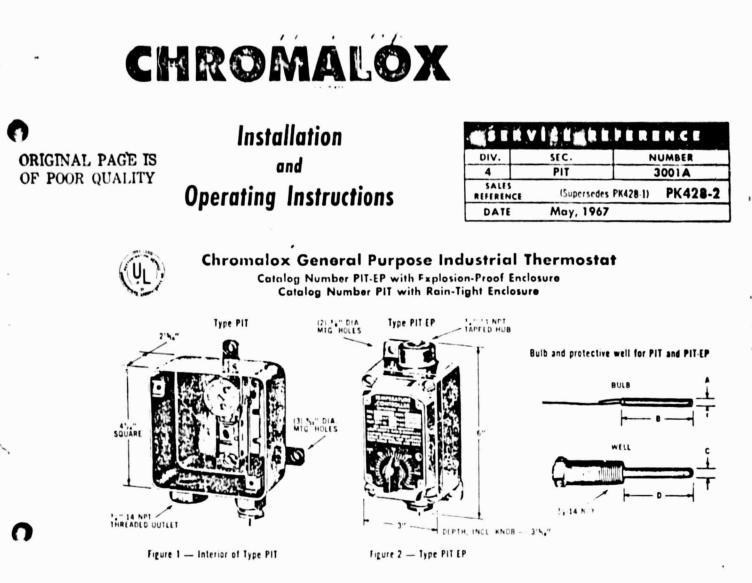
Listed by Underwriter's Laboratories Inc., the TZ-5000 Step-Down Transformers are used to supply power to 24 volt A.C. control circuits. These trans ormers are precision built to ensure rated power, proper voltage regulation and maximum efficiency.

Models are available with 100 to 300 VA ratings at 120 or 200/240 volts, 50/60 Hz line voltages. All 208/240 dual input voltage transformers have a single primary winding with a tap for the lower input voltage.

TZ-4000 Current Transformer

The TZ-4000 Current Transformer is a Cybertronic device which measures the alternating current flowing through a wire and produces a proportional A.C. voltage output signal. It is designed for use with LC-3001 Series Load Limiting Controllers.

RZ-4500


M-8100 Control Cabinets

The M-8100 Control Cabinets are general purpose utility enclosures designed for use in grouping and protecting various components of pneumatic, electric and Cybertronic control systems.

Listed by Underwriter's Laboratories, the M-8100 is used for line voltage systems or any other application requiring a rated cabinet. The face and back panels are held in place with continuous, solid retaining bars.

TZ-4000

Can either open or close a circuit on temperature rise. SPDT, snap-acting switch.

Type PIT — Rain-tight, gasketed enclosure is 0.062" steel. Simple mounting on 3 rubber-cushioned feet. Has adjustable high limit stop. Plain copper bulb and capillary.

Type PIT-FP — Explosion-proof, cast aluminum housing approved for Class I, Group D and Class II, Groups E, F, G. External adjusting knob. Tin-plated copper bulb and capillary.

APPLICATION — Chromalox Type PIT SPDT theracstats are designed for a variety of applications where Raintight or Explosion-proof enclosures are necessary or desirable. Typical use is to control the temperature of fluids conveyed through pipes tempinous termed pipe tracing), also used in snow melting applications with electric heating cable. An alarm or signal circuit can be operated by the auxiliary contacts.

OPTIONAL ACCESSORY — Bulb Well — Copper bulb wells with ¹2" NPT brass connectors are supplied when specified. See Specifications for Catalog Numbers.

FEATURES -

1. Liquid-filled element is unaffected by barometric pressure and cross ambient temperature problems.

2. Dependable field proved snap-acting contacts with heavy duty rating for inductive or resistance loads.

- 3. Choice of four temperature ranges.
- 4. Copper bulb well available

Specifications -

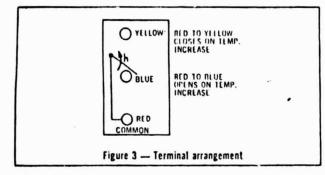
Catalog	Catalog Number	Temp. Range	with 10	Capillary dia.	Nominal* Differon- tial
(Rain Tight)		(•1)	"A" Dia.	"B" Lgth.	(•F)
P11 15 P11 25 P11 35 P11 50	PIT 15EP PIT 25EP PIT 35EP PIT 56EP	0 150° 100 250° 200 350° 325 475°	290" "90" 56"	215" 255" 274" 274"	666

"("Horential haved of Guert bu? Immersion in liquid at 1° per minute rate of change. In a buib well, differential will widen. When clamped to a surface such as a pipe, differential may be wider or narrower depending on several variables.

Bulb Wells -

Temperature Ranges	"C" Dia.	"D" Lgth.	Part Number
0.150%, 100.250%f	••"	21,"	1-112008
20.1 3101, 325 475 F	·"	2'%."	2-112008

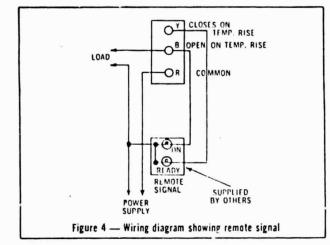
Electrical Ratings -


Voltage, AC Only	120	208	240	277
Full Load Amperes	16	92		-
Lorked Rotor Amperes	96	55.2	48	
Non-Inductive or Resistance Load Amperes" (Not Lamp Loads)	22	22	22	22
	- 125 VA, 24	600V A C.		

"S P S T. Rating

GENERAL DESCRIPTION — The Chromalox Type PIT Thermostat has an enclosed SPDT switch contact unit. May be wired to open on temperature rise ("R" to "B"), or to close on temperature rise ("R" to "Y"). See Figure 3, Page 2

PK428-2

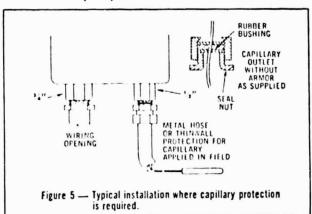

The Rain-tight thermostat has a keyed adjustable high limit stop. A special spanner wrench (Part Number V74-836-61), required to adjust the limit stop, is supplied with cach control.

INSTALLATION - Caution: DO NOT subject bulb to temperatures more than 50°F, above maximum dial range of the control.

Wiring should conform to local and National Flectric Codes. Wiring terminals are accessible by removing the cover.

Signal Circuit - Self contained pilot lamps are not available. Remote lights or other type of signal circuits may be connected as shown in Figure 4.

Indoors, the thermostats may be mounted in any position.


RAIN-TIGHT ENCLOSURE TYPE PIT - Outdoors. where exposed directly to weather, the electrical connection and capillary should be on the lower horizontal surface as illustrated in Figure 1.

Where the capillary is exposed and subject to possible mechanical damage, some means of protection should be provided. The capillary outlet is designed to permit the

capillary to run through 15" thinwall conduit or through metal hose such as 'ie" Anaconda "Seaitite" or equivalent.

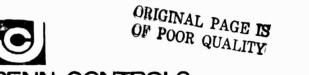
Remove the capillary outlet seal nut only, see Figure 5. Push the bulb and capillary through a conduit coupling or suitable hose fitting and on through the conduit or hose. By tightening the conduit coupling or hose fitting to the 15 female capillary outlet fitting, the seal around the capillary will be maintained and the conduit or hose will be rigidly attached to the enclosure.

The end of the conduit or hose away from the control hould be clamped and bushed and the capillary should be taped to prevent cutting or wear from sharp edges and any strain on the capillary.

Adjustments - The setting may be changed to meet the requirements of the installation. To change setting, remove the cover and rotate dial with a screwdriver.

High Limit Stop Adjustment - The high limit stop can be set at any position between 55°F, above the lowest dial range and the highest dial range. For example: The high limit stop can be set between 55°F, and 150°F, on a thermostat with a range of 0°F, to 150°F.

To change the stop setting, loosen the two screws in the dial plate with the wrench packed with the control. Turn the dial so the pointer indicates the stop setting. Move the stop (located behind dial plate) against stop bracket. Tighten screws to lock the stop in position.


REPAIRS AND REPLACEMENT - Repairs are not recommended in the field. Control requiring repair should be returned prepaid to the factory to the attention of the Service Administration Department.

CHROMALOX WARRANIY — The Edwin L. Wiegand Company guarantees its products only to be within regular commercial limits, unless otherwise stated in writing. Parls manifestly defective will be replaced at no addi-tional cost, but no claims will be allowed for labor, material, or damages in-cident to this replacement. Claims will not be allowed for material damaged or broken in shipping, handling, installing, or by abuse. In addition, the company caunot guarantee products against damage re-sulting from corrosion, electrolysis, or other operating conditions beyond out control which could result in premature failure of the product.

1 - 57

ELECTRIC PRODUCT DIRECTORY

PENN CONTROLS & DIVISION OF JOHNSON SERVICE COMPANY 2221 CAMDEN COURT + OAK BROOK, ILLINOIS 60521

LOW LIMIT TEMPERATURE CONTROLLER, AII

The All Low Temperature Controller provides a warning of low temperature conditions at heating and/or cooling coils. The All is designed to respond to the lowest average temperature over any one foot portion of the 20 foot long averaging element. This controller has an operating range of from 35 to 45F. SPST contexts are provided for either manual or automatic reset operation.

GENERAL PURPOSE REMOTE BULB TEMPERATURE CONTROLLER. AI9ABC, AI9AAF, AI9AAC, AI9ACA AND AI9AAA

The A19 General Purpose Controller provides temperature control for a broad range of applications. Ranges are available for operation between -30 and 240F with either a fixed or adjustable differential. SPST contacts, for open high or open low operation can be provided with either manual or automatic reset operation. The standard capillary is 6 feet long. Optional 10 and 20 foot capillaries are also available. The open high model is available with a Factory Mutual Listing.

LOW LIMIT TEMPERATURE CONTROLLER, AI 9AAH

The AI9 Low Limit Temperature Controller is for low voltage applications. SPDT contacts for open low operation are supplied. This controller has an operating range of 40 to 120F and a fixed differential of $3/4^{\circ}$ F. A 7-1/2 foot long averaging bulb is supplied as an integral part of the controller. This AI9 can be used with Cybertronic control systems as an outdoor low-limit temperature controller.

HOT WATER CONTROLLER, AI9ABC, AI9ADB

The A19 Hot Water Controller is available for either direct or remote well immersion applications. The operating range of the controller is 100 to 240F. The A19, for hot water control applications, has an adjustable differential with SPDT contacts. The open high controller is available with manual reset and a 6 foot capillary for remote mounted well applications.

REMOTE BULB CONTROL WITH RAIN-TIGHT ENCLOSURE, AI 9ANC

The AI9 Remote Bulb Controller is supplied with a gasketed cover to protect against outdoor weather conditions. SPDT contacts are provided to operate over a range of 0 to 150F. This controller has a fixed differential and a 10 foot capillary.

HAZARDOUS LOCATION CONTROLLER, AI 9AUC, AI 9BUC

The AI9 Controller for hazardous locations is equipped with an integral coiled or remote bulb element. This controller is designed to operate over a range of -30 to 50F or 20 to 80F with a fixed differential. The remote bulb models are supplied with 6 foot capillaries.

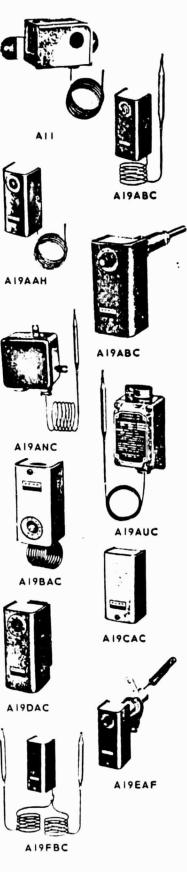
SPACE THERMOSTAT, AI9BBC, AI9BAB, AI9BAC

The AI9 Space Thermostats are provided with an integral air bulb. Ranges are available for operation between -30 and 110F with either fixed or adjustable differential. SPDT contacts or open high operation can be supplied.

AUTOMATIC CHANGEOVER CONTROLLER, AI 9CAC

The Al9 Automatic Changeover Controller automatically selects the heating or cooling operating mode of a SPDT thermostat. This controller has an operating range of 60 to 90F and a fixed differential. Either local or remote strap-on mounting of the bulb is possible.

HOT WATER STRAP-ON CONTROLLER, AISDAC


The A19 Strap-On Controller can be mounted on either vertical or horizontal running pipes. SPDT contacts are provided to operate with a fixed differential over a temperature range of 100 to 240F.

FLANGE MOUNTED DUCT THERMOSTAT, AI9EAF

The AI9 Duct Mounted Thermostat is used for rooftop units, make-up heaters, duct heaters and all-air system applications. A flat flange is supplied for mounting. This thermostat is designed to operate over a range of 30 to 110F or 60 to 130F with a fixed differential. Contact operation is SPDT.

DUAL BULB THERMOSTAT, AI9FBC

The AI9 Dual Bulb Thermostat is used for outdoor air reset control applications. A selected balance between heating requirements and heating capacity is maintained. This controller is supplied with an operating range of 60 to 140F and an adjustable differential. Reset ratios of 1 to 1 or 1 to 1-1/2 are available. The indoor and outdoor elements have capillary lengths of 10 and 30 feet respectively. A bulb shield is supplied with the outdoor element.

ELECTRIC PRODUCT DIRECTORY

A DIVISION OF JOHNSON SERVICE COMPANY PENN CONTROLS

2221 CAMDEN COURT . OAK BROOK, ILLINOIS 60521

MANUAL RESET HIGH LIMIT CONTROLLER, A25AN, A25CN

The A25 High Limit Controller opens on a temperature increase to the set point. The operating range of this controller is 25 to 215F. A stop setting of 125F is also provided. This flange mounted, manual reset controller is available with a Factory Mutual Listing.

TWO-STAGE TEMPERATURE CONTROLLER, A28AA, A28AJ

The A28 Two-Stage Controller is supplied with two SPDT switches, permitting independent control circuit operation of two networks. Controllers with operating ranges between -30 and 140F with either a fixed or an adjustable interstage differential are available. Models can be supplied with an integral coil bulb or with a remote bulb having a 6 foot capillary.

DPDT TEMPERATURE CONTROLLER, A28AB

The A28 Temperature Controller provides simultaneous switching of two circuits for changeover control applications. Two SPDT switches operate in unison. Controllers with operating ranges of 20 to 80F or 60 to 90F are available to operate with a fixed differential

TWO-STAGE FAN CONTROLLER. A28MA

The A28 Fan Controller can control two single speed or one two-speed fan or pump. The bulb and capillary are neopreme coated for sump pump water control applications. The bulb and capillary are tin plated for air cooled condensor applications. Two SPDT contacts are supplied to operate with a fixed differential over a range of 40 to 120F. The capillary is 6 feet long.

MULTI-STAGE THERMOSTAT, A36AHA, A36AHB

The A36 Multi-Stage Thermostat provides multi-switching operation from one liquid filled sensing element. Four SPDT contacts are supplied to operate over a range of 10 to 80F. Either a 10 or 15 foot, plain or braided armor capillary is available.

PNEUMATIC LIMIT CONTROL A40

The A40 Pneumatic Limit control opens an integral pneumatic switch when the sensed temperature reaches the set point. The A40 low limit control has a sensing element that responds only to the lowest temperature along the entire 20 feet of the sensing element.

The A40 high limit control has a remote bulb that senses the air temperature in a duct and opens a pneumatic switch when the sensed temperature becomes excessively high.

A40 low limit controls are available with or without manual reset. A40 high limit control has manual reset.

A40 low limit have a range of 15/55°F and a non-adjustable 5° differential. A40 high limit controls have a range of 140/220 or 100/170 and a non-adjustable 10° differential.

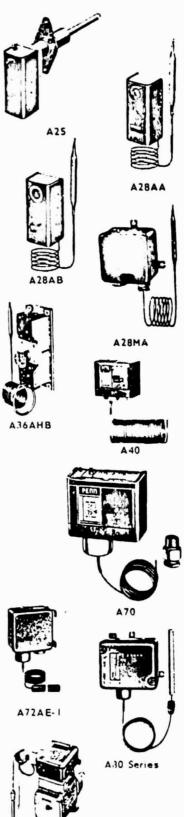
HIGH LIMIT REMOTE GULB TEMPERATURE CONTROLLER. A70

The A70 High-Limit Temperature Controller provides open high detection of a high-limit condition. A SPST or DPST contact arrangement for 4-wire, 2-circuit applications is supplied. This controller is available with an operating range of 100 to 170F. All models are equipped with a 6 foot capillary.

LOW LIMIT REMOTE BULB TEMPERATURE CONTROLLER. A70

The A70 Low-Limit Temperature Controller provides open low detection of a low-limit condition. A SPST or DPST contact arrangement for 4-wire, 2-circuit applications is supplied. This controller is available with an operating range of 15 to 55F or 35 to 80F Lockout models require manual reset. B-bulb models are supplied with a 6 foot capillary. Controllers can also be furnished with a 20 foot long averaging bulb.

TWO-POLE TEMPERATURE CONTROLLER, A72AE, A72CE


The A72 Temperature Controller can be used as a warning of inadequate head pressure when evaporative condensors or cooling towers are used. Open or close low double pole contacts are included within the NEMA 3 enclosure. The bulb and capillary are neoprene coated for corrosion resistance purposes. This controller has an operating range of 25 to 90F and an adjustable differential.

FLOATING OR PROPORTIONAL BULB TEMPERATURE CONTROLLER. A80 SERIES

The A80 Temperature Controller is provided with a SPDT non-snap-acting switch, one potentiometer, or two pote tiometers. The A80 can position motor actuators using the standard 135 ohm or optional 330 ohm potentiometer configuration. When two potentiometers are included, they are capable of operating in unison or in sequence with each other. This controller is available with operating ranges between -20 and 245F. The remote bulb element is 6 feet long, including the capillary.

ECONOMIZER CONTROL PACKAGE, ABIAA, ABIGA

The A81 Economizer Control positions M80B series actuators in outdoor-return air damper systems. Mixed air control is provided with a 10 foot capillary operating over a range of 10 to 90F. Change over control is provided with a 6 foot capillary and either a SPDT or DPDT contact arrangement, operating over a range of 25 to 90F.

2221 CAMDEN COURT . OAK BROOK, ILLINOIS 60521

PROPORTIONAL TEMPERATURE CONTROLLER, A82

The A82 Temperature Controller is used with M80F and M80H series actuators for industrial heating, air conditioning and ventilating applications. Either a single or dual bulb model is available. The single bulb controller has an operating range of 50 to 90F while the dual bulb model has an operating range of 60 to 140F.

SOLID-STATE TEMPERATURE SENSING ELEMENT, A91AAA, A91NAA, A91 PAA

The A91 Solid-State Temperature Sensing Element is used for indoor and outdoor air and immersion applications. This A91 sensor can be used with electronic motor actuators, panels or signal centers. Operating ranges available are 40 to 90F, 60 to 120F, and (for outdoor reset applications) 60 to 100F.

FLOW INTERLOCK SWITCH, F60

ſ

The F60 Flow Interlock Switch is supplied with a SPST or SPDT contact arrangement. SPST contacts close in response to a flow increase. SPDT contacts are actuated when a predetermined amount of liquid flow exists. Inline mounting is possible using the two 1/2" N.P.T. pipe connections.

GENERAL PURPOSE FLOW SWITCH. FOIKB

The F61 Flow Switch detects a flow or no-flow condition in liquid lines on refrigeration and heating systems. Four flow paddle sizes are available for use in 1", 2", 3" or greater than 6" pipe lines. The flow or no-flow condition is sent via the SPDT contact arrangement. Either NEMA 1 or vapor proof NEMA 4 enclosures are available.

SENSITIVE FLOW SWITCH, FOIKD

The F6I Sensitive Flow Switch makes or breaks an electrical circuit when liquid flow starts or stops. Less than one gpm is required to actuate the switch. This large flow capacity flow switch is mounted in-line using either the two 1/2" or two 3/4" (depending upon the model) N.P.T. pipe connections.

AIR FLOW CONTROLLER. F62AA

The F62 Air Flow Controller detects a flow or no-flow condition of air in all-air system ductwork. This controller responds to velocity air movement only because of the stainless steel paddle arrangement. Paddles are available in two sizes: $2 \cdot 1/8$ " x $6 \cdot 7/8$ " or $3 \cdot 1/8$ " x $6 \cdot 7/8$ ". A SPDT switch is included in the air flow controller.

LIQUID LEVEL FLOAT SWITCH, F63

The F63 is for use in closed tanks where a desired liquid level is to be maintained. SPDT dependable, enclosed snap-acting switch provides proper action for the application. These liquid level switches have a 1" NPT brass pipe connector.

ON-OFF MOTOR ACTUATOR, M40A

The M40A motor actuator is a two position motor (on-off action). Power requirements 40 VA, 120 V.A.C. or 24 V.A.C. (suggest Y65 transformers for use with 24 V models). Field adjustable travel from 90 to 160 angular degrees. Requires SPDT low voltage controller. Timing is 60 sec. per 160 angular degrees, torque 35 lb. inches (approx. 25 sq.), non-spring return.

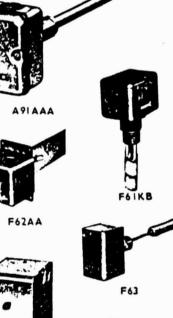
PROPORTIONAL MOTOR ACTUATOR, M40B

The M40B motor actuator positions dampers or valves in response to temperature conditions. Control signal input (low voltage) 135 to 1000 ohms, 1/2 watt, 3 lead potentiometer. Power requirements 40 VA, 120 V.A.C. or 24 V.A.C. (suggest Y65 transformers for use with 24V models). Dual travel of 90 or 160 angular degrees. Solid state drive and limits operating speed is 60 seconds per 160° angular rotation. 35 lb. inches torque. Damper rating for 25 square feet. Non-spring return.

PROPORTIONAL ACTION MOTOR ACTUATOR, M80A

The M80 Proportional Motor Actuator positions dampers or valves in response to temperature conditions. Temperature conditions are sent to the motor actuator in the form of a control signal. The control signal originates from a remote balanced (a) or electronic control panel. A 135 ohm potentiometer arrangement is supplied for operation with 24 volt A.C. control systems. Operating speed is 60 seconds for 160° angular rotation. SOLID-STATE PROPORTIONAL MOTOR ACTUATOR, M80F, M80H

The M80 Solid-State Motor Actuator positions diampers or valves in commercial and industrial control applications. This general purpose actuator is used with 3-lead controllers offering resistances from 135 to 1000 ohms at 1/2 watt. Solid-state drive, adjustable travel limits, and one or two adjustable auxiliary switches are all part of the basic actuator. Models are available with or without spring return for 24 volt A.C. control systems. Operating speed is 60 seconds for 160° angular rotation. M80H is listed by Underwriter's Laboratories, Inc.


ON-OFF MOTOP ACTUATOR. MBIA

The M8I Motor Actuator positions dampers and valves in a two-position manner. This 24 volt A.C. actuator is used with 3-wire SPDT controllers having a minimum current rating of 1.0 ampere. Adjustable travel limits and one or two adjustable auxiliary switches are part of the basic Underwriters' Laboratories listed actuator. Both spring return and non-spring return models are available with operating speeds of 60 seconds per 160° angular rotation.

ELECTRIC PRODUCT DIRECTORY

A82 Series

M40B

MBOA

M40A

A DIVISION OF JOHNSON SERVICE COMPANY PENN CONTRO

2221 CAMDEN COURT . OAK BROOK, ILLINOIS 60521

ELECTRONIC TEMPERATURE CONTROL PACKAGE, M90A

The M90 Electronic Control Package positions dampers and valves in HVAC systems. The control package can be used with one or two solid-state temperature sensing elements. This 24 volt A.C. control package has an adjustable ratio, adjustable travel limits. and an operating speed of 60 seconds per 160° angular rotation.

CONTROL CABINETS, M-8000, M-8100

The M-8100 control cabinets are general purpose utility enclosures for use in grouping and protecting electric, electronic control components.

The cabinet frame is 6063-T5 alloy with fluted surfaces. All corners riveted and supported. A face panel and mounting back panel are supplied. The M-8100 is listed by Underwriters' Laboratories and is used for line voltage systems or any other application requiring a rated cabinet. Sizes include widths from 12 to 36", height from 18 to 48", depth from 7 to 9".

STEAM PRESSURE CONTROLLER, P47FA, P47GA, P47AA, P47BA

The P47 Steam Pressure Controller is designed for high-limit and operating control applications. A single, or two-pole contact arrangement for 4-wire, 2-circuit systems, can be supplied to open or close high. Operating ranges between -23" w.g. and 150 psig are available. Lockout models require manual reset.

LOW RANGE PRESSURE CONTROLLER, P67AA

The P67 Low Range Pressure Control is used to operate an electrical device in response to a pneumatic control signal. A DPST contact arrangement is provided to open in re-sponse to a decrease in pressure. This controller has an operating range of 3 to 30 psig and an adjustable differential of 1-1/2 to 20 psi

DIFFERENTIAL PRESSURE CONTROLLER, P74JA

The P74 Differential Pressure Controller is used to operate an electrical device in response to a difference between two input pressures. A SPDT floating contact arrangement is provided. This controller has a differential pressure range of 8 to 60 psi and a fixed differential of 2 psi. A 1/4" SAE male connector is provided for each input.

DIFFERENTIAL PRESSURE CONTROLLER, P74FA

The P74 Differential Pressure Cont. 'er is used to operate an electrical device in response to a difference between two input pressures. A SPDT snap-acting contact arrangement is provided. This controller has a differential operating range of 8 to 60 psi and a fixed differential of 3 psi. A 1/4" SAE male connector is provided for each input.

PROPORTIONAL PRESSURE CONTROLLER, P80 SERIES

The 380 Proportional Pressure Controller is used for positioning electronic motor actu-P74 Series ators. One 135 chm potentiometer is part of the pressure controller. This controller has an operating range between -20" w.g. and 500 psig and an adjustable throttling range The P80 controller is for 24 volt A C. control systems.

CURRENT SENSING RELAY, RIDA, RIDB

The RIO series current sensing relays detect a wide variable current flow in a single circuit without being connected to the circuit. Specifications. RIOA-Normally Open Contacts, RIOB-Normally Closed Contacts, RIOA - Current for contact change of state 4 amp to open, 14 amp to close; RIOB - Current for contact change of state - 25 amp to open. 10 amp to close. Maximum inrush current - 200 amp. Maximum sustained current 60 amps, Circuit supply voltage - Max, 550 volts A.C. only. Switching capacity - RIOA -30VA non-inductive, RIOB - 3 watts non-inductive.

PROPORTIONAL STAGING CONTROL, R20A, R20C, R20E

The R20 Proportional Staging Control provides step control for liquid chillers, electric duct heaters, electric boilers, and heat pumps in response to a proportional control signal. The 24 volt A.C. control, capable of accepting resistances of 300 to 1000 ohms, has a thermal power element to operate 4, 6 or 8 stages

SOLID-STATE SIGNAL CENTER, R2IAA, R2IAB, R2IAD

The R21 Signal Center has an SCR included for "closed-loop" control. The 24 volt A C signal center accepts a signal from a solid-state temperature sensing element in order to control damper or valve actuators. This signal center is available with an adjustable set point and will accept resistance inputs between 300 and 1000 ohms

ELECTRONIC TEMPERATURE CONTROL PANEL, R9I BAA

The R91 Electronic Temperature Control Panel is used to position motor actuators con-R20 Series nected to valves or dampers. The control panel will accept inputs from two elements simultaneously to provide a reset schedule. The 24 volt A.C. panel should be used with solid state temperature sensing elements. Adjustments are provide themeath the cover

1.3100



R21 Series

14

P47 Series

OF POOR QUALITY

ELEX LINK PRODUCT DIRECTORY

PENN CONTROLS A DIVISION OF JOHNSON SERVICE COMPANY

2221 CAMDEN COURT . OAK BROOK, ILLINOIS 60521

TWO-POSITION ELECTRONIC RESET CONTROL PANEL, R91 BBA

The R91 Reset Control Panel provides outdoor reset of hot water temperature. Two solid state temperature sensing elements are used with the panel. On-off switching is provided the to operate low voltage (I amp = 25 volts A.C.) gas valve relays. The 24 volt A.C. reset, control panel has adjustments belieath the cover

ELECTRONIC TEMPERATURE CONTROLLER 893EA

PERM The R93 Temperature Controller is used with a remote sensor and set point to position one or more motor actuators. This controller has a dual output and a scale range of either 40 to 90F or 60 to 120F

AUXILIARY SWITCH KIT, SPIAA, SPIBA, SPICA

The S91 Auxiliary Switch Kit is available with one, two or four SPDT snap-acting switches. The switches mount to any motor actuator, Individual adjustable operating points provide for various differentials.

LINE VOLTAGE THERMOSTAT WITH SELECTOR SWITCH, T22 SERIES

The T22 Line Voltage Thermostat is available for heating, cooling, and heating-cooling applications. This standard or heavy duty thermostat can be supplied with an external knob, key hole, or concealed set point adjustment. This thermostat has an operating range of 40 to 90F. A liquid charged sensing element and snap-acting contacts are also supplied. The controller is equipped with field "djustable limit stops

FAN COIL THERMOSTAT, T23A, T23B

The T23 Fan Coil Thermostat is a line voltage control designed for heating, cooling, or heating-cooling applications. It is equipped with a three speed fan selector switch and field adjustable limit stops. The range of this thermostat is 50 to 90F. Operating voltage is either 120 or 240 volts A.C.

TWO-STAGE ROOM THERMOSTAT, T25A

The T25 Two-Stage Room Thermostat is designed for low or line voltage applications Two SPDT snap-acting contacts switch in response to the temperature changes sensed by the liquid charged element. Either an external knob or key adjustment is provided for set point changes. This thermostat is also provided with field adjustable high limit stops. Operating range is from 40 to 90F

LINE VOLTAGE THERMOSTAT WITHOUT SELECTOR SWITCH, T26 SERIES

The T26 Line Voltage Thermostat is designed for heating, cooling, or heating-cooling applications. Standard or heavy duty models are available with either an external knob. key hole or concealed set point adjustment. Snap-acting contacts respond to temperature change sensed by the liquid charged element. This thermostat has field adjustable limit stops and an operating range of 40 to 90F

FAN COIL THERMOSTAT, T28

The T28 Fan Coil Thermostat is designed for heating, cooling and heating-cooling applications. This thermostat is available for 120, 208 or 240 volt 50/60 Hz operation. Snapacting contacts respond to temperature changes sensed by bimetal element. When desired, a thermometer can be supplied in the cover. Operating range for this thermostat is 55 to 95F. An optional fan switch is available for one, two and three speed fans.

LOW VOLTAGE WALL THERMOSTAT, TSI

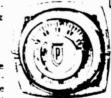
The T51 Low Voltage Wall Thermostat is designed for heating, cooling and heatingcooling applications. This thermostat has the sensing unit and wiring sub-base supplied as two seperable units. A selector switch is part of the wiring sub-base assembly. Snapacting contacts respond to a bimetal temperature sensing element. This 24 volt 50/60 Hz thermostat has a range of 55 to 85F

LOW VOLTAGE AUTOMATIC CHANGEOVER THERMOSTAT, TSIB

The T5i Automatic Changeover The mostat is available for one stage heating and one stage cooling applications. A SPDT contact arrangement, having a neutral center position, responds to temperature changes sensed by the bimetal element. Two separable units, the sensing unit and the wiring sub-base, make-up the thermostat. This 24 volt 50/60 Hz thermostat has an operating range of 55 to 85F

LOW VOLTAGE MULTI-STAGE THERMOSTAT. T52

The T52 Multi-Stage Thermostat is designed for air conditioning systems where automatic switchover of multiple heating and cooling stages is required. The thermostat is equipped .h or without manual switches. Mercury switches are directly coupled to the bimetal sensing elements for quick response to temperature changes. Models are available with one or two-stage heating and one or two-stage cooling. Heating operating range is 50 to 85F. cooling range is 55 to 90F


R91 Series

T26A

R93EA

2221 CAMDEN COURT . OAK BROOK, ILLINOIS 60521

HUMIDOSTAT, W43A

The W43 Humidostat is designed for 3-wire SPDT snap-acting control applications. The human hair sensing element responds over an operating range of 0 to 90% R.H. with a 4% R.H. differential. This humidostat has a 1/4 horsepower rating and field adjustable high and low limit stops.

ELECTRONIC HUMIDISTAT, W93

The W93 Humidistat is designed for proportional control of humidifying and dehumidifying equipment. This humidistat positions one or more Penn Series M80F or M80H motor actuator. The human hair sensing element responds over a range of 10 to 70% R.H.

DAMPER AND VALVE LINKAGE, Y20

Series Y20 linkages are supplied for connecting Penn electric and electronic motor actuators with dampers or valve bodies, Y20 damper linkage sets can be supplied which contain all the components for proper linking. Y20A valve linkages are furnished for the various valve bodies. When ordering the type valve body and size must be indicated.

TRANSFORMERS, Y65

The Y65 transformer is an improved 40 VA, 24V transformer, which replaces the Y61 40 VA series. The Y65AJ-1 is a plate mount, 120/24 volt transformer. Y65AS-1 is foot mounted, 120/24 volts; Y65BJ-1 is plate mount, 240/24 volts. Foot mounted models have 1/2 - 14 male N.P.S. conduit hub.

MANUAL POTENTIOMETER, Y45

The Y45 Manual Potentiometer is used for manual control of motor actuators. Either one or two potentiometers with either 135 or 350 ohm resistance values are supplied. The mounting plate is equipped with close-open markings.

REMOTE SET POINT CONTROL. Y45BA

The Y45 Remote Set Point Control is designed to vary a temperature set point of the final controlled device from a remote location. This Remote Set Point Control is designed for use with electronic sensing elements and has operating ranges of 40 to 90F and 60 to 120F available.

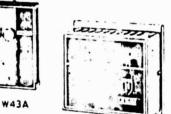
40VA TRANSFORMER, Y61AJ, Y61AS, Y61BJ, Y61BS

The Y61 Transformer is available with foot mountings and conduit hubs or a mounting plate for a 4" x 4" box. Models can be equipped for 60 Hz primary operation of either 120 or 240 volts to provide 24 volt secondary power. For foot mounted models electrical connections include 8" pigtail leads on the primary side and 30" leads on the secondary side. Plate mounted models have 8" pigtail leads for all connections. This transformer is NEC Class 2 energy limiting.

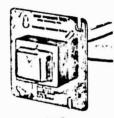
40VA MULTI-MOUNT TRANSFORMER, Y61AR, Y61BR, Y61SR

The Y61 Multi-Mount Transformer is supplied with a combination plate, foot and hub mounting. Models are available with either 120, 208/240 or 240 volt 60 Hz primaries to provide 24 volt secondary power. Electrical connections are completed with 11" pigtail leads on the primary and three terminal screw connectors on the secondary.

50VA TRANSFORMER, Y63


The Y63 Transformer is available with foot mountings and conduit hubs or with a mounting plate for a 4" x 4" box. Models are equipped to operate with a primary voltage of either 120, 208/240, or 480 volts, 50/60 Hz to provide 25 volt secondary power. Electrical connections for foot mounted models include 8" pigtail leads on the primary and 30" leads on the secondary. Electrical connections for plate mounted models are all 8" pigtail leads. This transformer is NEC Class 2 internally fuse protected.

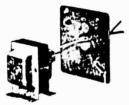
100VA TRANSFORMER, Y64


The Y64 Transformer is available with foot mountings and conduit hubs or with a mounting plate for a 4" x 4" box. Models are equipped to operate from a primary voltage source of 120 or 208/240 volts, 50/60 Hz to provide 25 volt secondary power. Electrical connections for foot mounted units include 8" pigtail leads on the primary and 30" leads on the secondary. All connections on plate mounted units are 8" leads.

75VA TRANSFORMER, Y66

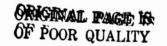
The Y66 Transformer is available with foot mountings and conduit hubs. Primary voltage specifications are 208/240 volts, 50/60 Hz in order to provide 25 volt secondary power Electrical connections include 8" pigtail leads on both the primary and secondary sides or 8" on the primary side only with terminal screw connectors on the secondary. This transformer is NEC non-energy limiting Class 2 and it contains a manual reset circuit breaker.

W93



Y45 Series

Foot Mounted



Multi-Mounted

Plate Mounted

ELECTRIC PRODUCT DIRECTORY

A DIVISION OF JOHNSON SERVICE COMPANY PENN CONTROLS

2221 CAMDEN COURT + OAK BROOK, ILLINOIS 60521

PROPORTIONAL WALL THERMOSTAT, TBO SERIES

The T80 Proportional Wall Thermostat positions motor actuators in response to temperature changes sensed by the liquid charged element. Either one or two potentiometers can operate in sequence or in unison. A 135 ohm resistance is standard, but a 330 ohm resistance is available, for the potentiometers. The operating range of this thermostat is 58 to 83F.

SOLID-STATE ROOM TEMPERATURE SENSING ELEMENT THAAA. THABA

The T91 Temperature Sensing Element senses room temperature for a signal center. The signal center then positions motor actuators in response to temperature changes. Remote or integral set point adjustment is available. The operating range of this element is 40 to 90F.

SOLID-STATE ROOM TEMPERATURE SENSING ELEMENT WITH SWITCHES. T92A, T92B, T92C

The T92 Temperature Sensing Element is designed for room temperature sensing applications. The thermostat has two separable units, one is a sensing unit and the other is the wiring and switching sub-base with fan and system switches. This sensing element has an integral set point adjustment for an operating range of 55 to 85F.

ELECTRONIC ROOM THERMOSTAT. T93

The T93 Electronic Room Thermostat is designed to position one or more motor actuators in response to room temperature changes. Both direct and reverse acting models are available with an integral set point. This thermostat has an operating range of 40 to 90F

TEMPERATURE ACTUATED VALVES, V47

Series V47 valves are modulating type valves actuated by a temperature element. They regulate flow of water or other liquids not harmful to the valve. Three temperature ranges are supplied as standard, 75/135F, 115 to 180F and 160 to 230F.

Standard values are supplied with 6' armored capillary and a 1-1/2" NPT closed tank fitting (style 4). A bypass plug kit is furnished for use where an internal bypass hole is needed.

FAN COIL VALVE, V70

The V70 Zone Valve is available for normally closed two-position motor actuated operation. When normally open operation is desired, the valve is reversed in the field. The valve may be changed from N.O. to N.C. or N.C. to N.O. by rotating the body 180°. This zone valve can be equipped with either 1/2'' 1.D. inverted flare or 3/4''' 1.D' sweat connections. This valve requires 24 volts, 50/60 Hz for operation.

ZONE VALVE. V70

The V70 Zone Valve is available for normally closed two-position motor actuated operation. When normally open operation is desired, the valve is reversed in the field. This zone valve can be equipped with either $1/2'' \pm D$, inverted fiare or $3/4'' \pm D$, sweat connections. This valve requires 24 volts, 50/60 Hz for operation

TWO-WAY, SINGLE-SEAT GLOBE VALVE, V90AA

The V90 Globe Valve regulates the flow of steam or water through air conditioning, heating or cooling equipment. The valve has equal percentage flow characteristics. Connections are as follows: 1/2" through 1-1/2" — one union end, one screwed end: 1-1/2" through 2" — two screwed ends: 2-1/2" through 4" — flanged connections.

TWO-WAY, DOUBLE SEAT GLOBE VALVE V90BA

The V90 two-way, double seat valve regulates the flow of stream, water or air in either a two position or proportional manner. For applications where the operating differential pressure exceeds the rating on V90 single seat valve and absolute tight shutoff is not required. Connections are as follows: 1-1/2'' and 2'' = screwed ends, 2-1/2'' through 8'' = flanged ends. This valve has linear flow characteristics.

THREE-WAY BYPASS VALVE, V90CA

The V90 Bypass Valve is designed for regulating the flow of hot or cold water in twoposition or proportional service applications. Connections are as follows: 1/2" through 2" = screwed connection on bottom port, union connections on side ports, $2 \cdot 1/2"$ through 6" = flanged connections on all ports. This valve has quick opening flow characteristics.

THREE-WAY MIXING VALVE, V90DB

The V90 Mixing Valve is designed for proportional control of hot or cold water. Connections are as follows: 1/2" through 2" - screwed ends: $2 \cdot 1/2$ " through 4" - flanged connections. The 1/2" through 2" valves have linear flow characteristics. The $2 \cdot 1/2$ " through 4" valves have equal percentage flow characteristics.

HUMIDOSTAT, W42AA

The W42 Humidostat provides 3-wire, SPDT snap-acting control in response to humidity changes. A human hair sensing element is used in both the low/line voltage humidostat. This humidostat has an operating range of 10 to 90% R H, with a 4% R H, differential

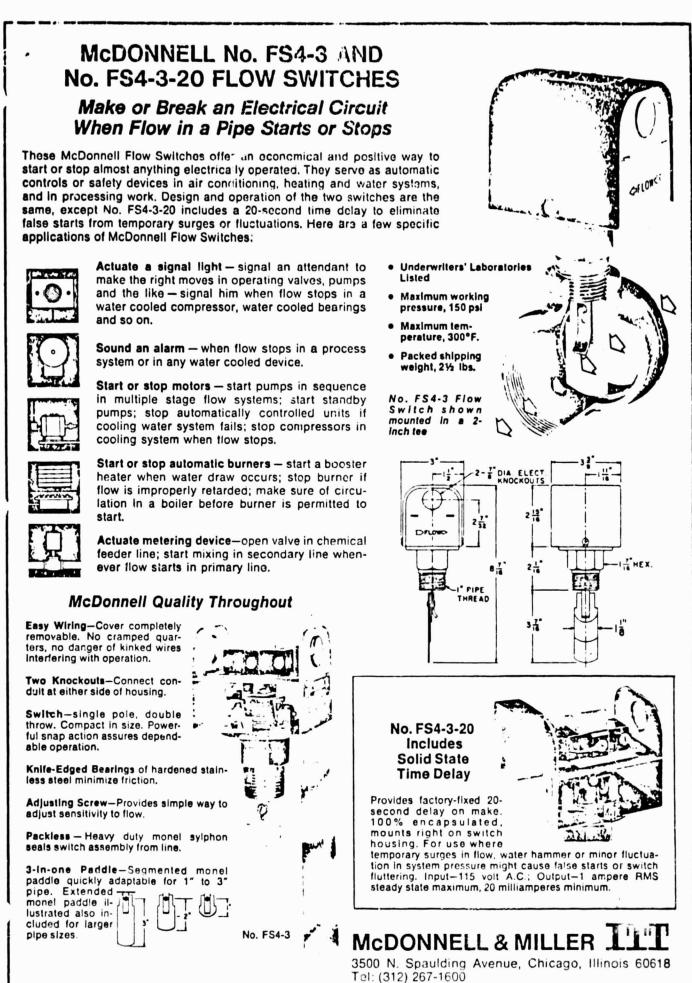
T91 Series

T92 Series

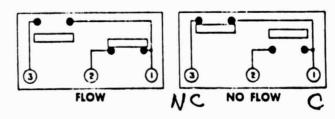
T93

V90AA

W42AA


V90BA

,


R-22

MODONNELL No. FS4-3 AND No. FS4-3-20 FLOW SWITCHES

The table below shows the flow rates required to actuate the No. FS4-3 Flow Switch.

"Flow" means that the switch will close circuit 1-2, and open circuit 1-3, when the flow rate is increased to the GPM shown. (See schematic switch action "Flow" at right.)

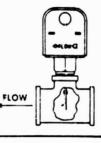
"No Flow" means that the switch will open circuit 1-2, and close circuit 1-3, when the flow rate is decreased to the GPM shown. (See schematic switch action "No Flow" at right.)

FLOW RATES REQUIRED TO ACTUATE FLOW SWITCH Flow rates in gallons per minute (GPM) shown in black. Velocity in feet per second (FPS) shown in color.

*Equipped with extended paddle trimmed to pipe size.

Pipe Size in Flow Switch			1"	1%"	1%"	2"	2%	3"	•4"	•5"	•6-
Fastan	Flow	GPM	6.00	9.80	12.7	18.8	24.3	30.0	39.7	58.7	79.2
Factory Flow or Minimum No	FIGW	FPS	2.24	2 11	2.00	1.80	1.63	1.30	1.00	0.94	0.85
	No Flow	GPM	3.60	5.60	7.00	9.40	11.6	12.0	19.8	29.3	39.6
Adjustment		FPS	1.34	1.21	1.10	0.90	0.78	0.52	6.50	0.47	0.44
Maximum Adjustment	Flow	GPM	10.2	16.8	23.0	32.8	42.4	52.1	73.5	115.0	166.0
		FPS	3.91	3.62	3.62	3.14	2.74	2.26	1.86	1 85	1.84
	No	GPM	9.20	15.0	19.5	24.0	37.5	46.1	64.2	92.0	123.0
	Flow	FPS	3.43	3.23	3.07	2.29	2.51	2.00	1.62	1.48	1.37

Flow rates are averages which may vary ± 10% from tabulated values.


Electrical Ratings (Underwriters' Listed)

Ampere Kating					
Motor Duty Full Load	115 V.A.C. 7.4 Amps	230 V.A.C. 3.7 Amps			
Locked Rotor	44.4 Amps	22.2 Amps			
	115 V.D.C.	230 V.D.C.			
	0.3 Amps	0.15 Amps			
Pilot Duty: A.C. 1	25 V.A., 115-230 V				

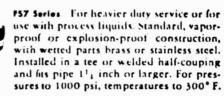
Installation

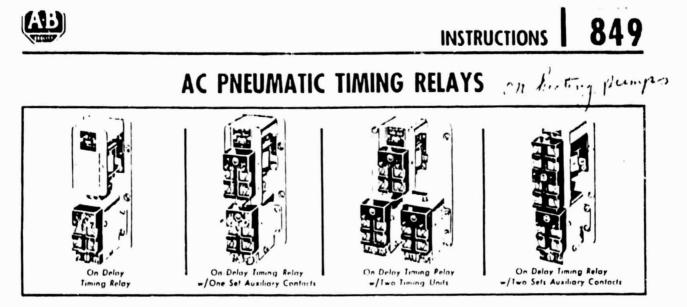
Flow switch should be mounted in a horizontal run of pipe. Avoid locations immediately adjacent to elbows, orifices or valves. Flow switch should be mounted as close as possible to pipe. Use a tee (or reducing tee) with a 1st branch, or, if welding fitting is used select a welding neck of minimum length. In position paddle should be at right angle to flow, with arrow pointing in same direction as flow. If temperature of pipeline exceeds 220° F, use wire suitable for 75° C. (167° F.).

· Single Pole Double-Threw Switches

Other McDonnell Flow Switches—All Underwriters Listed

Sensitivity to Flow Adjustable


No.FS1 — Actuated by low flow, with large flow-through capacity. Particularly suited for home water purification systems, as well as cooling systems for electronic tubes, bearings, compressors, etc. Has ¹/₂ inch inlet and outlet tappings. For pressures to 100 psi, temperatures to 225° F.


FS4-3T Series – Similar 10 No. FS4-3 except furnished with a specially designed tee, threaded for 3_1 inch or 1 inch pipe. These are particularly sensitive switches, specially designed for use where flow rates are insufficient to actuate other types of flow switches.

P56 Sories Similar to No. 151, but for hook-up to a_1 inch and 1 inch pipe. Nos. ES6- a_1 IN, and ES6-1 IN, respectively. Applications include small and medium size water treatment systems, booster pumps to increase low city water pressure, etc.

Bulletin No. L-137H Printed in U.S.A. McDONNELL & MILLER 111 3500 N. Spaulding Avenue, Chicago, Illinois 60618 Tel: (312) 267-1600 Telex: 25-3376

DESCRIPTION — The Bulletin 849 AC timing relay is a pneumatic type relay. A synthetic rubber bellows is actuated by the stroke of an AC solenoid. Timing relays can provide the time delay in either of two basic arrangements. The first arrangement, On-Delay provides the time delay after the coil is energized. The second arrangement, Off-Delay provides the time delay after the coil is de-energized. Basic On-Delay timing relays can easily be converted to Off-Delay operation and vice versa. Refer to Page 4 for converting details.

INSTALLATION — Bulletin 849 timing relays must be mounted in the vertical position, with the solenoid mechanism at the top, timing unit(s) at the bottom. (See illustrations above).

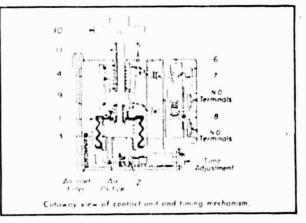
ENGINEERING DATA -

Contact Ratings — The timer contacts and the auxiliary contacts have a control circuit rating as follows:

	AC							
Maximum Contact Rating Per Pole NEMA Rating Designation A600								
Max AC Voltage	Amperes		Continuous	· ····a	iperes	Voltage Range	Ampere Rating	
60 or 50 Hz	Make	Birak	Current	Make	Break			
120 240	60 30	6	10	7200 7200	1.70 1.20	115 125	04	
480 600	15	15	10 10	7200 7200	720 720	230-250	0.2	

Note — Circuits wired to a contact unit must be of the same polarity.

Timing Range -1/20 second min. to 180 seconds max.

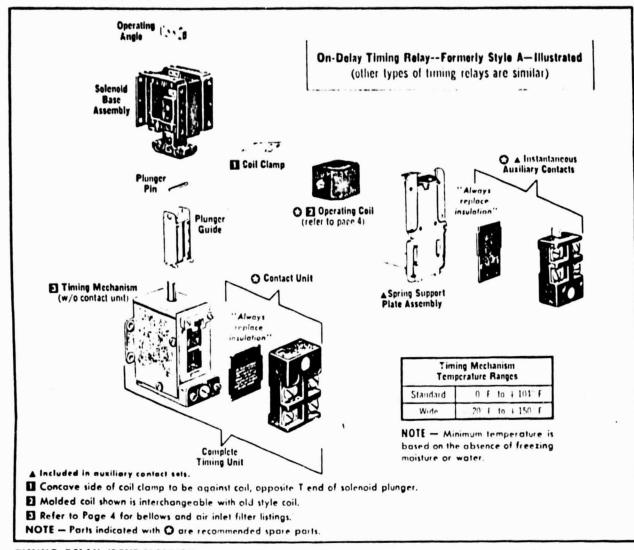

Repeat Accuracy — Approximately + 10% of time setting. A minimum reset time of 75 milliseconds must be provided to attain the repetitive accuracy.

Temperature Range - 0° F. to + 104° F. (Standard) 20° F. to + 150° F. (Wide Range - Silicone rubber bellows.) Note - Minimum temperature is based on the absence of freezing moisture or water.

OPERATION — When the solenoid plunger (10) is retracted from the push rod (11) it allows the spring (3) located inside the synthetic rubber bellows (1) to push the timing mechanism plunger (4) upward. As the plunger rises, it causes the over-center toggle mechanism (5) to move the snap action toggle blade (6) upward which in turn picks up the push plate (7) which carries the movable contacts (8).

The speed with which the bellows can expand is determined by the setting of the needle valve (2). If this needle valve is nearly closed, an appreciable length of time will be required for air to pass it and permit the bellows to expand. The setting of the needle valve determines the time interval which must elapse between operation of the solenoid actuator and expanding of the bellows to operate the contact unit.

When the push rod (11) is again depressed by the solenoid plunger (10), it forces the timing mechanism plunger (4) to the lower position, exhausting the air through the release value (9) and resetting the timer almost instantaneously.



REPAIRS — Timing relays can be disassembled as depicted in the illustrations on page 2 of this instruction sheet. Additional consideration should be given to the following technique.

REPLACING CONTACT UNIT — The toggle blade (6) on the timing mechanism **must** be in its down position to fit into the push plate (7) of the contact unit. Refer to cutaway illustration above. Hold down the push rod (11) and flip the toggle blade (6) down. Then place the contact unit in position being sure that the "loose" black phenolic insulation, that isolates the contact cavity is in place. Secure with two mounting screws. After assembly, check for normal contact operation.

> Publication 849-5.0 — January, 1977 Supersedes Instructions 849-800 Dated February, 1973

ADDING AUXILIARY CONTACTS — Remove original spring support plate assembly from the solenoid mechanism and discard. The return springs on the new spring support plate assemble supplied with the auxiliary contact kit must be inserted into the plunger pin, Be sure toggle is placed over (under when arranged for off-delay operation) the operating angle. Then secure new spring support plate to the solenoid frame. Referenced parts illustrated below.

TIMING RELAY IDENTIFICATION — The table below is designed to assist in the accurate identification of a timing relay. Knowledge of the timing relay's catalog number coupled with data from the table will determine the complete description of the relay. Once the description of the timing relay is determined an accurate selection of replacement parts can be made from the table on page 3. EXAMPLE: Catalog number 849-ZOA325; the basic catalog number is 819-ZOA; the suffix identification is 32 (see tawe); the modification code number is 5 (see table) and a complete description of the relay is "an on-delay timer with a maintained contact timing unit, formerly known as a Style AM timing relay."

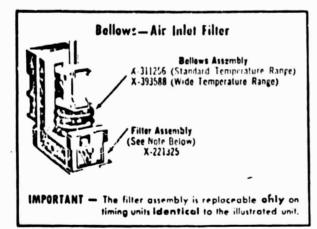
Basic Catalog Number Suffix Identification	Description of Timing Relay	Former Style Letter		
32	On-Delay Time Delay After Coll is Energized	•		
33	Off-Delay Time Delay After Coil is De-energized	B		
122	On-Delay with Two Timing Units	н		
123	Off-Delay with Two Timing Units	L		
124	On and Off Delay Double Unit	AB		

Modification Code Number	Description of Modification	Former Modification Letter		
1	One set of Instantaneous Auxiliary Contacts (INO-NC)	x		
2	Dial Indicator on Liming Mechanism	D		
5	Maintained Contact Timing Unit	м		
7	Two sets of Instantaneous Auxiliary Contacts (2NO-NC)	XX		
9	Silicone Rubber Bellows for Wide Temp. Range (- 20° F. to + 150° F.)	۲		
3	Combination of modifications, Nos	land 2 (DX)		
4	Combination of modifications, Nos	2 and 7 (DXX)		
6	Combination of modifications, Nos	land J (MX)		

INEWAL PARTS

NOTE — Blank listings in the parts table indicate that timing relays, of the description and modification where the blank esists, have not been manufactured, up to the date on this instruction sheet. To determine the availubility of such a timing relay, refer to the nearest Allen Bradley Sales Office or the Sales Office at Milwaukee.

Description of Timing Relay	On-Delay Formerly Style A	Off-Delay Formerly Style B	On-Dolay W/Two Tuning Units Formerly Style H	Olf-Delay W/Two Timing Units Formerly Style L	On and Off Delay Double Unit Formerly Style AB
Description of Part	Part Ne	Part No.	Part No.	Part No.	Part No.
Operating Angle	B 28419	B-28419	B 28419	X 147391	B-28419
Solenoid Base Assembly	X-151136	X-151136	X-278961	X -261399	X-151136
Flunger Fin	B 25169	B 25169	E-12850	B 25169	B-25169
Flunger Guide	E 8675	E 8675	E 8675	E-8675	E-8675
Coil Clamp	£ 8676	E 8676	E-8676	E-8676	E-8676
Spring Support Plate Assembly	X 221969	X 221969	x 221970	X 221969	X-221909
Spring Support Plate Assembly (for use on timers modified with one or two sets of instantaneous auxiliary contacts — formerly modifications X and XX)	¥ 228311	X-228311	x 228310	X-228311	X-228311
O One Set of Instantaneous Auxiliary Contacts (formerly moduli- cation X)	849-N1A	849-N1A	849-NZA	849-N1A	849-N1A
Two Sets of Instantaneous Auxiliary Contacts (formerly modifi- cation XX)	849-N3	849-N3	849-N4	849-N3	849-N3
One Set of Early Break Auxiliary Contacts (special)	Z-17048	Z-17048		Z-17048	Z-17048
O Standard Contact Unit	+40262-001-54	+40262-001-54	+40262-001-54	+40262-001-54	+40262-001-54
Maintailled Contact Unit Hand Reset (formerly modification M)	+40262-001-55	+40262-001-55		-	-
Timing Mechanism w/o Contact Unit (standard temperature range)	* 40262-012-56	+40262-012-56	+40262-012-56	+ 40262-012-56	*40262-012-56
Timing Mechanism w. Dial Indicator w to Contact Unit (standard temperature range, formerly modification D)	+40262-012-54	+40262-012-54	+ 40262-012-54	+40262-012-64	+ 40262-012-54
Timing Mechanism wild Contact Unit (wide temperature range, formerly modification Y)	+40262-012-52	+40262-012-52	-	-	
Timing Mechanism w. Dial Indicator w o Contact Unit (wide temperature range, formerly modification DY)	+40262-012-55	11.40	-	-	-
Complete Timing Unit (with standard contact unit and standard temperature range)	1496-N1	1496-N1	1496-N1	1496-N1	1496-N1
Complete Timing Unit (with maintained contact unit, formerly modification M, and with standard temperature range)	1496-N2	1496-N2	-	-	-
Complete Timing Unit (with standard contact unit, dial indicator, formerly modification D, and with standard temperature range)	+40262-008-51	+ 40262-008-51	+40262-008-51	+40262-008-51	+40262-008-51
Complete Timing Unit (with maintained contact unit and dial indicator, formerly modification DM, and with standard tem- perature range)	*40262-008-52		-	-	-
Complete Tuning Unit (with standard contact unit and wide tem- perature range, formerly modification Y)	1496-N3	1496-N3			-
Complete Timing Unit (with maintained contact unit and wide temperature range, formerly modification MY)	1496-N4			-	-
Complete Tuning Unit (with standard contact unit, dial indicator and write temperature range, formerly modification DY)	40262-008-54			-	-
E) Complete Liming Unit (with standard contact unit, special for timing in both directions, formerly modification Z and with stand and temperature range?	* 40262-007-54			-	-


I includes operating angle with screws and washers, coil clamp and plunger guide.

D Timing mechanism w,'o contact unit not available for this special timing unit.

*Added or changed tince previous issue.

NOTE - Paris indicated with O are recommended spare parts.

ORDERING INFORMATION—Your order cannot be entered unless the following information is given: Part number, description of part, catalog number and series letter of the timer. This instruction sheet applies also to these timers when used on control apparatus listed under other Bulletin numbers.

Cell	Selection			
Description of Timing Relay	Former Style Letter	Select Call from Table No		
On Delay	A	1		
04-Delay	•	1		
On-Delay with Two Timing Units	н	2		
Off Delay with Two Timing Units	L	2		
On and Off Delay Double Unit	AB	2		

.

	O D OPERATING COILS										
				Table 1	Table 2						
Veits	HI	Coil	Coil C	urrent	Volt-A	mperes	Ceil	Coil C	urrent	Volt-A	mperes
		Number	Inrush	Scaled	Inrush	Sealed	Number	Innish	Seried	Inrush	Sented
120	60	21.4.244	/50	150	θu	18	21A86	1 30	270	155	32
110	50	21A244	770	160	85	18	21AGC	1 35	305	150	34
110	60	21A237	810	160	89	18	21A01	1 40	295	155	32
110	25	21A05	525	185	58	20	2 21A281	790	360	87	40
208	60	21A106	435	085	90	18	21A113	760	155	160	32
240	60	214.75	375	075	90	18		650	135	155	32
220	50	21A75	385	030	85	18	21AR3	670	155	145	34
220	60	21A238	405	080	89	18	21A06	705	150	155	33
270	25	21A10	260	090	57	20	E 21A285	395	133	87	40
480	60		190	0.15	91	17	21A288	325	045	155	31
410	50	21A241	190	040	81	18	(14/86	335	075	115	33
440	60	21A240	200	010	88	18	21/11	350	075	155	33
440	25	21A15	130	045	57	20	2 214286	155	090	56	40
600	60		150	030	90	18		255	055	155	33
550	50	21A250	150	030	82	16	21A81	265	0.0	115	33
550	60	21A2/1	160	0.30	88	16	21A16	290	010	140	33
550	25	21A20	115	035	63	13	214787	155	1070	85	38

Values shown are for molded coils only.

Coils are rated 25% intermittent duty, based on one minute operation out of every four minutes.

NOTE - Parts indicated with Q are recommended spare parts.

CONVERTING TIMING OPERATION — First, remove the solenoid mechanism from the mounting plate. Rotate the solenoid mechanism 180°, and put it back on the mounting plate, being careful to use the proper screw holes. There are four mounting holes for the solenoid mechanism. The upper-left and lower-right holes are used for on-delay; the upper-right and lower-left holes are used for off-detay: The on-delay mounting holes are so labeled on the mounting plate.

Notice that when the relay is changed from on-delay

ORIGINAL PAGE IS OF POOR QUALITY

AB

ALLEN-BRADLEY Milwaukee, Wisconsin 53204 to off-delay, the normally open and normally closed time-delay contacts mounted on the timing mechanism are changed. With the relay set up for on-delay, the normal position of the push rod is down, making terminals 1 and 2 the normally open contact terminals and terminals 3 and 4 the normally closed contact terminals. When set up for off-delay, the normal position of the push rod is up, making 1 and 2 normally closed, and 3 and 4 normally open. These numbers are molded on the face of the contact unit.

Bollows—Air Inlut Filtor
Bollows Assembly X 311256 (Standard Temperature Range) X-393588 (Wide Temperature Range)
Filter Assembly (See Note Below) X-221325
IMPORTANT — The filter assembly is replaceable only on timing units Identical to the illustrated unit.

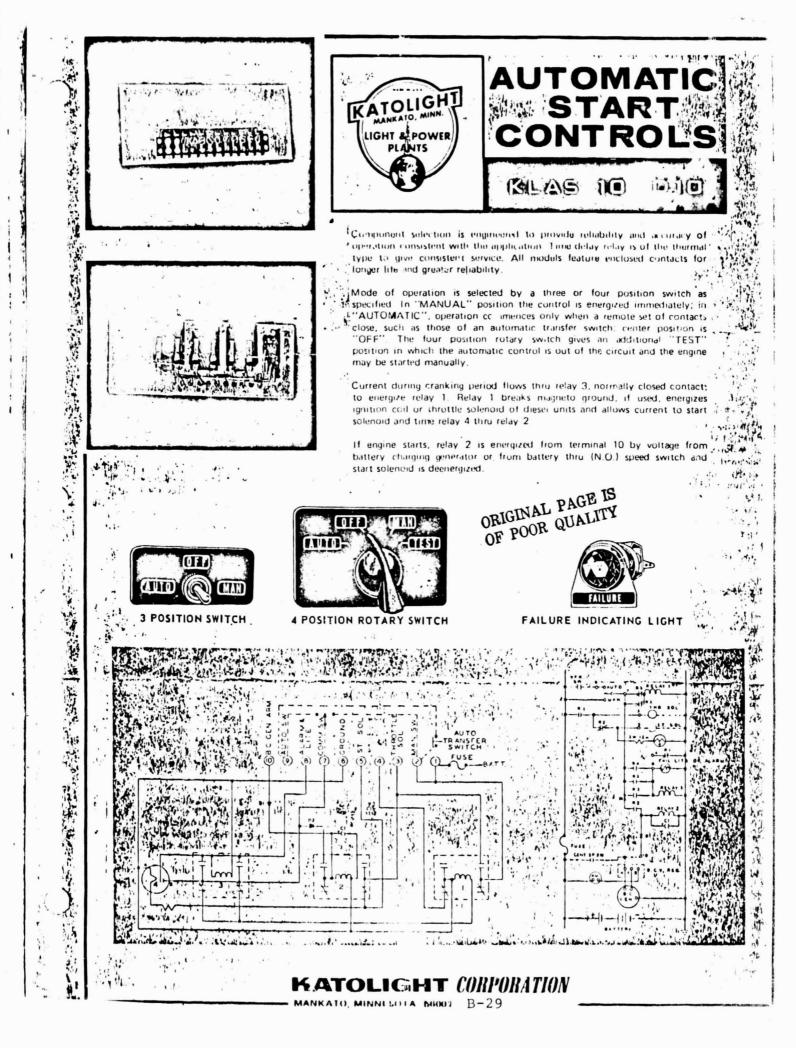
Coil	Coil Selection								
Description of Timing Relay	Former Style Letter	Select Coll from Table No.							
On Delay	A	1							
Off-Delay	B	1							
On-Delay with Two Timing Units	н	2							
Off-Delay with Two Timing Units	L	2							
On and Off Delay Double Unit	AB	2							

	O D OPERATING CUTS											
				Table 2								
Volts	Hı	Coil	Coil C	urrent	Volt-A	mperes	Coil	Coil C	urrent	Volt-A	mperes	
		Number	Inrush	Sealed	Inrush	Sealed	Number	Inrosh	Seiled	Inrush	Sealed	
120	60	21A244	750	150	90	18	21A80	1 30	270	155	32	
110	50	714244	770	160	85	18	ZINOU	1 35	305	150	34	
110	60	21A737	810	160	89	18	21A01	1 40	295	155	32	
110	75	21A05	525	185	58	20	2 21A281	790	360	87	40	
208	60	21A106	435	085	90	18	21A113	760	155	160	32	
240	60	21A75	375	075	90	18		65.)	135	155	32	
220	50		385	080	85	18	21A83	670	155	145	34	
220	60	21A238	405	080	89	18	21A06	705	150	155	33	
220	25	21A10	260	090	57	20	2 21A285	395	130	87	40	
480	1.0		190	035	91	1/	21.0.209	325	065	155	31	
410	50	21A241	190	.040	84	18	21A288	335	075	145	33	
440	60	?1A?10	200	040	88	18	21A11	350	075	155	33	
440	25	21A15	1.30	045	57	20	2 21A286	195	090	86	40	
600	60	214250	150	030	90	18	21 4 91	255	055	155	33	
550	50	21A250	150	030	82	16	21A81	265	060	145	33	
550	60	21A2/1	160	030	88	16	۱	290	060	160	33	
550	25	21A20	115	035	63	13	2 214287	155	070	85	38	

Values shown are for molded coils only.

Coils are rated 25% intermittent duty, based on one minute operation out of every four minutes.

NOTE - Parts indicated with () are recommended spare parts.


CONVERTING TIMING OPERATION — First, remove the solenoid mechanism from the mounting plate. Rotate the solenoid mechanism 180°, and put it back on the mounting plate, being careful to use the proper screw holes. There are four mounting holes for the solenoid mechanism. The upper-left and lower-right holes are used for on-delay; the upper-right and lower-left holes are used for off-delay. The on-delay mounting holes are so labeled on the mounting plate.

Notice that when the relay is changed from on-delay

to off-delay, the normally open and normally closed time-delay contacts mounted on the timing mechanism are changed. With the relay set up for on-delay, the normal position of the push rod is down, making terminals 1 and 2 the normally open contact terminals and terminals 3 and 4 the normally closed contact terminals. When set up for off-delay, the normal position of the push rod is up, making 1 and 2 normally closed, and 3 and 4 normally open. These numbers are molded on the face of the contact unit.

ALLEN-BRADLEY Milwaukee, Wisconsin 53204

5, .

series M80J Proportional motor actuators

ENN CONTROLS 🖸

DIVISION OF JOHNSON SERVICE COMPANY

With Solid State Drive and Travel Limits Potentiometer and 0 to -2 V. D.C. Controller Input

APPLICATION

These proportional motor actuators position air dampers, control valves, burner fuel valves and similar equipment in ventilating, heating, air conditioning and industrial applications.

Actuators with auxiliary switches may be used in most industrial safety circuits.

Series M80J motor actuators operate on signals from potentiometer controllers, 'MIZER™, Cybertronic®, other V. D.C. controllers or ma D.C. controllers when used with a Penn Series R82 interface module. See Controller Selection Diagram, Figure 5.

FEATURES

- Solid state motor drive state-of-the-art integrated circuit within motor actuator case. No balance relay or mechanical travel limit switches. No contacts to bounce, arc or weld.
- Travel adjustment scread liver adjustment located in top wiring compartment (optional field adjustable models). Makes for easy final adjustment of valve seating or damper linkage travel.
- Improved control of dampers and valves long life, direct drive feedback potentionneter mounted concentric with the output shaft. Increased number of balance positions and lower hysteresis for improved resolution.
- Accepts inputs from 135 ohm to 1000 ohm potentiometer controllers or V. D.C. inputs from Penn electronic controllers with no readjustment required.
- All Series M80J actuators accept in-head controller modules. See Bulletin for Series A82 1000 ohm temperature controller, Series R82 D.C. to D.C. interface and Series R93 electronic temperature controllec.
- Up to three Series M80J motor actuators may be operated in parallel from one potentiometer controller. No retransmitting "slave" potentiometers requir-

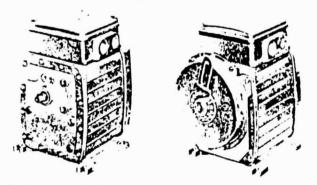


Fig. 2 — Load end view of non-spring return motor actuator (left) and spring return do nper motor actuator (right).

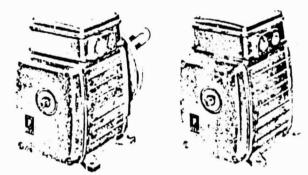


Fig. 1 — Back view of motor actuator. Spring return damper (left) and non-spring return (right).

ed. No separate master and/or slave model required. Field wiring between motors is reduced. No lag between master and slave position.

- All motor actuators have weather-resistant enclosure as standard.
- Models available with internal, adjustable differential auxiliary switches.

GENERAL DESCRIPTION

These actuators have solid state drive and limits that prevent erratic control performance often caused by excessive vibrations. A standard potentiometer type pressure, temperature or humidity controller may be used to operate the actuator. The actuator will accurately position its output shaft in direct proportion to the control signal.

The capacitor-run motor rotates an output shaft through a reduction of precision gears. There are three basic Series M80J motor actuators; standard proportional, proportional spring return damper and proportional spring return valve.

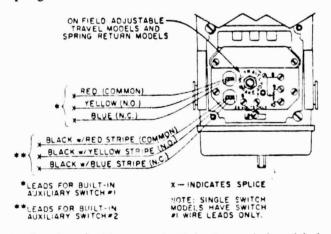


Fig. 3 — View of wiring comportment showing terminals and both travel and resistor brake adjustment.

PENN SERIES M80J PROPORTIONAL MOTOR ACTUATORS

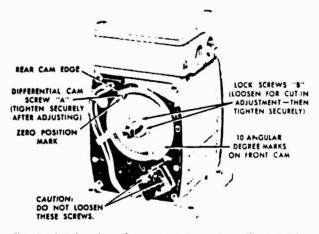
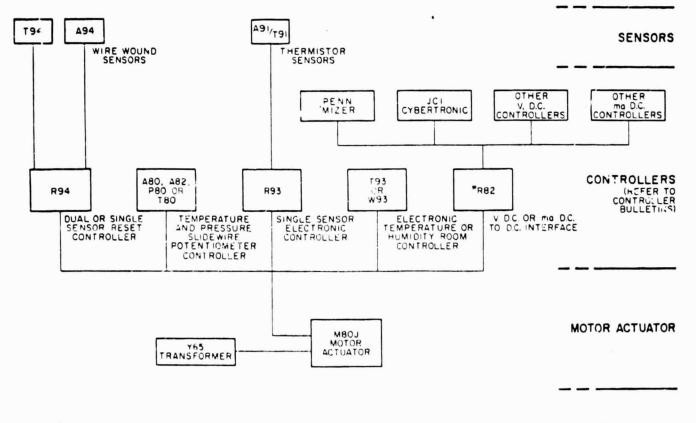


Fig. 4 — Interior view of motor actuator with auxiliary switch.

Series M80J motor actuators are available with fixed or field adjustable travel for proportional control of dampers and valves. (90 to 240° non-spring return, 90 to 180° spring return.) See Figure 3.

The spring return damper model has a heavy gauge builtin spring mechanism to return the motor shaft to its full CCW limit on power failure or interruption. An electrical resistor brake circuit prevents the return spring from driving the motor actuator towards its normal position unless the power is interrupted. The external spring housing and optional internal auxiliary switch are installed on opposite sides of the motor actuator. At no time is it necessary to disconnect the damper or remove the spring housing for access to the auxiliary switch.


An adjustable crank arm on the output shaft for easy connection is standard on the spring return damper motor. It is slotted to allow an adjustable radius from 1-11/16'' to 27/8''. The crank arm may be secured to the motor actuator shaft in position increments of 221/2 angular degrees.

The proportional spring return valve model has a heavy gauge built-in spring mechanism to return the valve to its normal position on power failure or interruption. It has the same resistor brake circuit as the spring return damper motor actuator. Adjustment of this resistor brake is readily accessible within the wiring compartment as shown in Figure 3.

The spring return valve motor actuator is available for normally open (N.O.) and normally closed (N.C.) valve operation. Each type has field adjustable travel from $\frac{5}{8}$ " to 1.3" valve stem movement.

The motor actuator can be mounted in any position except upside down. However, mounting with the output shaft horizontal is recommended, and upright mounting is preferred. Spring return actuators must be mounted within 30° of upright.

The motor should travel through its full stroke (determined by its limit switches) while performing its function, even through the motor's full range may not be employed. Motor may be *damaged* if it is not free to complete its full stroke. The motor should be stopped at the end of its stroke by the limit switch, *not* stalled by the damper or valve.

CONTROLLERS SUPPLYING INPUT TO SERIES RHZ MUST NOT BE POWERED BY THE SAME TRANSFORMER SUPPLYING THE SERIES FOR POWERED BY THE SAME TRANSFORMER

0

Flaure 5 -- Controller Selection.

PENN SERIES MOOJ PROPURTIONAL MOTOR ACTUATORS

Control Signal Input: 3 lead potentiometer; 135 ohms up to 1000 ohms, $\frac{1}{2}$ watt minimum or 0 to -2 V. D.C. ramp as provided by compatible electronic controllers.

Input Impedance: 10 kiloohms (across terminals 8 and 10).

Power Requirement: 20 VA., 24 Volts A.C., 50/60 Hz. Spring return damper models with internal heater require 50 VA.

Shaft Specifications: Double ended, 3/8" square.

AMBIENT TEMPERATURE

Туре	Minir	mum	Maximum		
Number	•F	°C	٩۴	°C	
MBCJAA, MBOJAB, MBOJAC, MBOJFA*	-40	- 40	+125	+ 52	
MBOJCA, MBOJCB, MBOJDA, MBOJEA	+10	-12	+125	+ 52	

* Includes internal heater.

OPTIONAL CONSTRUCTIONS

Travel Limit Settings: Standard factory setting is 90 angular degrees. Adjustable (90 to 240° non-spring return, 90 to 180° spring return) travel is standard option.

MISCELLANEOUS SPECIFICATIONS

Enclosure: Die cast natural aluminum provides a light and rugged case.

Built-In Auxiliary Switch: SPDT, adjustable range from 0 to 160°, adjustable differential from 5 to 90°.

	Built-In Auxiliar	y Switch	Electrica	Rating	At 125	° F.
--	--------------------------	----------	-----------	--------	--------	------

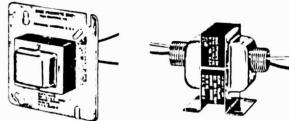
Volts A.C.	120 V.	240 V.	277 V
Full Load Amps.	5.8	2.9	2.6
Locked Rotor Amps.	34.8	17.4	15.6
Non-Inductive Amps.	10.0	8.3	7.2

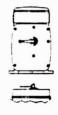
Internal Heater (Type M80JFA Spring Return Damper Motor): The thermostat control closes circuit to heater when ambient temperature drops below 20° F (-7° C) and opens circuit when temperature rises above 50° F (10° C). It cannot be field installed.

Conduit Openings: Two threaded openings for $\frac{1}{2}$ " conduit.

ACCESSORIES

Transformers: A transformer is required to provide motor actuators with the necessary 24 volt A.C. power sup-




Plate mounted transformer. Foot mos

Foot mounted 40 VA. transformer.

ply. Plate mounted transformers mount on a 4" electrical box. Transformers No. Y65AS-1 and Y65BS-1 have a $\frac{1}{2}$ " conduit fitting on the primary and secondary to permit direct mounting into the conduit opening in the motor wiring compartment. See Penn Series Y63, Y64 and Y65 Bulletin No. 3742 for additional information.

Transformer Capacity	Type Mounting	Primary Power Supply (V. A.C.)	Transformer Part No.
		120	Y65AJ-1
	Plate	240	Y658J-1
40 VA.		120	¥65A5-1
	Foot	240	Y6585-1
50 VA.	Plate	120	Y63AJB-1
		480	Y63KJB-1
		208/240	Y635J8-1
		120	Y63ALB-2
	Foot	208/240	Y635LB-2
		120	Y64AL-1
	Plate	208/240	Y645J-1
100 VA.		120	Y64AL-2
	Foot	208/240	Y645L-1

Position Indicator: Kit No. PTR11A-600 is available, if required. It contains an indicator pointer and two pressure sensitive mylar decals. For field installation only.

Valves: Penn Division provides a complete line of twoway single seat and double seat, three-way diverting and mixing valves to meet your control application.

Refer to the following bulletins to select the valve and linkage required:

Valve Number	Description	Bulletin Number
V90AA	2-way, single seat globe	3624
V90BA	2-way, double seat	3625
V90CA	3-way, diverting	3627
V90DB	3-way, mixing	3626
V905A	Butterfly	3428

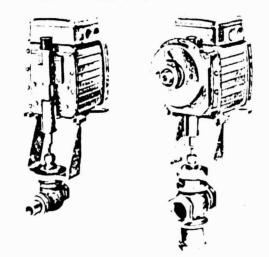


Fig. 6 — Motor actuator mounted on a two-way valve.

13-32

Fig. 7 — Spring return motor actuated three-way valve. PENN SERIES M80J PROPORTIONAL MOTOR ACTUATORS

Damper Linkage Components: A variety of crank arms, ball joint connectors, push rods and a right angle mounting bracket provide easy connection of the motor actuator to a damper. Two complete sets are offered to simplify selection of proper components.

Description	Part Number	Application or Construction
Damper Linkage Sets	¥20DAA-2	For mounting of actuator to top of duct or any flat surface. Contains LVR27A-602, LVR27A 600. SWL10A- 601 (2 ea.), and ROD16-3.
	Y20DAB-2	For mounting of actuator to side of duct or wall. Contains LVR27A-602. LVR27A-600, SWL10A 601 (2 ea.), ROD16-3, and Bi-T22A-602.
Crank Arms	LVR27A-600	For use on $\frac{1}{2}$ or $\frac{7}{16}$ diameter damper shafts. Adjustable radius from $\frac{3}{4}$ to $\frac{41}{2}$.
	LVR27A-602	For use on motor actuator. Adjustable radius from 1^{11} to 2^{7}
	BKT19A-600	Damper angle bracket to connect linkage to damper blade.
Ball Joint Connector	SWL10A-601	With 1,27.28 diameter stud—use with LVR27A-602, LVR27A-600, and BKT19A-600 crank arms.
Push	ROD16-2	⁴ 16" diameter x 48" long plated steel shaft.
Rods	ROD16-3	h ₆ " diameter x 24" long plated steel shaft.
Mounting Bracket	BKT22A-602	Right angle mounting bracket.

LVR27A-600

DAMPER BRACKET

BALL-JOINT CONNECTOR SWL10A 601

RIGHT ANGLE BRACKET BKT22A-602

CRANK ARM ASSEMBLY LVR27A-602

Externally Mounted Auxiliary Switch Kits: Use Penn Series S91 switch kit. These kits are available with one, two or four SPDT snap acting switches. They can be mounted on either shaft end of the motor actuator and incorporate the time proven, reliable, Pennswitch construction.

Contacts are rated at 9.8 amps at 120 V. A.C. and 8.0 amps at 240 V. A.C. at 125° F (52° C) ambient.

For complete information, refer to Penn Series S91 Bulletin No. 3650.

SHIPPING WEIGHTS (Approx.)

-	Individual Pack		
Type Number	lbs.	kg	
MBOJAA, MBOJAB, MBOJAC	11	5	
MBOJCA, MBOJCB, MBOJFA, MBOJDA, MBOJEA	15	6.8	

ORDERING INFORMATION

To order specify:

1. Complete Product Number, if available.

PRODUCT NUMBER SELECTIÓN

Product Number	Timing (1) Secs./160°			Travel				
		Fixed	Adjustable	Factory Setting	Auxiliary Switches	Internal Heater	Application	
MBOJAA-1	60	x		90 -	None	No	Valve or damper	
*MBOJAA-2	60		X	90.	None	No	Valve or damper	
*M80JAB-1	60		X	90	1	No	Valve or damper	
*M80JAC-1	60		X	90 °	2	No	Valve or damper	
*M80JCA-2	60		x	90	None	No	Spring return damper CCW	
*M80JC8-1	60		X	90	1	No	Spring return damper CCW	
.WBOIDA-1	60		x	s" life	None	No	Valve stem normally down Spring return valve	
*MBOJEA-1	60		x	5" lift	None	No	Valve stem normally up Spring return valve	
*MBOJFA-1	60		X	90	None	Yes	Spring return damper CCW	

(1) See Specification Table for additional timing information.

* Wholesaler model available from stock.

SPECIFICATIONS

Type Number	Timing in Seconds (Nominal)	Torque(1)	Damper Rating - Sq. ft. Sq. Meters in ()	Rotational Travel		
	Angular travel 160° (2.8 rad)	lbinches Newton Meters in ()		Fixed	Field Adjustable	
MBOJA4, MBOJAB, MBOJAC	15	40 (4 5)	17 5 (1 6)	90' or 160'	90° to 240	
	30	80 (9)	35 (3)		(1 6 to 4 2 rod)	
	60	150 (17)	70 16 5)			
MBOJCA, MBOJCB, MBOJFA	60	50 (5.6)	35 (3)	-	90° to 180 (1.6 to 3.2 rad)	
MEOJDA, MEOJEA	60 sec for 1" valve lift	75 lb valve stem throat			1 to 1 3" (2)	

(1) Traine ratings are for load and of shuft cloud and)

(2) Includes 12" overtravel for seating of 2 way valves, 12" avertravel for 3 way val Auxiliary output shaft is limited to a maximum dead weight of 25 lbs

V90 3624-F 3624-E

type V90AA TWO-WAY, SINGLE-SEAT GLOBE VALVES

6.25

and the state of the state

PENG CONTROLS

DIVISION OF JOHNSON SERVICE COMPANY

APPLICATION

These two-way valves are for two position (on/off) or proportional control of steam, water or air in air conditioning systems or commercial industrial applications.

GENERAL DESCRIPTION

Motor Actuators and Linkage

These valves are positioned by Penn Series M40, M80, M81 or M82 electric and electronic motor actuators. Clockwise motor rotation drives valve stem down to close off flow.

The actuators are adapted to the valve bodies by a linkage which not only fastens the valve body and actuator together, but also transforms the angular movement of the actuator output shaft to the straight-line motion required to position the inner valve plug of the valve body. A pinion gear on the actuator output shaft drives a gear rack that is connected to the valve stem. This construction maintains the designed flow characteristics of the valve body.

SPECIFICATIONS

These two-way, single seat valves provide 100% tight shutoff.

Sizes $\frac{1}{2}$ " through 2" have 150 lb. bronze bodies with bronze trim and 316 stainless steel stem. The inner valve (plug) provides equal percentage flow characteristics. The EPT valve packing limits the temperature of the media (hot/cold water, steam, air) to 281° F.

Valves $\frac{1}{2}$ " through $1\frac{1}{4}$ " have one union type connector and one screwed end connector.

Valves $1\frac{1}{2}$ " through 2" have screwed end connectors. Sizes $2\frac{1}{2}$ " through 4" have 150 lb. ASA flanged iron bodies with bronze trim and 316 stainless steel stem. A post guided plug provides equal percentage flow characteristics. Neoprene packing permits media temperatures to 281° F.

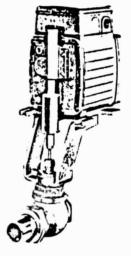
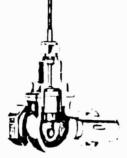


Fig. 1 - Motor Actuated Valve

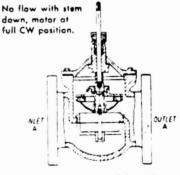
ORDERING INFORMATION


To order, specify:

- 1. Valve Body Product Number.
- 2. Valve Linkage Product Number.
- 3. Motor Actuator Product Number.
- 4. Factory assemble, if required.
- 5. Service.

Example: One V90AA-12 Valve Body, one Y20AAA-2 Valve Linkage and one M80FAA-2 Motor Actuator with 60 sec. timing completely factory assembled; for 5 psi steam service.

VALVE SIZING


For steam applications, see Bulletin 3335. For liquid applications, see Bulletin 3334.

Cut-away view of Two-Way Valve in sizes 1/2" to 11/2".

Cut-away view of Two-Way Valve in sizes 11/2" to 2".

Cross section view of Two-Way Valve in sizes 2½" to 4". Valve shown with stem up (open).

PENN SERIES V90AA TWO-WAY SINGLE SEAT GLOBE VALVES

		Linkage Required (Order separa to match valve and motor select							Maximum			
	Valve Size (Inches)	C۷	Standard Series	Spring Return Series	All Series M40		dard 81, M82		and Return 81, M82	Pressure Drop [®] (psi)	Valve Lift (Inches)	Shipping Wt Lbs. (Vaive only)
				M80, M81, M82	M80, M81, M82		Steam	Water	Steam	Water		
V90AA-10	14	2.3	Y20AAA-2	Y20ABA-2	Y20EAA-1	40	150	35	1 30	35	15	3.3
V90AA-11	34	3.8	Y20AAA-2	Y20ABA-2	Y20EAA-1	40	150	35	150	30	14	4.0
V90AA-12	1	7.0	Y20AAA-2	YZOABA-2	Y20EAA-1	40	150	35	100	25	4	4.0
V90AA-13	114	12.0	Y20AAA-2	Y20ABA-2	Y20EAA-1	40	150	35	40	25	34	6.5
**V90AA-14	11/2	20.0	Y20AAA-2	None	None	40	120	28	28	20	1	6.5
**V90AA-15	2	35.0	Y20AAA-2	None	None	40	65	16	16	20	1	8.3
V90AA-7	215	51.0	Y20AA8-1	Y20ABB-2	None	40	40	10	10	18	24	30.8
**V90AA-8	3	83.0	Y20AAB-1	None	None	28	28	None	None	17	1%	45.0
**V90AA-9	4	150.0	Y20AAB-1	None	None	14	14	None	None	14	116	80.0

SPECIFICATION TABLE

Pressure drops for valve sizing in excess of those listed in the Specification Table can cause a reduction in the normal life expectancy of the valve.
 Cannot be used with spring return mators.

DIMENSIONS

2 " 12-201--

2 CONDUIT HOLES

Not -- Fite

-

--- Connor be used with spring return motors.

INSTALLATION

Upright mounting is recommended but valve assemblies can be mounted in other positions provided the output shaft is horizontal.

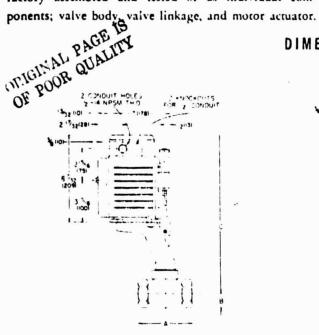
Ambient temperature plus heat transferred from the valve through the linkage must not cause the motor temperature to exceed its limit of 135° F.

Motor-actuated valves are available either completely factory assembled and tested or as individual components; valve body, valve linkage, and motor actuator.

CHECKOUT PROCEDURE

Make sure valve stem moves freely after valve is installed. The valve joints and seals should be checked to be sure there are no leaks.

After linkage and motor actuator are assembled to the valve, a complete operating cycle should be observed to be sure all components are functioning properly.


REPAIRS AND REPLACEMENT

Replacement of valve stem, valve plug and packing may be made in the field. When ordering replacement parts, give Valve Body Number and complete description of the part required.

321

2112

2 41971 -

BOLT CITCLE DIAI

•	8	с	Valve Size	•	1
4', (124)	2" (51)	145 " (371)			i
5'." (133)	2316" (56)	14"16" (376)	2' 2"	7'4 (184)	1
5'," (149)	25 (59)	1415, (379)			t
6 ¹¹ 14" (170)	2'," (67)	15'4" (387)	3"	8', 219)	l
7'," (187)	2'." (73)	15"14" (395)		10', 267	i
8'," (213)	33%" (81)	153 (400)	4	10.1 . 207	ĺ

Valve Size	•	8	c	D	E	F
2' ;"	7'4" (184)	3'2" 89)	175. (440)	7" (178)	512" (140)	4-Holes 1,
3"	8', 219)	31411 (95)	1715, (456)	7!;" (191)	6" (152)	4-Holes 34" (19) Dia.
4''	10', 267	4 ⁴ (117)	1815, (481)	9" (229)	7' ;" (191)	4-Holes 14" (19) Dia.

Performance specifications appearing herein are nominal and are subject to accepted manufacturing tolerances and application variables.

Valve Size 15" 34" 1" 1!4" 1!4" 1!2" 2"

52

JOHNSON SERVICE COMPANY

MILWAUKEE, WISCONSIN AND PRINCIPAL CITIES

Johnson VA-3200 Electro-Hydraulic Valve Actuator

The Johnson VA-3200 Electro-Hydraulic Valve Actuator provides control of fluid flows in heating, ventilating and air conditioning systems. Normally the actuator is used in association with a Cybertronic electronic controller and an appropriate Johnson valve body to regulate the flow of fluid, such as steam and water.

The VA-3200 is available for proportional action. For two-position action a PZ-4000 two-position power supply is required. The unit is a sealed electro-hydraulic system acting against a spring-loaded piston and shaft. Fail-safe operation is provided by the spring, which retracts the actuator shaft in the event of power failure.

A position feedback potentiometer connected to the actuator shaft may be ordered for applications requiring indication of relative shaft position. The potentiometer is used with the position meter on a GQ-4100 indication system.

Also available are two auxiliary switches independently wired for N.O. or N.C. operation. The "on" and "off" operating points

Actuator with Feedback and Auxiliary Switches

of each switch may be set at any percentage of actuator shaft travel. These switches return to the normal position when the actuator shaft is retracted.

Actuators without feedback and auxiliary switches are supplied with 8" pigtail leads and a standard handi-box for electrical connections. Those actuators with feedback and/or auxiliary switches have 42" pigtail leads and a large wiring box; one pre-drilled hole is provided for the pigtail leads.

	Specifications					
NODEL	VA-3200 ELECTRO-HYDRAULIC VALVE ACTUATOR					
CONTROL MODE	PROPORTIONAL					
SUPPLY VOLTAGE	120 OR 24 VOLTS A C., 60 Hz (75 VA)					
CONTROL SIGNAL VOLTAGE	0 TO 16 VOLTS D.C. ACROSS SERVO VALVE (APPROXIMATE RESISTANCE 1000 OHMS) Nominal Operating Range 8 to 12 volts d.C.					
POWER	CAN OPPOSE 100 LBS. EXTENDED AND RETRACTED					
STROKE	14. OR 114 INCHES					
OPERATING TIME	APPROX. 20 SECONDS FOR '5 INCH STROKE APPROX. 60 SECONDS FOR 1'5 INCH STROKE					
AMBIENT TEMPERATURE	-25 TO 135F (-30C TO 55C)					
	POSITION FEEDBACK POTENTIOMETER (APPROXIMATELY 110 OHMS CHANGE FOR 1'1 INCH STROKE)					
ACCESSORIES	TWO AUXILIARY SWITCHES (SPDT) RATED AT ¼ HORSEPOWER (5.8A AT 120 VOLTS A.C., OR 2.9A AT 240 VOLTS A.C.); AVAILABLE FOR EITHER N.O. OR N.C. OPERATION.					
	TWO-POSITION POWER SUPPLY: PZ-4000-1 FOR 24V A.C. AND PZ-4000-2 FOR 120V A.C.					

Specifications

VA-3200 APPARATUS

DESIGN

DIAPHRAGIN RESERVOR WINE PUND PUND RESOLUTE NOTE NOTE NOTE NOTE NOTE SERVO VALUE PISTON SINAFT SINAFT SINAFT

MANUFACTURE

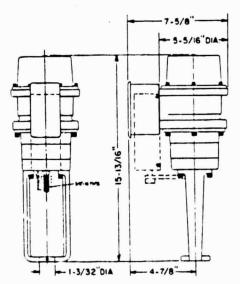
NOTE: POWER WIRES FOR 120 V UNIT ARE BLACK AND BLACK/RED; WIRES FOR 24 V UNIT ARE YELLOW AND WHITE.

Operation

In a typical application, a proportional action actuator is connected to a power source and to an electronic temperature controller. If the controller senses a change in temperature from the set point, it transmits a proportional control signal to the servo valve in the actuator. The servo valve modulates the hydraulic

JOHNSON SERVICE COMPANY

MILWAUKEE, WISCONSIN AND PRINCIPAL CITIES


pressure in proportion to the signal; this causes the hydraulic fluid to move the piston and actuator shaft, to position the valve in response to the control signal.

For two-position action, the servo valve of the actuator is connected to the output of a PZ-4000 two-position power supply which is controlled by a two-position thermostat. The controller opens and closes the circuit to the actuator servo valve causing the twoposition action of the actuator.

Mounting

The valve body should be installed in the line before the actuator is mounted, leaving a minimum clearance of the length of the actuator plus three inches. The actuator must always be mounted above the valve on horizontal steam or water lines to avoid damaging the unit in case of valve leakage.

Wiring connections are made to color coded pigtail leads. All wiring must conform with applicable electrical code requirements.

INSTALLATION VA-3200-A

JOHNSON SERVICE COMPANY

MILWAUKEE, WISCONSIN AND PRINCIPAL CITIES

Johnson VA-3200 Electro-Hydraulic Valve Actuator

The Johnson VA-3200 Electro-liydraulic Valve Actuator provides control of valves in heating, ventilating, and air conditioning systems. The actuator may be used with any controller or auxiliary device that produces a 0 to 16 volt D.C. output.

Installation

The valve should be installed in the line before the actuator is mounted. A minimum clearance is required, equal to the length of the actuator plus an additional 3 inches, to permit the actuator to clear the valve stem during installation or removal. The actuator must always be mounted above the valve on horizontal steam or water lines to avoid damaging the unit in case of valve leakage.

NOTE: If necessary, the yoke may be detached from the actuator body and mounted to the valve body before the actuator is installed.

Mount the actuator as follows:

- Remove the gland nut from the valve centerpiece. CAUTION: Normally closed, three-way, and 2-1/2 " to 4 " normally open valves must not have internal pressure. 1/2 " to 2 " normally open valve bodies with internal pressure may leak until the plug and stem seal against an internal 0-ring.
- Screw the 3/8" locknut and coupler onto the actuator shaft. The coupler should cover at least two threads above the hole in the shaft. NOTE: Valve coupling hardware is supplied as a VZ-1000 series Valve Coupling Hardware Kit.
- 3. Slip the actuator and yoke, the hold-down nut, and the gland nut over the valve stem and centerpiece.
- Screw the (1/4" or 5/16", depending on type of valve) locknut and coupler onto the valve stem.
- 5. If A.C. power and control input signal are not available at actuator, using a 9/16" wrench, tighten the 3/8" locknut

against the coupler, using it as a jam nut. CAUTION: On actuators having auxiliary switches and/or feedback, do not disturb the locknut which holds the feedback arm to the actuator shaft. The feedback arm must be free to slightly shift and move on the actuator shaft; otherwise, binding between the actuator and feedback or switch assembly may result.

- 6. Screw the valve stem into the coupler until the plug assembly just contacts the centerpiece. Do not force, as damage to the plug assembly may result.
- 7. While holding the valve stem with one hand to prevent it from rotating, use the 9/16" wrench on the 3/8" locknut to further adjust the actuator preload as noted in Table I. Do not rotate actuator or valve stem. Proceed to step 12, skipping steps 8 thru 10.
- 8. As an alternate procedure, if A.C. power and a control input signal are available at the actuator (assuming all wiring has been installed and checked out), adjust

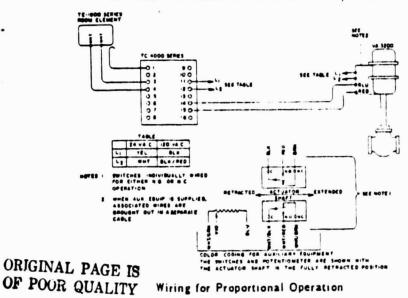
VA-3200-A INSTALLATION

DESIGN

the control input signal to position the actuator shaft to the desired preload position as noted in Table I. Preload can be measured by placing a ruler parallel to the actuator shaft on the bottom of the actuator housing.

MANUFACTURE

- Screw the valve stem into the coupler until the plug assembly just contacts the centerpiece. Do not force, as this can damage the plug assembly.
- 10. Return the actuator shaft to the retracted position.
- 11. Tighten the locknuts on the actuator shaft and valve stem against the coupler.
- Tighten the packing and hold-down nut on the centerpiece, being careful not to shift natural alignment between actuator and valve.


VALVE TYPE	PRELOAD
NORMALLY OPEN VB-3752	0-1/32"
NORMALLY CLOSED VB-3970	1/32" - 1/8"
THREE-WAY VB-4140 & VB-4322	1/32" - 1/16"

TABLEI. ACTUATOR PRELOAD

Wiring

All wiring must conform with applicable electrical code requirements.

The actuator with feedback is equipped with a 42" cable of color coded leads for system

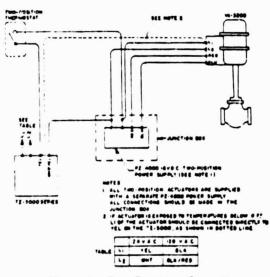
JOHNSON SERVICE COMPANY

MILWAUKEE, WISCONSIN AND PRINCIPAL CITIES

wiring. If a position potentiometer or switches are part of the assembly, a separate cable is used for the switch and potentiometer wires. Actuators without feedback are supplied with 8" pigtail leads.

Wiring connections should be made with wire nuts in the junction box.

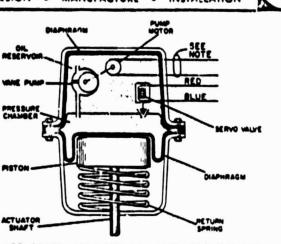
The two-position actuator requires a PZ-4000 two-position power supply. A.C. power must be supplied to both the actuator and the separate power supply. The output of the power supply is connected to the actuator servo valve as shown in the wiring diagram. Do not mount the PZ-4000 in the actuator junction box. The heat generated to the actuator will cause the PZ-4000 to fail.


Lubrication

The actuator shaft and linkage should be lubricated periodically with Dow-Corning DC-11, or equivalent. No additional maintenance is required.

Operational Checkout

After the actuator has been installed in accordance with the previous instructions, an operational checkout should be performed, using the following procedure.


To check actuator operation, 120V A.C. or 24V A.C. (depending on the model) must be used. A variable D.C. source of 0 to 16V at 20 ma is also needed for the proportional actuators. This may be either a power supply or an appropriate Cybertronic controller.

Wiring for Two-Position Operation

INSTALLATION VA-3200-A

JOHNSON CONTROL

NOTE: POWER WIRES FOR 120 V. UNIT ARE BLACK AND BLACK/RED; WIRES FOR 24 V. UNIT ARE YELLOW AND WHITE.

If a controller is used, the voltage should be monitored at test points described in the operational checkout bulletin covering the controller, and the set point control varied to obtain the voltages required for the following procedure. Be sure power wiring and applied voltages are correct before testing.

Proportional Action:

 Apply A.C. power to the actuator pump (black and black/red leads on a 120 volt unit, yellow and white leads on a 24 volt unit.)

NOTE: On early 120 volt models, two black wires are the A.C. power leads. On early 24 volt models, the A.C. power leads are green and white.

- 2. Connect the D.C. power supply to the servo valve (red and blue leads).
- 3. Observe the operation of the actuator. At 0 volts the shaft should be fully retracted.
- 4. Apply 16 volts to the servo valve.
- 5. Observe the operation of the actuator. The shaft should move to the fullyextended position, operating smoothly throughout the stroke.

JOHNSON SERVICE COMPANY

MILWAUKEE, WISCOPISIN AND PRINCIPAL CITIES

6. Check the operation of the actuator with 9 volts D.C. applied to the servo valve. The actuator shaft should come to rest at a point between 25% and 75% of the stroke.

Two-Position Action:

 Apply A.C. power to the actuator and to the PZ-4000 power supply (black and black/red leads on a 120 volt unit, yellow and white leads on a 24 volt unit). The actuator shaft should move smoothly out to the fully-extended position.

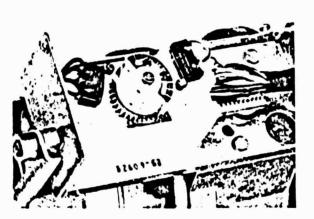
NOTE: On early 120 volt models, A.C. power leads are two black wires. On early 24 volt models, the A.C. power leads are green and white.

 Remove the A.C. power; the actuator shaft should return to the full-retracted position.

If the actuator does not operate properly, check the system for possible wiring errors. If necessary, check the servo valve resistance and the resistance to the pump motor against the values listed in Table II. If the resistance differs from the listed values, or the actuator still fails to function, replace it and return the defective unit to the factory. Do not attempt to repair the actuator in the field.

Adjustments

The following procedures apply to models equipped with auxiliary switches and/or feedback potentiometers.


Position Feedback Potentiometer Adjustments:

If the potentiometer is used in a GQ-4100 indication system, refer to the operational checkout procedures and adjustments for the indication system.

FUNCTION	RESISTANCE VALUES					
PUMP MOTOR	120 VOLT UNIT, BLACK TO BLACK/RED. 11 Q. ±1 Q					
FUMF MUTUR	24 VOLT UNIT. YELLOW TO WHITE, APPROX. 0.50					
SERVO VALVE	RED TO BLUE, APPROXIMATELY 1200					
POSITION FEEDBACK POTENTIOMETER	BLUE TO WHITE GREEN, 135Ω , $\pm 15\Omega$ (VIOLET LEAD IS CONNECTED TO WIPER ARM OF POTENTIOMETER)					

TABLE II. RESISTANCE VALUES

Auxiliary Switch Adjustments:

The actuator may be supplied with two auxiliary switches. Each switch can be adjusted independently to open or close at any desired shaft position. The differential travel is also adjustable down to a minimum stroke of 1/32". This is the difference in shaft position between the point where the switch operates on a shaft extension and the point where the switch operates on a shaft retraction.

To set up the operating points on each switch, the proper A.C. voltage and a variable control signal of 0 to 16 volts D.C. must be connected to the actuator. However, if possible, do not connect power to the switches themselves until switch adjustment is completed.

- 1. Loosen the set screw that holds the upper cam to the shaft and remove the cam.
- Apply A.C. power to the actuator and adjust the control voltage until the actuator shaft is at the position selected for operating the lower switch when the shaft is extending.
- 3. Loosen the set screw that holds the lower cam to the shaft. Rotate the cam clock-

JOHNSON SERVICE COMPANY

MILWAUKEE, WISCONSIN AND PRINCIPAL CITIES

wise to actuate the switch and tighten the set screw with the cam in this position.

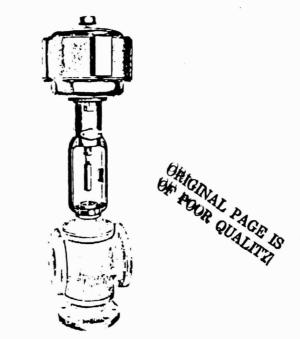
NOTE: The point of operation can be determined by listening for an audible "click" or by connecting an ohmmeter across the switch leads. If an ohmmeter is used, there must be no external power applied to the switch.

- Adjust the control voltage until the actuator shaft is at the position selected for operating the lower switch when the shaft is retracting.
- 5. Loosen the screws holding the differential cam segment. It may be necessary to move these screws to different holes in the bolt circle to achieve proper adjustment. Rotate the cam segment until the switch roller rests on the segment. Lift the switch roller off the cam to be sure the switch is in the proper operating position.
- b. Rotate the cam segment counterclockwise until the roller drops and the switch operates. Tighten the cam segment mounting screws.
- Check this adjustment by operating the actuator through its full travel and observing the positions at which the switch operates.
- Replace the upper cam on the shaft and perform adjustments described in steps 2 through 7.

NOTE: Switch positions have been set at the factory and normally should not be changed. However, if a switch has been shifted and fails to operate properly, loosen the mounting screws and move the switch toward or away from the cam as required.

JOHNSON SERVICE COMPANY MILWAUKEE, WISCONSIN AND PRINCIPAL CITIES

Johnson VA-3400 Electro-Hydraulic Valve Actuator

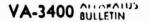

Proportional or Two-Position Action

The Johnson VA-3400 Electro-Hydraulic Valve Actuator provides either proportional or two-position control of large valves in central heating and air conditioning systems. The actuator is especially designed for use with a CYBERTRONIC® electronic controller and an appropriate Johnson valve body in systems controlling the flow of extremely large volumes of fluid.

The VA-3400 is a completely self-contained unit consisting of an actuator shaft and a sealed electro-hydraulic system. The electrohydraulic system is composed of an electrically driven pump, a servo valve, and a piston. These components are arranged so that the VA-3400 is fail-safe in operation: the actuator shaft returns to the retracted position in the event of power failure. The actuator may be connected to the controller for either direct or reverse acting control.

Operation

In operation, the actuator is connected to a power source and to an appropriate CYBER-TRONIC controller, such as the TEC-4000 temperature controller.

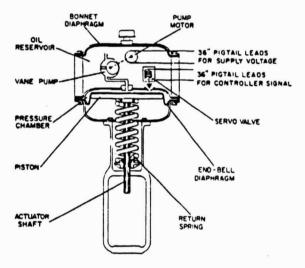


On a change in temperature, a control signal proportional to the temperature change is transmitted to the servo valve in the actuator. The servo valve operates, causing the hydraulic fluid to move the piston and actuator shaft. The actuator shaft positions the valve in response to the control signal.

MODEL	VA 3400 ELECTRO-HYDRAULIC VALVE ACTUATOR
CONTROL MODE	PROPORTIONAL OR TWO-POSITION
SUPPLY POWER VOLTAGE	OPTIONAL, 115 VOLTS OR 24 VOLTS A.C., 60 CPS (45 WATTS)
CONTROL SIGNAL	0-16 VOLTS D.C. ACROSS SERVO VALVE (APPROXIMATE RESISTANCE 1000 OHMS)
STROKE	2 ¹ / ₂ INCHES
POWER	CAN OPPOSE 1000 POUNDS EXTENDED, 500 POUNDS RETRACTED
OPERATING TIME	SIX MINUTES FOR FULL STROKE
AMBIENT TEMPERATURE	125 F MAXIMUM
	1

Specifications

Printed in U.S.A.


JOHNSON SERVICE COMPANY

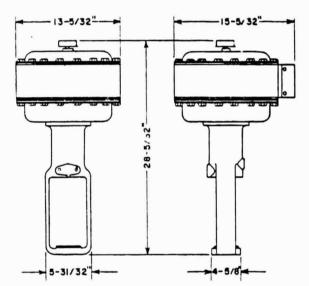
MILWAUKEE, WISCONSIN AND PRINCIPAL CITIES

As the temperature changes, the magnitude of the control signal changes proportionally. As the magnitude of the control signal changes, the actuator repositions the valve accordingly.

Mounting

The exact method for installing the actuator depends on the type of valve body used and the requirements of the individual system.

NOTE: 36" PIGTAIL LEADS COLOR-CODED AS FOLLOWS:


LEADS	115V UNIT	24 V UNIT
PUMP	BLK	GREEN
MOTOR	BLK	WHITE
SERVO	RED	RED
VALVE	BLUE	BLUE

The actuator should be mounted vertically. However, mounting in any other position is possible if a hanger or brace is provided to support the actuator body.

Wiring connections are made to 36" pigtail leads on the actuator. Applicable local and national electrical codes must be followed.

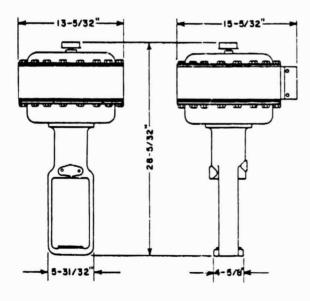
Ordering Instructions

When ordering, specify a complete n.odel number from the Product Specification sheet for the VA-3400.

INSTRUCTIONS VA-J4UU-A

JOHNSON SERVICE COMPANY

MILWAUKEE, WISCONSIN AND PRINCIPAL CITIES


Johnson VA-3400 Electro-Hydraulic Valve Actuator Proportional or Two-Position Action

The Johnson VA-3400 Electro-Hydraulic Valve Actuator provides proportional or twoposition control for valves in central heating and air conditioning systems using extremely large volumes of fluid. The actuator is designed for use with a CYBERTRONIC electronic controller and an appropriate Johnson valve body. The actuator may be connected to the controller for either direct or reverse acting control.

Installation

If possible, the actuator should be mounted in a vertical position. However, mounting in any other position may be accomplished if a hanger or brace is provided to support the actuator body.

The exact method used to install the VA-3400 depends on the type of valve body used and on the requirements and limitations of the individual system. However, the following procedure for mounting the valve body to the actuator may be used in all installations.

- 1. Remove locknut (4) and (if necessary) packing nut (2) from the valve stem.
- 2. Place adaptor (3) over the valve centerpiece.
- 3. Center the actuator over the adaptor and fit the yoke locknut (4) over the valve centerpiece.
- 4. Replace the locknut and packing nut. Check the actuator for correct centering.
- 5. With the valve stem all the way up, hold valve coupler (6) alongside the actuator shaft so that the top of the coupler extends to the end of the threaded portion of the actuator shaft.
- 6. With the coupler in this position, thread stem nut (5) on the valve stem until it clears the coupler by one-eighth of an inch.
- 7. Hold the stem nut in this position and ighten the coupler against the nut, pushing the stem into the valve as required.

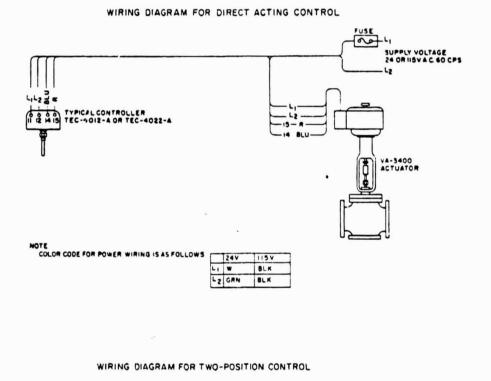
Printed in U.S.A.

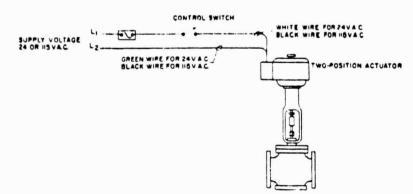
B-44

DESIGN

JOHNSON SERVICE COMPANY

MILWAUKEE, WISCONSIN AND PRINCIPAL CITIES


- 8. With the coupler securely locked on the valve stem, thread the coupler on the actuator all the way to the end of the threaded portion of the shaft. The valve stem should turn with the nut and coupler as the coupler is threaded on the shaft. The resistance encountered during the last few turns of the coupler is the valve preload.
- 9. Check the actuator for correct centering, then tighten the locknut securely.

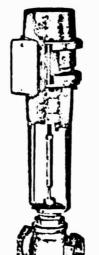

Wiring

The VA-3400 has a power consumption rating of 100 VA. This figure must be taken into consideration when sizing transformers.

The actuator is supplied with a 36" pigtail cable of color coded 18 gage stranded wire. Use wire nuts to connect the actuator to system wiring.

All wiring must be in accordance with applicable national and local electrical codes.

JOHNSON VB-3752 N.O. STEAM OR WATER VALVE

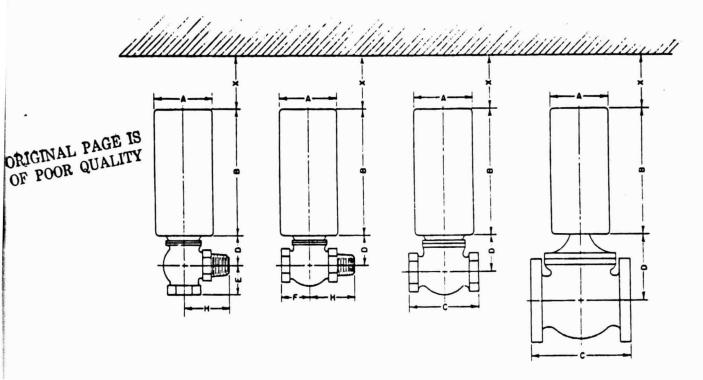

1⁄2" thru 2" Cast Brass

21/2" thru 8" Cast Iron

150 psi Body Rating

The Johnson VB-3752 Normally Open Valve is designed to regulate the flow of steam or water through coils or heat exchangers of all types. This valve is accurately controlled by a VA-3200, VA-3400 or VA-5000 actuator.

The VB-3752 valve body is constructed of cast red brass in sizes 1/2" through 2", and cast iron in sizes 2-1/2" through 8". A modulating valve plug, with a replaceable composition disc especially compounded for steam and water service, provides an equal percentage relationship between valve lift and flow at constant pressure drop.



VB-3752 N.O. Valve with VA-3200 Actuator

		Sp	ecifications			
MODEL			VB-3752 NORMALLY OPEN VALVE			
SERVICE			STEAM OR WATER, HOT OR COLD			
	UNION ANO	GLE	1/2" THROUGH 2"			
SERVICE CONNECTIONS/	UNION GLO	DBE	1/2" THROUGH 1-1/4"			
BODY PATTERNS	SCREWED	GLOBE	1-1/2" THROUGH 2"			
SIZES	FLANGED	GLOBE	2-1/2" THROUGH 8"			
INNER VALVE			EQUAL PERCENTAGE MODULATING PLUG			
BODY RATING			150 psi (10.5 kp/cm²)			
MAXIMUM	JILON		35 psi (2.5 kp/cm²)			
PRESSURE	WATER		150 psi (10.5 kp/cm²)			
MAXIMUM	STEAM		281F (138C)			
TEMPERATURE	WATER		281F (138C)			
		1/2"-2"	HIGH GRADE CAST RED BRASS, NATURAL FINISH			
	BODY	2-1/2" - 8"	HIGH TENSILE CAST IRON, BLACK LACQUER FINISH			
	70.04	1/2"-2"	BRASS			
	TRIM	2-1/2" - 8"	BRASS, WITH REPLACEABLE SCREWED-IN SEAT			
MATERIALS	DISC		REPLACEABLE COMPOSITION			
		1/2"-2"	U-CUP. SYNTHETIC ELASTOMER (STEAM AND WATER)			
	STEM	2-1/2"-4"	MOLDED RING, TEFLON (STEAM)			
	PACKING	2-1/2" - 4"	U-CUP BUNA-N (WATER)			
		2-1/2" - 8"	ROPE, GRAPHITED ASBESTOS (VA-3400 ONLY)			
	1/2" - 2"		VA-5000 THERMAL OR VA-3200 ELECTRO-HYDRAULIC			
ACTUATOR	2-1/2" - 4		VA-3400 OR VA-3200 ELECTRO-HYDRAULIC			
	5" - 8"		VA-3400 ELECTRO-HYDRAULIC			

Dimensions

Actuator

ACTUATOR	4	B	X •
VA-5000	3-1/4	9-1/4	4-3/4
VA-3200	7-3/4	15-7/8	4-3/4
VA-3400	15-1/4	28-1/4	5-1/2

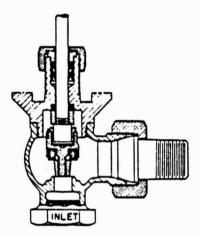
* X is the minimum clearance required to remove the actuator.

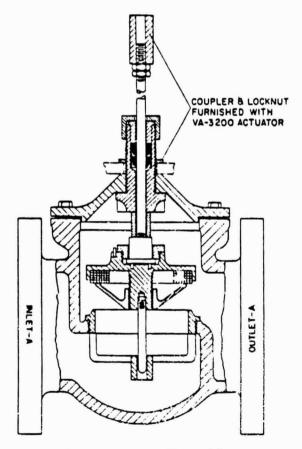
1

Installation

It is recommended that the VB-3752 valve be mounted in an upright position. It must be piped so that the valve seats against the flow and arranged so that the actuator can be easily removed and replaced.

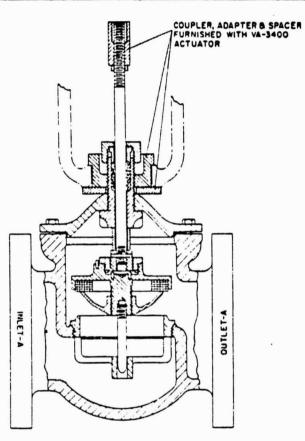
Valve	Body


VALVE	DIMENSIONS (in.)								
SIZE (in.)	-		D	-	F	н			
	c	Angle	Globe	E	F				
1/2		1-3/8	1-5/8	1-3/8	1-3/8	2-11/16			
3/4		1-13/16	1-15/16	1-5/8	1-5, 8	3-1.16			
I		2	2-5/16	1-7/8	1-7/8	3-5/16			
1-1/4		2-1/4	2-7/16	2-3/16	2-1.3	4-1.16			
1-1/2	4.7/8	2-5/8	2-3 4	2-1.4		4-1/4			
2	5-1/8	3	3-1/4	2-5/8		5-3/4			
2-1/2	7-1.4		4-11/16						
3	8-5/8		5-5/16						
4	10-1/2		6-5/16						
5	12-1/2		6-7.8						
6	14-1/2		8-3/16						
8	17-1/2		11-15/16						

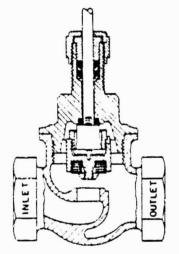


507 EAST MICHIGAN STREET . MILWAUKEE, WISCONSIN 51201

Capacities															
Valve Size (in.)			1/2		3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	5	6	8
	Angle	1.1	1.5	2.5	3.7	6.7	12.0	20.0	35.0						
C _v Factor	Globe	0.9	1.5	2.3	3.8	7.0	12.0	20.0	35.0	51.0	83.0	150.0	240.0	350.0	590.0



Angle Valve with Male Union Outlet



Construction of the party of th

Globe Valve with Flanged Ends

Globe Valve with Flanged Ends

Globe Valve with Screwed Ends

JOHNSON VB-3970 N.C. STEAM OR WATER VALVE

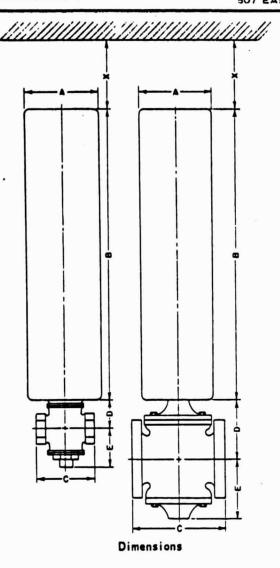

1/2" thru 2" Cast Brass 21/2" thru 8" Cast Iror

150 psi Body Rating

The Johnson VB-3970 Normally Closed Valve is designed to regulate the flow of steam or water through coils or heat exchangers of all types. This valve is accurately controlled by a VA-3200. VA-3400 or VA-5000 actuator.

(

The VB-3970 valve body is constructed of cast red brass in sizes 1/2 " through 2", and cast iron in sizes 2-1/2" through 8". A modulating valve plug, with a replaceable composition disc especially compounded for steam and water service, provides an equal percentage relationship between valve lift and flow at constant pressure drop.


VB-3970 N.C. Valve with VA-3200 Actuator

Specifications

MODEL			VB-3970 NORMALLY CLOSED VALVE				
SERVICE	SCREWED	GLUBE	i 2" THROUGH 2"				
CONNECTIONS BODY PATTERNS SIZES	FLANGED	GLOBE	2-1-2" THROUGH 8"				
INNER VALVE			EQUAL PERCENTAGE MODULATING PLUG				
BODY RATING			150 psi (10.5 kp/cm²)				
MAXIMUM	STEAM		35 psi (2.5 kp/cm²)				
PRESSURE	WATER		150 psi (10.5 kp/cm²)				
MAXIMUM	STEAM		281F (138C)				
OPERATING TEMPERATURE	WATER		281F (138C)				
	BODY	1/2"-2"	HIGH GRADE CAST RED BRASS, NATURAL FINISH				
		2-1/2"-8"	HIGH TENSILE CAST IRON, BLACK LACQUER FINISH				
		1/2"-2"	BRASS				
	1 R IM	2-1/2"-8"	BRASS, WITH REPLACEABLE SCREWED-IN SEAT				
MATERIALS	DISC		REPLACEABLE COMPOSITION				
		1 2"-2"	U-CUP, SYNTHETIC ELASTOMER (STEAM AND WATER MOLDED RING, TEFLON (STEAM)				
	PACKING	2-1/2"-4"					
		2-1-2"-4"	U-CUP. BUNA-N (WATER)				
	•	2-1 2"-8"	ROPE, GRAPHITED ASBESTOS (VA-3400 ONLY)				
	1/2" - 2"		VA-5000 THERMAL OR VA-3200 ELECTRO-HYDRAULIC				
ACTUATOR	2-1/2" - 4	'	VA-3200 OR VA-3400 ELECTRO-HYDRAULIC				
	5" - 8"		VA-3400 ELECTRO-HYDRAULIC				

JOHNSON SERVICE COMPANY

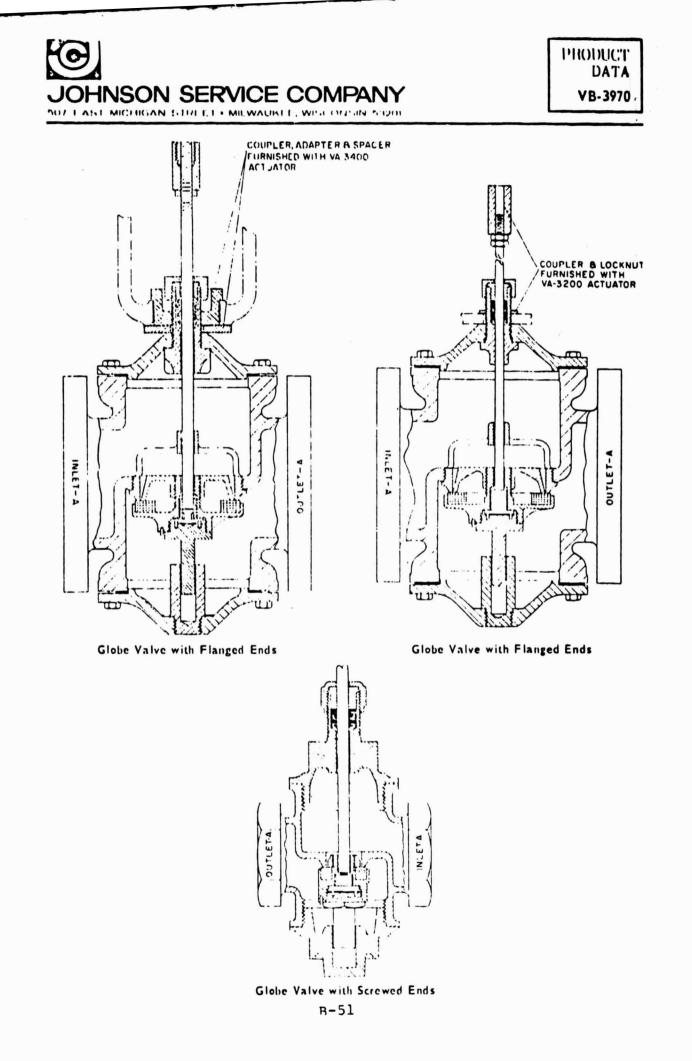
Installation

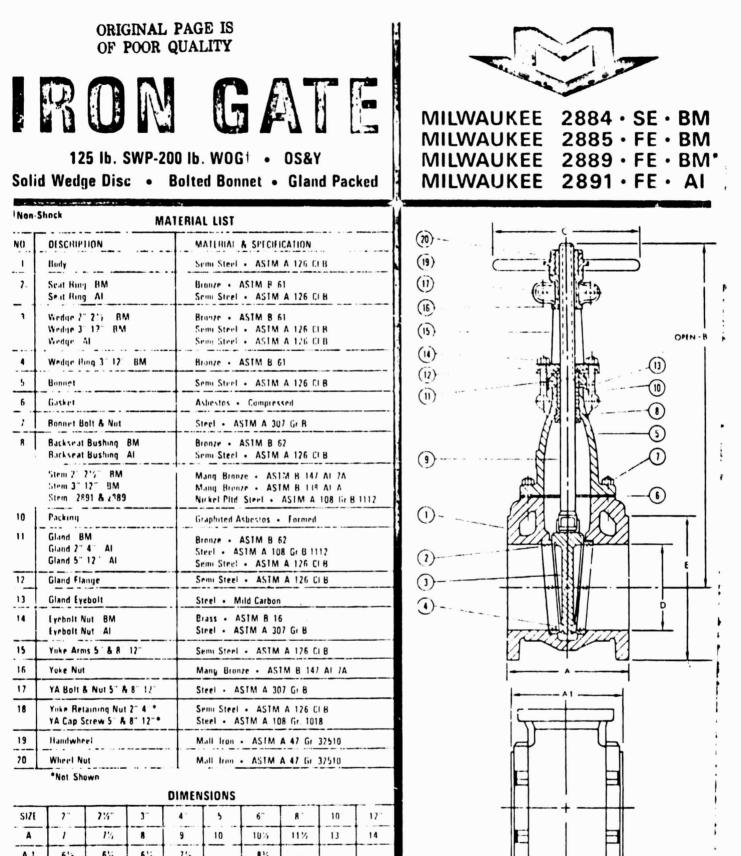
It is recommended that the VB-3970 valve be mounted in an upright position. It must be piped so that the valve seats against the flow and arranged so that the actuator can be easily removed and replaced.

Actuator

ACTUATOR	A	B	ו
VA-5000	3-1/4	9-1/4	4-3/4
VA-3200	7-3/4	15-7/8	5-3/4
VA-3400	15-1/4	28-1/4	5-1/2

Valve Body


* X is the minimum clearance required to remove the actuator.


SIZE	DI	MENSIONS	(in.)
(in.)	с	D	E
1/2	2-3/4	1-5/8	1-9/16
3/4	3-1/4	1-15/16	1-15/16
1	3-3/4	2-1/4	2-9/16
1-1/4	4-1/4	2-3/8	2-5/3
1-1/2	4-7/8	2-3/4	3
2	5-1/8	3-1 8	3-1/16
2-1/2	7-1/4	4-11/16	1 5-1/16
3	8-5/8	5-5/16	5.5/16
4	10-1/2	6-5/16	6-5/16
5	12-1/2	6-7/8	6-7/8
6	14-1/2	8-3/16	8-3/16
8	17-1/2	11-15/16	11-15/16

Capacities

Valve Size (in.)		1/2		3/4	- 1	1-1/4	1-1/2	2	2-1/2	3	4	5	6	8
C. Factor	0.9	1.7	2.2	3.8	6.9	11	20	35	54	83	150	237	344	576

ORIGINAL PAGE IN OF POOR QUALITY

			CONTRACTOR AND A CONTRACTOR					
6'i	6%	614	1%		8%			
15'.	16%	18%	23'4	27'.	32'';	40'.	49:.	51%
8	8	9	10	12	12	14	18	20
7	2%	3	4	5	6	8	10	12
6	1	13	9	10	11	13'5	16	19
		15'• 16%• 8 8	15'* 16%* 18% 8 8 9 7 2% 3	15'* 16½* 18½ 23½ 8 8 9 10 7 2½ 3 4	15'. 16'/ 18'/ 23'/ 77' 8 8 9 10 12 7 2'/ 3 4 5	15'. 16%. 18% 23% 27% 32% 8 8 9 10 12 12 7 2% 3 4 5 6	15'. 16%. 18% 23'.4 27'.4 37'.7 40'.4 8 8 9 10 12 17 14 7 2% 3 4 5 6 8	15'. 16½. 18½ 23¼ 27% 37½ 40% 49% 8 8 9 10 12 12 14 18 7 2½ 3 4 5 6 8 10

*MILWAUKEE 2889 · FE · BM Same as 2885 except Steel Stem B-52

CHEL ALCH CONFORMATING A L 1. South State 11 States of a 2884 meets or exceeds the requirements of Federal Specifi cation No. WW V 58 for Type I (OS). Class A Valves 288 meets or exceeds the requirements of Federal Specification* No. WW V. 18 for Type I. (OF). Class A Valves 1.8

2884 SE 2" to 4" & 6".

Flange Shape and Drilling to Spec USAS B 161 (125 Ib)

BRONZE GATE

125 Ib. SWP-200 Ib. WOG† • **General Service** Rising Stem • Solid Wedge Disc Screwed Bonnet • Sweat Ends • Gland Packed

MILWAUKEE MILWAUKEE MILWAUKEE

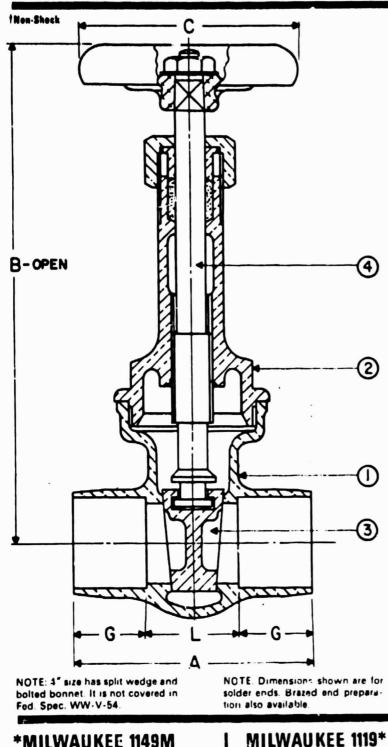
1149 1149M* 1119*

TEST PRESSURE

250 psi Shell

125 psi Seat

MATERIAL LIST


PART	MATERIAL	SPECIFICATION
Body	Bronze	ASTM B 62
Bonnet	Bronze	ASTM B 62
Wedge Disc	Bronze	ASTM B 62
Stem	Bronze	ASTM B 62
Packing	Teflon/ Imp./Asb.	Commercial
Giand	Bronze	ASTM B 16
Packing Nut	Bronze	Commercial
Handwheel	Aluminum	Commercial
Identification Plate	Aluminum	Commercial
Handwheel Nat	Bronze	Commercial
	Body Bonnet Wedge Disc Stem Packing Giand Packing Nut Handwheel Identification Plate	BodyBronzeBonnetBronzeWedge DiscBronzeStemBronzePackingTeflon/ Imp./Asb.GiandBronzePacking NutBronzeHandwheelAluminumIdentification PlateAluminum

DIMENSIONS-INCHES

SIZE	DIM. A	DIM. B	DiM. C	DIM. G	DIM. L
⅔.	111/10	5%	21%	*	1%10
1/2	2	51/10	21%	Х	1
%	21/2	6¼	21/4	3⁄4	1
1	3	71/10	2¾	2%2	11/10
1%	3¼	8'3/10	3	3 1/22	1%
1%	3%	9'3/10	31⁄4	1 3/3 2	11/10
2	4%	11'%.	4	1'%	11/10
21/2	5	14%	41/2	1'%1	21/10
3	5½	161/2	5	12 1/32	21/10
4	7%	151/2	5	21/32	21%.4

These valves meet or exceed the requirements of Federal Specifice' on No. WW-V-54 for Type II, Class A Valves.

MILWAUKEE VALVE COMPANY, INC. 2375 South Burrell Street . Milwaukee, Wisconsin 53207

*MILWAUKEE 1149M

Same but with malleable iron handwheel

MILWAUKEE 1152						125 lb. SW Risi	P-200 lb. WOGt • Industrial Service Ing Stem • Solid Wedge Disc Inet • Screwed Ends • Gland Packed
		TEST	PRESSURI	E		*	C
250	psi Sh	ell		12	5 psi Seat		
		MATE	RIAL LIST				
10.		PART	MATERIAL	SPI	CIFICATION		
1	Body		Bronze	AS	TM B 62		4 P
2	Bonn	et	Bronze	AS	TM B 62		
3	Wedg	ge Disc	Bronze	AS	TM B 62		
4	Stem		Bronze	AS	TM B 62		
5	Unio Nut	n Bonnet	Bronze		TM B 62		
	Pack	ina	Teflon/	1~3			
			Imp./Asb.	Co	nmercial		
_	Glan	d	Bronze		TM B 16	B-OPEN	
		ing Nut	Bronze	Commercial		B-OPEN	
		twheel	Aluminum	Co	mmercial		2
	Ident	tification	Aluminum	1 Cn	mmercial		
_	Hand	wheel Nut	Bronze	Co	mmercial		
		DIMENS	SIONS-INC	HES			
SIZ	2E	DIM. A	DIM.	B	DIM. C		
1	_	1%	5%		2%	C.	
. X		1%	5%		2%		A WITH A WILL
_ X		2¼	6%.		2%		TREET
_%	í	2%	6%		2%	*	
1		2%	7%.		21/4		
1%		3%	8%18		3		
1%	-	3%	9%		3%		
2		31/4	11%		4		1

These valves meet or exceed the requirements of Federal Specification No. WW V tol for Type II, Class A Valves

14%

16%

5

5

4%.

5

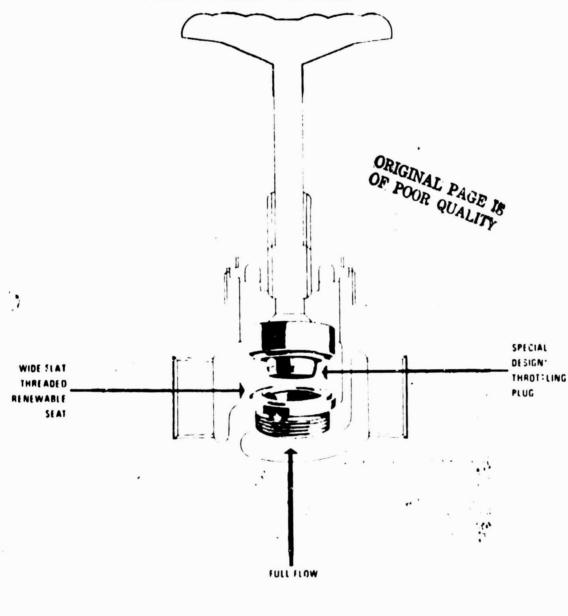
2%

3

-

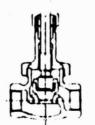
MILWAUKEE VALVE COMPANY, INC.

2375 South Burrell Struet • Milwaukee, Wisconsin 53207


MILWAUKEE VALVE NEW from Milwaukee . . . globe valve for severe critical service . . . special design stainless steel renewable

"600 Brinell'" seat and disc . . . FULL FLOW

•


NEW "600 BRINELL" GLOBE VALVES

FOR SEVERE/CRITICAL SERVICE - GLO BRINELL SEAT RING AND DISC.

This unique new MILWAUKEE globe valve makes two most popular designs obsolete! 14

B-55

VALVES

BUILT

TO

TAKE

IT

59

300 100 Union Be Scr

200 LL M

Union Bonn

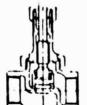
Gland Pack

300 Lb. \$1 600 Union

Gland

593 350 Lb.'SW 1000 WOG. Union Bornet Screwed Ends Gland Packed Size - 14" thru 2

Scre


Sires!

400 900

and Enda

Gland

1

This giooe valve provides positive shut off the allow to tassed surface for remoth

Wear in the throttling sur ace of this commin ping type plote valve reduces ability to

150 Ib. SWP-300 Ib. WOG[†] • Heavy Duty Service Composition Steam Disc

Union Bonnet • Screwed Ends • Gland Packed

Non-Shock ORIGINAL PAGE IS OF POOR QUALITY (4) B -OPEN 2) 6) (5) (3) 1) NOTE Tellon Disc available for 590 and 595. *MILWAUKEE 590S

*MILWAUKEE 595S

300 lb. WOG†

MILWAUKEE 5905* GLOBE MILWAUKEE 590S* GLOBE MILWAUKEE 595 ANGLE MILWAUKEE 595S* ANGLE

2		14						
				PRESS	URE			
	30	0 psi			_	150	psi Seat	
			MAT	FERIAL L	IST			
	NO.	١	PART	MATERI	AL	SPEC	FICATION	
	1	Bod	ly	Bronze		ASTM B 62		
	2	Bor	net	Bronze		ASTN	B 62	
	3	Dis		Composi	tion			
	4	Ste		Bronze			B 62	
	5	Dis	c Holder	Bronze		ASTN 1/4" &	B 16	
							B 62	
					_		3" Incl.	
	6	Uni Nut	on Bonnet t	Bronze		ASTN	B 62	
		Pad	king	Teflon/		0	and at	
_		01		Imp./As	0.		nercial	
_		Gla	king Nut	Bronze Bronze			1 B 16 nercial	
			c Nut	Bronze			nercial	
			ndwheel	Aluminu	m		nercial	
			ntification	Aluminu			nercial	
			ndwheel Nut		Statistics of the local division of the loca			
			DIME	ISIONS-	INC	HES		
	0	ZE	DIM. A	DIM. B	_	IM. C	DIM. D	
		/ 6				134	11/10	
-		_	2%	41/16				
		%	21/8	41/10		1%	11/10	
		%	2%	41/2		2%	11/10	
		1/2	21%	5%		2¾	1%	
		%	31/8	5%	-	2¾	1½	
	1		31/4	6%18		3	1%	
	1	1/4	41/4	7%		3¾	21/10	
	1	1/2	4¾	7¾		4	21/4	
	2		5¾	9		4½	2¾	
		1/2	6¾	10%		5	31⁄4	
Γ	3		8	121/8		6	3'3/10	

590 and 590S meet or exceed the requirements of Federal Specification No. WW-V-51 for Type I, Class B Valves. 595 and 595S meet or exceed the requirements of Federal Specification No. WW-V-51 for Type II, Class B Valves.

Buna N Disc

B-56

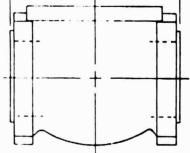
20

IRON CHECK Horizontal Swing

125 lb. SWP-200 lb. WOG

Bolted Cap

MILWAUKEE 2973 · SE · BM MILWAUKEE 2972 · SE · AI

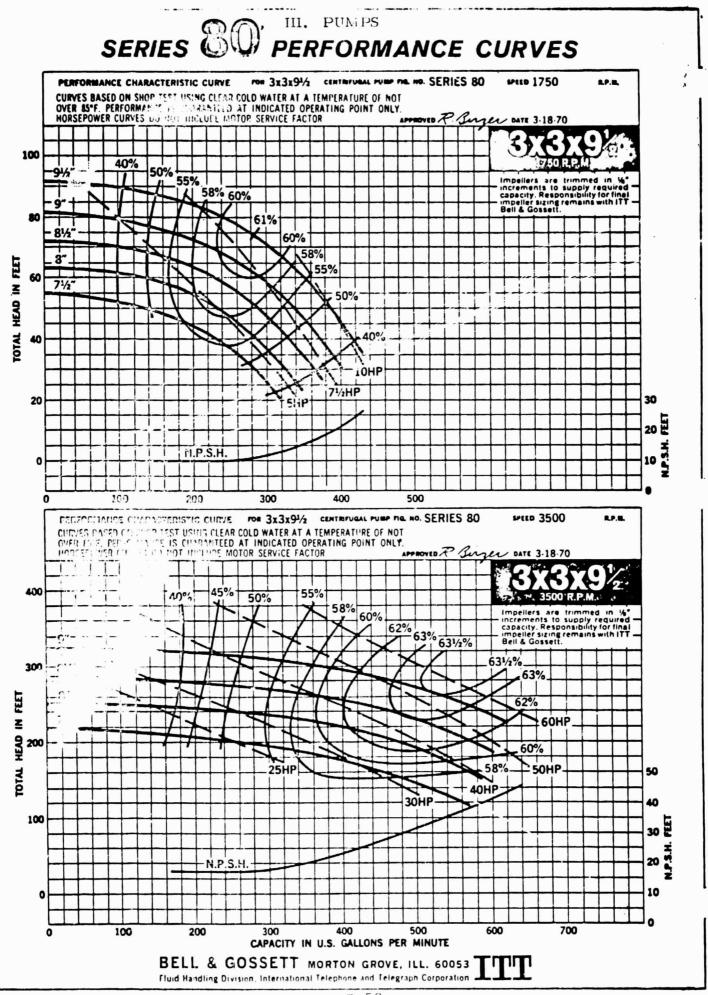

MILWAUKEE 2974 · FE · BM MILWAUKEE 2971 · FE · AI

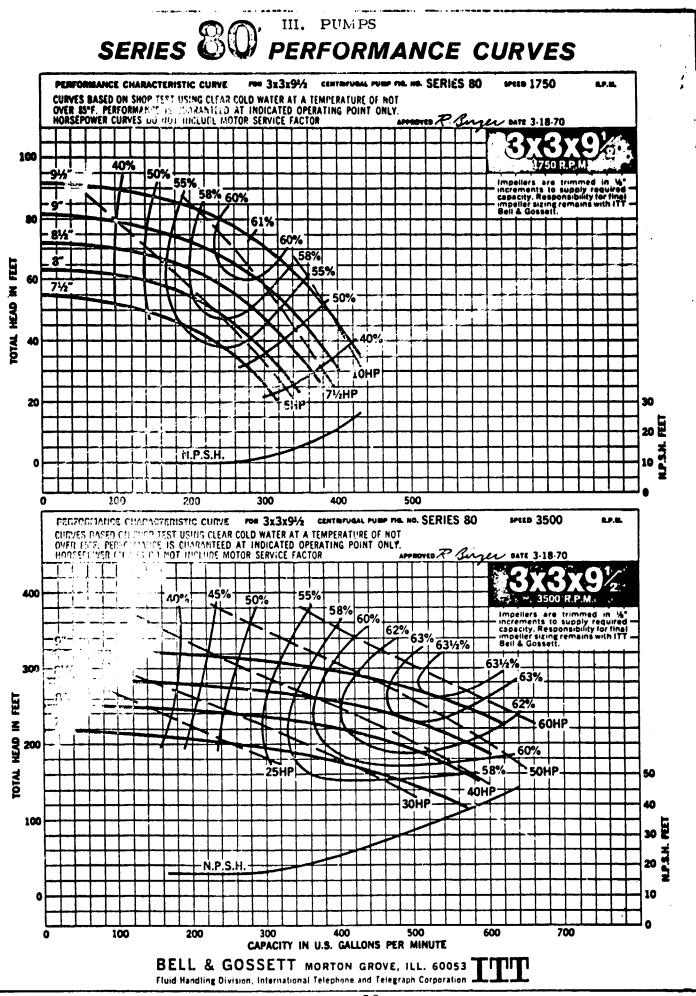
I Nen-Sheck

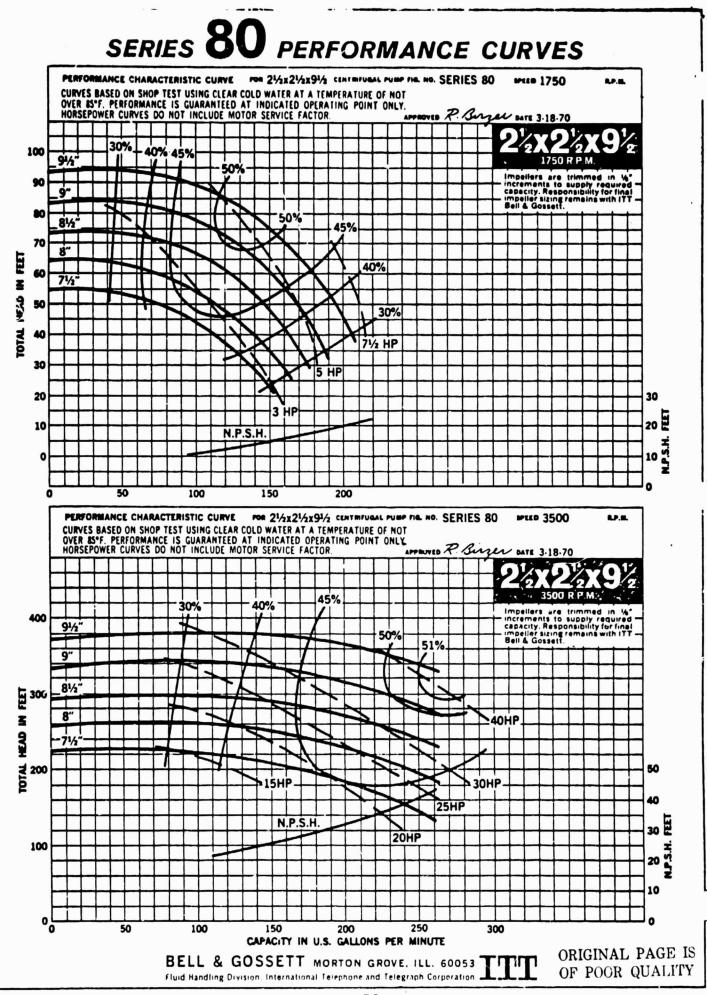
MATERIAL LIST							
DESCRIPTION	MATERIAL & SPECIFICATION						
Body	Semi Steel • ASTM A 126 CLB						
Disc 2"-4" - BM Disc 5" 12" BM Disc- A!	Bronze • ASTM B 61 Semi Steel • ASTM A 126 CI B Semi Steel • ASTM A 126 CI B						
Disc Ring 5" 12" BM	Bronze • ASTM B 61						
Seat Ring BM Seat Ring - Al	Bronze • ASTM B 61 Semi Steel • ASTM A 126 CLB						
Disc Washer 2° 6″ Disc Washer 8″ Disc Washer 10° 12″	Steel • Mild Carbon Steel • ASTM A 107 Gr 1020 1022 Steel • ASTM A 7						
Disc Stud 5"-12"	Steel • ASTM A 107 Gr 1015 1022						
Disc Stud Nut	Steel • ASIN: A 307 Gr B						
Strap BM Strap Al	Bronze • ASTM A 61 Steel • ASTM A 216 Gr. WCB						
Strap Pin-BM Strap Pin A1	Alum/Bronze • ASTM B 150 Al 1 Steel • ASTM A 108 Gr 1018 1020						
Set Screw	Steel Mild Carbon						
Gasket	Ashestos • Compressed						
Сар	Semi Steel • ASTM A 126 CLB						
Body Stud	Steel • ASTM A 107 Gr 1015-1022						
Body Stud Nut	Steel • ASTM A 307 Gr B						
	DI SCRIPTION Body Dist 2"-4" - BM Dist 5" 12" BM Dist 5" 12" BM Seat Ring 5" 12" BM Seat Ring - Al Dist Washer 2" 6" Dist Washer 2" 6" Dist Washer 10" 12" Dist Washer 10" 12" Dist Stud 5"-12" Dist Stud 5"-12" Dist Stud Nut Strap BM Strap Al Strap Pin-BM Strap Pin Al Strap Pin Al Set Strew Gasket Cap Body Stud						

DIMENSIONS

SIZE	2'	215"	3	3%"	4	5	6'	8"	10"	12"
Α	8	8%	9%	10%	115	13	14	19%	24%	21%
A1	6%	7	8		10					
В	3'%;	4316	4%	5%.	5%,	61%0	14	81152	10%	12.5.
D	21/1	2%	3'4	3'1/10	4%	5%,	6%	8%	10%	12%
E	6	7	7%	8%	9	10	11	13%	16	19


2972/2973 SE 2"-21/2"-3"-4"


Flange Shape and Drilling to Spec. USAS B 16.1 (125 Ib.)


MILWAUKEE VALVE COMPANY, INC.

2375 South Burrell Street • Milwaukee, Wisconsin 53207

CODE: SE --Screwed Ends, FE --Flanged Ends, BM --Bronze Mounted: AL - All from Construction. B=57

B-59

FACTORY OF JOB: SERVICE: ENGINEER: CONTRACTO SOLD TO:	FFICE:	HOO AMPONT HOAD.NO W.W. GOET BER: 9C7-9 LUE EARTH	ENERAL SIGNA	AL 542 7ES 7ATING_COM	PANY	NO. CF PRINTS B FOR APPROVAL FINAL # 4829
			PUMP			
ONE	NUMBER O					PIT DEPTH
STUFFING BOX		MZO' PUMP BEARI STANDA CUTLESS CUTLESS RELIEF GRAPHIT GLASS/T	RD S RUBBER	ITERMEDIATE	BEARING: JBBER	LEX SIMPLEX LUBRICATION: GREASE S FLUSH PRESSURIZED
CONSTRUCTIO STANDARD FITTED		COUPLING: STANDARD GUARD	BASE PLATE: M <u>40° DIA</u> 20x24 OVAL X 22x28 OVAL	CONTROLS:	56 - Aus.sa	FLOAT SWITCH ALTERNATOR HIGH WATER ALARM
			MOTO			
нр. ВҮ: 🛛 аико 🗌 отне		CDP TEFC XPROOF	VERTICAL FACTORY MANU	ALCOVOLTS		IASHP FRAMI MOTOR NOT MOUNTED AT FACTORY ON VERTICAL UNITS.
	54		SPECIAL REQU			
PUMP: DRIVE:						
ELECTRICAL:						
CERTIFIED PRINT:	SPECIAL: BY: THIS ORDE PRINTS AR	TW R WILL NOT BE PRO E NOT TO SCALE AN		_ MAINTENANCE: <u>/ZZ</u> OFFICE: ACTURING UNTIL DRRECT ONLY FOR	AURORA APPROVAL IS RE	
			ANUFACTURING A TTACHED CHANG B-60		OFFICE:	

__AUKUKA MUDEL 531 PUMP____ ON SIMPLEX PLATE WITH OVAL

SECTION 530 PAGE 255

ĸ

5".

7' 10

6

7'.

9' ..

713.

10"

8'.

9" "..

9

81 ...

9" ..

8'.

8'.

91.

8'.

9

MIN.

COVER

SIZE

34

34

34

34

30

34

36

36

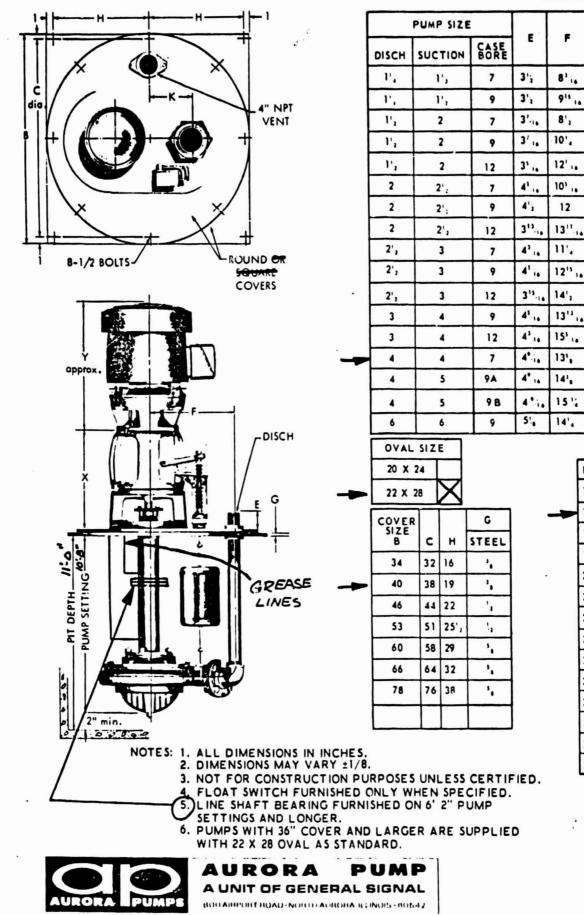
36

36

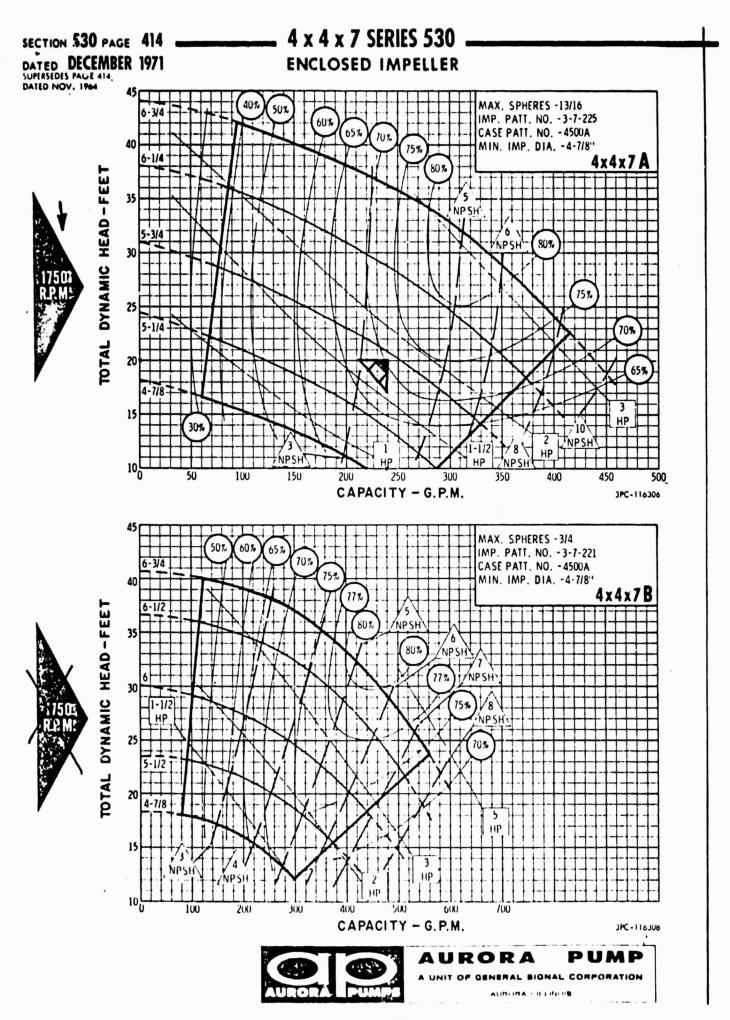
36

36

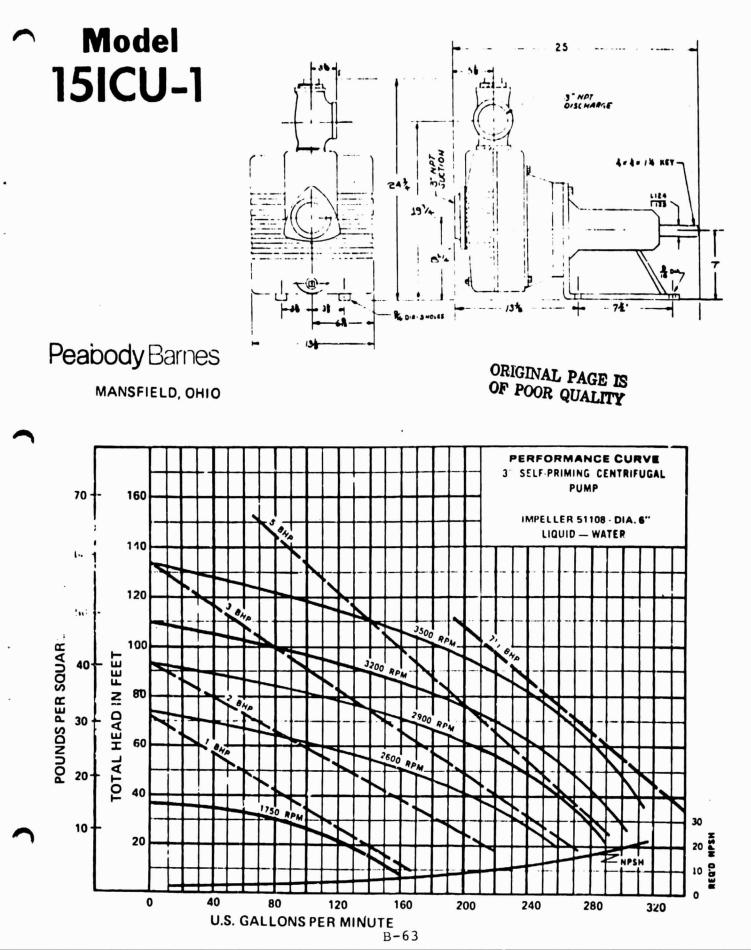
36


36

36


36

36


DATED MARCH 1975 SUPERSEDES PAGE 253 DATED AUGUST 1973

FRAME X Y 143HP 13% 11 13' 12 145HP 13' 13 182HP 184HP 13' 14 213HP 13' 16 215HP 13' 17 13' 19 254HP 256HP 13' 21 15% 21 284HPH 286HPH 23 15% 324HP 15% 24 25 326HP 15% 15% 29 364HP 15% 365HP 30

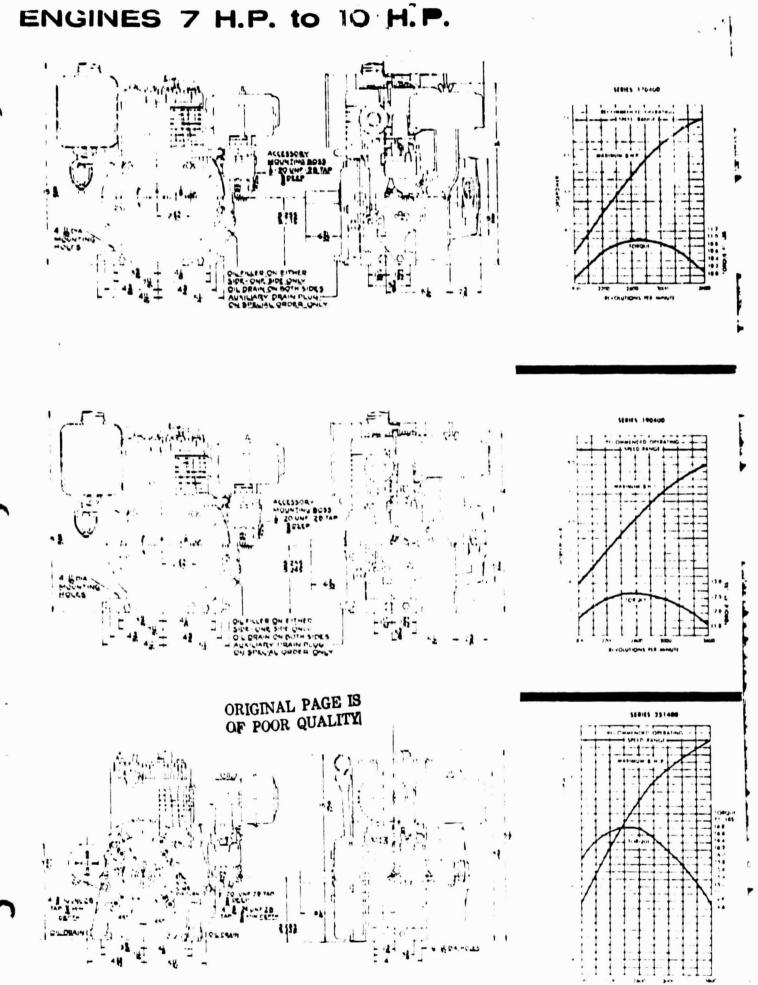
SECTION 12 PAGE 21 Effective March 1, 1975

Peabody Barnes

SECTION 12 PAGE 20 Effective March 1, 1975

Model 15ICU-1

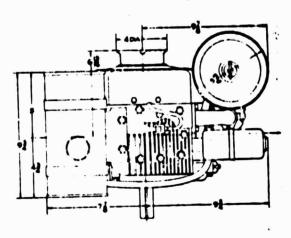
Size 3" x 3"

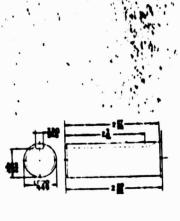

UNIVERSAL DRIVE ADAPTS TO ANY POWER SOURCE

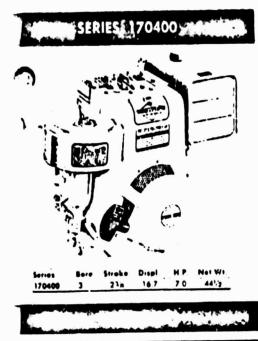
SELF PRIMING CENTRIFUGAL PUMP

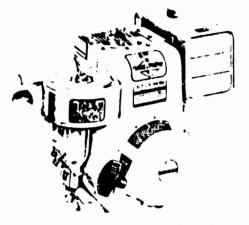
PUMP SPECIFICATIONS

Size Suction & Discharge: 3" x 3" Body Material: Cast Iron Volute Material: Cast Iron Impeller Material: Cast Iron Impeller: Open Type, Cast Iron Seal: Double Oit Lubricated Mechanical Face and Lip 1, pe, Stanless Steel Metal Parts, Carbon and Ceramic Faces Pedestal Material: Cast Iron Bearings: 2 Radiat Balt Bearings Shaft: Street with Stanless Steel Standard Equipment: Decharge Priming Tee, Suction Flange, Suction Check Valve

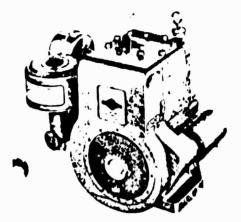

Note: Available with Base, Flexible Coupling, Electric Motor and Special Seals– Consult Factory

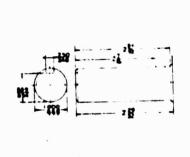

B-65

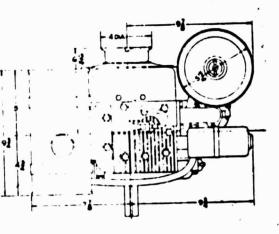

PER INTIGHTS ME MINUTE

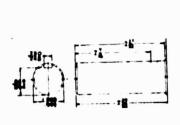


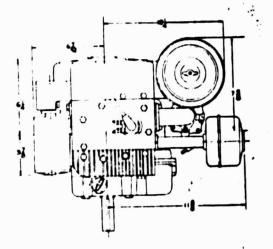
Ľ


SERIES 190400 Min Al


Series Boro Stroko Displ H P Net Wt. 190400 3 234 19.44 8.0 45




SERIES 251400



Series Bore Streke Displ H P Net Wt 251400 3'+ 2'n 24.36 10.0 67

B-66

<u>|</u>|||SU]-(

IV. PIPING

SUBMITTAL DATA

DATE: July 7, 1977

- JOB: Solar System Underground Pre-Insulated Piping
- LOCATION: Telex Corporation

CONTRACTOR: Mankato Plumbing & Heating Mankato, MN

- ENGINEER: I T C (Intertechnology Corp.) Warrenton, VA
- SYSTEM: Rovanco's Insul-8 Copper "O" Ring Coupled

Tubing, Copper, Type L, conforming to ASTM B88, "O" Ring Coupled

Polyurethane foam conforming to MIL-I-24172 with the following minimum characteristics: Thickness-1", Density-2pcf, Closed Cell Content-90-95%, K Factor-.13 at 65°F

Seamless polyvinylchloride (PVC) Class 12454 compound conforming to ASTM 1784, Type 1, Grade 1

An integral part of each 20' length of pipe includes a machined bronze coupling containing one "O" Ring Seal with operating temperature and pressure limits of 250°F and 250 psi as rated by independent testing laboratories

Wrought copper compatable with pipe

End seal protection of exposed insulation according to Rovanco Corp's most recent data

Taken up in coupling mechanism which allows 3/4" expansion or contraction every 20 feet

ts: Couplings are insulated with flexible polyurethane disk and sleeved with PVC with seams sealed with a heat scrinkable tape to complete vapor barrier

Fittings are left uninsulated but are thrust blocked in poured concrete to provide anchors and to insure movement is taken up in coupling mechanisms

<u>Carrier Pipe</u>: (Inner Pipe)

Insulation:

Jacketing Material:

Joining Method of System:

Fittings:

End Seals:

Expansion/Contraction:

Insulation of Coupling Joints:

Insulation of Fittings:

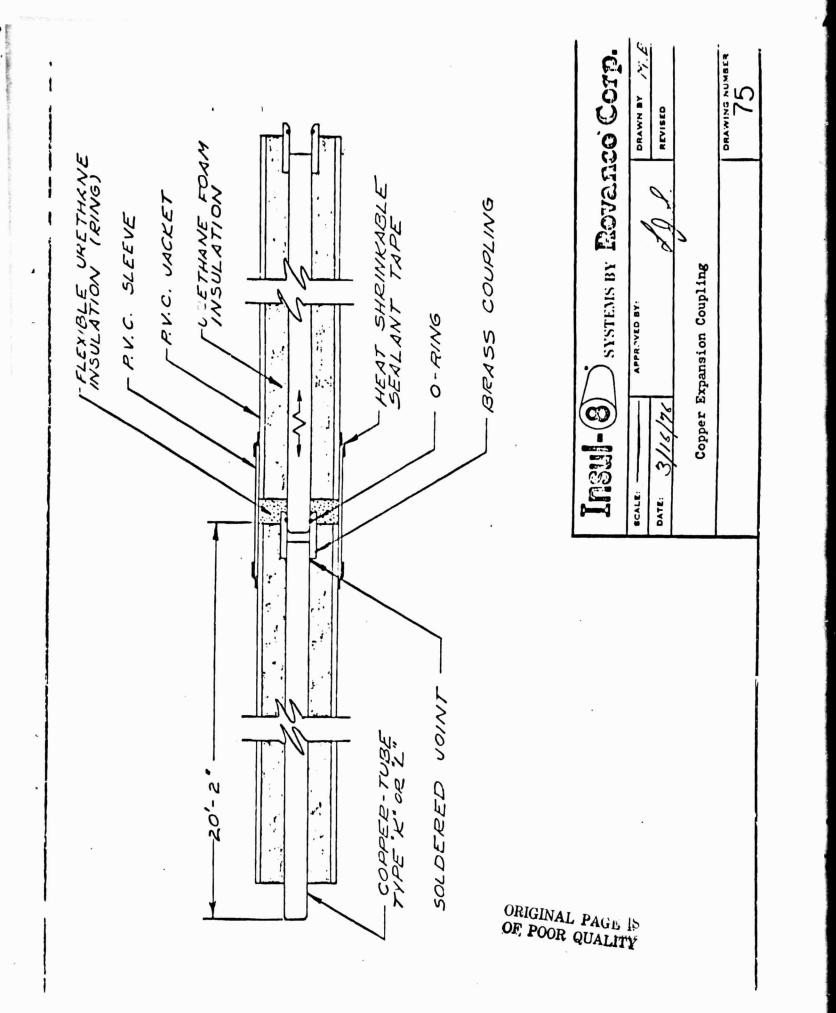
dawco Corp

Insul-(8)

210 SO CENTER STREET

Manufacturers of Pre-Insulated Piping System.

PHONE: 815-726-0640

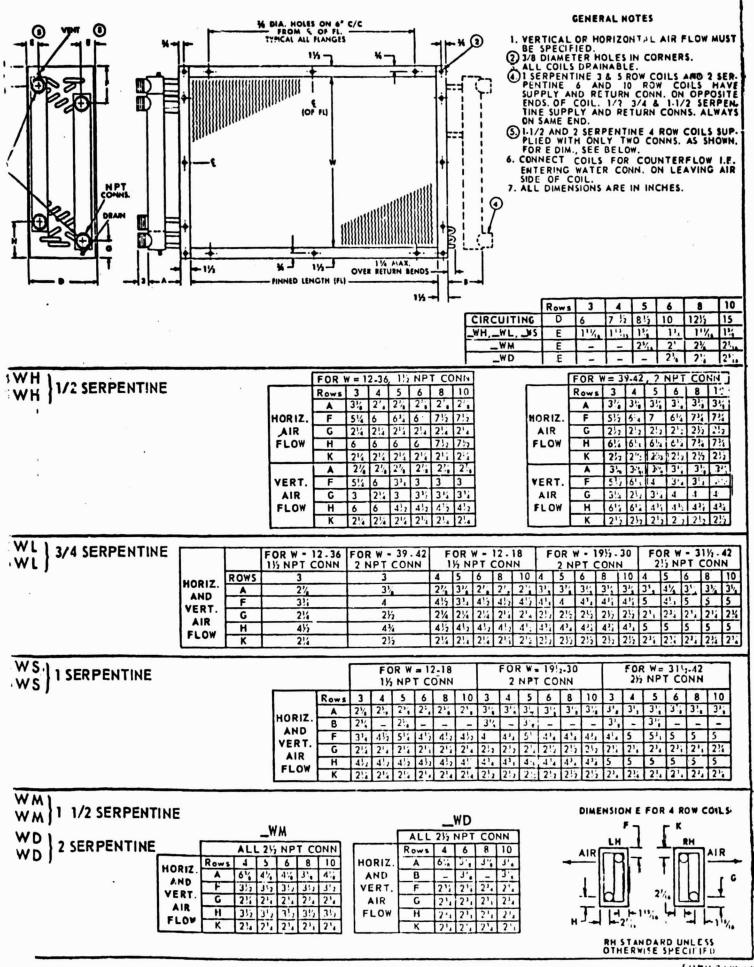

ROVANCO INSUL-8 "O" RING COUPLING

Drawing Description and Assembly Instructions

The O-Ring Coupling System shown in Rovanco Drawing #75 has been designed to allow for expansion and contraction of underground insulated piping systems. This O-Ring Coupling follows all basic design and engineering principles and meets all federal specifications for these type systems. Other competitors have similar systems which are patented. Rovanco's patents do not infringe others in any way, and you will be indemnified in this matter.

Our system comes to you complete and ready to install with the expansion coupling attached to one end of the pipe, and the other presized and dressed to insert into the coupling.

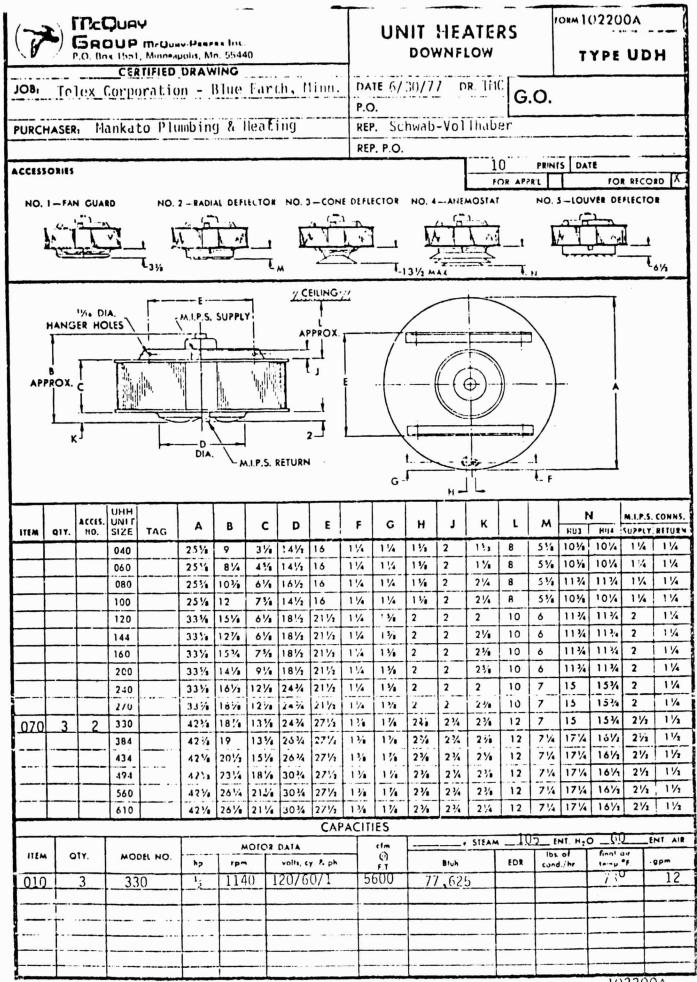
- Place P.V.C. Sleeve on one end of the pipe. Slide it back so it will be out of the way for joint assembly.
- Clean off any dirt or oil from the coupling (female end) and the spigot end (male end).
- 3. Place flexible urethane ring around the coupling and insert spigot end into coupling until there is no gap between the sections.
- 4. Slide P.V.C. Sleeve over the joint centering it.
- Elbows are soldered to a spigot end of pipe and the foam is sealed against moisture with an end seal.
- If necessary to cut full lengths in the field, this is easily done by following the instructions in Exhibit B.
- Concrete thrust blocks are poured as anchors at all changes of directions, 90° Els, 45° Els, Tees.
- 8. After the system has been installed and pressure tested, the sleeves that were slid over the couplings are sealed with tapecoat to prevent any ground water from entering the system.


в-69

• PRANTING NUMBER SYSTEMS BY ROVANCO COTP. ER Y N WARD A VISED 1 2 BLOCKS APPROVED DY ۱ THRUST 11-175 \mathbb{C} łγ 1 0 Insul SCALE: • DATE: "

1201

: 20


IN:	Ju P.O. NO	UNAL DIVISION, MCQUAY-PERFEX INC.								SERPENTINE WATER COIL							FOR.4 2329308		
			CERT	FIED D	KAWI	NG	v.	HEA	ΤE	XCI	HAN	IGER	S					HI.F.S	
081	Tele	Telex Corporation - Blue Earth, Minn.							DATE 6/30/77 DR. TMC G.O.										
PURCH									PUR	CHA			10						
			Plumb	ing 8	Hea	ating			REP		_	nwab-N	01	Thabe	er,				
CONS.	ENG'R		tional	Doci	20	Inc			REP	10		PRINT	TS	11	FOR	APPR'L	X	1 OF	1 RECORD
REVIS		<u>r na</u>		10.	in,	the.	DA	τε	BY				-	AS .					
													\mathbf{T}		_				
															_				
			COIL M	ODEL N		R	-	E DIMENS	IONS		AIR		Т						
ITEM	QTY.		TYPE	FIN	ROWS	GEOM.	(IN.)	F.L. (IN.)	AREA (SQ. FT	A F T.) (I	LOW H, V)	NPT			TAC	G, MAR	KORN	OTES	
010 020	$\frac{1}{2}$		51/5 51/5	10	03		21 21	<u>84</u> 84	$\frac{12.2}{12.2}$	5	<u> </u> _	15	Ŧ	Init		nd #	1		
030	1		5:/H		03	Č I	18	60	7.5		H-	-Î!;		Unit	#4				
040 050	2	+	5	12	03		$\frac{12}{15}$	24	$\frac{2.0}{3.1}$	24		$\frac{1_{i}}{1_{i}}$	+	Unit Unit	<u>#5</u> a #7	nd #	6		
060	2		5US	06	03	TC.	21		12.2	5	H		T	Unit	#8 a	ind f	19		
	-	İ						<u> </u>		+			+		_				
						<u> i</u>		i					+						
		+		ļ						-			+						
	_			↓ ↓				<u>↓</u>		_			1			_			
		Ĺ		i	i										_				
		++		 		<u>i - </u>		i		+			+						
		H		1	+			+		4			+						
		Ħ		<u> </u>				+											
	-			1		i t		1		1			1						
	-	CFM FACI		AIR CONDITIONS ENTERING				AIR		CAPAC		ITY			WATER CONDITIONS				
ITEM	(STD.	AIR)	VEL. (FPM)	DB (°F)		WB (°F)	DB (°F)	₩₿ (°F)	P.D. IN.H ₂ 0	SI	BTU			TOTAL BTUH		GPM	ENT. (°F)	LVG. (°F)	P.D FT. H
010	80	00	653	50			80		.70		260,	400				35	105	90	1.
020 030	92	00	734				80		-75		300.	000 000 000				40	185	98	-2:
040	1 12	88 88	600	50			80 80 80		.65		39,	<u>000</u> 100				5	105	90	<u>0.</u>
060		00	640 860				70		.75		228	000				30	105		1
					-												-		
					_												-		
				1						_			_						
	-			1-															
				_	_					_						-	-	-	
	-	_	-		-								-			-	-		-
					_												-	-	E
	1		1					BIL	LUFA		ERIA		_			L	1		1
NO.	_	_	AIPTION		CAL		MATER			NO.		DESCRI		NON		DI		ERIAL	
1	CASING FINS HI.F				GALV. STEEL					5 CASING HOLTS 6 CONNECTIONS					PLATED STEEL STEEL				
2	TUB				COPP					1	VE						PT.DR		

IURN 7329305

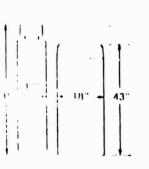
i

1

051/ 0 /6

B-73

102200A


VI. WATER CONDITIONER

Culligan Mark 512 WATER CONDITIONER

This heavy-duty, giant-capacity model features our exclusive "Electro-Brain" for peak performance

Ideal where large volume of conditioned water is required. Capacity for extra hard water, controls high iron and manganese content. Anti-Corrosion Construction throughout. Distinctive Culligan styling, with sculf-resistant Dusk Grey and Platinum Beige exterior with Black trim. Salt Economizer automatically meters exact amount of brine for recharging.

TRIPL-HULL TANK Corrosion-proof inner shell is enclosed in heavy steel, and covered with a sweatfree foam insulated styrene jacket.

CULLEX . RES:N Culligan-quality superdurable softening resin is stable and uniform to assure greatest water conditioning capacity.

SALT STORAGE CONTAINER

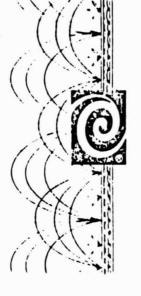
Extra-rigid construction; in 250-lb. or 375-lb. capacities. Protective Horizontal Salt Dissolver for added efficiency.

DUBL-SAFE REFILL Electrical valve, combined with a positive mechanical float shut-off, prevents water overfill into salt container.

(ALALAY

CULLIGAN SERVICE-ALWAYS AVAILABLE. It's the same prompt, expert, factory-trained service system Culligan originated in the U.S. and now provides in 91 countries world-wide. Ask about our Culligan Warranty. Sall Delivery service is offered for your convenience.

Simply call and say ... "HEY CULLIGAN MAN!"


NO 8175-42

PRINTED IN U.S.A Hev 3 6

ELECTRO-BRAIN Our exclusive custom pre-set electronically operated timer automatically regulates recharge time and frequency of recharge. HYDRO-LECTRIC VALVE **Reliable 5-cycle operation** efficiently directs water flow during recharge. Adapts to water pressures from 20 to 120 PSI. GUEST CYCLE Permits you to provide an extra supply of soft water when there are temporarily more people in the household. DUAL BY-PASS Automatically furnishes unconditioned water during recharge cycle. Optional push-button Cul-Flo-Valv' by-pass distributes unconditioned water for non-household uses. STAINLESS STEEL BRACKETS Rugged, non-corroding mounting brackets relieve **Control Center from stress** at plumbing connections.

B-75

ullígan.

Before calling for service . . . refer to the instructions furnished with your Culligan water conditioner and review those items you can check yourself.

If you need service . . . call your Culligan Man with product model and installation date. He will make arrangements for prompt local service.

Culligan equipment is serviced by over 1000 dealers and distributors throughout the world. Consult your telephone directory, or write Culligan USA for warranty and service information.

limited

ARRAN

LIMITED WARRANTY

You have just purchased one of the finest water conditioners made. As an expression of our confidence in Culligan products, your water conditioner is warranted to the original consumer purchaser against defects in terial and workmanship from the date of the original installation as follows:

For a period of ONE YEAR

For a period of FIVE YEARS

. -.

The control valve body, but excluding its internal parts, and The salt storage container, and The brine valve and all its

The entire conditioner

component parts.

For a period of FIFTEEN YEARS, including a warranty against corrosion originating inside the conditioner tank The conditioner tank if it contains a plastic inner liner.

If a part described above becomes defective within the specified period, you should notify your Culligan dealer and arrange a time during normal business hours for the dealer to inspect the water conditioner on your premises.

Any part found defective by the dealer within the terms of this warranty will be repaired or replaced by him. You pay only freight from our factory and local labor charges.

•turally, damage caused by accident, fire, flood, Act of God, misuse, misapplication, neglect, alteration, allation or operation contrary to our printed instructions, is not covered by this warranty.

Our product performance specifications are furnished with each water conditioning unit. ALL IMPLIED WARRANTIES INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE PERIODS SPECIFIED ABOVE FOR THE PARTS DESCRIBED IN THIS LIMITED WARRANTY. As manufacturer, we do not know the characteristics of your water supply or the purpose for which you are purchasing this water conditioner. Please understand that the quality of water supplies may vary seasonally or over a period of time, and that your water usage rate may vary as well, while water characteristics can change considerably if your water conditioner is moved to a new location. For these reasons, we assume no liability for the determination of the proper equipment necessary to meet your requirements, and we do not authorize others to assume such obligations for us. OUR OBLIGATIONS UNDER THIS WARRANTY ARE LIMITED TO THE REPAIR OR REPLACEMENT OF THE DEFECTIVE PARTS OF THE WATER CONDITIONER, AND WE ASSUME NO LIABILITY WHATSOEVER FOR NCIDENTAL AND CONSEQUENTIAL DAMAGES, WHETHER FROM CORROSION OR OTHER CAUSES.

Some states do not allow limitations on how long an implied warranty lasts, so the above limitation .nay not apply to you. Similarly, some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

Culligan, the world-wide water conditioning people . . . We treat water seriously...

CULLIGAN USA, DIVISION OF CULLIGAN INTERNATIONAL COMPANY One Culligan Parkway Northbrook, Illinois 60062 **Sulligan** Technical Applications Bulletin

DATE March 1977

NUMBER_

REFERENCE

INFORMATION Boiler/Tower Treatment

DESCRIPTION

Chemical Treatment C-70 is a blend of corrosion inhibitors, and alkalinity builders for complete treatment of closed water systems. C-70 is composed mostly of nitrite, borate, and MBT. The nitrite is an excellent corrosion inhibitor for ferrous metals and is very good for many other types of metals. Nitrite helps form a thin protective film on the metal surfaces. The MBT is a specific corrosion inhibitor for copper and copper alloys.

CHEMICAL TREATMENT C-70

C-70 contains no chromates or phosphates and is a relatively mild non-polluting chemical. C-70 is blended for the use in closed heating and cooling systems. Typical uses are for chilled water systems, hot water systems, radiators, furnace cooling coils and any system where water loss is very low. It can be used in open recirculating systems; however, the cost usually makes it uneconomical to use. It can be used in a wide range of water supplies up to 150 psi or 370°F and ethylene glycol protected refrigeration systems at -10° F.

C-70 should not be used with chromate solutions, in potable water, or any domestic water supplies that may come in contact with people or animals, as nitrites are toxic particles in the concentrated form.

DOSAGE

A normal dosage of 2,000 - 2,500 ppm of C-70 will usually provide an excellent corrosion protection. This dosage will raise the pH of the water supply to 8 - 10.

An initial dosage of one pound per 50 gallons of water in the closed system will provide the initial dosage of 2,000 ppm. As water leaks from the system, the residual will drop. More chemical should be added before the residual reaches 1,000 ppm C-70 (500 ppm nitirite). When the residual C-70 drops below 1,000 ppm, sufficient chemical must be added to the closed system to reach the initial dosage of 2,000 - 2,500 ppm of C-70.

CONTROL LIMITS

A test for C-70 is the nitrite test. A nitrite residual of 1,000 ppm indicates approximately 2,000 ppm of Culligan C-70. Therefore, a residual of the closed system of at least 1,000 ppm of nitrite should be maintained.

FEEDING

A pot feeder is used when the chemical needs to be added only a few times a year. This is a very convenient method of getting this chemical into a closed water system.

An automatic feed system should be used when there is sufficient water loss to warrant additional chemical several times per month. An automatic feed system will assure that C-70 is kept at prescribed levels when the operating personnel are too busy to use a pot feeder regularly.

HANDLING

Culligan C-70 is slightly toxic, expecially in the concentrated form. It should be handled with normal precaution and not allowed to come in contact with food, food products or eyes. It should be stored in a dry place away from heat; and it will become hard if left open to atmosphere as it absorbs moisture from the air.

No. 8806-17

Migan, Technical Applications Bulletin

MICROBIOCIDE

DATE

6/76

NUMBER

ORIGINAL PAGE IS OF POOR QUALITY

CHEMICAL TREATMENT M-25

REFERENCE

INFORMATION

DESCRIPTION

Chemical Treatment M-25 is a combination of two organo sulfur compounds for use in commercial and industrial cooling water. It is especially effective in controlling algae, bacteria, and fungi, which contribute to biological fouling.

M-25 can be used in any cooling water system that does not come in direct contact with food. M-25 does not foam; M-25 also is not volatile and therefore is not lost by evaporation.

DOSAGE

An initial dosage of 60-120 ppm, which is 6.9 to 13.8 fluid ounces per 1,000 gallons of recirculating water, is recommended. It is also recommended that an initial general physical clean-up of the cooling water system be made to remove excess slime and algae deposits.

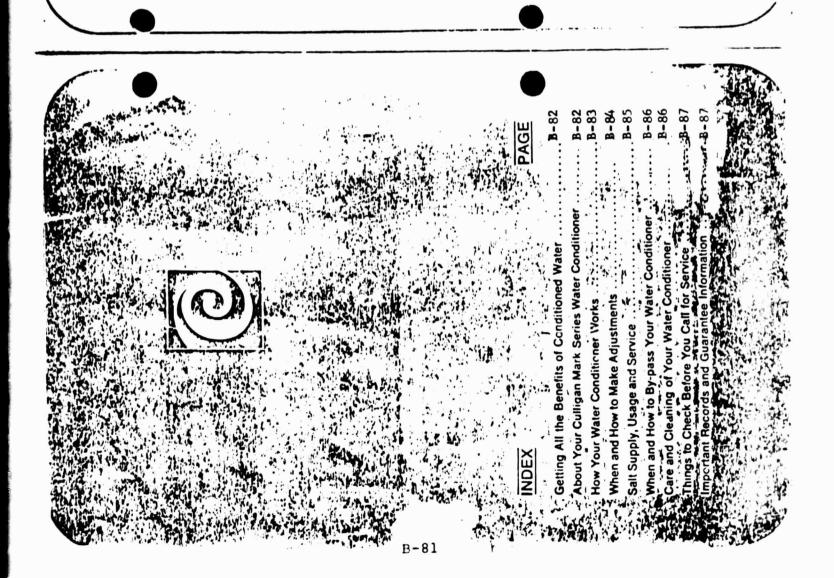
Subsequent slug additions of 20 to 120 ppm or 2.3 to 13.8 fluid ounces per 1,000 gallons are recommended. The frequency of additions of M-25 depends on the amount of bleed-off and severity of microbiological fouling, typically once a week.

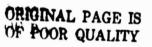
CONTROL LIMITS

Visual inspection is the only convenient method of determining if additional M-25 is required. If a visual inspection indicates the presence of algae, obviously additonal M-25 is required. If the additional M-25 does not remove the algae, switching to M-23 may be required as it is possible that the algae has built up an immunity to M-25.

HANDLING


IMPORTANT: M-25 is an EPA approved microbiocide which is permitted to be sold at the concentration specified on the label. M-25 is registered under EPA No. 2938-8. Therefore M-25 can not be diluted and resold without violating EPA regulations.


DANGER: Keep out of the reach of children. As with most microbiocides, the <u>concentrated</u> solution is a toxic material. M-25 causes eye damage and skin irritation. Wear goggles and rubber gloves when handling. Harmful or fatal if swallowed, avoid contamination of food.


In case of contact, flush with plenty of water for at least 15 minutes. If eye irritation persists, get medical attention.

Do not reuse empty containers, destroy container by perforating or crushing and burying in safe place.

This product is toxic to fish, do not discharge into effluent where it will drain into lakes, streams or ponds.

iank you.

AND WELCOME TO YOUR NEW WORLD OF BETTER LIVING WITH CULLIGAN WATER.

If this is your first experience having soft, conditioned water in your home, you'ld be amazed at the marvelous difference it makes. We promise that you'll never want to be without it again.

Congratulations, too, on selecting one of the "first family" of water conditioners in the prestigious Culligan Mark Series. With Culligan's marky years of knowledge and experience in water treatment, you can be confident that the model you selected has been designed and engineered to provide years of service with a minimum of care and attention.

We hope you will become familiar with this Guide so that you will better understand how your new appliance works and how you can help it give you the many benefits of softened. filtered, conditioned water.

IT'S ALL SO EASY, SO ECONOMICAL,

AL, SO EFFICIENT, SO EN-JOY-ABLE

KIND TO SKIN AND COMPLEXION

Soft water will help prevent red, itchy or dry skin because there are no hardness impurities to cause sorenest, no soap curd to coat the skin. Shaving is easier, smoother—either with blade or electric shaver.

BATHING AND SHOWERING M-m-m-m!

You II use far less soap with conditioned water Use your soap very sparing;y—not as you did before soft water Just a guick ringe removes all lattice leaving your skin pleasantly smooth and silky—because now it's free of sticky soap duid and firm

SAVES WASHING COSTS. HELPS CONTROL ENVIRONMENTAL POLLUTION

B-82

DEO defergents can concentrate sole y on washing You if have to reduce the umount of detergent environmental pollution since it provides for a *s cup depending on the size of your wash in and the degree of soli. Different amounts are Soft water not only saves soaps, detergent and cleaning products used in the home, but fact that your washable fabrics will last longe Soft water washes whiter and cleaner with a you use substantially " you no maily used a cup per wash load with hard water, use only required but you can always use much less with softened water. An added bonus is the very substantial reduction in the amount of lot less soap or detergent. Benause the hardness impurifies are removed your a so piays an active role in controlling cleaning wastes which enter our lakes and streams

SUPER HAIR CONDITIONING

Soft water is great for scalp and hair care. No insoluble deposits are formed. Hair is summer, softer, more manageable. Reduce the amount of shampoo you have normally used.

DISHES ARE A DELIGHT

Washed by hard or in a dishwasher, glassware dishes and silvin wash cleaner, rasier. For ow your dishwasher manufacturer sinstituct ons Soft water promotes samiation because no grassy nard water film can form to collect soil or harbor bacteria.

EASIER HOUSEKEEPING. GLEAMING FIXTURES

You'll be amazed at the marvelous difference. Just a swish of the cloth and the hathiup or shower and fixtures are clean and sparking fimagine no scouring? No hard water scimit to cause tings streaks spots and stains. To keep their greaming fuster, simply wide fixtures with a tokel after use. Formical the walk, with a tokel after use. Formical the walk, with a tokel after use. Formical the walk, with a tokel after use formical the walk. Clean fonger, You'll save on cleaning acts and save on time!

SAVES WATER HEATING ENERGY. HELPS WATER USING APPLIANCES

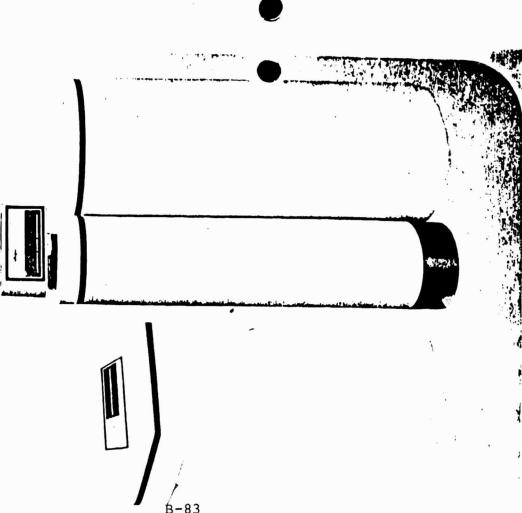
Soft water prevents the formation of rock-like hard water scale which encrusts water neaters hot water pipes shower heads, and water-using appliances and this scale can cause premature maintenance and failure

Elimination of hard water scale also proviides tremendous energy savings because scale acts as an insulator wasting electricity or gas acts as an insulator wasting electricity or gas cased to neat water healing bills as much as the for each doular of fuel costs

SAVINGS GALORE

A water conditioner is frequently referred to as "the appliance that pays for itset." You'll find that your savings on soaps, detergents, cleaning aids and personal care products wit help your family's hhusehold budget. And if you pice a price on your time, you i be most family servant.

ATER FOR LAWNS AND HOUSEHOLD PLANTS


• 2003/bite lawn sprink = 0 ducets should be supplied with hard water primarily end up to unaccommination option on much monor.

status it is uneconomical to soften so much water.

A 111 Which is best First, because they receive no rainfall and, second, there is 1, the 21 for drainage of the soil. Preferably they should be watered with rainwater or water A 1 christics in mineral content such as distilled or demineralized water. Additional 1121/Pation may be obtained from your Cutligan dealer.

CULLIGAN MARK SERIES DESIGNS

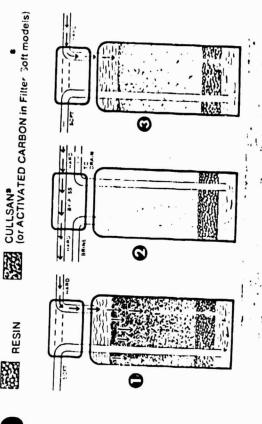
In the opinion of your Culligan dealer, the unit he has installed is the right size and type for your family's needs. Whichever unit you have model with the extra large salt storarge container (right)-feature for feature and price for price, both are equivalent in quality and performance.

RESIN

HOW YOUR WATER CONDITIONER WORKS

١

Why Water Gets Hard And How It's Softened


Surface water is drawn upward by the sun, forming clouds. Then, nearly pure and soft as it starts to fall, it begins to collect impurities as it passes through smog and dust-laden atmosphere. And as it seeps through soil and All of the fresh water in the world originally falls as rain, snow, or sleet rocks it gathers hardness, rust, acid, unpleasant tastes and coors

Water hardness is caused primarily by limestone dissolved from the ear.h by rainwater. Because of this, in earlier times people who wanted soft water collected rainwater from roofs in rain barrels and cisterns before it picked up hardness from the earth.

THE CULLIGAN PROCESS

that remores hardness (dissolved rock) using ion exchange resins which have superious ability to attract and capture the dissolved hardness impur-Today, restand the and technology have combined to produce an appliance ities in water. Culligan's Cullex* water conditioning resin is the 'iappy result of such research. Here's how it works in your water conditioner . . .

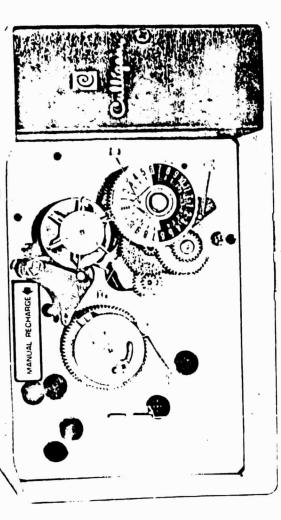
- ness impurities from the water and hold them. When they can hold Your water conditioner directs the flow of your household water through a column of Cullex* resin. The beads of resin remove the hardno more, they must be recharged. First, the automatic recharge system supplies hard water to your household, bypassing your water conditioner. 0
- Cullex resin is automatically bathed by a salt solution (brine), removing hard-Next, the filtered sediment is flushed to the drain. Then. the ness impurities. Then it is rinsea free of excess brine. G
 - The water conditioner is again read $^{\prime}$ to soften more water for you. Under normal conditions, this cycle can be repeated indefinitely as the resin lasts for years and years. Q

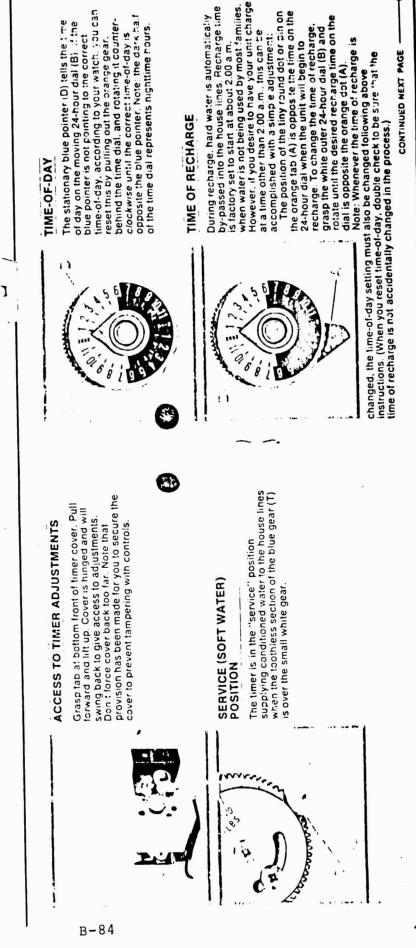
1

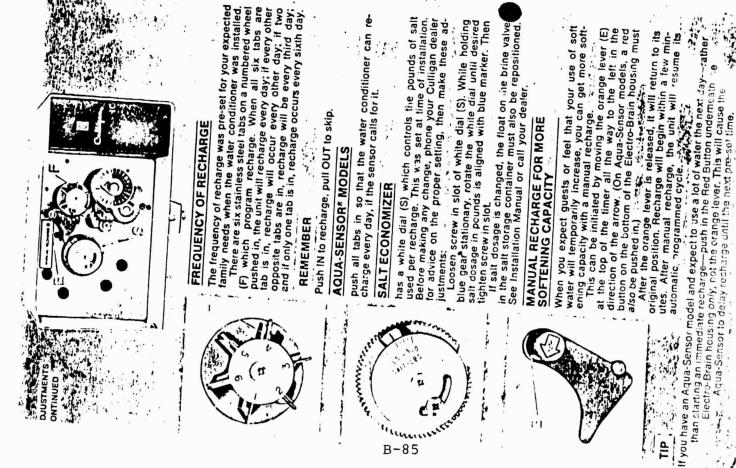
-

....

1


;


HOW TO MAKE ADJUSTMENTS TO THE ELECTRO-BRAIN.. CONTROLLER


An Adjustment Is Needed When:

- you must reset the clocks around your home due to a power
 - failure, time change, or other reason. Remember also to reset the time-of-day on your water conditioner.
- you want recharge to occur at a different time than was set at notalitation. Note: recharge should be set for a time when water use is at a minimum. Usually this is in the wee hours
 - of the morning. such as 2:00 a.m. rinore softening capacity is needed on a continuous basis than was originally set, either because of increased use or change in water characteristics. (If a tempo ary increase in water use is anticipated or has occurred, an immediate recharge can be initiated without interfering with the automatic

settings. Use the "Manual Recharge.")

SALT SUPPLY, USAGE AND SERVICE

Salt is the mineral used to "echarge" your water conditioner. A brine solution is automatically made up in the bottom of the salt storage container and, as explained on page 7, the Cullex resin beads in the tall, thin tank are flushed with the brine solution as a step in the recharging process. 記録

Your Culligan water conditioner has been carefully designed to get the greatest amount of softening capacity from the salt it uses. Here is some pertinent information about sait usage, types and service.

•.

SALT ECONOMIZER

cording to the water hardness, number of persons in the household, and This control is set at the time of installation, and determines sait usage ac-

Aqua-Sensor models maintain a constant salt usage which is pre-set at the factory. By recharging only when required, these models use only a water usage. See page 10 for instructions on adjusting setting.

ORIGINAL PAGE

POOR

minimum amount of salt. They are second to none for salt economy. .

WHAT KIND OF SALT IS BEST

QUALITY

e^s *: *

The tank-in-tank cabinet models all feature Culligan's exclusive Vertical Salt Plate which permits the use of any water conditioner salt of good quality,

If purified salt products are used, the salt storage compartment on these including "rock," "pellet," "solar," "evaporated," or "granulated" types. models will not require the normal periodic clean-out.

"rock" salt. And all "rock" salt, regardless of source, contains insoluble All other Culligan Water Conditioners are designed to use quality grades of malerial which collects on the Horizontal Salt Plate in the salt storage tank -and roes require periodic clean-out.

Regardless of what type of salt is used, we recommend Culligan Brand Salt as suggested by your Culligan Dealer. He is the expert and can provide you

with the best product for your Culligan Water Conditioner.

AUTOMATIC SALT DELIVERY SERVICE

Ask your Culligan Man for details about his salt delivery service. You can have your salt supply replenished on a regular basis. Whether you have automatic delivery service or p.ck up sait from your Culligan Man, you will be getting quality salt packaged according to rigid Culligan specifications. Using Culligan Brand Sait will help assure continued efficiency and troublefree operation of your water conditioner.

Do not use sait products containing iron-temoval additives as products of CAUTION: J this type can be harmful to plastic valve parts.

1111

N. S. S. S. 4 ALL AND ALL AN Ē 41

1

い あいいや

WHEN AND HOW TO BY-PASS YOUR WATER CONDITIONER

Normally, all water except to outside lines passes through the water con-ditioner. There are times when the water conditioner should be by-passed, using the push-button Cui-Fio-Valv^N, or a 3-way by-pass valve. You should by-pass:

If lines to outside faucets do not by-pass the water conditioner, and you do not want to waste soft water on lawn sprinkling or other

1

If you are going away on vacation and want to save sait by not having the unit recharge while you re away.

If you wish to inspect and c'ean the valves or salt storage container.

If a water leak from the conditioner is evident.

PUSH TO BY P.SS. OUTLET INLET SOFT WATER" PUSH FOR

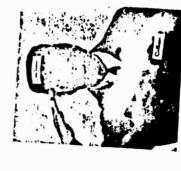
To return to soft water service, reverse the procedure—push the Blue knob Cu -F:o-Valv. To by-pass unit, simply push the Red knob (marked "Push to By-Pass") all the way to your left. In the back of most Culligan water (marked "Soft Water") all the way cond.toners is a push-button PUSH-BUTTON BY-PASS to your right.

131NI סטדונו ואוני ל BY PASS VALVE CLOSE VALVE OPEN CLOSE VALVE CUTLET \odot

the intet and outliet valves and open the certer Dy-pass value. To get solt water, reverse the process by closing the center by-pass value and opening the intet and outlet values. If rand valves are used, close both HAND VALVE BY-PASS

NOTE

When the conditioner is by passed, all water used is hard. For example your water here may fill with hard water. And the conditioner cannot recharge. Remember to place the push-button Cul-Flo-Valv or hand valves back to the "Soft Water" position as scon as possible.


CULLIGAN WATER CONDITIONER CARE AND CLEANING OF YOUR

Following these simple precautions will help assure continued frout e-free Ke rew for service, and keep your Culligan Water Conditioner looking

- Do not place heavy objects on top of the sait storage tank or
- the conditioner Nover use harsh, abrasive cleaning compounds or those which contain acid such as whegar pleach and Use only mild soap and warm water wnen cleaning the exterior of
-
- Protect your water conditioner and the entire drainline from
- The timer is very accurate. Keep time-of-riay setting correct to assure recharging at the proper time.
 - 1. 1
- Should service, ad ustment or trouble-shocking information be needed which is not covered in this Use and Care Guide, reter to Supprement #6802-15 Curligan Mark Series Maintenance Supprement, and the appropriate installation Marual for your mode.

Director of Consumer Affairs Northbrook, Linnois 60062 Culligan USA One Culligan Parkway

When writing, be sure to include "identification Information I shown

)

call your local Cuirgan Man. He will be glad to be of assistance to you. If further service is required please

RECORDS AND DATA Important Data on Your Water Conditioner Important Data on Your Water Conditioner In the information It is advisable to have the salesman or installer fill in the information below for your future reference. If this has not been done, please ask for it, as it is necessary if you contact the factory. Important Data on Your Water Conditioner It is advisable to have the salesman or installer fill in the information below for your future reference. If this has not been done, please ask for it, as it is necessary if you contact the factory. It is necessary if you contact the factory. It is necessary if you contact the factory. It is necessary if you contact the factory. It is necessary if you contact the factory. It is necessary if you contact the factory. It is necessary if you contact the factory. It is necessary if you contact the factory. It is not been done. It is necessary if you contact the factory. It is necessary if you contact the factory. It is not been done. It is not been done. It is not been done. It is not been done. It is not been done. It is not been done. It is not been done. It is not been done. It is not been done. It is not been done. It is not been done. It is not been done. It is not been done. It is not been done. It is is not been done. It is not bee		The impurities listed as undesirable by the U.S. Public Health Service in its Drinking Water Standards. Culligan products and systems remove both natural and man-made water pollutants—provide the best water for each specific use and application. Your new Culligan Water Conditioner can be adjusted to handle a wide range of water problems, but it does have limitations. It has been specified on the basis of your water conditions at the time of sale. It is possible for the chemical makeup of your water to change in time, and such changes change. Your Culligan Man is ready to help you if any problem should arise.
THINGS TO CHECK BEFORE YOU CALL FOR SERVICE If you unexpectedly experience hard water, make these simple checks before calling your Culligan Man. One of the following conditions may be the reason for your interruption of service. If you unexpected the condition of service. Important:	P-842	BY-PASS VALVES BY-PASS VALVES Check to see if they are in the proper costton. Cul-Flo-Valv, if used, should be in the "Push for soft water" position. If hand valves are used, see that inlet and outlet valves are used see that inlet and outlet valves are used. See that include the outlet valves are used. See that inlet and outlet valves are used. See that include the outlet valves are used. See that include the outlet outlet the outlet valves are used. See that include the outlet outlet the outlet valves are used. See that include the outlet outlet the outlet valves are used. See that include the outlet outlet the outlet valves are used. See that include the outlet outlet the outlet valve are used. See that include the outlet outlet the outlet valve are used. See the outlet outlet outlet the outlet valve are used. See the outlet outlet outlet outlet the outlet valve are used. See the outlet

APPENDIX C

THE ITC/SOLAR FLAT-PLATE COLLECTOR: PARTS, REPAIR, INSTALLATION AND MAINTENANCE

October 1978 Norman Barbera ITC/Solar Staff Engineer

THE ITC/SOLAR FLAT-PLATE COLLECTOR: PARTS, REPAIR, INSTALLATION, AND MAINTEMANCE

INTRODUCTION

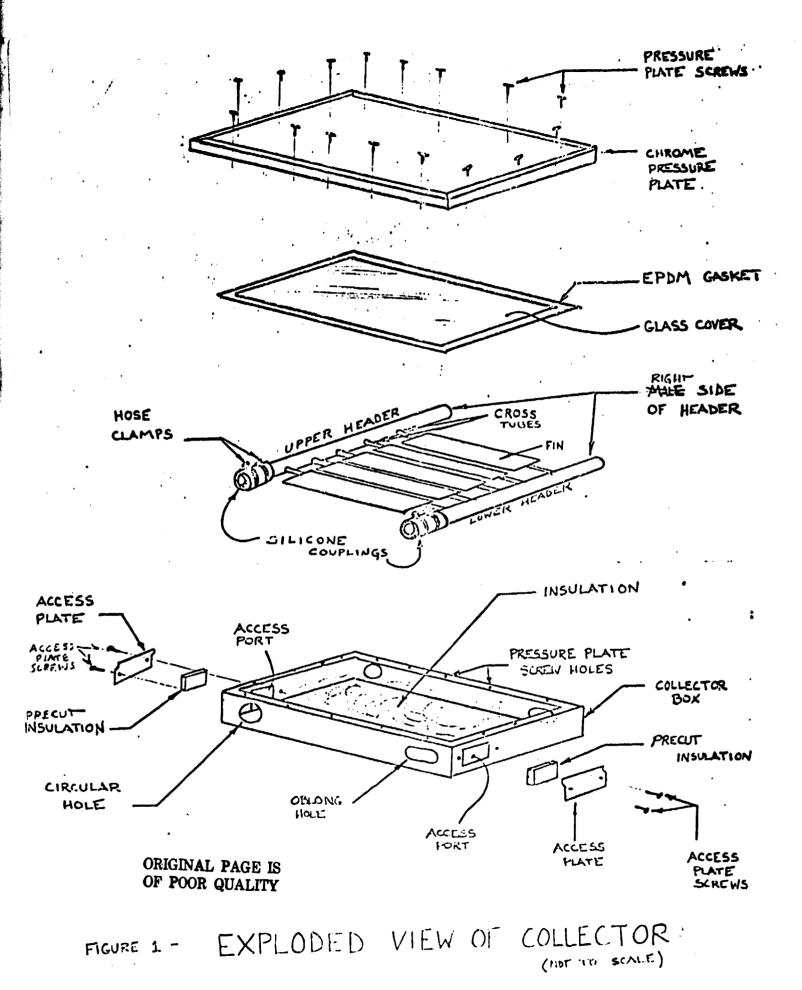
The intent of this information is fourfold:

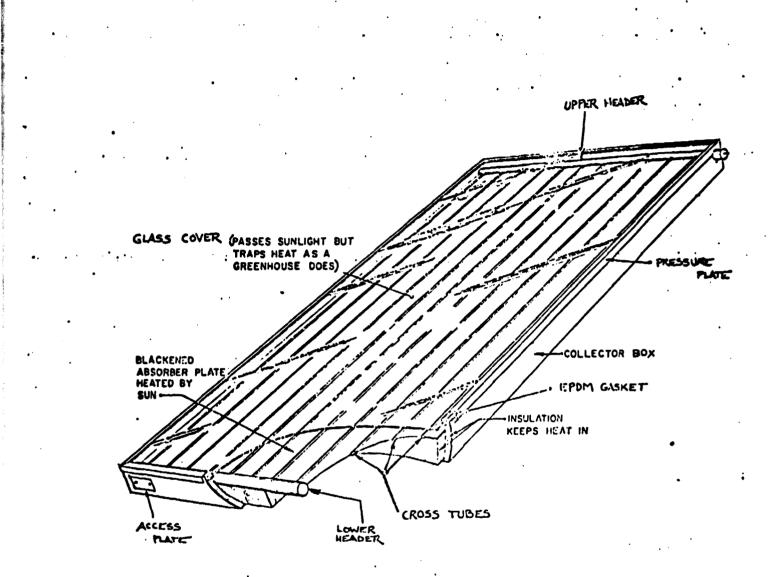
1. To describe the various parts contained in the ITC/Solar Flat-plate collector,

2. To describe the steps necessary to replace any of these parts,

3. To list guidelines to follow when connecting collectors together, and

4. To briefly discuss maintenance.


PARTS & REPLACEMENTS


¢.

This section contains a description of the various parts of the ITC/Solar collector. At times one or more of these parts may be damaged, preventing proper operation of the collector. The collectors are made to allow removal and replacement of any part in the box, hence, a discussion of removal and replacement of parts is also included herein. Figures 1 and 2 can be used as a guide for this section.

To establish conventions, the front of the collector will be considered the glass side of the collector. The side with the protruding manifolds will be designated as the right side. The side with the tube couplings and recessed manifolds will be designated as the left side. The bottom of the collector will always be the end with the oblong openings around the header. Mark V collectors are nominal 3' \times 6-1/2' with a 1" or 2-1/2" header. Mark III collectors are nominal 4' \times 8' with a 2-1/2" header. With the exception of end boxes, all collectors will have protruding manifolds on one side and recessed manifolds on the other side. (See section on end boxes.)

C-1

FIGURE 2 - ASSEMBLED COLLECTOR

Glass Covers

The chrome piece around the perimeter of the collector is the <u>pressure</u> <u>plate</u>. The pressure plate holds the <u>glass cover</u> (sometimes referred to as glazing) in place and can be freed by removing all the <u>pressure plate</u> <u>screws</u> holding it down. There is an <u>EPDM</u>, <u>black rubber gasket</u> that fits <u>securely around the glass</u>. This gasket reduces heat loss through the top of the collector, provides a water-proof seal, cushions the glass, and helps hold the glass in place. The gasket should lift out of place when the glass is removed. If the gasket or the glass does not come loose the gasket may be stuck to the box. Passing a knife between the gasket and box should eliminate this difficulty.

The glass cover may be lifted by hand or special vacuum cup handles may be used (Figure 3). The special handles are made specifically to handle glass and have one or two suction cups per handle that <u>prip</u> the glass. If the collectors are mounted on a slant and the glass must be removed, the use of these handles is recommended.

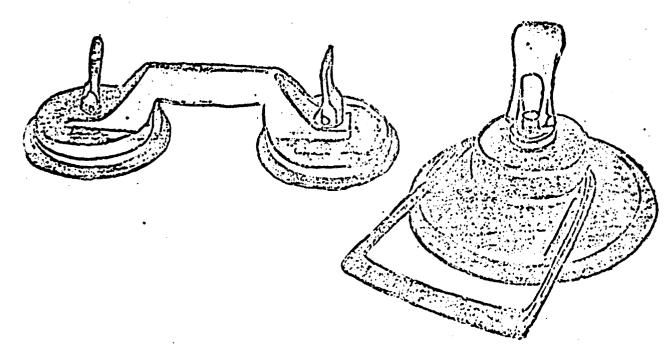


FIGURE 3: VACUUM CUP HANDLES

If the glass cover has broken, remove the pressure plate and clean all the broken glass from the gasket and the collector box. Wipe the gasket clean with a damp rag. Do not use soap. Fit the gasket around the perimeter of a new glass cover. Place the glass and gasket back on the lip around the interior edge of the box. When replacing the cover make sure the glass does not cover the pressure plate screw holes. When the collector is mounted and on a slant it may be necessary to place a shim on the lip of the collector box below the bottom edge of the gasket and glass cover. This will stop the glass from sliding down and covering the pressure plate screw holes. The pressure plate will fit over the gasket and around the outside of the box. Tighten down the pressure plate by replacing the pressure plate screws.

If the glass cover slides out from under the pressure plate, the gasket may not be griping as it was designed to do. Remove the gasket and wipe it with a clean, damp rag. Do not use soap as that will leave a thin film which contributes to slippage.

Access Ports

The small covers on the top and bottom of the collector in the corner near the female side are the <u>access plates</u>. These cover a piece of insulation which in turn plugs an <u>access port</u>. The access port provides access to the left side of the header. The access plates can be removed by removing the small hex-head screws on either side of the plate. This requires a 5/16" wrench. A speed wrench is ideal for this and may also be used on the hose clamps mentioned later.

Headers & Collector Connections

The <u>headers</u> (sometimes referred to as manifolds) are nominal 1" (Mark V) or 2-1/2" (Mark III and some Mark V) copper tubes at the top and bottom of the collector. The short lengths of hose on the header are the <u>silicone connectors</u> or <u>couplings</u>.

Removal & Replacement of Connections

Occasionally it becomes necessary to remove a connector. If the connector is to be removed, the two <u>hose clamps</u> that hold the connector to the header must be loosened. Access to the hose and clamps is available through the access ports.

After the clamps have been loosened reach in with a sharp knife, slice the coupling along its length, and remove it from the box through the access port.

Replacement of connectors on single uninstalled collectors differs from replacement of connectors on collectors already installed in a row of collectors. With collectors not yet installed in a row, it may be possible to slide the connector through the opening on the side of the box and guide it onto the header by reaching in through the access ports. Where the connector does not fit through the opening or when the collector is already installed in a row, it may be possible to push the coupling in through the access port and slide it onto the collectors.

To replace connectors on installed collectors that do not have adequate room between the two adjacent headers to slide the coupling on, the collector plates (see next paragraph) may require shifting. Loosen the coupling directly below the coupling that is being worked on (or above if the coupling to be replaced is at the bottom of a box) and the two couplings on the collectors to either side. (That's five couplings.) Now reach in through the appropriate access port and push apart the headers where the new coupling is to be installed. It may be necessary to push on both the top and bottom headers in order to separate the two adjacent headers at that connection. If the hose coupling cannot be replaced in either of these ways, that side of the collector plate will have to be lifted out of the box.

C-6

Collectur Plates

The <u>collector</u> (or absorber) <u>plate</u> is the subassembly that consists of upper and lower headers, cross tubes, fins, silicone couplings, and hose clamps. The <u>collector box</u> is the housing for the collector plate. The <u>cross tubes</u> are the small copper tubes running the length of the box. Should the tubes be broken or badly crimped, return the collector to ITC/Solar. The <u>fins</u> are pressed on the cross tubes and have, on occasion, pulled away from the tubes. If this occurs, consult the collector dealer or ITC/Solar.

The glass cover and pressure plate must be removed in order to provide access to the collector plate. Once these are removed, shift the plate to the right (as you face the collectors), as far as possible, and lift up on the left side of the plate. The hose connections can then be removed and/or replaced.

END BOXES

Included with most 2-1/2" header collector orders are special end boxes for each row of the collector array. The end boxes will have headers protruding from both sides of the box. These collectors should be the first collector mounted in each row and should be mounted on the west end of the row. (Remember, the collectors are facing south so the west end is to the left as you face the array.) When end boxes are not included with an order, whether it be Mark V or Mark III collectors, it will be necessary to construct an end box by modifying any one of the existing boxes. Modifications can be made as follows.

Remove both access plates and pull out the small piece of precut insulation to expose the silicone couplings. Tighten the clamp that holds the coupling to the header and loosen the second clamp. Insert a short piece of 1" or 2-1/2" (which ever matches the header size) copper pipe (supplied) into each of the couplings. Push the pipe as far as possible into the coupling and secure it in place by tightening the previously loose clamp around the coupling and pipe. Since this is an end box the space between the header and the piece of pipe is not critical. When two collectors are being connected, a 3/4" space between the two headers at the connection will be necessary (see step #9, page C-14).

SUPPORT STRUCTURES

When connecting collectors, it is necessary to move the free collector left or right, while keeping it at the same height as the attached collector. The support structure should be designed to prevent up and down slippage and allow movement left or right during installation. This can be done with a temporary horizontal lip running a short distance either way from the collector being worked on, or with a permanent horizontal lip running the entire length of the support. Should the latter be used, provisions for self-draining of the lip must be included, otherwise water may collect on the lip and cause collector corrosion.

INSTALLATION

 Cover the collectors with an opaque material (paper or plastic) to prevent the collector boxes from getting too hot to handle.
 Mount the special end collector so that it is the west end col-. lector of the row to be installed. Attach this end collector to the support structure. Subsequent collectors will be added to the east of those already installed. Remember the oblong holes in the collector box should be at the bottom of the collector. The right side of the collector will be pointing east.

C-8

Expose the access ports on the next collector to be hung by removing the access plates and precut pieces of insulation. As this collector is not yet connected to the support structure it will be designated the <u>free collector</u>. The collector to the west to which the free collector connects, and which has already been connected to the support frame, will be designated as the <u>attached collector</u>.
 Lift the free box into place along side the attached box.
 The clamp, on both silicone couplings of the free collector should

all be loosenes and the hose coupling pushed to the edge of the header

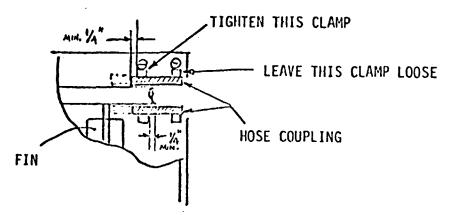


FIGURE 4: CLAMP MOVED TO THE EDGE OF THE HEADER

they are mounted on. (See Figure 4 above.) Tighten one clamp around the header leaving 1/4" or more of hose coupling on either side of the clamp. Leave the other clamp loose. In some cases the hose coupling may have to be pushed closer than 1/4" from the edge of the header to make the connection to the adjacent box possible. If at all possible, maintain the 1/4" clearings on both sides of the clamp.

On collectors with 1" headers the hose coupling can be pushed over with a screwdriver. The collectors with 2-1/2" headers have the larger hose couplings and are more difficult to handle.

ORIGINAL PAGE IS OF POOR QUALITY Two hooks similar to the one shown in Figure Five can aid considerably in installation. The hooks can be used to reach around the headers and manipulate the hose couplings. The hook shown in the figure is available from the collector manufacturer.

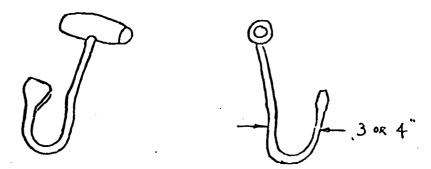


FIGURE 5 : HOOKS AVAILABLE FROM ITC/SOLAR

6. Position one person so they can work with the top coupling and a second person so they can work with the bottom coupling. Slide the free box toward the attached box to a point where the headers on the attached box, are just touching the hose connections.

7. Now align the hose couplings on the free box to the headers on the attached box.

8. Finally, complete the connections by pushing both <u>headers</u> on the right side of the free box, at the same time, hard and deliberate, toward the attached box. This will cause the hose couplings on the free box to slide onto the headers of the attached box.

With the 2-1/2" header collectors it may be necessary to have 3 or 4 people helping with installation. One person aligning each of the hose couplings with the headers, and one or two people pushing the free box toward the attached box.

Hose Coupling - Header Alignment Problems

When aligning the hose couplings to the headers only one of the two (top or bottom) connections may line up. The following suggestions will aid with the alignment of the hose coupling to the header and the completion of the connection.

Having both connections aligned at the same time makes installation easier and an attempt should be made to do so. If both cannot be aligned or completed at the same time, complete one connection at a time. In this case, rather than pushing on <u>both</u> headers on the right side of the free box, push only that header corresponding to the header to be connected on the left side. Once one connection is made, the second connection can be worked on. When working on the second connection, push against the appropriate header on the right side of the free box to prevent the first connection from coming apart.

Figure 6 shows the bottom connection already made and the top connection being worked on.

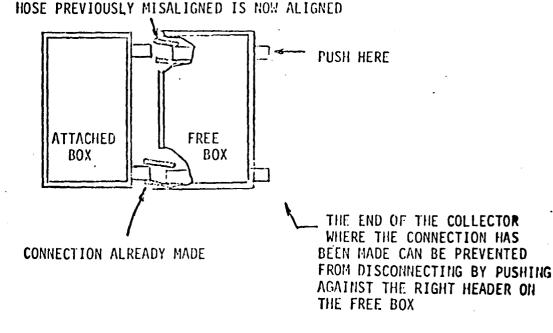


FIGURE 6: ALIGNING THE SECOND COUPLING AFTER ONE HAS BEEN CONNECTED

C-11

If the hose coupling is badly buckled and will not slide around the header, pull the collectors apart and realign the hose to the headers. (See Figure 7 below.)

ONLY THE EDGE OF THE HOSE COUPLING IS PREVENTING THE HEADER FROM SLIDING INTO THE COUPLING

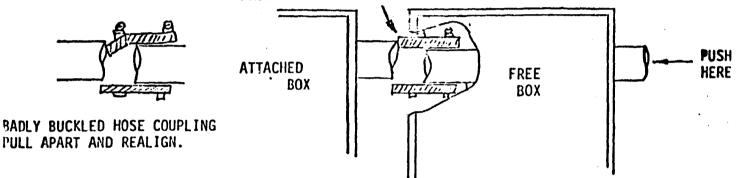
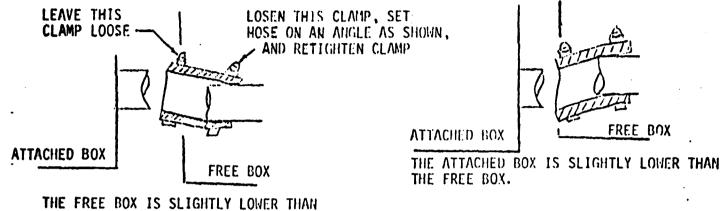
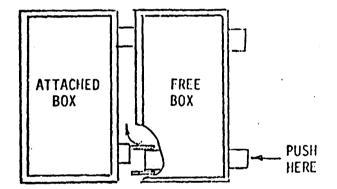
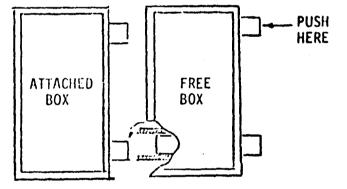



FIGURE 7: BUCKLED HOSE AND HOSE WITH CAUGHT EDGE

.


•

The header and hose coupling can be adjusted for alignment as shown in Figures 8 & 9.



THE ATTACHED BOX.

FIGURE 8: COUPLINGS SET ON AN ANGLE CAN AID IN HEADER-COUPLING ALIGNMENT

THE BOTTOM HOSE COUPLING IS TOO LOW AND THE HEADER IS HITTING THE TOP OF THE COUPLING. PUSHING ON THE BOTTOM HEADER OF THE FREE BOX WILL CAUSE THE COUPLING TO SWING UP AND OVER AS INDICATED BY THE ARROW.

THE BOTTOM COUPLING IS TOO HIGH. PUSHING ON THE TOP HEADER OF THE FREE BOX WILL CAUSE THE BOTTOM COUPLING TO SWING OVER AND DOWN AS INDICATED BY THE ARROW.

(A)

(B)

FIGURE 9: SHIFTING OF THE COLLECTOR PLATE AIDS IN HEADER-COUPLING ALIGNMENT

ORIGINAL PAGE IS OF POOR QUALITY 9. Slide the two collectors together to a point at which the two headers are approximately 3/4" from each other inside the coupling as shown in Figure 10.

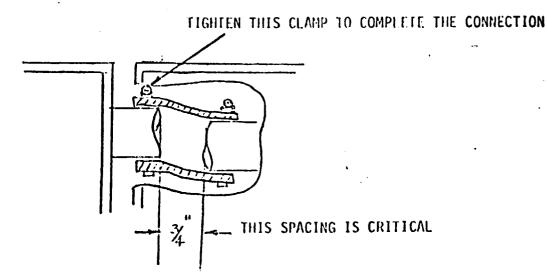


FIGURE 10: COMPLETED CONNECTION BETWEEN COLLECTORS AND THE CORRECT SPACING BETWEEN MALE AND FEMALE HEADERS

The 3/4" spacing between headers is important as it allows for thermal expansion. While the 3/4" space is not visible it can be felt through the rubber. Secure the hose coupling to the header with the hose clamp.

10. Attach the free box to the support structure. Do not replace the access plates until the system has been checked for leaks.

11. Repeat steps 1 and 3-10 with remaining collectors to complete the array.

IMPORTANT NOTE:

Keep in mind that the first row of collectors must be sloped 1/4" per collector toward the inlet of the array. The inlet on additional rows may be from another row, a separate inlet pipe, or the same inlet as the initial row. Each row should be sloped toward its own inlet.

MAINTENANCE

For normal drain-down systems deionized or distilled water is suggested for the heating fluid that travels through the collectors. Normal tap water can be used but may cause mineral buildup in the collectors. If a drain-down system cannot be used, consult ITC/Solar for other suggested fluids.

The first few times the system is started, it will be necessary to check for leaks at the silicone couplings. After the first few minutes of operation, a visual check will turn up any leaks. Use tap water when testing for leaks. Color dye in that water will allow leaks to be spotted easier. Condensation will build up on most of the collector cover on any collector that leaks. There may also be a noticeable flow of heating fluid from the leaky collector. Most leaks are due to loose hose clamps on the couplings and can be stopped by tightening the clamps on the hose that leaks. Occasionally, a coupling will slide completely off the headers and must be reinstalled. After the first 4 or 5 leakfree runs, a quick check of the collectors every month or so is advisable.

The monthly check need only be a visual inspection for broken glass, leaks, or excess dirt on the collector covers. With normal precipitation, any dirt or film that may prevent sun rays from passing through the glass cover will be rinsed away. To prevent a build-up of film, washing once or twice a year is recommended. A strong spray from a garden hose will be adequate. Long dry periods or blowing, dusty periods increase film build-up and more frequent washing may be required.

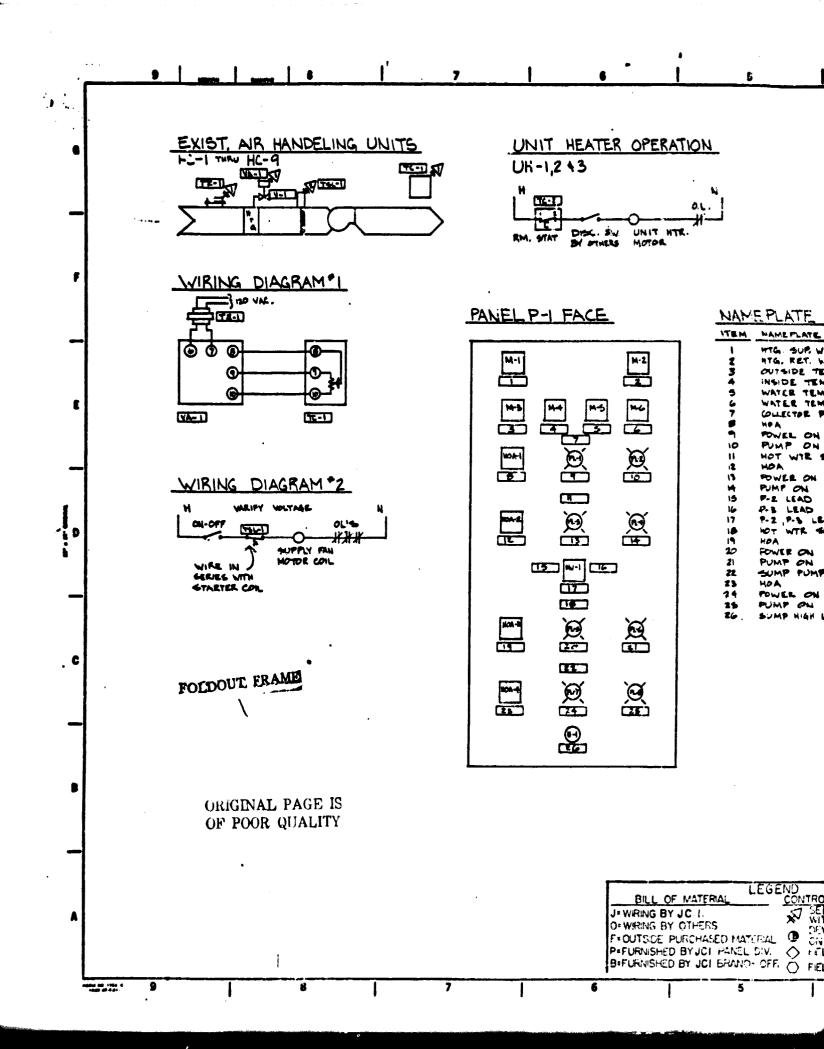
If the insulation on the inside of any collector gets wet, remove the access plates for a day or so. This will allow the insulation to dry out. Since running the collector with wet insulation will not harm the collector, the plates need not be removed until there is sunny weather.

APPENDIX D

As-Built Drawings

Ø TÂN (-A. SUBMITTALS DRA 1 CM 5 W W V R. B. AS BUILT 4/24/78 Ø -4 Ŷ 0 ORIGINAL PAGE IS OF POOR QUALITY 215 FOLDOUT FRAME 2 LEGEND ABa COL C -----2 11 11 114 · Dres farme une - Court Name - Drawing - Britanna \mathfrak{T} PRELIMATIC TUPE TARM 1 -----ELFCTRICAL MIRT SERVICIAL PLTP APPRIMAL PLTP Ø Estantia -Rati stans Estantia -Encistaria Encistaria Estanti -1.11 HIGH PHILSSURE AN ⊕ VAPON TENSION TEMPENATURE SENSING : (Q) (Q) -----SP(CIA) TERMINE, S WIT APPROTRIATE - MEER (MUST BE IDENTIFIED ON BRAINING) Ţ OULS THE TEMPERATURE SINSING ELEMENT LOCATER URDER SHIGLE IN OUTTOOR ARE 2 : 俐 HEN LOCATES IN CONTROL PANIL 8.C 80 INCTOD LINES OF -LLS TYPE ISMPERATURE SENSING BLEMENT LOCATEC INSIDE SELEMBALE SOLE T ASUS ur Urb : CROSSING LINES MRT COMMENTER Æ *** PREMI LOCATO ----æ 1 - Luter 0 -----1400 - 1600-1-16 1600 - 160-16 PIS' BUR BELINE BETIEVETON -Se.

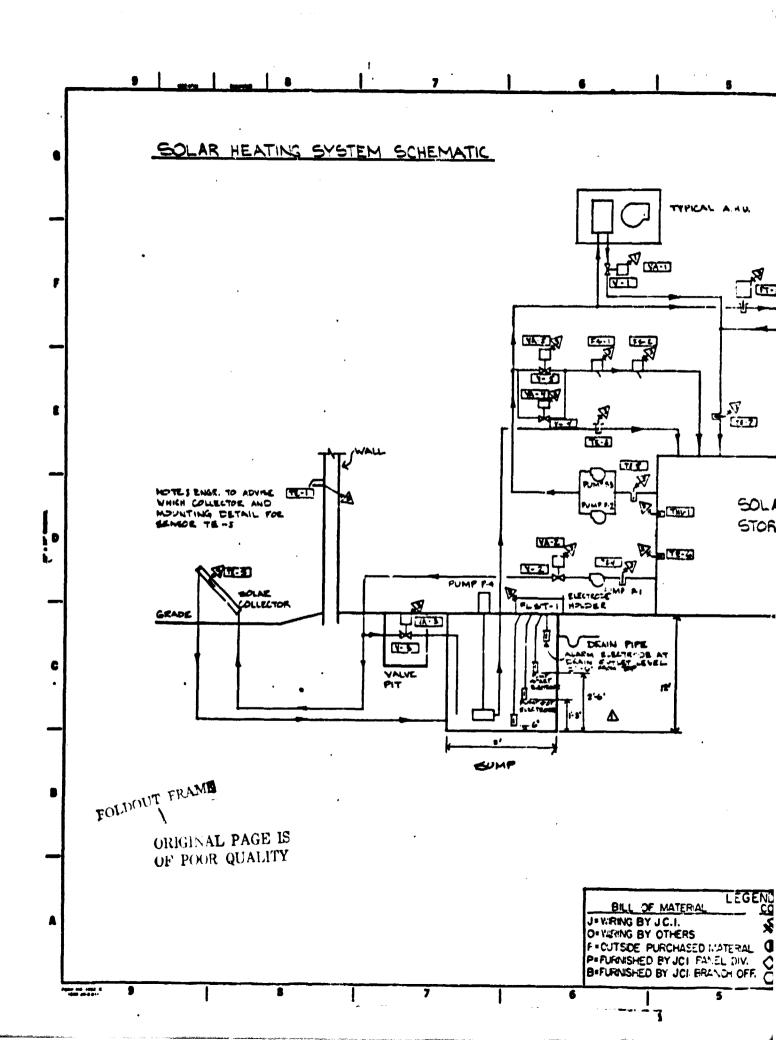
1044 43 134


•	•		· • · ·	
DRAWING INDEX 1 COVER SHEET 2 MISC. 3 SYSTEM SCHEMATIC 4 WIRING DINGRAM * 3 5 WIRING DINGRAM * 3 CONT'D 6 VALVE SCHEDU'LE TOTOOT FOTOOT NOTIGINA OF POO	AL PAGE IS DR QUALITY	ENVIRONMENTAL CONT	IALISTS SINCE 1885 ROL SYSTEMS ATION SYSTEMS KE DETECTION SYSTEMS SYSTEMS TEMS DNTROL CENTERS INIS BALANCING STEMS INSTALLATION STEMS MANAGEMENT VANCE FOR: TV CONTFOLS ENDITIONING EYSTEMS STECTION SYSTEMS	
Constant of the second se	A series and a series of the s	INTERTECHNOLOSY III CCIRP CL		ISSUE- AR B() (() 0() E() F() ()
/			S/12/**	2

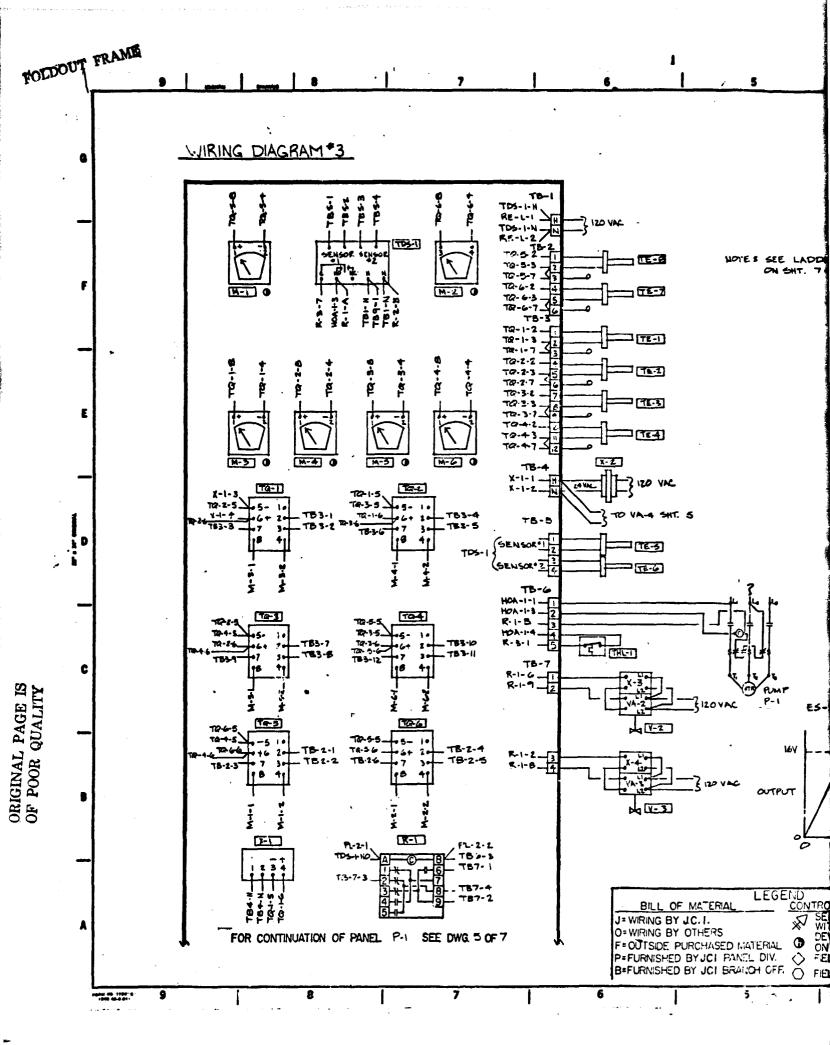
ž

Alter Station

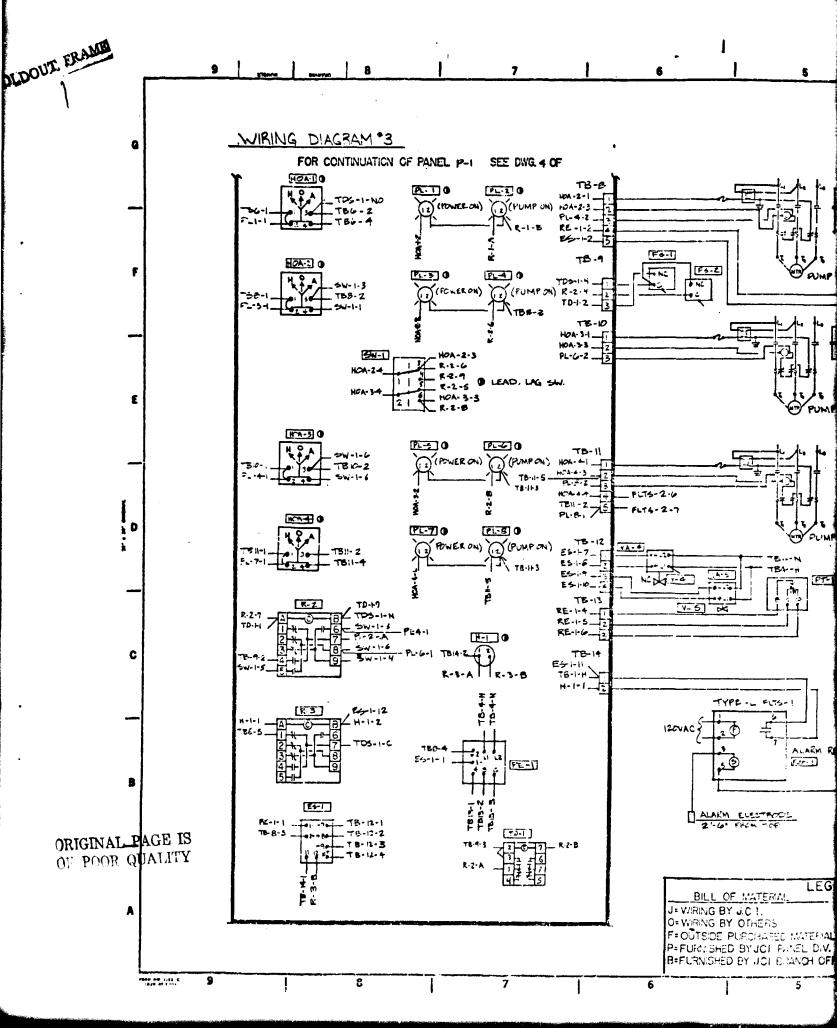
N. CE


D-1

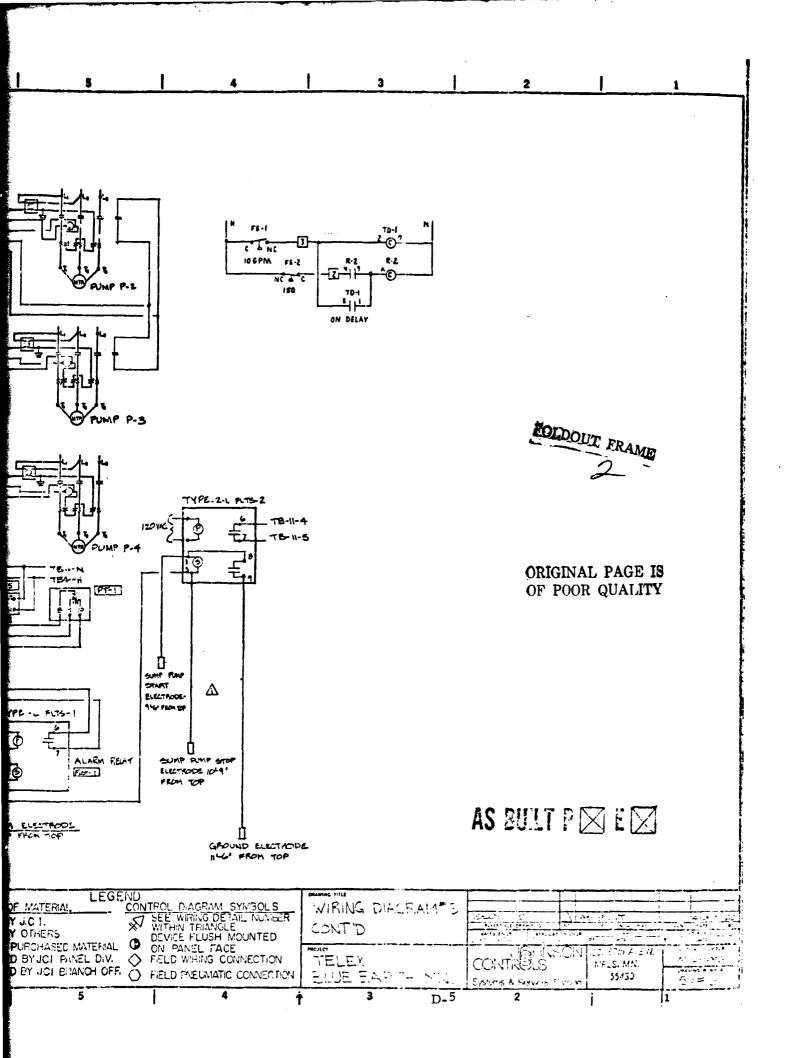
NAME PLATE SCHEDULE VIEW AND MARE. I WAS BET WIRE THAT. I WAS BE UNTER THAT. I WAS BE UNTER THAT. I WAS BE UNTER THAT. I WAS BUILT PLATE. I WAS BUILT P I BE INTER I WAS BUILT P I BE INTER I BUILT P I BUILT P I BE INTER I BUILT P I BE INTER I BUILT P I BE INTER I BUILT P I BUILT P I BE INTER I BUILT P I BUILT	<u> </u>	<u> 2 1</u>	{
1 WTB. DUTT PLATE 1 WTB. DUTT PLATE 1 WTB. DUTT PLATE 1 WTB. DUTT PLATE 1 WATE TEMP. 2 WATE TEMP. 1 WATE TEMP. 2 WATE TEMP. 1 WATE TEMP. 2 WATE TEMP. 2 WATE TEMP. 1 WATE TEMP. 2 WATE TEMP. 3 WATE TEMP. 4 WATE TEMP. 4 WATE TEMP. 5 WATE TEMP. 2 WATE TEMP. 3 WATE TEMP. 3			•
BE DUTADE TEMP. INCOME TEMP. WATCE TEMP.	TEM NAM PLATE		+-
LEGENO LEGEN	S OUTSIDE TEMP, 4 INSIDE TEMP, 5 WATER TEMP. ENT. BLDG 6 WATER TEMP LVG. BLDG 7 GUECTOR PUMP P-1 9 MPA 9 POWEL ON 10 PUMP ON 11 HOT WIR SUPPLY PUMP += 2 12 HOA 13 POWER ON	· · · · · · · · · · · · · · · · · · ·	E .
AS BULLT P E E	15 P-2 LEAD 16 AB LEAD 17 P-2 ,P-3 LEAD - LAG 18 HOT WTR. SUPPLY PUMP P-8 19 HEA 20 FOWER CAN 21 PUMP ON 22 SUMP PUMP P-4 23 HOA 24 POWER CN 25 PUMP ON	2-	9
LEGEND CONTROL DIAGRAM SYMBOLS MISC. SEE WIKING DETAIL NUMBER MISC.		ORIGINAL PAGE IS OF POOR QUALITY	0
LEGEND CONTROL DIAGRAM SIMBULS MISC. SEE WISING DETAIL NUMBER MISC.			
DEVICE FLUSH MOUNTED DEVICE FLUSH MOUNTED DATERAL ON PANEL FACE PANEL DIV. OF FELD VISING CONNECTION SRAND- OFF. OFIELD PROMATIC CONNECTION STAND- OFF. OFIELD PR	DEVICE FLUSH MOUNTED DEVICE FLUSH MOUNTED DATERAL OF FELD WISING CONNECTION	MISC. MI	


a

1


<u> </u>			:		2		1
	<u>•</u>				with the inset and the		
	17 E	T.T	ж.	5005 -0	BEBERIPTIDY	ANST SETTING	PEMARES
	F173-1	╋╤┣	+	An Anna i	FIELD EQUIPTENT	<u></u>	
	FS-1.2	TYT		By Others	PIN CONTROND FORMALD FILLER FLA-3	all Tiggeta	+
	17-1	-		PONPA-2	Paraular Control	20 2516	+
	16-1		1	1:0/04-1	·	77° F	
TYPICAL A.H.U.	16-2	- Annual -	_	1281-5		72° #	
ST .	TE-2	┼┼╋	- 1 -	11-13(0-1			
	16-2.4.7.8			IE-1100-3			a/10-1000-4 atta
Mounted in Occupied spice	11.5			A-414-1			
ST CALCULATION STATE	16-6			A-418-1			H/02-1002-4 MELL
	1m1 1511			A-121AC-12		100 F	┿╼╼╼╼╼┓ ╴
TO OTHER	176-1		_	YC545-1	40 YA		╈╍╍╼╼╼┫╽
ANU'S	V-1			VECAN	STE VALVE SCHEDULE		
	VA-1			"ZCJDA+1	24 445		
	V.2	L	ŗ	1.17/0-7	4*		
	VA-2			(<u>1-325) - 12</u> (1-3752-54	120 VAC	+	- <u> </u> - [
	V4-3	اد زمید از ا		16-3100-102	120 V/C	<u>+</u>	<u> </u>
	1-4	11	L	2-3070-7	1 1/2 •		
- N	VA-4	μ	.]	A-3205 3	24 YAC		
	VS			VE-3075-11 VA-3700-103	2 1/20		<u>↓</u> ┨╎
	x-2			VA-3757-103	129//24.1	+	┿╌╍╍╌╌┫╿
1	1-3,4	-	-	P2-4003-1	120 VAC		
			_			1	
SOLAR WATER		╋╍╋╸	-i				↓ ┃┃
STORAGE TANK		+_+	_				
	feft Dis	£61 P	1 0	in of Ci	peration die page		
	EOL	DOI	UI	FRAM	ORIGI OF PO	NAL PAG	E 18
L				7		··~~[,]	TY
			•				F
							1
							Ļ
						- 1	
•					AS BULLT	MXI E	
						• تـــا •	<u>دع</u>
							ſ
I FAELIN	T sharing trig						
ATERIAL CONTROL DIAGRAM SYMEOL	· GYAT	ΈM	c	SCHEMA			
C.I. SEE WHITE DETAIL NUM	LER				Billita bei bin alt	1. 44 B	-/2- = eL
DEVICE FLUSH MOUNTED					Sects loud annual		
RCHASED I. ATERAL U ON PANEL FACE	104.651	V.			US-NS	CN ECT CTIN	FIEN.
IV JCI PANEL DIV. 🚫 FELD WRING CONNECTIONY JCI BRANCH OFF. 🔿 FIELD PNEUMATIC CONNEC			6		CONTROLS	MPLS. N	ARTONI BURBIS
		=	1-	TH N N	Sistems & Services De	vion 5543	3 3 25 6
5 4	Ť	*		D-	-b 2	l	12

and a state of the product of the state of the



and the second secon

S DEVICE FLUSH MOUNTED SED MATERIAL ON PANEL FACE PANEL DIV. FIELD WIRING CONNECTION BRAIJOH OFF. O FIELD PNEUMATIC CONNECTION BLUE EARTH MN. Systems & Servors Drusion 2 3 3 3 3 3 3 3 3 3 3 3 3 3								
Interest Interest Sector form Sector form Interest Interest Interest Sector form	<u> </u>		· · · · · · ·	3		2	<u> </u>	1
RUTE & See LADDER, DIAGRAMS BL 24 & String String String String String BL 24 & String String String String String BL 24 & String String String String String String BL 24 & String String String String String String String String BL 24 & String		· · · · · · · · · · · · · · · · · · ·						
Ball 1 <td></td> <td>ITEM NO.</td> <td>OTY C</td> <td><u>viv.</u></td> <td>CODE 40.</td> <td>فتجار ويبابعه فيعت البادي والتكر بيهوي الكالكان وال</td> <td>RANDE SETTING</td> <td>REMARKS</td>		ITEM NO.	OTY C	<u>viv.</u>	CODE 40.	فتجار ويبابعه فيعت البادي والتكر بيهوي الكالكان وال	RANDE SETTING	REMARKS
HAT DE CONTROL DIAGRAM SYNBOLS HET HET HET HET HET HET HET HET HET HET		ES-1	\mathbf{h}	P	SQ-3001-2		SEE SHT. 4	
$\begin{aligned} \begin{array}{c c c c c c c c c c c c c c c c c c c $		H-1	ЬŢ	P	the state of the second se			SOMALERT
NOVE & SHE LADORE DIARRAMS NOVE & SHE LADOR					كالكريزي كالتكريب بمكالية			
HALSS I & PAUCH DE LADOR DIABRANS HALSS I & PAUCH DE LADOR DE LADOR DIABRANS HALSS I & PAUCH DE LADOR	•							
		1-3,4,5,6	4	P		3" - 2000. онн		
NOTE & SEE LADDER DIARAME DECENT THE T DECENT T DECENT THE T DECENT THE T DECENT THE T DECENT T				_				w/ep-105-35
DUTE I SEL LADEEL DIAMENKO DECET. T FFTT DIAMENKO DECET. T FFTT DIAMENKO DIALZA S. E PENDOZO, SELENT RAMA DIALZA S. E PENDOZO, SELENT DIALZA S. E PENDOZO, DIALZA S. E PENDOZO, SELENT DIALZA S. E				-				W/PD-101-55
		TD-I						
AL LEGEND AL AL A				_			1200	w/en-101-35
			+=+		the second s			<u> </u>
A A		TDS-1	ī	P	R34004-1	120%		rj
CONTROL DIAGRAM SYNBOLS LEGEND LEGE	· .			<u> </u>			-32 to 120°F	
CONTROL DIAGRAM SYNDOLS MALE CERMING CONNECTION AL LEGEND AL L				<u> </u>	the second s			
TOTAL DESCRIPTION OF OPERATION SEE PAGE & #6 FOLDOUT: FRAME FOLDOUT: FRAME FOLDOUT: FRAME FOR POOR QUALITY OR POOR QUALITY FOR POOR QUALITY FOR POOR QUALITY FOR POOR QUALITY FOR POOR QUALITY FOR POOR QUALITY FOR POOR QUALITY FOR POOR QUALITY FOR POOR QUALITY FOR POOR QUALITY FOR POOR POOR POOR POOR FOR PO								24 VAC INPUT
FOLDOUT FRAME			T-I					
FOLDOUT FRAME CRIGINAL PAGE IS OF POOR QUALITY Second of POOR QUALITY		#						
AS BUILT P ≥ E S-1 SCHEDULE CHANNEL 1 (VA-4) [VA-4 RUL OPEN AT SNOC INPUT SKS.] CHANNEL 2 (VA-3) [VA-5 RUL CLOSED AT SNOC. INPUT SKS.] CHANNEL 2 (VA-3) [VA-5 RUL CLOSED AT SNOC. INPUT SKS.] CONTRUT A AS BUILT P ≥ E ≥ MART NOV CONTRUL DIAGRAM SYMBOLS WIRING DETAIL MUMBER ST SEE WIRING DETAIL MUMBER WIRING DETAIL MUMBER MIRING DIAGRAM 3 MIRING DIAGRAM 3 MIRI	- 4- 40					ORIGINAL OF POOD	PAGE IS	
AC ES-I SCHEDULE CHANNEL 2 (VA-4) [VA-4 RAL OPEN AT SVOC INPUT SIG.] CHANNEL 2 (VA-5) [VA-5 RAL CLOSED AT BYDE. INPUT SIG. 4 FULL CHANNEL 2 (VA-5) [VA-5 RAL CLOSED AT BYDE. INPUT SIG. 4 FULL CHANNEL 2 (VA-5) [VA-5 RAL CLOSED AT BYDE. INPUT SIG. 4 FULL CHANNEL 2 (VA-5) [VA-5 RAL CLOSED AT BYDE. INPUT SIG. 4 FULL CHANNEL 2 (VA-5) [VA-5 RAL CLOSED AT BYDE. INPUT SIG. 4 FULL CHANNEL 2 (VA-5) [VA-5 RAL CLOSED AT BYDE. INPUT SIG. 4 FULL CONTROL DIAGRAM SYMBOLS WIRING DIAGRAM S							QUALITY	
LEGEND AS BUILT P E EX WITHIN TRANGLE ED MATERAL OF FULL NUMBER WITHIN TRANGLE ED MATERAL ON PARE FACE PARE DIV. OF FELD WEINING CONNECTION BRANCH OFF. OF FELD PRELIMATIC CONNECTION BLUE EARTH MN. Systems & Servors Disson	P-1							
LEGEND AS BUILT P E E WITHIN THANGLE THE AND CONTROL DIAGRAM SYMBOLS WITHIN THANGLE THE AND THANGLE T	CHANNEL I (
AS BUILT P E E AS BUILT P E AS BUI	1 ACHANN						FULL	
AS BUILT P E E AS BUILT P br>AS	· wy	Δ		- •	ral juri una			
AS BUILT P E E AS BUILT P br>AS BUILT P								
AL CONTROL DIAGRAM SYMBOLS N AL CONTROL DIAGRAM SYMBOLS NITHIN TRIANGLE DEVICE FLUSH MOUNTED PANEL DIV. PANEL DIV. PANEL FACE PANEL DIV. PANEL FACE PANEL DIV. PANEL DIV.								
LEGEND AL CONTROL DIAGRAM SYMBOLS VITHING DETAIL NUMBER WITHING DETAIL NUMBER WITHING DETAIL NUMBER DEVICE FLUSH MOUNTED ON PANEL FACE PANEL DIV. PANEL DIV. PANEL DIV. PANEL DIV. PANEL DIV. PANEL DIV. FELD WIRING CONNECTION BRAILOH OFF. O FIELD PNEUMATIC CONNECTION BRAILOH OFF. O FIELD PNEUMATIC CONNECTION BLUE EARTH MN. Systems & Servors Duison 2								
LEGEND AL CONTROL DIAGRAM SYMBOLS VITHING DETAIL NUMBER WITHING DETAIL NUMBER WITHING DETAIL NUMBER DEVICE FLUSH MOUNTED ON PANEL FACE PANEL DIV. PANEL DIV. PANEL DIV. PANEL DIV. PANEL DIV. PANEL DIV. FELD WIRING CONNECTION BRAILOH OFF. O FIELD PNEUMATIC CONNECTION BRAILOH OFF. O FIELD PNEUMATIC CONNECTION BLUE EARTH MN. Systems & Servors Duison 2						AS BUILT	14 X E	XI
LEGEND AL CONTROL DIAGRAM SYMBOLS ST SEE WIRING DETAIL NUMEER WITHIN TRIANGLE DEVICE FLUSH MOUNTED PANEL DIV. SFELD WIRING CONNECTION BRAILOH CFF. SFELD WIRING CONNECTION BRAILOH CFF. SFELD WIRING CONNECTION BRAILOH CFF. STELL DRUMATIC CONNECTION BRAILOH CFF. STELL DRUMATIC CONNECTION BRAILOH CFF. STELL DRUMATIC CONNECTION BLUE EARTH MN. Systems & Servors Druson 2 2 2 2 2 2 2 2 2 2 2 2 2								لا
AL CONTROL DIAGRAM SYMBOLS VITING DETAIL NUMBER WITING DETAIL NUMBER WITING TRANSLE DEVICE FLUSH MOUNTED ON PANEL FACE PANEL DIV. SFELD WIRING CONNECTION BRAILOH CFF. OFIELD PNEUMATIC CONNECTION BRAILOH CFF. OFIELD PNEUMATIC CONNECTION BLUE EARTH MN. Systems & Servors Dursion 2 2 2 2 2 2 2 2 2 2 2 2 2								•
AL CONTROL DIAGRAM SYMBOLS VITING DETAIL NUMBER WITING DETAIL NUMBER WITING TRANSLE DEVICE FLUSH MOUNTED ON PANEL FACE PANEL DIV. SFELD WIRING CONNECTION BRAILOH CFF. OFIELD PNEUMATIC CONNECTION BRAILOH CFF. OFIELD PNEUMATIC CONNECTION BLUE EARTH MN. Systems & Servors Dursion 2 2 2 2 2 2 2 2 2 2 2 2 2								
AL CONTROL DIAGRAM SYMBOLS VITHING DETAIL NUMBER WITHIN TRIANGLE DEVICE FLUSH MOUNTED ON PANEL FACE PANEL DIV. OF FELD WIRING CONNECTION BRAILOH OFF. OF FIELD PNEUMATIC CONNECTION BRAILOH OFF. OF FIELD PNEUMATIC CONNECTION BRAILOH OFF. OF FIELD PNEUMATIC CONNECTION BLUE EARTH MN. Systems & Servors Dursion 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		BRAWNING TITLE					<u></u>	
SEE WIRING DETAIL NUMBER WITHIN TRIANGLE DEVICE FLUSH MOUNTED ON PANEL FACE PANEL DIV. OFFILD WIRING CONNECTION BRAILOH OFF. OFFILD PNEUMATIC CONNECTION BRAILOH OFF. OFFILD PNEUMATIC CONNECTION BLUE EARTH MN. Systems & Servors Division 3 1 2 2 1 3	IAL CONTROL DIAGRAM SYMBOLS	S MIRIN	١G	D	ASRAM	1*3	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
DEVICE FLUSH MOUNTED ON PANEL FACE PANEL DIV. OF FELD WIRING CONNECTION BRAILOH OFF. OFIELD PNEUMATIC CONNECTION BLUE EARTH MN. Systems & Servors Division 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	WITHIN TRIANCI F	BER		-		AFFE TENCE DRAW 175	12 Rf VIT. CH	
PANEL DIV. O FIELD WIRING CONNECTION TELEX CONTROLS MPLS. MIN. BRAILOH OFF. O FIELD PNEUMATIC CONNECTION BLUE EARTH MN. Systems & Servors Division 55430	DEVICE FLUSH MOUNTED)					ાર્ટ સ્વ	APPRUVEC
BRAILOH CFF. O FIELD PNEUMATIC CONNECTION BLUE EARTH MN. Systems & Services Division 55430			v					
5 3 4 4 3 1 2 1 1				A R	TH M	NI I	55430	DRAWING RUNDUR
			-	-			Jivision [4 == ()
		т	3	•		D-4 2	i	1

` e

· ·

. 9

I

.

E

D

C

B

A

Q

1

	14	4			VALVE INPOMATION										ACTUAT		ACTUATOR INFO.				
	SYSTEM			QV AN	Quine Paul Pol		ANL POR VALVE		92E	4		acity a risk	<u>.</u>	PIPIPIG BETAILS	ACTUATER TYPE	-	31	A			
4-1	Ne 1	HTET	3	I			ANSCH.	٢.,	11/2	1			1.1		mart			_			
	- 2			1				· /	hvz.	15	Ķ.		!								
	- 3			Π	L			•	142	16	15		i					_			
				IT	•			1. UN	1	7	ц.										
	-5			Π	٠			aller	٧.	23	15				<u> </u>						
Τ			Π	П				1.14	42	:3	5										
	1			IT	6			in star	١,	<u>h :</u>	0				1						
	- 57			IT	•			. 14	<u>اب</u>	12	J _p		i								
t				Π	5		ī	a Un	14		4				5						
-2	N-100 (2.2			IT		~ ·	18.374	1.CL	1	iż	43				A-3200						
;,	V-Lem Her			Π	L		.3-7:152	عدنت	4	1.4	-		Ш		h 10- 5 4000						
<u>i-4</u>	DH2 10-2			Π		<u>،</u>	13-371	3.00	17:	$ v\rangle$	157			_	3-3-60		1				
	701	•	1	II			18.3.21.	يدعدت	2.7:	54	1		ł		A-720		ł				
		t	1	I																	
									Γ												
-				Г				Γ					Π								

7

ORIGINAL PAGE IS OF POOR QUALITY

COLLECTOR SYSTEM START-UP AND OPERATION

TUBH ALL PANEL SWITCHES TO THE "AUTO" POSITION. IF THE TEMPERATURE AT THE COLLECTOR SENSOR TE-5 IS 25° F GREATER THAN THE TEMPERATURE AT THE STORAGE TARK SENSOR TE-6, COLLECTOR PUMP P-1 WILL START THROUGH COPERATION BOARD TD5-1. CH COLLECTOR PUMP P-1 START-UP, COLLECTOR VALVE V-2 WILL GO FULL OPEN MEM V-3 IS EVERTIZED THROUGH RELAY R-1. ALLOWING THE STORAGE TARK WATER TO BE PUMPED TO THE COLLECTORS, ALSO WHEN PUMP P-1 IS STARTED AND RELAY R-1 IS EMERGIZED, PIT VALVE V-3 IS CLOSED COLLECTORS, ALSO WHEN PUMP P-1 IS STARTED AND RELAY IN-1 IS BUILT THROUGH X-4, STOPPING WATER FLOW FROM BYPASSING THE COLLECTORS.

MHEN THE TEMPERATURE BETWEEN THE STORAGE TAKK SENSOR TE-5 AND COLLECTOP SENSOR TE-5 DROPS TO A 205 BIFFERENTIAL CR WHEN THE STORACE TAKK HIGH LIPIT SENSOR THE-1 SENSOR 300 F, COLLECTOR PUMP P-1 WILL STOP AND COLLECTOR VALVE V-2 WILL CLOSE, STOPPING WATER FLOW FROM STORAGE TANK TO COLLECTOR PLATES. WHEN COLLECTOR VALVE V-2 CLOSES, EVFASS (PIT) VALVE V-3 OPENS, ALLOWING THE COLLECTOR PLATES TO ERAIN BACK TO THE SYSTEM SUPP BY GRAVITY FLOM.

THE SYSTEM SUTP PUTP P-4

The system sump P-4 will start when the water level in the sump reaches a level 9'6" from the top of the sump tank. The sump pump will evacuate the sump tank to a level of 10'9" from the top of the SIPP TANK.

THE SUMP PUMP IS STARTED AND STOPPED THROUGH FLTS-2, THE BH LIQUID LEVEL CONTROL.

THE SUMP MICH LEVEL WILL ALARH THROUGH HORN H-1 WHICH IS EMERGIZED THROUGH FLTS-1, BY LIQUID LEVEL CONTROL WHEN THE WATER LEVEL IN THE SUMP TANK REACHES A LEVEL OF 2'6" FROM THE TOP OF THE SUMP TANK.

When Alarm Mory H-1 is energized, relay R-3 is also energized. When relay \mathbb{R} -3 is energized, the collector supply system shuts off, in the sequence described above.

INDOOR HEATING SYSTEM

TO HEATING COILS IN PLANT A.H.U. (9 THUS)

I

IF, THROUGH THE SPACE STATS TC-J (9 thus) the plant air handling units ARU's (9 thus) are in pull demand for heat, all unit values V-1 (9 thus) pill be in the pull open position.

As THE SPACE STATS ARE SATISFIED, THE UNIT VALVES WILL BEGIN TO MODULATE CLOSED. AS THE VALVES CLOSE, PRESSURE IN THE SYSTEM SUPPLY HEADER WILL INCREASE, SENSED BY PRESSURE SENSOR PT \$1 LOCATED IN THE SUPPLY HEADER.

PRESSURE SENSOR PT-1 WILL (ON A PRESSURE INCREASE) CAUSE SYSTEM BYPASS TO STORAGE TANK VALVES V-4 AND V-5 TO OPEN.

VALVE V-4 WILL MODULATE TO FULL OPEN BEFORE VALVE V-5 BEGINS TO MODULATE OPEN. IF ALL ANU VALVES V-1 ARE FULL CLOSED, BYPASS VALVES V-4 AND V-5 ARE TO BE FULL OPEN.

As bypass value V-4 begins to midulate open, water will begin to flow across flow switches FS #1 and FS #2. When this flow rate peaches a velocity of 125 gpm across flow switch FS #2, the system "Lag pump" cither pump #2 (P-2) or pump #3 (P-3), determined by system pump "lead/lag switch" SH-1 WILL SHUT OFF.

As water velocity across flow switch #1 (FS-1) drops to a flow rate of 25 GPM, the system las pump (either P-4 or P-3) will re-start.

THE SYSTEM LEAD FUMP DETERMINED BY THE SYSTEM "LEAD/LAG" SWITCH SH-I WILL RUN CONTINUOUSLY THE LAG PUMP WILL CYCLE THROUGH RELAY R.Z. AT TEX TON' DELAY TO-I HAS CYCLED.

3

Each air Mandling unit has a "Low limit stat" ISL-1 across each hearing coil, which will shut off the unit fan - stopping air flow across the coil when the low limit stat TSL-1 senses a temperature at or below 37° F.

7

L

EOLDOUT, FRAME

TEPPERATURE SENSING AND READOUT

1

8

- 1. SENSOR TE-1 OUTLOOR AIR TEMPERATURE A. READOUT ON "ETER #-3 THROUGH TO #1
- 2. SENSOR TE 2 AVERAGE INDOOR SPACE TEMPERATI A. READOUT ON METER M-4 THROUGH TO #3
- 3. SENSOR TE-3 ENTERING BUILDING TEMPERATURE A. READOUT ON METER M-5 THROUGH TO #3
- 4. SENSOR TE-4 LEAVING BUILDING TEMPERATURE A. READOUT ON "IETER N-6 THROUGH TO \$4
- 5. SENSOR TE-5 COLLECTOR TEMPERATURE A. 30 READOUT
- 6. SENSOR TE-5 STOPAGE TANK TEMPERATURE A. No READOUT
- 7. SENSOR TE-7 INDOOR SYSTEM SUPPLY TEMPERATU A. READOUT ON "ETER M-1 THROUGH TO #5
- 8. Sensor TE-N INDOLA SYSTEM RETURN TEMPERATU A. READOUT ON "LETER N-2 THROUGH TO #G

9. SENSING AND DEADOUT SYSTEM IS POWERED BY X-1

- HAND-OFF-AUTO SWITCH AND PILOT LIGHT OPERATION
- 1. 804 #1
 - A. COLLECTOR PURE P-1 1. FILCT LIGHT (PL-1) "POWER ON" GREEN 2. FILCT LICH: (PL-2) "PUNE NUM" RED LI
- 2. 104 #2
- - A. INDOOR SYSTEM SUPPLY PUMP #1 (P-2) 1. Pilot Light (PL-3) "Pomer on" Green 2. Pilot Light (PL-4) "Pump Pum" Red Li
- 3. HOA #3
 - A. INDOOP SYSTEM SUPPLY PUMP #2 (P-3) 1. Pilot Light (PL-5) "Pomer on" Green 2. Pilot Light (PL-6) "Pump rul" Red La
- 4. HOA #4
 - A. SYSTEM SUMP PUP #1 P-4 1. PILOT LIGHT (PL-7) " POWER ON" CREEN

	LEGE		
	BILL OF MATERIAL	CON	TROL
	J=WIRING BY JC.I.	۶Ţ	SEE
	OF WERING BY OTHERS	Ō	DEV
	F=OUTSIDE PURCHASED MATERIAL P=FURMISHED BY JCT PAMEL DIV.	Ō	ON
	BEFURNISHED BY JCI BRANCH OFF.	ŏ	FIEL
6	1 5		1

A'D READOUT

والمتحدة فكفرا والإفاقية بالام محدر ويترغب فمامهما والانتقاب والمتعاوية والمتعاقبة والمتحدة منافعات والاستراجع والالالمتراجع

K.D. READOUT TE DOR ÅLE TEMPERATURE ETER M-3 THROUGH TO 81 EPAGE INDOOR SPACE TEMPERATURE ETER M-4 THROUGH TO 83 TEALING BUILDING TEMPERATURE ETER M-5 THROUGH TO 84 AVING BUILDING TEMPERATURE ETER M-6 THROUGH TO 84 ALLETOR TEMPERATURE

DRAGE TANK TEPPERATURE

DOAR SYSTEM SUPPLY TEMPERATURE FOR SYSTEM RETURN TEMPERATURS DUT SYSTEM IS POWERED BY X-1 (VQ-4100-1) AND PILOT LIGHT OPERATION

PF P-1 BONT (PL-1) "PIMER ON" GREEN LENS GNI (PL-2) "PIME MIN" RED LENS

P. SUPPLY PUMP #1 (P-2) BH/ (FL-3) "POMER ON" GREEN LENS EGH: (PL-4) "PUMP RUN" RED LENS

en Supply Pump #2 (P-3) BGH" (PL-5) "Power on" Green Lens BGH" (PL-E) "Pump run" Red Lens

PUMP F1 P-4. SHI (PL-7) " POWER ON" GREEN LENS

ORIGINAL PAGE IS OF POOR QUALITY

`3 [`]

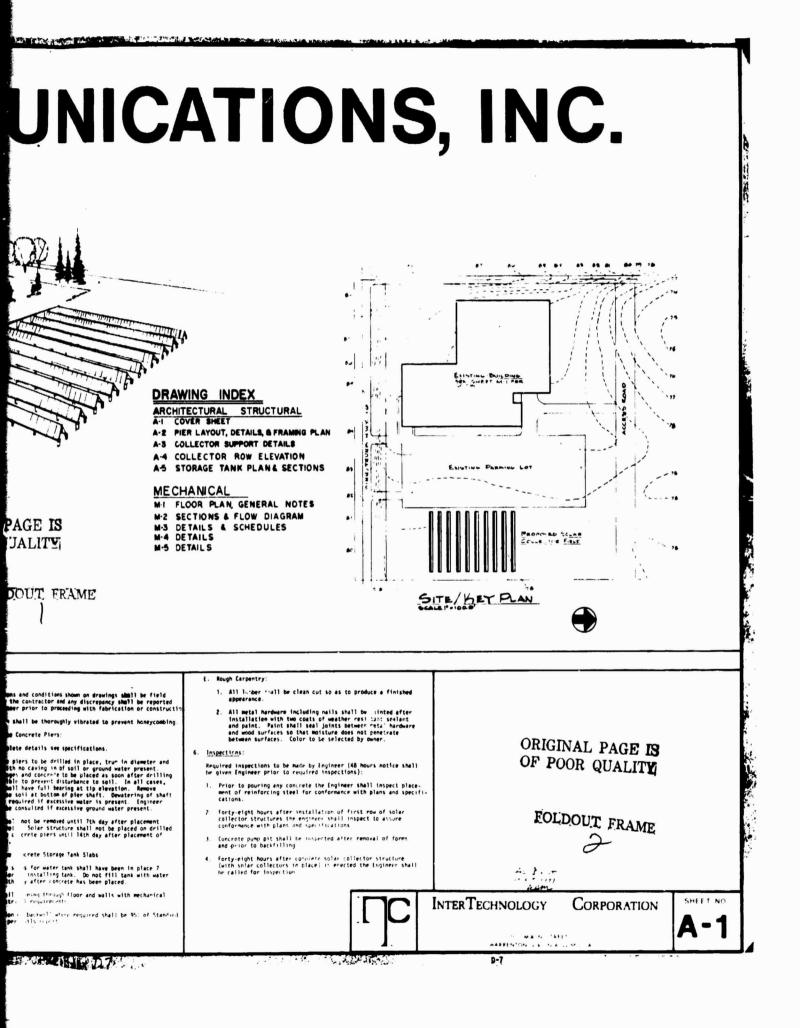
4

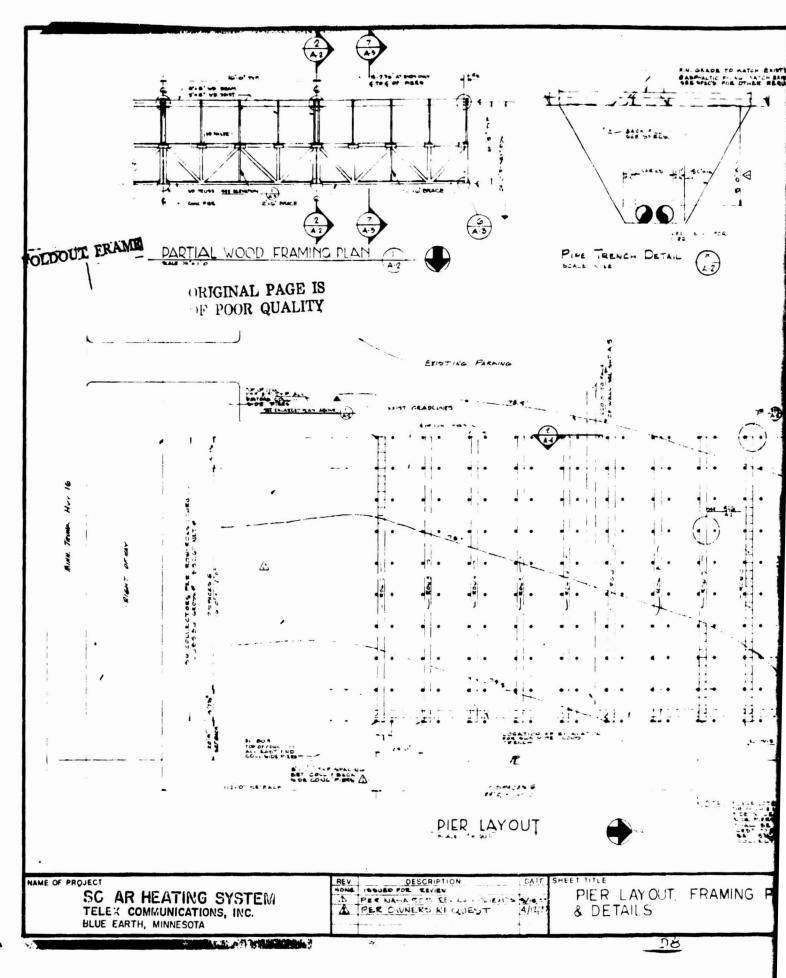
FOLDOUT FRAME 2

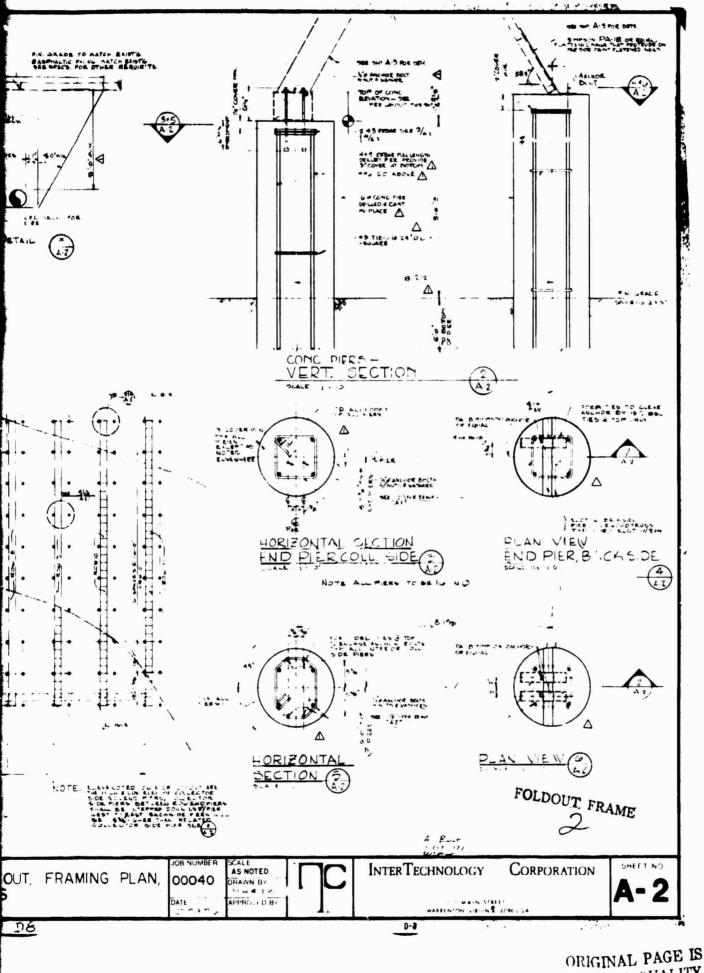
• · · · · ·

2

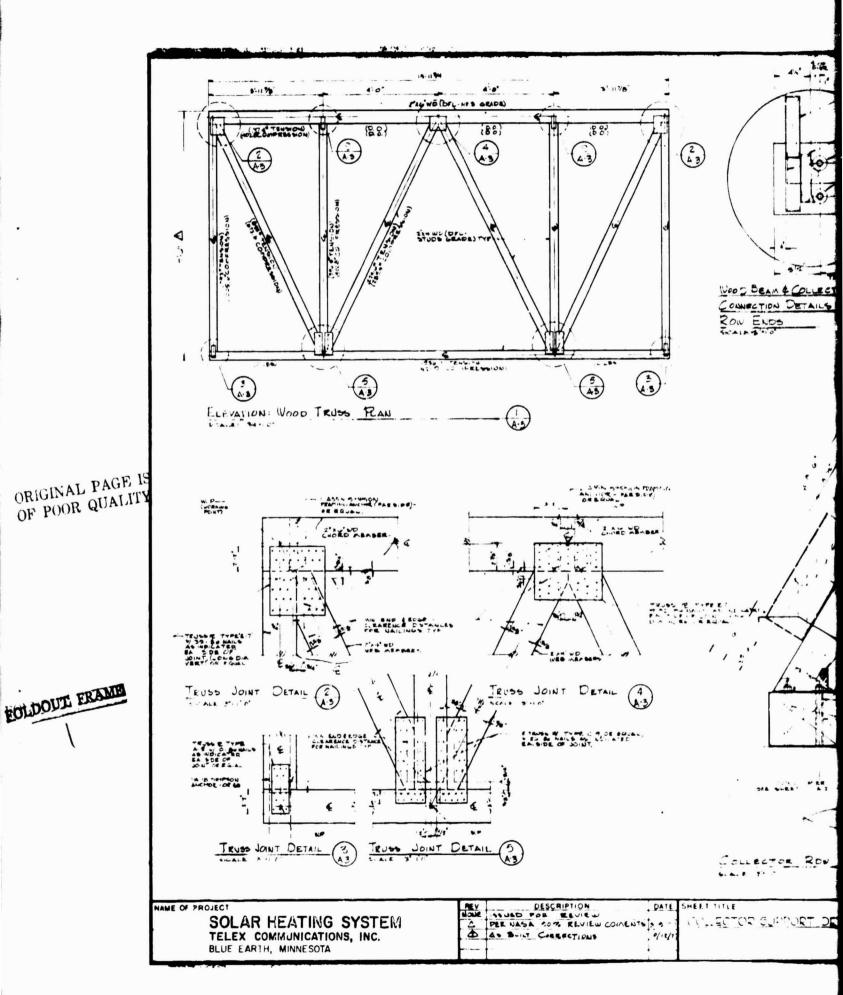

ł

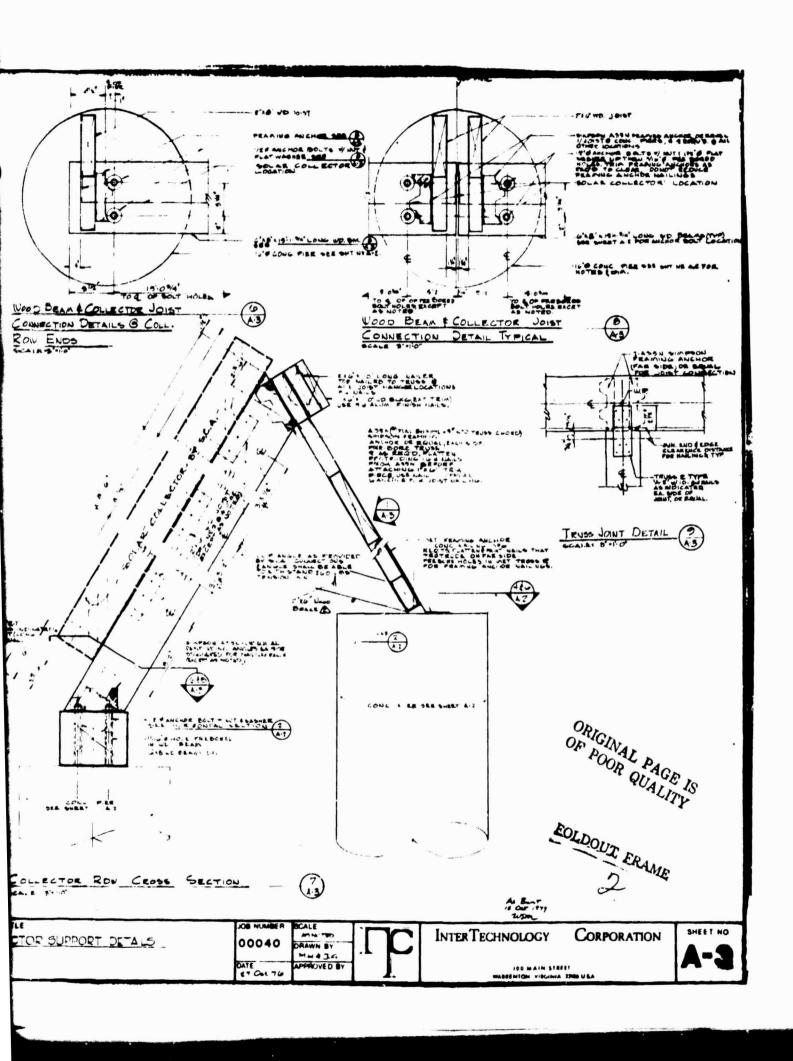

.

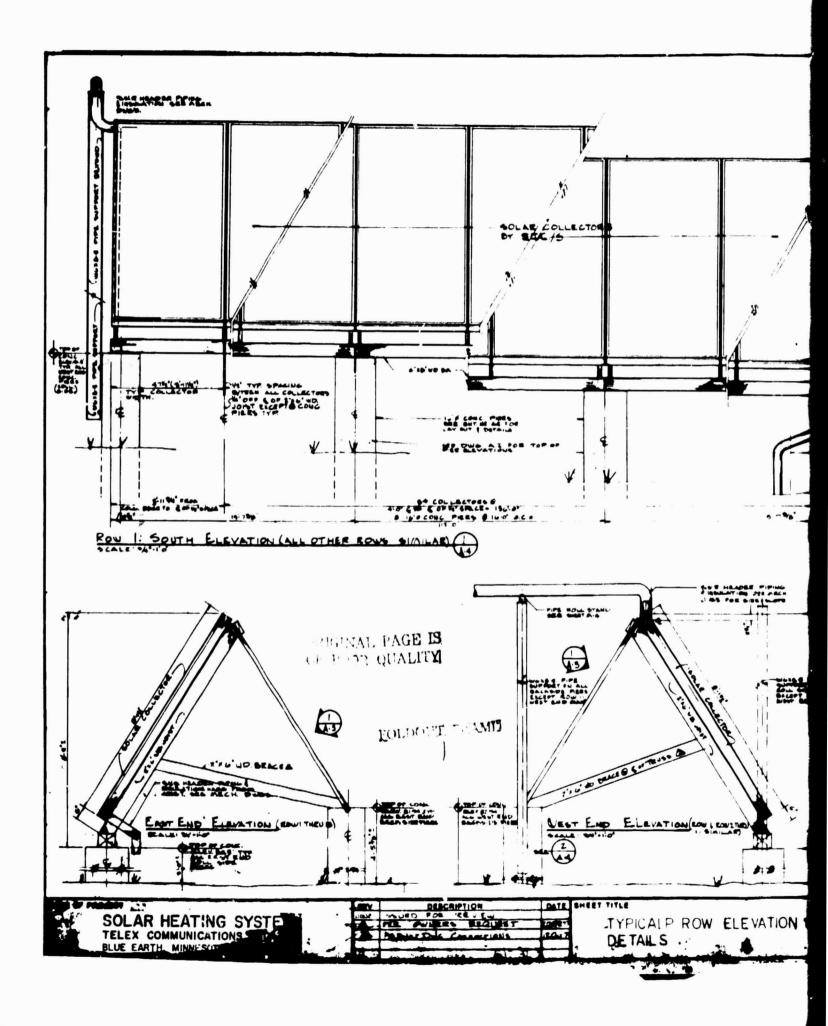

1

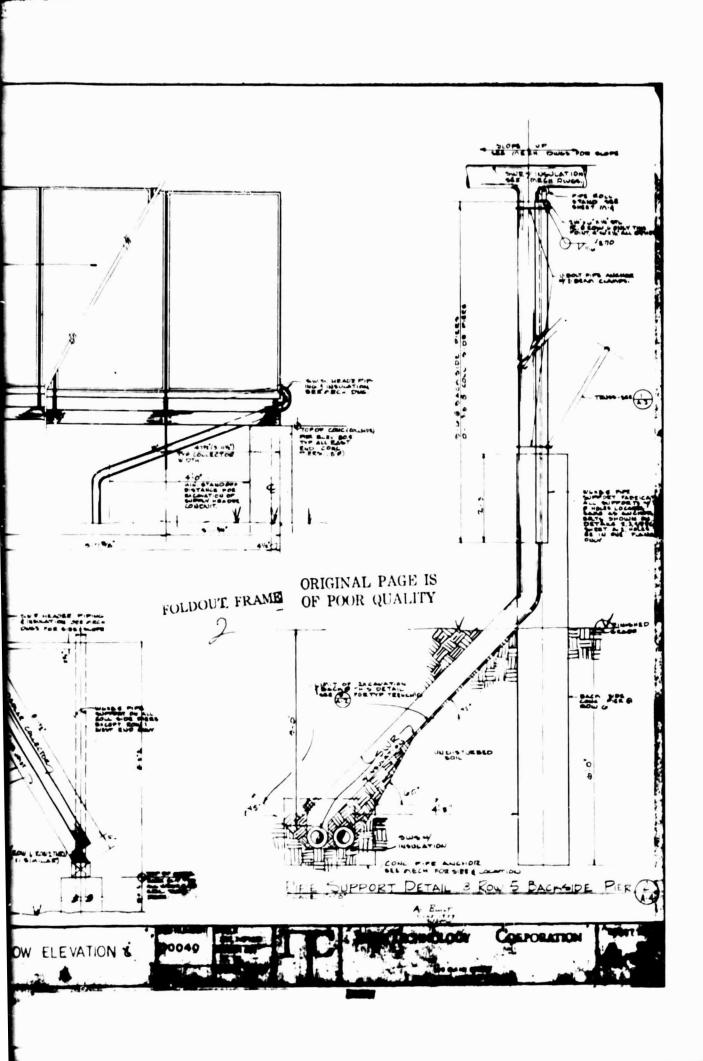

AS EXLLT $P \boxtimes E \boxtimes$

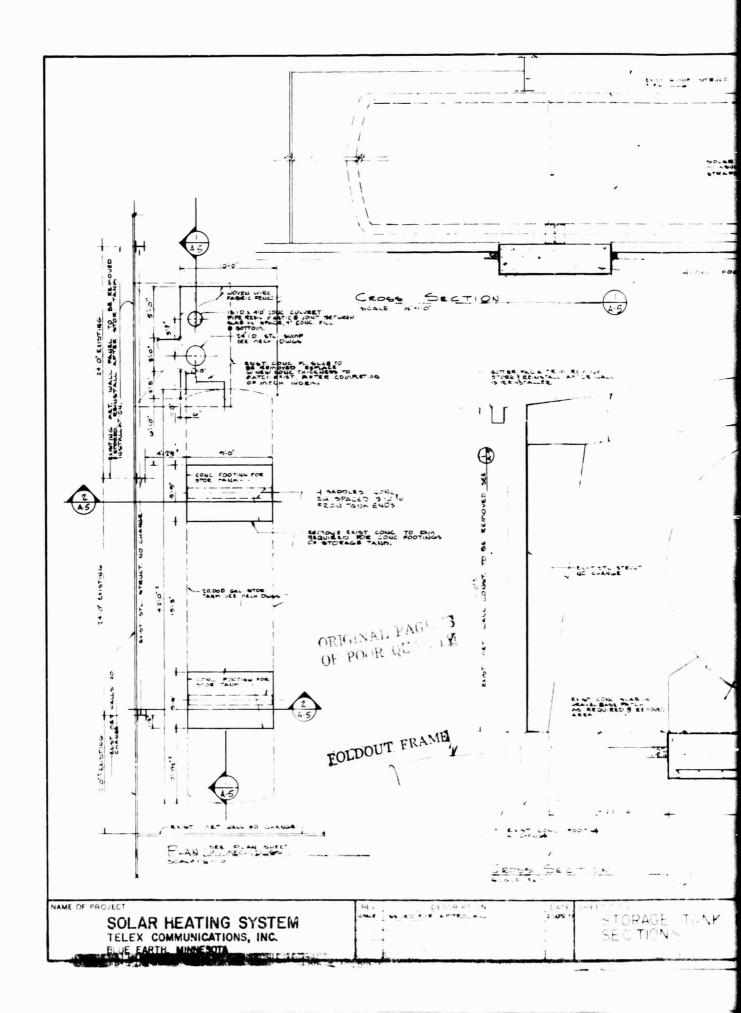
LEGE		TROL DIAGRAM SYMBOLS	VALVE SCHEDULE +			
6	ξĮ	SEE WINITIG DETAIL NUMBER WITHIN TRIANGLE DEVICE FLUSH MOUNTED	LADDER DIAGRAMS	ALTENTICE DEFWINDS	*(*'3 C* - : DC#*in*	
ED MATERIAL PLNEL DIV.		ON PANEL FACE FIELD WIRING CONNECTION	TELEX	- CHOONE	IEOI 67:1 AVE N.	CONTRACT REVIELS TEASTORIA
BEANCH OFF.	ŏ	FIELD PNEUMATIC CONNECTION	BLUE EARTH MN.	Systems & Services Duision	MPLS. MN. 55430	6076
5		4	4 · 3 D-6	2		1

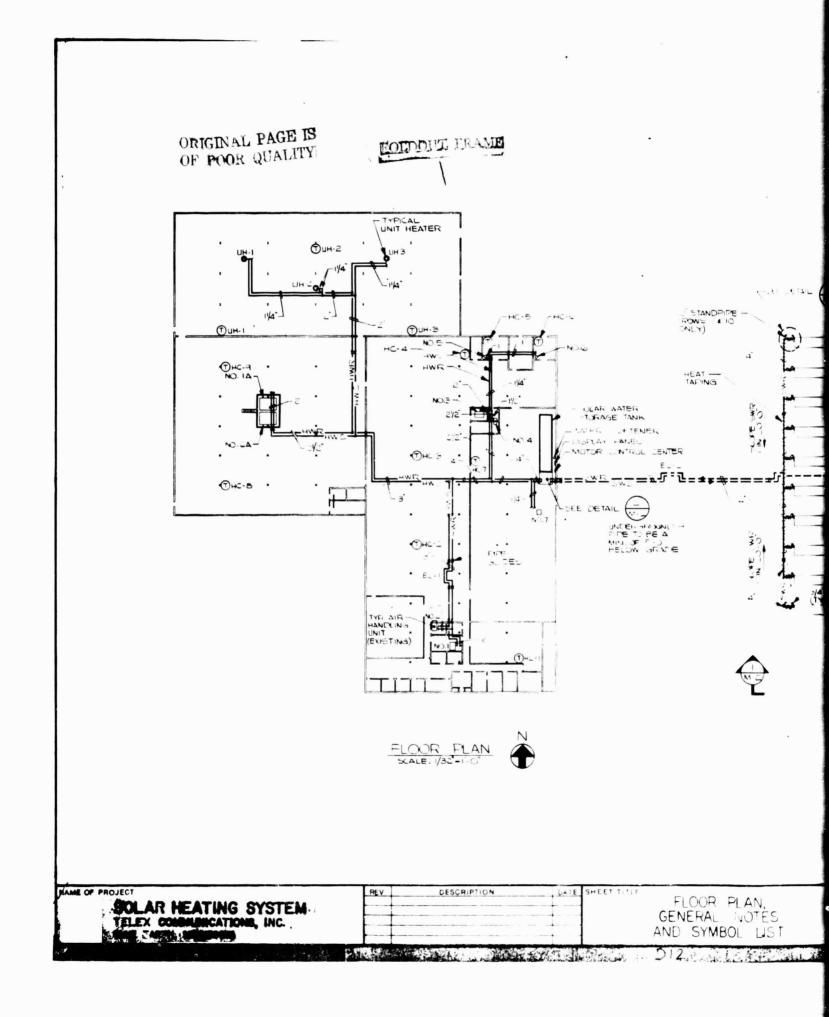


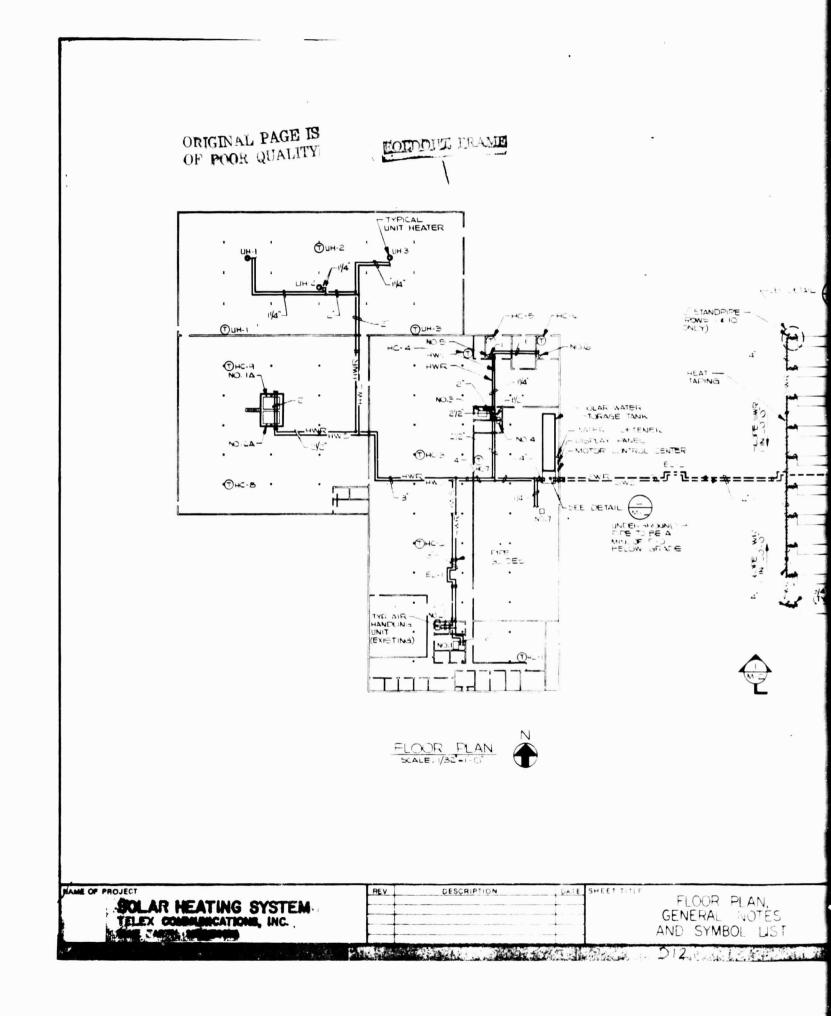


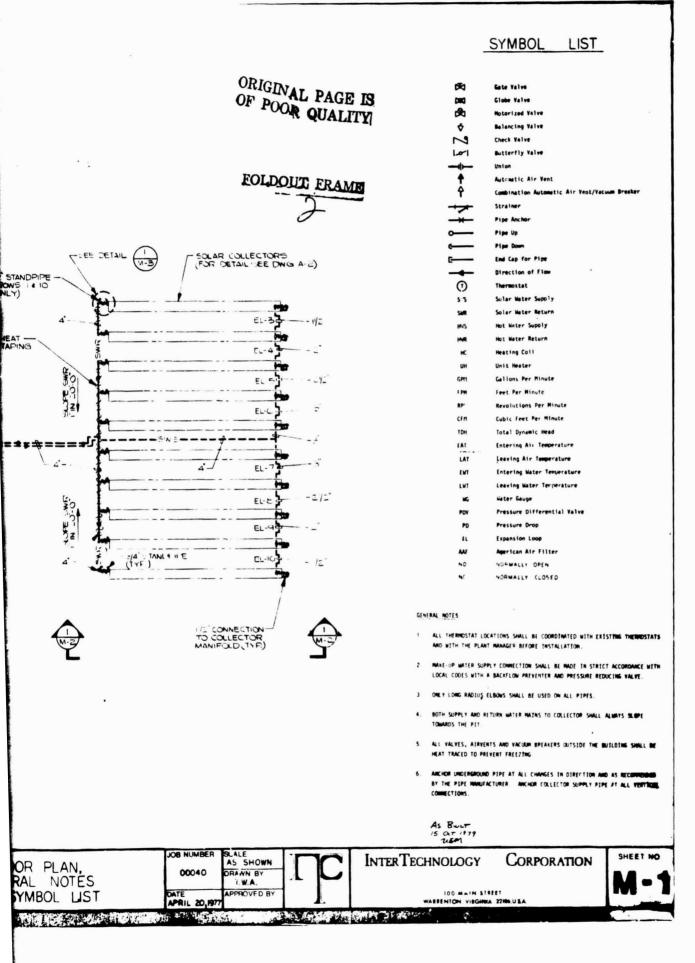


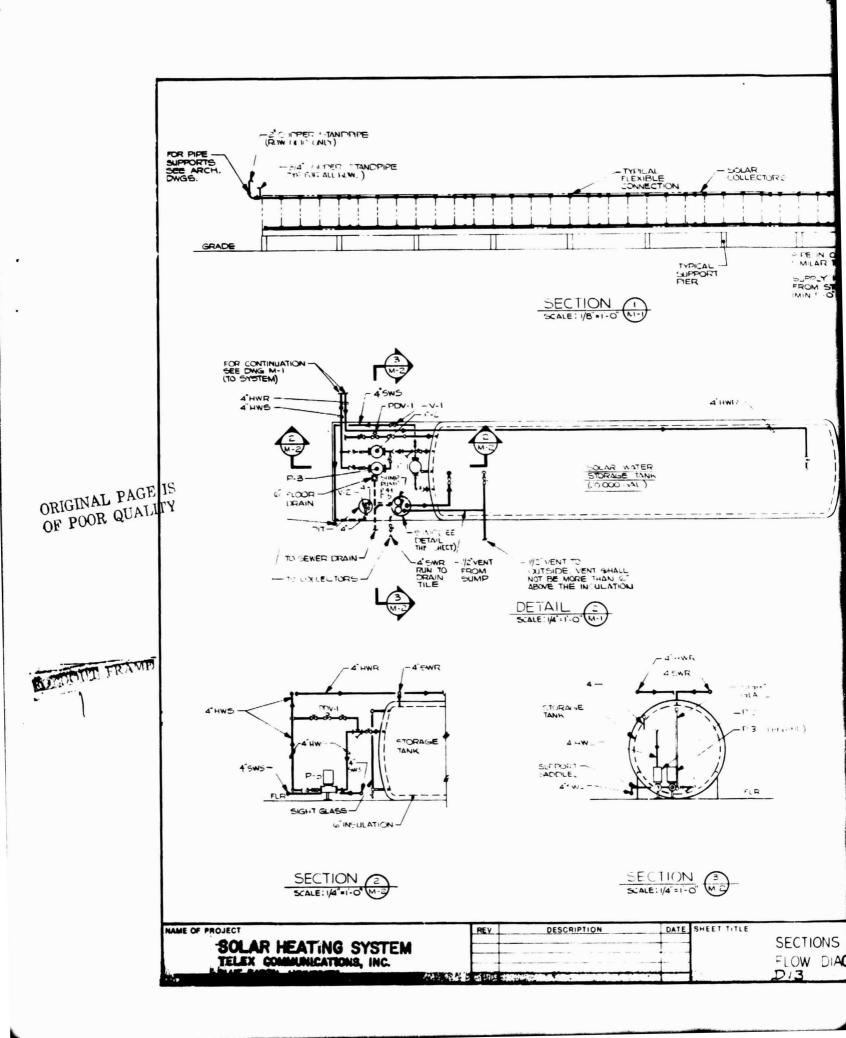


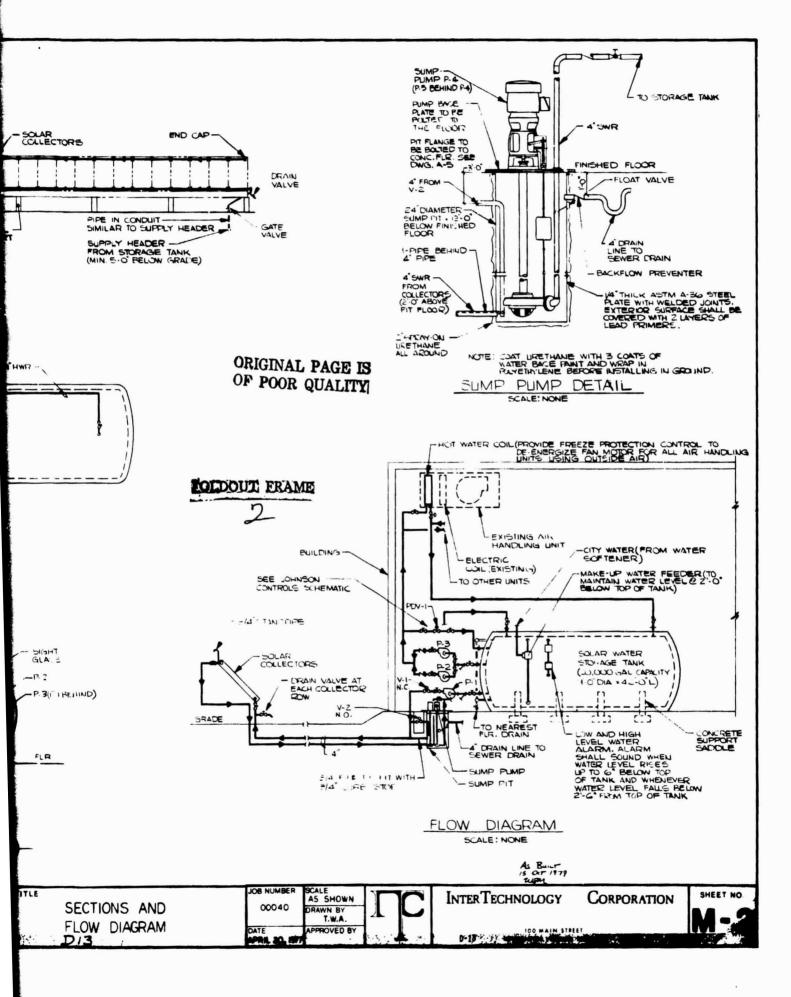

OF POOR QUALITY

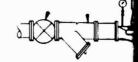




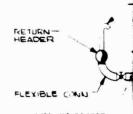







A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A

			F	PUMF	D SCH	EDULE					
PUMP		PER	ORMA	NC	DATA	CONSTRUCTION	NPSH				
NO.	SERVICE	GPM	TDH	RPM	MOTOR	DATA	AVAIL	REOD	MANUFA	CTURE	2
N	-		FT.		H.R	TYPE PUMP	AVAIL	REGU			
1	SOLAR COLLECTORS	240	55	1750	742	INLINE	8'	4'	B44	SERIES	60
2	HEATING COILS	125	60	1750	5	INLINE	ð'	3'	"		
3	HEATING COILS	125	60	1750.	5	INLINE	٥'	3.	"	"	•
4	SUMP PIT	240	20	1750	2	BHWB	ຜ່	4'	AURORA	SERIES	550
5	SUMP PIT	240	20	3600	1/2	SUMP PUMP	6	4	"	"	530


FUMP -

THAINER -

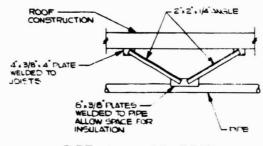
CIRCUIT SETTER-

SCALE NONE

1 7.

AR D

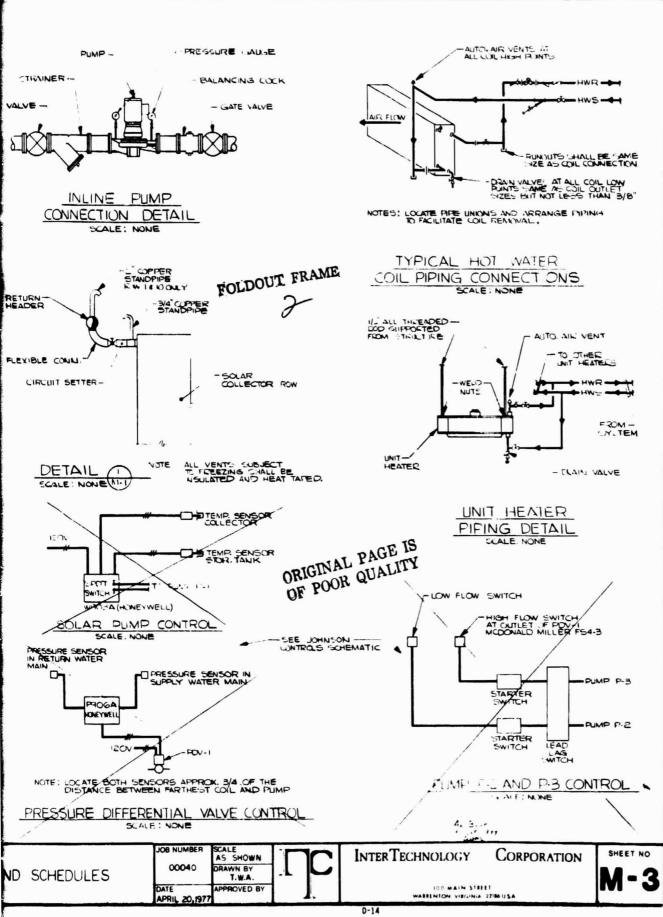
PICEA

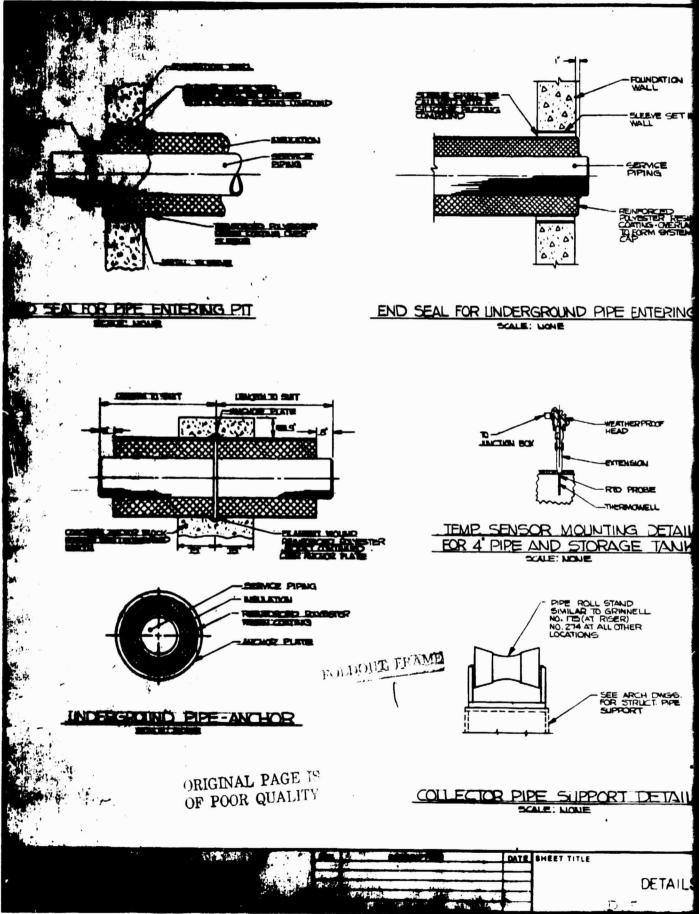

NOTE LOLATE OUT

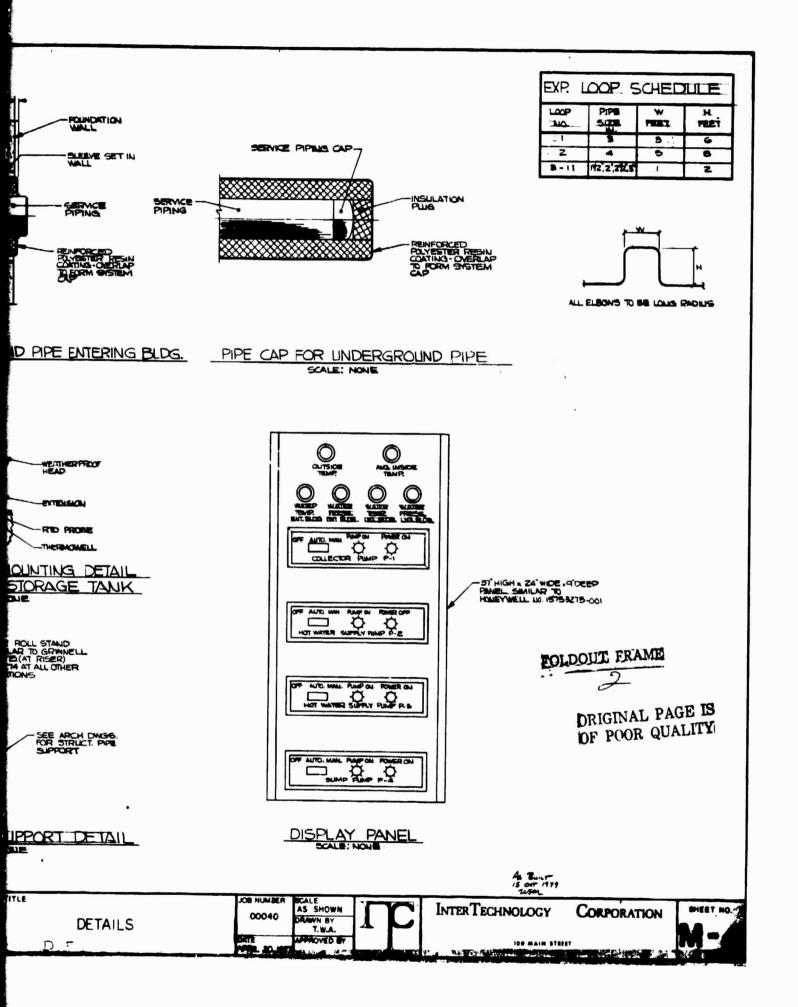
FRESSURE DIE

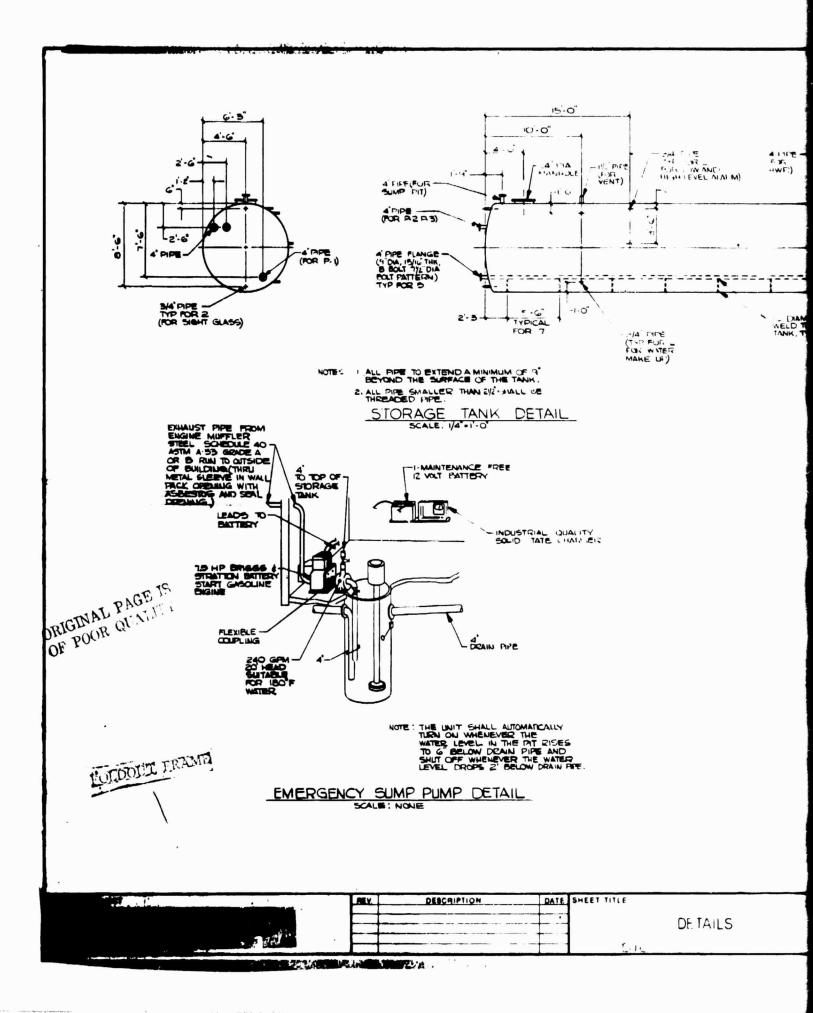
		н	EATI	NG	COIL	. sc	HED		Ξ	
COIL		CAP		AIR			WA	TER		MAY FACE
NO.	LOCATION	CFM	EAT	넄	P.D.	GPM	EWT	L¥¥Ţ	P.D. FT.WG	VELOCITY IN
HC-I	UNIT -I	8000	50	80	.5	35	105	90	2	600
HC-2	UNIT-2	9200	-00	80	.5	40			2	600
HC-3	UNIT - S	9200	50	80	.5	40			Z	000
HC-4	UNIT-4	3600	50	80	.5	16			z	600
HC.5	UNIT-S	1200	50	60	.5	5			2	600
HC-G	UNIT-G	1200	30	80	.5	3			2	600
HC. 7	UNIT-7	2000	.O	80	.9	9			z	600
HC-8	UNIT IA	10500	50	70	5	30			-	00ع
HC-9	UNIT-2A	10500	50	70	.5	30	•		2	٤00

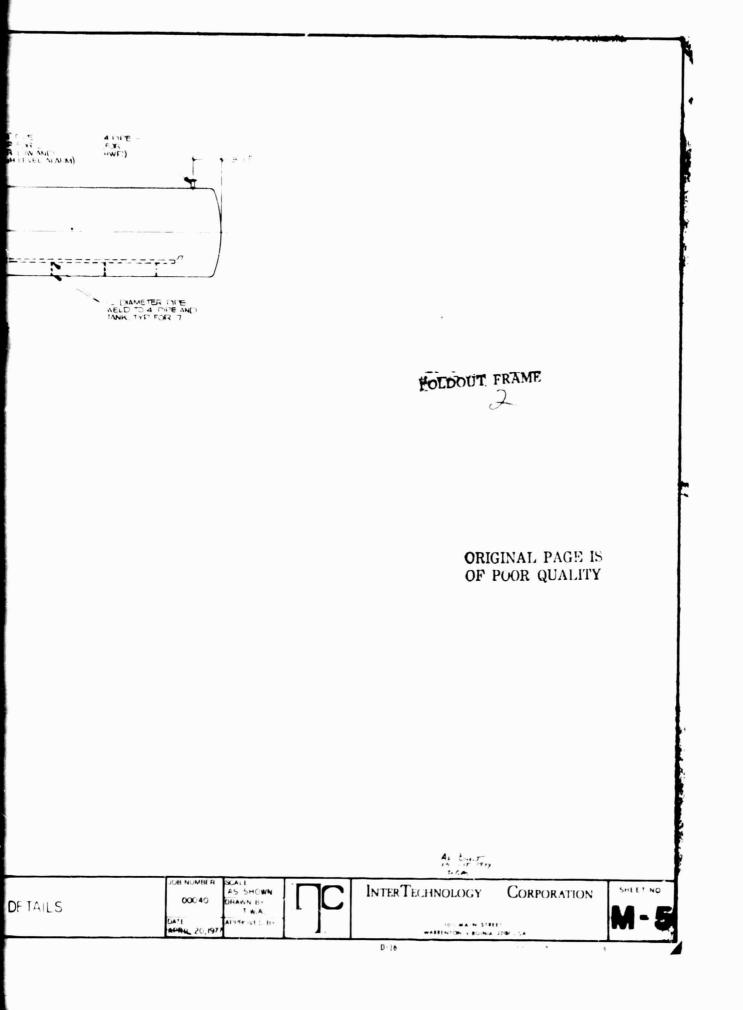
			L	INIT	HE4	ATER	r sa	THE	DUI	-E		
UNIT	SERVICE	CAP	CEM	GPM	EWT	1.47	MOT.	DATA	ELECT	RICAL	DATA	
NO.		мвн	C		°F	•F	MHP	RPM	VOLTS	HZ	PHASE	REMARKS
.1	STORAGE	78	5430	12	105	90	1/Z	1140	120	60	1	SIMILAR TO A A F.
2	STORAGE	76	54 30	12	105	90	1/2	1140	120	60	1	NO. YU- 2620
3	STORAGE	78	5430	12	105	90	1/2	1140	120	60	1	SIMILAR TO A AF


EULDOU'T FRAME ORIGINAL PAGE IS ON POOR QUALITY




NAME OF PROJECT	REV	DESCRIPTION	DATE	SHEET TITLE		
POLAR HEATING SYSTEM			+	DETAILS	AND	SCHEDULES
THE EASTA MAREBOTA				in .:	-	


1 -1 11



Contract of the second state of the second sta

