
A Reproduced Copy
OF

~[}.

NAS;A

Reproduced for ~TASA

by the

!'

I ..

Scientific and Technical Information Facility

111
NF01607

(NA~A:CR-16()693) SOME QUEUING NETWORK
MODELS OF COMPUTED SYSTEMS (Mitre Cor
lIoust.on, Telc.) 56 p lIC A04/MF AOl c~ci. 098

GJ/6J

M80~7
N80-.:l6082 0 NASACH·

1...4 ,!/JJ673
Unclds
22538

1900--

Sonrle Queuing Network Models
of Computer Systems

N-JOBS

(
E. S. Herndon

MARCH 1960

Approved for pub!ic release; di-.tribution unlimited.

AI 0/) ...) (,f) \'/ II
() t. ~. l (/.. •

M80-7
. JSC 16494

Some Queuing Network Models·
of Computer Systems

CONTRACT SPONSOR
CCINTRACTNO.

[PROJECT NO.
- DEPT.

Houston, Texas

E. S. Herndon

MARCH 1980

NASAIJSC
F19628·80-C'()()()1T ·8231G
8470
0·74

Approved for public release; distribution unlimited.

ABSTRACT

Queuing Network Models of a computer system operating

with a single workload type are presented. Programs

which ,operate on the Texas Instruments SR·-5~ progr<.lm­
mabIe calculator are included.

·'-::"[CE~mG PAGE m~ANK NOT FIL~'ffit5
iii

,/

This Page Intentionally Left Blank

TABLE OF CONTENTS

List of Illustrations vi

List of Tables vi
THE CLOSED SYSTEM MODELS 5

THE BNrCB MODELS 5

Batch Model With Pomogeneous Service Times 9

Batch Model With One Load Dependent Server 13

THE INTERACTIVE MODELS 21

SUMMARY

Interactive Model With Homogeneous Service
'rime

Interactive Model With Load Dependent
Central Server

APPENDIX: PROGRAMS FOR THE SR-52

REFERENCES

24

28

41

43

52

v
!>~?!'CE:r)JN(j PAGE BLANK 1'\01' FILMED

LIST OF ILLUSTRATIONS

Figure No.

1

2

3

4

Table

I

II

III

IV
V

VI

Sample Problem - A Batch ProCessor

Load Dependent Server Model

Sample Problem - nn Interactive System

Throughput vs Terminal Load With Various

Levels of Multiprogramming

LIST OF TABLES

No.

Batch HST-6 Results for Sample Problem

Batch LDS-5 Results for Sample Problem

Interactive HST-fi Results

Load Dependent Central Server Schedules
Interactive LDCS-l Results

Throughput and Response Time With
Load Dependent CPU

vi

f)

14
22

38

Page

12

18

21)

34

35

36

SOME QUEUING NETWORK MODELS OF COMPUTER SYSTEMS

Queuing network models provide a basic tool for under­

standing computer systems and predicting how they will perform.

The use of networks of queues to describe what is going

on inside the computer is a relatively old idea, but its wide­

spread application to practical problems has only recently taken

hold. In September of 1978 the lr.M devoted a special issue of

Computing Surveys to Queuing Network Models of Computer Syst~ms
Performance. The issue contains eight outstanding articles: the

editor's overview, three tutorials, three applicaticn noces and an

assessment of the field of analytic modeling. The excellent tu­

torial by Denning and Buzen [lJ provides a point of departure for

this paper.

In an earlier paper by this author [2], conventional

Markov modeling techniques were used to develop a simple model of
n terminals dealing with a single server system. A program for

the Texas Instruments SR-S2 programmable calculator was presented
in that paper. The very compact algorithms presented in the tu­

torial by Denning and Buzen provided the inspiration to attempt

more complex models on the SR-52 programmable calculator. Four

programs are presented in this paper. They provide a capability
to handle a large number of closed network, single workload

problems.

I

In modeling terminology closed systems are systems in

which there is a limited population of jobs; they are called

closed because jobs don't enteL and leave but continue to cir­

culate within the system. Most real computer systems deal with

limited job populations because there are limited facilities for

handling jobs; interactive job populations a~e limited by the
number of terminals attached to the system; batch jobs may be

limited by available job input storage space, both are lim~ted

during E~xecution by fixed amounts of main memory or software

imposed mul.tiprogramming limits. Thus models of closed systems
are most appropriate to handling these real system environments.

The computational requirements for network queuing mod­

els increase with the complexity of the system being modeled. The

simplest anc. easiest clo!:led system models have two servers, a

single w~rkload and up to perhaps three job~ active; pencil,

paper, and patience ~re sufficient computational resources to
handle these models.

For larger job populations - up to perhaps six or .seven -
an inexpensive calculator with three memory registers can replace

the pencil and paper. Here the limit - six or seven - is estab­
lished by the stamina and dexterity of the analyst. The job pop­

ulation can be arbitrarily large and be accommodated on a pro­

grammable calculator with as few as 10 memory registers and 200

program st:eps. (This was shown in [2).) In this paper, still

dealing with an arbitrary job population and a single workload,

the central server system may consist of up to six separate
devices ••• or five devices one of which may hRve a load dependent
service time. (The load dependent service time function is re­
stricted to a simple function of the number of jobs in the queue.)

2

/

This size of oroblem can be handled with the 20 registers and 224

program steps available on the SR-52. This central system model

requires two memory locations per device plus seven or eight loca­

tions for other variables and indices.

The marvelous thing about all of this is that the algo­

rithm developed by Suzen (and used in these programs) implicitly
enumerates all of the system states which can occur for n jobs

visiting k devices,
state is any rinique

vice in the system.

and solves the associated equations. A system
distribution of the nt.: •. ·ber of jobs at each de­

The number of ways n jobs can be distributed

among k devices is given by the expression:

L = (n+k-l)!
n! (k - I)!

The result for a central system with five devices and a

population of 20 jobs, is 10,626 states. Solving the resulting
10,626 linear equations by brute force techniques would require

tens of thousands of memory locdtions to manage the problem. With

Buzen's algorithm (and a modest twist added by thi~ author) any

single workload problem can be handled with two locations per de­

vice plus about eight overhead registers. (Note: The main bene­

fit of Buzen's fast algorithm is the reduction iri numbers of

arithmetic operations required to enumerate and solve th~ equa­

tions. From the viewpoint of storage the algorithm Buzen de­

scribes actually requires one location per device plus one loca­

tion per job plus overhead. Th~ twist added to further compact

the required storage is to evaluate the matrix row by row instead

of column by column. On the SR-52 this means a~ unlimited job
population can be handled with 1 maximum of six devices.)

3

Much more powerful and sophisticated tools are required

to handle multiple load dependent servers, multiple classes of

jobs, ~nd a variety of queue service disciplines. The BEST/I

program ()ffered by BGS Systems and the CADS program offered by

Information Research Associates are two such tools; they require

tens of thousands of memory locations for instructions and data

space, .also they run on large scale computer systems.

In today's world of programmable calculators the Texas

Instruments SR-52 has been replaced by the TI-59. It provides

roughly twice the capacity for the same price. The programs

pr.esented in this paper can be easily converted for use on the

newer TI-59. This newer calculator provides sufficient space to

tackle some simple two-workload problems and will be the host for

future model development~ by this author.

4

THE CLOSED SYSTEM MODELS

Four programs have been developed to aid in the analysis

of closed queuing networks.

1. Batch model with homogeneous service times

2. Batch model with one load dependent server

3. Interactive model with up to five devices

4. Interactive model with a load dependent central
server

The two programs for batch models will be ~iscussed to­

gether since there are only minor variations betwee~ the two.

Then the interactive models will be presented.

THE BATCH MODELS

In order to introduce nomenclature and demonstrate how

these may be used a sample problem approach is taken. Figure 1
illustrates five servers in a batch processing system. At the

bottom of the figure is a table showing the average job's char­
acteristics. The typical job visits the swap device one time per

job and requires 0.8 seconds to swap the job in. The job visits
both the CPU and the channel 100 times; once for each disk input/

output. Disk 1 gets 70% of the traffic. Disk 2 gets 30%. The
service time per visit is shown for each device. The numbers

which are needed in the model are the total service times for the
job at each device, Yk = VkS k • The CPU at 4 seconds of total ser­

vice carries the heaviest load and will be the device whichul­
timately limits throughput.

5

Figure 1

Sample Problem - A Batch Processor

100

I---'"-~[CPU

JOB CHARACTERISTICS

NO. OF TIME Plm

DEVICE DEVICE VISITS VISIT TOTAL SERVICE

NAME NO. k V . S . ~k SEC. ---. --- -k- -k--·

Swap 2 1 .8 .8

CPU 1 100 .040 4.0

Disk 1 3 70 .030 2.1

Disk 2 4 30 .030 ·.9

Channel 5 100 .012 1.2

The Buzen algorithm fills in numbers in a two-dimensional

matrix G. Columns in the matrix correspon~ to devices in the sys­

tem and rows to the number of jobs. Elements of the matrix are

computed from the adjacent elements, above and to the left, as

shown in the figure below. Initially the first row contains l's

and the first column contains O's.

~lOBS

0 1

0 1

1 0

2 0

DEVICES

2

1

k-l

1

k

1

n-l 0

n 0 .~
N-l

N

o
o

g(n,k-l)

Each element is com~uted as follows:

g(n,k) = g(n,k-l) + Yk g(n-l,k)

K

1

9 (n-1, k)

Yk

g(n,k)

G(N-l,K)

G(N,K)

wher& the Yk multiplier is the service time of the job at
device k.

7

At the end of the computation the quantity G(N,K) is

found.'~ This is the normalizing constant for the product form

eqllations where all devices have homogeneous service times. Th<.1t

is, the ~ervice time of the device is the same regardless of how

many jobs are waiting in the queue. The rightmos~ column of the

matrix contains the c01nplete series of normalizing constantJ {rom

G(I,K) through G(N,K). The performance measures of interest are

functions of these normalizing constants znd the de~ice service

t.imes.

is given

System X(N) =
G(N-I,K)

'!'hroughput G(N-;R)

Utili"!ation
Uk(N) Yk

G(N-l,K)
of Device k = G(N,K)

Mean Queue N

Length at Qk(N) = L: yn G(N-n,K)

Device k k C(N,K)
n=l

Service Time of SeN) = an Equivalent XeN)
LOAd Dependent
Server

An alternative way of calculating the mean queue length
L.,' , the following recursive formula:

Qk(N) = Uk(N) (1 + v'k(N-l»

This method is particularly useful because one storage

location per devic~ is all that is needed to accumulate the

mean queue length for an unlimited job population. The other

expression implies storage fer the complete column of n values 0f
G(n,K) •

*Note on Nomenclatures: In this paper g(n,k) deno~e~ an inter­
mediate v~lue in the J matrix and G(N,K) is the final vHlue
corresponding to N jobs and K devices. Similarly h(m,k) and
H(M,K) denotes intermediate and final values in the h matri~ for
interactive systems.

8

Ba~ch Model With Homogeneous Service ~imes

The program for the batch model with homogeneous service

times will handle up to six devices and any number of jobs spec­

ified by the user. Its short name is Batch HST-6.

The model is used where the service times for all devices

are homogeneous.

The program is a straightforward implementation of

Buzen's algorithm. Due to limited storage space the mean queue

length is computed only for device il. The following point~ cover

inputs, outputs, and co~trols for the program:

!nputs to the model

•
•
•

number of jo~g

device number ;1 - ~)

device service ti~es

N

k

Y

Qutputs_in order of presentation are:

•
•
•
o

•
•

number 0f jobs

mean queue l~,gth at device 1

no~~alizing constant

throughput with N jobs

mean j00 service time

up to six pairs of:

device number

utilization

• 99 indicating end of output

9

N

Q

G(N,K)

X(N)

SeN)

Input Controls - N, k, Yk_plus RUN

These three controls are located on function kGys A,b C,

respectively. Depressing the key interrupts program

execution and displays the current val~e of the variab:b.

Note:

• insert a new value if required

• hit RUN to confirm your input 3ction

k is a dual purpose input.

• It indicates which device time, Yk will
input next during input operations.

be

• !t indicates the highest numbered device K

to be modeled during execution.

Execution Controls EXEC, RES, RUN

EXEC

RUN

Executes the program starting with an ini­

tialization of all required registers. The

program will run until results are to be

pre~ented for a load of N jobs. EXEC is on

funf".io;1 key E.

The progr~w halts ana displays its outputs in

the preset order indicated above. Run is

used for two purposes:
~. to obtain the next displqy in the cycle

2. at the end of che output cycle depressin~

RUN will continue the opera~ion increasing

the load to N + 1 wit.houc having to
~omputu from scratch with a new EXEr.UTE.

10

RES Resume ~s a special :ontro) which will

continue the computation of g\n,k) without

starting from scratch. It is intended to

provide a shortcut around the logic which

computes and displays the utilization

statistics. I~ can be safely used at any

point in the output cycle to advance tc the

next level of 'oad.

Batch HST-6 has twd main uses. The first, and most

obvious, is to use it to model a batch processing system. Its

second purpose is to model any subsystem of up to six d~vices,in

order to obtain the schedule of service times for an equivalent

load dependent sin~le server. An example of its use in this role

will be given in the description of the interactive model with a

load dependent central server.

Recall again the sample problem in Figure 1. The CPU

portion of the job is the largest component. The CPU will tend to

be the limiting device so we assign it to device iI, to obtain the

mean queue length.

Table I shows the results of running the program for job

populations N = 1 through 5. Reading down each column the results

appear in the order which the program produces them. Tn the out­

put routine the device utilizations are output as a pair of num­

bers: first, the device number, then the utilization at that de­

vice; only the utilizations appear in Table I for each column.

11

Table I

Batch HST-6 Results for Sal~ple Problem

Jobs N 1 2 3 4 5

Queue 1 (CPU) .444 .997 1.6 !; 2.40 3.23

G(N,K) \. 9.0 52.15
,

252-· 1111 4684

Throughput X(N) .111 .172 .207 .?21i .237

Service Time S(N) 9.0 5.79 4.83 4.41 4.21

Util izations:

5 Channel .133 .207 .248 .272 .285

4 Disk 2 .100 .155 .186 .204 .214

3 Disk 1 .233 .362 .435 .476 .498

2 Swap .089 .138 .11)1) .181 .190

1 CPU .444 .1190 .828. .906 .949

The performance of the CPU is the main limiter in the system

because the work is so CPU heavy. With five jobs active the CPU

will be almost 95% busy and on the average there are 1.2 jobs at

the CPU.

The appen~ix provides a listing of the Batch HST-o Program for

the SI1:--52.

12

Batch Model With One Load Dependent Server

The second program is a minor variation on Batch HST-6 which

allows one of the devices to be ~ load dependent server. When

load dependent service is introduced at one of the devices the

Buzen algorithw., slightly modified, can still be used to determine

th~ throughput of the system. The device queue lengths, however,
are no longer simple functions of the normalizing constants,
G(N,K), and algorithms more complicated than can be easily handled
on the SR-52, are required to compute these performance

quantities.

In the modified program three registers are used to specify a

simple model of the load dependent server. (In Batch HST-6 two of

the registers were used for device #6 and one was usad to accu­

mulate the device il Queue le~gth.) The net result is a program

that can handle five devices. Device #1 is the load dependent
server. The short name for this program is Batch LDS-S.

The load dependent server model is a simple function of the

number of users in the device queue. Figure 2 illustrates t'he
function. Base service time, B is a constant service time the job

experiences up to the load at which the inflection point occurs in
the function. Beyond the inflection point load, L, the service

time per job increases by the increment amount, I for each
additional user.

13

Figure 2

Load Dependent Server Model

Stated another way:

For n ~ L Y(l,n) ::: B

For n > L Y(l,n) = B + (n - L)I

where:

Y(l,n) = service time at device 11 with n in queue

B = Base service time

L = Load at the inflection point

I ::: Increment per job in queue

The modification to Buzen's algorithm is simply to create the

eJements in column 1 by multiplying the previous toW's value by

the appropriate Y(l,n). For the device 1 column:

9 (n , 1) = 'i (1, n) 9 (n-l , 1)

14

The remaining rows and columns of the matrix are ~ormed in the

same way as previously described. At the end of the matrix com­

putation G(N-l,K) andG(N,K) are available. These allow the fol­

lowing to be easily computed:

System X(N}
'I'hroughput

Service time of an SeN)
equivalent single server

=

=

G(N-l,K)
G(N,K)-

1
xT'f)

For devices with homogeneous sorvice times the utilizations
can be computed from the relationship:

Utilization at device k

The following narrative covers the inputs, outputs and

controls for the Batch LDS-5 program:

Inputs to the model

• number of jobs N

• device number (1 - 5) k

• device service times Yk
• base service time B

• load at inflection point L

G increment per job I

15

Outputs in order of presentation are:

• number of jobs

• device I service time
• normalizing constant

o throughput with N jobs

• mean job service time

• up to five pairs of:
device number

util i zation

• 99 indicating end of output

Input Controls - N, k, Yk~lus RUN

N

Y(l,n)

G(N,K)

X(N)

SeN)

'1~hf"e ..:.hrea controls are located on function keys A,B,C,

respectively. Depressing the key interrupts program

execution and diRplays the current value of the variable.

•
•

o

•

insert a new value if required

hit RUN to confirm your input action

k is a dual purpose input.

It indicates which device time, Yk will be

input next during input operations.

It indicates the highest number of devices to

be modeled during execution.

Input Controls for Load Dependent Server- B,L,I plus RUN

The parameters B,L and I are Llserted as a group using

function key D and the RUN key. Operation is as follows:

Depress function key D labeled B,L,I
Current value of B is displayed

Insert new value if desired and depress RUN
New value of B is displayed

Depress RUN .
Current value of L is displayed

Insert new value if desired and depress RUN
New value of L is displayed

Depress RUN
Current value of I is dIsplayed

Insert new value if desired and depress RUN
New value of I is displayed

Execution Controls EXEC, RUN

EXEC

RUN

Executes the program starting with an initializa­

tion of all required registers. The program will
run until results are to be presented for a load of

N jobs. EXEC is on function key E.

The program halts and d.isplays its outputs in the

preset order indicated above. Run is used for two

purposes:

1. to obtain the next ~isplay in the cycle

2. at the end of the output cycle depressing RUN
will continue the operation increasing the load to

N + 1 withoct having to start from scratch.

Batch LDS-5 has the same main uses as Batch HST-6, with the

addition of a single load dependent server. It can be used to

model a batch system or to model a subsystem of up to five devices

in order to obtain an equivalerit load dependent single server.

Once again let us use the sample problem of Fi~ure 1. This

time we will introduce load dependent service on the CPU to see

17

how it may affect the performance of the system. We will use the

4.0 sec of CPU time as the base service time. Beyond a load of

two in the queue, the service time will be increased one second

per job in the queue. That is to say:

B = 4.0 L = 2 I :: 1.0

'rable II shows the results of running the program for job

populations 1 through 5. The format of the table is similar to

Table 1; the queue at device 1 is not computed or presented. The

device 1 service time with n in queue is presented in the second

row.

Table II

Batch LDS-5 Results for Sample Problem

Jobs N 1

Y(l,n) service time 4.0

G(N,K) 9.0

Throughput X(N) .111

Service Ti~e SIN) 9.0

Ultilizativns: ---------
!:,

" <.

1

Channel

Disk 2

Disk 1

Swap

CPU

.113

.100

.233

.089

.444

2 3

4.0 5.0

52.15 268

.172 .195

5.79 5.13

.214

.17 fi

.409

.15'>

4

6.0

1415

.189

5.29

.227

.170

.397

.151

5

7.0

8398

.168

5.93

.202

.152

.354

.135

.207

.155

.362

.138

.090 .974* 1.135* 1.1B*

Comparing Tables I and II, one can see the effects of the

load dependent CPU. In the first two columns of the table the

performance measures are, of course, the same; the CPU service

18

time is still the base value of 4.0 seconds. At the load of three

jobs there is a slight loss in throughput compared with the first

case study. Scanning across throughput now one finds the maximum

occurs at three jobs on the system, beyond three jobs act~··~ the

increased CPU time per job has a larger negative effect than the

usual positive effect of adding more jobs to the multiprogramming

set. This sort of thing can happen in overloaded systems, the per

job device time may increase in heavily used systems; for example,

as a result of increased competition for memory, more page fault
interruptions may be required resulting in more CPU and disk

service time per job. The BLI function is used to represent

increased system overhead past the threshold of thrashing.

One final note, the CPU utilizations marked with an

asterisk in the table are the ones reported by the program. They
~re not_correct because the CPU is a load dependent server. These

utilizations were computed by multiplying maximum service time by

throughput. The true value of the utilization of the load de­

pendent server lies between this upper limit and a lower limit
computed as the product of minimum service time and throughput.

The algori thm for computing utilizations and queue lengths .fer the
load dependent server would exceed the space available 'n the

SR-52.

The appendix provides a listing of the Batch LDS program.

Of particular note is the load dependent server model located at

program steps 091 through 115. This section of the program can be

changed to create other load dependent models. Registers 16, 17,

and 18 contain the variables B, K, and I; these may assume dif­

ferent meanings or usage in a different load dependent server

model. Any substitute function should start at the same location,

19

091, and place the appropriate value of service time in Register

Ol.pdor to LABEL C, currently at location 117. Note that a cum­
plete~i arbitrary load dependent service time schedule can be

enteted dynamically by replacing the current LDS routine with a

halt and display of the current value of Register 01. If the user

changes the reg lster to a new value it will be L.e next one used.

The required routine would be:

ReL 01

HLT

STO 01

Using this routine it is possible to model any number of devices

by breaking the system into device groupings of 4 to.6 devices.

For example a 10 device system could be m6deled as a six device

subsystem plus four individual devices. First Batch HST-6 is run

to obtain a schedule of load dependent service times. Then Batch

T..!)S-5 is run using the subsystem service times for device 1 and

the rem,aining four devices as two thru 5. This is an exact mett-od
of combining multiple devices.

One. user of this program has noted that the BLI function is

an approximation to what happens during thrashing. He reports two
additional subsystem approximations that he h~s found ~.·eful. For

a P processor multiprocessor, Y(l,n} = 81* min (n,.';· "is a rea­

sonable form for an approximation. B = 1 represents dn ideal

multiprocessor. With B < 1 various amounts of multjprocessor mu­

tual interference can be modeled~ For an I/O subsystem a power

curve fit of the form Y(l,n) = A* min (n,v)-B provides a good ap­

proximation. In this case V is an arbitrary maximum value which

is specified by the user. TI program STI-09 from the statistics
library 1s handy for determining A and B.

20

THE INTERACTIVE MODELS

The tutorial by Denning and Ruzen also presented a very

compact algorithm for handling interactive systems. Again we will

usi a sample problem approach. Figure 3 illustrates such a sys­

tem. It has M terminals connect~d to a central system. Each of
the terminal users has an average think time Z. The central sys­
tem has the same five devices and associated service times as the

previous batch cases had. (This will facilitate using the batch
results in solving the interactive systeMs.) For the case study

we will use a think time of 10 seconds and terminal populations
M = 2, 4, (i, 8, 10.

The M terminals represent M jobs in the system as a whole.

Actually some number N are on the central system at any given time
and M-N jobs are out at the terminals. The terminalc are treated

as a single subsystem whose service time iSZ/n when there are n
users thinking (i.e. jobs at the terminals). The terminal sub­
system is thus a load dependent server. The devices in the
central system all have homogeneous service times.

The algorithm, attributed to WilJ iams and Bhandiwad (31, is

quite simUar to the Buzen algorithm describ€!d previously. The

interactive algorithm fills in a two dimensional matrix h; the

columns correspond to k devices; and the rows correspond to the m
termin~ls. Elements of the matrix are computed from the adjacent

elements, above and to the left as shown in the figure below.
Initially row 0 and column 0 contain l'~.

Each element of the matrix is computed as follows:

h(m,k) = h(~,k-l) + wYk/Z h(m-l,k)

where Yk is the service time of the job at device k (Y k = VkS k).

21

Figure 3

Sample Problem - ~n Interactive System

~\
[~WAP JI--X=. - CHANNEL

--'---.---'----J
JOB CHARACTERISTICS

NO. OF TIME PER

DEVICE DEVICE VISITS VISIT ':l'OTAL SERVICE
NAME NO. k ---'Yk- -.§.k- .. -- -2.k SEr.. ---- ---

Swap 2 1 .8 .8

CPU 1 100 .040 4.0

Disk 1 3 70 .030 2.1

Disk 2 4 ~O .030 09
Ch3nne1 5 100 .012 1.2

22

T

E
R

M

I

N

A

L

S

o
o
1 0

2

m-l

m

M-l

M

o

o

o

o
o

1

1

DEVICES

2

1

k-l

1

h(m,k-l)

k

1

h (m, k)

K

1

H (M-l. K)

H(M,K)

At the end of the com9utation the values H(M-l,K) and H(M~K) are

availcble. These allow the following performance meas~res to be

computed.

Central sys~em idle
probability

'fhroughput

RespDn~a time

Mean active load

P(O) = 1
H(1)1,K)

X(M) M . H(M-l,K) = Z H(M,K)

R(B) M z = xlM) -

~=f"-·Z X (r~)

B~cause the devices o(the central subsystem are homogeneous

the utilization of each device is simply the product of Yk, the

service time. and X(M) I the throughput of the system.

23

]E~~:tive Model With Homogeneous Servic~ Time

The program for the interactive mod~l with homogeneous

service times will handle up to six devicel and any number of

terminals specified by the user. The short name of this program

is Interactive HST-6.

The pr~gram is a straightfoiward implementation of the

interactive algorithm ~nd provides all of the performance para­

meters indicated above. The following cover inputs, outputs, and
controls for the program.

Inputs to the mode~

•
•

•

number of terminals

device number (1 - 6)
devicf service times
think. time

Outputs~ : ""-ier of ~resentation are:

•
•
•
•
•
•
•

number of terminals

normalizing constant

sy~t:em idle

throughput with M terminals

response t Lne

mean jobs in system

up to six pairs of:
device number

utilization

• 99 indicating end of output

24

M

H(M,K)

P(O)

X (1.1)

R (r.'.)

Q

k

Input Con~(ols - M, k, Yk plus RUN

These three controls are located on function keys A,B,C,
respec~ively. Depressing thr key interrupts program

exe~ution and displays the current value of the variable.

Note:

•
•

..

insert a new value if required

hit RUN to confirm your input action

k is a dual purpose input.

It indicates which device time Yk will be

input next during input operations.

• It indicates the highest number of devices to
be modeled during execution.

Execution Controls - EXEC, RUN

EXEC E~ecutes the program starting with an initializa­

tion of all required registers. The program ~il1
run until results are to be presented for a load of

M terminals. EXEC is on function key E.

RUN The program halts and displays its outputs in the
preset order indicated above. Run is used for two

purposes:

1. to obtain the n~xt diqplay iri the cycle

2. at the.end of the output cycle depressing RUN

will continue the operation increasing the load to

M + 1 without having to start from scratch.

25

"-.

'~he sample problem in Figure 3 is a simple variation on the

original batch problem of Figure 1 the job characteristics on

the central system are the sam8 in both cases. The difference is

in the wa~ jobs are introduced to the system; the original case

had N jobs always present, in this case study M terminals intro­

duce the jobs to the system after a think time of 10 seconds.

Table III shows the results of running the program with loads of

2, 4, 6, 8, and 10 terminals.

M Terminals

H (m, k)

P(O) - system idle

X(M) throughput

R(M) response time

Q avg jobs in system

Utilizations:

5 - Channel

4 - Disk 2

3 - Disk 1

2 - SVlap

1 - CPU

Table II I

Interactiv~ HST-n Results

2

3.843

.2nO

.099

10.2

1.01

.119

.089

.207

.079

.395

4

19.50

.051

.170
13.46

2.29

.20

.15

.36

.14

.1J8

fi

139.8

.007

./,14

17.9

3.85

.26

.19

.45

.17

.86

8

1454

.0006

.2315

23.8

5.63

.28

.21

.50

.19

.95

10

22009

.OOO()4

.246

30.7

7.54

.29

.22

.52

.19

.98

The minimum response time occurs when only one terminal is

active (not shown in table); the response time for one user is

simply the sum of the service times on each of the devices, or 9

seconds. As the terminal load increases, the throughput of the

system rises rapidly at first and slower later on as the system

approaches its saturation limit. In both the batch and the inter­

active cases this limit is established by the CPU component of the

workload. At 4 CPU seconds per job, the throughput limit will be

1/4 = .25 jobs per second. At a load of 6 terminals the thro~h­

put is roughly 86% of this limit. Response time is roughly twice

what it ~~uld be on a dedicated system. Adding more terminals
.' .",

will make resp0nse time worse with little gain in throughput.

A comparison of the interactive and batch cases raises an

interesting question:

At a terminal load of 4 users there is an average of 2.29

terminal users in the central system ~nd the throughput is .170

jobs per second. This is less than the .172 jobs per second

throughput c: :he batch system with two jobs active. One might

have expect~d that with more jobs active (2.29 is greater than 2),

that the system throughput would be greater, not less. I don't

know why this is so.

27

Interactive Model With Load Dependent Central Server

In the tutori~l Danning and Buzen point out that the central
system portion of an interactive system can be modeled. as a single

server with a load dependent service time. The article does not

describe the algorithm for computing the performance quantities,

but it is a simple variation on the interactive algorithm present­

ed in the previous section. For the load dependent central ser­

ver, the matrix h can be viewed as a simple one column matrix~ the

single column represents the single load dependent server. .The

service time of the central system und~r a given constant load of
n jobs, S(n), is equal to the reciprocal of the throughput for a
system with n jobs and the terminal visit shorted out.

S(n)= x~nr
One can think of such a system as a batch system with n jcbs and

use the Batch HST-6 or Batch LDS-S programs, as appropriate, to

calculate the schedule of load dependent service times.

For a system with M terminals successive elements hem) of

the single column matrix h are computed by the following recursive
formula:

where:

r.(m) = I +

h (0) = 1

m is stepped ·from 1 up to M

Z is the think time

m S(M-m+l) h(m-l)
Z

Sen) = service time with n jobs active.

28

~te: The recursion takes the service time schedule in the

reverse order to increasing m. That is, SCM) is the first service

time in the recursion, S(l) is the last.

At the end of the recursion H(M) is found. A second pass of

the recursion is made with a terminal load of (M-I) terminals to

find H(M-I). This value H(M-I) is not the same as the value of
hem-I) ·found on the previous pass of the recursion. H{M-I)

considers the servl.ce times S{M-I) thru S{l) in its recursioal.
The h{m-l) of the previous recursion used SCM) thru S(2). The two

values H(M) and H(M-I) are used to find the following performance
quanti tiE~s:

I
System idle P{O) = H{M)

Throughput X(M) = M . !I (M-I)
Z H (l.t)

Response time R(M) M
- Z .- X{M)

ftIean queue length Q = M - z X{M)

Also, starting from the value for P(o) found above, one can

find the probability, pen), of there being n jobs in the system
from the following recursion:

pen) _. (M-n+1) S (n) P(n-l)
Z

The program for computing the performance quantities for an

interactive system with a load dependent central server is called

Interactive LDeS-I. The program implements the algorithm and com­
putes the principal performance quantities described above. Due

to lack of sufficient program storage on the SR-52 the recursion
for calculating pen) has not beeh included in Interactive LDeS-I.

29

Also due to register storage limitations no more than eleven

values of Sen) can be handled. This limits the effective degree

of multiprogramming of the system to serving a maximum of eleven

terminals simultaneously on the central system.

Actually the limit of eleven degrees of multiprogramming is

not a serious one because in most real systems the throughput
ch:nges attributable to operating above the degree of mUlti­

programming of eleven are usually so slight and imprcbable of

occurrence that they can be neglected.

'rhe Interactive LDCS-l ptograr.i cffers an additional para­

meter setting called the multiprogramming limit, N. In some real

systems the size of main memory or possible operating system para­

meters may limit the number of concurrent jobs that the system
will consider ready for execution. When the level of multi­

programming is set to N the program will consider the service time
of the system to be a constant SeN) for loads greater than or

equal to N.

The rationale for modeling a fixed level of multiprogramming

in this manner is treated in the article by Chandy and Sauer [4]

on approximate methods. This is an approximation by use of flow
equivalent methods fer passive elements of the system. The pas­

sive element in this case is memory which restricts the multi­
programming to some level n which is less than the total terminal
population m. The system has been collapsed from a multiple de­

vice system to an equivalent load dependent single server with a

schedule of service times S(N). For example, by only considering

rates :s (1), S (2), S (3) and then using S (3) instead of S (4), S (5),

30

•

•••• SCm), one is effectively limiting multiprogra~m!ng to level

1. That is to say the "improved" service times due to multi­

programming at levels higher than three are denied by setting them

to S(3).

The following points cover inputs, outputs, and controls for

the program.

Inputs to the model

think time

number of terminals

multiprogramming limit

load index

load dependent service time

Qutputs in order of presentation are

•
•
•
•

number of terminals

the matrix constant for M

system idle

the matrix constant for M-l

system throughput

response time

mean number in system

99 indicating end of output cycle

Input Controls: Z, M, N and RUN

Z

M

N

n

S(n)

M

H(M)

P(O)

H(M-l)

X(M)

R(M)

Q

These three controls are located on function keys A, B, and

C respectively. Depressing the key interrupts the program and
causes the current value of the variable to be di~played.

31

• insert a new value if required
tl depress RUN to confirm your input action

Lnput ContoIs n, Sen) and RUN

. Function key D is labelled n,S(n) and is used with RUN to

enter the schedule of load dependent service times S(N).

• depress function key D

value n is auto incremented and displayed

• enter different v~lue of n if desired

• depress RUN
service time, S(n), is displayed

o enter different service time if desired

o depress run to confirm

.~ repeat until all values of Sen) are entered

Execution Controls

EXEC

RUN

EXEC, RUN

Executes the program starting with an ,init­

ialization of all required registers. The

program will run until results are to be

presented for a load of M terminals. EXEC is

on function key E.

The program halts and displays its outputs in

the preset order ~ndicated above. RUN is

used for two purposes:

1. to obtain the next display in the cycle

2. at the end of the output cycle depressing
RUN will continue the operation increasing

the load to M + 1 without having to start
from scratch.

3'2

Note: Computation of the performance para!l1eters, except for the

case where terminal load M=l, requires two ~onsecutive passes

through the recursive formula. On the first pass the terminal

load should be set at M-l and run through the complete output

cycle. [On this "primer pass" only H(M-l) and P(O) are guaranteed

to be correct. H(M-l) is saved for the next pass.] After the "99"
display at end of the cycle depress RUN. This will incremen~ the

terminal load from M-l to M and cause the second pass through the
recursive formula. The output displays will be correct for lo~d
M.

Depressing RUN at the end of any cycle executes the next

pass and provides results for the next higher terminal load:

i.e., M+l, M+2, ••• etc.

Once again we turn to the sample problem in Figure 3. We
are interested in studying the performance of the interactive

system over a range of terminal .loads from 2 through 10. We,
therefore, will need the schedule of load dependent service times

for the corresponding batch system with the number of jobs,equal

to I through 10. While we are at it, we might as well get the

schedule of Sen) for the batch system variation in which the CPU

had a load dependent service time. (Recall that this will lead to

reduced throughput at higher multiprogramming levels.) Table IV

shows the load dependent central server schedules, Sen), for the

two batch systems.

33

Table IV

Load Dependent Central Server Schedules

,..--'
Constant CPU Load Dependent CPU

Jobs Y:CPU System Sen) Y(l,n) CPU System Sen)

1 4 sec 9.0 sec 4 sec 9.0 sec
2 4 5.79 4 5.79
3 4 4.83 5 5.13
4 4 4.41 fi 5.28
5 4 4.21 7 5.93
6 4 4.11 8 6.91
7 4 4.05 9 8.04
8 4 4.03 10 9.19
9 4 4.02 11 10.32
10 4 4.01 12 11.'42

In addition to being a schedule of S (n) inputs for the
mOdE!l, Table IV is interesting in its own right. The columns
headed by Constant CPU show the CPU time and 8(n) from using Batch
HST-,6. Similar columns under Load Dependent CPU were calculated

using Batch LDS-5. In both cases the CPU is the heaviest com­

ponent of the work load and the System Service time Sen) ap­

proaches it asy~ptotically. What's interesting in the load de­

pendent case is that Sen) dips below the CPU service time and then

approaches it from that vantage pOlnt. It is also evident from

the table that increasing the multiprogramming level in the con­

stant cpr! case beyond about four jobs will have very little
payoff. For the load dependent CPU going beyond a level of three

jobs is expected to hurt performance.

34

Terminals M

H(M)

System Idle Po
H(M-l)

Throu<ghput X(M)

Response Time R(M)

Numbet in System Q

Table V

Interactive LDCS-l Results

2

3.84

.2fiO

1.9
.099

10.22

1.01

4

19.55

.051

8.34

.170

13.45

2.29

fi

139.7

.007

50.0

.214

18.0

3.85

8 10

1450 21913

.0007 .00004

429 5383

.237 .246

23.8 30.7

5.63 7.54

Table V shows the results of running the program for the

. cons;ant CPU case. Except for minor roundoff differences, due to

inserting SeN) to only three places, the results are the same as

previously indicated in Table III. The results agree "e~actly"

when elll quantities dre entered to the maximum precision allowed

by the calculator.

A much more interesting set of results is found by,

examining the effects of multiprogramming level on the performance

of the system with the load dependent CPU. Multiprogramming

levels, N, of 1,2,3,4, were examined for terminal loads, M, of 1

through 10. Table VI records the resulting throughputs and

response times.

35

The best performance occurs at multiprogramming level 3,

the third column of the table. This was expected because SeN) was

a minimum at a load of 3. The rightmost column of the tahle shows

how poorly the system will perform if no limits are placed on mul­

tiprogr.amming [i.e. the multiprogramming level N is made equal to

the number of terminals Ml. Here the best throughout is achieved

at 5 terminals active because it is not until this point that the

average number of j~js in the ~ystem get up to around 3.

Tabl!;! VI

Throughput and Response Time With Load Dependent CPU

No of 'rermi nals

1 Throughput

Response

2

3

4

5

6

7

8

9

10

X (M)

R(M)

X (M)

R(M)

X(M)

:R(M)

X (M)

H(M)

X(M)

H(M)

:((M)

H(M)

X (M)

H(M)

X (M)

Ft ("'1)

X(M)

H(M)

1

.053

9.0

.086

13.3

.102

19.3

.109

26.7

.llO

35.2

.111

44.0

.111

53.0

.111

62.0

.111

71.0

.111

80.0

Multiprogramming Level-N

234

.053 .053 .053

9.0 9.0 9.0

.099

10.2

.133

12.5

.155

15.8

.166

20.1

.170

25.2

.172

30.7

30.4

.173

42.1

.173

47.9

36

.099

10.?

.137

11.9
.1()4

14.4

.181

17.6

.189

21.7

.193

26.2

.194

31.1

.1~5

31).2

.195

41.3

.099

10.2

.137

11.9

.163

14.5

.178

lR.O

.18n

22.3

.188

27.2

.::'89

3::>" 3

.189

37.5

.189

42.8

M

.053

9.0

.099

10.2

.137

11.9

.1{)3

14.5

.175

i8.S

.171

25.1

.153

35.4

.132

50.4

.113

f)9.()

.098

91.0

The results from this case study are graphically pre­

seilted in Figure 4 as a family of performance plots. Additional

multiprogramming levels not shown in the table have been added to

show how the throughput varies for the range 4 thro~gh 10. Also,

to allow comp?rison with a system whi~h does not have the load

depend~nt CPU, three additional plots are shown as dashed lines in

the fiyure. These three throughput curves were generated using

the SeN) schedule from Table IV labeled constant CPU.

There is ill lot of information conveye~ hy the figure. A

few points will be made to illust:ate what can bp learned. A sys­

tem without a load dependent CPU can be viewed as an "ideal

system" because it does not require more sY5tem overhead per job

tQ manas> 10 jobs than to manage 2 jobs. The first four points

discuss performance of this ideal sys~em.

1. The uppermost dashed curve labeled N=lO shows the

"best" possible throughput for the ideal system.

There is no "extrfi overhead work" which was modeled

as a load dependent (;PU. There is no practical

limit on multipro~ranming with the limit set at 10.

The system sa~urat~s at a throughput of .25 when the

limiting device, th~ CPU, reaches 100% busy.

2. Dashed curves labeled N=4 and N=3 indicate how

throughput would drop due to limiting the level of

multiprogramming. Main memory size is often such a

limiter of multiprogramming.

37

·2fl

.24 .

.22

.20

.18

.1f;
T
H .14 R
0

t
U .12 G
H
P

.10 U
T

.08

.06

.04

.02

.00 - ,
0 1

t<ey:

Figure 4
Throughput vs Terminal Load

with Various Level~ of ~u1tiprogramming

2

N :: 10
-_. ----

-' -.-

.-1- -"'-

N=4 --_ .. "
N '" 3

-'- -"---.- -,---' .-
N = 3 ----------- ------------

Terminal Load

Ideal System (Constant CPU)

Realistic System (Lo~d Pependent CPU)

N Multiprogramming Level

38

N = 5

N '" 6

N = 7

N =- 1, 1

N", 10

3. Solid curves N=l,l and N=2,2 show the throughput

for levels 1 and 2 for both the ideal system and

the system with a load dependent CPU. Recall that

the load dependent function didn't start increasing

the CPU load until 3 jobs were in the system~

4. The large difference between N=l and N=10 dashed

shows the expected geins due to multiprogramming
for the "ideal"· system. Forty-four percent of the

potential gain is achieved by going from level 1 to

2. [Seventy percent by going from I to 3, 84% for

going fr.om I to 4.]

In most real systems there is some amount of extra over­

head involved with operating at higher levels of multiproyram­

mlng. Increa~ed paging activity or increased swapping is such a

form of load dependent behavior which could r.esult in higher CPU

activity for storage managment and page/swap support. The solid

lines in this figure show a hypothetical system which is exhibit­

ing realistic system behavior. The dis~inguishing charact~r of
the realistic throughput curve is that things get better up to a

point where saturation occurs and then, if the load is increased,

the throughput will actually get worse. Four points are made

about the "hypothetical realistic" system.

1. The sol id plot for N=3 shows the best throughpu t

for the syst~m. The serv!ce tim~, S(N), with three

jobs in the system is at its lowest ~o throughput
w~ll be best if m~ltiproqramming is at level 3.

19

2. The difference between the solid plot N=3 and the

dashed plot N=3 indicates the difference between an

ideal system and its "realistic" counterpart.

3. Increasing the multiprogramming level from 3 to 4

hurts performance a little. The difference between

the ideal and realistic systems has increased.

4. Increasing the multiprogramming level to five or

beyond actually results in lowering the throughput.
In all of these cases the throughput approaches a

limit which is 1 - S(N).

This is an example of paradoxical behavior which occurs

from time to timt!. Conventional wisdom says increasing the multi­

programming level is good. Conventional wisdom also says that the

benefits of increased multiprogramming are progr~ssively diminish­

ing. Conventional wisdom does not predict that throughput will

drop with increased multiprogramming, as this case seems to indi­

cate. paradoxically convehtional wisdom !s correct, if we,are
trying to distinguish causal realtionships. The root cause of the

poor performance is the increased overhead for storage management,
modeled in this case by a load dependent cpu. Incrasjng the mul­

tiprogramming level merely allows the storage management problem

to manifest itself.

40

SUMMARY

Starting from the tutorial by Denning and Buzen [and that

is an excellent place for anyone to start] the algorithms for

handling closed networks with a single job class were adapted for

use on the SR-52 programmable calculator. Along the way it was
found that by slightly altering the Buzen algorithm to process the

G and H matrices row by row instead of column by column, that six

devices and an unlimited job/terminal population could be handled

on the SR-52. Techniques were also introduced for handling a
simple load dependent server and for studying interactive systems

with fixed multiprogramming limits.

'l'he paper provides listings of the four programs and a

sample case study which can be replicated on the SR-52.

Next on the agenda is conversion to the TI-59, addi~~Jnal

load dependent servers, and some simple aids for approximating
systems with parallel tasks.

41

This Page Intentionally Left Blank

APPENDIX

PROGRAMS FOR THE SR-52

43

Batch HST-6 PAGE _1 _OF_2 __ SR-52,I¥sl
DAlE March IQ8P __ Coding Form ~

LOG 'CODE:I KEY COMMENTS LaC CODE KEY COMMENTS LaC CODE KEY COMMENTS LABEl.S 7ioo ---1---+-- ---i----il----t--- -·---+----H---,--_f
~ _ l.BL .+S~T~O~4_~~--~~-_+--+-~O--+_---~~-A~N~-~.)~o~b~s~

E' 1 Q1 =0 8 k is S k-devices
~ -'--~---4----'--~~~+--4~~~~--~i~--t--~~--~~'--_ir~'---~

STO °«;52 7 STO used for C Y k-servic

1 7 0 LOOP DRESUME
~ --+---~~----~I----r---+~--~------~~,~-~--~---4------_4r~------~

9 STO 0~92 0 COUNT EEXECUTE
IOO~'7 -'--+I-N-D-~G-e-n-e-r-a--I-4I---f---I~-~O--+D-S-Z-=7---4I~~r-~~~8~~----~

A'

ReL Input 0 STO G Array S'
r----,-~-----I-----,-~~~-·+---r--~----,-~~--,_+--_+----_t~ __ ~_1f __ ------_1

1 Routine 04~57 8 1 POINTER G:
r------~9----+------~I~~~-4~S~T~0--·~----~I~--~-4---9--+-'------I~D-'R-0-w----~

~-
122

HLT Display 1 SET OS5 0 0= eGEN INPU
~~'--~r---i--_f-~--~~--j~~1~97_1_-+---_r-----~f---------

I ND IOld Value 9 all STO Y Array REGISTERS

STO 1 7 1 Pointer oOLOOP
r----'--~----_r----'--~~o~~~r---~---~---'--~~--~--~~--~~~~-~~~Y~~--~

1 SAVE 162 BL G(O,k) 8 p=G(n,o) 01 1
~;::;;dl----v'---~

9 NEW SIN elements LBL 02 Y 2
r------~--~---_fI--_+---+---+_---_4I~=:_4--_+---4_------I~~~--_i

~1--'5..:..:1:"'-7;~-.~~--',+I-~~""'-tB-n,-L-____ -4-+ -."-:=:=;=:_:;:'-'-',).,0"5'5"'--+- ~~: " 1 ~09~''''0;:''21-_t--s T_~ A-M-N-+-+---fI-~-;J7, [w.. __

~ __ ~-__ +I/~---i ____ - _ _4lr_..:..:16~7+-_t--____ r--_____ - .
E' -jobs-- ~TO) OIN

~-·--~~--_+~~-~I~-+--~~_+----~·~·_+--+-~_+----_4~----~
HLT 1 End of 095207 9 OSk

0~32 LBL 9 Initial iND G(n-l,k) 09GCn,1)
I-.:.:::.:..~-+---t------if---~-t--.;.--t-----n--·

B INPUT DSZ Phase RCL 10 G(n, 2)
---r----~-------~~~-+--~----+-----ir_-r_~r_-

8 k o~ 72 SIN 1 llG(n ,3)

E' !device no. LBL Continue 9 12GCn,4)

HLT D Ro..... 10~12 X X 13 G(n,S)
~--r'--t.L~B~L--~====;:~r---t-·--t-=---~P-ro-c-e-s-s~r-·~t---t-~I---i-------1r-1-4~G'~Cn-,'~6~)---
~~13~7+ ___ ~ ____ +-______ ~r __ -+ ___ r~ __ -i ______ _4I~' __ +---~~ --------

C 1 SUM 15GCn-l,k)

RCL INPUT 06;77 SUM n=n+1 1 116n-Count
I--I---II--O-----+.y.,--k 1 8 --r;-~-

8 6 105 1 N D Y k 18] CJ 1) Y k
~~f_--~--__ +_-------II__ __ ~--~--_~------~r~2~17_+_--1_----~---··----r
03~42 E' IND RCI. I 19];.j[),],(jk
~~·r_-I~--_4----·-_4I---~-·~~~~I-----_4I----r---r-----r--------

HL T RCI. Save 1 I FLAGS
r---r---+----i=======~~~_t---t-----_f-------4f-~~·-- -- , ---

LBL Execu_'te_-irO_7°.;.clScc2r-___ I-I ____ _+_G-(N. _,_~2...-L 8 -----Ir-o---
E 9 In I =: 1

G=:===:=O==~+f__~.~===.==:~===::~~.·~~S-T--O--_tG.-(-N.---l :.~ ~1~:=-_ ~_l-N __ ~:=_'-_-: f'---'- --
IOJ~~7 STO n=O 1 forX(N) STO G(n,k) : 3 j r' 1 -.--------jf---+--- ~. __ SHe. -~ E::-~ I ~-;~-;u MEN T S--I[~--==
r-- 6 075 RCL I"'("~f'''fl''lfll I 1. ___ ~._.-.J. ____ __' __ , __ "---"""S7_'__ ___ .l...._ ___ __'__ __ ____ _ _____ • ____________ • _________ •••

44

nfllGlNAL PAGE IS
Of' Poem OTT A TJ'Pv:

• - - L.L

TITLF. Batch HST-6 PAGE_2_OF 2 __
PROGRAMMER E. S •,:.:.H-"Cer:..:n:c;d:..:o.:..:n ______ DATE March 19S0

SR-52 .r~
Coding iFor~n ~

: LOC COOE KEY COMMENTS l.OG CODE KEY COMMENTS LOC CODE KEY COMMENTS LABELS
reoo ----.. -

112 I RCL Outputs 0 A N-Jobs ----
9 0) o!';-devices --040 DSZ END 152 8 k for -;- c Yk-servic

TAN ROW? STO LOOP IlLT 'Uk" DRESUME .---
RCL Update 0 CONTROL

080
192 IND EEXECUTE

005
117 I Q 0 RCL A' --

7 (1.l1 +1) RCL DISPLAY 0 s-
045 I "nil 0 C· + 157

I 6 I>SZ 0' 0""", --085) HLT 197 COS E .INPU
.-

010 '. X X I!CL 9 REGISTERS 122

RCL I 1 9 If99" 00 LCOI'
- ----

¥I 050 0 162 7 HLT the end • Y
I - -"Q1" ,2 Y 2 I HLT 0 next ro',., - 090 - _. r---:-:-'--

X RCI. - ~ X 202 ---015 RCL I G(n-I,k) I 04 Y!. 127

1 G(n-l,k) 5 05 Y:3 -
5 055 :. 05 Y 6 167 -
;- IND 07 N

- - -
IND RCL J95 08 k

207
020 RCL G(n ,k) I 09 G(n,l) 132 -

1 9 10 C(n, z)
- --060

9 172 HLT "G(N, K)" 11 On,3)

= = = 12G(n,4)

STO Q
I
(n) HLT "X(N)" 100 13 (;(n.5)-

212 - ---025 14 (;(n,6)
137 1 l/x

7 flLT "S(N)" 15 G(n-! , k)-
-. --r---' ---
RCL 065 1/)(16 n

177 - --r-- Q j 1 n LBL Device 17

6 l- COS
OUTPUTS '"", ____ ~ ~'-'i-=-raJa -

~o
X

Uk 't "INP I "'I 142 -
r---"'--- l_ - --- --1 --'"-

RCL RCL I FLAGS
r-- .--.

~~~--~F~= .0 N 182 0 
1----:---. 

---'-
0 

1---- ---
= HLT "k" 110 ==l= ~ 2 

035 ----- _ 2?2 _ __. _. ____ 

r----!.:!!- INV 
INU ~' I 1 ' 

IFPOS DONE? ReI. -- ___ [:E:~-I~ST:lIM £N1 S lE4 ---=. ------ f--. -.,._._-
075 ,-._.1.. __ II 187 

o 1~(ORf'''''''lllJ 

-- ___ L..-..- ___ • _________ .______ --- -

45 



TITLE !i Devices - Load Dependent 

PROGRAMMER E. S. Herndon 

PAGE __ l_OF __ 2 __ _ 

DATE March 1980 

SR-52 )d;\ 
COt:nn9!Form ~ 

LOC CODE KEY COMMENTS LOG CODE KEY COMMENTS LOG CODE KEY COMMENTS LABELS 
~~----+-----;--------1~----'---4~-----r-------~~ 000 ? LBL 1 I 1 N=N+l AN Jobs 
~~---~----t-------4~---4-~-+-----4------~1~--4---4-----4-~----~~--~--'---4 

E' 7 Load 5 Bd-Devices 
STO 0~52 E' At INFL IND CYrl-Senic 

~r-·~~---r-------~~~~--·+---~+-------I~--~~~---4------~r--~~----~ 
1 HLT RCL 0 B,L,I . 

9 Gen'~l'al 1 INCR 08~92 1 Save E EXECUTE 
~----r.I~N~D~-+-I-n-p-u-t---~~---+---~--8---4~------~~-~~+---+---9--~G-(N--,K-)--~r-A-'~-----; 

r-D!----~=~--+=--~---~~--_+--_+---~~r_------~~--
RCL Routine E' STO in B' 

~ -'--~1----+-----'--'~04~5-4---4-H-L-T--4---'------~--+---+--1---+G-(-N---l-,-K-)'~C-'------~ 
157 

9 LBL EXECUTE . I, for X(N) 0' 
---- ---bo.~~-------~r---+--~~--~~~--~~~4---+-----·~-----4~------~ HLT E I tH T1AL 08;97 RCL E'I NDR-J 
~~~-~r------r--------i~--+_--+_----+_-------~r~~4---~----~------~~------"'---
OI~22 I NO 0 0 REGISTERS

STO STO 8 ooLOOP ---- ----+-----r-----~·~~r__-~----_+------4~--_r--1_----+_-------ir_~--------
1 05~62 1 n=O STO ~OOPoIYI
9 5 0 =d 02 Y 2

R T N 6 ' 09°202 0 03 Y 3
~---~==~=F======~Ir---r---t--~--i-------~~~~---i====~~======!r-O~4 c,, ______

127 LBL STO RCL SET
A 0 1 Y 1 TO 05 Y c;

~·---;-~--+_------t~ __ r_~r_~_;------_if--_+---r~--_r---
r-- _ 7 N-) 0~....:S_~r__°5-'~"'-67'_j---4_-CO-_+-S::..:E"-,1"--__ Ir_-f-_.~_6.:....--t~L~0.ccA:.::.D_~r__05_1 N_D_Y_k __

E' 8 ALL STO)EPENDE ']07 N
'rog;gc;--"s . .--

HLT 5TO G(n,k) 1- 0 FUNCTIm 08 k
ho~ron-i---t-~~=9===;====~r----i---~----~-------1i-·~20~7+--+-----~----------------.----
~ ____ rL_B_l_' __ +-______ ~r __ _+ _ _i.--I---1~E-I.-E~M....:E_N_1_·1~'---+-'-+-~1_~_B~ ___ tr-P_9_G~,(~n,~,~\) ___

B 9 TO RCI. + 10 G(I .. ~)
~-·---t-----i---------1r.0~6~0-t--~------t--------~r---+---+-----+-------4~--~~---

8 K 172 LBL 1 (n 11 (;(n,J)
~----r----;-------1r--~1---+-----~------4~-~r__;'-----+----'--~r----~--~

SIN 1 5 12G(r.,"l
~--~--r-'----~------Ir---+---+------+-------~~:~4--4-~--4------~,r---------

JILT 1 100 - - 13 GCn,5)
~~+--+-~~:;~~~==9r---t---t~~~~------1r-·~2~12~---r:~~-r--------~--------
02~37 LSL SUM RCL 14G(n-l,k)

C ~ IlL) 15 n-counter
~ •. --~--r-----r------Ir---+---+-----+-------~r--------~

I-_.t-_-t--R_C_L_~ ___ . ~-,-77+ __ 1-__ 9 __ -+ ____ ,-- f----t----r--7--_+- ___ -if-'_6_f_l -___ -i
o I ND . = 1~ 1.-

E'

8 . 105 13
foJor--+----.-+--=-----iI---I----f-S-T----O' _ 217 I N V _J...:_~
f-~' E' Yk 1 __ '-____ f-___ IFP05 ~191;WR~::.
f---. HL T 9 . C' . rLAG~

r-·--~L~B~L==t=======~hO~70n18-2-r---1-;D~S~Z~-rI~~~N~D- X X , 0

1--- ·--·-~D----I-----~I---=-I----!5IN INITIAL I RCL r-,----~

;_f-I_--_--.f-I--~-.. ---+-I3-A-S-E----~ L~~ C~":~~IF~ -=FI- ---;- -:= I~ __ _
E' 1 T . I •

1"--' ----r=----~---.--_I~::=_-~.-_+--'---_+-----.---. e:XAS II"STRUMENTS 1[_-·_--_"-_-.·.1 . HLT 075 SUM .,,,IHI'to'f\'tU
'--L--. ____ '--______ -"-_.''''87 '--. _____ _

46

TITLE
5 Devices":Load Dependent '2 2 _____ PAGE __ ,_OF -::-__ SR .. 52 ~

Coding Form '-W PROGRAMMER E. S. Herndon DATE March 1980

-,--
LOC. CODE KEY COMMENTS LOC CODE KEY COMMENTS LOC CODE KEX COMMENTS LABELS

000 = Add to 1 G(N, K) HLT "G(N, K)" A 112 0---
SUM Base 9 = B

0 Y 1 - 040 DSZ HLT "X(N)" C 152

1 TAN l/x 0

LEL RCI. TESDONE 080 IIl.T "S(N)" E 192
005 C' 1 n l/x A'

117

8 5 LBI. B'
1---

51'0 045 --
157 - - COS DEVICES C'

- --
I G Array RCL X 0'

- 085 '9 Poin,er 0 N 197
(E'

010 () 7 ReL REGISTERS 122 -
STO = 0 00

0 Y Array 050 INV L 0 01 162

6 Pointer IFPOS CONT HLT "K" 02
!--- 090 -- f--,

0 G(n-l,O) D" ROWS 202 IND 03

015 LSI. RCL I RCL 04 127

TAN 1 0 05 - 055 Yk + + 167 5 0 06

:I HLT "Nit) 07

SUM RCL 095 08 207
020 1 0 HLT "Uk" 09 132

9' 1 IND 10

IND 060 HLT 'Y I" RCL 11 172

ReL G(N-l,k) RCL 0 12

1 0 100
0 13 212

'(jE-
9 8 k for DSZ 14

_l37 ----
X X SIO dsz COS 15

1 065 0 CONTROL 16 177 -----, ----.-- --'-- t---------
SUM 0 9 END -l' 17 - L-~ ___ ~_ ~

0 l\CL
,""" 9 t .. roo- 6 Y

k
1 --G(n-I-;k) 1'--= ~_0~-------l-;;------

~ --
IND 4 I ~D' Noxg FL/\CiS

'070
f---f--. -,-- ----

RCL -

--~~=-I:--:::r:=-- c7~-=-_~
182
--~-..

0

6

IN [)

035 := RCL ==t_L_L- --- ------~ 147 .. -E- _~~D 1
_____ TFXAS INSTRUMENTS 14

------.
075-- --"-'r-----'--'

SIO 9
"fOH"/'" 0\" II

167 ---- ._'------ -------------------- -----_ .. ,..

47

TITLE Interactive HST·6 PAGE 1._ OF 2 __ SR-52 JJ;-\
PROGRAMMER E. S. He-rn"""":d-on-----OATE r;r~rch 19!r(j __ · Coding Form 'i:Y

020
132

48

set

E EXECUTE

D'Row

E' 1 Nt) I

TITLE Intero.ctive HST-6 PAGE 2 __ 0F_ 2
PROGRAMMER ___ ...:E:.o-.::S;..-.:....~}iTl:...;e~r~n:-,d!:o~n~:::_-_-:::_-'=OATE_March 19~

SR-52 ~
Codlng Forrn '-iY'

Lac CODE KEY COMMENlS Lac COOE KEY COMMENTS lac CODE KEY COMMENTS LABELS
000

112 x X 0 k AM-Jobs

RCI. ReI. 8 is loop B k-device

1 m O~52 1 Z S TO control cY k ServiCe
~--~--~----+-------~~~~---+----~~-------It---+---f-~--~------~r--~~~~

7 0 for 0 Z-Think

.:. x X 06~92 0 Uk EEXECUTE

OO~17 ReI. RCL RCL '"
~~~~-+-----+-----~1---4--~--~4-------11~-~---+----~------1r-------~ 

'. Z 1 h(m-l,d) 0 X(M) s· 

7 045 
157 5 7 ~ 

LBL O' Row 

'lND HLT "X(M)" 085 COS Loop E'IND I 
~~+---,+-----r-------i~---1---1------r ______ ~1 __ 1~9~7r-~· ____ ~r-·~ ____ I~ ______ --~ 
OI~22 5 TO h(m, k) 5 TO X REGISTERS 

----~~--~1r------~ 
1 0 (00 loop 
9 0~C2 7 ------~I~--r---t-R~C~L--+-------~r-OI~Yv-l----; 

~--~--r_----r-----~Ir-~~--r-----+---·'----~r--+_--~-
DSZ test end l/x l/x (M) 0 02 Y 2 
---~-------i~----+---+-----+-·--~--1~'~4---+-----t---~--;~--~--~ 

TAN ro.... X' X 09°202 0 03 Y 3 
O~ Y 

1-..;.12:.:.7+-_ ... ..:.R:...:CL, __ ~.:...te:.:s:.:.t ___ ~f--__ + ___ I-:R.:...C;:;L"-_+ _____ 1--_ HI. T~" 04 4 

1 done 1 mIN D 05 Ys 
6 055 6 RCL 06 Y 6 

167 . .:c.::.::..__j-----Ir-
o 07 M.X(M) 

r---·~--+---·---~------~~---+---+----~r-----I~~+--4----~------1r----------
ReL RCL 09~'()7 0 08 k 

~~--~--,--4-------II~-~r-·-+-----~------~r-~~~-----+------;r·------~ 
O~32 0 1 Z ) 09h(m,l) 
~~~~---·---r------~I---+-_r-----+------~~--_+--~------;-------~r---------: 

7 7 :.. 10 hCm,2)

m-M

~--1f----1f---:·---r-un-t~il~--I~o=ro-·-+--~--=----I-------~r---r---i~1I7L=T--~~"~'II~~~I---------~
112 -k' 11 h(m.3)

m :: M HL T "R(~1)" 1 NV 12 hem ,{.)
r-·~---+-----;------ll----r-~-----r--

RCL 100212 RCL 13 hem,S)
~c~~-4-----+------~~--·~--~----4-------~I--~+---~ ---
02~37 D' rows 1 I 0 14 hem .6)

INV

IF POS continue

RCi. 6 m 0 15 tJ(m-l, k)
---4---1f------+-------~~=-4---4-----4--------4~---~---·+_----r_------1~----------

1 05~77 - - DSZ 1$ m (,'unler
~--~---~··~_+------_;I~~~--~----~~----~il__-~I__--ll__--~~----__jt---------~

6 "m" RCL COS 17 Z

1 Z 10~17 = 18 I N V Y k

~0=~=U:2:===:=--:X==~===X~====~~===~===~==7=------~=·==.~~~~II:~-~-~;_-------I~_-9--~------~Ir-,-9-I-N-D-I--.~h-;
HLT

IND X X 9 FLAGS
---~·------_;I~~r_--r_----;-------~r--_r---r_----T_-------Ir---------~

ReL 07~82 RCL HL T
~,---I---+~·--_r------~~~~~--~-----4--------1f---~--_+----·4-------4~-------~

1 "hem,d)" I 0 X(M) J)' NEXT
f-- ----9 1----+--+--7--~-----I~,'"'1-=-O-I- ------+-R=-0-:"W-·---11--

2
------'"-1

1=~+--+-----i-------j~----4- ,-t-----t--- -- r-E-2 t---- ------t-----;Ir_--------j
03~'7 HLT = 3

o

-- ------ r-- -- --
lIx iiI. T "N" 'r 1 . . 4

:---.--1------ ---- f=~-f__--r_~----------I EXAS f'Sl RUMENTS t------
liLT "P(o)" 07;87 ReL "· .. ,,,· .. u.,

__ -L_--'. ______ '--_. ~.__ ___ _

49

TITLE__ Interactive tOeS
PROGRAMMER E. S. Herndon

LOC CODE KEY COMMENTS LOC CODE KEY
000

112

00$
117

LBL

PAGE 1 OF 2
.DATE MarCh..] 93.9

50

SR-52 ~
c.ocnng form ~

COMMENTS LABELS

S(L) A'

Exceeded E'INPUT

r
Interactive LDCS

rl LE ___ ~.~,,~~.~----__
PROGRAMMER c. S. Herndc-,l

LOC CODE KEY COMMENTS LOG CODE KEY

000
t- 112 X

RCL
2

tlx

2 2 PAGE _____ OF ____ __

DATE March 1980

COMMENTS LOG CODE KEY COMMENTS LA8~LS --
l!X(M) E Do II

B Next i-------
041)

Pass C ~~I--__ .~1 __ -i_h~(~m~) __ ~II __ ~15~2+_------X--_4~--~--1~--+-'--1-----~------ ~f---------J
C RCL 0 . J-

:OO:S:II=7~==:---":R~1-C-:"L-:'~:-:'-:'-:'z~-:'-:'-:':!fL---:--:~-----:1~:=_1-:,~-:,:-~-:,-:,m-:'-:'-:'~:I~lo:::-8_0;:-1:":9~2:~-~-:':_:'-:'-:'-:'~:~-~_~_--.-_-----lk ----

1----+---i-----+-------~I04S r---~----4-------~~------- -------r--------I~------_4
3 157 ReL c'

- --.-t----+----lf--------l
1 Z 0'

-STO 1-3-~i----4I-;;O:;;;8S--r----+----+--·-- -E'------
1~~i__f-----_f_--------1f--~f----r_---+_------~r_~19~7-~--+_----~------~:----------l
~1~22 1 = i' REGISTERS

1---+---+·--D·~~-:.Z-:.~~~~~~~~~~~~-O-"'50~1-6--12:--~~-o:-~:-:.~~~~~~:_"-R_(M-)--k--t---I-.- i--=il:: ----~=-
1---+---+--~-4-----~~.~~--_t------f__-----~~--.r__ E
'"=0""15---1'---+ :-= __ +:...;c..;..;:...:...;....;..; --+---+--=--+------~f-I -"-=t--- r-------f----. -- -- --
---i---1:R=_=C5Dl=~===FO=U=T=P=U==T=s~r~---i---i~.-~--r-.~----l~09~~'O-21r--r------ ------~ :: --

:=:'2:7:===:~ _ 05~67 _R_!_-L __ -t-___ O-;-F f__-I-----1~----·-= ~-:.
X 09~07

020 132
liLT

I---t--I--

t-_---1I---+YX

~CL

"h(M)"

51

REFERENCES

[1] Dennillg, P. J. and Buzen J. P. "The Operational Analysis

Queuing Network Models" ACiVI Con~.E.~ting S~rveys Vol. 10, No.

3, September 1978.

[2] Herndon, E. S. "An Easy Computation of Terminal Response

Time," MITRE Report M78-21~, June 1978.

[3] Wi11iam~, A. C. and Bhandiwad R. A. "A Generating Function

Approach to CJeuing Network Analysis of Multiprogramming

. Computers," Net\'lOrks fi ~ , (1976).

[4] Chandy, K. M. and Sauer C. H. "Aporoximate Methods for

And1yzing Queuing Network Models of Computing Systems," ACM

Computing §urveys Vol. 10, No.3, September 197R, pp

292-293.

52

End of Document

