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COORDINATE GENERATION BY CCONFORMAL
AND QUASICONFORMAL MAPPINGS*

by
C. Wayne Mastin and Joe F. Thompson
Abstract

Many recent advances in the solution of elliptic equations have been limited

1. regions whose boundary contours coincide with coordinate lines of the Cartesian

cvordinate system. The reason for this lies in the fact that when an arbitrary

curvilinear coordinate system is used, the original elliptic equation becomes
much more complex. For example, Poisson's equation is transformed to an equation
with variable coefficients and a mixed derivative term. There is no added
ccmplexity, or additional computer storage needed for thé coefficiunts, if an
orthogonal coordinate system is generated from a conformal mapping. Many numer-
ical schemes are availableefor constructing conformal mappings. Several steps

ave generally required to find the mapping betweeen an arbitrary region and a

rvztangular region. A simple finite difference scheme will be presented for

c.nstructing a8 conformal mapping of a rectangular region onto a simply or

5 J.ubly-connected region. The procedure determines the module of the region,

‘ " 2 boundary correspondence, and the position of the interior coordinate lines.
..o coordinate generation requires the solution of a nonlinear elliptic system
«’th oblique derivative boundary conditions, but is easily solved by any of the

- +tandard iterative techniques.

Any study of second order linear elliptic equations will introduce the
in.otion of quasiconformal mappings which transform the elliptic equation to
. .aonical form (i.e., the principal part of the differential operator reduces
tv the Laplacian). Quasiconformal mappings have been studied extensively by
«nplex analysts, but little work has been done on the numerical construction
¢+ quasiconformal mappings. Some preliminary theoretical and numerical results
;v+dicate that the above prccedure for conformal mappings can be generalized to
« »astract quasiconformal mappings. This would allow one to simultaneously fit
the¢ bcundary contours with coordinate lines and simplify the original equationr
w.on transforming to the new coordinate system. The equation, in canonical
iorm, could possibly be solved by methods which would not be applicable to the
. iyiral equation.

Examples of coordinate systems generated from conformal and quasiconformal
©.ppirgs will be presented and the accuracy of the numerical scheme will Ve
i scucsed. For quasiconformal mappings there is need for improvement in both
ibe rate of convergence of the iterative procedure and the accuracy of the
convereed solution.

" e¢serrch sponsored by NASA Langley Research Center under prant NSG 1577,

T




ABSTRACT

f Melba Jo McCoy, Master of Science, 1980
Majors Mathematics, Department of Mathematicn
Title of Thesis: A Comparison of Finite Difference Methods for
Solving Laplace's Equation on Curvilinear
| Coordinate Systems

Dirz=cted by: DIr. C, W. Mastin

FPages in Theaist 46 Words in Abstracts 102
ABSTRACT
t Finite difference methods have been widely used in solving

rartial differential equations by numerical methods, In this paper is
a comparison of different finite difference techniques used to solve
Larlace's equation. Curvilinear coordinate systems are used on two-
diiwensional reglons with irregular boundaries -- specifically, regions
around circles and airfoils.

In Chapter II, truncation errors are analyzed for three different

finite difference methods. A comparison of the false boundary method

ani two~point and three-point extrapolation schemes, used when having
the Neumann boundary cordition, is included in Chapter 1II, In the
concluding chapter, the effacts of spacing and nonorthogonality in

|
f the coordinate systems are studied,
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TRANSFORMATION OF TWO AND THREE~DIMENSTONAL
REGIONS BY ELLIPTIC SYSTEMS

The previous status reports have emphasized progress in the analysis
of coordinate generation methods and error in solving problems on curvi-
linear coordinate systems. Recesnit emphasis has been on the application
of this analysis to study the errors rusulting in numerical computations.
A compilation of numerical examples involving the solution of Laplace's
equation on various coordinate systems is contained in a Thesis by M. J.
McCoy. An extension of this work to solutions of the stream functilon-
vorticity equations is in progress, In the numerfical examples, the coef-
ficients of the transformed equations have been computed both analytically
and numerically. The analysis and numerical results were presented at a
recent STIAM Meeting.

An extension of the resusts on conformal mappings can also be repouted.
For years quasiconformal mappings have been of interest to mathematlcians
hecause they share many properties with conformal mappings and also can
be used to reduce linear elliptic partial differential equations to canon-
ical form. Applications to physical problems have been limited because
there was no known method for censtructing a quasiconformal mapping. It
is now possible to modify the numerical scheme used for generating coor-
dinates by elliptic systems to construct quasiconformal mappings. This
new discovery, along with previously reported results on conformal mappings,
will be presented at the Conference on Elliptic Problem Solvers in Santa Te
on June 30, 1980. The method should be of speclal interest to peosnle
working on the direct solution of elliptic problems since mixed derivative
terms can be eliminated by quasiconformal mappings. An abstract of the
talk is attached. The final manuscript is being prepared and will appear

later in the proceedings of the Conferencc.
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I, INTRODUCIION

Pinite difference mephes have baen widely used in solving partial
differential equations by numerical methods, In finite difference
techniques, partial derivatives in the equation are replaced by
difference quotients. For example, given a differentiable function
U(x.y), the first partial derivative of U with rempect to x may be
replaced by the difference of U evaluated at two neighboring points,
divided by the distance between these two points. This method requirns
that the region firat be divided into 2 grid, or mesh, as shown for

the case of a rectangle,

—r—
o=
=

L3

The intersection of the lines in the grid are called nedes ox grid
points or mesh points, At these points we try to anproxiuete values of
the solution to the problem,

For example, congider Laplace'n tquation

2 .2

d g ¢
e
Ay Jy

on the above rectangle whose lines are of unif width apart in each
direction, Assume boundary conditions are specified, By replacing
the partial derivatives in the cquation by difference quotients at the
point P, the equetion is approximated by

PAGE 18

TCINAL
O POOR QUALITY




I

$(P) = 4( ¢(X) + ¢(8) + ¢(B) +¢(W) ) = 0
where $(P), ¢(N), ¢(8), ¢(E), and ¢(W) represent approximations to the
function ¢ gt P and its neighboring points in the grid.

The collection of all such equations for a)) nodes given a
system of equations whose unknowns approximate the solution of the
problem at the interior nodes, We may, then, set up an iterative
scheme in order to compute an approximafe value of the function at cach
point. See [1]ana [2].

We encounter a problem, however, if we use a rectangular grid on

an arbitrary two-dimensional region with irregular boundaries,

FE,

Lot

B
r——l ﬁ__a
48
<) \ ;Ayf“ynl

o boundary nodes

e grid points
The grid points, or computational nodes, may not fall on the boundary
80 that we may not be able to meke full use of the boundary conditicns,
When solving an equation on suci a region it may be possible to
construct a curvilinear coordinate system such that certain coordinete

lines coincide with the boundaries of the region. A curvilinear system

e e+ e o e e o e L e e o o e




2 =g

e

1s defined t¢ bo a finite difference grid having the property that sach
neighborhood of a node iy topologleally equivalent to a rectangular
grid in the plane, that in, the coordinaiec lines may be conuiderad ns
level curves of a one~to-one transformation, We can then solve our
problem by computing & solution to the transformed equation in the
rectangular region,

For an example of a curvilineay coordinate system, consider the
transformation from rectangular to polar coordinates:

= X con B,
Yy =1 gin €,

Define the function T by {x,y) = T(x,0)., If x> Oand 0< 6 < 21, T is

one-to-one except when 1 = 0 and onto the xy-plane.

64

21

0
! maps the box O < r « &, 0 < 6 < +;. 2]l onto a sector of a disc in the

xy-plane. AY

21T

0 a

L
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The level lines r = constant are mapped onto circcles in the xy=plane

and the lines * = constant are mapped onto spokes.
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We shall consider different types of curvilinear coordinate systems by

defining r and 0 as functions of ¢ and n. Define § as a one~to-one

mapping of 1< £< N, 2 <n <Montol <2 210, 050 £ 2l

4

n
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The level lines { = constant"andn = constant are mapped as followa,

>

X4
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The Jacobian matrix of the transformation T o S is

X 0x ax x| 2x ax
9 an = 29 06 3¢ an
N2 & || e 2
9E  8n ar 5o 3 3n

and the Jacobian is J = %%-%% - %f‘%% « As long as J ¢ 0, the level
lines do not intersect; and since the mapping is one-to-one in %the
region, the inverse of the transformation exists. Furthexr, by the
Inverse Function Theorem, the Jacobilan matrix of the inverse of the
trangformation is the inverse of the matrix of the transformation. Cee
3.

When using curvilinear systems certain difficulties may arise.
The coordinate system can have considerable effect ;n the erxor in the
numerical solution to the problem. Crowder and Nalton [4] and Blottner
and Roache [5] have demonstrated this for the one~dimensionzl case. ¥,
de Rivas [S] gives a study of trurcation errors in the use of nonuni-
form grids. We may readily see that coordinate line spacing rapidly
changes or if we use an extremely nonorthogonal aystem, the second
order differences of the x and y coordinate functions may become quite

large. Thereforc, when we consider the chain rule and Taylor series

expansions, as we will do in this study, we see that our truucation

e —— e —— o - o
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errors can become much worse when ueing such syetems, See [7].

In our study we shall compare several different coordinate
systems, methods for finding values on the toundary when having the
Feumann boundary condition, and various finite difference aschemes. Lau
[8] nes developed a finite difference method, ir a menner similar to

that to be used in this study, for the three-diriensional case, Aleo

see [9].
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II. FINITE DIFFERENCE METHODS AND ERROR ANALYSIS

We wish to solve the partial differential equation

2 2
V2¢ =-a-% +'B—%=O
X 9y

on a two-dimensional, doubly-connected Tegion D, with boundary compo=-
nents Pl and r2, and a cut along P3 and P4 which are coincident. Refer

to Figure 1, We have Dirichlet boundary conditions on and either

T2
(1) Dirichlet boundary conditions on rye or
(1i) Neumann boundary conditions on I'ye

In order to sclve this problem what we have done is to transform
our problem from the xy~plane to the {n-plane by a one~to-one mapping,
where our transformed plane D* is a rectangular region and the houndaries
correspond to constant coordinate lines. Since 15 and F4 are coincident
in D, P; and P: are reentrant values in D'. Refer to Figure 2., We are,
then, able to solve our problem in the fn-plane.

In this study we wish to compare the accuracy of seversl finite
difference methods of solving the pioblem, as well as to etudy the
effects of nonorthogonality and rate of change of spacing of cooxrdinate
lines in the region.

First we shall consider the chain rule method, Suppose a coordi-
nate system is given in a region D of the xy-plaue and f is a function
in 03(D). Difference expressions for the first and second order partial
derivatives of f can be obtained by transforming the region D to a

rectangular region g and applying the chain rule., The relationship

¥, “N———

B



between the derivatives of f in the xy-plane and those in the En-plane

are given below:

of _ axaf . ayof
9 © 9 ox ot Jy
af _ axaf . 2y f
an on 9x on 3y
2 2 2 Ve .2 . 2 2,2
f x of 3 £ 2 3°f hx gy 8°f 3
(@) £f Sxaf, iyar (@) oL, st (o)
3E oL 3 >l ux s 05 ay
2 2 e Y 2
f _x sy of dx x 3 (exay | 3x 8y | oL
9E3n 9Edn 9X 9Edn o 3¢ 9n - £ 9n n 8% / oxdy
> 2¢
+ L EZ.E.E
9k 9n 5y
02r  %x af . 2oy af . [ax)? 32:‘ ax oy 2°f  [2y )? 2%
o2 Y T2% t\on ?Tanaxay "\%n/ .2
an an an . Bx oy"*

The derivatives with respect to the xy-variables may be expressed

in terms of derivatives with respect to the (n-~varlables provided the

Jacobian of the transformation, J = %%-%% ~- gi “g y does not vanish,
For example, we may solve the first two equations in (1) for 3— and == ax .

Hicgher derivatives may then be obtained by repeated applications of theae

of af
expressions for o and — 5 :

of 3y 3f 2y of J
ox an 65 9t an

of dx of ox of

'55:"("3‘?' ¥ rm)/J
2 32 y 2 2
3f_ (X __f._g_ax_ax £, (& 2oy |(f] X
2 an 2 9E 9n ¢ &ﬂn BE a 2 T 82
n E
2 2 42 ¥ 2 .8
08X 3y Oy ..1 .?353.31_395.3!_ AR 4
(2) ® % Wn ogon Y e, ol || B0 9E T3 I Y *; o

\D




¥
¥
i
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i oo

[
| P e S (A Y L T S 1
9E o1 9Ean 9 /. 2113 an an 8¢
" 2 L2
P _|xay , sxax)a®r. | axoawa®t  pxoaya’f) /2
oxdy . (\df on an 9t/ 9E3n ot ot , 2 In 9n
an 9k
r Jlax 2% %y Ve, (axay s | axoyag) s lag
@ 9E an2 on 9E9n an o9n 9§ 9 on on o¢
] 2 2 < R
| olex 2y ety J24<gzgx.ag - uexu.\/y as
; an 362 D& 9EdN 98 9 9n an 9E BEA an

A1l derivatives with respect to the fn-variables mayrbe approxi-
mated using difference operators, so we define the following expressions
which replace the corresponding derivatives in the above equationg.

£,(p) = ( £(a) - £(r) ) / 2

r.(p) = ( £(s) - £(1) ) / 2

(3) £, (2) = £(Q) + £(R) - 2£(P)

£,(B) = ( £(0) = £(V) + £(w) - £(x) ) / 4

£ (P) = £(8) + £(1) ~ 2£(P)

nn
Thege are merely the second order central differences on a square mesh

e

1l i

1

of unit width in the ¢n-plane. See Figure 3. The coordinates x and 7
are alpo functions of § and n, end their partial derivatives may also be
approximated by difference expressions in a similar manner,

From (1) and the above method of obtaining the central differences,

then we may set up a matrix equation
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..f . o
£ 5x
£ 2L
n 3y
32¢
(1a) | ¢ ¢ [F 4|53 |» vheze
5 7%
c 32¢
En IX3y
. 52¢
nn 2
br - ,_ay .
rxt yt 0 0 o ]
X, ¥, 0 ) 0 0 .
A=l % % 24y ool
Xn % %% (%, +x ) yggn
5 Y K 2% ¥, Yoo
We may solve this by
of
3 fg
of
— f
oy n
22¢ -1
—— = A f rovided det A # O,
. g |+ PROvidst det A 4
a2¢ .
X3y £n
32¢
ay? |

The determinant of A will not vanish in our case because J # O.
Next we conalder a Taylor series expansion of f about P, Using
this and the difference expresslons we have already developed, we get

the following matrix equation:

11




e | far T
4 ox
of
£ of
n dy
2
N
(4) Lo = A —2 |’ where
? 2%
£n XY
nn 2
8 A L3y
i
X Yy Py ;(xgyzc * ¥pxpe)
Yy ﬁxn;nn Bxyo, + VX,

2
xee Ty (U vx) (g +2xy)

X

2 2 ,
G, +x ) (& v +2xy)

l-x’m nn nn

the error terms are O(hz’ ), h the maximum distance between P and itn

neighbors, and
() (B (D) + x(0)? - 2(x)* - x(¥)?)

=T

By e
o
*’ee + ¥ )

en Yen é((xz)f:n" 2Hf;n) ((xy)f:n-xyﬁn -ﬂf:n) é\((ya)l:n"%’yﬁn)

@, )

(x3), (P)=2(x(0)y (0) + x(W)y(¥) - x(X)y(X) - x(V)y(V))

(1P) g, (B0 + 502 - 5307 - 5 (M),

We may solve by

I N - -
f s
X £
L f
oy n
2
o f -1 f
onmp— o~ A .
8!2 ok
32f £
3x3y &n
Ps ¢
2 nn
Yy
L. - . .
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When we compare the chain rule method with the Taylor series
method, we concider the system (4) for Taylor series and the eystem (1)
for the chain rule, both of which use central difference approximations
for the paréial derivatives of x and y with respect to the En-variadles.
In the Taylor series expressions from (4), only the first and second
order terms are retained, and the truncation error is 0(h’) for each
expaneion, 1In the expression:s for fg and £, if only the first order
terms are retained, the truncation error i; O(ha). Thesc expretgions,
though, are precisely those of the chain rule method, We see then that
for our chain rule method, the error terms of f; and f are o(h?).

If we compare the last three equations in the Taylor sexies
method and the chain rule method, we note that, in order to reprocduce
tne Taylor series expressions from the chain rule expressions, some
second order terms in (4) would have to be added, as well as the exror
term which is O(hB). Bence, considering the second order terms, the
error in these chain rule expressions is 0(h?),

Therefore, in all five equations using the chain rule, the errors
are O(hz). The exroro for the Taylor series method, retsining only
firgt and second oxder teras, are all O(hg). It appears then that, when
we ugse central difference expressions for the coefficients in thesc
syotens, the Taylor serles expansions should give better results than
the chain rule.,

The third scheme we consider uses the chain rule in the same
nanner =s before, but the difference lies in our method of finding

2 2 2

ax X A X 9 x  9°x ; ) )
— = etc, Instead of approximating these partial
agy an' 2" dkdnt 2

3
derivatives by finite difference expressions as before, we compute these

13
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values analytically., The accuracy of this method can also be evaluated

from Taylor series expansions,

For the first order central differences in the computational

region,
e .2, 32X
AT 2
3 3.\, p 2_ .2
,az.+%a_za..f.+ ax+%uai+%ﬁ%a%.
£ ag’ ) o '3’3 oy 9% e ax
+.1.(z>z.ﬁ§ R ﬁ%u);ﬁu ¢ Laralyax,
2 \3¢ Y 2t ag [ oxdy 0k 9E° oy

where only the first and second order terms are retained,

Approximations for the second order differences arc obtuined in a

2 4 2 4 4e \
3~ 1 1a3'f atf 1 [ 3" 2
ginmilar vay. Ir r = _'g + ~= and = -‘-—- - +
e a7 T IR O SRR

then, dropping a1l but the first and second order terms, we get the

following estimates:

(2 12 o g
1 1351 f_g 3X Ay lagxfl laxa’y
t3ar 3| 2\ % Y322 Y 3, 3
b ae?] ax £ i 2e° ot £ ot
LLlodxaw\a’e [(ax)z,,L(ﬁ)e Loy o’y [
2,
3.3, oy Tt/ YA\;z) t3e 3|2

+ an 358!12 2 £on AL dn 2 3 9E on 3n 9F
1/hx 3 5 5 5 1 3
_g;..a..x + XX +¢.£a..23: +§__2;.a1_.é.a.¥.?2-
& an5 ag3 an AN g, an” & % 5c %
ORIGINAL PAGE IS
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Jax 2%, 00x oy o0k dy oy (':zy 3...2

M oaean?  0e%n %% 3e0n2°" T apay s‘

2 2 2 2
chi e 9] e SR V3 .4 a

-.;.(u_a_}z_ a.x..a.?% __xa_z_ _z_a..x ]a_..

QJQ)
N

Here we observe that the difference formulas, srrived at via the chain
rule, for the derivatives of f are accurate only if the higher order
derivatives of the coordinate functions x and y become progrespively
cmaller,

A comparison of the Taylor series expansion about P end the
analytic derivatives suggests (and our study bears this out) that the
numerical computation would be prefecrred due to the appearance of error

in the first derivative terms when the coefficlents are computed

analytically.
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III. ITERATION SCHEMFS AND BOUNDARY TICHNIQUES

From both the chain rule and the Taylor series, we havz, for

V2¢ = 0,
M *
e X
" 3%
n oy
)
e | AR P [44;] -
Ly
ey ax 3y
4, 24
2
i nn | Ea
Then from x, y, and ¢ we compute
b
-1 %
A
¢
EE
e
| Pon
2 2
to find 3% and 3% .
2 2
9x oy

Our transformed equation is
2
Vé = a1¢’€ + 82 ¢’n + 33 ¢6£ + 34 d‘gn + a5 ¢’nn = O,
=1 ‘
where A "I;:Bij-] and a‘_j = B3J + st » Using central differences to

s

e




L el

approximate v 2¢ above in terms of the in-variableo, we get

Lo= e d(5ym) + c2¢(t:+1,n) + c3¢(£-1,n) + c4¢(5.n+1) + c5¢'(5,n-:_)

+ 0gd(E41,n41) 4+ c7¢»(€+1,n~1) + cgé(E=1,n41) + c9¢(€~1,n-1')
= 0,
We will use the Successive Overrelaxntion iteration scheme to approxi-
mate ¢3
o(gm) = - ‘-;’;(cl«b(s.n) + cpd(E43,n) + o8(E=1,n) 4 ¢,0(5,n42)
+ c5o(Eyn=1) + ccd(£41,n41) + c7¢(€+1,n-1)
+ cg#(E=1,n41) + °9¢(E~1,n-12) + ol8=1)(g,n)

= - ?f Lg + o8 (g,n)
= {5 () - 4o
1

where ¢, = -2a, - 2a; and w is the relayution factor. So we have, then,

(s) . (&-1)
o T =9 +..<._s__5w1~ -
2 334-35

We have compared several tcchniques for finding values on the
boundary. Whken wo have the Neumann condition, -g-g- = 0, on the boundary,
we go through an iteration scheme obtained in a manner similar to that
of the scheme for the interior points, First %gi = 0 is computed by

the expression

M'— . V = ( = t'
m = Ve Tgﬂ_o on n = conntan

3
In the first two equations of (2), 1f we apply the relations for -a{-
and % with £ = n, we obtain

ox T 3¢ by T 9

2
so that _Vn_ = (- 3y Ax ve = [2¢ 34 ) where 0 = (:;_x_ + 3y
[Vn] ag [V, ur g [ ax 4 dy ag 9%

17
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k.
fenee we havo--gx-a-d‘ + Ezﬂnﬁ. From ®
[ ox a6 dy P
3¢ ,
ix E
3¢
oy *n
2
a_;' P A-l ¢
ax EE |
| 224
| oxdy en
‘ 2 ,,
w12 gelt the equations
3 ;
x Bll% + B12¢n + 313%6; + B].4¢’@n + B15¢nn
2 2B 6 +B,é +B,4,, +D,0 4B 0
Jy 217¢ 22"n 257 k8 24"En 257 nn*

. ~ ﬂ . v - 3x 94
ien from these equatiuns and our boundary condition - -,;F:- 5x * 3¢ 3y =0,

't have
o Mgy b 3
(ag a1 =3¢ Buaf ¥y # (af, Paz = ¢ Bm) n * (’:T Bys = 7F Bys) e

X 2y 2x 4
+ (Bf; 324 - 3f 1314) ‘T’gn + (b& 1325 -7 BlS) ¢,m = 0,

30

o |
| « dl"’t: + dz ¢’n + dir:z“ + d4 ¢£n + d5 Sun = Oy
L here d =_Z_bc_

— '%1 * 4 'y !
Y Baj 3E Bl,j « The interior boundary component will be
k - = 2 with n =1 a false boundary used for inplementing the Newmann
-ounéary condition as indicated in Figure 4.,

So on the false boundary n = 1, in a manner similar to that uaed

in coltaining a scheme for the interior points, we have the iteration

(s) - o(s-1) 1 ad,
chene ¢ \°/(g1) = ¢57H(h1) 4 7z o a, \ ‘1t et t 930
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We have also ntudied the effect: of using forward differenco
achemes for approximating values on the bowndary, One method wo

conaidered uses the expressions

) .

a‘% (5 0‘1) = ("‘3’(’; m+2) + A (‘l ﬁ‘i"‘l) - 5#(‘« »ﬂ))/e
where we still have the boundary condlition ;’-% = 0, Fox g—*i andgﬁ); ’
the chain rule fermula is used and {the Neumann condition g—% = O i

approximated by dl"'g + cbnu 0. 'Then we get the three-pnimt extrapo-

*lation formula

(5) ¢ ) = Myl); GRTIE -V 2y, (51) /4, ot =2,

‘ Another method used wan %ﬁ- (ryn) = ¢(n4d) =o(64n)e Then we
get the two-point extrapolation expressicn

(6) alem) = ¢leyned) + aehp) /4, ot =2,

Because of the difficulty in getting the partial dexivatives at
the tralling edge of the airfoil necessaory in approximating values of
¢ there, we have used a three-point extrapolation on the trailing edge
at n ;2, and £ =1 and £ = N,

(1) ¢(1,2) = 34(2,2) - 3(3,2) + ¢(4,2)
o(N,2) = 3p(8-1,2) - 3 (N=2,2) + ¢ (N-3,2)
These formulas were obtained by fitting a paralola through the three

known values in order to approximate the poimtu ¢(1,2) and &(I{.’d’)) on it,

L o Y
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IV. COORDINATE SYSTEMS AND RESULTS

Different cvordinate systems have been used in our region in order
to compare the results when using grids with properties such as equal
spacing; continucus changes in spacing, or an abrupt Jjump in spucing,
and orthogonality or nonorthogonality. "In our study we have uaecd
1<t < N=40 and 2< n < M = 50 on both circles and airfoils,

In each case, we have taken a known solutinn to the problem and
compared values of this function on the grid to those of the approxi-~
mated function which we have computed, Hexe we provide figures
i{llustrating the coordinate systems and a graph for each comparison of
the errors of the particular methods used for the systews, The graphs
were plotted along either £ or n equal to a constant,

The first coordinate system we will considur is an orthogonal one
in which we have a jump in the coordinate line spacing. The lines close
to the body are equally spaced before the jJump, from radius 1 to 2.294.
After the jump, from radius 2,294 to 10,0, though the distance between
consecutive coordinate lines is agaiﬁ uniform, tbis diatence has been
increased to five times that between the lines before the jump, This
coordinate system 1s generated by the following formulas:

We will denote r atn = constant by r(n). Then
r(2) =1 ‘
r(n#l) = x(n) + 2.7/(M-2) for 2 <n < M/2
r(n+l) = r(n) + 13.5/(¥-2) for M/2 < < M.

o =2n ( (e-1)/(x-1) ).

-




;

!
!

Refer to Figures 5 and 6, In Figure 6, we have the same system as in
5, except on a larger scale, and we have only shown the firast 29 soordi-
nate lines close to the body.

In this comparison, we consider different methods for two differ-

ent functions:

(1) o(x,y) = x (1 + ﬁ)

X +y

(11) ¢(x,y) = % log (x2 + yz), where x = r cos ¢ and y = sin o,

For (i) we compare the results of chain rule and Taylor series,
using central differences for the approximated values of the fn-partinl
derivatives of x end y, and the Neumann boundary condition on 1‘1,
creating a false boundary at n = 1. For a graph of these errors alonn
£ =1, refer to Figure 7. The results using Taylor series were better
than those using the chain rule,

In (i1) we compare the chain rule and Taylor series using central
differences for the coefficients, and the Dirichlet boundary condition.
For a graph comparing the errors plotted along the line £ = 1, refer to
Figure 8. Again Taylor series gives better results.

Next we will compare a nonorthogonal system with an orthogonal
one, using the function ¢(x,y) = % log (x2 + ya), where x = r cosé and
y =r 8in 6, In the orthogonal systen,

r=214+9( (n-2)/(M-2) ) and 0 = 2 n( (5-1)/(n-1) ).

Refer to Figure 9,

For the nonorthogonal system we use

r=14+9( (n-2)/(M-2) ) and Omax = 51/6, 6nin =1/6,
6 = omin + £§l (omax + omin) + 21( (£-1)/(F-1) ).

Refer to Figure 10,
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On each of these systems we have used the chuin rule method,
central differences for the coefficients, and the Dirichlet boundary
condition on Pl. For a comparison of the error curves along [ = 1, see
Figure 11, The crrors were constant on each circular coordinats line,
and the results using the orthogonal system were better,

For the function ¢ (x,y) = x (1 + ;!i;z , Wwe will again uss the

nonorthogonal system described above (see, Figure 10). We will compare
the accuracy when using a false boundary with that when using the two.-
point and three-point extrapolation formulas, (6) and (5), respectively,
for values on!’1 where we have the Neumann boundary condition, In each
case we have uded the chain rule method with central differenceo
expressions for the coefficlents,

At n= 1, we have taken for the x and y valu¢s,

x( ,1) = 2x( §2) - x(73)
yE ,1) = 2y(52) - y(53)

when using the false boundary. For a graph along n = 2 comparing the
errors when using these methods, refer to Figure 12, Since the error
curves in each of these are symmetric about the line ¢ = 20, we have
only shown the points for 1 < & <20, We mee that both the false
boundary and the three-point extrapolation methods give much better
results than the two-point extrapolation,

The next coordinate system we consider is generated by x = 1 cosg,
y=rs8ing 6=2n( (&=1)/(N-1) ), and r =1 + 10 (ﬁ)(l-tmh(ﬂ’—g*ﬁ}
Refer to Figures 13 and 14, Figure 14 is a plot of the same coordinate

system as 13 on a larger scale, so we only show the 241ines closest

to the body. Again we use ¢(x,y) = X (1 +~—§l—§>.
X 1y

22




In this coordinate system we compare the results obtained using
the numerically approximated values of the £n-partial derivatives of
x and y, or the coefficients, in both the chain rule and Taylor series
methods with the chain rule method using the analytic derivatives of x
and y. In each case we use the Dirichlet boundary condition on Pl.

With both the chain rule and Taylor series where we use the
numerical coefficients we get gocd results, .However, when using the
analytic derivatives with the chain rule, the errors were much larger.
Refer to Figure 15 for a graph of the errors along £ =1,

In the previous cases, we have considered coordinate systems end
functions on regions around circles, Now we move to the airfoil,

nbtained by the following transformation:

X=rcos o, y=rsingeg
x1 = x(1-b), yl = y(1-b)
x2=x1 + b, y2 = yl

X =x2 + 2x2 2) ;=y2-<—~2—12-'5 .
x2" + y2 x2° + y2

The transformation from (x2,y2) to (x,y) is the classical Joukowsli

transformation which is a conformal mapping. For this study we have

haken b

-,1 and used the coordinate system generated by
1 + 9( (n=2)/(M~2) ) and 6 = 20 ((£-1)/(N-1) )

+ith the function ¢ (x,y) = x{ 1 + -!l—zl). Refer to Figure 16, 1In each
X 4y ,

nf the methods we will compare, we have used the three-point extrapola-

r

]

ion formulas (7), discussed earlier, for approximating values on the

tralling edge.

First we compare the chain xrule and the Taylor series using

qumerical coefficients with the chaln rule using analytically computed

23
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coefficients. In each of these, we have used the Neumann boundary
condition, with a false boundary. For a graph of the error curves elong
the line £ = 1, see Figureo 17. For the curves graphed along n= 2, see
Figure 18, Note that these error curves are symmetric about £§= 20, so
that in Figure 18, we have only shown these curves for 1 < £ < 20, In
both figures, we see that at most points, the Taylor series and the
chain rule methods using approximated de;ivatives both give better
re3ulta than the chain rule with anelytic derivatives,

Finally, for tﬁe same coordinate system and function ¢ as in the
immediately preceding comparison, we have used the chain rule method
with numerically approximated derivatives in comparing the false
boundary method with the three-point extrapolation‘of ¢ onT, where we
have the Neumann b¢ dary condition., Refer to Figure 19 for a graph
of the error curves along n = 2, Again, since these curves are
symmetric about £ = 20, we have plotied them for ). < § < 20, These

methods give equally satisfactory results.
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V. CONCLUSION

The objective of this mtudy was to determine the most accurats

method, of several considered, wsed to solve numerically the partial

2 2
differential equation v2¢ ='2-% + 3~% = 0, We have looked at
ax 3y '

several different coordinate systems on circles and on esirfoils. In
the comparison of the nonorthogeunal system with the orthogonal one, we
found that the orthogonal system gave better results,

We have also compared different schemes on the systems, When we
compare Taylor series with the chain rule we see that, in general, Taylor
serries 1s more accurate, When considering ihese two methods, which uge
nunerical coefficients, versus the chain rule with analytical coeffi~
cients, we see that the errors when using the analytica). derivativen
mar be much greater than either of the firat two methods.

Also considered in this study were the false boundary, two-point
extrapolation, and three-point extrapolation methods used when having
the Neumann boundary condition. We found that both the falee boundary
anl the three-point extrapolation techniques give satisfactory results,

eazh being more accurate than the two~point extrapolation method.
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