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FLIGHT-DECK AUTOMATION: PROMISES AND PRO:LEMS

Earl L. Wiener”
University of Miami, Coral Gables, Florida

and

Renwick E. Curry
Ames Research Center, NASA, Moffett Field, California

Summary

Modern microprocessor technology and display systems make it entirely
feasible to automate meay flight-deck functions previously performed
manually. There are many real benefits to be derived from automation; the
question today is not whether a function can be automated, but whether it
should be, due to the various human factor questions that are raised. It is
highly questionable whether total system safety is always enhanced by
allocating functions to automatic devices rather than human operators, and
there is some reason to believe that flight-deck automation may have already
passed the pcint of optimality. This is an age-old question in the human
factors profession, and there are few guidelines available to the system
designer.

This paper presents the state of the art in human factors in flight-deck
automation, identifies a number of critical problem areas, and offers broz-
design guidelines. Some automation-related aircraft accidents and incideucs
are discussed as examples of human factors problems in automated flight.

1. Introduction

Papers of this sort often begin with the almost mandatory statement that
in future systems automatic devices will provide for the real-time, moment-
to-moment control of the prucess, and that the human operator will be
relegated to the post of monitor and decisionmaker, keeping watch for
deviations and failures, and taking over when necessary (see numerous papers
in Sheridan and Johannsen 1976). This prescription is based on the observa-
tion that inanimate control devices are extremely good at real-time control,
but must be backed up by the remarkable flexibility of the human as a super-
visor and standby controller, in case of breakdown or other unforeseen

events.

*Parl L. Wiener is with the Departments of Management Science and
Industrial Engineering, University of Miami, Coral Cables, Florida 33124.
He is a visiting research scientist at Ames Research Center under an
Intergovernmental Personnel Agreement.



Another virtually mandatory statement is that the numan, for all his
putative flexibility, is not so good at the monitoring task and is highly
likely to miss critical signals, as well as to make occasional commissive
errors. Indeed, the verity of the second statement, supported by endless
accident and incident reports, tempts designers to '"automate human error out
of the system." The lure is especially great in aviation, where the cost of
human failure can be so catastrophic.

Although the authors have no quarrel with the two basic statements, the
assumption that automation can eliminate human error must be questioned.
This paper will explore automation of flight-deck functions, the presumed
benefits and possible pitfalls, and will ask whether it is possible that
cockpit automation may have already passed its point of optimality. This
examiration is made more urgent by rapid developments in microprocessor
technology and many present and near-future applications in the cockpit
(Lovesey 1977; Ropelewski 1979). The question is no longer whether one or
another function can be automated but, rather, whether it should be.

Much of what will be said zbout automation on the flight deck may be
applied equally well to other large-scale systems (e.g., air traffic
control and nuclear power generation), and we invite the reader to do so.
Likewise, much of what has been written about automation in other fields
could apply to the flight deck; for example, note the many excellent papers
on process control appearing in Edwards and Lees (1974) and the overview by
Shackel (1967).

The very word "automation" is likely to conjure up, at least in the mind
of the technologically unsophisticated, two rather opposite images, both of
which can ultimately be shown to be exaggerated, if not incorrect. On the
negative sid=2, automation is seen as a collection of tyrannical, self-serving
machines, degrading humans, reducing the work force, bringing wholesale
unemployment, and, perhaps even worse, offering an “‘nvitation to a techno-
logical dictator to sieze power and build a society run by Dr. Strangeloves,
aided by opportunistic, cold-hearted computer geniuses. The classic Charlie
Chaplin movie Modern Times depicted the subjugation cf industrial man to
machine, and more recently the popular novels and movies by Michael Crichton
(Westworld, Terminal Man) dwelled on the perils or a computer-based society
gone awry. So far, there is no indication that such a thing has happened,
or that it will.

Perhaps equally fallacious is the positive image of automation: quiet,
unerring, efficient, totally dependable machines, the servant of man,
eliminating all human error, and offering a safe and cost-effective alterna-
tive to human frailty and caprice. The traditional dream of traditic -1
engineers has been to solve the problem of human error by eliminating . 3
source. It is worth noting that the gemneral public appears as skeptica. of
the infallibility of automation as they are fearful of its consequences.
Witness the endless popular jokes about the announcement over the airliner
intercom that the plane is being flown entirely by automatic devices.



Thus, the authors will shortly present what is popularly called '"the
good news and the bad news' of flight-deck automation, for there are ample
instances of each. We shall finally attempt to provide some tentative guide-
lines to the implementation of automatic devices in aircraft. Automation of
human functions in air traffic control (ATC), weather forecasting,
dispatching, and maintenance, although vitally important, will not be
addressed.

2. Why automate?

It is trite (though necessary) to say that automatica may be a mixed
blessing in the cockpit. Already there is serious concern about the effect
of automation on flight-deck performanc., workload, and, ultimately, on
aviation safety (Edwards 1276, 1977). Questions have arisen from accident
reports, incident reports (such as NASA's Aviation Safety Reporting System).
airline training, simulator studies, and our own interviews with crewmembers
and airline flight managers about such matters as failure detection, manual
takeover, skills degradation, and even job satisfaction and self-concept of
pilots and flight engineers operating highly automated equipment. These are
not new problems, but they are now being addressed with a new urgency and
frankness, impelled by the technological developments that make flight-deck
automation entirely feasible, at least from an electromechanical point of
view.

2.1 A basic assumption

One hears, from time to time, talk of the unmanned airline cockpit.
Although the authors find this neither unthinkable or technologically
infeasible, we feel that as far into the future as we can see, it would be
socially and politically unacceptable. Therefore, while we do not completely
dismiss the idea of an unmanned airliner, this discussion is based on the
assumption that airliners will carry a human crew. For a concurring view,
see McLucus (1978). Questions about the size, functions, selection,
training, and motivation of this crew, however, remain open. It should be
noted that even the unmanned factory, so cften predicted, has never come to
pase (de Jong and Koster 1974).

2.2 Driving forces

Before going further, one should ask just what is the thrust behind
cockpit automation. We have identified three factors.

2.2.1. Technology: The explosive growth of microprocessor technology
has already been mentioned. Rapid improvement in performance and



2.2.2.

2.2.3.

decrease in size, cosiv, and power consumpticn of various
electronic devices, sensors, and display media, make automation
of many flight-deck (as well as ground-based) systems a
reasonable alternative to traditional manual operation. This
trend will continue well into the next century. One should note
that technology is not a goal {as the next two factors are), but
is instead a facilitating factor.

Safety: More than half of the aircraft accidents are attributed
to "human error.'" This term can be somewhat misleading, as one
is never sure whether it means cockpit crew error or includes
other humans, such as ATC controllers, weather forecasters,
m.intenance personnel, and dispatchers. Be that as it may, there
exists ample need to reduce human error in the cockpit.
Autopilots, flight directors, and alerting and warning systems
are examples of automatic systems that have had a beneficial
effect on pilot workload and on safety margins. The ground
proximity warning system (GPWS) provides an excellent example.
Since its introduction by Congressional mandate in 1974, there
has been a dramatic reduction in terrain-strike accidents, both
in the United States and worldwide. It is impossible to know

how many aircraft and lives have been saved by this device. None-
theless, it is often denounced by pilots for the frequent false
alarms it generates. These false alarms are annoying and poten-
tially dangerous, but on balance, the GPWS would have to be
viewed very favorably.

Economics: Undoubtedly, automation can bring about enormous
savings through fuel conservation, if total flight time can be
reduced and if more fuel’-efficient climb and descent patterns
can be implemented (Curry 1979; Feazel 1980). Both the potential
for dollar savings and the effect on airline profits are
difficult to exaggerate, especially in the face of steadily
rising fuel prices. 1In 1978 a gallon of jet fuel sold for about
38 cents (U.S.), for 70 cents by the end of 1979, and is fore-
cast to be more than one dollar by the end of 1980. A recent
analysis of the operating costs and profits of a wajor U.S.
carrier showed that a 3% savings in jet fuel could resilt in a
23% increase in profits. Automation in both ATC and the cockpit
could easily produce the 37 reduction in fuel consumption; even
greater savings are possible on shorter runs, such as the New
York to Boston shuttle. Potter (1980) reported that every
percentage point increase in jet fuel price will cost Western
Airlines $4,000,000. Likewise, we presume, every percentage
point by which consumption can be reduced should save the
conpany about the same amount. Finally, Covey et al. (1979), who
summarized 12 fuel conservation methods, have .concluded that a
savings of up to 12% could be realized from their optimal use.
Five percent savings have already resulted from a partial im-
plementation. Most of the methods they outlined would require
automation to some degree in order to achieve maximum savings.
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As in other industries, a large component of airline
operating costs is labor. Although it is questionable whether
autcmation can reduce the number of persons in the cockpit (the
authors do not wish to plunge into the two-versus-three person
crew controversy at this time), it is a possibility that should
not be totally discounted (O'Lonz 1983).

Furthermore, automation may reduce direct labor costs some-
what by reducing flight times through more efficient l.iteral
navigation, and may cut maintenance costs by more effective use
of the equipment. 1In considasring economics, however, one must
also recognize that automation equipment is expensive. The air-
line industry will incur enormous capital costs to acquire the
equipment, as well as operating costs for training and mainte-
nance. But even putting the safety question aside and looking
only at the economics, it appears at this time that flight-deck
automation should be a vervy good investment, especially in view
of continuing fuel price increases and possible shortages.

3. Representative aviation accidents and incidents

So much for the promises of flight-deck automation. Let us now examine
some of the problems, which can best be illustrated by representative
aviation accidents and incidents. These accounts are confined, by necessity,
to very brief summaries and comments on what is usually a very complex
causative chain. We do not wish to oversimplify either the facts or the
causative interpretations of these accidents, and the interested reader is
encouraged to read the full reports. For other examples, see Rolfe 1972,
Danaher 1980, and Wiener 1977 and 1980.

3.1 Failure of automatic equipment

One of the concerns regarding the use of equipment for autonatic
control or monitoring is that it may fail to operate correctliy. Ccocnsider
the following incidents reported in a cockpit newsletter:

1. 1In an approach with the autopilot in control, a bend in the glide-
path at 500 ft above the ground caused a very marked pitch down,
resulting in excessive sink rate. The pilot, though fully aware of
the situation, did not react until his position was so critical
that a very low pull-up had to be made.

2. The altitude preselect (a device to level the aircraft at a pre-
determined altitude) malfunctioned. This went unnoticed by the
pilots and an excessive undershoot was made (descent below desired
altitude).



3. At level-off by use of the altitude preselect and with the
throttles in idle (was autothrottle in use or expected?), the speed
dropped close to the stall point before this condition wns detected
and rectified by power application.

4. While in navigation mode (autopilot steering the aircraft to
maintain a track over the ground), the aircraft turned the wrong
way over a checkpoint. Although the wrong turn was immediately
noticed, the aircraft turned more than 45° before the pilot took
action.

These reports are brief, and the present authors do not have access to more
details. Thus it is difficult to determine how much of the faulr should be
attributed to hardware failure, improper setup of the equipment, and
inappropriate expectations of how the equipment should operate. Nonetheless,
the reports are typical of the day-to-day problems encountered by
flightcrews.

3.2 Automation-induced error compounded by crew error

The following accident illustrates one of the special hazards cf
automation, one that many traditional engineers might rather not hear about.
In this case, the causative chain of events was set into motion by the
failure of the automated equipment; the equipment error was then
compounded by crew error, and a crash resulted (NTSB, 1979a). A Swift Aire
Lines Nord 262 departed Los Angeles International westbound. Shortly after
gear retractior, its right engine autofeathered. Autofeather is a device
common on advanced twin-engine propeller-driven planes. It senses a loss of
power in an engine and feathers the propeller automatically. It is armed
only on takeoff and initial climbout. The purpose of the autofeather is to
preclude the possibility that a crewmember will shut down the wrong engine
in the event of power failure on takeoff. It remains for the crew to
secure the dead engine, increase power on the operating engine, make trim
and control adjustments, and continue climbing to a safe altitude for return
to the field.

Immediately after the right engine autofeathered, the crew shut down
the left (operating) engine; the result was a fatal ditching in the Pacific
Ocean. Examination of the right engine showed there had been no power loss,
and the autofeather had been due to a broken hydraulic hose in the sensing
mechanism. Later investigation revealed that inadvertent autofeathers on
Nord 262 aircraft were not unusual. Thus, a device designed to automate
human error out of the system had triggered a chain of events that was
compounded by the very human error it was supposed to prevent.



3.3 Crew error in equipment setup

Inertial navigation systems (INS) are automatic navigators. They are
also used to supply automatic pilots with position information to allow
control of aircraft track (the navigation mode). A series of checkpoints,
or waypcints, defining the desired track across the eartn, is loaded into
the INS computer by keyboard before the flight by entering the waypoint
latitude and longitude. The inertial navigation system aligns itself before
flight and knows its accuracy status; since the accuracy increases during
alignment, the INS will be less tolerant of errors in initial position.
During the initial alignment, one crew loadcd their position as a ncrthern
latitude rather than the actual southern latitude. The error was not
detected by either the INS or the crew until after takeoff. The aircraft
“ad to return to the departure point because the INS could not be reset in
flight.

3.4 Crew response to a false alarm

Another form of automation-induced error is the false alarm, which
persuades the crew to take corrective action whzn, in fact, nothing is
wrong with the system (other than the spurious alarm). Such an error
occurred during the takeoff of a Texas International DC-9 from Denver
(NTSB, 1977). As the aircraft accelerated to the velocity of rotation
(where the nose wheel is lilted off the runway and the aircraft assumes a
nose-high pitch attitude), about 150 knots in this case, the stall warning
actuated. This was a "stick shaker,'" a tactile warning system whereby the
control column begins to shake, as well as to give auditory "clacks."”
Believing that a stall was imminent, in spite of normal airspeed and pitch
attitude indications, the crew elected to abort the takeoff, resuiting in a
runway overrun, severe damage to the aircraft, and nonfatal injuries to
some passengers. Interestingly, the pilots had both experienced spurious
stall warnings on takeoff previously, but they probably had little choice
but to regard this as a bona fide alert.

In a "split second'" the crew faced a choice between aborting the
takeoff, with an almost inevitable, though perhaps noncatastrophic,
accident, and continuing the takeoff with a plane that might not be flyatle,
which could result in a much worse accident. It might be interesting, but
perhaps not highly profitable, to speculate on what might have occurred if
this decision function had been automated. Suffice it to say that the
decision to stop or go, as it faced the crew at that critical moment during
rotation, would have been in the hands of some distant software designer.

We leave it to the reader to decide if that is a comforting thought.



3.5 Failure to heed automatic alarm

Aa airline aircraft was on an approach to landing, but at an excessive
airspeed. During the approach the ground proximity warning system was
triggered three times (once for excessive descent rate, twice for less than
26° flaps with gear extended and excessive descent rates). Instead of
executing a missed approcach, the captain continued toward landing, crossing
the runway threshold at a speed of 184 knots, 61 knots above the reference
speed. The aircraft landed approximately halfway down the runway and overran
the far end; one person was injured seriously.

The National Transportation Safety Board (179b) determined that the
probable cause ofi the accident was the captain's complete lack of awareness
of airspeed, vertical speed, and aircraft performance throughout the
approach and landing. A contributing factor was the copilot's failure to
provide requiraed callouts of airspeed and vertical speed deviations. In its
analysis, the NTSB did note that the GPWS alerts should have indicated to the
crew that the approach was improper and that a missed approach was necessary.
It also mentioned that none of the alerts caused the crew to take
corrective action, even though company procedures dictated that they should
do so.

3.6 Failure to monitor

This type of problem can be exemplified by certain '"controlled flight
into terrain" accidents, in which a flightcrew, with the aircraft totally
under control, flies it into the ground (or water), usuvally without any
prior awareness of impending disaster (see Ruffell Smith 1968; Wiener 1977).
In December 1972, an Eastern Airlines L-1011 was approaching Miami on a clear
night. During the prelanding cockpit check, the crew encountered an unsafe
landing gear indication (light failed to illuminate). ATC assigned the air-
craft to a westward heading at 2000 ft (mean sea level), while the crew
attempted to diagnose the problem. The plane was under autopilot control.
The flight crew became preoccupied with the problem at hand (the captain and
first officer had pulled the bulb appliance out to check the lamp and were
having trouble putting it back together). They did not notice that the
autopilot had disengaged and that the aircraft was in a slow descending
spiral. They flew into the ground, having never detected their departure
from altitude. even with full cockpit instrumentation, extra-cockpit vision,
a C-chime altitude alert that sounded (and was present on the cockpit voice
recorder), and an ambiguous inquiry from a radar operator in Miami who
observed the descent on he alphanumeric readout on his set (NTSB, 1973).

3.7 Loss of proficiency

One of the most easily imagined consequences of automation is a loss
of proficiency by the operator. Although there has been no specific accident
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or incident in which such loss of flying proficiency has been cited as a
contributing factor, individuals invelved with pilot training have noted
perceptible skill losses in pilous who use automatic equipment extensively.
For example, ~opilots on wide body jets, which have sophisticated automatic
systems, accrue encugh seaiority to become captains on narrow body jets,
which do not have sophisticated autopilot-autothrottle systems. Those who
report these skill losses go on to say that they feel they have resolved the
problem by asking copilots to turn off the automatic systems prior to
transition training so that thev regain proficicncy with manual systems. We
have noticed that many crewmembers seem to have discovered this on their own

and regularly turn off the autopilot, in order to retain their manual flying
skills.

Beyond the possible loss of proficiency, a change in attitude may be
induced by use of automation. The following excerpt from a letter written
by a flight training manager speaks succinctly of the issue:

Having been actively involved in all areas of this training, one
disturbing side effect of automation has appeared, i.e., a
tendency to breed inactivity or complacency.

For example, good conscientious First Officers (above average)
with as little as 8-9 months on the highly sophisticated and
automated L-10lls have displayed this inactivity or complacency
on reverting to the B-707 for initial command training.

This problem has caused us to review and increase our command
training time for such First Officers. In fact, we have doubled
their allotted enroute training time.

4. Common problem areas

The previous discussions have concerned some very specific prob.ems
with the use of automated devices. We have analyzed the above incidents and
many others and have tried to rephrase the problem statement into a more
general context. Hopefully, this will assist interested parties from
diverse disciplines and industries to communicate in a more effective manner.
Five general problem areas are described below with some of the major issues
outlined for each. As is to be expected, the boundaries of the problem areas
are somewhat ill-defined, and many questions may legitimately belong to more
than one category.

4.1 Automation of control tasks

This problem area has received the most attention in the past. When
control tasks are automated, the operator's role becomes one of a monitor
and supervisor; hence, the primary issues revolve around his ability to



perform these functlons, since the control task is almost always ac-
complished satisfactorily by the automatic system. Typical questions to be
examined are:

1. Under that conditions wili the human acting as a monitor be a better

(or worse) failure detector than the human as an active controller-
operator?

2. 1Is there a significant "warmup" delay when the human transitions
from passive monitor to active controller? Does automation lull
the operators into a state of low alertness or do they enter a state
in which they are easily distracted from the monitoring task by
unimportant events?

3. What should be the form of the interaction between the operator and
the automatic system? 1If the automatic system is changing the
system configuration, should it make the change automatically and
inform the operator, or make the change only after operator
acknowledgment? Should it tell the operator why it is making the
change or not?

4. What is the effect of different levels of equipment reliability on
the operator's ability to detect, diagnose, and treat malfunctious
in manual and automatic tasks? It seems plausible that equipment
reliability could be an important factor. For example, if the
equipment is very unreliable, then the operators will be expecting
malfunctions and will be adept at handling them. If the equipment
is very reliable, then there is little need for failure detection
and diagnosis on the part of the operator. An intermediate level
of reliability, however, m~v be quite insidious since it will induce
an impression of high reli.. (lity, and the operator may not be able
to handle the failure when it occurs.

4.2 Acquisition and retention of skills

The use of automation will probably result in a decrease in the skill
level for well-learned manual tasks. Of practical importance is the rate at
which these skills deteriorate and the countermeasures available to prevent
unacceptable skill loss. Ou the other hand, the training literature
suggests that part-task operation (with the other tasks automated) during
the early, familiarization phases of operation may be an effective means of
total acquisition of operational skill. Thus, the major unanswered
questions regarding the initial acquisition, reacquisition, and retention of
skills are as follows:

1. How quickly do manual skills deteriorate with lack of use? What
factors influence the rate of loss?
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2. Can periodic practice prevent skill deterioration? If so, what
frequency is required?

3. Are there alternatives for practice with the actual system, for
example, part-task simulators?

4, What quality control technigues will be necessary to assure
maintenance of skills?

5. Can automation be used to successfully increase the rate of skill
acquisition in complex tasks by automating some of the subtasks?
Will the operator who is learning in this mode be better at
detecting anomalies in other parts of the process? Will the
necessity of learning to operate the automatic equipment (perhaps
a complex process itself) negate any of the gains of automating
subtasks?

4.3 Monitoring of complex systems

The experimental and theoretical research on vigilance deals primarily
with human perceptual processes; for example, detecting the presence of =z
light. Most systems, however, require much more cognitive processing to
perform the monitoring task. For example, a typical pilot assessment of his
fuel situation might proceed as follows: the aircraft is traveling at
200 miles/hr and is 100 riles or 100 = 200 = 0.5 hr from the destination;
it is burning fuel at the rate of 100 gal/hr and therefore requires
0.5 x 100 or 50 gal tc reach the destination; there are 40 gal of fuel
remaining, sc the destination cannot be reached.

Beyond this very simple but highly realistic case, there are many
situations that require cognitive functions; for example, logical,
mathematical, and memory operations utilizing multiple sources of informa-
tion. The major issues in this complex monitoring are essentiaily those
that confronted researchers in the vigilance area, but they have to be

1. Does comp'ex monitoring performance degrade with time on watch? Ii
so, is this decrement perceptual, cognitive, or criterial?

2. What are the means for maintaining operator alertness for rare
signals? Will artificial signals and alerts improve or degrade
monitoring effectiveness? Will additional workload, in addition t»o
complex monitoring, improve or degrade performance?

3. What makes an automatic system more "interpretable," that is,
easier to detect and diagnose malfunctions?

11



4.4 Alerting and warning systems

Human behavior with alerting and warning systems is one of the most
fascinating topics in man-machine interaction. It is here that one sees
both unpredictable and predictable responses. For example, it has long been
recognized that people will ignore an alarm if experience has shown that the
alarm may be false (the boy who cried wolf); we see the same behavior with

some cockpit alarms today. Important research questions for alerting and
warning systems include:

1. What are the characteristics of an ideal (but attainable) alerting
and warning system?

2. What attributes make a false alarm rate unacceptably high?
3. Why do alarms apparently go unheeded?

4. Under what conditions do operators rely on alerting and warning
systems as primary devices rather than as backup devices? 1Is this
operationally sound?

5. Under what conditions will operators check the validity of an
alarm?

6. Should the responsible optrator be given a preview alert and

opportunity for corrective action before the alarm is given to
others?

7. A consensus seems to be building to develop alerting and warning
systems that are "smart'; among other things, they would prevent
"obvious" false ala-7us and prioritize alarms. The logic for these
systems will likely e exceedingly complicated. Will that logic
be too complex feor operators to perform validity checks, and thus
lead to over-reliance on the system? Will the priocrities always
be appropriate? 1t not, will the operators recognize this?

4.5 Psychosocial aspects of automation

The psychosocial aspects of automation may prove to be the most
importani’“cf all, because they influence the basic attitudes of the operator
toward his task and, we would presume, his motivation, adaptability, and
responsiveness. The significance of these questions lies not in the spectre
of massive unemployment due to assembly line automation, but in the effects
of automation on the changing role of a few highly skilled operators.

1. Will automation influence job satisfaction, prestige, and self-
concept (especially in aviation)?
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2. If there are negative psychosocial consequences of automation, what

precantions and/or remedies will be effective without changing the
use of automation?

3. What does increased automation imply for operator selection? Are
there clearly defined aptitudes or personality attributes that impiy
better monitoring (or manual) effectiveness?

4. How should training programs be altered to deal with possible
psychosocial effects? Wouid a simulator help support morale? If
so, what type of simulation?

5. Design decisions

The words “'cockpit automation” are usually interpreted to mean auto-
pilots, flight directors, and other equipment associated with the control of
the aircraft flightpath, Interpreting automation to mean the accomplishment
of a task by a machine instead of a human leads to the realization that all
cockpit alerting and warning systems are forms of automation also, since they
perform monitoring tasks. Automation of control and automation of monitoring
are quite independent of one another; it is possible to have various levels of
automation in one dimension (see figure 1) independent of thc other. Automa-
tion of control tasks implies that the operator is monitoring the computer,
whereas automation of the monitoring tasks implifes that the computer is mon-
itoring the operator. Both of these dimensions vill be explored in the con-
text of design decisions after a discussion of tlhe overall goals cf the system.

® BOREDOM
AUTO + ® COMPLACENCY
/7 \ ® EROSION OF
\ COMPETENCE
COMPUTER \\\
MONITORING m o
T BN\
by \\
MONITOR : 2
FUNCTIONS PiLoT i
CONTROLLING
i PILOT
MANUAL MONITORING : 4

AUTO
. CONTROL FUNCTIONS
o HIGH WORKLOAD

® FATIGUE

Figure 1.- Two dimensions of automation: control and monitoring.
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5.1 System goals

Let us begin by asking what the user expects of the system. Some of the
goals ot the system are:

1. To provide a flight (from pushback to docking) with infinitesimal
acc ident probability.

2. To provide passencers with the smoothest | ssible flight (by weather
avoidance, selection of the least turbulent altitudes, pradual
turns and pitch changes, and gradual altitude changes).

3. To conduct the flight as economically as possible, minimizing fl.ght
time, ground delays, fuel consumption, and wear on the equipment.

4. To minimize the effect of any flight on the ability of other air-
craft to achieve the same goals (e.g., by cooperation with ATC in
rapidly departing altitudes when cleared, freeing them up for other
aircraft).

5. To provide a pleasant, sate, and healthful working eavironment tor
the crew.

Now that the goals ¢f the system have been annunciated, several things
should be clear. First, the goals are exactly the same whether the svstems
are automated or manual., Whether flight-deck automation can help achicve
these goals, and whether it is feasible and cconomical to do so, remains to
be secen. (For a totally optimistic view, sce Boulanger and Dai {1975).)
Second, tor the most part, these yals are not in contflict. There are
exceptions: for example, it is clear that (2) above mav be in contlict with
(3). The resolution of this ¢omtlict lies in evaluating the utitities to
the airline, no easy job in itself. 1If the utilities can be made explicit,
then the resolution could be automated. For example, one could eavision an
onboard flight management svsten that would take into account the utilities
of extra cost of weather avoidance versus the discomfort to passengers.  The
svstem would then, within certain constraints, navigate over a course and
altitude of maximum utility. It the ceader prefers, let him substitute
"recommend to the crew” for "navigate over." Likewise, (2) and (4) mav at
times be in conflict — a very rapid descent would be helpful to ATC in
clearing altitude tor other traffic, but may adversely atftect both
passenger comfort and fuel consumption. Again, while these are not problems
of automat icn per se, automation in the cockpit (and elscewhere) may afd in
their resolution, forcing the designer to face the question of utilities.

5.2 Design philosophies — control

So far we have specified svstem poals and constructed, at least, a
justification tor considering automation as a means to reaching those goals,
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along with some cautions. We must now consider design philosophies centered
on the man-iu-the-loop question. In simple terms, the designer must ask tc
what extent the human should be included in the control loop at all (Sinaiko
1972).

This is considerably more than restating the time-honored cliches about
"Man can do these things better than machines, but machines can do these
better," which were so in fashion in the early days of ergonomics. Since
the authors have already ruled out unmanned airline flight (by assumption),
the question must now be restated, "Under what conditions should man be part
of the control loop, and what price is paid, in terms of attaining system
goals, for including or excluding him?" One paridigm is diagrammed in a
paper by Johannsen (1976). His scheme envisions nested control loops, with
inanimate devices controlling the inner (high bandwidth) loops, and an
outward progression toward lower bandwidth, where the human is inserted as
controller-monitor.

Using this framework, let us imagine the control of a typical flight.
An example of the highest bandwiith control task is yaw damping, to prevent
the aircraft from entering an oscillatory "Dutch roll" mode. This activity
is usuall; beyond the frequency domain of the human and is thus assigned to
an automatic control device, a yaw damper, one that is built in and un-
regulated by the flightcrew.

Progressing outward, one encounters the moment-to-moment directional
control of the aircraft — which can be either hand-flown or handled by
autopiiot. At cruise, the least critical portion of the flight, designers
and pilots are only too happy to turn control over to the autopilot,
allowing the flightcrew to occupy themselves with other things. In the more
critical segments of the flight, use or nonuse of the autopilot is largely
a matter of personal style of the flightcrew.

Control of the autopilot during level flight at an assigned altitude
would be a happy state of affairs were it not for the fact that autopilots
have a disconcerting way of failing "gracefully," so gracefully that a
decoupling may not be noticed by the crew until the system is badly out of
limits, if then. Two interesting examples can be cited. First, a PAA
B-707, which was cruising at 36,000 ft above the Atlantic, experienced a
graceful autopilot disengage. The aircraft, which wvent into a steep
descending spiral before the crew took action, lost 30,000 ft before
recovery (Wiener 1962). A second case, the crash of an Eastern Airlines
L-1011 in the Everglades, was discussed in Section 3.6.

Continuing outward, the next loop might be navigation (lateral and
vertical), where from time to time heading changes would affect directional
control, and pitch and power changes would affect the vertical position. In
more advanced autopilot/flight-management systems, much of this (at least the
literal portion) can be preprogrammed. Alternatively, the man in the loop
could use his autopilot (or manual controls) to make the necessary changes.

A more demending control task would be final approach navigation — merely
a special case of lateral and vertical navigation, but one that combines
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relatively high bandwidth with low error tolerance. At this point, the
man-in-the-loop design philosophies become controversial.

An excellent example of the intrusion of basic design philosophy into
equipment concepts is the cont:ioversy that continues to swirl around the
head-up display (HUD). At issue is the HUD's utilirty for aiding the pilot
making a lo.-ceiling, low-visibility approach, below those permitted with
conventional head-down displays, even when aided by autctchrottles and flight
directors. The two philosophies are exemplified in a paper by Naish and Von
Wieser (1969), which was strongly supportive ¢f retaining the man in the loop
by means of providing a HUD, and by St. John (1963) who wished to 1 ‘move
the man entirely from controlling a final approach by using more sop..isti-
cated autoland equipment. The argument in favor of the HUD is that it
allows one crewmember to remain "head up," so that when the runway becomes
visible, the transition from instruments to outside reference is facilitated.
The "head up'" pilot would then fly so as to visually superimpose the HUD
runway symbology on the actual runway.

Others feel that the intervention by the pilots could introduce nothing
but error to an autoland approach — they prefer to have the autopilot-
autothrottle capacity used all the way to the runway, with the pilots
keeping hands off and only monitoring (as in the extreme lower right of
figure 1). The middle ground would be an autoland approach mcunitored by a
headup display. This procedure is gaining favor and is currentiy
operational on some European carriers.

The reader should note that at least one piece of cockpit instrumenta-
tion, the flight dir«ctor, stands in contrast to the nested-loop con-
figuration we have been describing. A flight director takes essentially
outer-loop decisions about navigation and computes steering commands for the
pilot (or autopilot), relieving him of complex information processing
requirements.

Finally, one might conceive of outermost loops where control decisions
are made only occasionally — initial flight planning or enroute changes
(such as weather avoidance, diversion to an alternate destination, or
handling of critical in-flight events). Many such decisions could be
automated, but presently are not. We predict that the actual decisions
would always remain in the domain of the pilot for a variecy of reasons:
complexity, the cost of developing and maintaining software, legal liability,
and social pressures, just to name a few. Even in the most fully automatic
mode, the equipment would process information and present alternatives to
the pilot, who would weigh the results and make the command decision. The
intriguing question is the many forms the crew-computer interaction might
take. For example, does the automatic equipment merely compute
alternatives, or should it suggest a 'best” choice to the pilot? What role
could automation play in multi-attribute decisions? Let us take, as an
example, the choice of an alternate airport if it becomes necessary to
divert. Pertinent attributes of the candidate airports include the present
weather, the forecast weather, type of instrument approach available,
passenger facilities, maintenance facilities, runway length and conditions,
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fuel cost at the destination, surrounding terrain, and many more. Auto-
mation or not, the captain must ultimately process multidimensional
information and make a decision, often between conflicting objective
functions. Our question, once again, is how may automation assist the pilot
in making his decision?

5.3 Design philosophies — monitoring

Until recently, there has been little consensus on a design philosophy
for automatic alerting and warning systems other than to install a warning
device to alert the pilot to a condition that existed in some recent and
serious accident. This, and the desire to cover all situations with alerts
or warnings, bas led to a proliferation of independent warning and alerting
devices which many feel has reached the point of saturating pilot informa-
tion processing capabilities (Randle et al. 198C). For example, there are
188 warnings and caution alerts on the B-707, 455 on the B-747, 172 on the
DC-8, and 418 on the DC-10. The aviation industry seems to feel that the
time has come for the development of integrated alerting and warning systems
(Cooper 1977).

It has been stated that man is a poor monitor, yet for detecting some
situations (e.g., incapacitation or aberrant behavior of other crewmembers)
man is clearly superior to any automatic monitor. If he does have
monitoring difficulty in large transport aircraft, it would appear to arise
from the requirement that he monitor a large number of systems and perform
other duties at the same time. In spite of many laboratory studies showing
the parallel processing capabilities of the human, pilots generally perform
many of their tasks as single-channel processors, especially when a task is
somewhat out of the ordinary. It is not uncommon, for example, to see
pilots concentrate on lateral navigation during a difficult intercept
maneuver to the exclusion of airspeed control.

In summary, the primary necessity for automation of the monitoring
functions is the single-channel behavior of the human and the increased
number of devices or conditions to be monitored. Increasing the number of
individual alerts and warnings is not the complete answer to the problem,
however, since one anomaly may lead to a large number of alerts, many of
which are superfluous or, worse, misleading; thus, the industry emphasis on
integrated alerting and warning systems (Randle et al. 1980).

5.4 Strengths and weaknesses

At the risk of stumbling into the trap of '"Man does this better,
machines do this better,'" the authors close this section by summarizing and
generalizing about some of the positive and negative features of cockpit
automation. The generalizations contained in table 1 probably apply to the
flight deck, and may apply equally well to manufacturing, ATC, medicine,
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telecommunications, power generation, and many nonaviation examples of highly
automated systems. Our focus, of course, is on the flight deck.

6. Autcmation guidelines

In this section we propose some guidelines for designing and using (or
not using) automated systems. These guidelines should be considered in
addition to the usual human factors engineering requirements. The guide-
lines are not to be considered as specifications, since most lack the
detail needed for that purpose, and conditions exist where they may not be
appropriate. Moreover, there are many conflicting concepts within these
guidelines. Because we have tried to make them comprehensive, some may
appear to the reader to be quite obvious.

6.1 Control tasks

1. System operation should be easily interpretable or understandable
by the operator to facilitate the detection of improper operation
and to facilitate the diagnosis of malfunctions.

2. Dlesign the automatic system to perform the task the way the user
wants it done (consistent with other constraints such as safety);
this may require user control of certain parameters, such as system
gains (see guideline 7). Many users of automated systems find that
tke systems do not perform the function in the manner desired by
the operator. For example, autopilots, especially older designs,
have too much "wing waggle" for passenger comfort when tracking
ground-based navigation stations. Thus, many airline pilots do not
use this feature, even when traveling coast to coast on nonstop
flights.

3. Design the automation to prevent peak levels of task demand from
becoming excessive (this may vary from operator to operator).
System monitoring is not only a legitimate, but a necessary
activity of the human operator; however, it generally is second in
priority to other, event-driven tasks. Keeping task demand at
reasonable levels will ensure available time for monitoring.

4. For most complex systems, it is very difficult for the computer to
sense when the task demands on the operator are too high. Thus,
the operator must be trained and motivated to use automation as an
additional resource (i.e., as a helper).

5. Operators should be trained, motivated, and evaluated to monitor
effectively.

19

s



15. Devise training techniques and possibly training hardware (including
part- and whole-task simulators) to insure that flightcrews are
exposed to all forms of alerts and to many of the possible

combinations of alerts, and that they understand how to deal with
them.

7. Conclusions

There are many potential safety and economic benefits to be realized by
automating cockpit functions, but the rapid pace of automation is out-
stripping one's ability to comprehend all the implications for crew per-
formance. It is unrealistic to call for a halt to cockpit automation until
the manifestations are completely understood. We do, however, call for those
designing, analyzing, and installing automatic systems in the cockpit to do
so carefully; to recognize the behavioral effects of automation; to avail
themselves of present and future guidelines; and to be watchful for
symptoms that might appear in training and operational settings. The
ergonomic nature of these problems suggests that other sectors of aviation
and, indeed, other industries, are or will be facing the same problems.

PRECEDING PAGE BLANK NOT FiLmen
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