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COORDINATE GENERATION BY CGNFORMAL

AND QUASICONFORMAL MAPPINGS*

by

C. Wayne Mastin and Joe F. Thompson

Abstract

Many recent advances in the solution of elliptic equations have been limited
t, regions whose boundary contourb coincide with coordinate lines of the Cartesian
ordi-late system. The reason for this lies in the fact that when an arbitrary

c• >>rvilinear coordinate system is used, the original elliptic equation becomes
!!;U^h more complex. For example, Poisson's equation is transformed to an equation
with variable coefficients and a mixed derivative term. There is no added
: , c•rnplexity, or additional computer storage needed for the coefficients, if an
orthogonal coordinate system is generated from a conformal mapping. Many numer-
; ,al schemes are availableef or constructing conformal mappings. Several steps
:+.-e generally required to find the mapping betweeen an arbitrary region and a
r-.--tangular region. A simple finite difference scheme will be presented for
--astructing a conformal mapping of s rectangular region onto a simply or
ably-connected region. The procedure determines the module of the region,
boundary correspondence, and the position of the interior coordinate lines.

o coordinate generation requires the solution of a nonlinear elliptic system
th oblique derivative boundary conditions, but is easily solved by any of the

,tandard iterative techniques.

Any study of second order linear elliptic equations will introduce the
tion of quasiconformal mappings which transform the elliptic equation to
.iuni.2a1 form (i.e., the principal part of the differential operator reduces

t, , the Laplacian). Quasiconformal mappings have been studied extensively by
)nplex analysts, but little work has been done on the numerical construction
quasiconformal mappings. Some preliminary theoretical and numerical results

:,,iicate that the above procedure for conformal mappings can be generalized to
^istr-ict quasiconformal mappings. This would allow one to simultaneously fit

t	 bcjndary contours with coordinate lines and simplify the original equation
is transforming to the new coordinate system. The equation, in canonical

;• , rm, could possibly be solved by methods which would not be applicable to the
iy.ir.al equation.

Examples of coordinate systems generated from conformal and quasiconformal
r.,pir.gs will be presented and the accuracy of the numerical scheme will be

scuEsed. For quasiconformal mappings there is need for improvement in both
;;ie rite of convergence of the iterative procedure and the accuracy of the

m er ved solution.

esc:rch sponsored by NASA Langley Research Center under E±rant NSG 1577.
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ABSTRACT

Mel'ea Jo McCoy, Master of Science, 1980

Majors Mathematics, Department of Mathematics

Tittle of Thesis: A Comparison of Finite Difference Methods for

Solving Laplace's Equation on Curvilinear

Coordinate Systems

Directed by.- Iar. C. W. Martin

Pa es in Thenist 46	 Words in Abstract: 102

ABSTRACT

x	 Finite difference methods have been widely used in solving

paxtial differential equations by numerical methods. In this paper is

a comparison of different finite difference techniques used to solve

I.ap'lace's equation. Curvilinear coordinate systems are used on two-

dimensional regions with irregular boundaries -- specifically, regions

a.ro and circles and airfoils.

In Chapter II, truncation errors are analyzed for three different

.Un-lte difference methods. A comparison of the false boundary method

ani two-point and three-point extrapolation schemes, used when having

the Neumann boundary condition, is included in Chapter III. In the

corIluding chapter, the effects of spacing f!.nd .nonorthog;onality in

the coordinate systems are studied.
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TRANSFORMATION OF TWO AND THREE-DIMENSIONAL

a
	 REGIONS IiY ELLIPTIC SYSTINS

The previous status reports have emphasized progress in the analysis

of coordinate generation method: and error in sol,-Ing problems on curvi-

linear coordinate; systems. Rece-.r o-mphasis has been on the application

of this analysis to study the errors resulting in numerical computations.

A compilation of numerical examples involving the solution of Laplace's

equation on various coordinate systems is contained in a Thesis by M. J.

McCoy. An extension of this work to solutions of the stream function_.

vorticity equations is in progress. In the numerical examples, the coef-

ficients of the transformed equations have been computed both analytically

and numerically. The analysis and numerical results utere presented at a

recent SIAM Meeting.

I	
An extension of the results on confo rntal mappings can also be reported.

For years quasiconformal mappings have been of interest to mathematicians

because they share many properties with conformal mappings and also can

be used to reduce linear elliptic partial differential equations to canon-

ical form. Applications to physical problems have been limited because

there was no known method for constructing a quasiconformal mapping, it

is now possible to modify the numerical scheme used for generating coor-

dinates by elliptic systems to construct cluasiconformal mappings. `Chis

new discovery, along with previously reported results on conformal mappings,

will be presented at the Conference on Elliptic Problem Solvers in Santa Te

on June 30, 1980. The method should be of special interest to people

working on the direct solution of elliptic: problems since mixed derivative
t;

terms can be eliminated by quasiconformal mappings. An abstract of the

talk is attached. The final manuscript is being prepared and will appear

later in the proceedings of the Conference,
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I . 1ITMODUCTION

Finite difference meshes have b-3en vidoly used in solving pcxtial

differential equations by numerical mothods, In fluite difference

techniques, partial derivatives in the equation are replaced by

difference quotients. For example, given a differentiable function

U(x,y), the first partial derivative of U with respect to x may be

replaced by the dU,forence of U evaluated at two neighboring points,

divided by the distance between these two points. This method requires

that the region first be divided into a grid, ov mosh, as shown for

the case of a rectangle.

i

The intersection of the lines in the grid axe call(;d nodes or PTi,l

points or mesh points. At these points we try to s!-nproximate values of

the solution to the problem.

For example, consider Laplace'r Equation

n+ `-- = 0
(!X	)Y'

7

on the above rectangle whose lines axe of unit width apat in each

direction. Assume boundary conditiozz p are specified. By replacing

B	

the partial derivatives in the equation by difference quotients at the

point F, the equation is approximated by

ORIGTN AL
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M	 CP) - +t (x^) + t(s) + a (E) + (W))	 o

where 4(P), ^(x), O(S)r O(E), and ^(W) represent approximations to the

function 0 at P and its neighboring points in they grid.

The collection of all such equations for all nodes gives a

system of equations whose unknowns approximate the solution of the

problem at the interior nodes. We may, then, set up an iterative

scheme in order to compute an approximate value of the function at mach

point. See [1] and [2] .

We encounter a problem, however, if we use a rectangular grid on

an arbitrary two-dimensional region with irregular boundarien.

o boundary nodes

grid points

The grid points, or computational nodes, may not fall on the boundary

so that we may not be able to make full use of the boundary conditiona.

When solving an equation on suc!L a region it may be possible to

construct a curvilinear coordinate system such that certain coordinato

lines coincide with the boundaries of the region. A curvilinear cyFtem

2
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0
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00

X

is defined to bo a finite difference grid having the property that each

neighborhood of a node in topologicrlly aqW Yalent to a rectangular

grid in the plane t that in, the cooardi.netc linen may be considered as

Level. curves of a one-to-one transformation, We can then solve our

problem by computing a solution to the transformed equation in the

rectangular region.
r

For an example of a curvilinear coordinate eyotem t consider the

transformation from rectangular to polar coordinates:

x r con,

y	 Train: E^ .

Define the function T by (x Oy) T(r,4	 T* r « 0 and 0 < G < 2P, T is

one-to-one except wben r re 0 and onto the xy-plane.
w

T maps the box 0 < r as 0 < 0 < + ;; 2H onto a sector of a disc in the

xy-plane.	 Y

3
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r

T

x

0

? i7

r

T

x

The level lines r - constant are mapped onto c»roles in the. xy-plane

and the lines	 constant are mapped onto spoken.
7

0 t

We shall consider different types of curvilinear coordinate systems by

defining r and 0 as functions of E, and n, Define S as a one-to-one

mapping of 1< f, < N, Z e n r M onto 1	 100 0	 2h.

ri	 E3

S
M

	

?li	 \

2

1	 N	 1	 10
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onto

1

21
x

x

1	 R

2 ,,t..

x

Than T o S 10 ono-to-one and onto.

n
T o S

M

2

The level l$moe t = couetanrand r, ,w ccnatant axe mapped at) follows,

.r-
Y

Nq,0S

M"



n

,1^
1	 N

T o 8

C

-••-)' x

The Jacobian matrix of the transformation T o S is

ax	 ax	 ax ax	 ar	 a 

74 an	 ar 7i,	 a an

a a	 aY .& a8 a©
ar;	 an	 gar	 as	 a^	 an

and the Jacobian is J = ax
	

- 1x - Z . As long as J ^ 0 9 the level
a^ an	 an aE

lines do not intersect; and since the mapping is one-to-one in the

region, the inverse of the transformation exists„ Further, by the

Inverse Function Theorem, the Jacobian matrix of the inverse of the

transformation is the inverse of the matrix of the transformation. Zee

[31-

When using curvilinear systems certain diff'icu'lties may a iee.

The coordinate system can have considerable effect on the error in the

numerical solution to the problem. Crowder and ?Dalton [4] and Blottner

and Roache f51 have demonstrated thin for the one—dimension,:], case. K.

de Rivas [6] gives a study of truncation errors In the use of nonuni-

form grids. We may readily see that coordinate line spacing rapidly

changes or if we uae an extremely nonorthogonal system, the second

order differences of the x and y coordinate functions may become quite

large. Therefore, when we consider the chain rule and Taylor series

expansions, as we will do in this study, we see that our truncation

6
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fr
errors can become much worse When using such systems. See [71.

In our study we shall compare several different coordinate

systems, methods for finding values on the boundary when having the

r	 Aeumann boundary condition, and various finite difference schemes. Lau

[8] has developed a finite difference method, in a manner similar to
p

that to be uoed in this study, for the three—dimensional case. Also

see [9] .

ORIGINAL PAGE IS
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II. FINITE DIFFMMCF MEIVEODS AND ERRJR ANALYSIS

We wish to solve the partial differential equation

V
2^	 82^ + Zi = 0

2
ax	

ay

on a two-dimensional, doubly-connected Tegion D, with boundary compo-

nents r  and r20 and a out along 
1'3 

and r4 which are coincident. Refer

to Figure 1. We have Dirichlet boundary conditions on r2 and either

(i) Dirichlet boundary conditions on Pl . or

(ii) Neumann boundary conditions on rl.

In order to solve this problem what we have: done is to transform

our problem from the xy-plane to the tr)-plane by a one-to-one mapping,

where our transformed plane D is a rectangular region and the boundaries

correspond to constant coordinate lines. Since 
'3 

and r 4 are coincident

in D, I'3 and r4 are reentrant values in D* . Refer to Figure 2. We are,

then, able to solve our problem in the rq -plane.

In this study we wish to compare the accuracy of severs) finite

difference methods of solving the problem, as well as to study the

effects of nonorthogonality and rate of change of spacing of coordinate

lines in the region.

First we shall consider the chain rule method. Suppose a coordi-

nate system is given in a region D of the xy-plane and f is a fimetion

In O(D). Difference expressions for the first and second order partial

derivatives of f can be obtained by transforming the region D to a

rectangular region D* and applying the chain rule. The relationship



between the derivatives of f in the xY-plane and those in the Cn-plane

are given below:

Of _ ax f
ax	

of
74	 a	 ♦ a ay

f_ ax Of	 of
an	 an ax	 an ay

(1) a 
2 
f _ a2x of a 2vof	 '} 2 a 2f 5x 9" aa 2f	 2a2f
2	 2 ax "^ 2 ay * (

.Lx

	

 ar	 2 } aF Dr, My + C a^	 ^, 2
a	 a ^	 a,	 'CM	 y
a2f	 a2x of	 tl_ 2v of	 ax ,.)x

 .,2	 ax
ax	 ax a	 a2f

actin - a_ ax + a0n V + aE, an axe + C an + an a, axay

+.a3-V	
a 

OF; an ay 

32  a2  of	 aZ of	 ax 2 a 2f	 a:Yc „ x a^ ( .LV. 
2 a2f

22 ax 	 2 ay + an	 2+2 '^ an axay i a n'	 2.
On	 a	 a	 \	 ax	 an	 n	 n	 -	 Y

The derivatives with respect to the xy-variables may be expressed

	

"	 in terms of derivatives with respect to the tn-variables provided the

Jacobian of the transformation J =0- 117 &V - ax r)y does not vanish.
at, an	 an

-1).Y.;, C r

For examplep we may solve the first -two equations in (1) for'aOff` and 
ay .

Higher derivatives may then be obtained by repeated applications of these

expressions for ax and 
'fDY

Of _ ,OY of ' a of J
ax	 ( an a^	 ac an

Of _ _ ax ofax of

ay	 an aC + a, an	 J

a2f F/-b-r 2 a2f	 a'S .	 .` ' 2 a2f	 2	 Ir	 2 a. V
@X2
	 an	 a 2	

2 a an ar' lm + a^	 ^n2	 J	 + I 'Sr i	342

r	 L	 p

	

"	 - 

2	 a_	

+	
2 ;X [@x of ax of 

+	
2 a^x

(2)	 aE, an acan	 3^	
arj2	

an a	 a^, an	
`^	 ar2

i



„ Ix ax a2 
aC a;, 7a n

2	 j
2f2 	

2

1 an2 J + 81 
aF,2

a2fax 2 a 
2 
f

ay2	[(an
	

a 

W

-2
Y a=-- + Z ? a 2x oaf - V J3

Dr, a ► ,	 aCan	 aE; an2 ar an an a4

af ?x ax	 a2f- a^ _	 a^ 2
axay aF	 an an aF	 a^;an a	 E, ant an an a 2

axa?,v ax ate_ J2
aF an an	 aa ► a

+ ax a 2y - 3x a 2ti,	 J2
a n a ^2 aF,	 DCan

	

(DXDyaJ	 fixz aJ J3 of
an an a 5C all a'n	 aF

ax 2z 111_ ax 21 -J j3 of

	

iF, ar an	 1n a
at

an'

ax ax 2L- a 7c 2 
a.	 ax o f	 ax o f 	ax 2a2x

2 
an a^an + a^ an2] an a^ _ ar an + a'►; 2

- 
2 ax ax a 2x 	 E)x 1 2 1( 2x	 of	 of 

^S
DC an a^an	 a	 Oj [41 1n 	 a n aF;

All derivatives with respect to the (ji —variables may be approxi-

mated using difference operators, so we define the following exprrssions

which replace the corresponding derivatives in the above equationv.

f ( P) = f(Q) - f(R) ) / 2

fn ( p) = ( f(S ) - f(T ) ) / 2

(3) fF,F,(P) - 
f(Q) + f(H) - 2f (P)

frn (p)	 ( f(u) - f(V) + f(W) - f ( X ) ) / 4

fnn (P) = f(S) + f(T) - 2f(P)

These are merely the second order central differences on a square mash

of unit width in the E,n-plane. See Figure 3. The coordinates x and

are also functions of t and n, and their partial derivatives may also be

appraximated by difference expressior)e in a eimilax manner.

From (1) and the above method of obtaining the central differences,

then we may set up a matrix equation

ORIGINAL PAGE IS
Or' POOR QUALITY
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f of
az&

r Df
n ay

f^ = A ?
2

where. 2

ax

9 2f
fin ax3 ..

a 2ff
nn a y2

y^ 0 0 0

xn	 yn o 0 0

A = '	
Yr.

2
^' 2,^ yt,

2
Y^

'Cn	 }fin 'L '2 t ('^, Yn	 + 'TI Y^ 7C 2n

'n n	 Yn n
'4i 2 11 Xn yi	 M

We may solve this by

of f

ax ^

of f

ay n

o 
2 
f

_ A-
1

az2

f
Ur,

provided det A	 U.

a 
2 
f

axdy
f

F;n

a 2 f_

ay2

f

nn

The determinant of A will not vanish in our case because J	 0.

Next we consider a Taylor series expansion of f about P.	 Usin,

this and the difference expressions we have already developed., we get;

the following matrix, equations

11
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f^

f
n

(4) f

fin

fnn

Of
ax

of

Y

..ei a2f
ax2

D2 fa--

a 2f

Y

I, where

x	 y	 *tXc	 , ^(xc YEC + yr" r,^ )	 Iny,y,
xn	

yn	 ixx	 2	 e,(Xnynn + Ynxnn )
	^yn2nn 2

A = x	
Y^	 (ix	 + x )	 (ix y^; + 2x Y.	 qyf + Y )

xCn Yin j((x2)&n- 21aCn) ((xY)^n -Xyrn
 _", d i((Y2)cn•-237Cn )

nn	 ynn	 (4"x^n	+ xn)	 (A:Krin ynn 
+ 2xny11)	

(iyn=	 n + Yn )

the error grins are 0(h3), h the maximum diatsnce between P and ttn

neighbors, and

(x2)n(P)=,4(x(II)2 + x(W) 2 - x(X) - x(Y)2)

(xY)^ n ( P)= (x( tT)y( II) + X(W)Y( W) - X(X)Y(X) - X(o)Y(V))

(Y2 )cn(P ) a(Y(II )
2 

+ Y(W ) 2 - Y(X ) 2 -- Y(v)2).

We may solve by

8f
ar.	 ^

f
ay	 f„

32  1

9X2
A	 f^^

a 2 
f

â
	 f^^n

a 2f
a fnny2 

12



When we compare the chain rule method with the Taylor ser!.es

method, we consider the system (4) for Taylor aeries and the syntem (1G)

for the chain rule, both of which use central difference approximations,

for the partial derivatives of x and y with respect to the ^n-vnriablen.

In the Taylor aeries expressions from (q), only the first and second

order terms are retained, and the truncation error is 0(h 3) for each

expansion. In the expressiono.: for f, and f n , if only the first order

terms are retained, the truncation error is 0(h 2). These expressions,

though, are precisely those of the chain rule method. We see then that

for our chain rule method, the error terns of f 4 and f ry are 0(h?).

If we compare the last three equations in the Taylor aeries

method and the chain rule method, we note that, in order to reproduce

the Taylor series expressions from the chain rule expressions, some

second order terms in (4) would have to be added, as well as the exTor

term which is 0(h3 ). Bence, considering the second order terms, the

error in these chain rule expressions is 0(h2).

Therefore, in all five equations uBing the chain rule, the errors

are 0(h2 ). The exrora for the Taylor series method, retaining only

first and second order ter;as, axe all 0(h 3 ). It appears then that, when

we use central difference expressiono for the coefficients in these;

systems, the Taylor series expansions should give better results thazi

the chain rule.

The third scheme we consider uses the chain rule in the same

manner as before, but the difference lies in our method of finding

.r ?x , a 2 a 2 
x a2x, eta. Instead of approximating these partial

a an a ^2 aUn
,
 ant

derivatives by finite difference expressions as before, we compute these

13



via WiA t * 	
3

Values analytically. The accuracy of this method can also be evaluates)

from Taylor series expansions.

For the first order central differences in the computational

region,

o f 	 l a 3f
f^ R a + -6

ax	 1 a 3xaa f 	 1 ^ ^f'	 i ,sz 1X
+ a 3 ax + a +	 a3 a

y + 2 ar 
a^2 

axe

(ax D 2Y	 2	 21L + I a 2 2

2 at a&2 	 a^2 a C axay	 2 n X4 2 ay2

where only the first and second order terms are retained.

Approximations for the second order differences are obtained in a

a 
2 
f	 1 a4f	 a2f	 1 a 4t	 a4r

similar way. If f :%—^ + 794 and ff n = 
a	 - a 	

— + ---^
ac	 a	 (&ran aa.i,

then, dropping all but the first and second order terms, we get the

following estimates;

f	 a 2x 	 1 a 4x of	 a,	 1 I	 of	 ax 
2 1 ^ 

2

2 + 12 a 4 ax '¢ 2 + 12 ar 4 ay * a	 + 4 a2

+1axx a 3x
 2f+ 2ax	 + 1a2xx 22 + ?s2_x221

3 a& BE 	 ax 	 a ar	 2 
at 2 3^2	 3 at a 

C 
3

+ 1 ^ 3x a a 2f +	 2 +1 	 * 1?.^aL a2f
3 ar;3a& Mya

	 q(

__2

a4 2	 3 aE aC3 ayz

r [jL-K_ _ 1 (^ 	̂ a x fafn..	

an + aran3 ,rx
	 a an S a San

+ ?sue_ 3 f + ^ az _ 1(,
,, 3

^ 1M.  + BA 3,3x _ 1 x a 3x

at,3n3	 ay	 at, an 
	 an	 aF a 3	 2 aC aC2an

+ a x a 3x + a 2x a 2x + B! a„ Ix 1̂ 2£ +	 1y + ax a v,

an 30 n 2 a^2 a0n
	 assn an t axe 	 an	 an aF'

—T	 3+
r	 x	 a3x^.Y 1 3x_

a s 
an 
3+ a 

3 an + a ► , a 3 + 
a 
3 a	 2 a 

a 
Zan

OnIGINAL PAGE IS
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LXx	 a 3x U	 3x a	 a 2x y I

+an a ant - 2-`^ +aF--, ^ n ^-a 	(-!2 +ant

+ a2 , ,(IL
a^an 

at 2 an 2 
a, r,

^ an	 an 3
+ a,^^,v_, ,a..y a^ +a^a^C

	

a zay	 a	 2^ 
3

1i2.Y .^Y_+ZZ^_+?^^.^a^ a2f
2 at a t 2 

a n	
an a ant	 aF,2 a;an	 a;an an t	ay  •

Hera we observe that the difference formulas, arrived at via the chain

M	 rule, for the derivatives of f are accurate on.1.y if the hither order

derivatives of the coordinate functions x and y become progressively
i

smaller.

A comparison of the Taylor series expansion about P end the

analytic derivatives suggests (and our study bears this out,) that the

numerical computation would be preferred due to the appearrr.ce of error

in the first derivative terms when the coefficients are computed

analytically.

15



^C
4
ax

III. IMATION SCEMIES AND BODNMY TWUI q =-

From both the chain rule and the Taylor series, we hai-zq for

7 2 ^ = Or

ay

2
= A 2

ax 
 r A	 [It,^J

ate_
w yC^	 hay

a2 >

¢nn	
DY

2

Then from xp yv and ¢ we compute

Al

^^3n

^'nn

to find a	 and a	 .

ax 2	 ay2

Our transformed equation is

a	 + a	 + a	 + a	 + a $ = 0
^ 

2 
^	 1^ ^ 	 2 ,^	 3 F^	 q ^;T,	 5 ^n	 r

where A—1 = [Iij] 
and a j = 13j + 

B 5	
'Using central differenaeel t o



approximate V ^ above in terms of the 
i 
n -variablea, we got

L	 ci*.0n) + 020(4+1,n) + o3	
+ 04* 0n

+1) + 050(k,n_1)

+ c0( C+1,n+1) + 07 ( 4+1,r;»1) + c8W-1,n+1) + e9^(f»l,ri-1)

• 0.

We will use the Successive Overrelaxation iteration scheme to approxi-

mate ^x

c01 (, n) + c2 ^(^+,10) + 03 (-1, n) + ca^(,,n+^.)

+ c5*, n-l) + c6W'+1, n+l) + cI*+1, n--1)

+ Y(4-1,n+1) + c94,(C,-1,n-1) + 0(e-1)(Crn)

a - 
c LO + O(a-1) (r, n)

1

Wh6re of =2a- 2 -a,and w is the re^.^zi; tion factor. 33o we have, them

(°) = ^ (Url) +
2(a 3+a 5

We have compared several tcchniques for finding values on the

boundary. Wien wu have the Neumann condition, A = 0, on the boundary,

we go through an iteration scheme obtained in a manner similar to that

of the scheme for the interior points. First an _: 0 is computed by

the expression

Dj V^	 Vvn	 0 on n = conotant.

In the first two equations of (2) 0 if we apply tho relations for 
1f
ax

andf with f M n, we obtain

an	 'x.
X 	 J and pry - 

ac J
) /

so that on := -	 x	 ;= ?	 Y where a - ^x 2 + v
77	

2
 a 4 ^,	 , r, ^r	

V ,
' ,	 ^3x , y	; .

17



	

r n4e we have -	 ^x +— y G. From

Ox

ay	 ^n

2

ai	 A-
1

D2 
0

Wy	 n

^2

a
2
	

`inn

^a gc the equation°

ax
:, 

H110& + Al2^n + -13 00,,4 + -14^tn + "15 ` nn

	

ay	 821 ^ c	 b22 $n + 23 V. + ^2Q d^FTJ + A25^nn"

ion ,'rom these equations and our boundary condition - av .;- + 3x a =Qa ax	 a ay
. hate

x

	

B21 _
	

ill ^P +	 B22	 Blr `fi n + '^^; B23

a X24	 aE Bl^	 n + F X2 5 Y Bl5 d?In = o,

;r

i

	

d1
	 + 	 y n + d3 (PIA +d4 Irt,+d5 

ITin
=OP

	.here d^	
RX 

B2j - V Bij . The interior boundary component will be

with n = 1 a false boundary used for implementing the Naumann

oun6ary condition as indicated in Figure 4.

So on the false boundary n = 1 # in a mariner similar to that uoed

to ol.taining a scheme for the interior points # we have the iteration

clien:o	 °)(^(°-1)( 	
+ d 2l- d	 d 4	 ~ d	 + dl	 2 n	 3
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I -
.^^'.

+ d4 
4`F:n + 

d5 
4 In .

We have also atudied th o effec:t^ of uaing forward difference

ochomeo for approximating values on the boundary. Ono method we

oonaidered uses the expressions

(r,	 (F, ►n +2 )	 k (: Pt  4.1	 ►n ))/2

Where we otill have the boundary condition an ^ 0. For 'j- and ^-
y

the chain rule formula is used and the Neumann condition 3 = 0 is

approximated by dl'& + '"',2 
^n 

= 0. Than we get tho three-poi t extr-Lpo-

"lation formula

(5) ,n)	
44+1) 	 + 2d	 (t; S r i ) /d	 at n	 2.

	

Another method used was	 ( ,rl) u (r; , n +l) -» (E; ►n ). Ther, we,

grit the two-point extrapolation expression

(6) t (r r ti) " ¢ (F; ,n+l) + dlQ (r; ,") / d2 at t_	 2.

Because of the difficulty in getting the partial derivatives at

the trailing edge of the airfoil neceeoawy in approximating; values of

there ► we have used a three-point extrapolat on on the trailing edge
It

at n	 2 # and F, _ 1 and F, .. N.

(7) x( 1 0 2 ) = 3 ( 2,2) - 34(3,2) + x(402)
(N O 2)	 3^(N.-1 0 2) - .31^(11-222) + 4^(N-3,')

These ,formilas were obtained by fitting a paral-ola through the, three

}oagwn values in order to approximate the poi.ntiz ¢ (1, 2) and ^ (11,) on it.

°l
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ID. COO.'iDINATE SYSTENbS AND RESULTS

Different coordinate systems have been used in our region in order

iy
	 to compare the results when using grids with properties such as egw31

spacing; continuous changes in epacing, or an abrupt jump in spacing,

and orthogonality or nonorthogonality. In our study we have used

1<	 < N = 40 and 2< n < M = 50 on both circles and airfoilu.

In each case, we have taken a known solution to the problem and

compared values of this function on the grid to those of the approxi-

mated function which we have computed, Here we provide figures

illustrating the coordinate systems and a graph for each comparison of
Q,

the errors of the particular methods used for the systems. The graphs
r

were plotted along either C or n equal to a constant.

The first coordinate system we will considor is an orthogonal one

in which we have a jump in the coordinate line spacing. The lines close

to the body are equally spaced before the jump, from radius 1 to 2.294.

After the Jumpy from radius 2.294 to 10.0, though the distance between

consecutive coordinate lines is again uniform, this distance has been

increased to rive times that between the lines before the jump. Thi3

coordinate system is generated by the

We will denote r at rj = constan

r(2) = 1

r(n+l) r(n) + 2.7/(M-2)

r(n+1) = r(n) + 13.5/(bi•-2)

g = 2H ( (E-1)/(N-1) ).

E,
F

t

i
F

following formulas:

t by r(n), Then

for 2 < n <_ M/2

for M/2 < n < M.



Refer to Figures 5 and 6. In Figure 6, we have the same system as in

5, except on a larger scale, and we have only shown the first 29 000rdi-

nate lines close to the body.

In this comparison, we consider different methods for two differ-

ent functions:

(i) ^(=r y) = x1 + 2....1 2
x +y

(ii) ^(x,y) _ + log (x2 + y2 ), where x = r cos 0 and y = r sin 0.

For (i) we compare the results of chain rule and Taylor series,

using central differences for the approximated values of the gym-partial

derivatives of x and y, and the Neumann boundary condition on r1,

creating a false boundary at n = 1. For a graph of these errors along

y 1, refer to Figure 7. The results using Taylor series were better

than those using the chain rule.

In (ii) we compare the chain rule and Taylor series using central

differences for the coefficients, and the AJ.richlet boundary condition.

For a graph comparing the errors plotted along the line F, = 1, refer to

Figure 8. Again Taylor series gives better results.

Next we will compare a nonorthogonal system with an orthogonal

one, using the function ¢(x,y) _ + log (x2 t y2), where x = r cos0 and

y = r Ain 0. In the orthogonal system,

r = 1 + 9( (n-2)/(M-2) ) and 0 = 2 ff( ( -1 )^(N-l) )•

Refer to Figure 9.

For the nonorthogonal system we u©e

r = '1 + 9( (n-2)/(M-2) ) and Oman ._ 5116, Omin = n16,

0	 Omin + ^ (Omax + Omin) t 211( (r-1)(11-1) )•

Refer to Figure 10.
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On each of these systems we have used the chain rule method,

t L..

central differences for the coefficients, and the Dirichlet boundary

condition on T 1• For a comparison of the error curves along 	 1, see

Figure 11. The errors were constant on each circular coordinate line,

and the results using the orthogonal system were better.

For the function ^(z,y) = x 1 + 7- 7 , we will again uau the
x +y

nonorthogonal system described above (see, Figure 10). We will compare

the accuracy when using a false boundary with that when using the two.•

point and three-point extrapolation formulas, (6) m. d (5), respectively,

for values on r 1 where we have the Neumann boundary condition. In each

case we have uded the chain rule method with central difference

expressions for the coefficients.

At n= 1, we have taken for the x and y valu-RS,

_(^ , 1) = 2x( 4 2 ) — x( F. 3)

y^ r l ) = 2y( F,,2) - y( r,. 3)

when using the false boundary. For a graph along n 2 comparing the

errors when using these methods, refer to Figure 12. Since the error

curves in each of these are symmetric about the line = 20 0 we have

only shown the points for 1 < C < 20. We see that both the false

boundary and the three-point extrapolation methods give much better

results than the two-point extrapolation.

The nest coordinate system we consider is generated by x = r cone,

y = r sin e, e = 211 ( ( ^ 1) f (N-1) ), and r = 1 + 10 i	 1-tanhIM 202

Refer to Figures 13 and 14. Figure 14 is a plot of the same coordinate

system as 13 on a larger scale, so we only show the 2411nes closest

to the body. Again we use ^(x,y) = x 1 +
^ +y

22



In this coordinate system we compere the results obtained using

-the numerically approximated values of the 4n-partial derivatives of

x and y, or the coefficients, in both the chain rule and Taylor series

methods with the chain rule method using the analytic derivatives of x

and y. In each case we use the Dirichlet boundary condition on rl.

With both the chain rule and Taylor series where we use the

numerical coefficients we get good results. However, when using the

;analytic derivatives with the chain rule, the errors were much larger.

13efer to Figure 15 for a graph of the errors along C = 1.

In the previous cases, we have considered coordinate systems and

:Cunctions on regions around circles. Now we :cove to the airfoil,

;obtained by the following transformation:

x=rcos e, y 	 sine

xl = x(1-b), yl = y(1-b)

x2 = xl + b, y2 = yl

x=x2+-- 2	 y =y2- --	 -2
x2 + y2	 x?_ + y2

The transformation from (x2,y2) to (i,y) Is the classical Joukowski

!;ransformation which is a conformal mapping. For thie study we have

1;aken b = -.1 and used the coordinate system generated by

r = 1 + 9( (n-2)/(M-2) ) and e 	 )

Frith the function ^(x,y) = x 1 + - 1 2	 Refer to Figure 16. In each
x +y ')

>f the methods we will compare, we have used the three-point extra:pola

U on formulae (7), discussed earlier, for approximating values on the

1;railing edge.

first we compare the chain rule and the Taylor series using

;iumerica.l coefficients with the chain rule using analytically computed

23
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coefficients. In each of these, we have used the Neumann boundary

condition, with a false boundary. For a graph of the error curves along

the line C a 1, see Figure 17. For the curves graphed along r7-a ^, see

Figure 18. Note that these error curves are symmetric about 	 20, so

that in Figure 18, we have only shown these curves for 1 < ^ : 20. In

both figures, we see that at most points, the Taylor series and the

chain rule methods using approximated derivatives both give better

results than the chain rule with analytic derivatives.

Finally, for the same coordinate system and function 0 as in the

immediately preceding comparison, we have used the chain rule method

with numerically approximated derivatives in comparing the false

boundary method with the three-point extrapolation of 0 on r  where we

have the Neumann bt ;dary , condition. Refer to Figure 1$ for a graph

of the error curves along n = 2. Again, since these curves are

symmetric about 9 = 20 9 we have plotted them for ]. < ^ < 20. These

methods give equally satisfactory results.
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V. CONCLUSION

The objective of this study was to determine the moat accurate

method, of several considered, used to solve numerically the partial

	

2	 2
differential equation V20 =.^ + a = 0. We have looked at

	

ax	 By

se:reral different coordinate systems on circles and on airfoils. In

thi; comparison of the nonorthogonal system with the orthogonal one, we

found that the orthogonal system gave better results.

We have also compared different schemes on the systems. When we-

compare Taylor aeries with the chain rule we see that, in general, Taylor

scries is more accurate. When considers these two methods, which use

niraerical ooefficients, versus the chain rule with analytical eoeffi-

eit.nte, we see that the errors when using the analytical. derivatives

may be much greater than either of the first two methods.

Also considered in this study were the false boundary, two-point

extrapolation, and three-point extrapolation methods used when having

thta Neumann boundary condition. We found that both the false boundary

an,:i the three-point extrapolation techniques give satisfactory results,

ea:h being more accurate than the two-point extrapolation method.
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